Embodiments of the present invention are in the field of renewable energy and, in particular, optoelectronic devices with heat spreader units.
Light-emitting diode (LED) and photovoltaic (PV) devices are two common types of optoelectronic devices. Thermal management and assembly of optoelectronic systems, such as systems including LED and PV devices, may be considered when evaluating such systems for fabrication and deployment. For example, systems of devices with electrical contacts exclusively on the back side of an optoelectronic die (e.g., with an optical interface on front side of the die) is one area ripe for improvements in thermal management and assembly. Challenges for the fabrication and deployment of such systems include a possible need for a low resistance thermal path between the optoelectronic die and a heat sink, as well as a robust electrical isolation of operating voltages. In order to facilitate high volume manufacturing, design concepts and assembly techniques that are based on continuous processing may also be a consideration.
Optoelectronic devices with heat spreader units are described herein. In the following description, numerous specific details are set forth, such as specific arrangements of heat spreader units, in order to provide a thorough understanding of the present invention. It will be apparent to one skilled in the art that embodiments of the present invention may be practiced without these specific details. In other instances, well-known fabrication techniques, such as lamination techniques, are not described in detail in order to not unnecessarily obscure embodiments of the present invention. Furthermore, it is to be understood that the various embodiments shown in the Figures are illustrative representations and are not necessarily drawn to scale.
Disclosed herein are optoelectronic devices with heat spreader units. In one embodiment, an optoelectronic device includes a back-contact optoelectronic cell including a plurality of back-contact metallization regions. One or more heat spreader units are disposed above the plurality of back-contact metallization regions. A heat sink is disposed above the one or more heat spreader units. Also disclosed herein are optoelectronic systems. In one embodiment, an optoelectronic system includes a plurality of optoelectronic devices. Each optoelectronic device includes a back-contact optoelectronic cell including a plurality of back-contact metallization regions. Each optoelectronic device also includes one or more heat spreader units disposed above the plurality of back-contact metallization regions. Each optoelectronic device also includes a heat sink disposed above the one or more heat spreader units. The optoelectronic system also includes a pair of cell bus bars, each cell bus bar disposed above a different one of the pair of outer portions of each back-contact optoelectronic cell of each of the plurality of optoelectronic devices.
In accordance with an embodiment of the present invention, a thermal resistance between an optoelectronic die and an external heat sink is reduced, while a more uniform and flat surface across a high heat flux region of the die enclosure or package is provided. The incorporation of a flat surface along the back side of the die enclosure may improve interface and bond quality when attaching the enclosure to the heat sink. In one embodiment, the resulting improved thermal performance allows optoelectronic devices to operate at lower temperatures, thereby increasing light-to-electrical conversion efficiency and reducing degradation and failure of device components. In addition, in one embodiment, high volume continuous manufacturing processes are used to fabricate arrays of optoelectronic die for LED lighting applications and photovoltaic receivers for solar concentrators. By comparison, conventional methods of photovoltaic cell array assembly may rely on batch processing of a string of cells with sequential stacking of components that are laminated together in a final batch process. As discrete components are stacked on top of each other, such as a cell and an interconnect, thickness variations may develop in the laminate. High heat flux regions of the optoelectronic die are typically recessed from the regions of the stacked cell and interconnect, resulting in a poor thermal coupling to the heat sink.
Additionally, in conventional systems, the batch processing operations may have a low manufacturing throughput as, in accordance with an embodiment of the present invention, compared to continuous reel to reel processing. For example, in one embodiment, a flexible substrate is defined and manufactured by continuous roll processing of metal foils, dielectric layers and polymer adhesive coatings. Bare optoelectronic die may then be soldered to the leads of a substrate and encapsulated between a glass cover sheet and a metal heat spreader integrated within the substrate at the region of highest heat flux into the die. In an embodiment, the substrate serves as an electrical interconnect to a potentially unlimited number of die and tightly couples the die thermal flux to a flat, and most proud, exterior surface of the enclosure. In one embodiment, components of optoelectronic systems are manufactured in roll form allowing for high volume continuous processing and subsequent assembly of the optoelectronic systems. In a specific embodiment, the substrate provides a platform for the inclusion of integrated passive devices, such as bypass diodes, in high volume production.
