Organic and inorganic complex compound and switch using same

Information

  • Patent Grant
  • 6414067
  • Patent Number
    6,414,067
  • Date Filed
    Monday, April 17, 2000
    24 years ago
  • Date Issued
    Tuesday, July 2, 2002
    22 years ago
Abstract
An organic and inorganic complex composition wherein the resin is at 15-70 wt % and the content of one or more inorganic compounds capable of dehydration at 150° C. or more is at 80-30 wt %. When the composition is exposed to combustion, inorganic compounds being capable of dehydration at 150° C. or more and being contained in the organic and inorganic complex composition generate steam which then suppresses combustion. Simultaneously, endothermic reaction during steam generation deprives combustion heat. A switch having a molded article of which the entirety or a part is composed of an organic and inorganic complex composition is provided, wherein the base inside of the base of a box is composed of for example an organic and inorganic complex composition with the resin content at 15-70 wt % and the content of one or more inorganic compounds capable of dehydration at 150° C. or more at 80-30 wt %.
Description




BACKGROUND OF THE INVENTION




1. Field of the Invention




The present invention relates to an organic and inorganic complex compound with flame retardancy and a switch using the same.




2. Prior Art




It has been described conventionally, in for example Japanese Utility Model Laid-Open No. 2-125943, a flame retardant material containing polyester, glass fiber, calcium carbonate, aluminium hydroxide, a halogen flame retardant, and antimony oxide.




The aforementioned flame retardant material has satisfactory flame retardancy. Because the material contains a halogen flame retardant, however, the material has problems in that the halogen flame retardant is deposited over time from the material and corrodes metal parts when the material is used as a structural material. Particularly when the material is used for switches and the like, problems occur such as poor continuity due to corrosion of contacts and corrosion of electronic parts. Also, a problem is remarked in that the flame retardant material is expensive as such materials.




It has been believed conventionally that the decrease of insulation after arc generation in switches is due to the deposition of carbon from thermal decomposition into peripheral regions with the center located in an arc extinguishing chamber.




However, the present inventors have made detailed analysis of the deposits inside switches. Consequently, the inventors have found that a metal layer composed of the free carbon, metals in sublimation and melt metal liquid droplets in dispersion, both generating from a contact and a metallic component part inside switches during the opening and closing of the electrodes of the switches, is formed and the deposited metal layer has greater contribution to the decrease in insulation resistance. Additionally, the inventors have found that free carbon is generated from handles, cross bars, trip bars, and portions apart from an arc extinguishing chamber in addition to the peripheral regions with the center localized in the arc extinguishing chamber.




Therefore, the suppression of the deposition of free carbon as a conventional countermeasure is unsatisfactory for the insulating function after the opening and closing of the electrodes of switches, which is a serious problem so as to design compaction of switches and assembly thereof for a larger capacity with a higher shut off.




SUMMARY OF THE INVENTION




The present invention has been carried out so as to overcome these problems, and the first objective of the present invention resides in providing a highly flame-retardant organic and inorganic complex composition without depositing components capable of corroding metals.




The second objective of the present invention is to provide a switch with higher insulation, which can prevent the decrease in insulation after arc generation by insulating free carbon and metals in sublimation and melt metal liquid droplets, generating after arc generation in switches with gas capable of decomposition, which gas is generated from a molded article composed of an organic and inorganic complex composition.




Another objective of the present invention is to provide an organic and inorganic complex composition wherein the resin content is at 15 to 70 wt % and the content of one or more inorganic compounds capable of dehydration at 150° C. or more is at 80 to 30 wt %.




Still another objective of the present invention is to provide an organic and inorganic complex composition wherein the resin content is at 15 to 65 wt % and the content of one or more inorganic compounds capable of dehydration at 150° C. or more is at 80 to 30 wt %, and wherein the content of one or more reinforcing agents is at 5 to 55 wt %.




Furthermore, an objective of the present invention is to provide an organic and inorganic complex composition wherein the content of a thermoplastic resin is at 35 to 80 wt % and the content of one or more inorganic compounds capable of dehydration at 200° C. or more is at 50 to 15 wt %, and wherein the content of one or more reinforcing agents is at 5 to 50 wt %.




Additional objective of the present invention is to provide an organic and inorganic complex composition wherein the content of a thermoplastic resin is at 35 to 80 wt % and the content of one or more inorganic compounds capable of dehydration at 250° C. or more is at 50 to 15 wt %, and wherein the content of one or more reinforcing agents is at 5 to 50 wt %.




Still another objective of the present invention is to provide an organic and inorganic complex composition wherein the content of a thermoplastic resin is at 35 to 80 wt % and the content of one or more inorganic compounds capable of dehydration at 340° C. or more is at 50 to 15 wt %, and wherein the content of one or more reinforcing agents is at 5 to 50 wt %.











BRIEF DESCRIPTION OF DRAWINGS





FIG. 1

is a schematic perspective view depicting the appearance of a circuit breaker in accordance with the present invention;





FIG. 2

is a schematic perspective view depicting the state without cover;





FIG. 3

is a schematic perspective view depicting the base of a box formed by compact double molding, wherein a part of the box is cut;





FIG. 4

is a schematic explanatory view depicting a compact double molding method of the base of a box using the organic and inorganic complex composition in the form of sheet;





FIG. 5

is a schematic perspective view depicting a cross bar formed by transfer molding, wherein a part of the bar is cut;





FIG. 6

is a schematic perspective view depicting a trip bar formed by transfer molding, wherein a part of the bar is cut;





FIG. 7

is a schematic perspective view depicting a handle formed by transfer molding, wherein a part of the handle is cut;





FIG. 8

is a schematic perspective view depicting a handle formed by injection 2-color molding, wherein a part of the handle is cut;





FIG. 9

is a schematic perspective view depicting the base of a box in accordance with the present invention;





FIG. 10

is a schematic explanatory view depicting a compact double molding method of the base of a box;





FIG. 11

is a schematic explanatory view depicting a compact double molding method of the base of a box; and





FIG. 12

is a schematic perspective view depicting the base of a box.











DESCRIPTION OF THE PREFERRED EMBODIMENTS




Example 1




The organic and inorganic complex composition of the present invention contains one or more inorganic compounds capable of dehydration at 150° C. or more and one or more reinforcing materials and thermosetting resins.




Preferably, if the resin is an epoxy resin, the content of the epoxy resin is at 15 to 65 wt %, and the content of one or more inorganic compounds capable of dehydration at 150° C. or more is at 80 to 30 wt %, and the content of the reinforcing material is at 5 to 55 wt %. If the content of one or more inorganic compounds capable of dehydration at 150° C. or more is below 30 wt %, or if the content of the reinforcing material is above 55 wt %, it is observed the tendency such that the flame retardancy is unsatisfactory. If the content of one or more inorganic compounds capable of dehydration at 150°0 C. or more is above 80 wt %, or if the content of the reinforcing material is below 5 wt %, it is observed the tendency such that the pressure proof strength is unsatisfactory.




Example 2




If the resin is polyester, it is preferable that the content of the polyester is at 15 to 40 wt %, and the content of one or more inorganic compounds capable of dehydration at 150° C. or more is at 80 to 35 wt %, and the content of the reinforcing material is at 5 to 50 wt %. If the content of one or more inorganic compounds capable of dehydration at 150° C. or more is below 35 wt %, or if the content of the reinforcing material is above 50 wt %, it is observed the tendency such that the flame retardancy is unsatisfactory. If the content of one or more inorganic compounds capable of dehydration at 150° C. or more is above 80 wt %, or if the content of the reinforcing material is below 5 wt %, it is observed the tendency such that the pressure proof strength is unsatisfactory.




Example 3




If the resin is a phenol resin, it is preferable that the content of the phenol resin is at 25 to 60 wt %, and the content of one or more inorganic compounds capable of dehydration at 150° C. or more is at 70 to 35 wt %, and the content of the reinforcing material is at 5 to 40 wt %. If the content of one or more inorganic compounds capable of dehydration at 150° C. or more is below 35 wt %, or if the content of the reinforcing material is above 40 wt %, it is observed the tendency such that the flame retardancy is unsatisfactory. If the content of one or more inorganic compounds capable of dehydration at 150° C. or more is above 70 wt %, or if the content of the reinforcing material is below 5 wt %, it is observed the tendency such that the pressure proof strength is unsatisfactory.




Example 4




If the resin is one of urea resins, melamine resins, melamine phenol resins, and diallylphthalate resins, it is preferable that the content of the resin is at 30 to 65 wt % and the content of one or more inorganic compounds capable of dehydration at 150° C. or more is at 65 to 30 wt %, and the content of the reinforcing material is at 5 to 40 wt %. If the content of one or more inorganic compounds capable of dehydration at 150° C. or more is below 30 wt %, or if the content of the reinforcing material is above 40 wt %, it is observed the tendency such that the flame retardancy is unsatisfactory. If the content of one or more inorganic compounds capable of dehydration at 150° C. or more is above 65 wt %, or if the content of the reinforcing material is below 5 wt %, it is observed the tendency such that the pressure proof strength is unsatisfactory.




Example 5




The organic and inorganic complex composition in accordance with the present invention contains one or more inorganic compounds capable of dehydration at 200° C. or more, and one or more reinforcing materials and thermoplastic resins.




If the resin is one of polyacetal and polyacetal polymer alloy, preferably, the content of the resin is at 65 to 80 wt % and the content of one or more inorganic compounds capable of dehydration at 200° C. or more is at 30 to 15 wt %, and the content of the reinforcing material is at 5 to 20 wt %. If the content of one or more inorganic compounds capable of dehydration at 200° C. or more is below 15 wt %, or if the content of the reinforcing material is above 20 wt %, it is observed the tendency such that the flame retardancy is unsatisfactory. If the content of one or more inorganic compounds capable of dehydration at 200° C. or more is above 30 wt %, or if the content of the reinforcing material is below 5 wt %, it is observed the tendency such that the pressure proof strength is unsatisfactory.




Example 6




The organic and inorganic complex composition in accordance with the present invention contains one or more inorganic compounds capable of dehydration at 250° C. or more, and one or more reinforcing materials and thermoplastic resins.




