Organic integrated circuit completely encapsulated by multi-layered barrier and included in RFID tag

Information

  • Patent Grant
  • 7875975
  • Patent Number
    7,875,975
  • Date Filed
    Friday, August 17, 2001
    22 years ago
  • Date Issued
    Tuesday, January 25, 2011
    13 years ago
Abstract
An electronic circuit having at least one electronic component comprised of an organic material, and arranged between at least two layers forming a barrier, wherein the layers protect the at least one component against an influence of light, air or liquid.
Description

This application claims priority to PCT/DE01/0316 which is incorporated herein by reference in its entirety.


FIELD OF THE INVENTION

The present invention relates to an electronic circuit comprising an organic material that is hermetically sealed against light, air and/or water, and further relates to a method for producing the same and the use thereof as a tag, sensor or the like.


BACKGROUND

Radio-frequency identity tags (“RFID”) are currently constructed with metallic coils and a silicon chip. They are used, for example, for logistical purposes, access controls or the like. RFID tags are intended to operate as passively as possible, without a battery. Energy is drawn from a coil that is activated by a resonating reader. In this manner, a memory in an electronic chip of the tag is activated and a stored item of information is read out, such as an identification of sender and an addressee in the case of logistical applications. On account of their relatively high production costs, RFID tags are not cost-effective for use in mass applications, such as for electronic bar coding, for protection against copying or cloning or for use in disposable articles.


The operable range of distance between the reader and the tag is determined in part by the power of radiation of the reader occurring at frequency ranges such as 125 kHz or 13.56 MHz, and is also determined by the size and quality of the coil or antenna of the tag. In the case of passive tags, this range is typically less than 60 cm. The construction of the coil in this instance depends greatly upon the carrier frequency used. For example, a wound coil with generally several hundred turns is used at a frequency of 125 kHz, while a flat coil of approximately ten turns is used in the case of a frequency of 13.56 MHz.


An example of a known organic field-effect transistor is provided in DE 100 40 442.1. Organic electronic circuits can be produced at very low cost. They are therefore suitable for the construction of tags that can be used in mass markets and with disposable products. Other conceivable applications include electronic tickets, electronic postage stamps, electronic watermarks, and applications for protection against theft or for baggage control.


Unfortunately, electronic circuits that are comprised of organic material are associated with two major disadvantages. First, organic materials are very sensitive to environmental influences, such as light, air and water, and age relatively quickly under this influence. Second, antennas produced by a polymer technique, or by any printing technique, are distinctly inferior to metallic antennas. The antennas have a higher electrical resistance and are of lower quality. As a result, such electronic components and tags based on organic materials have only a short service life and are suitable only for a very short range.


The problem concerning durability is comparable to that associated with organic light-emitting diodes, known as OLEDs. Presently, glass is used as the substrate for these diodes, and a glass plate is also adhesively attached over the components to ensure a good hermetic encapsulation. However, for mechanical reasons and reasons relating to cost, glass is not possible for the type of applications for which the present invention is generally directed. Conventional organic substrates are permeable to light, air and water and consequently are likewise not suitable. Metallized substrates, such as are used for example in the food packaging area or for the airtight packaging of sensitive materials, likewise do not come into consideration for RFID tags in particular, since the metal layer in the substrate prevents coupling of the coil to the reader. A Faraday cage or metallic shielding is created.


Accordingly, a substantial need exists for organic electronic circuits that are not especially sensitive to environmental influences and do not have problems associated with durability.


SUMMARY OF THE INVENTION

Embodiments of the present invention relate to an electronic circuit having an organic material and in which the electronic circuit is hermetically sealed against light, air and water to lessen problems associated with environmental sensitivity and aging. The electronic circuit can be produced simply and at low cost, such that tags produced from it can be used in mass markets and for disposable products and, in particular, can be combined with coils or antennas without metallic shielding occurring.


The present invention relates to an electronic circuit having at least one electronic component comprised of an organic material, and arranged between at least two layers forming a barrier, wherein the layers protect the at least one component against an influence of light, air or liquid.


The present invention additionally relates to a method for producing an electronic circuit having electronic components comprised of organic material. This includes steps of constructing a layer forming a barrier, arranging electronic components to form an electronic circuit upon the barrier layer, connecting electrical conductor tracks to electrical contacts, and applying an additional layer comprising at least one barrier layer over the electronic components to protect the components against light, air, or water.


