Claims
- 1. An optical transmission device comprising:
at least one optical waveguide end structure formed on an underlying surface, said optical waveguide end structure including an optical waveguide for guiding light along a first direction parallel to the underlying surface and a first lens formed on the underlying surface and being continuous with the optical waveguide at one end thereof, said first lens converging light that is radiated from the end of said optical waveguide and diverges along directions parallel to the underlying surface; a second lens for converging light that is transmitted through said first lens and diverges along directions perpendicular to the underlying surface; and a support member for supporting said first and second lenses.
- 2. An optical transmission device according to claim 1, wherein:
a shape of a surface of said first lens facing said second lens is convex toward said second lens as viewed along a direction perpendicular to the underlying surface; and said optical waveguide end structure further comprises an optical waveguide layer in tight contact with said first lens on the surface facing said second lens, said optical waveguide layer guiding light radiated from said first lens and having an end surface facing said second lens, the end surface having such a shape as a difference between longest and shortest lengths of optical paths of light radiated from the end surface and reaching said second lens is smaller than that between longest and shortest lengths of optical paths of light radiated from said first lens and reaching said second lens.
- 3. An optical transmission device according to claim 1, wherein said optical waveguide and said first lens each have a three-layer structure having an lower clad, a core and an upper clad stacked in this order.
- 4. An optical transmission device according to claim 3, wherein said optical waveguide layer has a three-layer structure having an lower clad, a core and an upper clad stacked in this order, and a refractive index of the core of said optical waveguide layer is smaller than that of the core of said optical waveguide.
- 5. An optical transmission device according to claim 1, wherein a plurality of said optical waveguide end structures are disposed along a second direction crossing the first direction, and said second lens is a cylindrical surface lens having a cylindrical surface parallel to the second direction and optically coupled to said optical waveguide end structures.
- 6. An optical transmission device according to claim 5, wherein said first lens of each of said optical waveguide end structures has such a shape as said first lens of another optical waveguide end structure is superposed upon said first-mentioned first lens by moving said first lens in parallel to the second direction.
- 7. An optical transmission device according to claim 1, wherein said support member comprises a distance regulating member for regulating a distance between said first and second lenses, said distance regulating member changes the distance between said first and second lenses through thermal expansion, and a coefficient of linear expansion of said distance regulating member is selected in such a manner that an absolute value of Δf−Δg becomes smaller than Δf where Δf is an elongated length of a focal length of said second lens and Δg is an increased distance between said first and second lenses, respectively when a temperature changes from a first temperature to a second temperature.
- 8. An optical transmission device according to claim 7, wherein said distance regulating member comprises at least two members disposed along a propagation direction of light between said first and second lenses, and said two members have different coefficients of linear expansion.
- 9. An optical transmission device according to claim 1, wherein said support member has a first reference plane in contact with an upper surface of said optical waveguide end structure and a second reference plane in contact with said second lens for regulating a position of said second lens along a direction perpendicular to the underlying surface, and said support member fixes a relative position of said optical waveguide end structure and said second lens along the direction perpendicular to the underlying surface.
- 10. An optical transmission device according to claim 1, wherein said support member has a third reference plane in contact with said optical waveguide end structure on an end surface facing said second lens and a fourth reference plane in contact with said second lens for regulating a position of said second lens along the first direction.
- 11. An optical transmission device comprising:
first and second optical connectors each having an optical waveguide end structure, a second lens and a support member, the optical waveguide end structure being formed on an underlying surface and including an optical waveguide for guiding light along a first direction parallel to the underlying surface and a first lens being formed on the underlying surface and being continuous with the optical waveguide at one end thereof, the first lens converging light that is radiated from the end of the optical waveguide and diverges along directions parallel to the underlying surface, the second lens converging light that is transmitted through the first lens and diverges along directions perpendicular to the underlying surface, and the support member supporting the first and second lenses; and a coupling member for removably coupling said first and second optical connectors so that a light beam propagating in the optical waveguide of said first optical connector and converged by the first and second lenses is converged by the second and first lenses of said second optical connector toward one end of the optical waveguide of said second optical connector.
- 12. An optical transmission device according to claim 11, wherein each support member of said first and second optical connectors comprises a distance regulating member for regulating a distance between the first and second lenses, the distance regulating member changes the distance between the first and second lenses through thermal expansion, and a coefficient of linear expansion of the distance regulating member is selected in such a manner that an absolute value of Δf1−Δg1+Δf2−Δg2 becomes smaller than an absolute value of Δf1+Δf2 where Δf1 is an elongated length of a focal length of the second lens of said first optical connector, Δg1 is an increased distance between the first and second lenses of said first optical connector, Δf2 is an elongated length of a focal length of the second lens of said second optical connector, and Δg2 is an increased distance between the first and second lenses of said second optical connector, respectively when a temperature changes from a first temperature to a second temperature.
Priority Claims (1)
Number |
Date |
Country |
Kind |
2001-191428 |
Jun 2001 |
JP |
|
CROSS REFERENCE TO RELATED APPLICATION
[0001] This application is based on Japanese Patent Application No. 2001-191428, filed on Jun. 25, 2001, the entire contents of which are incorporated herein by reference.