If the resin is one of polybutylene terephthalate, Nylon 6, and Nylon MXD 6, or if the resin is the polymer alloy thereof, it is preferable that the content of the resin is at 45 to 80 wt A, and the content of one or more inorganic compounds capable of dehydration at 250° C. or more is at 50 to 15 wt%, and the content of the reinforcing material is at 5 to 40 wt %. If the content of one or more inorganic compounds capable of dehydration at 250° C. or more is below 15 wt %, or if the content of the reinforcing material is above 40 wt %, it is observed the tendency such that the flame retardancy is unsatisfactory. If the content of one or more inorganic compounds capable of dehydration at 250° C. or more is above 50 wt %, or if the content of the reinforcing material is below 5 wt %, it is observed the tendency such that the pressure proof strength is unsatisfactory.




Example 7




The organic and inorganic complex composition in accordance with the present invention contains one or more inorganic compounds capable of dehydration at 340° C. or more, and one or more reinforcing materials and thermoplastic resins.




If the resin is one of polyethylene terephthalate, Nylon 66, polyphenylene sulfide, Nylon 46, and Nylon 6T or if the resin is the polymer alloy thereof, it is preferable that the content of the resin is at 35 to 80 wt %, and the content of one or more inorganic compounds capable of dehydration at 340° C. or more is at 45 to 15 wt %, and the content of the reinforcing material is at 5 to 50 wt %. If the content of one or more inorganic compounds capable of dehydration at 340° C. or more is below 15 wt %, or if the content of the reinforcing material is above 50 wt %, it is observed the tendency such that the flame retardancy is unsatisfactory. If the content of one or more inorganic compounds capable of dehydration at 340° C. or more is above 45 wt %, or if the content of the reinforcing material is below 5 wt %, it is observed the tendency such that the pressure proof strength is unsatisfactory.




According to Examples 1 to 7, the inorganic compounds contained in the organic and inorganic complex composition generate steam by thermal decomposition when the organic and inorganic complex composition is exposed to combustion, and the steam suppresses such combustion. Concurrently, combustion heat is deprived through the endothermic reaction during the steam generation.




More specifically, when the organic and inorganic complex composition is exposed to combustion, the temperature of the composition gradually rises to decompose organic polymers, and at temperatures of about 150 to 380° C. prior to the combustion of decomposition gases at about 400 to 600° C., the inorganic compounds capable of dehydration at 150° C. or more are subjected to thermal decomposition to consequently generate steam as an incombustible gas. Concurrently, combustion heat is deprived through the endothermic reaction during steam generation, whereby the organic and inorganic complex composition has excellent flame retardancy.




At temperatures for general use, no deposit occurs because the organic and inorganic complex composition does not contain a halogen flame retardant, and therefore, metal corrosion is not induced.




In the aforementioned examples, examples of the inorganic compounds capable of dehydration at 150° C. or more include zinc borate (2ZnO, 3B


2


O


3


, 3.5H


2


O), dosonite (NaAl(OH)


2


CO


3


) aluminium hydroxide (Al(OH)


3


), calcium hydroxide (Ca(OH)


2


), calcium aluminate (Ca


3


Al


2


(OH)


12


), magnesium hydroxide (Mg(OH)


2


), hydrotarsites (Mg


4


Al(OH)


12


CO


3


3H


2


O), basic magnesium carbonate (Mg


4


(CO


3


)


3


(OH)


2


4H


2


O), polyphosphate ammonium ((NH


4


PO


3


)n) and the like. These have forms in particles, fiber and flake.




Among them, preference is given to dosonite, aluminium hydroxide, calcium hydroxide, calcium aluminate, magnesium hydroxide, hydrotarsite, and basic magnesium carbonate in terms of no toxicity.




Furthermore, preference is given to aluminium hydroxide (470 cal/g), calcium aluminate (340 cal/g), magnesium hydroxide (320 cal/g), and basic magnesium carbonate (295 cal/g) from the respect that the endotherm is relatively great during dehydration reaction.




When a thermosetting resin is contained, preference is given to aluminium hydroxide because it has an appropriate viscosity as a molding material.




When kneading is effected with a thermoplastic resin, the temperature for dehydration of the inorganic compounds is preferably above 200° C. so as to prevent the dehydration of the inorganic compounds during kneading.




The inorganic compounds capable of dehydration at 200° C. or more include zinc borate, dosonite, aluminium hydroxide, calcium hydroxide, calcium aluminate, magnesium hydroxide, basic magnesium hydroxide and the like.




The inorganic compounds capable of dehydration at 250° C. or more include zinc borate, calcium hydroxide, calcium aluminate, magnesium hydroxide, and the like.




The inorganic compounds capable of dehydration at 340° C. or more include calcium hydroxide, magnesium hydroxide, and the like. Among them, preference is given to calcium hydroxide, calcium aluminate, and magnesium hydroxide from the respect of no toxicity.




The inorganic compounds generating hydrogen may be used singly or may be used in combination with two or more thereof.




The average particle size of the inorganic compounds generating hydrogen is without specific limitation.




Example 8




A molded article composed of the organic and inorganic complex composition to be used in a switch of the present invention contains one or more inorganic compounds capable of dehydration at 150° C. or more and one or more reinforcing materials and thermoplastic resins.




Preferably, if the resin is an epoxy resin, the content of the epoxy resin is at 15 to 65 wt %, and the content of one or more inorganic compounds capable of dehydration at 150° C. or more is at 80 to 30 wt %, and the content of the reinforcing material is at 5 to 55 wt %. If the content of one or more inorganic compounds capable of dehydration at 150° C. or more is below 30 wt %, or if the content of the reinforcing material is above 55 wt %, it is observed the tendency such that the insulation properties after opening and closing the electrodes of the switch is unsatisfactory. If the content of one or more inorganic compounds capable of dehydration at 150° C. or more is above 80 wt %, or if the content of the reinforcing material is below 5 wt %, it is observed the tendency such that the pressure proof strength is unsatisfactory.




Example 9




Preferably, if the resin is polyester, the content of the polyester is at 15 to 40 wt %, and the content of one or more inorganic compounds capable of dehydration at 150° C. or more is at 80 to 35 wt %, and the content of the reinforcing material is at 5 to 50 wt %. If the content of one or more inorganic compounds capable of dehydration at 150° C. or more is below 35 wt %, or if the content of the reinforcing material is above 50 wt %, it is observed the tendency such that the insulation properties after opening and closing the electrodes of the switch is unsatisfactory. If the content of one or more inorganic compounds capable of dehydration at 150° C. or more is above 80 wt %, or if the content of the reinforcing material is below 5 wt %, it is observed the tendency such that the pressure proof strength is unsatisfactory.




Example 10




If the resin is a phenol resin, it is preferable that the content of the phenol resin is at 25 to 60 wt %, and the content of one or more inorganic compounds capable of dehydration at 150° C. or more is at 70 to 35 wt %, and the content of the reinforcing material is at 5 to 40 wt %. If the content of one or more inorganic compounds capable of dehydration at 150° C. or more is below 35 wt %, or if the content of the reinforcing material is above 40 wt %, it is observed the tendency such that the insulation properties after opening and closing the electrodes of the switch is unsatisfactory. If the content of one or more inorganic compounds capable of dehydration at 150° C. or more is above 70 wt %, or if the content of the reinforcing material is below 5 wt %, it is observed the tendency such that the pressure proof strength is unsatisfactory.




Example 11




If the resin is one of urea resins, melamine resins, melamine phenol resins, and diallylphthalate resins, it is preferable that the content of the resin is at 30 to 65 wt %, and the content of one or more inorganic compounds capable of dehydration at 150° C. or more is at 65 to 30 wt %, and the content of the reinforcing material is at 5 to 40 wt %. If the content of one or more inorganic compounds capable of dehydration at 150° C. or more is below 30 wt %, or if the content of the reinforcing material is above 40 wt %, it is observed the tendency such that the insulation properties after opening and closing the electrodes of the switch is unsatisfactory. If the content of one or more inorganic compounds capable of dehydration at 150° C. or more is above 65 wt %, or if the content of the reinforcing material is below 5 wt %, it is observed the tendency such that the pressure proof strength is unsatisfactory.




Example 12




A molded article composed of the organic and inorganic complex composition to be used in a switch of the present invention contains one or more inorganic compounds capable of dehydration at 200° C. or more and one or more reinforcing materials and thermoplastic resins.




If the resin is one of polyacetal and polyacetal polymer alloy, it is preferable that the content of the resin is at 65 to 80 wt %, and the content of one or more inorganic compounds capable of dehydration at 200° C. or more is at 30 to 15 wt %, and the content of the reinforcing material is at 5 to 20 wt %. If the content of one or more inorganic compounds capable of dehydration at 200° C. or more is below 15 wt %, or if the content of the reinforcing material is above 20 wt %, it is observed the tendency such that the insulation properties after opening and closing the electrodes of the switch is unsatisfactory. If the content of one or more inorganic compounds capable of dehydration at 200° C. or more is above 30 wt %, or if the content of the reinforcing material is below 5 wt %, it is observed the tendency such that the pressure proof strength is unsatisfactory.




Example 13




A molded article composed of the organic and inorganic complex composition to be used in a switch of the present invention contains one or more inorganic compounds capable of dehydration at 250° C. or more and one or more reinforcing materials and thermoplastic resins.




If the resin is one of polybutylene terephthalate, Nylon 6, and Nylon MXD 6, or if the resin is the polymer alloy thereof, it is preferable that the content of the resin is at 45 to 80 wt %, and the content of one or more inorganic compounds capable of dehydration at 250° C. or more is at 50 to 15 wt %, and the content of the reinforcing material is at 5 to 40 wt %. If the content of one or more inorganic compounds capable of dehydration at 250° C. or more is below 15 wt %, or if the content of the reinforcing material is above 40 wt %, it is observed the tendency such that the insulation properties after opening and closing the electrodes of the switch is unsatisfactory. If the content of one or more inorganic compounds capable of dehydration at 250° C. or more is above 50 wt %, or if the content of the reinforcing material is below 5 wt %, it is observed the tendency such that the pressure proof strength is unsatisfactory.




Example 14




A molded article composed of the organic and inorganic complex composition to be used in a switch of the present invention contains one or more inorganic compounds capable of dehydration at 340° C. or more and one or more reinforcing materials and thermoplastic resins.