The present invention also relates to a method for producing an electronic circuit comprising forming at least one source electrode and one drain electrode on a first substrate carrier and coating with a semiconducting layer, applying an uncross-linked insulator upon the layer, applying on a second substrate a gate electrode with a layer of uncross-linked insulator lying over the electrode, superposing the two carriers such that the two uncross-linked insulating layers come to lie one on top of each other, and initiating crosslinking of the insulators.





BRIEF DESCRIPTION OF THE DRAWINGS

The invention is explained in more detail below on the basis of the accompanying drawings, in which:



FIG. 1 illustrates an encapsulated electronic circuit according to an embodiment of the present invention;



FIG. 2 illustrates the electronic circuit represented in FIG. 1 in a schematic plan view;



FIGS. 3
a,
3
b and 3c illustrate the electronic circuit according to an embodiment of the present invention in combination with a coil or a rod antenna;



FIG. 4 illustrates an electronic circuit with a coil in accordance with an embodiment of the present invention;



FIG. 5 illustrates an electronic circuit with a coil in accordance with a further embodiment of the present invention; and



FIGS. 6 and 7 together illustrate the production of an OFET having a substructure with a source/drain electrode and a semiconducting layer and a superstructure with a gate electrode, where the two constructions are connected by means of an insulating layer.





DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the attached drawings. This invention may be embodied in many different forms and should not be construed as being limited to the embodiments set forth herein.


The preferred embodiments relate to an electronic circuit having an organic material, which is hermetically sealed against light, air and water to lessen problems associated with environmental sensitivity and aging. The electronic circuit can be combined with coils or antennas without metallic shielding occurring.


The term “organic material” refers to all types of organic, metal-organic and/or inorganic plastics. It comprises all types of substances with the exception of the semiconductors which form the classic diodes (germanium, silicon) and the typical metallic conductors. Accordingly, a restriction in the dogmatic sense to organic material as carbonaceous material is not intended, envisaging rather the broad use of silicones, for example. Furthermore, the term is not intended to be subject to any restriction with regard to the molecular size, in particular to polymeric and/or oligomeric materials; instead, the use of “small molecules” is also entirely possible.



FIG. 1 is a schematic illustration of an electronic circuit 1 according to an embodiment of the invention, which comprises electronic components 3. These electronic components 3 may be constructed entirely or partly from organic materials, including conducting, semiconducting or nonconducting polymeric plastics. The electronic components 3 are arranged on a layer 2, which forms a barrier and is multi-layered, in the case of the illustrated embodiment. The electronic components 3 or chips may be adhesively bonded onto the layer 2 or otherwise may be held fixed in place upon it in some other manner. The components also may be formed directly upon the layer by suitable printing methods.


The layer 2 itself is constructed from three layers 4, 5 and 6. The lowermost layer 4 is a film of plastic, such as an organic polymer such as polyvinyl phenol, polymethylmethacrylate, polysulfone, polycarbonate, polyether ketone, polyethylene terephthalate, polyethylene, polyimide or any desired mixture of these polymers. The film of plastic usually has a thickness of between 10 and 100 μm, preferably 30-60 μm. The second layer 5 is formed as the actual barrier layer. This is preferably a metallic layer comprising aluminum, copper or chromium, which is either laminated as a film onto the layer 4 or has been vapor-deposited onto it. An applied metal layer is usually between 5 and 100 μm, preferably between 5 and 50 μm, thick. As already mentioned, the barrier layer may also comprise a non-metallic substrate. This non-metallic material is to be selected such that it picks up or absorbs light and/or water and/or oxygen. Suitable non-metallic coatings for forming a barrier layer against light, air and/or water are therefore, for example, layers consisting largely of dense particles which are arranged overlapping if at all possible. Suitable materials for this purpose form graphite or inorganic oxides with a platelet structure. A further layer 6 is in the form of a film of plastic and is adhesively bonded or laminated over the barrier layer 5. The film substrate may be transparent or else completely opaque. An opaque film even has the advantage that harmful influences of light in organic electronics are prevented in an optimum way.


Formed or arranged on this layer 2 along with the electronic components 3 are electrical contacts 8. The contacts serve for later connecting the electronic circuit 1 to a coil or antenna; for example, for the construction of an RFID tag. The contacts 8 may consist of organic, conductive materials and may be applied to the film substrate by a known printing method.


