Computerized systems are commonly used to store large amounts of critical data, on hard disk drives and other types of storage devices. Such data may be critical in that if the data were lost, it would be at least nearly impossible, if not economically infeasible, to recover, or recoverable only with greatly expended cost and effort. However, like all types of electronic devices, hard disk drives and other types of storage devices can and occasionally do fail.
Therefore, data stored on hard disk drives and other types of storage devices is commonly backed up to other storage devices. One typical type of backup storage device is the tape backup storage device. A tape backup storage device backs up data to tape cartridges inserted into the device. Even the highest-capacity tape cartridge, however, does not store a sufficient amount of data to store all the data of a typical organization's computerized systems on a single cartridge. Data is thus typically backed up over a number of such tape cartridges. For small organizations, an administrator may manually insert and remove tape cartridges from a tape backup storage device during the backup process. However, for larger organizations and in other situations where a large amount of data is to be backed up, this manual process can become untenable.
Therefore, some types of tape backup storage devices are designed to allow the use of a number of cartridges to achieve data backup, without requiring manual insertion and removal of tape cartridges. Such tape backup storage devices are referred to in varying ways, such as stackers, autoloaders, and libraries. A given tape backup storage device may have a number of slots to store a corresponding number of tape cartridges. When data is to be backed up on a given cartridge, it is moved from a slot to a read/write mechanism, or drive, within the device.
For such multiple-cartridge tape backup storage devices to work properly, the individual tape cartridges usually have to be identifiable to the device in question. Typically, a bar code label is placed on each tape cartridge. However, bar code labels are prone to several potential problems. The labels can be placed on the tape cartridges in a crooked manner, preventing them from being read within the backup storage device. Additionally, the labels may not be secured properly to the tape cartridge, such that they may fall off within the backup storage device or become stuck within the device. Furthermore, placing the bar code labels on the tape cartridges is a time-consuming, and thus expensive, task. Bar code labels can themselves also be expensive to procure.
The drawings referenced herein form a part of the specification. Features shown in the drawing are meant as illustrative of only some embodiments of the invention, and not of all embodiments of the invention, unless otherwise explicitly indicated.
In the following detailed description of exemplary embodiments of the invention, reference is made to the accompanying drawings that form a part hereof, and in which is shown by way of illustration specific exemplary embodiments in which the invention may be practiced. These embodiments are described in sufficient detail to enable those skilled in the art to practice the invention. Other embodiments may be utilized, and logical, mechanical, and other changes may be made without departing from the spirit or scope of the present invention. The following detailed description is, therefore, not to be taken in a limiting sense, and the scope of the present invention is defined only by the appended claims.
Mass-Media Storage Device
The magazine rack 104 has a number of storage slots 106A, 106B, . . . , 106N, collectively referred to as the storage slots 106. Each of the storage slots 106 is receptive to a cartridge on which data is capable of being stored, or backed up. One particular type of cartridge is described later in the detailed description. In one embodiment, the cartridges inserted into the storage slots 106 cannot have data stored thereon or read therefrom while in the slots 106 themselves.
Rather, the read/write mechanisms 108 and 110 are employed to store data to and read data from the cartridges. While there are two read/write mechanisms 108 and 110 in the embodiment of
A cartridge is removed from one of the storage slots 106, and inserted into a slot of the read/write mechanism 108 in order for the read/write mechanism 108 to write data to or read data from the cartridge. The read/write mechanism 108 may in one embodiment be considered a storage drive. The data written to a cartridge by the mechanism 108 is desirably that which is to be backed up to the cartridge. Similarly, the data read from a cartridge by the mechanism 108 is desirably that which is to be restored from the cartridge.
The robotic cartridge handling mechanism 126 is capable of moving up and down on the shaft 118 along the z-axis 120. Thus, the mechanism 126 is positionable opposite a desired one of the storage slots 106 to remove a cartridge from this storage slot, and then is positionable opposite the read/write mechanism 108 to insert the cartridge into the mechanism 108. When the read/write mechanism 108 is finished reading from or writing to the cartridge, the robotic cartridge handling mechanism 126 removes the cartridge from the mechanism 108 and returns it to the appropriate storage slot. The robotic cartridge handling mechanism 126 may in one embodiment be considered a picker.
The optical labeling mechanism 112 is depicted in the embodiment of
That is, the cartridges disposed within the storage slots 106 of the storage device 100 are desirably uniquely identifiable at least as compared to one another, if not in relation to other cartridges not inserted within the storage device 100. The optical labeling mechanism 112 is thus able to optically write data, such as a label, to a surface of the housing of each cartridge, where this data or label at least substantially uniquely identifies the cartridge. When the storage device 100 is to determine the identity of a given cartridge in one of the storage slots 106, the optical labeling mechanism 112 can then optically read the previously optically written data or label in order to learn the identity of the cartridge.