If the resin is one of polyethylene terephthalate, Nylon 66, polyphenylene sulfide, Nylon 46, and Nylon 6T or if the resin is the polymer alloy thereof, it is preferable that the content of the resin is at 35 to 80 wt %, and the content of one or more inorganic compounds capable of dehydration at 340° C. or more is at 45 to 15 wt %, and the content of the reinforcing material is at 5 to 50 wt %. If the content of one or more inorganic compounds capable of dehydration at 340° C. or more is below 15 wt %, or if the content of the reinforcing material is above 50 wt %, it is observed the tendency such that the insulation properties after opening and closing the electrodes of the switch is unsatisfactory. If the content of one or more inorganic compounds capable of dehydration at 340° C. or more is above 45 wt %, or if the content of the reinforcing material is below 5 wt %, it is observed the tendency such that the pressure proof strength is unsatisfactory.




According to Examples 7 to 14, when arc is generated between contacts during opening and closing of the electrodes of the switch, free carbon generated via the arc from the box of the switch and the organic materials constituting the inside of the switch, and metals in sublimation and melt metal liquid droplets in dispersion, generated via the arc from the contacts and the metallic materials constituting the inside of the switch, are insulated with gas to provide insulation, which gas is generated from the inorganic compounds through dehydration via the arc.




At the opening and closing of the electrodes of the switch, arc is generated between the contacts of the electrodes, so that the temperature generally rises up to about 400° C. to 6,000° C. Consequently, the electrodes, the contacts and the metallic materials constituting the inside of the switch are heated, whereby metallic steam and melt metal liquid droplets are generated and dispersed. Then, not only the arc but also such metallic steam and melt metal liquid droplets decompose the box of the switch and the organic materials constituting the inside of the switch to generate free carbon. Also, gas to provide insulation is generated from the inorganic compounds contained in the molded articles composed of the organic and inorganic complex composition.




Herein, the term “gas to provide insulation” means the gas having the property to insulate free carbon, metallic steam and melt metal liquid droplets.




When gas capable of reacting with the free carbon, the metallic steam and the meld metal droplets is generated, the gas reacts with the free carbon, the metallic steam and the melt metal liquid droplets to disperse reaction products of the gas with the free carbon, metallic steam and melt metal liquid droplets. As has been described above, insulated matters and those initially having insulating properties are deposited on the inner surface of the box of the switch and the surface of the inner components of the switch.




Thus, free carbon, metallic steam and melt metal liquid droplets with larger contribution to the decrease in electric resistance are insulated to prevent the decrease in electric resistance, thereby suppressing the decrease of insulation after arc generation.




When free carbon, metallic steam and melt metal liquid droplets are insulated, the generated gas to provide insulation cannot get close to the contacts because high-pressure steam is generated and expanded via the arc, so that an layer of insulated free carbon, metallic steam and melt metal liquid droplets is not formed near the contacts, whereby continuity cannot be blocked.




Examples of the inorganic compounds capable of dehydration at 150° C. or more include zinc borate (2ZnO, 3B


2


O


3


, 3.5H


2


O), dosonite (NaAl(OH)


2


CO3), aluminium hydroxide (Al(OH)


3


), calcium hydroxide (Ca(OH)


2


), calcium aluminate (Ca


3


Al


2


(OH)


12


), magnesium hydroxide (Mg(OH)


2


), hydrotarsites (Mg


4


Al(OH)


12


CO


3


3H


2


O), basic magnesium carbonate (Mg


4


(CO


3


)


3


(OH)


2


4H


2


O), polyphosphate ammonium ((NH


4


PO


3


)n) and the like. These have forms in particles, fiber and flake.




Because these inorganic compounds are not capable of dehydration when the temperature is not 150° C. or more, the compounds do not decompose if contained in a thermosetting resin to be molded around about 140° C. as the mold temperature. Therefore, molded articles therefrom can satisfactorily exhibit the role as the composition of an insulating material for extinction of arc.




Among them, preference is given to dosonite, aluminium hydroxide, calcium hydroxide, calcium aluminate, magnesium hydroxide, hydrotarsites, and basic magnesium carbonate, from the respect of no toxicity.




When kneading is effected with a thermoplastic resin, aluminium hydroxide is preferable because it has an appropriate viscosity as a molding material.




When kneading is effected with a thermoplastic resin, the temperature for dehydration of the inorganic compounds is preferably above 200° C. so as to prevent the dehydration of the inorganic compounds during kneading. More preferably, the temperature is 250° C. or more. Most preferably, the temperature is 340° C. or more.




Examples of the inorganic compounds capable of dehydration at 200° C. or more include zinc borate, dosonite, aluminium hydroxide, calcium hydroxide, calcium aluminate, magnesium hydroxide, basic magnesium carbonate, and the like.




Examples of the inorganic compounds capable of dehydration at 250° C. or more include zinc borate, calcium hydroxide, calcium aluminate, magnesium hydroxide, and the like.




Examples of the inorganic compounds capable of dehydration at 340° C. or more include calcium hydroxide, magnesium hydroxide, and the like.




Among them, preference is given to calcium hydroxide, calcium aluminate, and magnesium hydroxide from the respect of no toxicity.




The inorganic compounds generating gas to provide insulation, which gas is capable of reacting with free carbon, metallic steam and melt metal liquid droplets, may be used singly or in combination of two or more thereof.




The average particle size of the inorganic compounds generating the gas to provide insulation is without specific limitation.




The reinforcing material to be used in the Examples 1 to 14 will be explained hereinbelow. The reinforcing material means one or more selected from the group consisting of glass fiber, inorganic minerals, ceramic fiber and the like.




The reinforcing material is used for improving pressure proof strength and arc extinguishing potency.




In the reinforcing material, the total content of a metal compound in the form of M


2


O (Na


2


O, Li


2


O, etc.) from the periodic table 1A metals (Li, Na, K, Rb, Cs, Fr) is 1% or less. When the content is above 1%, the arc extinguishing potency is deteriorated. Preferably, the total content of the metal compounds should be 0.6% or less, more preferably, 0.15% or less.




Glass fiber means a fiber-like matter composed of glass, and is not specifically limited as far as the total content of the metal compounds from the periodic table 1A metals is satisfactory. Such glass material includes E glass, S glass, D glass, T glass and silica glass.




Glass fiber products include long fiber, short fiber or glass wool. As the reinforcing material for a thermoplastic resin, preference is given to short fiber. The reinforcing material for a thermosetting resin is without specific limitation, but when the material is used for polyester resin in the form of sheet, long fiber is specifically preferable because the fiber is not readily cut at the process of material production and so as to improve pressure proof strength of molded articles.




Preferably, the diameter of the glass fiber is 6 to 13 lm and the aspect ratio is 10 or more, from the respect of pressure proof strength. From the respect of pressure proof strength, also, the glass fiber is preferably processed with a processing agent such as a silane coupling agent.




Specific examples of inorganic minerals include calcium carbonate, clay, talc, mica, barium peroxide, aluminium oxide, zircon, cordierite, mullite, warastnite, white mica, magnesium carbonate, dolomite, magnesium sulfate, aluminium sulfate, potassium sulfate, barium sulfate, zinc fluoride, magnesium fluoride, and the like, with advantages such as the improvement of thermal deformation temperature and dimensional stability.




From the respect of the requirement of the total amount of metal compounds from the periodic table 1A, preference is given to calcium carbonate, talc, warastnite, barium peroxide, aluminium oxide, magnesium carbonate, magnesium sulfate, aluminium sulfate, potassium sulfate, barium sulfate, zinc fluoride, magnesium fluoride, and the like.




From the respect of pressure proof strength, calcium carbonate is preferably modified with a surface modifier such as fatty acid including stearic acid, so as to improve the dispersibility into a resin.




Ceramic fiber means ceramic fiber-like materials, without specific limitation as long as the total amount of metal compounds from the periodic table 1A is satisfactory. Specific examples of ceramic fiber include aluminium silicate fiber, aluminium borate fiber, aluminium borate whisker, alumina whisker and the like, from the respect of the improvement of arc extinguishing potency and pressure proof strength.




Preferably, the diameter of ceramic fiber is 1 to 10 lm and the aspect ratio is 10 or more from the respect of pressure proof strength.




As the reinforcing material, one or two or more thereof may be used. When two or more thereof are to be used, combinations of the glass fiber with the inorganic mineral, the glass fiber with the ceramic fiber, the inorganic mineral with the ceramic fiber, the glass fiber with another glass fiber, the inorganic mineral with another inorganic mineral, the ceramic fiber with another ceramic fiber, and the combination of the glass fiber, the inorganic mineral and the ceramic fiber, are suggested without specific limitation, but the combination of the glass fiber with the inorganic mineral is advantageous in that the raw materials are not costly.




Then, resins will now be explained. The resin is a thermosetting resin or a thermoplastic resin.




The thermosetting resin is one selected from the group consisting of urea resins, melamine resins, melamine phenol resins, diallylphthalate resins, phenol resins and polyester resins.




The thermosetting resin is used so as to improve pressure proof strength, heat-resistant form retention, and arc extinguishing potency.




Urea resins and melamine resins are used because they do not have aromatic rings so that arc extinguishing potency can be elevated and heat-resistant form retention is satisfied.




Melamine phenol resins are used, because the resins have melamine in the structures thereof so that arc extinguishing potency can be improved and pressure proof strength and heat-resistant form retention are satisfactory simultaneously.




Diallylphthalate resins are used so as to improve pressure proof strength and heat-resistant form retention. As the reinforcing material, glass fiber is used to further improve pressure proof strength and heat-resistant form retention.




Phenol resins are used so as to improve pressure proof strength and heat-resistant form retention. By adding wood powder and cloth into phenol resins, the material cost gets low advantageously.




Polyester resins are used so as to improve pressure proof strength and heat-resistant form retention. When the resins are used as a raw material in the form of sheet, glass fiber in the form of long fiber can be contained therein, to further improve pressure proof strength and heat-resistant form retention.




The thermosetting resin as the principal component may optionally be blended or copolymerized with an elastomer or gum.




The elastomer or gum is used in such blending or copolymerization, so as to further improve impact resistance.




The elastomer to be used for the blending or the copolymerization may include polyolefin elastomer, polyester elastomer and the like, and more specifically, preference is given to polyolefin elastomer from the respect of pressure proof strength.




The gum to be used for the blending or the copolymerization may include butadiene gum, ethylene propylene gum, acrylate gum, nitrile butadiene gum and the like, and more specifically, preference is given to nitrile butadiene gum from the respect of pressure proof strength.




The ratio for such blending or copolymerization of either of elastomer or gum should be 5 to 30 parts, more preferably 10 to 25 parts to 100 parts (parts by weight) of a thermosetting resin, from the respect of heat resistance and pressure proof strength.




Then, the thermoplastic resin will now be explained below.




