Organic electroluminescent materials and devices

Information

  • Patent Grant
  • 11637251
  • Patent Number
    11,637,251
  • Date Filed
    Tuesday, July 17, 2018
    6 years ago
  • Date Issued
    Tuesday, April 25, 2023
    a year ago
Abstract
Novel compounds comprising heteroleptic iridium complexes are provided. The compounds have a particular combination of ligands which includes a single pyridyl dibenzo-substituted ligand. The compounds may be used in organic light emitting devices, particularly as emitting dopants, to provide devices having improved efficiency, lifetime, and manufacturing.
Description
FIELD OF THE INVENTION

The present invention relates to novel organic complexes that may be advantageously used in organic light emitting devices. More particularly, the present invention relates to novel heteroleptic iridium complexes containing a pyridyl dibenzo-substituted ligand and devices containing these compounds.


BACKGROUND

Opto-electronic devices that make use of organic materials are becoming increasingly desirable for a number of reasons. Many of the materials used to make such devices are relatively inexpensive, so organic opto-electronic devices have the potential for cost advantages over inorganic devices. In addition, the inherent properties of organic materials, such as their flexibility, may make them well suited for particular applications such as fabrication on a flexible substrate. Examples of organic opto-electronic devices include organic light emitting devices (OLEDs), organic phototransistors, organic photovoltaic cells, and organic photodetectors. For OLEDs, the organic materials may have performance advantages over conventional materials. For example, the wavelength at which an organic emissive layer emits light may generally be readily tuned with appropriate dopants.


OLEDs make use of thin organic films that emit light when voltage is applied across the device. OLEDs are becoming an increasingly interesting technology for use in applications such as flat panel displays, illumination, and backlighting. Several OLED materials and configurations are described in U.S. Pat. Nos. 5,844,363, 6,303,238, and 5,707,745, which are incorporated herein by reference in their entirety.


One application for phosphorescent emissive molecules is a full color display. Industry standards for such a display call for pixels adapted to emit particular colors, referred to as “saturated” colors. In particular, these standards call for saturated red, green, and blue pixels. Color may be measured using CIE coordinates, which are well known to the art.


One example of a green emissive molecule is tris(2-phenylpyridine) iridium, denoted Ir(ppy)3, which has the structure:




embedded image


In this, and later figures herein, we depict the dative bond from nitrogen to metal (here, Ir) as a straight line.


As used herein, the term “organic” includes polymeric materials as well as small molecule organic materials that may be used to fabricate organic opto-electronic devices. “Small molecule” refers to any organic material that is not a polymer, and “small molecules” may actually be quite large. Small molecules may include repeat units in some circumstances. For example, using a long chain alkyl group as a substituent does not remove a molecule from the “small molecule” class. Small molecules may also be incorporated into polymers, for example as a pendent group on a polymer backbone or as a part of the backbone. Small molecules may also serve as the core moiety of a dendrimer, which consists of a series of chemical shells built on the core moiety. The core moiety of a dendrimer may be a fluorescent or phosphorescent small molecule emitter. A dendrimer may be a “small molecule,” and it is believed that all dendrimers currently used in the field of OLEDs are small molecules.


As used herein, “top” means furthest away from the substrate, while “bottom” means closest to the substrate. Where a first layer is described as “disposed over” a second layer, the first layer is disposed further away from substrate. There may be other layers between the first and second layer, unless it is specified that the first layer is “in contact with” the second layer. For example, a cathode may be described as “disposed over” an anode, even though there are various organic layers in between.


As used herein, “solution processible” means capable of being dissolved, dispersed, or transported in and/or deposited from a liquid medium, either in solution or suspension form.


A ligand may be referred to as “photoactive” when it is believed that the ligand directly contributes to the photoactive properties of an emissive material. A ligand may be referred to as “ancillary” when it is believed that the ligand does not contribute to the photoactive properties of an emissive material, although an ancillary ligand may alter the properties of a photoactive ligand.


As used herein, and as would be generally understood by one skilled in the art, a first “Highest Occupied Molecular Orbital” (HOMO) or “Lowest Unoccupied Molecular Orbital” (LUMO) energy level is “greater than” or “higher than” a second HOMO or LUMO energy level if the first energy level is closer to the vacuum energy level. Since ionization potentials (IP) are measured as a negative energy relative to a vacuum level, a higher HOMO energy level corresponds to an IP having a smaller absolute value (an IP that is less negative). Similarly, a higher LUMO energy level corresponds to an electron affinity (EA) having a smaller absolute value (an EA that is less negative). On a conventional energy level diagram, with the vacuum level at the top, the LUMO energy level of a material is higher than the HOMO energy level of the same material. A “higher” HOMO or LUMO energy level appears closer to the top of such a diagram than a “lower” HOMO or LUMO energy level.


As used herein, and as would be generally understood by one skilled in the art, a first work function is “greater than” or “higher than” a second work function if the first work function has a higher absolute value. Because work functions are generally measured as negative numbers relative to vacuum level, this means that a “higher” work function is more negative. On a conventional energy level diagram, with the vacuum level at the top, a “higher” work function is illustrated as further away from the vacuum level in the downward direction. Thus, the definitions of HOMO and LUMO energy levels follow a different convention than work functions.


More details on OLEDs, and the definitions described above, can be found in U.S. Pat. No. 7,279,704, which is incorporated herein by reference in its entirety.


SUMMARY OF THE INVENTION

Novel phosphorescent emissive compounds are provided. The compounds comprise heteroleptic iridium complexes having the formula:




embedded image


The compound comprises a ligand having the structure




embedded image



X is selected from the group consisting of NR, O, S, BR, and Se. R is selected from hydrogen and alkyl. Preferably, R has 4 or fewer carbon atoms. R1, R2, R3, and R4 may represent mono, di, tri, or tetra substitutions. Each of R1, R2, R3, and R4 are independently selected from the group consisting of hydrogen, alkyl, and aryl. Preferably, alkyls in the R1, R2, R3 and/or R4 positions of Formula I have four or fewer carbon atoms (e.g., methyl, ethyl, propyl, butyl, and isobutyl). Preferably, R1 and R4 are independently hydrogen or alkyl having four or fewer carbon atoms; more preferably, R1 and R4 are independently hydrogen or methyl. Preferably, R2 and R3 are independently hydrogen or alkyl having four or fewer carbon atoms; more preferably, R2 and R3 are independently hydrogen or methyl; most preferably, R2 and R3 are hydrogen.


Preferably, R1 and R4 are independently hydrogen, alkyl having four or fewer carbon atoms or aryl with 6 or fewer atoms in the ring; more preferably, R1 and R4 are independently hydrogen, methyl or phenyl. Preferably, R2 and R3 are independently hydrogen, alkyl having four or fewer carbon atoms or aryl with 6 or fewer atoms in the ring; more preferably, R2 and R3 are independently hydrogen, methyl or phenyl; most preferably, R2 and R3 are hydrogen.


In one aspect, compounds are provided wherein R1, R2, R3, and R4 are independently selected from the group consisting of hydrogen and alkyl having four or fewer carbon atoms. In another aspect, compounds are provided wherein R1, R2, R3, and R4 are independently selected from the group consisting of hydrogen and methyl. In yet another aspect, compounds are provided wherein R1, R2, R3, and R4 are hydrogen.


In another aspect, compounds are provided wherein R1, R2, R3, and R4 are independently selected from the group consisting of hydrogen, alkyl having four or fewer carbon atoms and aryl with 6 or fewer atoms in the ring. In another aspect, compounds are provided wherein R1, R2, R3, and R4 are independently selected from the group consisting of hydrogen, methyl and phenyl. In yet another aspect, compounds are provided wherein R1, R2, R3, and R4 are hydrogen.


Particular heteroleptic iridium complexes are also provided. In one aspect, heteroleptic iridium complexes are provided having the formula:




embedded image


In another aspect, heteroleptic iridium complexes are provided having the formula:




embedded image


In yet another aspect, heteroleptic iridium complexes are provided having the formula:




embedded image


Specific examples of heteroleptic iridium complex are provided including Compounds 1-36. In particular, heteroleptic compounds are provided wherein X is O (i.e., pyridyl dibenzofuran), for example, Compounds 1-12. Additionally, heteroleptic compounds are provided wherein X is S (i.e., pyridyl dibenzothiophene), for example, Compounds 13-24. Moreover, heteroleptic compounds are provided wherein X is NR (i.e., pyridyl carbazole), for example, Compounds 25-36.


Additional specific examples of heteroleptic iridium complexes are provided, including Compounds 37-108. In particular, heteroleptic compounds are provided wherein X is O, for example, Compounds 37-60. Further, heteroleptic compounds are provided wherein X is S, for example, Compounds 61-84. Moreover, heteroleptic compounds are provided wherein X is NR, for example, Compounds 85-108.


Additionally, an organic light emitting device is also provided. The device has an anode, a cathode, and an organic layer disposed between the anode and the cathode, where the organic layer comprises a compound having FORMULA I. In particular, the organic layer of the device may comprise a compound selected from Compounds 1-36. The organic layer may further comprise a host. Preferably, the host contains a triphenylene moiety and a dibenzothiophene moiety. More preferably, the host has the formula:




embedded image


R′1, R′2, R′3, R′4, R′5, and R′6 may represent mono, di, tri, or tetra substitutions. R′1, R′2, R′3, R′4, R′5, and R′6 are independently selected from the group consisting of hydrogen, alkyl, and aryl.


The organic layer of the device may comprise a compound selected from the group consisting of Compounds 1-108. In particular, the organic layer of the device may also comprise a compound selected from Compounds 37-108.


A consumer product comprising a device is also provided. The device contains an anode, a cathode, and an organic layer disposed between the anode and the cathode, where the organic layer further comprises a compound having FORMULA I.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 shows an organic light emitting device.



FIG. 2 shows an inverted organic light emitting device that does not have a separate electron transport layer.



FIG. 3 shows a heteroleptic iridium complex.





DETAILED DESCRIPTION

Generally, an OLED comprises at least one organic layer disposed between and electrically connected to an anode and a cathode. When a current is applied, the anode injects holes and the cathode injects electrons into the organic layer(s). The injected holes and electrons each migrate toward the oppositely charged electrode. When an electron and hole localize on the same molecule, an “exciton,” which is a localized electron-hole pair having an excited energy state, is formed. Light is emitted when the exciton relaxes via a photoemissive mechanism. In some cases, the exciton may be localized on an excimer or an exciplex. Non-radiative mechanisms, such as thermal relaxation, may also occur, but are generally considered undesirable.


The initial OLEDs used emissive molecules that emitted light from their singlet states (“fluorescence”) as disclosed, for example, in U.S. Pat. No. 4,769,292, which is incorporated by reference in its entirety. Fluorescent emission generally occurs in a time frame of less than 10 nanoseconds.


More recently, OLEDs having emissive materials that emit light from triplet states (“phosphorescence”) have been demonstrated. Baldo et al., “Highly Efficient Phosphorescent Emission from Organic Electroluminescent Devices,” Nature, vol. 395, 151-154, 1998; (“Baldo-I”) and Baldo et al., “Very high-efficiency green organic light-emitting devices based on electrophosphorescence,” Appl. Phys. Lett., vol. 75, No. 3, 4-6 (1999) (“Baldo-II”), which are incorporated by reference in their entireties. Phosphorescence is described in more detail in U.S. Pat. No. 7,279,704 at cols. 5-6, which are incorporated by reference.