Therefore, in one embodiment, the optical labeling mechanism 112 may replace a bar code reader that may otherwise be present within a mass-media storage device like the storage device 100 for cartridge-identification purposes. The optical labeling mechanism 112 is advantageous as compared to a bar code reader, because it is able to optically write data, such as a label like a bar code in one embodiment, to a surface of the housing of each cartridge. By comparison, a bar code reader is just able to read a bar code from a bar code label that has been previously affixed to the housing of each cartridge. By employing the optical labeling mechanism 112, the mass-media storage device 100 saves users from having to manually affix bar code labels to the cartridges, and prevents other problems associated with labels, as have been described in the background section.
Furthermore, the optical labeling mechanism 112 may optically write other data to a surface of the housing of each cartridge. For instance, information regarding when a given cartridge was first placed in service for backing up data, when a cartridge was last used, how much data is stored on a given cartridge, and so on, may be optically written on the surface of the housing of the cartridge. Because a bar code reader can only read bar codes, and cannot write data to cartridges inserted into a mass-media storage device, it is unable to write such additional information to the cartridge over the period within which the cartridge is used within the storage device.
Finally, the mass-media storage device 100 includes other components, such as the power supply 114 and the controller 116. The power supply 114, as can be appreciated by those of ordinary skill within the art, provides power to the various components of the storage device 100, and is typically plugged into an external power source, such as a wall outlet. The controller 116, as can also be appreciated by those of ordinary skill within the art, permits the storage device 100 to communicate with a computing device, or another type of device, to which it is communicatively connected, among other functionality. For instance, the controller 116 receives data to be backed up to the cartridges inserted into the device 100 from a computing device, and sends previously backed up data to be restored back to the computing device.
The mass-media storage device 100 may also be referred to as a stacker, an autoloader, or a library, among other terms. The mass-media storage device 100 may have other form factors besides that depicted in
In the next section of the detailed description, an exemplary cartridge that can be employed within the mass-media storage device 100 is described. Thereafter, particular embodiments of the optical labeling mechanism 112 of the storage device 100 are described. However, embodiments of the invention are not limited to any of these embodiments of the optical labeling mechanism 112, and the optical labeling mechanism 112 can be implemented in ways other than is described herein.
Cartridge
The cartridge 300 includes a housing 302. The housing 302 may be fashioned from one or more different parts, such as a metal base plate and a plastic case in one embodiment. The housing 302 in one embodiment at least partially encases a supply reel 314, a take-up reel 316, and a recordable data storage medium 318. The recordable data storage medium 318 is specifically a magnetically recordable tape that is unwound from the supply reel 314 and winded on the take-up reel 316 during reading or writing, and then is wound back to the supply reel 314. As such, the cartridge 300 is specifically a tape cartridge.
The tape cartridge may have a particular form factor. Such tape cartridge form factors include those of a Travan® cartridge, a digital data storage (DDS) or digital audio tape (DAT) cartridge, and a digital linear tape (DLT) cartridge, among other types of cartridges. Furthermore, other embodiments of the invention may employ other types of cartridge, such as cartridges having housings at least partially encasing other types of magnetically recordable data storage media, as well as optically recordable data storage media, magneto-optical data storage media, and so on.
The cartridge 300 is depicted in the embodiment of
Thus, the cartridge 300 is inserted into the read/write mechanism 108 of
The back surface 310 of the cartridge 300 has a coating 312 applied thereto that permits the back surface 310 to be optically writable and optically readable. The coating 312 is more generally referred to as a layer. The thickness of the coating 312 is exaggerated in
The coating 312 may in one embodiment be that which is described in the patent application entitled “Integrated CD/DVD Recording and Label”[attorney docket 10011728-1], filed on Oct. 11, 2001, and assigned Ser. No. 09/976,877. In the Ser. No. 09/976,877 patent application, a manner by which a coating can be applied to the label side of an optical disc is described, to render the label side of the optical disc optically writable and readable. Thus, the same technique may be used herein to render the surface 310 of the cartridge 300 optically writable and readable.
