This application is a § 371 National Phase of PCT/AT2016/050179, filed Jun. 6, 2016, which claims priority to German patent application DE 10 2015 109 775.3, filed Jun. 18, 2015, the disclosure of both of which is incorporated herein by reference.
The application relates to an optical triangulation sensor for contactless measurement of distances.
In the recent years, robots are increasingly being used in the household sector, for example for cleaning or for monitoring a home or other premises. Autonomous robots have, inter alia, sensors that allow them to detect obstacles (e.g. walls, furniture, persons etc.) and to thus survey their surroundings. This enables the robot to appropriately react to obstacles. The obstacles can be identified, for example, by a sensor system (crash sensors) that react when the robot collides with an obstacle. When the robot detects such an obstacle it can turn around or select a different path to its destination. Such a course of action is not sufficient in the case of more demanding tasks. If the robot, for example, is to plan a path from one room of a home into another room of that home, then it must be capable of detecting objects located at a greater distance. The robot can, for example, detect objects optically without contacting them. When detecting objects by means of optical triangulation, the achievable accuracy depends highly on the geometrical arrangement of the individual sensor components in relation to each other. Even a small displacement of a transmitter unit (e.g. the light source) or of a reception unit (e.g. the camera) can lead to measurement errors. This applies both to the manufacture, as well as to the operation of the sensors. When in operation, for example, temperature variations and the resulting thermal expansion can lead to the displacement of individual sensor components and thereby to a falsification of the measurement results. From the prior art, solutions are known that are aimed at preventing the measurement results from being falsified in this manner. This is generally carried out by arranging the sensor components in relation to each other as precisely as possible. Achieving such a precise arrangement can only be done by means of very small tolerances during manufacturing and at a corresponding cost. Measurement errors, nevertheless, can result from variations in temperature.
The disclosure provides an apparatus for distant optical measurement having high repeat accuracy and which is easy to manufacture.
The present disclosure provides an optical triangulation sensor a and a mobile robot having the features and structures recited herein. Various embodiments and further developments of the present disclosure are further recited herein.
An optical triangulation sensor for distance measurement is described below. In accordance with one embodiment of the present disclosure, the apparatus comprises a light source for the generation of structured light, an optical reception device, at least one attachment element and a carrier with a first groove on a lateral surface of the carrier, wherein the light source and/or optical reception device is at least partially arranged in the first groove and is held in place on the carrier by the attachment element.
In accordance with a further embodiment, the apparatus comprises a light source for the generation of structured light having a first optical axis, an optical reception device having a second optical axis, as well as a carrier through which a light channel runs. A light sensitive sensor is arranged on a rear side of the carrier such that light incident through the light channel at least partially falls on the sensor, wherein the sensor is connected with the carrier only on two or more supporting surfaces along a line of attachment.
In accordance with a further embodiment, an optical triangulation sensor for the measurement of distances comprises a light source for the generation of structured light, an optical reception device, and a sensor circuit board with two or more light sensitive sensor chips arranged next to each other.
A further embodiment relates to an optical triangulation sensor with a light source for the generation of structured light, an optical reception device, a sensor circuit board and one or more light sensitive sensor chips. A screen is arranged to shield off diffused light emitted by the light source.
Further, a mobile robot is described. In accordance with one embodiment, the robot comprises an optical triangulation sensor installed in a closed installation chamber. The installation chamber has at least one window, through which light emitted by the triangulation sensor can exit the chamber and reflected light can enter it, wherein the inside of the at least one window is provided with an anti-reflective coating.
In the figures, like reference numerals designate the same or similar components, each having the same or similar meaning.
In
The light source 20 for structured light can emit focused, punctiform (point-shaped) or line-shaped (or any otherwise structured) light 91. When the apparatus is in operation, the light source 20 can emit light 91 continuously. As an alternative, the light source 20 may also only emit light 91 in intervals or when specifically activated. The light 91 may exhibit a wavelength between, e.g. 400 nm and 1000 nm. Larger and smaller wavelengths are also possible.