FIG. 1 shows an organic light emitting device 100. The figures are not necessarily drawn to scale. Device 100 may include a substrate 110, an anode 115, a hole injection layer 120, a hole transport layer 125, an electron blocking layer 130, an emissive layer 135, a hole blocking layer 140, an electron transport layer 145, an electron injection layer 150, a protective layer 155, and a cathode 160. Cathode 160 is a compound cathode having a first conductive layer 162 and a second conductive layer 164. Device 100 may be fabricated by depositing the layers described, in order. The properties and functions of these various layers, as well as example materials, are described in more detail in U.S. Pat. No. 7,279,704 at cols. 6-10, which are incorporated by reference.


More examples for each of these layers are available. For example, a flexible and transparent substrate-anode combination is disclosed in U.S. Pat. No. 5,844,363, which is incorporated by reference in its entirety. An example of a p-doped hole transport layer is m-MTDATA doped with F.sub.4-TCNQ at a molar ratio of 50:1, as disclosed in U.S. Patent Application Publication No. 2003/0230980, which is incorporated by reference in its entirety. Examples of emissive and host materials are disclosed in U.S. Pat. No. 6,303,238 to Thompson et al., which is incorporated by reference in its entirety. An example of an n-doped electron transport layer is BPhen doped with Li at a molar ratio of 1:1, as disclosed in U.S. Patent Application Publication No. 2003/0230980, which is incorporated by reference in its entirety. U.S. Pat. Nos. 5,703,436 and 5,707,745, which are incorporated by reference in their entireties, disclose examples of cathodes including compound cathodes having a thin layer of metal such as Mg:Ag with an overlying transparent, electrically-conductive, sputter-deposited ITO layer. The theory and use of blocking layers is described in more detail in U.S. Pat. No. 6,097,147 and U.S. Patent Application Publication No. 2003/0230980, which are incorporated by reference in their entireties. Examples of injection layers are provided in U.S. Patent Application Publication No. 2004/0174116, which is incorporated by reference in its entirety. A description of protective layers may be found in U.S. Patent Application Publication No. 2004/0174116, which is incorporated by reference in its entirety.



FIG. 2 shows an inverted OLED 200. The device includes a substrate 210, a cathode 215, an emissive layer 220, a hole transport layer 225, and an anode 230. Device 200 may be fabricated by depositing the layers described, in order. Because the most common OLED configuration has a cathode disposed over the anode, and device 200 has cathode 215 disposed under anode 230, device 200 may be referred to as an “inverted” OLED. Materials similar to those described with respect to device 100 may be used in the corresponding layers of device 200. FIG. 2 provides one example of how some layers may be omitted from the structure of device 100.


The simple layered structure illustrated in FIGS. 1 and 2 is provided by way of non-limiting example, and it is understood that embodiments of the invention may be used in connection with a wide variety of other structures. The specific materials and structures described are exemplary in nature, and other materials and structures may be used. Functional OLEDs may be achieved by combining the various layers described in different ways, or layers may be omitted entirely, based on design, performance, and cost factors. Other layers not specifically described may also be included. Materials other than those specifically described may be used. Although many of the examples provided herein describe various layers as comprising a single material, it is understood that combinations of materials, such as a mixture of host and dopant, or more generally a mixture, may be used. Also, the layers may have various sublayers. The names given to the various layers herein are not intended to be strictly limiting. For example, in device 200, hole transport layer 225 transports holes and injects holes into emissive layer 220, and may be described as a hole transport layer or a hole injection layer. In one embodiment, an OLED may be described as having an “organic layer” disposed between a cathode and an anode. This organic layer may comprise a single layer, or may further comprise multiple layers of different organic materials as described, for example, with respect to FIGS. 1 and 2.


Structures and materials not specifically described may also be used, such as OLEDs comprised of polymeric materials (PLEDs) such as disclosed in U.S. Pat. No. 5,247,190 to Friend et al., which is incorporated by reference in its entirety. By way of further example, OLEDs having a single organic layer may be used. OLEDs may be stacked, for example as described in U.S. Pat. No. 5,707,745 to Forrest et al, which is incorporated by reference in its entirety. The OLED structure may deviate from the simple layered structure illustrated in FIGS. 1 and 2. For example, the substrate may include an angled reflective surface to improve out-coupling, such as a mesa structure as described in U.S. Pat. No. 6,091,195 to Forrest et al., and/or a pit structure as described in U.S. Pat. No. 5,834,893 to Bulovic et al., which are incorporated by reference in their entireties.


Unless otherwise specified, any of the layers of the various embodiments may be deposited by any suitable method. For the organic layers, preferred methods include thermal evaporation, ink-jet, such as described in U.S. Pat. Nos. 6,013,982 and 6,087,196, which are incorporated by reference in their entireties, organic vapor phase deposition (OVPD), such as described in U.S. Pat. No. 6,337,102 to Forrest et al., which is incorporated by reference in its entirety, and deposition by organic vapor jet printing (OVJP), such as described in U.S. Pat. No. 7,431,968, which is incorporated by reference in its entirety. Other suitable deposition methods include spin coating and other solution based processes. Solution based processes are preferably carried out in nitrogen or an inert atmosphere. For the other layers, preferred methods include thermal evaporation. Preferred patterning methods include deposition through a mask, cold welding such as described in U.S. Pat. Nos. 6,294,398 and 6,468,819, which are incorporated by reference in their entireties, and patterning associated with some of the deposition methods such as ink-jet and OVJD. Other methods may also be used. The materials to be deposited may be modified to make them compatible with a particular deposition method. For example, substituents such as alkyl and aryl groups, branched or unbranched, and preferably containing at least 3 carbons, may be used in small molecules to enhance their ability to undergo solution processing. Substituents having 20 carbons or more may be used, and 3-20 carbons is a preferred range. Materials with asymmetric structures may have better solution processibility than those having symmetric structures, because asymmetric materials may have a lower tendency to recrystallize. Dendrimer substituents may be used to enhance the ability of small molecules to undergo solution processing.


Devices fabricated in accordance with embodiments of the invention may be incorporated into a wide variety of consumer products, including flat panel displays, computer monitors, televisions, billboards, lights for interior or exterior illumination and/or signaling, heads up displays, fully transparent displays, flexible displays, laser printers, telephones, cell phones, personal digital assistants (PDAs), laptop computers, digital cameras, camcorders, viewfinders, micro-displays, vehicles, a large area wall, theater or stadium screen, or a sign. Various control mechanisms may be used to control devices fabricated in accordance with the present invention, including passive matrix and active matrix. Many of the devices are intended for use in a temperature range comfortable to humans, such as 18 degrees C. to 30 degrees C., and more preferably at room temperature (20-25 degrees C.).


The materials and structures described herein may have applications in devices other than OLEDs. For example, other optoelectronic devices such as organic solar cells and organic photodetectors may employ the materials and structures. More generally, organic devices, such as organic transistors, may employ the materials and structures.


The terms halo, halogen, alkyl, cycloalkyl, alkenyl, alkynyl, arylkyl, heterocyclic group, aryl, aromatic group, and heteroaryl are known to the art, and are defined in U.S. Pat. No. 7,279,704 at cols. 31-32, which are incorporated herein by reference.


Novel compounds are provided, the compounds comprising a heteroleptic iridium complex (illustrated in FIG. 3). In particular, the complex has two phenylpyridine ligands and one ligand having the structure




embedded image



The ligand having the structure FORMULA II consists of a pyridine joined to a dibenzofuran, dibenzothiophene, carbazole, dibenzoborole, or dibenzoselenophene (herein also referred to as “pyridyl dibenzo-substituted”). These compounds may be advantageously used in organic light emitting devices as an emitting dopant in an emissive layer.


Iridium complexes containing two or three pyridyl dibenzofuran, dibenzothiophene, carbazole, and fluorene ligands have been reported. By replacing the phenyl group in tris(2-phenylpyridine)iridium with dibenzofuran, dibenzothiophene, carbazole, and fluorene groups, the HOMO-LUMO energy levels, photophysical properties, and electronic properties of the resulting complex can be significantly affected. A variety of emission colors, ranging from green to red, have been achieved by using complexes with different combinations of pyridyl dibenzo-substituted ligands (i.e., bis and tris complexes). However, the existing complexes may have practical limitations. For example, iridium complexes having two or three of these types of ligands (e.g., pyridyl dibenzofuran, dibenzothiophene, or carbazole) have high molecular weights, which often results in a high sublimation temperature. In some instances, these complexes can become non-sublimable due to the increased molecular weight. For example, tris(2-(dibenzo[b,d]furan-4-yl)pyridine)Iridium(III) decomposed during sublimation attempts. Additionally, known compounds comprising a pyridyl fluorene ligand may have reduced stability. Fluorene groups (e.g., C═O and CRR′) disrupt conjugation within the ligand structure resulting in a diminished ability to stabilize electrons. Therefore, compounds with the beneficial properties of pyridyl dibenzo-substituted ligands (e.g., dibenzofuran, dibenzothiophene, carbazole, dibenzoborole, and dibenzoselenophene) and a relatively low sublimation temperature are desirable.


Additionally, iridium complexes having two or three of the ligands having FORMULA II have high molecular weights and stronger intermolecular interactions, which often results in a high sublimation temperature. In some instances, these complexes can become non-sublimable due to the increased molecular weight and strong intermolecular interactions.


Novel heteroleptic iridium complexes are provided herein. The complexes contain pyridyl dibenzo-substituted ligands having the structure FORMULA II. In particular, the novel heteroleptic complexes include a single pyridyl dibenzo-substituted ligand wherein the ligand contains O, S, N, Se, or B (i.e. the ligand is pyridyl dibenzofuran, pyridyl dibenzothiophene, pyridyl carbazole, pyridyl dibenzoselenophene, or pyridyl dibenzoborole) and two phenylpyridine ligands. As a result of the particular combination of ligands in the heteroleptic compounds disclosed herein, these compounds can provide both improved photochemical and electrical properties as well as improved device manufacturing. In particular, by containing only one of the dibenzo-substituted pyridine ligands having FORMULA II, the complexes provided herein will likely have lower sublimation temperatures (correlated with reduced molecular weight and/or weaker intermolecular interactions). Additionally, these compounds maintain all of the benefits associated with the pyridyl dibenzo-substituted ligand, such as improved stability, efficiency, and narrow line width. Therefore, these compounds may be used to provide improved organic light emitting devices and improved commercial products comprising such devices. In particular, these compounds may be particularly useful in red and green phosphorescent organic light emitting devices (PHOLEDs).


As mentioned previously, bis or tris iridium complexes containing ligands having FORMULA II may be limited in practical use due to the high sublimation temperature of the complex. The invention compounds, however, have a lower sublimation temperature which can improve device manufacturing. Table 1 provides the sublimation temperature for several compounds provided herein and the corresponding bis or tris complex. For example, Compound 1 has a sublimation temperature of 243° C. while the corresponding tris complex fails to sublime. Additionally, other tris complexes comprising three pyridyl dibenzo-substituted ligands (i.e., tris complex comprising pyridyl dibenzothiophene) fail to sublime. Therefore, the compounds provided herein may allow for improved device manufacturing as compared to previously reported bis and tris compounds.












TABLE 1






Sublimation

Sublimation



temperature

temperature


Compounds
(° C.)
Compounds
(° C.)









embedded image

  Compound 1

243


embedded image

  Compound 4

218







embedded image


Fail to sublime


embedded image

  Compound 29

230







embedded image


Fail to sublime


embedded image


290







embedded image

  Compound 2

232


embedded image

  Compound 10

240







embedded image

  Compound 7

256


embedded image

  Compound 37

224









Generally, the dibenzo-substituted pyridine ligand would be expected to have lower triplet energy than the phenylpyridine ligand, and consequently the dibenzo-substituted pyridine ligand would be expected to control the emission properties of the compound. Therefore, modifications to the dibenzo-substituted pyridine ligand may be used to tune the emission properties of the compound. The compounds disclosed herein contain a dibenzo-substituted pyridine ligand containing a heteroatom (e.g., O, S, or NR) and optionally further substituted by chemical groups at the R1 and R4 positions. Thus, the emission properties of the compounds may be tuned by selection of a particular heteroatom and/or varying the substituents present on the dibenzo-substituted pyridine ligand.