As particularly depicted in
Prior to optical writing of data, such as a label or a marking, on the coating 312, the back surface 310 may be blank and thus a blank surface. Such a blank surface is therefore, by virtue of the coating 312 in one embodiment, adapted to being optically written to within the mass-media storage device 100 of
In another embodiment, the back surface 310 may have data, such as a label or a marking, optically written on its coating 312, for instance, by a device other than the storage device 100. For instance, prior to acquisition by an end user who uses the storage device 100 for backing up data, the end user may specify that a distributor, consultant, manufacturer, or another party optically write data in a specified manner, such as by optically writing data that uniquely identifies the cartridge 300, like in the form of a bar code. In such instances, the end user may use the cartridge 300 within a mass-media storage device, other than the storage device 100, that employs a conventional bar code reader, instead of the optical labeling mechanism 112. That is, in this embodiment of the invention, the cartridge 300 is optically written to for usage in a conventional mass-media storage device, instead of the inventive mass-media storage device 100 of
That the back surface 310 of the cartridge 300 is optically writable means that a laser or another type of optical beam can be employed to optically write data, such as a marking or a label, to the surface 310. For instance, the coating 312 may be a phase-change material, which changes phase and thus reflectivity at a given location when that location is heated by the laser or other type of optical beam. The optically written data can further be read from the surface 310 of the cartridge 300 by using a laser or other type of optical beam, where the laser or other beam is reflected differently and thus detected differently depending on whether the coating 312 at a given location on the surface 310 has had its phase changed. The optically written data can thus be optically read in at least a substantially similar fashion as to how the data was written, insofar as the same laser or other type of optical beam is used by the optical labeling mechanism 112 of
The back surface 310 of the cartridge 300, with the coating 312, being optically writable differentiates it from a bar code that may be conventionally written on a surface of a cartridge or on a label affixed to such a surface. A label affixed to the surface of a cartridge is not conventionally optically writable, for instance. Rather, a bar code may be written to such a label via conventional printing techniques, such as ink-writing processes like inkjet printing and toner-writing processes like laser printing.
While laser printing in particular does involve employment of a laser or another type of optical beam, the bar code or other thing being written to the label is not actually optically written to the label, in the sense that an optical beam by itself is not employed to change the reflectivity of the label at various locations thereof. Rather, the laser is simply used to define where toner is to be affixed to the label, where the toner itself has a reflectivity different than that of the label. Thus, laser printing is to be considered a toner-writing process, and not a completely optical-writing process as is used by embodiments of the invention.
Furthermore, where a bar code is directly written to the surface of a cartridge as is conventionally accomplished, typically what occurs is that an inkjet printing process is used to deposit ink on this surface in the form of a bar code. While such a bar code may be optically readable, it is not optically written to this surface of the cartridge, and the surface is itself not optically writable in such situations. These and other aspects of embodiments of the invention distinguish them from conventional bar code labeling processes found within the prior art.
When the cartridge 300 is stored in one the of storage slots 106 of
Prior to delivery of the cartridge 300 to an end user, one or more markings, such as data or a label like a bar code, may in one embodiment be optically written on the coating 312 (406). These markings may at least substantially uniquely identify the cartridge 300, compared to other cartridges, such as other cartridges that may be used with the mass-media storage device 100. The markings may be specified by the end user for whom the cartridge 300 is intended. The markings may be a bar code adapted to being read using a conventional bar code reader of a mass-media storage device, as has been described. Furthermore, the markings may be optically readable in at least a substantially similar fashion as to how the markings are optically written, as has also been described. The part 406 of the method 400 is not performed by the mass-media storage device 100, but rather by another device, where the storage device 100 is that of the end user.
The data cartridge 300 is then ultimately sold to the end user (408), who inserts the cartridge into the mass-media storage device 100 (410), such that the storage device 100 is receptive to or otherwise receives the cartridge 300. The mass-media storage device 100 may optically write other markings, such as other data or another label like a bar code, and/or may optically read these markings or the markings written in the part 406 of the method 400 (412). The mass-media storage device 100 may further write data to and/or read data from the recordable data storage medium 318 of the cartridge 300 (414), which may be accomplished in non-optical manner, such as in a magnetic manner, as opposed to as in an optical manner as is accomplished in relation to the coating 312 of the cartridge 300.
First Specific Embodiment of Optical Labeling Mechanism
The optical labeling mechanism 112 is attached to the underside of the robotic cartridge handling mechanism 126, but may alternatively be attached to the topside of the handling mechanism 126. As before, the handling mechanism 126 is to move the cartridge 300 from one of the slots 106, such as the slot 106C particularly depicted in
The optical labeling mechanism 112 includes an optical beam generator 502, such as a laser generator. The optical beam generator 502 may also be referred to as an optical read/write component, or it may be a part of such a component that also includes other parts besides the generator 502. As can be appreciated by those of ordinary skill within the art, the labeling mechanism 112 can and typically will include other components, in addition to and the optical beam generator 502. The optical beam generator 502 is able to move in four directions along the plane defined by the x-axis 122 and the z-axis 120, as indicated by the arrows 504A, 504B, 504C, and 504D, collectively referred to as the arrows 504. Thus, in the embodiment of
Therefore, in the embodiment of
It is noted that the embodiment of the optical labeling mechanism 112 that has been described in this section of the detailed description may be considered a separate, add-on component to an otherwise already-existing mass-media storage device to provide the storage device 100 with cartridge optical writing and reading capability. In such instance, the mechanism 112 implicitly includes a housing that is adapted to being installed within the mass-media storage device, as well as an optical read/write component attached to the housing. The housing is more particularly adapted to being attached to the robotic cartridge handling mechanism 126 as has been described.