In accordance with an embodiment of the present invention, important challenges for the packaging of optoelectronic systems include the need for a low resistance thermal path between a semiconductor die and a heat sink, as well as a robust electrical isolation of operating voltages. This may especially be true for arrays of high power LED lighting systems and concentrating photovoltaic receivers. In one embodiment, in order to meet high volume manufacturing goals, another challenge is establishing design concepts that are compatible with continuous processes, such as roll feed systems. By contrast, conventional photovoltaic modules may be manufactured by batch processing of a small number of wafers with an initial operation of soldering interconnects between the wafers, providing a serially connected string of cells. The cell string may then be placed onto a thin layer of encapsulant supported by a relatively thick (e.g., 3 millimeters) glass superstrate. An additional layer of encapsulant and protective back sheet may be placed on top of the cell string and the entire stack may then be batch laminated to form a fully encapsulated system.
While the system shown in
Referring again to
In accordance with an embodiment of the present invention, the thermal penalty described in association with
In an aspect of the present invention, optoelectronic devices with heat spreader units are provided where one or more heat spreader units include a pair of cell interconnects.
Referring to
Referring again to
Referring again to
Referring again to
In accordance with an embodiment of the present invention, a benefit of the arrangement described in association with
In accordance with an embodiment of the present invention, the arrangement described in
In an aspect of the present invention, devices such as the device described in association with
Referring to
In an aspect of the present invention, fabrication of a substrate is accomplished by continuous roll processing to build-in features at high volume and low-cost or by working with individual connectors with the required dielectrics clad to each surface. Many different operation sequences may be contemplated to create either the continuous roll or individual connector elements. In an embodiment, a metal layer used to define a spreader and interconnect combination feature is manufactured by stamping operations in order to punch out material to create stress relief features and to down set the contact pads for enhanced interface with a cell. In one embodiment, narrow tie-bars are used to hold connector strips together and are punched out at later stages in the fabrication of the substrate, or alternatively the substrate is made from individual connector pieces. In one embodiment, the solder or other bonding agent used to bond the spreader and interconnect combination feature to the cells at the bond pads is processed onto the connectors during the processing of the roll or individual connector pieces.
In conjunction with
Thus, in accordance with an embodiment of the present invention, an optoelectronic system may be fabricated. In an embodiment, the optoelectronic system includes a plurality of optoelectronic devices, such as the device described in association with
In an embodiment, the one or more heat spreader units of each back-contact optoelectronic cell includes a pair of cell interconnects, each of the pair of cell interconnects coupled with the plurality of back-contact metallization regions by one of a pair of bond pads. In one embodiment, each of the pair of bond pads of each back-contact optoelectronic cell is coupled with the back-contact metallization regions by one of the pair of cell bus bars, and a portion of each of the pair of cell interconnects of each back-contact optoelectronic cell is disposed over, but not in contact with, the inner portion of the back-contact optoelectronic cell. In one embodiment, for each back-contact optoelectronic cell, the portion of each of the pair of cell interconnects disposed over the inner portion of the back-contact optoelectronic cell includes a dielectric layer disposed between the cell interconnect and the inner portion of the back-contact optoelectronic cell, but not in contact with the inner portion of the back-contact optoelectronic cell. In a particular embodiment, the dielectric layer is not in direct contact with the inner portion of the back-contact optoelectronic cell.
In an embodiment, for each back-contact optoelectronic cell, each of the pair of cell interconnects includes an extension portion that extends outside the perimeter of the back-contact optoelectronic cell, and each extension portion includes a second dielectric layer. In one embodiment, for each back-contact optoelectronic cell, the back-contact optoelectronic cell is disposed above a superstrate, the superstrate proximate to a surface of the back-contact optoelectronic cell opposite the surface of the back-contact optoelectronic cell proximate to the one or more heat spreader units, the back-contact optoelectronic cell is coupled with the superstrate by an encapsulant material, and the heat sink is coupled with the one or more heat spreader units by a thermal adhesive material.
In an aspect of the present invention, optoelectronic devices with heat spreader units are provided where one or more heat spreader units is electrically isolated from a plurality of back-contact metallization regions.