In a further example embodiment, the carrier 10 may have a second recess designated as a groove 13. In this, the optical reception device 23 or the entire camera module (which includes the optical reception device 23) can be arranged and may also be held in place in or on the groove 13 with the aid of an attachment element 25. In the illustrated example, the groove 13 is arranged symmetrically to the groove 12. The grooves 12 and 13 are arranged on opposite lateral surfaces of the carrier 10. A different arrangement, e.g. on one same lateral surface, is also possible.
The optical reception device 23 can be, for example, an optic lens. This optical reception device 23 collects and focuses the reflected radiated light (beams 92, 93, 94). The optical reception device 23 may be made of, for example, glass or plastic and may also comprise numerous individual lenses. The reflected beam 92, 93, 94 is conveyed to the sensor 30 by the optical reception device 23. Additionally or as an alternative, the optical reception device 23 may also have other optical components such as, for example, one or more mirrors.
The sensor 30 can be designed to be able to detect at least part of the reflected beam 92, 93, 94. Generally a CMOS sensor (active pixel sensor) or a CCD sensor (charge coupled device) is used. As an alternative, various kinds of photodiodes (e.g. a position sensitive device, PSD, and a quadrant photodiode, QPD) may be considered for sensor 30.
In the example described above, the optical reception device 23 and the sensor 30 are consolidated in a camera module. In a further example embodiment, the optical reception device 23 and the sensor 30 are attached separately from each other. Such a case is also illustrated in
In
In
In the further embodiment of
The mounting areas 41, 42 may, for example, protrude from the surface of the carrier 10 (e.g. in the form of pins, sleeves, etc.), allowing the sensor 30 to be mounted parallel to the surface of the carrier. In this case the sensor only rests on the at least two mounting areas 41, 42 that are arranged along the attachment line X, wherein the attachment line X runs normal to the plane formed by the optical axes of light source 20 and optical reception device 23. Consequently, the sensor 30 and the carrier 10 can thermally expand independently of each other without causing significant mechanical tension in the sensor 30 and the resulting expansion, at least not in a direction that is relevant for the distance measurement. This means a thermal expansion of the sensor 30 relative to the carrier 10, in a direction at a right angle to attachment line X and normal to the optical axis of the optical reception device, is not impaired.
Due to the elevated attachment of the sensor 30, a gap is formed between the light sensitive sensor 30 and the surface of the carrier 10, through which undesired diffused light might have a negative effect on the sensor measurement. In order to counteract this, a shielding structure 40 may be arranged on a lateral side of the carrier 10 facing the sensor 30 which at least partially surrounds the light channel 43 and also protrudes from the surface of the carrier. This shielding structure 40 may be realized in a ring form, for example. It is, however, also possible for the shielding structure 40 to be realized in a rectangular form. The shielding structure 40 may be as high as or lower than (relative to the surface of the carrier) the mounting areas 41, 42.
The mounting areas 41, 42 may be at a pre-defined standard distance from the underlying lateral surfaces of the carrier 10. The distance of the sensor 30 to the carrier 10 and the focal length of the optical reception device 23 are matched to each other. The position of attachment line X (i.e. its distance to the optical axis of the light source 20) may be selected such that reflected beams 92, 93, 94 of a distant (theoretically infinitely distant) object 90 strike the attachment line X. This range (great distances) demands the highest degree of measurement accuracy. At greater distances, the position at which the reflected beams 92, 39, 94 fall into the optical reception device converge to a threshold value. “Great distances” refers to distances at the far end of the distance measurement range, e.g. in the range of 5 to 10 m. By selecting the attachment line in the manner described above, the effect of a thermal expansion of the sensor 30 relative to the carrier 10 is minimized in this range. The attachment line X may therefore lie at a height at which beams reflected from far distant objects strike the sensor. When the optical axis 96 of the optical reception device 23 runs approximately parallel to the optical axis 97 of the light source 20, the attachment line X lies at the height of the optical axis 96 of the optical reception device 23.