From the respect of the environment and conditions where switches are used, the thermoplastic resin is preferably a material with oil resistance, but without specific limitation. Specifically, preference is given to polyacetal, polyethylene terephthalate, polybutylene terephthalate, polyamide, polyphenyl sulfide and the polymer alloy material thereof from the respect of heat resistance and pressure proof strength.




Among the thermoplastic resin, polyacetal and polyamide are preferable because they do not have aromatic rings, in terms of the improvement of arc extinguishing potency.




The thermoplastic resin is used so as to improve pressure proof strength and arc extinguishing potency and to design the shortening of molding time because the resin is applicable when parts should be thinned or should be prepared into complex forms.




A molded articles composed of various organic and inorganic complex compositions according to the aforementioned Examples 8 to 14 was applied to boxes, cross bars, handles and trip bars as the components of a switch. The examples thereof are described hereinbelow.




Example 15





FIG. 1

is a schematic perspective view depicting the appearance of a circuit breaker; and

FIG. 2

is a schematic perspective view depicting the state without cover. In the figures,


1


represents box composed of base


2


and cover


3


.


4


represents mobile contacts individually contacting with and separating from fixed joints (not shown) of individual electrodes, and any of them is supported concurrently with cross bar


5


.


6


represents a device for extinguishing arc, which is mounted in front of mobile contacts


4


and is composed of arc extinguishing board


6




a


and arc extinguishing side board


6




b.




7


represents handle protruding outward from box


1


, and opens and closes the mobile contacts


4


through opening and closing part


8


.


9


represents trip bar constituting tripping device


10


.

FIG. 3

is a schematic perspective view depicting the state wherein a part of the base formed by compact double molding is cut. In the figure, base


2


has base inside


2




a


composed of the inorganic and organic complex composition of the present invention and base outside


2




b


composed of a structural composition, wherein a part holding opening and closing part


8


, both contacts, arc extinguishing device


6


and trip bar


9


is doubly molded.




According to this example, arc is generated between the contacts of the electrodes when the electrodes of the switch are opened and closed, and free carbon generating from the organic material constituting the inside and metallic steam and melt metal liquid droplets generating from the metallic parts constituting the inside are modified into insulated bodies by gas to provide insulation, the gas being generated from the inorganic compounds being contained in the organic and inorganic complex composition constituting the base inside


2




a


and being capable of dehydration at 150° C. or more, whereby the decrease of electric resistance of the base inside is prevented to improve the insulation potency of the electrodes after opening and closing of the electrodes of the switch. Also, the damage of the base of the box due to high-pressure steam generated via the arc is simultaneously prevented by the structural composition forming the base outside


2




b,


advantageously.




Example 16





FIG. 4

is a schematic explanatory view depicting a compact double molding method of the base of a box by means of the organic and inorganic complex composition in the form of sheet in accordance with the present invention. In the figure,


11


represents the organic and inorganic complex composition in the form of sheet;


12


represents a structural composition in the form of sheet;


13




a


represents bottom mold; and


13




b


represents upper mold. Firstly, the organic and inorganic complex composition in the form of sheet


11


is placed on the bottom mold


13




a,


and the structural composition in the form of sheet


12


is mounted thereon to completely cover the organic and inorganic complex composition in the form of sheet


11


. The production method can readily produce base


2


of the box composed of the inner base


2




a


comprising the organic and inorganic complex composition of the present invention and the outward base


2




b


comprising the structural composition. Also, the cover may be produced by the same method.




Example 17





FIG. 5

is a schematic perspective view depicting the state wherein a part of a cross bar formed by transfer molding is cut. In the figure, cross bar


5


has surface layer part


5




a


formed from the organic and inorganic complex composition of the present invention and inner layer part


5




b


formed from a structural composition.




According to the Example, free carbon, metallic steam and melt metal liquid droplets, which are all generated by arc generation between the contacts of electrodes during opening and closing of the electrodes of a switch, are modified into insulated bodies with gas to provide insulation which gas is generated from the inorganic compounds being contained in the organic and inorganic complex composition forming the cross bar surface layer part


5




a


and being capable of dehydration at 150 or more, whereby the decrease of electric resistance is prevented on the surface of the cross bar over the switch phase, which is advantageous for the improvement of the insulation over the switch phase. Simultaneously, it is advantageous that the damage of the cross bar via high-pressure steam generated with the arc is prevented with the structural composition forming the cross bar inner layer part


5




b.






Example 18





FIG. 6

is a schematic perspective view depicting the state wherein a part of a trip bar formed by transfer molding is cut. In the figure, trip bar


9


has surface layer part


9




a


formed from the organic and inorganic complex composition of the present invention and inner layer part


9




b


formed from a structural composition.




According to the Example, free carbon, metallic steam and melt metal liquid droplets, which are all generated by arc generation between the contacts of electrodes during opening and closing of the electrodes of a switch, are modified into insulated bodies with gas to provide insulation which gas is generated from the inorganic compounds being contained in the organic and inorganic complex composition forming the trip bar surface layer part


9




a


and being capable of dehydration at 150 or more, whereby the decrease of electric resistance is prevented on the surface of the trip bar over the switch phase, which is advantageous for the improvement of the insulation over the switch phase. Simultaneously, it is advantageous that the damage of the trip bar via high-pressure steam generated with the arc is prevented with the structural composition forming the trip bar inner layer part


9




b.






Example 19





FIG. 7

is a schematic perspective view depicting the state wherein a part of a handle formed by transfer molding is cut. In the figure, handle


7


has surface layer part


7




a


formed from the organic and inorganic complex composition of the present invention and inner layer part


7




b


formed from a structural composition.




According to the Example, free carbon, metallic steam and melt metal liquid droplets, which are all generated by arc generation between the contacts of electrodes during opening and closing of the electrodes of a switch, are modified into insulated bodies with gas to provide insulation which gas is generated from the inorganic compounds being contained in the organic and inorganic complex composition forming the handle bar surface layer part


7




a


and being capable of dehydration at 150 or more, whereby the decrease of electric resistance is prevented on the surface of the handle


7


, which is advantageous for the improvement of the insulation of the switch. Simultaneously, it is advantageous that the damage of the handle via high-pressure steam generated with the arc is prevented with the structural composition forming the handle inner layer part


7




b.






Example 20





FIG. 8

is a schematic perspective view depicting the state wherein a part of a handle formed by injection two-color molding is cut. In the figure, handle


7


has inside part


71




a


formed from the organic and inorganic complex composition of the present invention and outside part


7




b


formed from a structural composition. Deposition of free carbon, metallic steam and melt metal liquid droplets occurs principally to the inside of a switch to decrease electric resistance, which are all generated by arc generation between the contacts of electrodes during opening and closing of the electrodes of the switch. By forming those, except handle


71




a


facing the inside of the switch, with the structural composition, the strength of repeated opening and closing of handles is advantageously improved.




Example 21





FIG. 9

is a schematic perspective view of a base. In the figure, the peripheral part


21




a


of the contacts of base


2


of the box of a switch, ie. central electrode part, is formed from the organic and inorganic complex composition of the present invention, while other parts


21




b


of the base are formed from a structural composition.




According to the Example, in the case of a switch with three electrodes, not only the decrease of electric resistance due to the deposition of free carbon, metallic steam and melt metal liquid droplets generated by arc generation between the contacts of the individual electrodes was markedly low; but also the decrease of electric resistance on the sides of electric power supply/load of the central electrode was distinctively poor compared with both of the left and right electrodes because the switch system part composed of a metal material of electric continuity was positioned at the central electrode. By forming the peripheral part


21




a


of the contacts of the base, ie. central electrode part, with the organic and inorganic complex composition of the present invention, the insulation resistance on the sides of electric power supply/load on the central electrode is advantageously improved. Simultaneously, it is advantageous that the damage of the box via high-pressure steam generated with the arc is prevented with the structural composition forming the other parts


21




b


of the box. Furthermore, such effect is not limited to switches with three electrodes, but the effect is brought about for switches with two or four electrodes.




Molded articles composed of the organic and inorganic complex composition of the present invention may be any one of thermoplastic resins and thermosetting resins. By subjecting a molded article of a preliminarily molded peripheral part of contacts to injection two-color molding, the base of a box can readily been produced. Otherwise, by compact double molding using a material composed of the organic and inorganic complex composition or a molded article composed of the organic and inorganic complex composition, the base of a box can readily been produced.




Example 22





FIG. 10

is a schematic explanatory view depicting a compact double molding method, comprising placing a molded article composed of the organic and inorganic complex composition constituting the peripheral part of the contacts or a material


21


composed of the organic and inorganic complex composition, at a position corresponding to the peripheral part of the contacts in a mold for compact molding, and placing structural composition


22


of a thermosetting resin at other parts for molding. By the method, the base of a box can readily been produced.




Example 23





FIG. 11

is a schematic explanatory view depicting a compact double molding method, comprising placing a molded article or a material


211


composed of the organic and inorganic complex composition constituting the peripheral part of the contacts, at a position corresponding to the peripheral part of the contacts in a mold for compact molding, and covering the molded article or material


211


composed of the organic and inorganic complex composition constituting the peripheral part of the contacts with a sheet material


212


composed of a thermosetting resin for molding. By the method, the base of a box can readily been produced. Simultaneously, the organic and inorganic complex composition placed at the part corresponding to the peripheral part of the contacts in the mold, in accordance with the present invention, does not appear outside of the base of the box, but the outside of the base is covered with the sheet material


212


composed of a thermosetting resin, and therefore, it is advantageous that the damage of the box with high-pressure steam generated with arc can be prevented.




Example 24





FIG. 12

is a schematic perspective view depicting base. In the figure, the electric power supply side


2




c


in the base


2


of the box is formed of the organic and inorganic complex composition of the present invention.




According to the Example, the electric supply side


2




c


of the base is formed of the organic and inorganic complex composition of the present invention, whereby the decrease of electric resistance due to the deposition of free carbon, metallic steam and melt metal liquid droplets is advantageously prevented. Simultaneously, an economical advantage is also brought about by forming the load side of the switch with an economical structural composition of the material unit price being low.




Example 25




Explanation will now follow about a method for producing the electric power supply side of the base of a box with the organic and inorganic complex composition of the present invention.




