This application claims priority, and from the Singapore patent application 10202103149W filed Mar. 26, 2021, the content of which is incorporated herein in the entirety by reference.
The described embodiments relate generally to an optical spectrometry method and an optical spectrometer.
Optical spectroscopy is an important technique that can examine the properties of a material by analyzing its interaction with light at a range of wavelengths. As an indispensable tool for material analysis, the current optical spectrometer can be mainly classified into four categories based on their working principles as shown below.
The first category is based on dispersion, where a dispersive grating is used to map light of each wavelength spatially onto a different angle and measured individually by a point detector sequentially or a 1D detector simultaneously. The second category is based on narrow band tunable filters, such as Fabry-Perot spectrometers, acousto-optical tunable filters, liquid crystal tunable filters, etc. This type of spectrometers usually takes narrow-band measurements at one central wavelength each time. The first two categories suffer from low signal-to-noise-ratio (SNR). The third category is based on various interferometers and requires data post-processing such as Fourier transform to retrieve spectra. This category of methods detects light at multiple wavelengths simultaneously by a single pixel detector thus possessing a higher SNR. The fourth category is based on wavelength multiplexing measurements using a spatial light modulator such as digital micromirror device (DMD) or liquid crystal device to enhance the SNR.
In the wavelength multiplexing technique of the fourth category, Hadamard transform spectrometry (HTS) has been proposed to realize wavelength multiplexing by placing Hadamard mask at the exit plane of the conventional grating-based spectrometer and replacing the 2D detector with a single pixel detector, which has been demonstrated successfully from visible to near infrared spectral range.
One common disadvantage of all the past HTS techniques is that they take the sequential direct current (DC) measurements of Hadamard coefficients to our best knowledge, which is subject to the influence of noise and signal drift thus prolonging measurements.
Embodiments described herein are directed to an optical spectrometry method and an optical spectrometer.
An optical spectrometry method, comprising: generating a sequence of 2D Hadamard masks along a time dimension, wherein each 2D Hadamard mask is arranged with a wavelength dimension and a coefficient dimension; detecting an optical signal from light transmitted through the sequence of 2D Hadamard masks; and reconstructing a spectrum to be detected by analyzing the optical signal, wherein each 2D Hadamard mask in the sequence of 2D Hadamard masks comprises a plurality of columns along the wavelength dimension, each column corresponding to different Hadamard coefficients, and having different respective sequency values along the time dimension.
In some cases, the sequence of 2D Hadamard masks is generated in accordance with a sequency-ordered Hadamard matrix.
In some cases, the different columns along the wavelength dimension of the 2D Hadamard masks follow a principle of complementary alternation in a time domain, to improve a signal-to-noise ratio of the optical signal.
In some cases, the optical signal is detected by a single pixel detector.
In some cases, analyzing the optical signal comprises performing a fast Walsh Hadamard transform on the optical signal to obtain the Hadamard coefficients.
In some cases, reconstructing the spectrum to be detected comprises solving the system of equations:
where yi(λ) are the Hadamard coefficients, xij(λ) is a spectral element of the j-th channel along the wavelength dimension and the i-th channel along the coefficient dimension, x1j(λ) is a spectral element of the j-th channel along the wavelength dimension and the first channel along the coefficient dimension, sij is a coefficient of the spectral element of the j-th channel along the wavelength dimension and the i-th channel along the coefficient dimension, N is the number of the channels along the wavelength dimension, and αij is a normalization coefficient of spectral intensity.
In some cases, reconstructing the spectrum to be detected comprises a calibration step to obtain values of x1j(λ), wherein the calibration step is performed using a pre-calibrated spectrometer as a detector to detect the optical signal.
An optical spectrometer, comprising: one or more processors; a spatial light modulator in communication with at least one of the one or more processors; and a detector for detecting a transmitted optical signal from input light transmitted through the spatial light modulator, wherein the one or more processors are configured to: generating a sequence of 2D Hadamard masks along a time dimension, wherein each 2D Hadamard mask is arranged with a wavelength dimension and a coefficient dimension; detecting an optical signal from light transmitted through the sequence of 2D Hadamard masks; and reconstructing a spectrum to be detected by analyzing the optical signal, wherein each 2D Hadamard mask in the sequence of 2D Hadamard masks comprises a plurality of columns along the wavelength dimension, each column corresponding to different Hadamard coefficients, and having different respective sequency values along the time dimension.
