The present invention relates in general to the field of processing by means of a laser beam, more particularly the field of laser grooving and/or laser dicing of wafers.
Miniaturization of electronic components has led to various improvements in semiconductor technology to make electronic components ever-smaller. Such components may include simple components such as diodes, up to complex components such as integrated circuits. Apart from electronic components, mechanical components can also be manufactured using the same technology.
In the art of semiconductor technology, it is commonly known that a wafer of semiconductor material, typically silicon, is processed to form the components in a surface area of the wafer. The wafer is macroscopic, having a diameter ranging in the order of 20-300 mm, while the components are microscopic, typically having a size in the sub-millimeter range. Each component is made in a small wafer portion, with the various wafer portions being located at a small distance from each other. After the processing steps, the wafer is cut to separate the various wafer portions from each other, so that the components become available independent from each other. After separation, each separated wafer portion is referred to as a die, and the separation process is known as dicing. The present invention relates particularly to the field of laser dicing.
The various wafer portions are typically arranged in a matrix pattern, separated by mutually orthogonal lanes, also indicated as “dicing streets”. The separation process involves applying a cut in each dicing street. At least part of the cutting is done by radiation: radiation, typically a high power laser beam, is used to remove the top layer of the dicing streets; this is also indicated as “radiative grooving”, or more conveniently as “laser grooving”. The present invention relates also to a method of laser grooving.
In the process of laser grooving and/or lacer dicing, a laser beam and a wafer are moved with respect to each other. This relative movement may be practiced by holding the wafer stationary and moving the laser beam, or by holding the laser beam and moving the wafer, or both. In practice, it is more convenient to hold the optical system stationary and move the wafer; nevertheless, the movement will be indicated as a “scribing” movement of the laser beam.
Scribing is done in two directions. For instance, after having scribed a first groove in one direction, the next groove is scribed in the opposite direction. For optimum processing, an optical element in the laser path is then rotated over 180°; thus, it is desirable to be able to quickly rotate the optical element. It may also be desirable to exchange the optical element for a second optical element. It is further noted that, while the background of the invention is in the field of processing wafers, the present invention is also applicable in other types of laser processing apparatus that require more that one diffractive (or other) optical element and/or that require the optical element to be rotated quickly.
In order to be able to quickly change from one optical element to another optical element, a laser processing device comprises an optical station with a magazine holding a supply of optical elements and a positioning device for positioning one selected optical element in the optical path. Further, during processing, the positioning device is able to rotate the selected optical element about the optical axis.
In the prior art, the magazine can hold only two optical elements. A practically desired range of optical elements involves however more than two elements, and it is therefore necessary to manually exchange elements in the magazine.
In the prior art, the exchange of an element from the magazine to the laser path is time-consuming, reducing the net output of the machine.
In the prior art, rotating the operational optical element about the optical axis requires rotating of the entire magazine. In the prior art, the holding element of the optical element covers proper retainment/positioning of the element both in the magazine and on the rotating mechanism in the laser path. Besides the positioning a sliding mechanism is used to exchange holders from the magazine to the rotating mechanism. The magazine, the holder and the sliding mechanism are rotated during processing. The inertia of this combination does not allow fast rotating of the optical element during processing resulting in lower output.
In the prior art, the rotation of the optical element is limited to 180°, therefore limiting the freedom of patterning with the optical element during processing.
An object of the present invention is to provide an optical station suitable for use in a laser grooving device or a laser dicing device that allows multiple optical elements to be selected from an integrated magazine.
A further object of the present invention is to provide an optical station suitable for use in a laser grooving device or a laser dicing device in which the positioning of the optical element in a holder in the magazine is such that no additional handling of the holder is required, and the holder is directly placed on the rotating device with accurate positioning during hand-over.
A further object of the present invention is to provide an optical station suitable for use in a laser grooving device or a laser dicing device in which the rotating device contains a positioning reference for the holder.
A further object of the present invention is to provide an optical station suitable for use in a laser grooving device or a laser dicing device in which the position of optical elements in the magazine is not critical.
A further object of the present invention is to provide an optical station suitable for use in a laser grooving device or a laser dicing device in which the optical element can be rotated freely over an angle of 360° or more, at relatively high speed.
A further object of the present invention is to provide an optical station suitable for use in a laser grooving device or a laser dicing device in which an optical element in the magazine can be easily and quickly replaced manually, with little or no positional accuracy of the optical element in the magazine being required.
In order to meet at least one of the above objectives, the present invention provides an optical station for a laser processing device having an optical path, the optical station having a positioning axis that is intended to coincide with the optical path of the laser processing device, the optical station comprising:
These and other aspects, features and advantages of the present invention will be further explained by the following description of one or more preferred embodiments with reference to the drawings, in which same reference numerals indicate same or similar parts, and in which:
The optical station 1 comprises a magazine 100 accommodating a plurality of holders 200 that hold respective optical elements 300. The optical nature of the optical elements 300 is not relevant for explaining the invention. Reference numeral 110 indicates a protection plate.
The magazine 100 has a plurality of, i.e. two or more, accommodation spaces 120 (see
The optical station 1 comprises a positioning device 500 that comprises a rotatable holder clamp 520. The positioning device 500 comprises rotating means for rotating the holder clamp 520 about a clamp rotation axis that coincides with the positioning axis 2.
The surface of the magazine 100 directed towards the positioning device 500 will be indicated as front face 122, while the opposite surface will be indicated as rear face 123. At the side of the rear face 123, each accommodation space 120 comprises a recess 124. Each accommodation space 120 further comprises a through hole 121 from the front face 122 to the recess 124, the recess being wider than the through hole 121. The transition 125 from the through hole 121 to the recess 124 forms a support ring for supporting a holder 200 (see
Each holder 200 is ring-shaped, its central part being open for passing the laser beam.