The organic and inorganic complex composition of the present invention may be any one of a thermoplastic resin and a thermosetting resin. By subjecting a molded article of a preliminarily molded electric power supply side of the base to injection two-color molding, the base of a box can readily been produced. By placing a molded article composed of the organic and inorganic complex composition on the side of electric power supply in a mold for compact molding, and placing a material of a thermosetting resin on the load side in the mold for compact molding, the base of a box can readily been produced. Also, by placing a material composed of the organic and inorganic complex composition of a thermosetting resin in accordance with the present invention on the side of electric power supply in a mold for compact molding, and placing a material of a thermosetting resin on the load side in the mold for compact molding, the base of a box can readily been produced. In terms of productivity, the above method is preferable.




The following shut-off test and meg measuring test were carried out on switches having at least one of a box, a cross bar, a handle and a trip bar, of which the entirety or a part is composed of various organic and inorganic complex compositions.




Shut-off Test




At a closing state, by passing excess electric current of 3-phase 460 V/30 KA, a mobile contact is opened to generate arc current. If the shut off of the arc current is successful, or if no damage or crack is observed in the inner parts of circuit breakers or boxes after shut-off, the test can be passed.




Meg Measuring Test




The test is carried out as follows.




After the shut-off test, the insulation resistance is measured with an insulation resistor described in JIS C1302. The results are shown as the minimum insulation resistance. When a sample was a box, the insulation resistance between the contacts or between the electric supply loads was measured. When a sample was a handle, the insulation resistance between the gap of the cover and the handle and the main circuit was measured. When a sample was a trip bar or a cross bar, the insulation resistance of the surface layer between the terminals of the part was measured.




Using a sample piece composed of the generated organic and inorganic complex composition, the following combustion test was carried out.




Combustion Test




Vertical combustion test and horizontal combustion test described in UL94. Based on the vertical test, the results are shown in values corresponding to V-0, V-1, and V-2. Based on the results of the horizontal test, the results are shown in values corresponding to HB.




Firstly, samples 1 to 14 are explained. A trip bar shown in

FIG. 6

was prepared from organic and inorganic complex compositions described in Tables 1 and 2. The resin was acid anhydrous epoxy resin. As the inorganic compound capable of dehydration at 150° C. or more, aluminium hydroxide was used. As the reinforcing material, glass fiber and calcium carbonate were used. As a comparative example, a trip bar of a composition with the content of a resin polybutylene terephthalate at 70 wt % and the content of a reinforcing material glass fiber at 30 wt %.















TABLE 1













{circle around (B)} Reinforcing material



















 Ratio by weigh of




Glass fiber




Ceramic




Inorganic




Results of short-circuit test




















Composition of




Resin ratio




inorganic compound




ratio by




fiber ratio




mineral ratio





Meg measured







the inside of




by weight




capable of dehydration at




weight




by weight




by weight




Part




values




Combustibility






trip bar




(wt %)




150° C. or more (wt %)




(wt %)




(wt %)




(wt %)




appearance




(MΩ)




test









Comparative




70




0.00




30.0




0.0




0.0




Crack of damage




  0.1




HB






example




Polybutylene








None







terephthalate

















Limited range




15˜65




80˜30




5˜55





















of composition



















Sample 1




15




80  




5 




0.0




0.0




Crack of damage




50




Corresponding







Epoxy




Aluminium hydroxide







None





to V-0






Sample 2




15




30  




55  




0.0




0.0




Crack of damage




20




Corresponding







Epoxy




Aluminium hydroxide







None





to HB






Sample 3




65




30  




5 




0.0




0.0




Crack of damage




 7




Corresponding







Epoxy




Aluminium hydroxide







None





to HB

























TABLE 2













{circle around (B)} Reinforcing material



















 Ratio by weigh of




Glass fiber




Ceramic




Inorganic




Results of short-circuit test




















Composition of




Resin ratio




inorganic compound




ratio by




fiber ratio




mineral ratio





Meg measured







the inside of




by weight




capable of dehydration at




weight




by weight




by weight




Part




values




Combustibility






trip bar




(wt %)




150° C. or more (wt %)




(wt %)




(wt %)




(wt %)




appearance




(MΩ)




test









Comparative




25




0.00




15




0




60




Crack of damage




0.3




HB






example




Polyester







Calcium




None











carbonate

















Limited range




15˜65




80˜30




5˜55





















of composition



















Sample 4




25




67.50




7.5




0




0




Crack of damage




18 




Corresponding







Epoxy resin




Aluminium hydroxide







None





to V-0






Sample 5




25




65




10




0




0




Crack of damage




20 




Corresponding







Epoxy resin




Aluminium hydroxide







None





to V-0






Sample 6




25




60




15




0




0




Crack of damage




10 




Corresponding







Epoxy resin




Aluminium hydroxide







None





to V-0






Sample 7




25




55




15




0




5




Crack of damage




12 




Corresponding







Epoxy resin




Aluminium hydroxide






Calcium




None





to V-0











carbonate






Sample 8




25




50




15




0




10 




Crack of damage




 8




Corresponding







Epoxy resin




Aluminium hydroxide






Calcium




None





to V-0











carbonate






Sample 9




25




45




15




0




15 




Crack of damage




 7




Corresponding







Epoxy resin




Aluminium hydroxide






Calcium




None





to V-0











carbonate






Sample 10




25




40




15




0




20 




Crack of damage




 5




Corresponding







Epoxy resin




Aluminium hydroxide






Calcium




None





to V-1











carbonate






Sample 11




25




55




20




0




0




Crack of damage




 3




Corresponding







Epoxy resin




Aluminium hydroxide







None





to V-0






Sample 12




25




50




20




0




5




Crack of damage




 5




Corresponding







Epoxy resin




Aluminium hydroxide






Calcium




None





to V-0











carbonate






Sample 13




25




45




20




0




10 




Crack of damage




2




Corresponding







Epoxy resin




Aluminium hydroxide






Calcium




None





to V-0











carbonate






Sample 14




25




40




20




0




15 




Crack of damage




2.5




Corresponding







Epoxy resin




Aluminium hydroxide






Calcium




None





to V-1











carbonate














The method for preparing a sample will now be explained below. Firstly, the principal agent of epoxy resin, a curing agent, aluminium hydroxide, calcium carbonate, glass fiber, and black carbon were preliminarily heated in a thermostat at 120° C. for about 2 hours. Then, taking out the principal agent of epoxy resin, aluminium hydroxide, calcium carbonate, and glass fiber from the thermostat, sufficient agitation of aluminium hydroxide, calcium carbonate and glass fiber was done to homogeneity, and the resulting mixture was again heated in the thermostat at 120° C. for 30 minutes. Subsequently, the mixture and the curing agent of the epoxy resin were taken out from the thermostat, followed by adding a curing agent of epoxy resin to the mixture for sufficient agitation. Thereafter, black carbon was added for sufficient agitation. The thus generated organic and inorganic complex composition was subjected to defoaming in vacuum. Then, the organic and inorganic complex composition was poured into a trip bar mold preliminarily heated in a thermostat at 120° C., for defoaming in vacuum. Then, curing was effected in the thermostat at 120° C. for 24 hours. Drawing the molded article of trip bar from the mold, the article was further heated in the thermostat at 120° C. for 24 hours.




Mounting the thus obtained trip bar onto a circuit breaker, the aforementioned shut-off test was carried out. After the shut-off test, the apparent state of the trip bar was visually observed while the meg between individual terminals was measured.




Consequently, as is apparently shown above in Tables 1 and 2, the trip bars composed of the organic and inorganic complex compositions generated in the Examples 1 to 14 of the present invention had scarce damage under visual observation after the shut-off test, and their meg values were 0.5 MΩ or more, excellently.




The samples 15 to 31 are explained hereinbelow. Handles shown in

FIG. 7

were prepared from the organic and inorganic complex compositions described in Tables 3 and 4. The resin was melamine resin. The inorganic compound capable of dehydration at 150° C. or more was aluminium hydroxide. The reinforcing material was glass fiber and calcium carbonate. As a comparative example, use was made of a handle of a composition with the polybutylene terephthalate content of 70 wt % and the content of the reinforcing material glass fiber of 30 wt %.















TABLE 3













{circle around (B)} Reinforcing material



















 Ratio by weigh of




Glass fiber




Ceramic




Inorganic




Results of short-circuit test




















Composition of




Resin ratio




inorganic compound




ratio by




fiber ratio




mineral ratio





Meg measured







the inside of




by weight




capable of dehydration at




weight




by weight




by weight




Part




values




Combustibility






handle




(wt %)




150° C. or more (wt %)




(wt %)




(wt %)




(wt %)




appearance




(MΩ)




test






















Comparative




70




0.00




30.0




0.0




0.0




Crack of damage




0.2




HB






example




Polybutylene








None







terephthalate

















Limited range




30˜65




65˜30




5˜40





















of composition



















Sample 15




30




30




40




0.0




0.0




Crack of damage




0.9




Corresponding







Melamine resin




Aluminium hydroxide







None





to HB






Sample 16




30




65




 5




0.0




0.0




Crack of damage




2.5




Corresponding







Melamine resin




Aluminium hydroxide







None





to V-0






Sample 17




65




30




 5




0.0




0.0




Crack of damage




0.6




Corresponding







Melamine resin




Aluminium hydroxide







None





to HB






Sample 18




40




35




25




0.0




0.0




Crack of damage




1.5




Corresponding







Melamine resin




Aluminium hydroxide







None





to HB






Sample 19




50




35




15




0.0




0.0




Crack of damage




1




Corresponding







Melamine resin




Aluminium hydroxide







None





to HB






Sample 20




60




35




 5




0.0




0.0




Crack of damage




2




Corresponding







Melamine resin




Aluminium hydroxide







None





to HB

























TABLE 4













{circle around (B)} Reinforcing material



















 Ratio by weigh of




Glass fiber




Ceramic




Inorganic




Results of short-circuit test




















Composition of




Resin ratio




inorganic compound




ratio by




fiber ratio




mineral ratio





Meg measured







the inside of




by weight




capable of dehydration at




weight




by weight




by weight




Part




values




Combustibility






handle




(wt %)




150° C. or more (wt %)




(wt %)




(wt %)




