The present invention relates to an optical short-range sensor, in particular for motor vehicle applications. Sensor systems which are suitable for a plurality of functions, e.g., a 24 GHz pulse radar sensor system for implementing blind spot detection (BSD) and parking space measurement (PSM) are known for implementing driver assistance functions.
It is possible to implement a universally usable short-range sensor for different driver assistance functions by applying the measures of claim 1, i.e., using a plurality of transmission elements that are disposed in a line-like manner in one plane and are sequentially actuatable, in particular in a pulse-shaped manner, at least one additional transmission element which is offset in relation to the sequentially actuatable transmission elements and which in particular transmits downwards, a receiver device for the common evaluation of signals of the transmission elements reflected by objects, by propagation time measurement in particular. The sensor according to the present invention is equally suitable for the functions blind spot detection and parking space measurement. The parameters which are of particular importance for PSM such as passing distance from parked vehicles, precise location determination of the vehicle edges, and detection of the curb including measurement of the passing distance are detected reliably. The same sensor may be used at another installation site, e.g., at the front or rear instead of a side area of the motor vehicle for other functions as well, e.g., short-range coverage, lane detection, traffic jam assistance, etc. A modular design makes it possible to adjust the sensitivity or the used distance range according to the application, e.g., by replacing the module of the transmission elements (replacement of high-quality transmission elements such as laser diodes with IREDs or LEDs or a combination of high-quality transmission elements and transmission elements of low optical performance).
In contrast, the control electronics or the receiver device may be used for all applications. Assemblies for other sensors/sensor groups may be used or included for use in control electronics, such as the delay circuit for SSR (short-range radar) sensors. The different transmission elements may be optimally coordinated with one another for the particular application. In addition or as an alternative, a variation of the light intensity of the transmission elements may be provided for the various applications by varying the pulse width of the control pulses.
The other claims indicate additional advantageous embodiments.
Exemplary embodiments of the present invention will be elucidated in greater detail below with reference to the drawing.
The sensor concept shown in
The sensor geometry shown in
The transmission beam of transmission element 1 may of course be used for other evaluations, for example as a redundancy element for verifying less reliable detection.
While simple transmission elements such as LEDs or infrared emission diodes (IREDs) may be used for the sequentially actuatable transmission beams, a highly optimized receiving channel is used for receiver device 3 because the receiving elements are less economical than the transmission elements. The use of silicon PIN diodes instead of avalanche photodiodes (APD) may, for example, eliminate the necessity of generating high voltage for the operation of the APD. Higher quality laser diodes (LD) may also be used instead of IREDS, in particular for greater ranges.
A modular design makes it possible to replace the transmission module as a function of the range and geometry requirements of the function. Standard components/assemblies may be used in addition to the transmission and receiving elements, e.g., optical filters, lenses, evaluation electronics. Using an indirect propagation time measurement adapted to LIDAR, i.e., using a coincidence evaluation of a correspondingly delayed transmission pulse reflected by an object (see DE 199 63 005 A1), makes it possible to use or include for use essential concepts of the SSR (short range radar) pulse radar if such assemblies are also installed in the motor vehicle.
In
A detection field including nine individual beams for a sensor according to the present invention is shown in
In the case of the reflectors occurring in road traffic, the dynamic range of useful light intensities to be detected covers approximately 8 powers of ten. This dynamic range may be implemented, for example, on the receiver side by switching different amplification stages, and on the transmitter side by influencing the light intensity, e.g., of an IRED via the current flowing through and also by varying the pulse width of a propagation time-measuring optical system. It is of particular advantage to vary the transmission power by changing the pulse duration of the transmission pulses. Varying the pulse width is more economical to implement than regulating the current of the transmission components. Amplification and attenuation stages in the receive signal path may be completely eliminated. The advantage is that the distance of objects having high intensity is automatically measured more accurately because the pulse duration for reducing the light intensity is diminished. This means that close objects reflecting more strongly in the normal case are measured more accurately than more distant ones. This is compatible with a typically required relative measuring accuracy with reference to distance. If an IRED or laser diode (LD) is actuated by pulses, the default pulse width corresponding to a specific value, the transmitted light intensity may be reduced/increased within specific limits by shortening/lengthening the pulse width. At the same time, the accuracy of the distance determination is changed in a propagation time-measuring optical measuring system by changing the pulse width. This is based on the fact that the pulse width directly influences the resolution. Short pulses result in pulses having narrow half widths; long pulses result in larger half widths. The peak positions of narrower pulses may be determined more accurately than the wider pulses. When replacing transmission elements with varying degrees of sensitivity, the pulse width variation may also be used to implement an adaptation to the intended function.
Number | Date | Country | Kind |
---|---|---|---|
10 2004 062 022.9 | Dec 2004 | DE | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/EP2005/056129 | 11/22/2005 | WO | 00 | 4/4/2008 |