In further embodiments the sensor 30 may have numerous sensor chips 31 arranged next to each other (along the attachment line X). In this case, the individual sensor chips 31 may be designed smaller than the entire image area of the optical reception device 23. In particular, the sensor chips 31 may be arranged in pre-defined (e.g. lying horizontally next to each other) segments of the image area of the optical reception device 23. It is thus possible to ensure that, even in case of large (lying in a horizontal plane) beam radiation angles of the light source 20, for example 120°, the reflected beams 92, 93, 94 will be received by using small, commonly sold sensor chips that are much less expensive than a larger one would be.
After manufacturing a device for distance measurement, its calibration may be necessary. This calibration can be carried out, for example, at the average working temperatures of an installation. Alternatively it may be carried out for different working temperatures. The (possibly temperature dependent) calibration data may be optionally stored in a memory unit of the sensor 30.
Besides this, reflections within the inside of the work machine 80 can be reduced by various means. For this purpose the installation chamber may be provided with a low-reflecting inner coating or may be painted dark or it may be formed of a material that has a low reflection coefficient. The windows of the installation chamber may be made of a material that reflects as little as possible of the light 91 emitted by the light source 20 and, for example, may be provided with an non-reflecting coating. The degree of reflection of parts of the installation chamber may be less than 10%, for example. Generally, a screen 15 may be arranged either on the carrier 10 or and the work machine 80 such that undesired diffused light emitted by the light source 20 (see the upward running light beam 91′) is shielded off. The light source 20 emits light predominantly in a (i.e. horizontal) plane E. The screen 15 can in this case be designed and arranged to shield off diffused light that is deflected towards a point P lying above the plane E. In this manner, no undesired reflections caused by the diffused light falling on strongly reflecting objects can enter the optical reception device. The screen 15 may be, for example, a slit screen. Since, as a rule, diffused light that is deflected down does not cause problems, a “half slit screen”, i.e. a shield with a horizontally running edge, is also sufficient, whereby a, e.g. horizontally emitted main beam 91 is not impaired while the diffused light deflected upwards is nevertheless shielded off. The screen 15 may be employed in any of the embodiments of the triangulation sensor described here.
Number | Date | Country | Kind |
---|---|---|---|
102015109775.3 | Jun 2015 | DE | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/AT2016/050179 | 6/6/2016 | WO |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2016/201465 | 12/22/2016 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