In some cases, the one or more processors are configured to control the spatial light modulator to generate the sequence of 2D Hadamard masks in accordance with columns of a sequency-ordered Hadamard matrix.
In some cases, the different columns along the wavelength dimension of the 2D Hadamard masks follow a principle of complementary alternation in a time domain, to improve a signal-to-noise ratio of the optical signal.
In some cases, the detector is a single pixel detector.
In some cases, the one or more processors are configured to analyze the optical signal by performing a fast Walsh Hadamard transform on the optical signal to obtain the Hadamard coefficients.
In some cases, the one or more processors are configured to reconstruct the spectrum to be detected by solving the system of equations:
where yi(λ) are the Hadamard coefficients, xij(λ) is a spectral element of the j-th channel along the wavelength dimension and the i-th channel along the coefficient dimension, x1j(λ) is a spectral element of the j-th channel along the wavelength dimension and the first channel along the coefficient dimension, sij is a coefficient of the spectral element of the j-th channel along the wavelength dimension and the i-th channel along the coefficient dimension, N is the number of the channels along the wavelength dimension, and αij is a normalization coefficient of spectral intensity.
In some cases, the one or more processors are configured to reconstruct the spectrum to be detected using a calibration step to obtain values of x1j(λ), wherein the calibration step is performed using a pre-calibrated spectrometer as a detector to detect the optical signal.
In some cases, the spatial light modulator comprises one or more digital micromirror devices and/or one or more liquid crystal spatial light modulators.
Detailed discussions of implementations directed to one of ordinary skill in the art is set forth in the specification, which make reference to the appended figures, in which:
The following description with reference to the accompanying drawings is provided to assist in a comprehensive understanding of various embodiments of the disclosure as defined by the claims and their equivalents. It includes various specific details to assist in that understanding but these are to be regarded as merely exemplary. Accordingly, those of ordinary skill in the art will recognize that various changes and modifications of the various embodiments described herein can be made without departing from the scope and spirit of the disclosure. In addition, descriptions of well-known functions and constructions may be omitted for clarity and conciseness.
The terms and words used in the following description and claims are not limited to the bibliographical meanings, but, are merely used by the inventor to enable a clear and consistent understanding of the disclosure. Accordingly, it should be apparent to those skilled in the art that the following description of various embodiments of the disclosure is provided for illustration purpose only and not for the purpose of limiting the disclosure as defined by the appended claims and their equivalents.
It is to be understood that the singular forms “a”, “an”, and “the” include plural referents unless the context clearly dictates otherwise. Thus, for example, reference to “a component surface” includes reference to one or more of such surfaces.
Throughout the specification, when an element is referred to as being “connected to” another element, it may be directly or indirectly connected to the other element and the “indirectly connected to” includes connected to the other element via a wireless communication network.
In addition, the terms used in the specification are merely used to describe particular embodiments of the disclosure, and are not intended to limit the disclosure. In addition, it is to be understood that the terms, such as “comprise”, “include”, “have”, or the like, are intended to indicate the existence of the features, numbers, operations, components, parts, or combinations thereof disclosed in the specification, and are not intended to preclude the possibility that one or more other features, numbers, operations, components, parts, or combinations thereof may exist or may be added.
It will be understood that, although the terms “first”, “second”, etc., may be used herein to describe various elements, these elements should not be limited by these terms. The above terms are used only to distinguish one component from another. For example, a first component discussed below could be termed a second component, and similarly, the second component may be termed the first component without departing from the teachings of this disclosure.
Hereinafter, embodiments of the disclosure will be described with reference to the accompanying drawings.
