The present invention relates to photoreceptors and, more particularly, to optically transparent conductive ground plane including a carbon nanotube layer for use in an electrophotographic apparatus.
One of the shortcomings of xerographic ground planes based on evaporated metal film is that the metal film can be converted to its oxide with xerographic cycling. Ground plane materials such as Al, Ti, Zr are electrochemically active and can be oxidized to metal oxides easily. Holes traversing the photoreceptor in combination with ambient water electrochemically can convert the metals to their optically transparent and insulating oxides resulting in a change in charge acceptance and transparency. Long print runs of a single image can lead to variations in optical transparency corresponding to image content. Consequently, both erase illumination (for photoreceptor belts) and ground plane conductivity can vary spatially according to image content leading to image ghosts which can limit photoreceptor belt life. Suitable materials for non-electrochemically reactive optically transparent conductive ground planes are limited. Dispersed carbon particles are non-electrochemically reactive but they are unsuitable because of the poor optical transparency of dispersed carbon films. Alternative optically transparent conductive ground planes formed of, for example, cuprous iodide and conducting polymers including polypyrrole and polyaniline also have issues of reproducibility and cost as well as the relative immaturity of the technology. Ground planes formed of sputtered indium tin oxide (ITO) have problems due to electrical cycling because the indium can migrate with DC current flow. As a result, small insulating areas develop in the ground plane that turn into photoreceptor print defects. Hence, there is a need for improved ground planes.
Furthermore, one of the shortcomings of the image on image (IOI) approach to color xerography is the absorption of some of the illumination used to write the xerographic image by the previously applied toner layers. The amount of yellow, cyan, and black deposited by a specific laser exposure depends on the amount of magenta previously applied. The amount of cyan applied depends on the pervious magenta and yellow toner layer thickness levels. This issue with IOI can be eliminated by exposing the photoreceptor from the inside of the belt module through the back of the belt. However, cost effective illumination is difficult with the existing photoreceptors which only transmits about 10% of the incident illumination.
Accordingly, there is a need for developing transparent ground planes that are non-oxidizable and stable against temperature and humidity variations.
In accordance with the invention, there is a xerographic photoreceptor. The xerographic photoreceptor can include a substrate and a conductive ground plane having an optical transparency disposed over the substrate, the conductive ground plane including a carbon nanotube layer, such that machine cycling of the xerographic photoreceptor can produce less than approximately a 10% change in the optical transparency of the conductive ground plane after about 100,000 or more machine cycles. The xerographic photoreceptor can also include a photosensitive layer disposed over the conductive ground plane, wherein the photosensitive layer can include a charge generator material and a charge transport material.
According to another embodiment of the present teachings, there is an image forming apparatus. The image forming apparatus can include a xerographic photoreceptor wherein the xerographic photoreceptor can include a conductive ground plane having an optical transparency disposed over a substrate, the conductive ground plane can include a carbon nanotube layer, such that machine cycling of the xerographic photoreceptor can produce less than approximately a 10% change in the optical transparency of the conductive ground plane after about 100,000 or more machine cycles. The image forming apparatus can also include one or more charging stations disposed on a first side of the xerographic photoreceptor for uniformly charging the xerographic photoreceptor and one or more imaging stations disposed after each of the one or more charging stations to form a latent image on the xerographic photoreceptor. The image forming apparatus can further include one or more development subsystems disposed on the first side of the xerographic photoreceptor after each of the one or more imaging stations for converting the latent image to a visible image on the xerographic photoreceptor, a transfer station disposed on the first side of the xerographic photoreceptor for transferring and fixing the visible image onto a media, and a pre-charge erase station to erase any residual charge.
According to yet another embodiment of the present teachings, there is a method of forming an image on image. The method can include providing a xerographic photoreceptor including a conductive ground plane having an optical transparency disposed over a substrate, the conductive ground plane can include a carbon nanotube layer, such that machine cycling of the xerographic photoreceptor produces less than approximately a 10% change in the optical transparency of the conductive ground plane after about 100,000 or more machine cycles. The method can also include uniformly charging a first side of the xerographic photoreceptor, forming a first latent image on the first side of the xerographic photoreceptor, and converting the first latent image to a first visible image having a first color on the first side of the xerographic photoreceptor. The method can further include repeating the above steps to form one or more visible images over the first visible image, wherein each of the one or more visible images has a unique color, transferring the one or more visible images onto a media, and erasing residual charge on the first side of the xerographic photoreceptor, by exposing a second side of the xerographic photoreceptor to light, wherein the second side is opposite to the first side.