Metallic contacts, such as copper, may also be used for connection in an electrically-conducting manner to predetermined components among the electrical components 3 by lines 7. Arranged in a hermetically-sealing manner over the electronic components 3, and consequently partly over the lines 7, is a further barrier 2′, which may have the same construction as the first layer 2.


Consequently, the exemplary embodiment is a multi-layered system, comprising two layers 4, 6 of a film of plastic, between which a barrier layer 5 is arranged. The materials for these layers may be selected from the same ones that can be used for the further layer 2. It is advantageous in the production process for this second upper and covering or encapsulating barrier layer as such either to be adhesively bonded or laminated on. It is evident that the individual electronic components are completely enclosed by the layers 2 and 2′ and consequently optimally shielded against environmental influences.


In an advantageous configuration of the present invention, the barrier layer used for the encapsulation may comprise barrier layers of the same or different types. In other words, the layer(s) forming the barrier may, for example, combine a metallic barrier coating and a non-metallic barrier coating. In general, the layer forming the barrier may consequently be a multi-layered system. A suitable construction comprises, for example, a polyethylene terephthalate film which is coated with aluminum, a further polyethylene terephthalate film being laminated onto the aluminum coating.



FIG. 2 illustrates the construction of the electronic circuit 1 from a plan view, from which in particular the electrical connection to the contacts 8 lying outside the encapsulation is shown.


The electronic circuit formed according to an embodiment of the invention may consequently comprise all the components essential for a circuit. Preferably, however, the active components are mainly encapsulated. These are, in particular, the integrated circuit, transistors, diodes and especially rectifier diodes or similar active components. It is preferred for the active components to consist at least partly of organic material.


Passive components, such as resistors, capacitors or coils, may also be included by the electronic circuit according to the invention. Equally, only the sensitive components, such as the organic integrated circuit itself, may be included and other parts, such as for example a rectifier diode, may be located outside, in which case they may still be produced by the conventional silicon technique.


The electronic encapsulated circuit according to the invention can be used not only for tags but in all applications where a metallized substrate does not preclude use, that is for example also in the case of sensors or other electronic components which can be realized by organic electronics.


One particular advantage is obtained in the case where systems of layers or systems of films with metal layers are used for the film substrates. In this case, the metal layers may also be integrated into the corresponding circuit, for example formed by suitable structuring as electrical conductors or else as passive components such as capacitors, coils or resistors.



FIG. 3 illustrates how to achieve a greater antenna range of an antenna of an RFID tag, for example, as compared with a complete integration of the organic electronics with the coil, despite metallized encapsulation of the electronic circuit 1. The electronics are constructed such that they can be fastened as a kind of sticker, with the exposed electrical contacts on a corresponding coil or antenna 9, 10. The respective ends of the coil (FIG. 3(a) and FIG. 3(b)) or else its rod-shaped antenna (FIG. 3(c)) can be connected to the encapsulated electronics by simply adhesively bonding them on. In this way, the entire construction provides a functioning tag.


In this embodiment, the electronics are separate from the coil. Therefore, a conventional metal antenna, which has a correspondingly high quality for as high a range as possible, can be used as the coil. It is also possible for very large antennas to be attached, without the economic disadvantage that the more complex technique for the production of the organic circuit is required only for a small part of the surface area.


A further production step that is generally necessary in the case of flat coils, including connection of the corresponding coil ends 14, 15 in a further plane, now becomes unnecessary. By omitting this step, inexpensive printing methods can be used to include antennas in the printing applied to the packaging and, in a final step, adhesively attach the stickers corresponding to the electronics described above.


It is advantageous that the corresponding electrical terminal areas are quite large, to allow simple adjustment. If the terminals are standardized, it is also possible for them to be applied at a later stage. As an example, this allows end users in the retail trade to attach their own tags. In this embodiment, even a metallized area of the overall electronics for the RF connection of the antenna is not problematical, since it lies over the coil turns and not in the area enclosed by the coil.