It is desired that the holders 200 are retained in the respective accommodation spaces 120. For that purpose, retaining members are provided. Preferably, such retaining members include at least one magnetic member, more preferably a permanent magnet. The retaining members may be attached to the magazine 100, or to the holder 200, or both.
In principle, a holder could have any angular orientation in the accommodation space 120. It is however desirable that a holder has one specific reference orientation in the accommodation space 120. Therefore, each holder 200 is provided with first type reference members that define a reference orientation of the holder with respect to the corresponding accommodation space. In the embodiment shown, such first type reference members comprise at least one pin 220 projecting towards the support ring of the accommodation space 120, which has a corresponding recess 130 for receiving said pin 220 if the holder 200 has the correct angular position.
Although not essential, yet preferred for easy exchange of holders from the magazine, each accommodation space 120 has a radial opening towards the perimeter of the magazine disc. Detaching a holder from the magazine is easy because an operator only has to overcome the attraction force of the magnetic retaining members. Placing a replacement holder in the magazine is easy because the operator only needs to mount the holder in roughly the correct orientation: the first type reference members will automatically make the holder assume the right orientation. If the orientation on mounting deviates too much from the correct orientation, the first type reference members will not allow the holder to be accepted by the magazine at all.
It is desired that the holder 200 is firmly pressed against the holder clamp 520. For that purpose, either the holder 200 or the holder clamp 520, or both, is/are provided with at least one magnetic member, preferably a permanent magnet. Advantageously, the same magnet 210 is used for this purpose.
If the holder clamp 520 rotates, the form-closed coupling with the holder 200 will make the holder 200 rotate as well. Thus, a desired angular position of the holder 200 with respect to the positioning axis 2 can be set accurately. Owing to the low weight (low intertia) of the rotating mass, angular positioning can be done at a relatively high speed.
Reference numeral 600 (see
Operation of the optical station 1, directed by a control device that is not shown for sake of simplicity, is as follows.
Assume that the sledge 600 is in its distal position, so that the magazine 100 can rotate with respect to the positioning device 500. The magazine actuator 400 is controlled to rotate the magazine 100 to an angular position in which a selected one of the holders 200 is aligned with the positioning axis 2.
Then, the sledge 600 is controlled to shift to its proximate position. consequently, the magazine 100 is shifted towards the positioning device 500. The selected holder 200 meets the holder clamp 520, and upon further displacement of the magazine the holder clamp 520 lifts the holders 200 from the accommodation space. The holder is now free from the magazine 100. For positioning the corresponding optical element 300 is a desired operational angular position, the positioning device 500 only needs to rotate the relatively light-weight holder 200 plus optical element 300.
For exchanging one optical element with another optical element, first the positioning device 500 is rotated to a reference position, and the sledge 600 is shifted to its distal position, so that the holder 200 is lifted from the holder clamp 520. Then, the magazine is rotated to another angular position, and the above steps are repeated.
In
In
Summarizing, the present invention provides an optical station for a laser processing device; the station comprises:
The magazine is shifted towards the positioning device such that the positioning device lifts the holder from its accommodation space.
It should be clear to a person skilled in the art that the present invention is not limited to the exemplary embodiments discussed above, but that several variations and modifications are possible within the protective scope of the invention as defined in the appending claims.
For instance, instead of having accommodation spaces arranged on one circle, the magazine may have two or more circles with accommodation spaces.
Further, instead of being a rotatable magazine having accommodation spaces arranged on a circle, the magazine may be an XY magazine having accommodation spaces arranged according to an XY grid, with the actuator 400 being an XY displacement actuator.
Further, it is possible that the holder clamp 520 is displaced in Z-direction with respect to the magazine, but preferably the holder clamp is stationary in Z-direction for improved accuracy.
Further, instead of a ball-groove mechanism for accurately positioning a holder with respect to the holder clamp, other self-seeking shapes may be used. Further, the positions of projection 230 and groove 522 may also be mirrored.
Even if certain features are recited in different dependent claims, the present invention also relates to an embodiment comprising these features in common. Any reference signs in a claim should not be construed as limiting the scope of that claim.
Number | Date | Country | Kind |
---|---|---|---|
15002577 | Sep 2015 | EP | regional |
Number | Name | Date | Kind |
---|---|---|---|
4661680 | Swensrud | Apr 1987 | A |
5128808 | Dosaka | Jul 1992 | A |
5610684 | Shiraishi | Mar 1997 | A |
5844666 | Van Engelen | Dec 1998 | A |
6323995 | Takahama | Nov 2001 | B1 |
6359256 | Biermann | Mar 2002 | B1 |
20050263508 | Yamazaki | Dec 2005 | A1 |
20080058187 | Yamazaki | Mar 2008 | A1 |
20080316444 | Sorg | Dec 2008 | A1 |
20090179014 | Erlenmaier | Jul 2009 | A1 |
20110063724 | Hasegawa | Mar 2011 | A1 |
20120012594 | Boegli | Jan 2012 | A1 |
20120218635 | Suzuka | Aug 2012 | A1 |
20130334183 | Paganelli | Dec 2013 | A1 |
Number | Date | Country |
---|---|---|
WO 2010111799 | Oct 2010 | WO |
WO 2014064492 | May 2014 | WO |
Entry |
---|
Search Report dated Mar. 23, 2016 issued in corresponding European Patent Application No. 15002577.3. |
Number | Date | Country | |
---|---|---|---|
20170062247 A1 | Mar 2017 | US |