4674048 | Okumura | Jun 1987 | A |
4740676 | Satoh | Apr 1988 | A |
4777416 | George, II et al. | Oct 1988 | A |
5109566 | Kobayashi et al. | May 1992 | A |
5260710 | Omamyuda | Nov 1993 | A |
5284522 | Kobayashi et al. | Feb 1994 | A |
5377106 | Drunk et al. | Dec 1994 | A |
5402051 | Fujiwara et al. | Mar 1995 | A |
5696675 | Nakamura et al. | Dec 1997 | A |
5787545 | Colens | Aug 1998 | A |
5995884 | Allen et al. | Nov 1999 | A |
6366219 | Hoummady | Apr 2002 | B1 |
6389329 | Colens | May 2002 | B1 |
6532404 | Colens | Mar 2003 | B2 |
6594844 | Jones | Jul 2003 | B2 |
6605156 | Clark et al. | Aug 2003 | B1 |
6615108 | Peless et al. | Sep 2003 | B1 |
6667592 | Jacobs et al. | Dec 2003 | B2 |
6690134 | Jones et al. | Feb 2004 | B1 |
6764373 | Osawa et al. | Jul 2004 | B1 |
6781338 | Jones et al. | Aug 2004 | B2 |
6809490 | Jones et al. | Oct 2004 | B2 |
6965209 | Jones et al. | Nov 2005 | B2 |
6972834 | Oka et al. | Dec 2005 | B1 |
7155308 | Jones | Dec 2006 | B2 |
7173391 | Jones et al. | Feb 2007 | B2 |
7196487 | Jones et al. | Mar 2007 | B2 |
7302345 | Kwon et al. | Nov 2007 | B2 |
7388343 | Jones et al. | Jun 2008 | B2 |
7389156 | Ziegler et al. | Jun 2008 | B2 |
7448113 | Jones et al. | Nov 2008 | B2 |
7483151 | Zganec et al. | Jan 2009 | B2 |
7507948 | Park et al. | Mar 2009 | B2 |
7539557 | Yamauchi | May 2009 | B2 |
7571511 | Jones et al. | Aug 2009 | B2 |
7636982 | Jones et al. | Dec 2009 | B2 |
7656541 | Waslowski et al. | Feb 2010 | B2 |
7761954 | Ziegler et al. | Jul 2010 | B2 |
7801676 | Kurosawa et al. | Sep 2010 | B2 |
8438695 | Gilbert, Jr. | May 2013 | B2 |
8594019 | Misumi | Nov 2013 | B2 |
8739355 | Morse et al. | Jun 2014 | B2 |
8855914 | Alexander et al. | Oct 2014 | B1 |
8892251 | Dooley et al. | Nov 2014 | B1 |
8921752 | Iizuka | Dec 2014 | B2 |
8982217 | Hickman | Mar 2015 | B1 |
9002511 | Hickerson et al. | Apr 2015 | B1 |
9026302 | Stout et al. | May 2015 | B2 |
9037294 | Chung et al. | May 2015 | B2 |
9043017 | Jung et al. | May 2015 | B2 |
9149170 | Ozick et al. | Oct 2015 | B2 |
9220386 | Gilbert, Jr. et al. | Dec 2015 | B2 |
9486924 | Dubrovsky et al. | Nov 2016 | B2 |
9717387 | Szatmary et al. | Aug 2017 | B1 |
10228697 | Yoshino | Mar 2019 | B2 |
20020016649 | Jones | Feb 2002 | A1 |
20020103575 | Sugawara | Aug 2002 | A1 |
20020120364 | Colens | Aug 2002 | A1 |
20030025472 | Jones et al. | Feb 2003 | A1 |
20030030398 | Jacobs et al. | Feb 2003 | A1 |
20030034441 | Kang | Feb 2003 | A1 |
20030120389 | Abramson et al. | Jun 2003 | A1 |
20030142925 | Melchior | Jul 2003 | A1 |
20040020000 | Jones | Feb 2004 | A1 |
20040049877 | Jones et al. | Mar 2004 | A1 |
20040187457 | Colens | Sep 2004 | A1 |
20040207355 | Jones et al. | Oct 2004 | A1 |
20050000543 | Taylor et al. | Jan 2005 | A1 |
20050010331 | Taylor et al. | Jan 2005 | A1 |
20050041839 | Saitou et al. | Feb 2005 | A1 |
20050067994 | Jones et al. | Mar 2005 | A1 |
20050156562 | Cohen et al. | Jul 2005 | A1 |
20050171636 | Tani | Aug 2005 | A1 |