The compounds described herein comprise heteroleptic iridium complexes having the formula:




embedded image


Features of the compounds having FORMULA I include comprising one ligand having the structure




embedded image



and two phenylpyridine ligands that may have further substitution, wherein all ligands are coordinated to Ir.


X is selected from the group consisting of NR, O, S, BR, and Se. R is selected from hydrogen and alkyl. R1, R2, R3 and R4 may represent mono, di, tri, or tetra substitutions; and each of R1, R2, R3 and R4 are independently selected from the group consisting of hydrogen, alkyl having four or fewer carbon atoms, and aryl.


In another aspect, R1, R2, R3 and R4 are independently selected from the group consisting of hydrogen, alkyl having four or fewer carbon atoms, and aryl with 6 or fewer atoms in the ring.


The term “aryl” as used herein refers to an aryl, comprising either carbon atoms or heteroatoms, that is not fused to the phenyl ring of the phenylpyridine ligand (i.e., aryl is a non-fused aryl). The term “aryl” as used herein contemplates single-ring groups and polycyclic ring systems. The polycyclic rings may have two or more rings in which two carbons are common by two adjoining rings (the rings are “fused”) wherein at least one of the rings is aromatic, e.g., the other rings can be cycloalkyls, cycloalkenyls, aryl, heterocycles and/or heteroaryls. Additionally, the aryl group may be optionally substituted with one or more substituents selected from halo, CN, CO2R, C(O)R, NR2, cyclic-amino, NO2, and OR. “Aryl” also encompasses a heteroaryl, such as single-ring hetero-aromatic groups that may include from one to three heteroatoms, for example, pyrrole, furan, thiophene, imidazole, oxazole, thiazole, triazole, pyrazole, pyridine, pyrazine and pyrimidine, and the like. This includes polycyclic hetero-aromatic systems having two or more rings in which two atoms are common to two adjoining rings (the rings are “fused”) wherein at least one of the rings is a heteroaryl, e.g., the other rings can be cycloalkyls, cycloalkenyls, aryl, heterocycles and/or heteroaryls. Additionally, the heteroaryl group may be optionally substituted with one or more substituents selected from halo, CN, CO2R, C(O)R, NR2, cyclic-amino, NO2, and OR. For example, R1, R2, R3 and/or R4 may be an aryl, including an heteroaryl, that is not used to the phenyl ring of the phenylpyridine.


The term “alkyl” as used herein contemplates both straight and branched chain alkyl radicals. Examples include methyl, ethyl, propyl, isopropyl, butyl, isobutyl, tert-butyl, and the like. Additionally, the alkyl group may be optionally substituted with one or more substituents selected from halo, CN, CO2R, C(O)R, NR2, cyclic-amino, NO2, and OR, wherein each R is independently selected from H, alkyl, alkenyl, alkynyl, aralkyl, aryl and heteroaryl. Preferably, in order to make the compounds sublimable and/or to reduce sublimation temperature, alkyls in the R1, R2, R3 and/or R4 positions of Formula I have four or fewer carbon atoms (e.g., methyl, ethyl, propyl, butyl, and isobutyl).


In general, the compounds provided herein have relatively low sublimation temperatures compared to previously reported compounds. Thus, these novel compounds provide improved device fabrication among other beneficial properties. Moreover, it is believed that heteroleptic compounds having FORMULA I wherein R1, R2, R3 and R4 are selected from smaller substituents may be particularly beneficial. A smaller substituents includes, for example, hydrogen or alkyl. In particular, it is believed that compounds wherein the substituents R1, R2, R3 and/or R4 are selected from smaller substituents may have even lower sublimation temperatures thereby further improving manufacturing while maintaining the desirable properties (e.g., improved stability and lifetimes) provided by the ligand having the structure FORMULA II.


Generally, the compounds provided having FORMULA I have substituents such that R1, R2, R3 and R4 are independently selected from the group consisting of hydrogen, alkyl, and aryl. Preferably, any alkyl has four or fewer carbon atoms. To minimize molecular weight and thereby lower the sublimation temperature, compounds having smaller substituents on the ligand having the structure FORMULA II are preferred. Preferably, R1 and R4 are independently selected from the group consisting of hydrogen and alkyl having four or fewer carbon atoms; more preferably, R1 and R4 are independently selected from the group consisting of hydrogen and methyl.


For similar reasons, compounds are preferred having smaller substituents present on the phenylpyridine ligand. Additionally, the phenylpyridine ligand is believed to contribute less to the emission of the complex. Moreover, the complex contains two of the phenylpyridine ligand, thus substituents present on the phenylpyridine ligand contribute more to the overall molecular weight of the complex. For at least these reasons, preferably R2 and R3 are independently selected from hydrogen and alkyl having four or fewer carbon atoms; more preferably, R2 and R3 are independently selected from hydrogen and methyl; most preferably, R2 and R3 are hydrogen.


Compounds having alkyl and aryl substitutions that can decrease intermolecular interactions are also preferred.


In another aspect, preferably R2 and R3 are independently selected from hydrogen, alkyl having four or fewer carbon atoms and aryl with 6 or fewer atoms in the ring; more preferably, R2 and R3 are independently selected from hydrogen, methyl and phenyl; most preferably, R2 and R3 are hydrogen.


Compounds are preferred wherein the overall molecular weight of the complex is low to reduce the sublimation temperature and improve device manufacturing. Toward this end, compounds wherein all substituents are relatively small are preferred. In one aspect, preferably R1, R2, R3 and R4 are independently selected from the group consisting of hydrogen and alkyl having four or fewer carbon atoms; more preferably, R1, R2, R3 and R4 are independently selected from the group consisting of hydrogen and methyl; most preferably, R1, R2, R3 and R4 are hydrogen.


In another aspect, preferably R1, R2, R3 and R4 are independently selected from the group consisting of hydrogen, alkyl having four or fewer carbon atoms and aryl with 6 or fewer atoms in the ring; more preferably, R1, R2, R3 and R4 are independently selected from the group consisting of hydrogen, methyl and phenyl; most preferably, R1, R2, R3 and R4 are hydrogen.


As discussed above, X can also be BR. Preferably, R has 4 or fewer carbon atoms. For similar reasons as those previously discussed, smaller alkyl groups (i.e., alkyls having 4 or fewer carbon atoms) on the carbazole portion of the substituted ligand will likely lower the sublimation temperature of the complex and thus improve device manufacturing.


Particular heteroleptic iridium complexes are also provided. In one aspect, heteroleptic iridium complexes are provided having the formula:




embedded image


In another aspect, heteroleptic iridium comnlexec are provided having the formula:




embedded image


In yet another aspect, heteroleptic iridium complexes are provided having the formula:




embedded image


Specific examples of heteroleptic iridium complexes are provided, and include compounds selected from the group consisting of:




embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


Additional specific examples of heteroleptic iridium complexes are provided, and include compounds selected from the group consisting of:




embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


The heteroleptic iridium compound may be selected from the group consisting of Compound 1-Compound 108.


Compounds having FORMULA I in which X is selected from O, S and NR may be particularly advantageous. Without being bound by theory, it is thought that the aromaticity of the ligands comprising a dibenzofuran, dibenzothiophene or carbazole moiety (i.e., X is O, S, or NR) provides electron delocalization which may result in improved compound stability and improved devices. Moreover, it is believed that compounds wherein X is O may be more preferable than compounds wherein X is S or NR. In many cases, dibenzofuran containing compounds and devices comprising such compounds demonstrate especially desirable properties.


In one aspect, compounds are provided wherein X is O. Exemplary compounds where X is O include, but are not limited to, Compounds 1-12. Compounds wherein X is O may be especially preferred at least because these compounds may generate devices having desirable properties. For example, these compounds may provide devices having improved efficiency and a long lifetime. Additionally, the reduced sublimation temperature of these compounds can also result in improved manufacturing of such desirable devices.


Additional exemplary compounds where X is O are provided and include, without limitation, Compounds 37-60. Compounds 1-12 and 37-60 may provide devices having improved efficiency, lifetime, and manufacturing.


In another aspect, compounds are provided wherein X is S. Exemplary compounds where X is S include, but are not limited to, Compounds 13-24. These compounds, containing a pyridyl dibenzofuran ligand, may also be used in devices demonstrating good properties. For example, compounds wherein X is S may provide devices having improved stability and manufacturing.


Additional exemplary compounds where X is S are provided and include, without limitation, Compounds 61-84. Compounds 13-24 and 61-84 may provide devices having improved stability and manufacturing.


In yet another aspect, compounds are provided wherein X is NR. Exemplary compounds wherein X is NR include, but are not limited to, Compounds 25-36. These compounds containing a pyridyl carbazole ligand may also be used to provide devices having good properties, such as improved efficiency.


Additional exemplary compounds where X is NR are provided and include, without limitation, Compounds 85-108. Compounds 26-36 and 85-108 may provide devices having improved efficiency.


Additionally, an organic light emitting device is also provided. The device comprises an anode, a cathode, and an organic layer disposed between the anode and the cathode, wherein the organic layer comprises a compound having FORMULA I. X is selected from the group consisting of NR, O, S, BR, and Se. R is selected from hydrogen and alkyl. Preferably, R has 4 or fewer carbon atoms. R1, R2, R3 and R4 may represent mono, di, tri, or tetra substitutions. Each of R1, R2, R3 and R4 are independently selected from the group consisting of hydrogen, alkyl having four or fewer carbon atoms, and aryl. Preferably, R2 and R3 are independently selected from the group consisting of hydrogen and alkyl having four or fewer carbon atoms. Selections for the heteroatoms and substituents described as preferred for the compound of FORMULA I are also preferred for use in a device that includes a compound having FORMULA I. These selections include those described for X, R, R1, R2 and R3 and R4.


In another aspect, each of R1, R2, R3 and R4 are independently selected from the group consisting of hydrogen, alkyl having four or fewer carbon atoms, and aryl with 6 or fewer atoms in the ring. Preferably, R2 and R3 are independently selected from the group consisting of hydrogen, alkyl having four or fewer carbon atoms and aryl with 6 or fewer atoms in the ring.


In particular, devices are provided wherein the compound is selected from the group consisting of Compounds 1-36.


In addition, devices are provided which contain a compound selected from the group consisting of Compounds 37-108. Moreover, the devices provided may contain a compound selected from the group consisting of Compounds 1-108.


In one aspect, the organic layer is an emissive layer and the compound having FORMULA I is an emitting dopant. The organic layer may further comprise a host. Preferably, the host comprises a triphenylene moiety and a dibenzothiophene moiety. More preferably, the host has the formula:




embedded image



R′1, R′2, R′3, R′4, R′5, and R′6 may represent mono, di, tri, or tetra substitutions. Each of R′1, R′2, R′3, R′4, R′5, and R′6 are independently selected from the group consisting of hydrogen, alkyl, and aryl.


As discussed above, the heteroleptic compounds provided herein may be advantageously used in organic light emitting devices to provide devices having desirable properties such as improved lifetime, stability and manufacturing.


A consumer product comprising a device is also provided. The device further comprises an anode, a cathode, and an organic layer. The organic layer further comprises a heteroleptic iridium complex having FORMULA I.