In the case of the embodiments according to FIGS. 4 and 5, the electronic circuit 1 according to the invention is combined with an antenna 9, 10 in a particularly efficient and cost-saving way. The Figures illustrate that the “transponder circuit” is applied directly on the substrate of the antenna 9, 10. A homogeneously metallized film of plastic 4, 5, such as polyethylene, polyethylene terephthalate or polyimide, with vapor-deposited aluminum, then is used as the barrier layer 2. A coil is produced on the metal layer 5 by a structuring process. At points where the actual circuit 3 is arranged, a metal layer is left, then serving as the barrier or encapsulation. It is also conceivable to introduce this metal layer directly into the circuit by corresponding structuring, for example as conductor tracks or as passive components. This results in a multi-layered system, in which one layer can be used for the encapsulation and one layer can be used for the application in the circuit. An advantage of this construction is that the entire identity tag can be produced as an integrated system, which in particular reduces costs.


In FIG. 4, an antenna 9, 10, which consists, for example, of a metal or a conducting polymer, is formed on a barrier layer 2, which may be formed as described above. In the interior of the antenna path there is an electronic circuit 1, for example, a silicon chip or a polymer chip, which is intended to be electronically connected to both ends 14, 15 of the antenna 9, 10. For this purpose, the corner 13 of the layer 2 represented by a dotted line is folded over in such a way that the end 14 of the antenna comes to lie on the contact area 12. After the folding over, the electrical circuit 3 is connected to the antenna 9, 10 via the conductor tracks 7. To prevent a short-circuit of the folded-over conductor track 7 with the antenna 9, 10, an insulating layer must be applied to the turns of the antenna 9, 10 before the folding over. This insulating layer may at the same time serve as an adhesive for permanently fixing the folded-over corner 13. This type of connection allows the previously customary method step, that is the additional application of a structured conductor track, to be saved.


According to FIG. 5, on the layer 2 there is an antenna 9, 10, as in FIG. 4. An electronic circuit 3 is arranged outside the antenna 9, 10 in a corner 13 of the layer 2. This corner 13 is then folded over in such a way that the contact area 8 comes to lie on the contacting area 12 of the antenna 9, 10. To prevent a short-circuit of the folded-over conductor track 7 with the antenna 9, 10, an insulating layer must be applied to the turns of the antenna 9, 10 before the folding over. This insulating layer may at the same time serve as an adhesive for permanently fixing the folded-over corner 13.


A special feature of this embodiment is that the folding-over operation has the effect on the one hand of connecting the electronic circuit 3 to the antenna 9, 10 and on the other hand, of encapsulating the electronic circuit 3, to be precise by the substrate material, which is to be suitably selected for this.


In FIG. 6, the superstructure 16 and substructure 17 can be seen separately on the left, the arrows 18 indicating the direction in which the two constructions are pressed one onto the other. The superstructure 16 comprises a substrate 19 such as a flexible PET film, on which there is a thin layer 20 of ITO (ITO=Indium Tin Oxide) structured in the form of a gate electrode. The gate electrode 20 is embedded into a layer 21, for example about 100 nm thick, of the uncross-linked insulating material poly(4-hydroxystyrene) (PHS) with the crosslinker hexamethoxymethyl melamine (HMMM). In this layer, the insulating material is still in an uncross-linked form, but contains the components necessary for crosslinking (crosslinker, i.e. HMMM, and a catalyst, for example camphor sulfonic acid (CSA)). The substructure 17 likewise has a substrate 19 with a structured layer 20 of ITO on it, which here forms the source and drain electrodes. The source/drain electrodes are embedded into a semiconducting layer 22, for example of poly-(3-octylthiopene) P3OT, as the active semiconductor material. On the semiconducting layer 22 there is an approximately 100 nm thick layer 21 of the insulating material PHS, likewise uncross-linked and with the components necessary for crosslinking (crosslinker and catalyst). The superstructure 16 and substructure 17 are pressed one onto the other (FIG. 7), in such a way that the two layers 21 come to lie one on top of the other and are superficially connected to each other. In this case, adjustment is carried out with the aid of adjustment marks (e.g., fixing coils, optical marks or crosses) in such a way that the source/drain and gate electrodes are located one above the other in the desired way. In a following step, the entire construction is irradiated or annealed at 130° C. for one hour and consequently fixed.


This produces an organic field-effect transistor on a substrate or a carrier with a source/drain electrode on the substrate embedded in a semiconducting layer with an uncross-linked adjoining layer of insulating material and a gate electrode adjoined by a covering layer.