(wt %)




appearance




(MΩ)




test






















Comparative




70




0.00




30.0




0.0




0.0




Crack of damage




0.2




HB






example




Polybutylene








None







terephthalate

















Limited range




30˜65




65˜30




5˜40





















of composition



















Sample 21




40




55




 5




0




0




Crack of damage




8




Corresponding







Melamine resin




Aluminium hydroxide







None





to V-0






Sample 22




40




50




10




0




0




Crack of damage




8




Corresponding







Melamine resin




Aluminium hydroxide







None





to V-0






Sample 23




40




50




 5




0




5




Crack of damage




9




Corresponding







Melamine resin




Aluminium hydroxide






Calcium




None





to V-0











carbonate






Sample 24




40




45




15




0




0




Crack of damage




6




Corresponding







Melamine resin




Aluminium hydroxide







None





to V-2






Sample 25




40




40




20




0




0




Crack of damage




2




Corresponding







Melamine resin




Aluminium hydroxide







None





to V-2






Sample 26




40




40




10




0




10 




Crack of damage




5




Corresponding







Melamine resin




Aluminium hydroxide






Calcium




None





to V-2











carbonate






Sample 27




45




45




10




0




0




Crack of damage




6




Corresponding







Melamine resin




Aluminium hydroxide







None





to V-2






Sample 28




45




40




20




0




0




Crack of damage




2




Corresponding







Melamine resin




Aluminium hydroxide







None





to V-2






Sample 29




50




40




10




0




0




Crack of damage




2.5




Corresponding







Melamine resin




Aluminium hydroxide







None





to V-2






Sample 30




50




35




10




0




5




Crack of damage




3




Corresponding







Melamine resin




Aluminium hydroxide






Calcium




None





to V-2











carbonate






Sample 31




50




35




 5




0




10 




Crack of damage




1.8




Corresponding







Melamine resin




Aluminium hydroxide






Calcium




None





to V-2











carbonate














The method for preparing a sample will now be explained below. Firstly, melamine resin in solid powder, an acid catalyst, carbon black, aluminium hydroxide, glass fiber and calcium carbonate were placed in a polyethylene bag, for sufficient kneading. Then, the kneaded product was further kneaded, for 5 minutes, with a roll kept at 100° C., followed by cooling at room temperature and grinding with a crude grinder for 5 minutes and with a fine grinder for another 5 minutes, to produce an organic and inorganic complex composition.




Handles were molded by injection molding. The thus obtained handles were mounted onto a circuit breaker, for carrying out the shut-off test. After the shut-off test, the apparent state of the handles was observed visually, and the meg measurement was done.




Consequently, as is apparently shown in Tables 3 and 4, the handles composed of the organic and inorganic complex compositions generated in the Examples 15 to 31 of the present invention had scarce damage under visual observation after the shut-off test, and their meg values were 0.5 MΩ or more, excellently. By using urea resin, melamine phenol resin, or diallylphthalate resin instead of melamine resin, the same excellent results were obtained.




Explanation will follow about samples 32 to 43. Bases of a box shown in

FIG. 12

were prepared with the organic and inorganic complex compositions described below in Tables 5 to 6. The resin was novolak phenol resin. The inorganic compound capable of dehydration at 150° C. or more was aluminium hydroxide. As the reinforcing material, glass fiber and calcium carbonate were used. As a comparative example, the base of a box, composed of the composition with the content of a resin polyester at 25 wt % and the contents of the reinforcing materials glass fiber and calcium carbonate at 15 wt % and 60 wt %, respectively.















TABLE 5













{circle around (B)} Reinforcing material



















 Ratio by weigh of




Glass fiber




Ceramic




Inorganic




Results of short-circuit test




















Composition of




Resin ratio




inorganic compound




ratio by




fiber ratio




mineral ratio





Meg measured







the inside




by weight




capable of dehydration at




weight




by weight




by weight




Part




values




Combustibility






of box




(wt %)




150° C. or more (wt %)




(wt %)




(wt %)




(wt %)




appearance




(MΩ)




test









Comparative




25




 0




15




0




60 




Crack of damage




0.15




HB






example




Polyester







Calcium




None











carbonate

















Limited range




25˜60




70˜35




5˜40





















of composition



















Sample 32




25




35




40




0




0




Crack of damage




0.5




Corresponding







Phenol resin




Aluminium hydroxide







None





to V-2






Sample 33




25




70




 5




0




0




Crack of damage




7




Corresponding







Phenol resin




Aluminium hydroxide







None





to V-0






Sample 34




60




35




 5




0




0




Crack of damage




1




Corresponding







Phenol resin




Aluminium hydroxide







None





to HB






Sample 35




50




40




10




0




0




Crack of damage




1.2




Corresponding







Phenol resin




Aluminium hydroxide







None





to HB






Sample 36




40




50




10




0




0




Crack of damage




3




Corresponding







Phenol resin




Aluminium hydroxide







None





to V2






Sample 37




35




55




10




0




0




Crack of damage




5.5




Corresponding







Phenol resin




Aluminium hydroxide







None





to V-2

























TABLE 6













{circle around (B)} Reinforcing material



















 Ratio by weigh of




Glass fiber




Ceramic




Inorganic




Results of short-circuit test




















Composition of




Resin ratio




inorganic compound




ratio by




fiber ratio




mineral ratio





Meg measured







the inside




by weight




capable of dehydration at




weight




by weight




by weight




Part




values




Combustibility






of box




(wt %)




150° C. or more (wt %)




(wt %)




(wt %)




(wt %)




appearance




(MΩ)




test






















Comparative




25




 0




15




0




60 




Crack of damage




0.15




HB






example




Polyester







Calcium




None











carbonate

















Limited range




25˜60




70˜35




5˜40





















of composition



















Sample 38




40




55




 5




0




0




Crack of damage




7.5




Corresponding







Phenol resin




Aluminium hydroxide







None





to V-2






Sample 39




40




45




15




0




0




Crack of damage




3.5




Corresponding







Phenol resin




Aluminium hydroxide







None





to V-2






Sample 40




40




45




10




0




5




Crack of damage




3.5




Corresponding







Phenol resin




Aluminium hydroxide






Calcium




None





to V-2











carbonate






Sample 41




40




40




20




0




0




Crack of damage




4




Corresponding







Phenol resin




Aluminium hydroxide







None





to V-2






Sample 42




40




40




15




0




5




Crack of damage




2




Corresponding







Phenol resin




Aluminium hydroxide






Calcium




None





to V-2











carbonate






Sample 43




40




40




10




0




10 




Crack of damage




4




Corresponding







Phenol resin




Aluminium hydroxide






Calcium




None





to V-2











carbonate














A method for preparing samples will now be explained below. Firstly, phenol, formalin, and an acid catalyst reacted together in a 100-liter reactor at a temperature of 80 to 100° C. for about 6 hours. After subsequent dehydration of the reactor for about 1 hour, liquid phenol rein was prepared. The liquid phenol resin was cooled in air, and solidified and ground. The ground phenol resin, hexamethylene tetramine, carbon black, aluminium hydroxide, glass fiber, and calcium carbonate were placed in a 100-liter ball mill kept to about 40° C., for 10-min mixing. Then, the resulting mixture was kneaded with a roll kept to 110° C. for 5 minutes, followed by grinding with a crude roller for 5 minutes and with a fine roller for another 5 minutes, to recover organic and inorganic complex compositions. Then, bases of a box shown in

FIG. 12

were prepared.




Using the bases of a box thus prepared, the shut-off test was carried out. After the shut-off test, the apparent state of the bases of the box was visually observed, and the meg measurement between individual terminals was carried out.




Consequently, as is apparently shown in Tables 5 and 6, the bases of a box, composed of the organic and inorganic complex compositions from samples 32 to 73 of the present invention had scarce damage under visual observation after the shut-off test, and their meg values were 0.5 MΩ or more, excellently.




Explanation will follow about samples 44 to 73. Bases of a box shown in

FIG. 12

were prepared with the organic and inorganic complex compositions described in Tables 7 to 9. The resin was polyester. The inorganic compound capable of dehydration at 150° C. or more was aluminium hydroxide. As the reinforcing material, glass fiber, calcium carbonate, talc and warastnite were used. As a comparative example, the base of a box, composed of the composition with the content of a resin polyester at 25 wt % and the contents of the reinforcing materials glass fiber and calcium carbonate at 15 wt % and 60 wt %, respectively.















TABLE 7













{circle around (B)} Reinforcing material



















 Ratio by weigh of




Glass fiber




Ceramic




Inorganic




Results of short-circuit test




















Composition of




Resin ratio




inorganic compound




ratio by




fiber ratio




mineral ratio





Meg measured







the inside




by weight




capable of dehydration at




weight




by weight




by weight




Part




values




Combustibility






of box




(wt %)




150° C. or more (wt %)




(wt %)




(wt %)




(wt %)




appearance




(MΩ)




test






















Comparative




25




0




15




0




60 




Crack of damage




0.15




HB






example




Polyester







Calcium




None











carbonate

















Limited range




15˜40




80˜35




5˜50





















of composition



















Sample 44




15




35




50




0




0




Crack of damage




2




Corresponding







Polyester




Aluminium hydroxide







None





to V-1






Sample 45




15




80




 5




0




0




Crack of damage




100 or more




Corresponding







Polyester




Aluminium hydroxide







None





to V-0






Sample 46




40




35




25




0




0




Crack of damage




 3




Corresponding







Polyester




Aluminium hydroxide







None





to HB






Sample 47




20




70




10




0




0




Crack of damage




90




Corresponding







Polyester




Aluminium hydroxide







None





to V-0






Sample 48




20




65




15




0




0




Crack of damage




40




Corresponding







Polyester




Aluminium hydroxide







None





to V-0






Sample 49




35




55




10




0




0




Crack of damage




18




Corresponding







Polyester




Aluminium hydroxide







None





to V-1






Sample 50




35




50




15




0




0




Crack of damage




11




Corresponding







Polyester




Aluminium hydroxide







None





to V-1

























TABLE 8













{circle around (B)} Reinforcing material



















 Ratio by weigh of




Glass fiber




Ceramic




Inorganic




Results of short-circuit test




















Composition of




Resin ratio




inorganic compound




ratio by




fiber ratio




mineral ratio





Meg measured







the inside




by weight




capable of dehydration at




weight




by weight




by weight




Part




values




Combustibility






of box




(wt %)




150° C. or more (wt %)




(wt %)




(wt %)