The materials described herein as useful for a particular layer in an organic light emitting device may be used in combination with a wide variety of other materials present in the device. For example, emissive dopants disclosed herein may be used in conjunction with a wide variety of hosts, transport layers, blocking layers, injection layers, electrodes and other layers that may be present. The materials described or referred to below are non-limiting examples of materials that may be useful in combination with the compounds disclosed herein, and one of skill in the art can readily consult the literature to identify other materials that may be useful in combination.


In addition to and/or in combination with the materials disclosed herein, many hole injection materials, hole transporting materials, host materials, dopant materials, exiton/hole blocking layer materials, electron transporting and electron injecting materials may be used in an OLED. Non-limiting examples of the materials that may be used in an OLED in combination with materials disclosed herein are listed in Table 2 below. Table 2 lists non-limiting classes of materials, non-limiting examples of compounds for each class, and references that disclose the materials.











TABLE 2





MATERIAL
EXAMPLES OF MATERIAL
PUBLICATIONS
















Hole injection materials










Phthalocyanine and porphyrin compounds


embedded image


Appl. Phys. Lett. 69, 2160 (1996)





Starburst triarylamines


embedded image


J. Lumin. 72-74, 985 (1997)





CFx Fluorohydrocarbon polymer


embedded image


Appl. Phys. Lett. 78, 673 (2001)





Conducting polymers (e.g., PEDOT:PSS, polyaniline, polythiophene)


embedded image


Synth. Met. 87, 171 (1997) WO2007002683





Phosphonic acid and sliane SAMs


embedded image


US20030162053





Triarylamine or polythiophene polymers with conductivity dopants


embedded image


EA01725079A1








embedded image











embedded image








Arylamines complexed with metal oxides such as molybdenum and tungsten oxides


embedded image


SID Symposium Digest, 37, 923 (2006) WO2009018009





p-type semiconducting organic complexes


embedded image


US20020158242





Metal organometallic complexes


embedded image


US20060240279





Cross-linkable compounds


embedded image


US20080220265











Hole transporting



materials










Triarylamines (e.g., TPD, α-NPD)


embedded image


Appl. Phys. Lett. 51, 913 (1987)








embedded image


U.S. Pat. No. 5,061,569








embedded image


EP650955








embedded image


J. Mater. Chem. 3, 319 (1993)








embedded image


Appl. Phys. Lett. 90, 183503 (2007)








embedded image


Appl. Phys. Lett. 90, 183503 (2007)





Triarylamine on spirofluorene core


embedded image


Synth. Met. 91, 209 (1997)





Arylamine carbazole compounds


embedded image


Adv. Mater. 6, 677 (1994), US20080124572





Triarylamine with (di)benzothiophene/ (di)benzofuran


embedded image


US20070278938, US20080106190





Indolocarbazoles


embedded image


Synth. Met. 111, 421 (2000)





Isoindole compounds


embedded image


Chem. Mater. 15, 3148 (2003)





Metal carbene complexes


embedded image


US20080018221





Phosphorescent OLED




host materials




Red hosts




Arylcarbazoles


embedded image


Appl. Phys. Lett. 78, 1622 (2001)





Metal 8-hydroxyquinolates (e.g., Alq3, BAlq)


embedded image


Nature 395, 151 (1998)








embedded image


US20060202194








embedded image


WO2005014551








embedded image


WO2006072002





Metal phenoxybenzothiazole compounds


embedded image


Appl. Phys. Lett. 90, 123509 (2007)





Conjugated oligomers and polymers (e.g., polyfluorene)


embedded image


Org. Electron. 1, 15 (2000)





Aromatic fused rings


embedded image


WO2009066779, WO2009066778, WO2009063833, US20090045731, US20090045730, WO2009008311, US20090008605, US20090009065





Zinc complexes


embedded image


WO2009062578











Green hosts










Arylcarbazoles


embedded image


Appl. Phys. Lett. 78, 1622 (2001)








embedded image


US20030175553








embedded image


WO2001039234





Aryltriphenylene compounds


embedded image


US20060280965








embedded image


US20060280965








embedded image


WO2009021126





Donor acceptor type molecules


embedded image


WO2008056746





Aza-carbazole/DBT/DBF


embedded image


JP2008074939





Polymers (e.g., PVK)


embedded image


Appl. Phys. Lett. 77, 2280 (2000)





Spirofluorene compounds


embedded image


WO2004093207





Metal phenoxybenzooxazole compounds


embedded image


WO2005089025








embedded image


WO2006132173








embedded image


JP200511610





Spirofluorene-carbazole compounds


embedded image


JP2007254297








embedded image


JP2007254297





Indolocarbazoles


embedded image


WO2007063796








embedded image


WO2007063754





5-member ring electron deficient heterocycles (e.g., triazole, oxadiazole)


embedded image


J. Appl. Phys. 90, 5048 (2001)








embedded image


WO2004107822





Tetraphenylene complexes


embedded image


US20050112407





Metal phenoxypyridine compounds


embedded image


WO2005030900





Metal coordination complexes (e.g., Zn, Al with N{circumflex over ( )}N ligands)


embedded image


US20040137268, US20040137267











Blue hosts










Arylcarbazoles


embedded image


Appl. Phys. Lett, 82, 2422 (2003)








embedded image


US20070190359





Dibenzothiophene/ Dibenzofuran-carbazole compounds


embedded image


WO2006114966, US20090167162








embedded image


US20090167162








embedded image


WO2009086028








embedded image


US20090030202, US20090017330





Silicon aryl compounds


embedded image


US20050238919








embedded image


WO2009003898





Silicon/Germanium aryl compounds


embedded image


EP2034538A





Aryl benzoyl ester


embedded image


WO2006100298





High triplet metal organometallic complex


embedded image


U.S. Pat. No. 7,154,114











Phosphorescent dopants



Red dopants










Heavy metal porphyrins (e.g., PtOEP)


embedded image


Nature 395, 151 (1998)





Iridium(III) organometallic complexes


embedded image


Appl. Phys. Lett. 78, 1622 (2001)








embedded image


US2006835469








embedded image


US2006835469








embedded image


US20060202194








embedded image


US20060202194








embedded image


US20070087321








embedded image


US20070087321








embedded image


Adv. Mater. 19, 739 (2007)








embedded image


WO2009100991








embedded image


WO2008101842





Platinum(II) organometallic complexes


embedded image


WO2003040257





Osminum(III) complexes


embedded image


Chem. Mater. 17, 3532 (2005)





Ruthenium(II) complexes


embedded image


Adv. Mater. 17, 1059 (2005)





Rhenium (I), (II), and (III) complexes


embedded image


US20050244673











Green dopants










Iridium(III) organometallic complexes


embedded image

  and its derivatives

Inorg. Chem. 40, 1704 (2001)








embedded image


US20020034656








embedded image


U.S. Pat. No. 7,332,232








embedded image


US20090108737








embedded image


US20090039776








embedded image


U.S. Pat. No. 6,921,915








embedded image


U.S. Pat. No. 6,687,266








embedded image


Chem. Mater. 16, 2480 (2004)








embedded image


US20070190359








embedded image


US 20060008670 JP2007123392








embedded image


Adv. Mater. 16, 2003 (2004)








embedded image


Angew. Chem. Int. Ed. 2006, 45, 7800








embedded image


WO2009050290








embedded image


US20090165846








embedded image


US20080015355





Monomer for polymeric metal organometallic compounds


embedded image


U.S. Pat. No. 7,250,226, U.S. Pat. No. 7,396,598





Pt(II) organometallic complexes, including polydentated ligands


embedded image


Appl. Phys. Lett. 86, 153505 (2005)








embedded image


Appl. Phys. Lett. 86, 153505 (2005)








embedded image


Chem. Lett. 34, 592 (2005)








embedded image


WO2002015645








embedded image


US20060263635





Cu complexes


embedded image


WO2009000673





Gold complexes


embedded image


Chem. Commun. 2906 (2005)





Rhenium(III) complexes


embedded image


Inorg. Chem. 42, 1248 (2003)





Deuterated organometallic complexes


embedded image


US20030138657





Organometallic complexes with two or more metal centers


embedded image


US20030152802








embedded image


U.S. Pat. No. 7,090,928











Blue dopants










Iridium(III) organometallic complexes


embedded image


WO2002002714








embedded image


WO2006009024








embedded image


US20060251923








embedded image


U.S. Pat. No. 7,393,599, WO2006056418, US20050260441, WO2005019373








embedded image


U.S. Pat. No. 7,534,505








embedded image


U.S. Pat. No. 7,445,855








embedded image


US20070190359, US20080297033








embedded image


U.S. Pat. No. 7,338,722








embedded image


US20020134984








embedded image


Angew. Chem. Int. Ed. 47, 1 (2008)








embedded image


Chem. Mater. 18, 5119 (2006)








embedded image


Inorg. Chem. 46, 4308 (2007)








embedded image


WO2005123873








embedded image


WO2005123873








embedded image


WO2007004380








embedded image


WO2006082742





Osmium(II) complexes


embedded image


U.S. Pat. No. 7,279,704








embedded image


Organometallics 23, 3745 (2004)





Gold complexes


embedded image


Appl. Phys. Lett. 74, 1361 (1999)





Platinum(II) complexes


embedded image


WO2006098120, WO2006103874





Exciton/hole blocking




layer materials




Bathocuproine compounds (e.g., BCP, BPhen)


embedded image


Appl. Phys. Lett. 75, 4 (1999)








embedded image


Appl. Phys. Lett. 79, 449 (2001)





Metal 8-hydroxyquinolates (e.g., BAlq)


embedded image


Appl. Phys. Lett. 81, 162 (2002)





5-member ring electron deficient heterocycles such as triazole, oxadiazole, imidazole, benzoimidazole


embedded image


Appl. Phys. Lett. 81, 162 (2002)





Triphenylene compounds


embedded image


US20050025993





Fluorinated aromatic compounds


embedded image


Appl. Phys. Lett. 79, 156 (2001)





Phenothiazine-S-oxide


embedded image


WO2008132085





Electron transporting




materials




Anthracene- benzoimidazole compounds


embedded image


WO2003060956








embedded image


US20090179554





Aza triphenylene derivatives


embedded image


US20090115316





Anthracene-benzothiazole compounds


embedded image


Appl. Phys. Lett. 89, 063504 (2006)





Metal 8-hydroxyquinolates (e.g., Alq3, Zrq4)


embedded image


Appl. Phys. Lett. 51, 913 (1987) U.S. Pat. No. 7,230,107





Metal hydroxybenzoquinolates


embedded image


Chem. Lett. 5, 905 (1993)





Bathocuprine compounds such as BCP, BPhen, etc


embedded image


Appl. Phys. Lett. 91, 263503 (2007)








embedded image


Appl. Phys. Lett. 79, 449 (2001)





5-member ring electron deficient heterocycles (e.g., triazole, oxadiazole, imidazole, benzoimidazole)


embedded image


Appl. Phys. Lett. 74, 865 (1999)








embedded image


Appl. Phys. Lett. 55, 1489 (1989)








embedded image


Jpn. J. Apply. Phys. 32, L917 (1993)





Silole compounds


embedded image


Org. Electron. 4, 113 (2003)