Thus, a method for producing such an OFET includes the following steps:


at least one source electrode and one drain electrode are formed on a carrier and coated with a semiconducting layer, on which a layer with a still uncross-linked insulator is applied; a gate electrode with a layer of uncross-linked insulator lying over it is applied on a second substrate and the two carriers are then superposed in such a way that the two uncross-linked insulating layers come to lie one on top of the other and then the crosslinking of the insulator is initiated.


The separate production of the gate electrode on a second substrate and its adjustment on the substrate/source, drain electrode/semiconductor/insulator construction, presented for the first time in this embodiment, facilitates the construction of OFETs to the extent that there is no longer any structuring of the upper electrode (source/drain or gate, depending on the construction) by photolithography, in which the lower organic layers are attacked and/or incipiently dissolved. Moreover, the OFET produced in this way is encapsulated and consequently protected against mechanical damage and environmental influences.


The foregoing disclosure of the preferred embodiments of the present invention has been presented for purposes of illustration and description. It is not intended to be exhaustive or to limit the invention to the precise forms disclosed. Many variations and modifications of the embodiments described herein will be apparent to one of ordinary skill in the art in light of the above disclosure. The scope of the invention is to be defined only by the claims appended hereto, and by their equivalents.


Further, in describing representative embodiments of the present invention, the specification may have presented the method and/or process of the present invention as a particular sequence of steps. However, to the extent that the method or process does not rely on the particular order of steps set forth herein, the method or process should not be limited to the particular sequence of steps described. As one of ordinary skill in the art would appreciate, other sequences of steps may be possible. Therefore, the particular order of the steps set forth in the specification should not be construed as limitations on the claims. In addition, the claims directed to the method and/or process of the present invention should not be limited to the performance of their steps in the order written, and one skilled in the art can readily appreciate that the sequences may be varied and still remain within the spirit and scope of the present invention.