Referring to
Referring again to
In accordance with an embodiment of the present invention, a benefit of the arrangement described in association with
In an aspect of the present invention, the arrangement of
Referring to
In accordance with an embodiment of the present invention, fabrication of a substrate is accomplished via continuous roll processing to build in features at high volume and low-cost. In one embodiment, the process begins by applying a dielectric coating to a continuous strip of metal used to define a heat spreader. After the dielectric is coated, through holes are punched into the spreader to allow space for cell interconnects and passive components such as the bypass diode. An additional thin adhesive layer, e.g. EVA, can also be applied to the dielectric surface to facilitate bonding to the cell and interconnect layer. In an embodiment, the interconnect layer is then added to the roll containing the dielectric and heat spreader to define a bi-metallic system with isolating dielectric layer that is ready to bond cells and other components. The interconnect layer may be processed with pre-plated soldering pads or other features to allow soldering or bonding of semiconductor die. In alternative embodiments of the substrate fabrication process, the substrate may be defined by building up the bi-metallic layers from both sides of dielectric core or by building up from the lower interconnect layer. In an embodiment, a possible advantage of such fabrication processes over conventional techniques is the high volume roll processing of the interconnects, heat spreader and dielectric into a single component rather than integrating these components individually into a batch process.
In conjunction with the description of
Thus, in accordance with an embodiment of the present invention, an optoelectronic system may be fabricated. In an embodiment, the optoelectronic system includes a plurality of optoelectronic devices, such as the device described in association with
In an embodiment, for each back-contact optoelectronic cell, the one or more heat spreader units is electrically isolated from the plurality of back-contact metallization regions. In one embodiment, for each back-contact optoelectronic cell, the back-contact optoelectronic cell includes an inner portion and a pair of outer portions, and the one or more heat spreader units is disposed over the inner portion of the back-contact optoelectronic cell. In one embodiment, for each back-contact optoelectronic cell, the back-contact optoelectronic cell is disposed above a superstrate, the superstrate proximate to a surface of the back-contact optoelectronic cell opposite the surface of the back-contact optoelectronic cell proximate to the one or more heat spreader units, the back-contact optoelectronic cell is coupled with the superstrate by an encapsulant material, and the heat sink is coupled with the one or more heat spreader units by a thermal adhesive material.
In another aspect of the present invention, different configuration of a heat sink may be contemplated.
Referring to
In an aspect of the present invention, multiple levels of heat spreader units may be included above a cell. For example,
Referring to
It is to be understood that the discussion of stress relief features herein is not limited to the features depicted and described above. As another example,
Thus, optoelectronic devices with heat spreader units have been disclosed. In accordance with an embodiment of the present invention, an optoelectronic device includes a back-contact optoelectronic cell including a plurality of back-contact metallization regions. The optoelectronic device also includes one or more heat spreader units disposed above the plurality of back-contact metallization regions. The optoelectronic device also includes a heat sink disposed above the one or more heat spreader units. In one embodiment, the one or more heat spreader units includes a pair of cell interconnects, each of the pair of cell interconnects coupled with the plurality of back-contact metallization regions by one of a pair of bond pads. In another embodiment, the one or more heat spreader units is electrically isolated from the plurality of back-contact metallization regions.