Arylborane compounds


embedded image


J. Am. Chem. Soc. 120, 9714 (1998)





Fluorinated aromatic compounds


embedded image


J. Am. Chem. Soc. 122, 1832 (2000)





Fullerene (e.g., C60)


embedded image


US20090101870





Triazine complexes


embedded image


US20040036077





Zn (N{circumflex over ( )}N) complexes


embedded image


U.S. Pat. No. 6,528,187









EXPERIMENTAL


COMPOUND EXAMPLES

Example 1


Synthesis of Compound 1




embedded image


Synthesis of 2-(dibenzo[b,d]furan-4-yl)pyridine. 4-dibenzofuranboronic acid (5.0 g, 23.6 mmol), 2-chloropyridine (2.2 g, 20 mmol), dicyclohexyl(2′,6′-dimethoxybiphenyl-2-yl)phosphine (S-Phos) (0.36 g, 0.8 mmol), and potassium phosphate (11.4 g, 50 mmol) were mixed in 100 mL of toluene and 10 mL of water. Nitrogen is bubbled directly into the mixture for 30 minutes. Next, Pd2(dba)3 was added (0.18 g, 0.2 mmol) and the mixture was heated to reflux under nitrogen for 8 h. The mixture was cooled and the organic layer was separated. The organic layers are washed with brine, dried over magnesium sulfate, filtered, and evaporated to a residue. The residue was purified by column chromatography eluting with dichloromethane. 4.5 g of desired product was obtained after purification.




embedded image


Synthesis of Compound 1. The iridium triflate precursor (0.97 g, 1.4 mmol) and 2-(dibenzo[b,d]furan-4-yl)pyridine (1.0 g, 4.08 mmol) were mixed in 50 mL of ethanol. The mixture was heated at reflux for 24 h under nitrogen. Precipitate formed during reflux. The reaction mixture was filtered through a celite bed. The product was washed with methanol and hexanes. The solid was dissolved in dichloromethane and purified by column using 1:1 of dichloromethane and hexanes. 0.9 g of pure product was obtained after the column purification. (HPLC purity: 99.9%)


Example 2

Synthesis of Compound 2




embedded image


Synthesis of 3-nitrodibenzofuran. To 80 mL trifluroacetic acid in a250 mL round bottom flask was added dibenzofuran (7.06 g, 42 mmol) and stirred vigorously to dissolve the content at room temperature. The solution was then cooled on ice and 1.2 equivalent 70% HNO3 (4.54 g, 50.40 mmol) in 20 mL trifluroacetic acid was poured into the stirred solution slowly. After stirring for 30 minutes contents from the flask was poured into 150 mL ice-water and stirred for another 15 minutes. Off white color precipitate was then filtered out and finally washed with 2M NaOH and water. Moist material was then recrystallized from 1.5 L boiling ethanol in the form of light yellow color crystal. 7.2 g of product was isolated.




embedded image


Synthesis of 3-aminodibenzofuran. 3-nitrodibenzofuran (6.2 g, 29.08 mmol) was dissolved in 360 mL ethyl acetate and was degassed 5 minutes by passing nitrogen gas through the solution. 500 mg of Pd/C was added to the solution and the content was hydrogenated at 60 psi pressure. Reaction was let go until pressure in hydrogenation apparatus stabilizes at 60 psi for 15 minutes. Reaction content was then filtered through a small celite pad and off white color product was obtained. (5.3 g, 28.9 mmol)




embedded image


Synthesis of 3-bromodibenzofuran. NaNO2 (2.21 g, 32.05 mmol) was dissolved in 20 mL conc. H2SO4 in conical flask kept at 0° C. Solution of 2-aminodibenzofuran (5.3 g, 28.9 mmol) in minimum volume of glacial acetic acid was then slowly added to the flask so that temperature never raised above 5-8° C. and the mixture was stirred at 0° C. for another 1.5 h. 100 mL ether was added to the stirred mixture and precipitate of corresponding diazo salt immediately settled down. Brown color diazo salt was immediately filtered out and transferred to a flask containing CuBr (6.25 g, 43.5 mmol) in 150 mL 48% HBr. The flask was then placed in a water bath maintained at 64° C. and stirred for 2 h. After cooling down to room temperature, the dark color reaction content was filtered out and the precipitate was washed with water twice. Isolated solid was then flashed over Silica gel column with 5-10% DCM/Hexane to give 4.79 g final compound.




embedded image


Synthesis of 2-(dibenzo[b,d]furan-3-yl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane. 3-bromodibenzofuran (4.79 g, 19.39 mmol), bispinacolatodiboron (6.4 g, 25.2 mmol), KOAc (7.61 g, 77.54 mmol) was added to 100 mL of dioxane in a r.b. flask. Content was degassed for 30 minutes under bubbling nitrogen gas and Pd(dppf)2Cl2 (158 mg, 0.019 mmol) was added to the reaction mixture. After degassing for another 10 minutes, the reaction mixture was heated to 80° C. and stirred overnight. Reaction flask was then cooled to room temperature and filtered through a pad of celite. Deep brown color solution was then partitioned in between brine and ethyl acetate. Organic layer was collected, dried over anhydrous Na2SO4 and excess solvent was evaporated under vacuum. Brown colored solid was then dry loaded in silica gel column and quickly flashed with 5% ethylacetate/hexane/0.005% triethylamine to give 5.08 g final product.




embedded image


Synthesis of 2-(dibenzofuran-3-yl)pyridine. Dibenzofuran boronate ester (5.85 g, 20 mmol), 2-bromopyridine (2.93 mL, 30 mmol), 30 mL 2 M Na2CO3 (60 mmol) was slurried in 200 mL toluene/ethanol (1:1) in a 500 mL 3-neck round bottom flask and degassed for 30 minutes under bubbling nitrogen gas. Pd(dppf)2Cl2 (160 mg, 0.2 mmol) was added to the slurry and degassing continued for another 10 minutes. The reaction contents were then refluxed overnight. Reaction content was cooled to room temperature and filtered thru a small celite pad. Brown color biphasic solution was then partitioned between brine and ethylacetate. Organic layer was dried over anhydrous Na2SO4and excess solvent was removed under vacuum. Residue from previous step was dry loaded in silica gel column and eluted with 5-8% ethylacetate/hexane to give 4.3 g final product.




embedded image


Synthesis of Compound 2. The iridium triflate precursor (2.8 g, 3.9 mmol), 2-(dibenzofuran-3-yl)pyridine (4 g, 16.3 mmol) were refluxed in 100 mL ethanol overnight. Bright yellow precipitate was filtered out, dried and dry loaded in a silica gel column. 210 mg final compound was isolated after elution with 3:2 DCM/hexane.


Example 3

Synthesis of Compound 4




embedded image


Synthesis of Compound 4. The iridium triflate precursor (1.6 g, 2.2 mmol) and 2-(dibenzo[b,d]furan-4-yl)pyridine (1.6 g, 6.5 mmol) were mixed in 50 mL of ethanol. The mixture was heated at reflux for 24 h under nitrogen. Precipitate formed during reflux. The reaction mixture was filtered through a celite bed. The product was washed with methanol and hexanes. The solid was dissolved in dichloromethane and purified by column using 1:1 of dichloromethane and hexanes. 1.4 g of pure product was obtained after the column purification.


Example 4

Synthesis of Compound 10




embedded image


Synthesis of 4-methyl-2-(dibenzo[b,d]furan-4-yl)pyridine. 4-dibenzofuranboronic acid (5.0 g, 23.6 mmol), 2-chloro-4-methylpyridine (2.6 g, 20 mmol), dicyclohexyl(2′,6′-dimethoxybiphenyl-2-yl)phosphine (S-Phos) (0.36 g, 0.8 mmol), and potassium phosphate (11.4 g, 50 mmol) were mixed in 100 mL of toluene and 10 mL of water. Nitrogen is bubbled directly into the mixture for 30 minutes. Next, Pd2(dba)3 was added (0.18 g, 0.2 mmol) and the mixture was heated to reflux under nitrogen for 8 h. The mixture was cooled and the organic layer was separated. The organic layers are washed with brine, dried over magnesium sulfate, filtered, and evaporated to a residue. The residue was purified by column chromatography eluting with dichloromethane. 4.7 g of desired product was obtained after purification.




embedded image


Synthesis of Compound 10. The iridium triflate precursor (2.0 g, 2.7 mmol) and 4-methyl-2-(dibenzo[b,d]furan-4-yl)pyridine (2.1 g, 8.1 mmol) were mixed in 60 mL of ethanol. The mixture was heated at reflux for 24 h under nitrogen. Precipitate formed during reflux. The reaction mixture was filtered through a celite bed. The product was washed with methanol and hexanes. The solid was dissolved in dichloromethane and purified by column using 1:1 of dichloromethane and hexanes. 1.6 g of pure product was obtained after the column purification.


Example 5

Synthesis of Compound 29




embedded image


Synthesis of 4′-bromo-2-nitrobiphenyl. o-iodonitrobenzene (9.42 g, 37.84 mmol), 4-bromobenzeneboronic acid (7.6 g, 37.84 mmol), potassium carbonate (21 g, 151.36 mmol) was added to 190 mL DME/water (3:2) solution and degassed for 30 minutes. Pd(PPh3)4 (437 mg, 0.38 mmol) was added to the slurry under nitrogen and the slurry was degassed for another 5 minutes. The reaction was refluxed under nitrogen for 6 h. Content of the flask was filtered through a pad of celite and partitioned in ethyl acetate and brine. Organic phase was dried over anhydrous Na2SO4 and evaporated under vacuum. Crude yellow oil was flashed over silica gel using 5% ethylacetate/hexane. Final compound was isolated as colorless oil (9.8 g, 35.4 mmol).




embedded image


Synthesis of 2-bromo-9H-carbazole. 4′-bromo-2-nitrobiphenyl (9.8 g, 35.4 mmol) was refluxed with 30 mL triethylphosphite overnight. After cooling down the solution to room temperature, 40 mL 6(N) HCl was added to it slowly and heated to 80° C. for 3 h. Acidic solution was halfway neutralized with conc. NaOH, rest of the acidic solution was neutralized with solid Na2CO3. Cloudy solution was extracted three times with ethylacetate (500 mL). Combined organic layer was evaporated under vacuum and crude was flashed on silica gel (15% to 30% ethylacetate/hexane). 4.1 g final compound was isolated as off white solid.




embedded image


Synthesis of 2-bromo-9-isobutyl-9H-carbazole. 2-bromo-9H-carbazole (4.1 g, 16.74 mmol) was dissolved in DMF. To the stirred solution was slowly added NaH (1.8 g, 75.5 mmol) in 3 portions. Isobutylbromide (4.8 mL, 43.2 mmol) was added to the stirred slurry and after waiting for 20 minute, warmed up to 60° C. for 4 h. Reaction mixture was cooled to room temperature and carefully quenched with drop wise addition of saturated NH4Cl solution. Content was then partitioned in brine and ethylacetate. Organic layer was dried over anhydrous Na2SO4 and evaporated under vacuum. The crude product was flashed over silica gel with 10% ethylacetate/hexane. Final product (4.45 g, 14.8 mmol) was isolated as white solid.




embedded image


Synthesis of 9-isobutyl-2-pinacolboron-9H-carbazole. 2-bromo-9-isobutyl-9H-carbazole (4.45 g, 14.78 mmol), bisboronpinacolate (4.7 g, 18.5 mmol), potassium acetate (5.8 g, 59.1 mmol) were taken in 75 mL anhydrous toluene and degassed for 30 minutes. Pd2dba3 (362 mg, 0.443 mmol) was added to the slurry under nitrogen and the slurry was degassed for another 5 minutes. After overnight reflux, content of the reaction was cooled down and filtered through a celite pad. Toluene solution was partitioned in water and ethylacetate. Organic layer was dried over anhydrous Na2SO4 and solvent was evaporated under vacuum. Solid crude was flashed in silica gel using 10% ethylacetate/hexane. Isolated solid was subjected to Kugelrohr distillation at 133° C. to remove traces of bisboronpinacolate. Final product (4.77 g, 13.7 mmol) was isolated as off white solid.




embedded image


Synthesis of 9-isobuthyl-2-(pyridine-2-yl)-9H-carbazole. 9-isobutyl-2-pinacolboron-9H-carbazole (1.45 g, 4 mmol), 2-bromopyridine (760 mg, 4.8 mmol), 2-dicyclohexylphosphino-2′,6′-dimethoxybiphenyl (67 mg, 0.16 mmol), K3PO4.H2O (3.68 g, 16 mmol) were added to 40 mL mixture of 9:1 toluene and water. Contents were degassed for 30 minutes before addition of Pd2dba3 (37 mg, 0.04 mmol) and degassed for another 5 minutes. After overnight reflux, reaction content was cooled to room temperature and filtered through a pad of celite. Filtrate was partitioned in water and ethylacetate. Organic layer was isolated, dried over anhydrous Na2SO4 and evaporated under vacuum. Crude was then flashed over silica gel using 10%-30% ethylacetate/hexane to remove the protodeborylation product. Final compound (620 mg, 2.1 mmol) was isolated as white solid.




embedded image


Synthesis of Compound 29. Carbazole ligand (620 mg, 2.1 mmol) from previous step was dissolved in ethanol and Intermediate-1 was added to it under nitrogen. Solution was then refluxed overnight. Deep orange color precipitate was filtered out and flashed over silica gel with 50% DCM/hexane. Isolated product was then sublimed to give 310 mg 99.7% pure product.