Claims
  • 1. An organic electronic integrated circuit comprising: at least two continuous multi-layered barrier layers exhibiting no openings therethrough,each of said at least two barrier layers comprising three sublayers,each of said three sublayers forming a continuous barrier to ambient environmental influences, said ambient environmental influences including at least one of air, liquid or light,said three sublayers being a lowermost sub layer of plastic film, a second sublayer of metallic film, and a third sublayer of plastic film,a first of said barrier layers forming a substrate;first and second electrical contacts on the substrate;a plurality of electronic components on the substrate,at least a portion of said electronic components comprising organic material;a plurality of interconnections, said plurality of electronic components being electrically interconnected by said interconnections to form a circuit,said circuit being coplanar with and ohmically connected to said first and second electrical contacts on the substrate,at least a second of said barrier layers formed on the substrate such that said circuit is completely enclosed by and protected against said ambient environmental influence by said at least two barrier layers; andsaid first and second electrical contacts being external said at least second barrier layer.
  • 2. The electronic circuit of claim 1, further including an antenna comprising a conductor track on the substrate and terminating at said first and second electrical contacts.
  • 3. An electronic circuit comprising: at least two continuous multi-layered barrier layers exhibiting no openings therethrough,each of said at least two barrier layers comprising three sublayers,each of said three sublayers forming a continuous barrier to ambient environmental influences, said ambient environmental influences including at least one of air, liquid or light,said three sublayers being a lowermost sub layer of plastic film, a second sublayer of metallic film, and a third sublayer of plastic film,one of said barrier layers forming a substrate;first and second electrical contacts on the substrate;at least one electronic component on the substrate,said at least one electronic component forms an organic field-effect transistor including source and drain electrodes above a first of said at least two continuous multi-layered barrier layers and embedded in a semiconducting layer with an adjoining layer of uncrosslinked polymer insulating material, a gate electrode embedded in the uncrosslinked polymer layer of insulating material, followed by the second of said continuous multi-layered barrier layers;at least one interconnection electrically connected to said at least one electronic component to form a circuit,said circuit being coplanar with and ohmically connected to said first and second electrical contacts on the substrate,at least a second of said barrier layers formed on the substrate such that said circuit is completely enclosed by and protected against said ambient environmental influence by said at least two barrier layers; andsaid first and second electrical contacts being external said at least second barrier layer.
  • 4. The electronic circuit of claim 2 wherein the antenna is ohmically coupled to the first contact and includes a third contact, at least a portion of the antenna is folded over with the third contact in ohmic engagement with the second contact of the electronic circuit.
  • 5. The electronic circuit of claim 3, wherein at least one of said components comprises: a superstructure comprising a first upper substrate;a gate electrode embedded in the first substrate;a first polymer uncrosslinked insulating layer with the gate electrode embedded in the first insulating layer which underlies the first substrate; anda substructure comprising: a second polymer uncrosslinked insulating layer insulation layer;a semiconductor layer underlying the second insulation layer;spaced source and drain electrodes embedded in and underlying the semiconductor layer; anda second lower substrate juxtaposed with and underlying the semiconductor layer and the source/drain electrodes;the substructure and the super structure being attached to each other forming an interface therebetweenwherein adjustment marks are integrated in the polymer uncrosslinked insulating layers for aligning the superstructure to the substructurewith the gate electrode operatively coupled to the source/drain electrodes.
  • 6. The electronic circuit of claim 3, wherein a first of said at least two barrier layers comprises a metallic layer below the semiconductor layer and laminated to a plastic film layer.
  • 7. The electronic circuit of claim 6, wherein the metallic layer is selected from the group consisting of aluminum, copper or chromium.
  • 8. The electronic circuit of claim 3 wherein: the at least one electronic component is selected from active components; andfurther comprises a plurality of interconnected electronic components; andfurther including an antenna comprising a conductor track on the substrate and terminating at said first and second electrical contacts.
  • 9. The electronic circuit of claim 8, wherein the at least one component comprises an integrated circuit or a rectifier diode.
  • 10. The electronic circuit of claim 1 wherein the at least a portion of the plurality of electronic components is selected from passive components.
  • 11. The electronic circuit of claim 1, wherein at least a portion of the plurality of electronic components is selected from the group consisting of passive components comprising resistors, capacitors or coils.
  • 12. The electronic circuit of claim 1, further comprising a coil arrangement external the barrier layers and electrically combined with the electronic components to form an antenna coupled to the contacts on the substrate.
  • 13. The electronic circuit of claim 3, further including an antenna comprising an electrically conductive track on the substrate external the barrier layers and terminating at said first and second contacts.
  • 14. A method for producing an electronic circuit having electronic components comprised of organic material comprising: forming a first continuous multi-layered barrier layer exhibiting no openings therethrough,arranging a plurality of electronic components of an electronic integrated circuit on the first barrier layer;forming first and second electrical contacts on the first barrier layer coplanar with the electronic components;forming a plurality of coplanar electrical conductor tracks on the first barrier layer, thereby interconnecting the plurality of electric components to each other and to the contacts through said tracks;forming at least a second continuous multi-layered barrier layer exhibiting no openings therethrough,applying said at least a second barrier layer onto said first barrier layer over only a first portion of the interconnected electronic components and their interconnecting conductor tracks, thereby defining a second portion of the interconnected electronic components external the second barrier layer,each of said barrier layers comprising three sublayers,each of said three sublayers forming a continuous barrier to ambient environmental influences, said ambient environmental influences including at least one of air, liquid or light,said three sublayers being a lowermost sub layer of plastic film, a second sublayer of metallic film, and a third sublayer of plastic film,said first portion of electronic components being completely enclosed by and protected against said ambient environmental influence by said at least two barrier layers,said first and second electrical contacts being external said at least second barrier layer,said second portion of the interconnected electronic components extending beyond the region between said first and second barrier layers.