This application is a continuation of U.S. patent application Ser. No. 13/245,611, filed Sep. 26, 2011, which is a continuation of U.S. patent application Ser. No. 12/577,616, filed Oct. 12, 2009, which claims the benefit of U.S. Provisional Application No. 61/227,024, filed Jul. 20, 2009, the entire contents of each of which are hereby incorporated by reference herein.
Number | Name | Date | Kind |
---|---|---|---|
4153474 | Rex | May 1979 | A |
4323719 | Green | Apr 1982 | A |
4373783 | Anderson | Feb 1983 | A |
4456332 | Anderson | Jun 1984 | A |
4468848 | Anderson et al. | Sep 1984 | A |
4468849 | Anderson et al. | Sep 1984 | A |
4481378 | Lesk | Nov 1984 | A |
4502200 | Anderson et al. | Mar 1985 | A |
4567316 | Hollaus et al. | Jan 1986 | A |
4640734 | Roberts et al. | Feb 1987 | A |
4643543 | Mohn et al. | Feb 1987 | A |
4643544 | Loughran | Feb 1987 | A |
4759803 | Cohen | Jul 1988 | A |
5180441 | Cornwall et al. | Jan 1993 | A |
5248346 | Fraas et al. | Sep 1993 | A |
5298768 | Okazaki et al. | Mar 1994 | A |
5334496 | Pond et al. | Aug 1994 | A |
5344496 | Stern et al. | Sep 1994 | A |
5389158 | Fraas et al. | Feb 1995 | A |
5409549 | Mori | Apr 1995 | A |
5498297 | O'Neill et al. | Mar 1996 | A |
5580395 | Yoshioka et al. | Dec 1996 | A |
5616185 | Kukulka | Apr 1997 | A |
5660644 | Clemens | Aug 1997 | A |
5697192 | Inoue | Dec 1997 | A |
5865905 | Clemens | Feb 1999 | A |
5899199 | Mills | May 1999 | A |
5990415 | Green et al. | Nov 1999 | A |
6034322 | Pollard | Mar 2000 | A |
6131565 | Mills | Oct 2000 | A |
6198171 | Huang et al. | Mar 2001 | B1 |
6323478 | Fujisaki et al. | Nov 2001 | B1 |
6359209 | Glenn et al. | Mar 2002 | B1 |
6442937 | Stone | Sep 2002 | B1 |
6531328 | Chen | Mar 2003 | B1 |
6553729 | Nath et al. | Apr 2003 | B1 |
6607942 | Tsao et al. | Aug 2003 | B1 |
6635507 | Boutros et al. | Oct 2003 | B1 |
7183587 | Negley et al. | Feb 2007 | B2 |
7304326 | Suchiro et al. | Dec 2007 | B2 |
7468485 | Swanson | Dec 2008 | B1 |
7554031 | Swanson et al. | Jun 2009 | B2 |
7709730 | Johnson et al. | May 2010 | B2 |
7714341 | Chil Keun et al. | May 2010 | B2 |
7820906 | Johnson et al. | Oct 2010 | B2 |
7825327 | Johnson et al. | Nov 2010 | B2 |
7906793 | Negley et al. | Mar 2011 | B2 |
7932461 | Johnson et al. | Apr 2011 | B2 |
7952057 | Finot et al. | May 2011 | B2 |
7968791 | Do et al. | Jun 2011 | B2 |
7985919 | Roscheisen et al. | Jul 2011 | B1 |
8039777 | Lance et al. | Oct 2011 | B2 |
8049150 | Johnson et al. | Nov 2011 | B2 |
8071930 | Wylie et al. | Dec 2011 | B2 |
8083362 | Finot et al. | Dec 2011 | B2 |
8125000 | Kim et al. | Feb 2012 | B2 |
8530990 | Linderman et al. | Sep 2013 | B2 |
8537554 | Hockaday | Sep 2013 | B1 |
8563849 | Johnston et al. | Oct 2013 | B2 |
8809671 | Linderman et al. | Aug 2014 | B2 |
8860162 | Linderman et al. | Oct 2014 | B2 |
20040074490 | Mills et al. | Apr 2004 | A1 |
20050035444 | Huang et al. | Feb 2005 | A1 |
20050141195 | Pokharna et al. | Jun 2005 | A1 |
20060054210 | Proisy et al. | Mar 2006 | A1 |
20060060867 | Suchiro | Mar 2006 | A1 |
20060097385 | Negley et al. | May 2006 | A1 |
20060124953 | Negley et al. | Jun 2006 | A1 |
20060137733 | Schripsema et al. | Jun 2006 | A1 |
20060170094 | Subramanian et al. | Aug 2006 | A1 |
20070074755 | Eberspacher et al. | Apr 2007 | A1 |
20070151598 | De Ceuster et al. | Jul 2007 | A1 |
20070257274 | Martter et al. | Nov 2007 | A1 |
20080011348 | Aoyama et al. | Jan 2008 | A1 |
20080035198 | Teppe et al. | Feb 2008 | A1 |
20080083450 | Benoit et al. | Apr 2008 | A1 |
20080289680 | MacFarlane | Nov 2008 | A1 |
20080289682 | Adriani et al. | Nov 2008 | A1 |
20090032087 | Kalejs | Feb 2009 | A1 |
20090032093 | Fang | Feb 2009 | A1 |
20090056699 | Mills et al. | Mar 2009 | A1 |
20090056785 | Johnson et al. | Mar 2009 | A1 |
20090056786 | Johnson et al. | Mar 2009 | A1 |
20090056787 | Johnson et al. | Mar 2009 | A1 |