Example 6

Synthesis of Compound 7




embedded image


Synthesis of Compound 7. The iridium triflate precursor (2.0 g, 2.7 mmol) and 4-methyl-2-(dibenzo[b,d]furan-4-yl)pyridine (2.1 g, 8.1 mmol) were mixed in 60 mL of ethanol. The mixture was heated at reflux for 24 h under nitrogen. Precipitate formed during reflux. The reaction mixture was filtered through a celite bed. The product was washed with methanol and hexanes. The solid was dissolved in dichloromethane and purified by column using 1:1 of dichloromethane and hexanes. 1.0 g of pure product was obtained after the column purification.


Example 7

Synthesis of Compound 37




embedded image


Synthesis of Compound 37. 2-(dibenzo[b,d]furan-4-yl)pyridine (5.0 g, 20.39 mmol) and the iridium triflate (5.0 g, 5.59 mmol) were placed in a 250 mL round bottom flask with 100 mL of a 1:1 solution of ethanol and methanol. The reaction mixture was refluxed for 24 h. A bright yellow precipitate was obtained. The reaction was cooled to room temperature and diluted with ethanol. Celite was added to and the reaction mixture was filtered through a silica gel plug. The plug was washed with ethanol (2×50 mL) followed by hexanes (2×50 mL). The product which remained on the silica gel plug was eluted with dichloromethane into a clean receiving flask. The dichloromethane was removed under vacuum and the product was recrystallized from a combination of dichloromethane and isopropanol. The yellow solid was filtered, washed with methanol followed by hexanes to give bright yellow crystalline product. The product was further purified by recrystallization from toluene followed by recrystallization from acetonotrile to give 1.94 g (37.5% yield) of product with purity 99.5% by HPLC.


DEVICE EXAMPLES

All example devices were fabricated by high vacuum (<10−7 Torr) thermal evaporation. The anode electrode is 800 Å of indium tin oxide (ITO). The cathode consisted of 10 Å of LiF followed by 1000 Å of Al. All devices are encapsulated with a glass lid sealed with an epoxy resin in a nitrogen glove box (<1 ppm of H2O and O2) immediately after fabrication, and a moisture getter was incorporated inside the package.


Particular devices are provided wherein an invention compound, Compound 1, 2, 4, 7, 10 or 29, is the emitting dopant and H1 is the host. The organic stack of Device Examples 1-11 consisted of, sequentially from the ITO surface, 100 Å of El as the hole injecting layer (HIL), 300 Å of 4,4′-bis[N-(1-naphthyl)-N-phenylamino]biphenyl (α-NPD) as the hole transport layer (HTL), 300 Å of H1 doped with 7% or 10% of the invention compound, an Ir phosphorescent compound, as the emissive layer (EML), 50 Å of H1 as the blocking layer (BL) and 400 Å of Alq3 (tris-8-hydroxyquinoline aluminum) as the ETL1.


Comparative Examples 1 and 2 were fabricated similarly to the Device Examples, except that E1 and E2. respectively, were used as the emitting dopant.


As used herein, the following compounds have the following structures:




embedded image


The device structures and device data are summarized below in Table 3 and Table 4. Table 3 shows the device structure, and Table 4 shows the corresponding measured results for the devices. Ex. is an abbreviation of Example.















TABLE 3





Example
HIL
HTL
Host
A %
BL
ETL







Example 1
E1 100Å
NPD 300Å
H1
Compound 1
H1 50Å
Alq 400Å






7%


Example 2
E1 100Å
NPD 300Å
H1
Compound 1
H1 50Å
Alq 400Å






10%


Example 3
E1 100Å
NPD 300Å
H1
Compound 2
H1 50Å
Alq 400Å






7%


Example 4
E1 100Å
NPD 300Å
H1
Compound 2
H1 50Å
Alq 400Å






10%


Example 5
E1 100Å
NPD 300Å
H1
Compound 4
H1 50Å
Alq 400Å






7%


Example 6
E1 100Å
NPD 300Å
H1
Compound 4
H1 50Å
Alq 400Å






10%


Example 7
E1 100Å
NPD 300Å
H1
Compound 7
H1 50Å
Alq 400Å






7%


Example 8
E1 100Å
NPD 300Å
H1
Compound 7
H1 50Å
Alq 400Å






10%


Example 9
E1 100Å
NPD 300Å
H1
Compound 10
H1 50Å
Alq 400Å






7%


Example 10
E1 100Å
NPD 300Å
H1
Compound 10
H1 50Å
Alq 400Å






10%


Example 11
E1 100Å
NPD 300Å
H1
Compound 29
H1 50Å
Alq 400Å






10%


Comparative
E1 100Å
NPD 300Å
H1
Compound E1
H1 50Å
Alq 400Å


Example 1



7%


Comparative
E1 100Å
NPD 300Å
H1
Compound E2
H1 50Å
Alq 400Å


Example 2



7%



















TABLE 4









At 1000 nits
At 40 mA/cm2
















λ max,
CIE
V
LE
EQE
PE
Lo,
RT80%,
















Example
nm
X
Y
(V)
(cd/A)
(%)
(lm/W)
nits
h



















Ex. 1
532
0.354
0.616
6.1
60.1
15.9
31
17,382
180


Ex. 2
530
0.367
0.607
6.5
43.2
11.5
21
13,559
170


Ex. 3
527
0.355
0.612
6.2
51.7
13.9
26.1
14,565
210


Ex. 4
528
0.361
0.609
6
44.4
11.9
23.3
13,618
360


Ex. 5
528
0.348
0.620
5.7
68.7
18.1
37.7
19,338
98


Ex. 6
528
0.356
0.616
5.2
70.1
18.5
42.4
21,199
96


Ex. 7
522
0.326
0.630
5.6
68.2
18.4
38.6
18,431
120


Ex. 8
524
0.336
0.623
5.2
58.2
15.7
35.0
17,606
200


Ex. 9
522
0.320
0.634
5.4
70.7
19
41.4
19,996
75


Ex. 10
522
0.327
0.631
5
71.1
19.1
44.9
21,703
58


Ex. 11
576
0.538
0.459
5.6
50.6
19
28.1
14,228
800


Comparative
527
0.344
0.614
6.4
56.7
15.6
27.6
15,436
155


Ex. 1


Comparative
519
0.321
0.621
6
45.1
12.6
23.6
13,835
196


Ex.2









From Device Examples 1-11, it can be seen that the invention compounds as emitting dopants in green phosphorescent devices provide high device efficiency and longer lifetime. In particular, the lifetime, RT80% (defined as the time for the initial luminance, Lo, to decay to 80% of its value, at a constant current density of 40 mA/cm2 at room temperature) of devices containing Compounds 1, 2, 7 and 29 are notably higher than that measured for Comparative Example 2 which used the industry standard emitting dopant Ir(ppy)3. Additionally, Compound 1 in Device Example 1 achieved high device efficiency (i.e., LE of 60 cd/A at 1000 cd/m2), indicating that the inventive compounds comprising a single substituted pyridyl ligand (e.g., pyridyl dibenzofuran) have a high enough triplet energy for efficient green electrophosphorescence.


Additional device structures and device data are summarized below. The device structures and device data are summarized below in Table 5 and Table 6. Table 5 shows the device structure, and Table 6 shows the corresponding measured results for the devices. Ex. is an abbreviation of Example.


As used herein, the following compounds have the following structures:




embedded image


H2 is a compound available as NS60 from Nippon Steel Company (NSCC) of Tokyo, Japan.















TABLE 5





Example
HIL
HTL
Host
A %
BL
ETL







Example 12
E1 100Å
NPD 300Å
H2
Compound 1
H2 100Å
Alq 400Å






10%


Example 13
E1 100Å
NPD 300Å
H2
Compound 2
H2 100Å
Alq 400Å






7%


Example 14
E1 100Å
NPD 300Å
H2
Compound 2
H2 100Å
Alq 400Å






10%


Example 15
E1 100Å
NPD 300Å
H2
Compound 4
H2 100Å
Alq 400Å






10%


Example 16
E1 100Å
NPD 300Å
H2
Compound 7
H2 100Å
Alq 400Å






10%


Example 17
E1 100Å
NPD 300Å
H2
Compound 10
H2 100Å
Alq 400Å






10%


Example 18
E1 100Å
NPD 300Å
H2
Compound 29
H2 100Å
Alq 400Å






10%


Example 19
E3 100Å
NPD 300Å
H1
Compound 37
H1 100Å
Alq 400Å






7%


Example 20
E3 100Å
NPD 300Å
H1
Compound 37
H1 100Å
Alq 400Å






10%


Example 21
E3 100Å
NPD 300Å
H2
Compound 37
H2 100Å
Alq 400Å






10%



















TABLE 6









At 1000 nits
At 40 mA/cm2
















λ max,
CIE
V
LE
EQE
PE
Lo,
RT80%,
















Example
nm
X
Y
(V)
(cd/A)
(%)
(lm/W)
nits
h



















Ex. 12
530
0.361
0.612
4.1
78.6
20.9
60.0
24,069
220


Ex. 13
526
0.354
0.615
4.7
48.9
13.1
33.0
14,002
210


Ex. 14
527
0.349
0.620
4.9
49.8
13.3
31.6
14,510
190


Ex. 15
528
0.363
0.612
5.1
67.8
18
42.1
21,146
116


Ex. 16
522
0.334
0.626
4.8
65.9
17.8
43.1
20,136
170


Ex. 17
522
0.333
0.627
5.7
62.1
16.7
34.0
18,581
98


Ex. 18
576
0.542
0.455
6.4
36.2
13.9
17.9
10,835
740


Ex. 19
532
0.386
0.593
5.6
67.8
18.5
37.9
21,426
98


Ex. 20
532
0.386
0.593
5.7
67.7
18.5
37.5
21,050
103


Ex. 21
532
0.380
0.598
6.5
54.8
14.8
26.7
16,798
315









From Device Examples 12-21, it can be seen that the invention compounds as emitting dopants in green phosphorescent devices provide devices with high efficiency and long lifetimes. In particular, the lifetime, RT80% (defined as the time for the initial luminance, L0, to decay to 80% of its value, at a constant current density of 40 mA/cm2 at room temperature) of devices containing Compounds 29 and 37 are notably higher than those measured for the Comparative Examples. In particular, Compound 29 in Device Example 18 and Compound 37 in Device Example 21 measured 740 h and 315 h, respectively. Devices with Compound 1 in H2, as shown in Example 12, had exceptionally high efficiency, 78.6 cd/A and long lifetime. It is unexpected that Compound 1 worked extremely well in H2. Additionally, Compounds 1, 4, 7, 29, and 37 in Device Examples 12, 15, 17, 19, and 20, respectively, achieved high device efficiency (i.e., LE of greater than 60 cd/A at 1000 cd/m2), indicating that the inventive compounds comprising a single substituted pyridyl ligand (e.g., pyridyl dibenzofuran) have a high enough triplet energy for efficient green electrophosphorescence.