(wt %)




appearance




(MΩ)




test






















Comparative




25




 0




15




0




60




Crack of damage




0.15




HB






example




Polyester







Calcium




None











carbonate

















Limited range




15˜40




80˜35




5˜50





















of composition



















Sample 51




25




65




10




0




 0




Crack of damage




50




Corresponding







Polyester




Aluminium hydroxide







None





to V-0






Sample 52




25




60




15




0




 0




Crack of damage




50




Corresponding







Polyester




Aluminium hydroxide







None





to V-0






Sample 53




25




55




20




0




 0




Crack of damage




35




Corresponding







Polyester




Aluminium hydroxide







None





to V-0






Sample 54




25




55




15




0




 5




Crack of damage




30




Corresponding







Polyester




Aluminium hydroxide






Calcium




None





to V-0











carbonate






Sample 55




25




55




10




0




10




Crack of damage




20




Corresponding







Polyester




Aluminium hydroxide






Calcium




None





to V-0











carbonate






Sample 56




25




50




25




0




 0




Crack of damage




18




Corresponding







Polyester




Aluminium hydroxide







None





to V-0






Sample 57




25




50




15




0




10




Crack of damage




12




Corresponding







Polyester




Aluminium hydroxide






Calcium




None





to V-0











carbonate






Sample 58




25




50




10




0




15




Crack of damage




25




Corresponding







Polyester




Aluminium hydroxide






Calcium




None





to V-0











carbonate






Sample 59




25




45




30




0




 0




Crack of damage




 7




Corresponding







Polyester




Aluminium hydroxide







None





to V-0






Sample 60




25




45




15




0




15




Crack of damage




10




Corresponding







Polyester




Aluminium hydroxide






Calcium




None





to V-0











carbonate



























TABLE 9













 Ratio by weight of




{circle around (B)} Reinforcing material




















inorganic compound




Glass




Ceramic




Inorganic mineral ratio




Results of short-circuit test




















Composition




Resin ratio




capable of dehydration




fiber ratio




fiber ratio




by weight (wt %)




Part




Meg measured






















of the inside




by weight




at 150° C. or more




by weight




by weight




Calcium






appear-




values




Combustibility






of box




(wt %)




(wt %)




(wt %)




(wt %)




carbonate




Talc




Warsinite




ance




(MΩ)




test
























Comparative




25




 0




15




0




60 




0




0




Crack of




0.15




HB






example




Polyester










damage














None

















Limited




15˜40




80˜35




5˜55





















range of






composition





















Sample 61




25




60




10




0




5




0




0




Crack of




40




Corresponding







Polyester




Aluminum hydroxide









damage





to V-0














None






Sample 62




25




60




10




0




0




5




0




Crack of




18




Corresponding







Polyester




Aluminum hydroxide









damage





to V-0














None






Sample 63




25




60




10




0




0




0




5




Crack of




25




Corresponding







Polyester




Aluminum hydroxide









damage





to V-0














None






Sample 64




25




55




10




0




0




10 




0




Crack of




10




Corresponding







Polyester




Aluminum hydroxide









damage





to V-0














None






Sample 65




25




55




10




0




0




0




10 




Crack of




10




Corresponding







Polyester




Aluminum hydroxide









damage





to V-0














None






Sample 66




25




50




15




0




0




10 




0




Crack of




13




Corresponding







Polyester




Aluminum hydroxide









damage





to V-0














None






Sample 67




25




50




15




0




0




0




10 




Crack of




20




Corresponding







Polyester




Aluminum hydroxide









damage





to V-0














None






Sample 68




25




50




10




0




10 




5




0




Crack of




17




Corresponding







Polyester




Aluminum hydroxide









damage





to V-0














None






Sample 69




25




50




10




0




10 




0




5




Crack of




19




Corresponding







Polyester




Aluminum hydroxide









damage





to V-0














None






Sample 70




25




50




10




0




0




15 




0




Crack of




 8




Corresponding







Polyester




Aluminum hydroxide









damage





to V-0














None






Sample 71




25




50




10




0




0




0




15 




Crack of




12




Corresponding







Polyester




Aluminum hydroxide









damage





to V-0














None






Sample 72




25




50




10




0




0




10 




5




Crack of




19




Corresponding







Polyester




Aluminum hydroxide









damage





to V-0














None






Sample 73




25




50




10




0




0




5




10 




Crack of




12




Corresponding







Polyester




Aluminum hydroxide









damage





to V-0














None














A method for preparing samples will now be explained below. Firstly, unsaturated polyester, styrene beads, styrene monomer, an organic peroxide, a releasing agent, a thickener, carbon black, calcium carbonate or talc or warrastnite were placed in a kneader kept at 40° C., for 40-min kneading. Then, glass fiber was added to the resulting kneaded product, for further kneading for 5 minutes. Subsequently, the kneaded product was taken out from the kneader, and cooled at room temperature. Then, the cooled kneaded product was sealed in a polyethylene bag, and kept in a thermostat chamber at 20° C. for 72 hours, which was designated the organic and inorganic complex composition. Then, a base of a box shown in

FIG. 12

was prepared by compact molding.




Using the base of a box thus obtained, the aforementioned shut-off test was carried out. After the shut-off test, the apparent state of the bases of the box was visually observed, and the meg measurement between individual terminals was carried out.




Consequently, as is apparently shown in Tables 7 and 9, the bases of a box, composed of the organic and inorganic complex compositions from samples 44 to 73 of the present invention had scarce damage under visual observation after the shut-off test, and their meg values were 0.5 MΩ or more, excellently.




Explanation will follow about samples 74 to 78. Handles shown in

FIG. 8

were prepared with the organic and inorganic complex compositions described below in Table 10. The resin was polyacetal. The inorganic compound capable of dehydration at 200° C. or more was calcium aluminate. As the reinforcing material, glass fiber was used. As a comparative example, a handle composed of the composition with the content of a resin polybutylene terephthalate at 70 wt % and the content of the reinforcing material glass fiber at 30 wt %.















TABLE 10













{circle around (B)} Reinforcing material



















 Ratio by weigh of




Glass fiber




Ceramic




Inorganic




Results of short-circuit test




















Composition of




Resin ratio




inorganic compound




ratio by




fiber ratio




mineral ratio





Meg measured







the inside of




by weight




capable of dehydration at




weight




by weight




by weight




Part




values




Combustibility






handle




(wt %)




150° C. or more (wt %)




(wt %)




(wt %)




(wt %)




appearance




(MΩ)




test






















Comparative




70




 0




30 




0




0




Crack of damage




0.2




HB






example




Polybutylene








None







terephthalate

















Limited range




65˜80




30˜15




5˜20





















of composition



















Sample 74




65




30




5




0




0




Crack of damage




0.8




Corresponding







Polyacetal




Calcium aluminate







None





to HB






Sample 75




65




15




20 




0




0




Crack of damage




0.6




Corresponding







Polyacetal




Calcium aluminate







None





to HB






Sample 76




80




15




5




0




0




Crack of damage




1.1




Corresponding







Polyacetal




Calcium aluminate







None





to HB






Sample 77




70




20




10 




0




0




Crack of damage




0.6




Corresponding







Polyacetal




Calcium aluminate







None





to HB






Sample 78




65




25




10 




0




0




Crack of damage




1.4




Corresponding







Polyacetal




Calcium aluminate







None





to HB














A method for preparing samples will now be explained below. Firstly, polyacetal pellet (size 2.5 mm×length 2.5 mm), calcium aluminate, glass fiber, magnesium stearate (0.2 wt %) as a releasing agent, and a stabilizing agent (0.4 wt %) formalin were placed in a vinyl bag for manual, thorough mixing. The mixture was charged in a biaxial, triple thread milling extruder for kneading at 195° C. for 30 seconds. Taking the kneaded product from the biaxial, triple milling thread extruder, the product was cut while cooling in a water tank, to recover pellets of the organic and inorganic complex composition (size 1.5 to 2.5 mm×length 2.5 mm). Then, a handle composed of the pellets of the organic and inorganic complex composition was prepared.




The thus obtained handle was mounted on a circuit breaker, to carry out the shut-off test. After the shut-off test, the apparent state of the bases of the box was visually observed, and the meg measurement was carried out.




Consequently, as is apparently shown in Table 10, handles composed of the organic and inorganic complex compositions from samples 74 to 78 of the present invention had scarce damage under visual observation after the shut-off test, and their meg values were 0.5 MΩ or more, excellently. Using polyacetal polymer alloy instead of polyacetal, the same excellent results were obtained.




Explanation will follow about samples 79 to 85. Handles shown in

FIG. 8

were prepared with the organic and inorganic complex compositions described in Tables 11. The resin was Nylon 6. The inorganic compound capable of dehydration at 250° C. or more was magnesium hydroxide. As the reinforcing material, glass fiber was used. As a comparative example, a handle composed of the composition with the content of a resin polybutylene terephthalate at 70 wt % and the content of the reinforcing material glass fiber at 30 wt %.















TABLE 11













{circle around (B)} Reinforcing material



















 Ratio by weigh of




Glass fiber




Ceramic




Inorganic




Results of short-circuit test




















Composition of




Resin ratio




inorganic compound




ratio by




fiber ratio




mineral ratio





Meg measured







the inside of




by weight




capable of dehydration at




weight




by weight




by weight




Part




values




Combustibility






handle




(wt %)




150° C. or more (wt %)




(wt %)




(wt %)




(wt %)




appearance




(MΩ)




test






















Comparative




70




 0




30 




0




0




Crack of damage




0.2




HB






example




Polybutylene








None







terephthalate

















Limited range




45˜80




50˜15




5˜40





















of composition



















Sample 79




45




50




5




0




0




Crack of damage




4




Corresponding







Nylon 6




Magnesium hydroxide







None





to V-2






Sample 80




45




15




40 




0




0




Crack of damage




0.6




Corresponding







Nylon 6




Magnesium hydroxide







None





to HB






Sample 81




80




15




5




0




0




Crack of damage




0.6




Corresponding







Nylon 6




Magnesium hydroxide







None





to HB






Sample 82




70




20




10 




0




0




Crack of damage




0.8




Corresponding







Nylon 6




Magnesium hydroxide







None





to HB






Sample 83




60




25




15 




0




0




Crack of damage




0.6




Corresponding







Nylon 6




Magnesium hydroxide







None





to HB






Sample 84




50




30




20 




0




0




Crack of damage




0.9




Corresponding







Nylon 6




Magnesium hydroxide







None





to HB






Sample 85




45




25




30 




0




0




Crack of damage




0.8




Corresponding







Nylon 6




Magnesium hydroxide







None





to HB














A method for preparing samples will now be explained below. Firstly, Nylon 6 pellets (size 2.5 mm×length 2.5 mm), magnesium hydroxide, glass fiber, magnesium stearate (0.2 wt %) as a releasing agent, and a stabilizing agent (0.4 wt %) were placed in a vinyl bag for manual thorough mixing. The mixture was charged in a biaxial, triple thread milling extruder for kneading at 255° C. for 30 seconds. Taking the kneaded product from the biaxial, triple thread milling extruder, the product was cut while cooling in a water tank, to recover pellets of the organic and inorganic complex composition (size 1.5 to 2.5 mm×length 2.5 mm). Then, a handle composed of the pellets of the organic and inorganic complex composition was prepared.