20090095284 | Klotz | Apr 2009 | A1 |
20090134421 | Negley et al. | May 2009 | A1 |
20090139557 | Rose et al. | Jun 2009 | A1 |
20090215304 | Faust et al. | Aug 2009 | A1 |
20100089435 | Lockenhoff | Apr 2010 | A1 |
20100116325 | Nikoonahad | May 2010 | A1 |
20100147364 | Gonzalez et al. | Jun 2010 | A1 |
20100154788 | Wells et al. | Jun 2010 | A1 |
20100163014 | Johnson et al. | Jul 2010 | A1 |
20100175740 | Johnson et al. | Jul 2010 | A1 |
20100193014 | Johnson et al. | Aug 2010 | A1 |
20100236626 | Finot et al. | Sep 2010 | A1 |
20100288331 | Weibezahn | Nov 2010 | A1 |
20100294336 | Johnson et al. | Nov 2010 | A1 |
20100319682 | Klotz | Dec 2010 | A1 |
20100326492 | Tan et al. | Dec 2010 | A1 |
20110012264 | Linderman et al. | Jan 2011 | A1 |
20110023940 | Do et al. | Feb 2011 | A1 |
20110030764 | Seo et al. | Feb 2011 | A1 |
20110061724 | Houle et al. | Mar 2011 | A1 |
20110132457 | Finot | Jun 2011 | A1 |
20110186130 | Finot et al. | Aug 2011 | A1 |
20110226309 | Do et al. | Sep 2011 | A1 |
20110226310 | Johnson et al. | Sep 2011 | A1 |
20110265869 | Finot et al. | Nov 2011 | A1 |
20110265871 | Lamarche | Nov 2011 | A1 |
20120012156 | Linderman et al. | Jan 2012 | A1 |
20120192574 | Ghoshal et al. | Aug 2012 | A1 |
Number | Date | Country |
---|---|---|
101378086 | Mar 2009 | CN |
10041271 | Mar 2002 | DE |
202004005198 | Aug 2004 | DE |
2340993 | Mar 2000 | GB |
H05-152596 | Jun 1993 | JP |
2001-298134 | Oct 2001 | JP |
2006-019532 | Jan 2006 | JP |
2007184542 | Jul 2007 | JP |
2007194521 | Aug 2007 | JP |
2007214247 | Aug 2007 | JP |
1020070070183 | Jul 2007 | KR |
1020090014153 | Feb 2009 | KR |
WO9957493 | Nov 1999 | WO |
WO2007096157 | Aug 2007 | WO |
WO2007096158 | Aug 2007 | WO |
WO2008022409 | Feb 2008 | WO |
WO 2008107205 | Sep 2008 | WO |
WO2008153922 | Dec 2008 | WO |
WO2009023063 | Feb 2009 | WO |
WO2009029275 | Mar 2009 | WO |
WO2009029277 | Mar 2009 | WO |
WO 2009110757 | Sep 2009 | WO |
Entry |
---|
International Search Report and Written Opinion for International Patent Application No. PCT/US2010/040884, mailed Jan. 25, 2011, 8 pages. |
Bardwell, Karen et al., “Minimizing end shadowing effects on parabolic concentrator arrays,” IEEE, 1980, pp. 765-770. |
Carroll, Don, et al., “Production of the Alpha Solarco Proof-of-Concept Array,” IEEE, 1990, pp. 1136-1141. |
Chinese First Office Action dated Dec. 31, 2014, issued in Chinese Patent Application No. 201180015293.5, filed Jul. 20, 2012, 14 pages. |
Edenburn, Michael W., et al.., “Shading analysis of a photovoltaic cell string illuminated by a parabolic trough concentrator,” IEEE, 1981, pp. 63-68. |
International Search Report and Written Opinion for International Patent Application No. PCT/US2010/056386, mailed Jul. 21, 2011, 10 pages. |
International Search Report and Written Opinion for International Patent Application No. PCT/US2010/040884, mailed Jan. 25, 2011, 3 pages. |
International Search Report and Written Opinion mailed Mar. 6, 2012, issued in International Patent Application No. PCT/US2011/044747, filed Jul. 20, 2011, 12 pages. |
Quagan, Robert J., “Laser diode heat spreaders,” Ion Beam Milling, Inc., website copyright 2010, http://www.ionbeammilling.com/default.asp, 9 pages. |
Shepard, Jr., N.F. et al., “The integration of bypass diodes with terrestrial photovoltaic modules and arrays,” IEEE, 1984, pp. 676-681. |
Stern, T.G., “Interim results of the SLATS concentrator experiment on LIPS-II (space vehicle power plants),” Photovoltaic Specialists Conference, 1988., Conference Record of the Twentieth IEEE, vol. 2, pp. 837-840, 1988. URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=105822&isnumber=3239. |
Vivar Garcia, Maria, “Optimisation of the euclides photovoltaic concentrator,” 2009, 419 pages. |
Number | Date | Country | |
---|---|---|---|
20150020867 A1 | Jan 2015 | US |
Number | Date | Country | |
---|---|---|---|
61227024 | Jul 2009 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13245611 | Sep 2011 | US |
Child | 14510406 | US | |
Parent | 12577616 | Oct 2009 | US |
Child | 13245611 | US |