Additional advantages of the embodiments will be set forth in part in the description which follows, and in part will be obvious from the description, or may be learned by practice of the invention. The advantages will be realized and attained by means of the elements and combinations particularly pointed out in the appended claims.
It is to be understood that both the foregoing general description and the following detailed description are exemplary and explanatory only and are not restrictive of the invention, as claimed.
The accompanying drawings, which are incorporated in and constitute a part of this specification, illustrate embodiments of the invention and together with the description, serve to explain the principles of the invention.
Reference will now be made in detail to the present embodiments, examples of which are illustrated in the accompanying drawings. Wherever possible, the same reference numbers will be used throughout the drawings to refer to the same or like parts.
Notwithstanding that the numerical ranges and parameters setting forth the broad scope of the invention are approximations, the numerical values set forth in the specific examples are reported as precisely as possible. Any numerical value, however, inherently contains certain errors necessarily resulting from the standard deviation found in their respective testing measurements. Moreover, all ranges disclosed herein are to be understood to encompass any and all sub-ranges subsumed therein. For example, a range of “less than 10” can include any and all sub-ranges between (and including) the minimum value of zero and the maximum value of 10, that is, any and all sub-ranges having a minimum value of equal to or greater than zero and a maximum value of equal to or less than 10, e.g., 1 to 5. In certain cases, the numerical values as stated for the parameter can take on negative values. In this case, the example value of range stated as “less than 10” can assume negative values, e.g. −1, −2, −3, −10, −20, −30, etc.
In various embodiments, the carbon nanotube layer can be formed by depositing a thin layer of carbon nanotubes over one or more optically transparent supporting layers using conventional deposition techniques such as, for example, dip coating, spray coating, spin coating, web coating, draw down coating, flow coating, and extrusion die coating. Non-limiting examples of optically transparent supporting layers include polyethylene, oriented polyethylene terephthalate (PET), oriented Polyethylene Naphthalate (PEN), polycarbonate, and other synthetic polymeric materials. In some embodiments, the carbon nanotube layer can be formed of a carbon nanotube composite, including but not limited to carbon nanotube polymer composite and carbon nanotube filled resin. In other embodiments, the carbon nanotube layer can be formed by forming a first layer of conductive carbon nanotube network over the substrate 110, wherein the first layer of conductive carbon nanotube network has an electrical conductivity and forming a second layer of polymeric coating over the first layer of conductive carbon nanotube network, wherein the second layer of polymeric coating stabilizes the first layer of conductive carbon nanotube network without changing the electrical conductivity of the first layer of conductive carbon nanotube network.
According to various embodiments, the carbon nanotube layer can include one or more of a plurality of single walled carbon nanotubes (SWNT), a plurality of double walled carbon nanotubes (DWNT), and a plurality of multi walled carbon nanotubes (MWNT). One of ordinary skill in the art would know that as-synthesized carbon nanotubes after purification is a mixture of carbon nanotubes structurally with respect to number of walls, diameter, length, chirality, and defect rate. It is the chirality that dictates whether the carbon nanotube is metallic or semiconductor. Statistically, one can get about 33% metallic carbon nanotubes. Carbon nanotubes can have a diameter from about 0.5 nm to about 50 nm and in some cases from about 1.0 nm to about 10 nm and can have a length from about 10 nm to about 5 mm and in some cases from about 200 nm to about 10 μm. In certain embodiments, the concentration of carbon nanotubes in the carbon nanotube layer can be from about 0.5 weight % to about 99 weight % and in some cases can be from about 0.5 weight % to about 50 weight % and in some other cases from about 1 weight % to about 20 weight %. The carbon nanotube layer can have a thickness in the range of about 20 nm to about 20 μm.
The conductive ground plane 120 including the carbon nanotube layer can have several advantages over conventional metal films used for conductive ground planes. Carbon nanotubes exhibit many desirable properties for conductive ground plane 120 such as high optical transparency, electrical conductivity, non-oxidizable, flexibility, and high tensile strength. Furthermore, the conductive ground plane 120 including the carbon nanotube layer can enable the use of insulating substrates or conductive substrates that have not expensive surface conditioning steps. Existing xerographic drum substrates require surface conditioning with a diamond lathe bit and subsequent chemical cleaning to produce a xerographically uniform substrate.