The thus obtained handle was mounted on a circuit breaker, to carry out the shut-off test. After the shut-off test, the apparent state of the bases of the box was visually observed and the meg measurement was carried out.




Consequently, as is apparently shown above in Table 11, handles composed of the organic and inorganic complex compositions from samples 74 to 78 of the present invention had scarce damage under visual observation after the shut-off test, and their meg values were 0.5 MΩ or more, excellently. Using any of polybutylene terephthalate, Nylon MXD6, the polymer alloy thereof instead of the Nylon, the same excellent results were obtained.




Explanation will follow about samples 86 to 96. Handles shown in

FIG. 8

were prepared with the organic and inorganic complex compositions described in Tables 12. The resin was Nylon 46. The inorganic compound capable of dehydration at 340° C. or more was calcium aluminate. As the reinforcing material, glass fiber was used. As a comparative example, a handle composed of the composition with the content of a resin polybutylene terephthalate at 70 wt % and the content of the reinforcing material glass fiber at 30 wt %.















TABLE 12













{circle around (B)} Reinforcing material



















 Ratio by weigh of




Glass fiber




Ceramic




Inorganic




Results of short-circuit test




















Composition of




Resin ratio




inorganic compound




ratio by




fiber ratio




mineral ratio





Meg measured







the inside of




by weight




capable of dehydration at




weight




by weight




by weight




Part




values




Combustibility






handle




(wt %)




150° C. or more (wt %)




(wt %)




(wt %)




(wt %)




appearance




(MΩ)




test






















Comparative




70




 0




30




0




0




Crack of damage




0.2




HB






example




Polybutylene








None







terephthalate

















Limited range




35˜80




60˜15




5˜50





















of composition



















Sample 86




35




60




 5




0




0




Crack of damage




5.5




Corresponding







Nylon 46




Calcium hydroxide







None





to V-2






Sample 87




35




15




50




0




0




Crack of damage




1




Corresponding







Nylon 46




Calcium hydroxide







None





to HB






Sample 88




80




15




 5




0




0




Crack of damage




0.8




Corresponding







Nylon 46




Calcium hydroxide







None





to HB






Sample 89




70




20




10




0




0




Crack of damage




1.1




Corresponding







Nylon 46




Calcium hydroxide







None





to HB






Sample 90




60




25




15




0




0




Crack of damage




1.1




Corresponding







Nylon 46




Calcium hydroxide







None





to HB






Sample 91




50




35




15




0




0




Crack of damage




1




Corresponding







Nylon 46




Calcium hydroxide







None





to HB






Sample 92




40




35




20




0




0




Crack of damage




0.9




Corresponding







Nylon 46




Calcium hydroxide







None





to HB






Sample 93




40




50




10




0




0




Crack of damage




2,5




Corresponding







Nylon 46




Calcium hydroxide







None





to V-2






Sample 94




40




40




20




0




0




Crack of damage




1.8




Corresponding







Nylon 46




Calcium hydroxide







None





to HB






Sample 95




40




30




30




0




0




Crack of damage




1.4




Corresponding







Nylon 46




Calcium hydroxide







None





to HB






Sample 96




40




20




40




0




0




Crack of damage




1




Corresponding







Nylon 46




Calcium hydroxide







None





to HB














A method for preparing samples will now be explained below. Firstly, Nylon 46 pellets (size 2.5 mm×length 2.5 mm), calcium aluminate, glass fiber, magnesium stearate (0.2 wt %) as a releasing agent, and a stabilizing agent (0.4 wt %) were placed in a vinyl bag for manual, sufficient mixing. The mixture was charged in a biaxial, triple thread milling extruder for kneading at for 30 seconds. Taking the kneaded product from the biaxial, triple thread milling extruder, the product was cut while cooling in a water tank, to recover pellets of the organic and inorganic complex composition (size 1.5 to 2.5 mm×length 2.5 mm). Then, a handle composed of the pellets of the organic and inorganic complex composition was prepared.




The thus obtained handle was mounted on a circuit breaker, to carry out the shut-off test. After the shut-off test, the apparent state of the bases of the box was visually observed and the meg measurement was carried out.




Consequently, as is apparently shown above in Table 12, handles composed of the organic and inorganic complex compositions from samples 86 to 96 of the present invention had scarce damage under visual observation after the shut-off test, and their meg values were 0.5 MΩ or more, excellently. Using any of polyphenylene sulfide, Nylon 6T, Nylon 66, polyethylene terephthalate, and the polymer alloy thereof instead of Nylon 46, the same excellent results were obtained.



Claims
  • 1. A circuit breaker comprising a molded article and has a box,said molded article comprising from 35 to 80% of a thermoplastic resin, from 15 to 50 wt % of one or more inorganic compounds capable of dehydration at 200° C. or higher, and from 5 to 50 wt % of one or more reinforcing materials, and said box comprising mobile contacts individually contacting with and separating from fixed joints of individual electrodes, an opening and closing part which opens and closes the mobile contacts and a device for extinguising arc generated between the mobile contacts, and the fixed joints which comprises an arc extinguishing board.
  • 2. A circuit breaker according to claim 1, wherein said inorganic compound is magnesium hydroxide.
  • 3. A circuit breaker according to claim 1, wherein said reinforcing material is a combination of glass fiber with an inorganic mineral.
  • 4. A circuit breaker according to claim 1, wherein said reinforcing material is glass fiber, and said glass fiber has a diameter of 6 to 13 μm and an aspect ratio of 10 or more.
  • 5. A circuit breaker according to claim 1, wherein said reinforcing material is a ceramic fiber, and said ceramic fiber has a diameter of 1 to 13 μm and an aspect ratio of 10 or more.
  • 6. A switch according to claim 1, wherein said reinforcing material is ceramic fiber selected from the group consisting of aluminum silicate fiber, aluminum borate fiber, aluminum borate whisker, and alumina whisker.
  • 7. A circuit breaker according to claim 1, wherein said reinforcing material is calcium carbonate modified with a surface modifier.
  • 8. A circuit breaker according to claim 1, wherein the total content of a metal compound in the form of M2O wherein M is selected from the group consisting of Li, Na, K, Rb, Cs, and Fr in said reinforcing material is 1% or less.
  • 9. The circuit breakerof claim 1, wherein said molded article consists essentially from 45 to 80% of Nylon 6, from 15 to 50 wt % of one or more inorganic compounds capable of dehydration at 250° C. or higher, and from 5 to 40 wt % of one or more reinforcing materials.
  • 10. The circuit breaker of claim 1, wherein said circuit breaker is a multi-pole circuit breaker.
Priority Claims (1)
Number Date Country Kind
6-314938 Dec 1994 JP
Parent Case Info

This application is a continuation of application Ser. No. 08/855,614, filed on May 13, 1997, which is a division of appliction Ser. No. 08/492,523, filed on Jun. 20, 1995, now abandoned.

US Referenced Citations (27)
Number Name Date Kind
2692252 Falck Oct 1954 A
3240736 Beckwith Mar 1966 A
3786041 Talsma Jan 1974 A
3912671 Kondo et al. Oct 1975 A
4533687 Itoh et al. Aug 1985 A
4668718 Schrieber May 1987 A
4859718 Rice Aug 1989 A
4939195 Ishino et al. Jul 1990 A
4948828 Johnson et al. Aug 1990 A
4950852 Goldman et al. Aug 1990 A
4960816 Rice Oct 1990 A
4975551 Syvertson Dec 1990 A
5147918 Price Sep 1992 A
5153247 Okamura et al. Oct 1992 A
5166651 Jacobs et al. Nov 1992 A
5216063 Williams Jun 1993 A
5240753 Tabuchi et al. Aug 1993 A
5250604 Moriwaki et al Oct 1993 A
5283542 Ochiai et al. Feb 1994 A
5312941 Razvan et al. May 1994 A
5401442 Miyata Mar 1995 A
5444809 Aoki et al. Aug 1995 A
5463199 Divincenzo et al. Oct 1995 A
5494718 Adams et al. Feb 1996 A
5841088 Yamaguchi et al. Nov 1998 A
5863974 Tjahjadi et al. Jan 1999 A
5990440 Yamaguchi et al. Nov 1999 A
Foreign Referenced Citations (18)
Number Date Country
676580 Aug 1966 BE
756 251 Apr 1967 CA
356809 Oct 1961 CH
0 181 832 May 1986 EP
0 278 555 Aug 1988 EP
0 278 559 Aug 1988 EP
346825 Dec 1989 EP
0 430 350 Jun 1991 EP
2 209 803 Jul 1974 FR
1 053 270 Dec 1966 GB
53-34961 Aug 1981 JP
02055761 Aug 1988 JP
02-125943 Oct 1990 JP
5-271542 Oct 1993 JP
6-57792 Aug 1994 JP
6-234913 Aug 1994 JP
6-279673 Oct 1994 JP
WO 9528439 Oct 1995 WO
Non-Patent Literature Citations (5)
Entry
Scudamore, M.J., “Fire Performance Studies on Glass-reinforced Plastic Laminates.” Fire and Materials, vol. 18, No. 5, Sep. 1, 1994, pp. 313-325.
Simionescu, C.I. et al., “Lignin/Epoxy Composites.” Composites Science and Technology, vol. 48, Jan. 1, 1993, pp. 317-323.
Database WPI, Section Ch, Week 9116, Derwent Publications Ltd., London, GB; Class A13, AN 91-114494 XP002061234 & JP 03 056 558 A (Hitachi Chem Co Ltd), Mar. 12, 1991 (Abstract).
Patent Abstracts of Japan, vol. 015, No. 413 (C-0877), Oct. 22, 1991 & JP 03 170356 A (Hitachi Chem Co Ltd), Jul. 23, 1991 (Abstract).
Hawley's condensed chemical Dictionary, Tenth Edition, Edited by Sax & Lewis, Jr. (Van nostrand Reinhold Co., NY, NY, copyright date 1987) p. 42, 717, and 721.
Continuations (1)
Number Date Country
Parent 08/855614 May 1997 US
Child 09/550909 US