The disclosure provides an optical spectrometry method, i.e. a sequency encoding Hadamard transform spectrometry (SEHTS). In the method, alternating current (AC) measurements of Hadamard coefficients can speed up data acquisition. 2D Hadamard masks are designed to encode each Hadamard coefficient with a different sequency value, and thus enabling all coefficients to be measured at the same time by a single pixel detector. It is demonstrated that the SEHTS encoded by the sequency-ordered Hadamard matrix (SOHM) with 32 spectral channels is able to accelerate spectral measurements from white light sources and fluorescence particles by around 28 times and 140 times, respectively, compared to measurements using a commercial spectrometer when the relative root mean square error (RMSE) is around 3% or smaller. The speed can be boosted by an extra four times when only eight spectral channels are used to achieve a compression ratio (CR) of 4:1, in which the relative RMSEs change only marginally. When the SEHTS is compared to conventional HTS based on sequential DC measurements, the speed can reach three orders of magnitude. This technique is expected to be useful in applications requiring high-speed spectral measurements.
It is assumed that a spectrum X(λ) may be divided into N spectral elements xj(λ) (j=1,2, . . . ,N), and satisfies X(λ)=Σj=1Nxj(λ). A grating-based spectrometer needs N consecutive measurements, each measurement detecting one spectral element xj(λ). Such a measurement suffers from a poor SNR. As an alternative, HTS takes N measurements, where each measurement is the combination of at least half of the spectral elements determined by the Hadamard matrix. The N measurements in HTS can be described by N linearly independent equations as:
where yi(λ) (i=1,2, . . . ,N) is called as Hadamard coefficient. It is the sum of N spectral elements each with a weight determined by the i-th Hadamard mask si(si=[si1,si2, . . . ,siN]) corresponding to the i-th row of a Hadamard matrix. xj(λ) is the j-th spectral element. By solving the system of linear equations in Eq. (1), the spectral elements xj(λ) (j=1,2, . . . ,N) can be obtained and then the original spectrum to be detected X(λ) can be obtained from the sum of the N spectral elements.
Each column of the 2D Hadamard masks can be encoded to obtain the different change frequency, as shown along the t-axis in
Based on the above description, the output for a 2D Hadamard mask is the signal of the spectral to be detected that modulated, and the output weighted by the respective Hadamard coefficients yi. Each yi is encoded by a different sequency in the time domain. The resulting output can be expressed as:
where t represents time, w2i(t) is the Walsh function designed according to the even row of a 2N×2N SOHM with a sequency value of 2i−1 (i=1, 2, . . . , N) as illustrated in
If the signal of spectrum as described by Eq. (1) is detected by a single pixel detector, the output of the single pixel detector can be modeled by integrating Eq. (1) with respect to wavelength as:
where ŷi (i=1,2, . . . ,N) is the output of the single pixel detector generated by the i-th Hadamard mask, rj{circumflex over (x)}j is the contribution to the output of the single pixel detector from the j-th (j=1,2, . . . ,N) spectral element, rj accounts for the spectral response of the single pixel detector for the j-th spectral element. Similarly, the integration of Eq. (2) with respect to wavelength will yield the output signal of the single pixel detector after encoding:
Next, the spectrum can be reconstructed based on ƒ(t).
In practice, a complementary pattern may be adopted to minimize the influence of noise. In the SEHTS, the Hadamard coefficients may be changed by the sequence [sisi*sisi* . . . ] instead of [si0si0 . . . ], where si* is obtained by swapping “1” and “0” in si. Compared to the time-domain signal in
To code all coefficients simultaneously, the beam needs to be spread out along the coefficient dimension as shown in
The intensity of the spectrum to be detected may not be uniformly identical along the coefficient dimension as illustrated in
As shown in
For given Hadamard coefficients yi, x1j(λ) can be calculated by solving Eq. (6). The corresponding X1(λ) can be obtained by sum of x1j(λ).
When the single pixel detector is used to detect the spectrum, its output can be obtained by incorporating the above normalization coefficient of spectral intensity αij into Eq. (3), i.e.,
where ŷi(i=1,2, . . . ,N) is the output of the single pixel detector generated by the i-th Hadamard mask, rj{circumflex over (x)}1j is the contribution to the output of the single pixel detector from the j-th (j=1, 2, . . . ,N) spectral channel in the first column, rj accounts for the spectral response of the single pixel detector for the j-th spectral element. For given Hadamard coefficients ŷi, rj{circumflex over (x)}1j can be calculated by solving Eq. (7).