The above data suggests that the heteroleptic iridium complexes provided herein can be excellent emitting dopants for phosphorescent OLEDs, providing devices having improved efficiency and longer lifetime that may also have improved manufacturing.


It is understood that the various embodiments described herein are by way of example only, and are not intended to limit the scope of the invention. For example, many of the materials and structures described herein may be substituted with other materials and structures without deviating from the spirit of the invention. The present invention as claimed may therefore includes variations from the particular examples and preferred embodiments described herein, as will be apparent to one of skill in the art. It is understood that various theories as to why the invention works are not intended to be limiting.

Claims
  • 1. A compound comprising a heteroleptic iridium complex having the
  • 2. The compound of claim 1, wherein each R1 and R4 is independently selected from the group consisting of hydrogen and alkyl having four or fewer carbon atoms; and wherein at least one R1 is other than hydrogen and at least one R4 is other than hydrogen.
  • 3. The compound of claim 1, wherein each R2 and R3 is independently selected from the group consisting of hydrogen, alkyl having four or fewer carbon atoms and aryl with 6 or fewer ring atoms; and wherein at least one R2 is other than hydrogen and at least one R3 is other than hydrogen.
  • 4. The compound of claim 1, wherein each R1, R2, R3, and R4 is independently selected from the group consisting of hydrogen, alkyl having four or fewer carbon atoms and aryl with 6 or fewer ring atoms; and wherein at least one R1 is other than hydrogen, at least one R2 is other than hydrogen, at least one R3 is other than hydrogen, and at least one R4 is other than hydrogen.
  • 5. The compound of claim 1, wherein each R1, R2, R3, and R4 is are independently selected from the group consisting of hydrogen, methyl and phenyl; and wherein at least one R1 is other than hydrogen, at least one R2 is other than hydrogen, at least one R3 is other than hydrogen, and at least one R4 is other than hydrogen.
  • 6. The compound of claim 1, wherein R has 4 or fewer carbon atoms.
  • 7. The compound of claim 1, wherein the compound has the formula:
  • 8. The compound of claim 1, wherein the compound has the formula:
  • 9. The compound of claim 1, wherein the compound has the formula:
  • 10. The compound of claim 1, wherein X is O.
  • 11. The compound of claim 1, wherein X is S.
  • 12. A first device comprising an organic light emitting device, further comprising: an anode;a cathode; andan organic layer, disposed between the anode and the cathode, the organic layer further comprising a compound comprising a heteroleptic iridium complex having the formula:
  • 13. The device of claim 12, wherein the organic layer is an emissive layer and the compound having the formula:
  • 14. The device of claim 12, wherein the organic layer further comprises a host.
  • 15. The device of claim 14, wherein the host comprises a triphenylene moiety and a dibenzothiophene moiety.
  • 16. The device of claim 15, wherein the host has the formula:
  • 17. The compound of claim 1, wherein at least one of R1, R2, R3, or R4 comprises aryl.
  • 18. The compound of claim 1, wherein at least one R4 comprises aryl.
  • 19. The compound of claim 1, wherein at least one of R1, R2, R3, or R4 is disubstitued.
Parent Case Info

This application is a continuation of U.S. application Ser. No. 14/225,591, filed Mar. 26, 2014, which is a continuation of U.S. application Ser. No. 12/727,615, filed Mar. 19, 2010, which claims priority to U.S. Provisional Application No. 61/162,476, filed Mar. 23, 2009, the disclosures of which are herein expressly incorporated by reference in their entirety. The claimed invention was made by, on behalf of, and/or in connection with one or more of the following parties to a joint university corporation research agreement: Regents of the University of Michigan, Princeton University, The University of Southern California, and the Universal Display Corporation. The agreement was in effect on and before the date the claimed invention was made, and the claimed invention was made as a result of activities undertaken within the scope of the agreement.