20050171644 | Tani | Aug 2005 | A1 |
20050204717 | Colens | Sep 2005 | A1 |
20050212680 | Uehigashi | Sep 2005 | A1 |
20050256610 | Orita | Nov 2005 | A1 |
20060012493 | Karlsson et al. | Jan 2006 | A1 |
20060020369 | Taylor | Jan 2006 | A1 |
20060095158 | Lee | May 2006 | A1 |
20060237634 | Kim | Oct 2006 | A1 |
20070027579 | Suzuki et al. | Feb 2007 | A1 |
20070061041 | Zweig | Mar 2007 | A1 |
20070234492 | Svendsen et al. | Oct 2007 | A1 |
20070266508 | Jones et al. | Nov 2007 | A1 |
20070282484 | Chung et al. | Dec 2007 | A1 |
20080046125 | Myeong et al. | Feb 2008 | A1 |
20080140255 | Ziegler et al. | Jun 2008 | A1 |
20080155768 | Ziegler et al. | Jul 2008 | A1 |
20080192256 | Wolf et al. | Aug 2008 | A1 |
20080307590 | Jones et al. | Dec 2008 | A1 |
20090048727 | Hong et al. | Feb 2009 | A1 |
20090051921 | Masahiko | Feb 2009 | A1 |
20090177320 | Lee et al. | Jul 2009 | A1 |
20090182464 | Myeong et al. | Jul 2009 | A1 |
20090281661 | Dooley et al. | Nov 2009 | A1 |
20100030380 | Shah et al. | Feb 2010 | A1 |
20100049365 | Jones et al. | Feb 2010 | A1 |
20100082193 | Chiappetta | Apr 2010 | A1 |
20100257690 | Jones et al. | Oct 2010 | A1 |
20100257691 | Jones et al. | Oct 2010 | A1 |
20100263158 | Jones et al. | Oct 2010 | A1 |
20100324731 | Letsky | Dec 2010 | A1 |
20100324736 | Yoo et al. | Dec 2010 | A1 |
20110054689 | Nielsen et al. | Mar 2011 | A1 |
20110137461 | Kong et al. | Jun 2011 | A1 |
20110194755 | Jeong et al. | Aug 2011 | A1 |
20110211731 | Lee et al. | Sep 2011 | A1 |
20110224824 | Lee et al. | Sep 2011 | A1 |
20110236026 | Yoo et al. | Sep 2011 | A1 |
20110238214 | Yoo et al. | Sep 2011 | A1 |
20110264305 | Choe et al. | Oct 2011 | A1 |
20110278082 | Chung et al. | Nov 2011 | A1 |
20110295420 | Wagner | Dec 2011 | A1 |
20120008128 | Bamji | Jan 2012 | A1 |
20120013907 | Jung et al. | Jan 2012 | A1 |
20120022785 | DiBernardo et al. | Jan 2012 | A1 |
20120060320 | Lee et al. | Mar 2012 | A1 |
20120069457 | Wolf et al. | Mar 2012 | A1 |
20120169497 | Schnittman et al. | Jul 2012 | A1 |
20120173070 | Schnittman | Jul 2012 | A1 |
20120215380 | Fouillade et al. | Aug 2012 | A1 |
20120223216 | Flaherty et al. | Sep 2012 | A1 |
20120265370 | Kim et al. | Oct 2012 | A1 |
20120271502 | Lee | Oct 2012 | A1 |
20120283905 | Nakano et al. | Nov 2012 | A1 |
20130001398 | Wada | Jan 2013 | A1 |
20130024025 | Hsu | Jan 2013 | A1 |
20130166134 | Shitamoto | Jun 2013 | A1 |
20130206177 | Burlutskiy | Aug 2013 | A1 |
20130217421 | Kim | Aug 2013 | A1 |
20130221908 | Tang | Aug 2013 | A1 |
20130261867 | Burnett et al. | Oct 2013 | A1 |
20130265562 | Tang et al. | Oct 2013 | A1 |
20130317944 | Huang et al. | Nov 2013 | A1 |
20140005933 | Fong et al. | Jan 2014 | A1 |
20140098218 | Wu et al. | Apr 2014 | A1 |
20140100693 | Fong et al. | Apr 2014 | A1 |
20140115797 | Duenne | May 2014 | A1 |
20140124004 | Rosenstein et al. | May 2014 | A1 |
20140128093 | Das et al. | May 2014 | A1 |
20140156125 | Song et al. | Jun 2014 | A1 |
20140207280 | Duffley et al. | Jul 2014 | A1 |