Referring back to
In various embodiments, the exemplary xerographic drum photoreceptors 100, 100′ can also include an undercoat layer 150 disposed over the conductive ground plane 120 and under the photosensitive layer 130, as shown in
In various embodiments, the exemplary xerographic drum photoreceptors 100, 100′ can also include an overcoat layer 140 disposed over the photosensitive layer 130, as shown in
As used herein, the term “machine cycle” refers to a complete process of forming an image. One machine cycle refers to uniformly charging a xerographic photoreceptor 100, 100′, forming a latent image on the xerographic photoreceptor 100, 100′, converting the latent image to a visible image on the xerographic photoreceptor 100, 100′, transferring the visible image onto a media, and erasing residual charge on the xerographic photoreceptor 100, 100′. After a desired number of machine cycling of the xerographic photoreceptor 100, 100′, optical transmission of the xerographic photoreceptor 100, 100′ can be measured by first removing all the layers except the conductive ground plane 120 using a solvent and then measuring the transmission of the conductive ground plane 120 using a spectrophotometer, such as, for example, Lambda 900 (PerkinElmer, Waltham, Mass.). One of ordinary skill in the art would know that there are other methods of determining optical transmission of the xerographic photoreceptor 100, 100′.
The exemplary xerographic belt photoreceptors 200, 200′ as shown in
The exemplary xerographic belt photoreceptors 200, 200′ as shown in
The image forming apparatus 300, 500 can also include one or more charging stations 371, 373, 375, 377, 571, 573, 575, 577 disposed on a first side of the xerographic photoreceptor 301, 501 for uniformly charging the xerographic photoreceptor 301, 501 and one or more imaging stations 372, 374, 376, 378, 572, 574, 576, 578 disposed after each of the one or more charging stations 371, 373, 375, 377, 571, 573, 575, 577 to form a latent image on the xerographic photoreceptor 301, 501. In some embodiments, one or more imaging stations 372, 374, 376, 378 can be disposed on the first side of the xerographic photoreceptor 301 after each of the one or more charging stations 371, 373, 375, 377, as shown in
In various embodiments, the image forming apparatus 300, 500 can include a xerographic drum photoreceptor (not shown) including one or more imaging stations and a pre-charge erase station disposed on the inside of the xerographic drum photoreceptor, wherein the one or more imaging stations and the pre-charge erase station can be operated and controlled wirelessly.
In various embodiments, the step 401 of providing a xerographic photoreceptor can include providing a substrate and forming a carbon nanotube layer over the substrate to form a conductive ground plane having an optical transparency. In some embodiments, the step of forming a carbon nanotube layer over the substrate can include coating the substrate with a dispersion including a plurality of carbon nanotubes and one or more of polymers and surfactants. In other embodiments, the step of forming a carbon nanotube layer over the substrate can include forming a first layer of the conductive carbon nanotube network by coating the substrate with a carbon nanotube dispersion, wherein the first layer of conductive carbon nanotube network can have an electrical conductivity and forming a second layer of polymeric coating over the first layer of conductive carbon nanotube network, wherein the second layer of polymeric coating can stabilize the first layer of conductive carbon nanotube network without changing the electrical conductivity of the first layer of conductive carbon nanotube network.
The method 400 of forming an image on image can also include uniformly charging a first side of the xerographic photoreceptor, as in step 402 and forming a first latent image on the first side of the xerographic photoreceptor, as in step 403. In some embodiments, the step 403 of forming a first latent image on the first side of the xerographic photoreceptor 301 can include forming a first latent image on the first side of the xerographic photoreceptor 301 by exposing the xerographic photoreceptor 301 from the first side using an imaging station 372 disposed on the first side of the xerographic photoreceptor 301, as shown in
While the invention has been illustrated with respect to one or more implementations, alterations and/or modifications can be made to the illustrated examples without departing from the spirit and scope of the appended claims. In addition, while a particular feature of the invention may have been disclosed with respect to only one of several implementations, such feature may be combined with one or more other features of the other implementations as may be desired and advantageous for any given or particular function. Furthermore, to the extent that the terms “including”, “includes”, “having”, “has”, “with”, or variants thereof are used in either the detailed description and the claims, such terms are intended to be inclusive in a manner similar to the term “comprising.”
Other embodiments of the invention will be apparent to those skilled in the art from consideration of the specification and practice of the invention disclosed herein. It is intended that the specification and examples be considered as exemplary only, with a true scope and spirit of the invention being indicated by the following claims.
Number | Name | Date | Kind |
---|---|---|---|
4286033 | Neyhart et al. | Aug 1981 | A |
4291110 | Lee | Sep 1981 | A |
4338387 | Hewitt | Jul 1982 | A |
5063128 | Yuh et al. | Nov 1991 | A |
20070037081 | Mishra et al. | Feb 2007 | A1 |
20090129816 | Facci | May 2009 | A1 |
Number | Date | Country | |
---|---|---|---|
20090162761 A1 | Jun 2009 | US |