US Referenced Citations (86)
Number Name Date Kind
4769292 Tang et al. Sep 1988 A
5061569 VanSlyke et al. Oct 1991 A
5247190 Friend et al. Sep 1993 A
5703436 Forrest et al. Dec 1997 A
5707745 Forrest et al. Jan 1998 A
5834893 Bulovic et al. Nov 1998 A
5844363 Gu et al. Dec 1998 A
6013982 Thompson et al. Jan 2000 A
6087196 Sturm et al. Jul 2000 A
6091195 Forrest et al. Jul 2000 A
6097147 Baldo et al. Aug 2000 A
6294398 Kim et al. Sep 2001 B1
6303238 Thompson et al. Oct 2001 B1
6337102 Forrest et al. Jan 2002 B1
6468819 Kim et al. Oct 2002 B1
6528187 Okada Mar 2003 B1
6687266 Ma et al. Feb 2004 B1
6835469 Kwong et al. Dec 2004 B2
6921915 Takiguchi et al. Jul 2005 B2
6953628 Kamatani et al. Oct 2005 B2
7087321 Kwong et al. Aug 2006 B2
7090928 Thompson et al. Aug 2006 B2
7154114 Brooks et al. Dec 2006 B2
7250226 Tokito et al. Jul 2007 B2
7279704 Walters et al. Oct 2007 B2
7332232 Ma et al. Feb 2008 B2
7338722 Thompson et al. Mar 2008 B2
7393599 Thompson et al. Jul 2008 B2
7396598 Takeuchi et al. Jul 2008 B2
7431968 Shtein et al. Oct 2008 B1
7445855 Mackenzie et al. Nov 2008 B2
7534505 Lin et al. May 2009 B2
8722205 Xia et al. May 2014 B2
9184397 Kottas et al. Nov 2015 B2
9193745 Ma et al. Nov 2015 B2
10312458 Kottas Jun 2019 B2
20020034656 Thompson et al. Mar 2002 A1
20020134984 Igarashi Sep 2002 A1
20020158242 Son et al. Oct 2002 A1
20030138657 Li et al. Jul 2003 A1
20030151042 Marks et al. Aug 2003 A1
20030152802 Tsuboyama et al. Aug 2003 A1
20030175553 Thompson et al. Sep 2003 A1
20030230980 Forrest et al. Dec 2003 A1
20040013905 Tsuboyama et al. Jan 2004 A1
20040036077 Ise Feb 2004 A1
20040137267 Igarashi et al. Jul 2004 A1
20040137268 Igarashi et al. Jul 2004 A1
20040174116 Lu et al. Sep 2004 A1
20050025993 Thompson et al. Feb 2005 A1
20050112407 Ogasawara et al. May 2005 A1
20050234240 Strossel et al. Oct 2005 A1
20050238919 Ogasawara Oct 2005 A1
20050244673 Satoh et al. Nov 2005 A1
20050260441 Thompson et al. Nov 2005 A1
20050260449 Walters et al. Nov 2005 A1
20060008670 Lin et al. Jan 2006 A1
20060202194 Jeong et al. Sep 2006 A1
20060240279 Adamovich et al. Oct 2006 A1
20060251923 Lin et al. Nov 2006 A1
20060263635 Ise Nov 2006 A1
20060280965 Kwong et al. Dec 2006 A1
20060287498 Morishita et al. Dec 2006 A1
20070128466 Nomura et al. Jun 2007 A1
20070190359 Knowles et al. Aug 2007 A1
20070278938 Yabunouchi et al. Dec 2007 A1
20080015355 Schafer et al. Jan 2008 A1
20080018221 Egen et al. Jan 2008 A1
20080106190 Yabunouchi et al. May 2008 A1
20080124572 Mizuki et al. May 2008 A1
20080220265 Xia et al. Sep 2008 A1
20080261076 Kwong et al. Oct 2008 A1
20080297033 Knowles et al. Dec 2008 A1
20090008605 Kawamura et al. Jan 2009 A1
20090009065 Nishimura et al. Jan 2009 A1
20090017330 Iwakuma et al. Jan 2009 A1
20090030202 Iwakuma et al. Jan 2009 A1
20090039776 Yamada et al. Feb 2009 A1
20090045730 Nishimura et al. Feb 2009 A1
20090045731 Nishimura et al. Feb 2009 A1
20090101870 Pakash et al. Apr 2009 A1
20090108737 Kwong et al. Apr 2009 A1
20090115316 Zheng et al. May 2009 A1
20090165846 Johannes et al. Jul 2009 A1
20090167162 Lin et al. Jul 2009 A1
20090179554 Kuma et al. Jul 2009 A1
Foreign Referenced Citations (57)
Number Date Country
1680366 Oct 2005 CN
0650955 May 1995 EP
1238981 Nov 2002 EP
1349435 Oct 2003 EP
1725079 Nov 2006 EP
1820801 Aug 2007 EP
2034538 Mar 2009 EP
200511610 Jan 2005 JP
2005029782 Feb 2005 JP
2006179895 Jul 2006 JP
2007123392 May 2007 JP
2007254297 Oct 2007 JP
2008010653 Jan 2008 JP
2008074939 Apr 2008 JP
2001039234 May 2001 WO
2002002714 Jan 2002 WO
200215645 Feb 2002 WO
2003040257 May 2003 WO
2003060956 Jul 2003 WO
2004093207 Oct 2004 WO
2004107822 Dec 2004 WO
2004111066 Dec 2004 WO
2005014551 Feb 2005 WO
2005019373 Mar 2005 WO
2005030900 Apr 2005 WO
2005089025 Sep 2005 WO
2005123873 Dec 2005 WO
2006009024 Jan 2006 WO
2006056418 Jun 2006 WO
2006072002 Jul 2006 WO
2006082742 Aug 2006 WO
2006098120 Sep 2006 WO
2006100298 Sep 2006 WO
2006103874 Oct 2006 WO
2006114966 Nov 2006 WO
2006132173 Dec 2006 WO
2007002683 Jan 2007 WO
2007004380 Jan 2007 WO
2007063754 Jun 2007 WO
2007063796 Jun 2007 WO
2008056746 May 2008 WO
2008073440 Jun 2008 WO
2008101842 Aug 2008 WO
2008132085 Nov 2008 WO
2009000673 Dec 2008 WO
2009003898 Jan 2009 WO
2009008311 Jan 2009 WO
2009018009 Feb 2009 WO
2009021126 Feb 2009 WO
2009050290 Apr 2009 WO
2009021126 May 2009 WO
2009062578 May 2009 WO
2009063833 May 2009 WO
2009066778 May 2009 WO
2009066779 May 2009 WO
2009086028 Jul 2009 WO
2009100991 Aug 2009 WO
Non-Patent Literature Citations (53)
Entry
Tavasli, Mustafa, et al. “A Tris-Cyclometalated Iridium (III) Complex of 2-(5, 5-Dioxido-dibenzothiophen-3-yl) pyridine: Synthesis, Structural, Redox and Photophysical Properties.” (2007): 4808-4814. (Year: 2007).
Kappaun, S., Slugovc, C., & List, E. J. (2008). Phosphorescent organic light-emitting devices: working principle and iridium based emitter materials. International journal of molecular sciences, 9(8), 1527-1547. (Year: 2008).
Adachi, Chihaya et al., “Organic Electroluminescent Device Having a Hole Conductor as an Emitting Layer,” Appl. Phys. Lett., 55(15): 1489-1491 (1989).
Adachi, Chihaya et al., “Nearly 100% Internal Phosphorescence Efficiency in an Organic Light Emitting Device,” J. Appl. Phys., 90(10): 5048-5051 (2001).
Adachi, Chihaya et al., “High-Efficiency Red Electrophosphorescence Devices,” Appl. Phys. Lett., 78(11)1622-1624 (2001).
Aonuma, Masaki et al., “Material Design of Hole Transport Materials Capable of Thick-Film Formation in Organic Light Emitting Diodes,” Appl. Phys. Lett., 90:183503-1-183503-3, (2007).
Baldo et al., Highly Efficient Phosphorescent Emission from Organic Electroluminescent Devices, Nature, vol. 395, 151-154, (1998).
Baldo et al., Very high-efficiency green organic light-emitting devices based on electrophosphorescence, Appl. Phys. Lett., vol. 75, No. 1, 4-6 (1999).
Gao, Zhiqiang et al., “Bright-Blue Electroluminescence From a Silyl-Substituted ter-(phenylene-vinylene) derivative,” Appl. Phys. Lett., 74(6): 865-867 (1999).
Guo, Tzung-Fang et al., “Highly Efficient Electrophosphorescent Polymer Light-Emitting Devices,” Organic Electronics, 1:15-20 (2000).
Hamada, Yuji et al., “High Luminance in Organic Electroluminescent Devices with Bis(10-hydroxybenzo[h]quinolinato) beryllium as an Emitter,” Chem. Lett., 905-906 (1993).
Holmes, R.J. et al., “Blue Organic Electrophosphorescence Using Exothermic Host-Guest Energy Transfer,” Appl. Phys. Lett., 82(15):2422-2424 (2003).
Hu, Nan-Xing et al., “Novel High Tg Hole-Transport Molecules Based on Indolo[3,2-b]carbazoles for Organic Light-Emitting Devices,” Synthetic Metals, 111-112:421-424 (2000).
Huang, Jinsong et al., “Highly Efficient Red-Emission Polymer Phosphorescent Light-Emitting Diodes Based on Two Novel Tris(1-phenylisoquinolinato-C2,N)iridium(III) Derivatives,” Adv. Mater., 19:739-743 (2007).
Huang, Wei-Sheng et al., “Highly Phosphorescent Bis-Cyclometalated Iridium Complexes Containing Benzoimidazole-Based Ligands,” Chem. Mater., 16(12):2480-2488 (2004).
Hung, L.S. et al., “Anode Modification in Organic Light-Emitting Diodes by Low-Frequency Plasma Polymerization of CHF3,” Appl. Phys. Lett., 78(5):673-675 (2001).
Ikai, Masamichi and Tokito, Shizuo, “Highly Efficient Phosphorescence From Organic Light-Emitting Devices with an Exciton-Block Layer,” Appl. Phys. Lett., 79(2):156-158 (2001).
Ikeda, Hisao et al., “P-185 Low-Drive-Voltage OLEDs with a Buffer Layer Having Molybdenum Oxide,” SID Symposium Digest, 37:923-926 (2006).
Inada, Hiroshi and Shirota, Yasuhiko, “1,3,5-Tris[4-(diphenylamino)phenyl]benzene and its Methylsubstituted Derivatives as a Novel Class of Amorphous Molecular Materials,” J. Mater. Chem., 3(3):319-320 (1993).
Kanno, Hiroshi et al., “Highly Efficient and Stable Red Phosphorescent Organic Light-Emitting Device Using bis[2-(2-benzothiazoyl)phenolato]zinc(II) as host material,” Appl. Phys. Lett., 90:123509-1-123509-3 (2007).
Kido, Junji et al., 1,2,4-Triazole Derivative as an Electron Transport Layer in Organic Electroluminescent Devices, Jpn. J. Appl. Phys., 32:L917-L920 (1993).
Kuwabara, Yoshiyuki et al., “Thermally Stable Multilayered Organic Electroluminescent Devices Using Novel Starburst Molecules, 4,4′,4″-Tri(N-carbazolyl)triphenylamine (TCTA) and 4,4′,4″-Tris(3-methylphenylphenyl-amino) triphenylamine (m-MTDATA), as Hole-Transport Materials,” Adv. Mater., 6(9):677-679 (1994).
Kwong, Raymond C. et al., “High Operational Stability of Electrophosphorescent Devices,” Appl. Phys. Lett., 81(1) 162-164 (2002).
Lamansky, Sergey et al., “Synthesis and Characterization of Phosphorescent Cyclometalated Iridium Complexes,” Inorg. Chem., 40(7):1704-1711 (2001).
Lee, Chang-Lyoul et al., “Polymer Phosphorescent Light-Emitting Devices Doped with Tris(2-phenylpyridine) Iridium as a Triplet Emitter,” Appl. Phys. Lett., 77(15):2280-2282 (2000).
Lo, Shih-Chun et al., “Blue Phosphorescence from Iridium(III) Complexes at Room Temperature,” Chem. Mater., 18(21)5119-5129 (2006).
Ma, Yuguang et al., “Triplet Luminescent Dinuclear-Gold(I) Complex-Based Light-Emitting Diodes with Low Turn-On voltage,” Appl. Phys. Lett., 74(10):1361-1363 (1999).
Mi, Bao-Xiu et al., “Thermally Stable Hole-Transporting Material for Organic Light-Emitting Diode an Isoindole Derivative,” Chem. Mater., 15(16):3148-3151 (2003).
Nishida, Jun-ichi et al., “Preparation, Characterization, and Electroluminescence Characteristics of α-Diimine-type Platinum(II) Complexes with Perfluorinated Phenyl Groups as Ligands,” Chem. Lett., 34(4): 592-593 (2005).
Niu, Yu-Hua et al., “Highly Efficient Electrophosphorescent Devices with Saturated Red Emission from a Neutral Osmium Complex,” Chem. Mater., 17(13):3532-3536 (2005).
Noda, Tetsuya and Shirota,Yasuhiko, “5,5′-Bis(dimesitylboryl)-2,2′-bithiophene and 5,5″-Bis(dimesitylboryl)-2,2′5′,2″-terthiophene as a Novel Family of Electron-Transporting Amorphous Molecular Materials,” J. Am. Chem. Soc., 120 (37):9714-9715 (1998).
Okumoto, Kenji et al., “Green Fluorescent Organic Light-Emitting Device with External Quantum Efficiency of Nearly 10%,” Appl. Phys. Lett., 89:063504-1-063504-3 (2006).
Palilis, Leonidas C., “High Efficiency Molecular Organic Light-Emitting Diodes Based On Silole Derivatives And Their Exciplexes,” Organic Electronics, 4:113-121 (2003).
Paulose, Betty Marie Jennifer S. et al., “First Examples of Alkenyl Pyridines as Organic Ligands for Phosphorescent Iridium Complexes,” Adv. Mater., 16(22):2003-2007 (2004).
Ranjan, Sudhir et al., “Realizing Green Phosphorescent Light-Emitting Materials from Rhenium(I) Pyrazolato Diimine Complexes,” Inorg. Chem., 42(4):1248-1255 (2003).
Sakamoto, Youichi et al., “Synthesis, Characterization, and Electron-Transport Property of Perfluorinated Phenylene Dendrimers,” J. Am. Chem. Soc., 122(8):1832-1833 (2000).
Salbeck, J. et al., “Low Molecular Organic Glasses for Blue Electroluminescence,” Synthetic Metals, (1997).
Shirota, Yasuhiko et al., “Starburst Molecules Based on pi-Electron Systems as Materials for Organic Electroluminescent Devices,” Journal of Luminescence, 72-74:985-991 (1997).
Sotoyama, Wataru et al., “Efficient Organic LIght-Emitting Diodes with Phosphorescent Platinum Complexes Containing N∧C∧N-Coordinating Tridentate Ligand,” Appl. Phys. Lett., 86:153505-1-153505-3 (2005).
Sun, Yiru and Forrest, Stephen R., “High-Efficiency White Organic Light Emitting Devices with Three Separate Phosphorescent Emission Layers,” Appl. Phys. Lett., 91:263503-1-263503-3 (2007).
T. Östergård et al., “Langmuir-Blodgett Light-Emitting Diodes Of Poly(3-Hexylthiophene) Electro-Optical Characteristics Related to Structure,” Synthetic Metals, 87:171-177 (1997).
Takizawa, Shin-ya et al., “Phosphorescent Iridium Complexes Based on 2-Phenylimidazo[1,2-α]pyridine Ligands Tuning of Emission Color toward the Blue Region and Application to Polymer Light-Emitting Devices,” Inorg. Chem., 46(10):4308-4319 (2007).
Tang, C.W. and VanSlyke, S.A., “Organic Electroluminescent Diodes,” Appl. Phys. Lett., 51(12):913-915 (1987).
Tung, Yung-Liang et al., “Organic Light-Emitting Diodes Based on Charge-Neutral Ru II PHosphorescent Emitters,” Adv. Mater., 17(8)1059-1064 (2005).
Van Slyke, S. A. et al., “Organic Electroluminescent Devices with Improved Stability,” Appl. Phys. Lett., 69(15):2160-2162 (1996).
Wang, Y. et al., “Highly Efficient Electroluminescent Materials Based on Fluorinated Organometallic Iridium Compounds,” Appl. Phys. Lett., 79(4):449-451 (2001).
Wong, Keith Man-Chung et al., A Novel Class of Phosphorescent Gold(III) Alkynyl-Based Organic Light-Emitting Devices with Tunable Colour, Chem. Commun., 2906-2908 (2005).
Wong, Wai-Yeung, “Multifunctional Iridium Complexes Based on Carbazole Modules as Highly Efficient Electrophosphors,” Angew. Chem. Int. Ed., 45:7800-7803 (2006).
C. Yang et al., “Tuning the Energy Level and Photophysical and Electroluminescent Properties of Heavy Metal Complexes by Controlling the Ligation of the Metal With the Carbon of the Carbazole Unit”, Adv. Funct. Mater. 2007, 17, pp. 651-661.
S. Bettington et al, “Tris-Cyclometalated Iridium (III) Complexes of Carbazole (Fluorenyl) Pyridine Ligands: Synthesis, Redox and Photophysical Properties, and Electrophosphorescent Light-Emitting Diodes”, Chem. Eur. J. 2007, 13, pp. 1423-1431.
K. Zhang et al., “Improving the Performance of Phosphorescent Polymer Light-Emitting Diodes Using Morphology-Stable Carbazole-Based Iridium Complexes”, J. Mater. Chem. 2007, 17, pp. 3451-3460.
Tao et al., “Solution-Processable Highly Efficient Yellow-and Red-Emitting Phosphorescent Organic Light Emitting Devices From a Small Molecule Bipolar Host and Iridium Complexes”, J. Mater. Chem 2008, 18, pp. 4091-4096.
Office Action dated Apr. 21, 2016 for corresponding Korean Patent Application No. 10-2011-7023989.
Related Publications (1)
Number Date Country
20180323383 A1 Nov 2018 US
Provisional Applications (1)
Number Date Country
61162476 Mar 2009 US
Continuations (2)
Number Date Country
Parent 14225591 Mar 2014 US
Child 16037164 US
Parent 12727615 Mar 2010 US
Child 14225591 US