20140207281 | Angle et al. | Jul 2014 | A1 |
20140207282 | Angle et al. | Jul 2014 | A1 |
20140218517 | Kim et al. | Aug 2014 | A1 |
20140257563 | Park et al. | Sep 2014 | A1 |
20140257564 | Sun et al. | Sep 2014 | A1 |
20140257565 | Sun et al. | Sep 2014 | A1 |
20140303775 | Oh et al. | Oct 2014 | A1 |
20140316636 | Hong et al. | Oct 2014 | A1 |
20140324270 | Chan et al. | Oct 2014 | A1 |
20140343783 | Lee | Nov 2014 | A1 |
20150115138 | Heng | Apr 2015 | A1 |
20150115876 | Noh et al. | Apr 2015 | A1 |
20150120056 | Noh et al. | Apr 2015 | A1 |
20150151646 | Noiri | Jun 2015 | A1 |
20150168954 | Hickerson et al. | Jun 2015 | A1 |
20150173578 | Kim et al. | Jun 2015 | A1 |
20150202772 | Kim | Jul 2015 | A1 |
20150212520 | Artes et al. | Jul 2015 | A1 |
20150223659 | Han et al. | Aug 2015 | A1 |
20150260829 | Wada | Sep 2015 | A1 |
20150265125 | Lee et al. | Sep 2015 | A1 |
20150314453 | Witelson et al. | Nov 2015 | A1 |
20150367513 | Gettings et al. | Dec 2015 | A1 |
20160008982 | Artes et al. | Jan 2016 | A1 |
20160037983 | Hillen et al. | Feb 2016 | A1 |
20160041029 | T'Ng | Feb 2016 | A1 |
20160066759 | Langhammer et al. | Mar 2016 | A1 |
20160103451 | Vicenti | Apr 2016 | A1 |
20160132056 | Yoshino | May 2016 | A1 |
20160150933 | Duenne et al. | Jun 2016 | A1 |
20160165795 | Balutis et al. | Jun 2016 | A1 |
20160166126 | Morin et al. | Jun 2016 | A1 |
20160200161 | Van Den Bossche | Jul 2016 | A1 |
20160209217 | Babu et al. | Jul 2016 | A1 |
20160213218 | Ham et al. | Jul 2016 | A1 |
20160229060 | Kim et al. | Aug 2016 | A1 |
20160271795 | Vicenti | Sep 2016 | A1 |
20160282873 | Masaki et al. | Sep 2016 | A1 |
20160297072 | Williams et al. | Oct 2016 | A1 |
20160298970 | Lindhe et al. | Oct 2016 | A1 |
20170001311 | Bushman et al. | Jan 2017 | A1 |
20170083022 | Tang | Mar 2017 | A1 |
20170147000 | Hoennige et al. | May 2017 | A1 |
20170177001 | Cao et al. | Jun 2017 | A1 |
20170197314 | Stout et al. | Jul 2017 | A1 |
20170231452 | Saito et al. | Aug 2017 | A1 |
20170364087 | Tang et al. | Dec 2017 | A1 |
Number | Date | Country |
---|---|---|
2015322263 | Apr 2017 | AU |
2322419 | Sep 1999 | CA |
1381340 | Nov 2002 | CN |
1696612 | Nov 2005 | CN |
1699612 | Nov 2005 | CN |
101945325 | Jan 2011 | CN |
101972129 | Feb 2011 | CN |
102407522 | Apr 2012 | CN |
102738862 | Oct 2012 | CN |
203672362 | Jun 2014 | CN |
104460663 | Mar 2015 | CN |
104634601 | May 2015 | CN |
105990876 | Jul 2015 | CN |
105045098 | Nov 2015 | CN |
105334847 | Feb 2016 | CN |
105467398 | Apr 2016 | CN |
105527619 | Apr 2016 | CN |
4421805 | Aug 1995 | DE |
10204223 | Aug 2003 | DE |
10261787 | Jan 2004 | DE |
102007016802 | Mar 2004 | DE |
69913150 | Aug 2004 | DE |
102009059217 | May 2008 | DE |
102008028931 | Jun 2008 | DE |
102008014912 | Sep 2009 | DE |
102009041362 | Feb 2011 | DE |
102009052629 | Mar 2011 | DE |
102010000174 | May 2011 | DE |
102010000317 | Aug 2011 | DE |
102010000607 | Sep 2011 | DE |
102010017211 | Dec 2011 | DE |
102010017689 | Jan 2012 | DE |
102010033768 | Feb 2012 | DE |