Second Specific Embodiments of Optical Labeling Mechanism
The robotic cartridge handling mechanism 126 removes the cartridge 300 from the storage slot 106C, and moves the cartridge 300 to the optical labeling mechanism 112, such that the surface 310 of the cartridge 300 is incident to the optical labeling mechanism 112. The optical beam generator 502 can move and optically read from or write to the surface 310 while the cartridge 300 remains in the handling mechanism 126, and while the handling mechanism 126 itself remains stationary. In another embodiment, the optical beam generator 502 does not move, and the handling mechanism 126 moves along the z-axis 120 ans the x-axis 124 (perpendicular to the plane of
In
By comparison, in
Other variations to the embodiments of
It is noted that the embodiments of the optical labeling mechanism 112 that have been described in this section of the detailed description may be considered a separate, add-on component to an otherwise already-existing mass-media storage device to provide the storage device 100 with cartridge optical writing and reading capability. In such instance, the mechanism 112 implicitly includes a housing that is adapted to being installed within the mass-media storage device, as well as an optical read/write component attached to the housing. The housing is more particularly adapted to being attached to the robotic cartridge handling mechanism 126 as has been described, or installed within the storage device such that it remains unattached to the handling mechanism 126 as has also been described.
Third Specific Embodiment of Optical Labeling Mechanism
The robotic cartridge handling mechanism 126 moves to the storage slot 106N along the shaft 118, and inserts the cartridge 300 into the storage slot 106N. The handling mechanism 126 then moves away from the storage slot 106N along the shaft 118. Thereafter, in
Thus, the embodiment of
In the embodiment of
It is noted that the embodiment of the optical labeling mechanism 112 that has been described in this section of the detailed description may be considered a separate, add-on component to an otherwise already-existing mass-media storage device to provide the storage device 100 with cartridge optical writing and reading capability. In such instance, the mechanism 112 implicitly includes a housing that is adapted to being installed within the mass-media storage device. For instance, the housing may be inserted into a storage slot above or below the slot that becomes part of the mechanism 112 itself, as well as an optical read/write component attached to the housing. Stated another way, in relation to
Fourth Specific Embodiment of Optical Labeling Mechanism
Once inside the optical labeling mechanism 112, the cartridge 300 is rotated by a rotation mechanism 1102 of the labeling mechanism 112. Such rotation is performed so that back surface 310 of the cartridge 300, having the coating 312, is incident to the optical beam generator 502 of the labeling mechanism 112. That is, when the cartridge 300 is initially inserted into the slot 1104 of the labeling mechanism 112 by the robotic cartridge handling mechanism 126, the protective cover 304 of the cartridge 300 is incident to the optical beam generator 502. Therefore, rotation is accomplished so that the optical beam generator 502, and thus the labeling mechanism 112 itself, is able to optically write to and read from the surface of the cartridge 300. The rotation mechanism 1102 may be one or more servo or other types of motors.
Thus, the optical labeling mechanism 112 in the embodiment of
It is noted that the embodiment of the optical labeling mechanism 112 that has been described in this section of the detailed description may be considered a separate, add-on component to an otherwise already-existing mass-media storage device to provide the storage device 100 with cartridge optical writing and reading capability. In such instance, the mechanism 112 implicitly includes a housing that is adapted to being installed within the mass-media storage device. The entirety of the mechanism 112 may be installed within such a mass-media storage device as another drive, in addition to and/or in lieu of an existing drive already within the device. For instance, the labeling mechanism 112 may in one embodiment replace the read/write mechanism 110 of
It is noted, therefore, that although specific embodiments have been illustrated and described herein, it will be appreciated by those of ordinary skill in the art that any arrangement calculated to achieve the same purpose may be substituted for the specific embodiments shown. This application is intended to cover any adaptations or variations of the disclosed embodiments of the present invention. For instance, while embodiments of the invention have been substantially described in relation to a cartridge housing a tape recordable data storage medium, other embodiments of the invention may be employed in relation to cartridges housing other types of recordable data storage media.
As another example, particular embodiments of the optical labeling mechanism of the mass-media storage device have been shown and described. However, other embodiments of the invention can employ other types of optical labeling mechanisms in configurations other than those that have been shown and described. That is, embodiments of the invention are amenable to different variations of the optical labeling mechanisms that have been shown and described, as well as to other types of optical labeling mechanisms that achieve the same optical cartridge reading and writing purpose. It is thus manifestly intended that this invention be limited only by the claims and equivalents thereof.