The calibration procedure includes two steps to obtain spectral elements x1j(λ) and the corresponding output rj{circumflex over (x)}1j of the single pixel detector from a broadband light source. In the first step, the configuration of the system is the same as that in
For the measurement of an unknown spectrum X′(λ), one just needs to obtain the output of the single pixel detector. Similar to Eq. (4), such a process can be described as:
where ŷ′i (i=1,2, . . . ,N) is the output of the single pixel detector generated by the i-th Hadamard mask when illuminated by the light with a spectrum X′(λ). Likewise, ŷi′ can be obtained by performing FWHT on ƒ′(t). Then, the spectral response of the single pixel detector for the first column of the j-th spectral element rj{circumflex over (x)}1j′ can be estimated by the following equation:
where αijis the normalization coefficient of spectral intensity, rj{circumflex over (x)}1j′ is the contribution to the output of the single pixel detector from the first column of the j-th (j=1, 2, . . . , N) channel, rj accounts for the spectral response of the single pixel detector for the j-th channel, rj{circumflex over (x)}1j′ can be obtained by solving Eq. (9) based on the obtained ŷi′
Using the calibration datasets x1j(λ) and rj{circumflex over (x)}1j determined in the calibration step, any unknown spectrum, X1′(λ)=Σj=1Nx1j′(λ), can be estimated from the outputs of the single pixel detector for the same set of 2D Hadamard masks using the following equation:
The Hadamard coefficients ŷi (and ŷi′) as modeled in Eqs. (7) and (9) can be viewed as the linear combinations of different sequency components in the spectrum weighted by rj{circumflex over (x)}1j (and rj{circumflex over (x)}1j′). The Hadamard coefficients corresponding to low-sequency components contain information about the outline of the measured spectrum, and those corresponding to high-sequency components contain information about the fine details of the spectrum. Therefore, only the low-sequency components ŷi′ are needed to retrieve the major information of the spectrum X1′(λ) for the purpose of high-speed measurements when the accuracy requirement is moderate. As a result, we only need to encode the first M Hadamard coefficients of ŷi′, satisfying M<<N, to estimate an arbitrary spectrum X′(λ) with a large CR when necessary.
The aforementioned normalization coefficients of spectral intensity αij are measured as follows. According to the assumption xij(λ)=αijx1j(λ), the spectral intensity xij(λ) of each grid in
In the description of the present disclosure, the description with reference to the terms “an embodiment”, “some embodiments”, “example”, “specific example”, or “some examples” and the like means that specific features, structures, materials or characteristics described in connection with the embodiments or examples are included in at least one embodiment or example of the present disclosure. In the present specification, the schematic expressions of the above terms are not necessarily directed to the same embodiments or examples. Furthermore, the specific features, structures, materials, or characteristics described may be combined in a suitable manner in any one or more embodiments or examples. In addition, various embodiments or examples described in the specification, as well as features of various embodiments or examples, may be combined by those skilled in the art without causing any contradiction.
While the embodiments of the disclosure have been shown and described above, it can be understood that the foregoing embodiments are illustrative and are not to be construed as limiting the present application. Variations, amendments, substitutions and modifications may be made by those ordinarily skilled in the art to the foregoing embodiments within the scope of the present application.
Number | Date | Country | Kind |
---|---|---|---|
10202103149W | Mar 2021 | SG | national |
Number | Name | Date | Kind |
---|---|---|---|
7652765 | Geshwind | Jan 2010 | B1 |
20050254709 | Geshwind | Nov 2005 | A1 |
Entry |
---|
Zhang, Yi, et al. “Compressive optical spectrometry based on sequency-ordered Hadamard transform.” IEEE Photonics Journal 12.5 (2020): 1-8. (Year: 2020). |
Wang, Le, and Shengmei Zhao. “Fast reconstructed and high-quality ghost imaging with fast Walsh-Hadamard transform.” Photonics Research 4.6 (2016): 240-244. (Year: 2016). |
Number | Date | Country | |
---|---|---|---|
20220307904 A1 | Sep 2022 | US |