102011050357 | Feb 2012 | DE |
102012201870 | Aug 2012 | DE |
102011006062 | Sep 2012 | DE |
102011051729 | Jan 2013 | DE |
102012211071 | Nov 2013 | DE |
102012105608 | Jan 2014 | DE |
102012109004 | Mar 2014 | DE |
202014100346 | Mar 2014 | DE |
102012112035 | Jun 2014 | DE |
102012112036 | Jun 2014 | DE |
102013100192 | Jul 2014 | DE |
102014110265 | Jul 2014 | DE |
102014113040 | Sep 2014 | DE |
102013104399 | Oct 2014 | DE |
102013104547 | Nov 2014 | DE |
102015006014 | May 2015 | DE |
102014012811 | Oct 2015 | DE |
102015119501 | Nov 2015 | DE |
102014110104 | Jan 2016 | DE |
102016102644 | Feb 2016 | DE |
60002209 | Oct 2016 | DE |
102016114594 | Feb 2018 | DE |
102016125319 | Jun 2018 | DE |
0142594 | May 1985 | EP |
0402764 | Dec 1990 | EP |
0769923 | May 1997 | EP |
1062524 | Dec 2000 | EP |
1342984 | Sep 2003 | EP |
1533629 | May 2005 | EP |
1553536 | Jul 2005 | EP |
1557730 | Jul 2005 | EP |
1621948 | Feb 2006 | EP |
1942313 | Jul 2008 | EP |
1947477 | Jul 2008 | EP |
1983396 | Oct 2008 | EP |
2027806 | Feb 2009 | EP |
2053417 | Apr 2009 | EP |
2078996 | Jul 2009 | EP |
2287697 | Feb 2011 | EP |
2053417 | Apr 2011 | EP |
2327957 | Jun 2011 | EP |
2327957 | Jun 2011 | EP |
1941411 | Sep 2011 | EP |
2407847 | Jan 2012 | EP |
2450762 | May 2012 | EP |
2457486 | May 2012 | EP |
2498158 | Sep 2012 | EP |
2502539 | Sep 2012 | EP |
2511782 | Oct 2012 | EP |
2515196 | Oct 2012 | EP |
2573639 | Mar 2013 | EP |
2595024 | May 2013 | EP |
2740013 | Jun 2014 | EP |
2741159 | Jun 2014 | EP |
2853976 | Apr 2015 | EP |
2870852 | May 2015 | EP |
3079030 | Nov 2015 | EP |
3156873 | Apr 2017 | EP |
3184013 | Jun 2017 | EP |
2509989 | Jul 2014 | GB |
2509990 | Jul 2014 | GB |
2509991 | Jul 2014 | GB |
2513912 | Nov 2014 | GB |
H04338433 | Nov 1992 | JP |
2001125641 | May 2001 | JP |
2002085305 | Mar 2002 | JP |
2003330543 | Nov 2003 | JP |
2004133882 | Apr 2004 | JP |
2005205028 | Aug 2005 | JP |
2009238055 | Oct 2009 | JP |
2010227894 | Oct 2010 | JP |
2013077088 | Apr 2013 | JP |
2013146302 | Aug 2013 | JP |
2014176260 | Sep 2014 | JP |
201541203 | Mar 2015 | JP |
100735565 | May 2006 | KR |
100815545 | Mar 2008 | KR |
20110092158 | Aug 2011 | KR |
20140073854 | Jun 2014 | KR |
20140145648 | Dec 2014 | KR |
20150009413 | Jan 2015 | KR |
20150050161 | May 2015 | KR |
20150086075 | Jul 2015 | KR |
20150124011 | Nov 2015 | KR |
20150124013 | Nov 2015 | KR |
20150124014 | Nov 2015 | KR |
20150127937 | Nov 2015 | KR |
101640706 | Jul 2016 | KR |
20160097051 | Aug 2016 | KR |
9523346 | Aug 1995 | WO |
9928800 | Jun 1999 | WO |
200004430 | Jan 2000 | WO |
2005074362 | Aug 2005 | WO |
2007028667 | Mar 2007 | WO |
2012099694 | Jul 2012 | WO |
2012157951 | Nov 2012 | WO |
2013116887 | Aug 2013 | WO |
2014017256 | Jan 2014 | WO |
2014043732 | Mar 2014 | WO |
2014055966 | Apr 2014 | WO |
2014113091 | Jul 2014 | WO |
2014138472 | Sep 2014 | WO |
2015018437 | Feb 2015 | WO |
2015025599 | Feb 2015 | WO |
2015072897 | May 2015 | WO |
2015082017 | Jun 2015 | WO |
2015090398 | Jun 2015 | WO |
