Consumer electronics devices, such as, digital cameras, digital video recorders, video telephones and the like are becoming commonplace. These devices along with a host of residential, commercial, industrial and vehicular vision systems have popularized CCD and CMOS based image sensors. Known systems designed to automatically control vehicle exterior lights, for example, utilize a forward looking digital imaging system to acquire images of the scene generally in front of the controlled vehicle and analyze images to detect headlights of oncoming vehicles and taillights of leading vehicles. Security cameras are prevalent throughout residential, commercial and industrial facilities, as well as, associated vehicle parking areas.
Cost effective lenses for such imaging systems are typically molded from a transparent plastic material such as polycarbonate. A large advantage of plastic lenses is that mechanical features to attach the lens or register it's position with respect to other components may be molded integral with the active optical surfaces of the lens. However, in such a configuration the non-active surfaces may need to be made opaque to prevent light from being transmitted through them and onto the sensor. This can be accomplished by providing a separate opaque plastic part with holes which only expose the optically active regions of the transparent lens to light. The use of a separate component has several drawbacks: it creates additional cost, creates additional manufacturing complexity, adds the risk of scratching the active optical components during assembly, and may create part-to-part inconsistencies due to variability in the separate component and its registration to the transparent lens element.
What is needed are methods of forming an opaque region on an optics element to prevent light from transmitting through certain regions of the element. Preferably, the methods provide a high degree of accuracy and consistency.
The present invention provides optics elements configured for light sensing applications that comprise laser formed at least partially opaque regions and methods of manufacture. In at least one embodiment, an optical element configured for light sensing is molded of an organic material and at least one at least partially opaque area is then formed preferably using a laser. In at least one embodiment, an optics element is molded of a polycarbonate material having a dual lens structure and a Nd:YAG laser formed opaque region surrounding the dual lens optically active structure.
It should be understood that any laser and any organic materials may be employed as long as an absorption band of the organic material and the laser light emissions are selected such that the desired at least partially opaque region is formed when the organic material is exposed to a laser. It should also be understood that additional materials may be added to the organic material to result in an at least partially opaque region that is spectrally more or less transmissive as desired.
In at least one embodiment, various embodiments of the present invention are integrated within vehicular, residential, commercial, industrial and consumer electronic devices. In at least one related embodiment, the various integrated systems are configured to share components for improved operation and, or, to lower associated costs.
Other advantages of the present invention will become apparent when reading the following detail description in light of the figures, examples and appended claims.
a depicts a perspective view of an interior rearview mirror assembly;
b depicts a second perspective view of the mirror assembly of
a-c depicts various views of various optical elements.
Referring initially to
Turning now to
Turning now to
Imager board 410 is provided with an image sensor with lens 411. In a preferred embodiment, the imager board will also include an image sensor control logic and timing circuit, communication line drivers and wire harness receptacle 413. Optionally, the imager board may comprise a processor for receiving and, at least partially, processing images obtained from the image sensor. In a preferred embodiment, the image sensor and at least one other device selected from the group comprising; 1) an image sensor control logic; 2) an A/D converter; 3) a low voltage differential signal line driver; 4) a temperature sensor; 5) a control output; 6) a voltage regulator; 7) a second image sensor; 8) a microprocessor; 9) a moisture sensor and 10) a compass are integrated in a common ASIC, most preferably on a common silicon wafer. In at least one embodiment, the image sensor with lens 411 includes lens cover snap portions 412 for engaging a lens cover 420 snap clips 421. The lens cover has an aperture 422 for alignment with the optical axis of the image sensor and lens. Various suitable optical systems, such as those depicted and described in commonly assigned U.S. Pat. Nos. 5,990,469; 6,008,486; 6,130,421; 6,130,448; 6,049,171; and 6,403,942 and U.S. Patent Application Ser. No. 60/495,906 (2880); the disclosures of which are incorporated herein in their entireties by reference; may be employed. It should be understood that optics in accordance with the present invention may obviate the need for a lens cover 420 as described in detail herein. It should be understood that the lens cover snap portions, the lens optical cover and snap clips may be eliminated with use of optical elements in accordance with the present invention. In at least one embodiment, the “lens cover” is formed on a molded organic material optics element using a laser as described in detail herein.
An imager board wiring harness (not shown) is preferably provided with plugs on either end thereof. The imager board is preferably provided with a male receptacle 413 for receiving one of the plugs of the imager board wiring harness (not shown).
In at least one embodiment, an optical element is provided that is molded of at least an organic material such as polycarbonate, polyarylate, polymacrylate, SAN, SMMA and PMMA and acrylic (i.e. use of an absorbing material on a surface of acrylic has been found to assist in forming an opaque area using a laser). In a related embodiment, an at least partially opaque area is provided by laser abrading the molded organic material. It should be understood that various materials may be used within the molded optical element to produce a color other than black when exposed to a laser that emits light rays defining a band of energy within a corresponding absorption band of the molded optical element. Laser abrading an at least partially opaque area mask provides for precise alignment of the mask relative the lens. Alternate mask configurations are taught in commonly assigned U.S. Pat. Nos. 6,130,421, 6,611,610 and 6,587,573, the disclosures of which are incorporated herein in their entireties by reference. Commonly assigned U.S. patent application Ser. Nos. 10/777,468 (2265), 10/783,131 (7106) and 10/783,273 (7606), the disclosures of which are incorporated in their entireties herein, disclose various systems in which an optical element may be advantageously employed.
Profile views of an optical element are depicted in
In at least one embodiment, an optical element 611c comprises a second lens 611c2 and an at least partially opaque area 611c3 with a transmissivity that is a function of at least a depth of the at least partially opaque area. In at least one embodiment, a substantially entirely opaque area defines an optically active aperture. When used in combination with at least one light sensor the optical element with aperture, at least in part, defines a desired field of view.
In the preferred embodiment, the laser marked opaque area is formed using a Nd:YAG laser shortly after molding. The laser energy from the Nd:YAG laser effectively “burns” the plastic material thus marking the part and forming the opaque region. After the lens has been removed from the mold, it is fixtured under a laser. Commonly available laser marking systems provide highly precise control to steer the laser beam to mark or oblate an area. The system is programmed to move the beam in a pattern to form the opaque region in the shape desired. If more precision is desired a vision system can be utilized to locate the lens and shift the marking pattern accordingly.
The above description is considered that of the preferred embodiments only. While the embodiments shown herein relate to an imaging system for vehicle headlamp control and a digital camera, it should be understood that these techniques may be employed for a variety of light sensing and imaging systems, both for vehicular and non vehicular applications. Many plastic lenses require an opaque region to be formed surrounding the optically active lens surfaces. It should also be understood that different types of plastics, different types of lasers, and different means of locating or fixturing the lens component may be used effectively. Modifications of the invention will occur to those skilled in the art and to those who make or use the invention.
Therefore, it is understood that the embodiments shown in the drawings and described above are merely for illustrative purposes and not intended to limit the scope of the invention, which is defined by the following claims as interpreted according to the principles of patent law, including the doctrine of equivalents.
This application claims priority under 35 U.S.C. §119(e) to U.S. Provisional patent application Ser. No. 60/590,736, to Stam et al., filed Jul. 23, 2004.
Number | Date | Country | |
---|---|---|---|
60590736 | Jul 2004 | US |