2015158240 | Oct 2015 | WO |
2015181995 | Dec 2015 | WO |
2016019996 | Feb 2016 | WO |
2016027957 | Feb 2016 | WO |
2016028021 | Feb 2016 | WO |
2016031702 | Mar 2016 | WO |
2016048077 | Mar 2016 | WO |
2016050215 | Apr 2016 | WO |
2016091312 | Jun 2016 | WO |
2016095966 | Jun 2016 | WO |
Entry |
---|
Choset et al., “Principles of Robot Motion”, Theory, Algorithms, and Implementations, Chapter 6—Cell Decompositions, 2004, document of 41 pages. |
Durrant-Whyte et al., “Simultaneous Localization and Mapping (SLAM): Part I The Essential Algorithms”, in: IEEE Robotics and Automation Magazine, vol. 13, No. 2, pp. 99-108, Jun. 2006. |
Oh et al., “Autonomous Battery Recharging for Indoor Mobile Robots,” Massachusetts Institute of Technology Press, Aug. 30, 2000, document of 6 pages, XP055321836. |
Siegwart, “Introduction to Autonomous Mobile Robots”, Massachusetts, ISBN 978-0-26-219502-7, (2004), pp. 104-115, 151-163, 250-251, document of 37 pages. http://www.robotee.com/EBooks/Introduction_to_Autonomous_Mobile_Robots.pdf, XP055054850. |
Lymberopoulos et al., “A Realistic Evaluation and Comparison of Indoor Location Technologies: Experiences and Lessons Learned,” IPSN '15, Apr. 14-16, 2015, Seattle, WA, USA, document of 12 pages, http://dx.doi.org/10.1145/2737095.27. |
Patent Cooperation Treaty, “International Search Report and Written Opinion” and translation of International Search Report, issued in International Application No. PCT/AT2016/050179, by European Searching Authority, document of 19 pages, dated Dec. 8, 2016. |
Konolige et al., “A Low-Cost Laser Distance Sensor,” 2008 IEEE International Conference on Robotics and Automation, Pasadena, CA, USA, May 19-23, 2008, document of 7 pages. |
Everett, “Sensors for mobile robots: theory and application,” A. K. Peters, Ltd. Natick, MA, USA, 1995 ISBN-10:1568810482, document of 543 pages. |
Forlizzi, How robotic products become social products: An ethnographic study of cleaning in the home, 2007, IEEE, p. 129-136 (Year: 2007). |
Kim et al., “User-Centered Approach to Path Planning of Cleaning Robots: Analyzing User's Cleaning Behavior.” Proceedings of the 2007 ACM/IEEE Conference on Human-Robot Interaction, Mar. 8-11, 2007, pp. 373-380. |
Neto et al., Human-Machine Interface Based on Electro-Biological Signals for Mobile Vehicles, 2006, IEEE, p. 2954-2959 (Year: 2006). |
Sick Sensor Intelligence, “LMS200/211/221/291 Laser Measurement Systems”, Jan. 2007, pp. 1-48, XP055581229, http://sicktoolbox.sourceforge.net/docs/sick-lms-technical-description.pdf. |
Mahyuddin et al., “Neuro-fuzzy algorithm implemented in Altera's FPGA for mobile robot's obstacle avoidance mission”, TENCON 2009—2009 IEEE Region 10 Conference, IEEE, Piscataway, NJ, USA, Jan. 23, 2009 document of 6 pages. |
Vasquez-Gomez et al., “View planning for 3D object reconstruction with a mobile manipulator robot,” 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems, Sep. 14, 2014 IEEE, pp. 4227-4233. |
Number | Date | Country | |
---|---|---|---|
20180180738 A1 | Jun 2018 | US |