  • 15. The method of claim 14, wherein the electronic circuit comprises an RFID transponder tag for transmission of an RFID signal.
  • 16. The method of claim 14, wherein the electronic circuit comprises an electrical sensor for sensing an external parameter and converting the sensed parameter to an electrical signal.
  • 17. The electronic circuit of claim 1 wherein the at least one electronic component is included in an RFID transponder tag circuit.
  • 18. The electronic circuit of claim 1 wherein the at least one electronic component comprises an electronic sensor for applying sensed information electrical signals to the circuit.
  • 19. A method for producing an electronic circuit having electronic components comprised of organic material comprising: constructing a first continuous multi-layered barrier layer exhibiting no openings therethrough;arranging electronic components to form an integrated electronic sensor circuit on said first barrier layer;connecting electrical conductor tracks to electrical contacts on said first barrier layer and coupled to said electronic components to form said circuit;applying a second continuous multi-layered barrier layer exhibiting no openings therethrough over the electronic components and their circuit,said second barrier layer cooperating with the first barrier layer to protect the components and their circuit against light and external environmental atmospheric influences including at least one of air or liquid;each of said barrier layers comprising three sublayers,each of said three sublayers forming a continuous barrier to ambient environmental influences, said ambient environmental influences including at least one of air, liquid or light,said three sublayers being a lowermost sub layer of plastic film, a second sublayer of metallic film, and a third sublayer of plastic film,forming first and second contacts on said first barrier layer external the region between said first and second barrier layers and ohmically connecting said contacts to said circuit;forming an antenna having first and second electrical terminals on said first barrier layer external the region between said first and second barrier layers for connection to respective corresponding ones of said first and second contacts; andinterconnecting the first and second contacts respectively with the first and second terminals by folding over a portion of the first barrier to interconnect at least one of said first and second contacts with a corresponding terminal.
  • 20. The method of claim 19 including adhering the folded over first barrier to a portion of the first barrier with an electrically insulating adhesive.
  • 21. The electronic circuit of claim 1 further including: an antenna on the substrate, the antenna comprising a conductor track and terminating at first and second terminals;the substrate including a folded over portion to electrically engage the first terminal with the first contact juxtaposed therewith;the second terminal being in ohmic engagement with the second contact;the folded over substrate portion being adhesively attached to the juxtaposed portion of the substrate with an electrically insulating adhesive layer.
  • 22. An electronic circuit comprising: at least two continuous multi-layered barrier layers exhibiting no openings therethrough,each of said at least two barrier layers comprising three sublayers,each of said three sublayers forming a continuous barrier to ambient environmental influences, said ambient environmental influences including at least one of air, liquid or light,said three sublayers being a lowermost sub layer of plastic film, a second sublayer of metallic film, and a third sublayer of plastic film;a first component comprising at least one electronic component;a second component comprising at least one electronic component;a further component comprising at least one electronic component;interconnections electrically connecting said first component to said second component and to said further component;said first component comprising organic material;said first and said second components both being arranged between said at least two barrier layers;wherein said at least two barrier layers protect said first component, said second component and said interconnections against said ambient environmental influence;at least one conductor forming a portion of said interconnections,said conductor being electrically connected to and coplanar with said first and second components,said conductor being electrically connected to said further component,said further component and at least a portion of said conductor being external the region between the at least two barrier layers;two electrical contacts external the region between the barrier layers and coplanar with the electronic component and the interconnections; andan antenna external the region between the at least two barrier layers ohmically connected to the two electrical contacts.
  • 23. An electronic circuit comprising: a plurality of electronic components,at least one of said components comprises organic material;interconnections electrically interconnecting said electronic components;an output of said electronic components,said output for outputting an electrical current signal;at least two continuous multi-layered barrier layers exhibiting no openings therethrough,each of said at least two barrier layers comprising three sublayers,each of said three sublayers forming a continuous barrier to ambient environmental influences, said ambient environmental influences including at least one of air, liquid or light,said three sublayers being a lowermost sub layer of plastic film, a second sublayer of metallic film, and a third sublayer of plastic film;said electronic components and said interconnections being arranged between said at least two barrier layers;wherein said at least two barrier layers cooperate to protect said plurality of components and said interconnections from said ambient environmental influence;a pair of electrical contacts external the region between said at least two barrier layers,said pair of electrical contacts being coplanar with the electronic components; andan electrical device on one of said barrier layers and electrically coupled to said contacts,said electrical device for receiving said electrical current signal from said output of said electronic components.
  • 24. The circuit of claim 23 wherein the electrical device is an antenna.
  • 25. The circuit of claim 24 wherein the antenna and the plurality of components are on a common substrate and one of the barrier layers comprises a multilayer construction of different materials.
  • 26. The circuit of claim 24 wherein: the antenna is an elongated conductor terminating at a further electrical contact;the substrate having a fold for electrically connecting the further electrical contact to one of said pair of electrical contacts in juxtaposed relation.
Priority Claims (3)
Number Date Country Kind
100 40 442 Aug 2000 DE national
101 20 685 Apr 2001 DE national
101 20 687 Apr 2001 DE national
PCT Information
Filing Document Filing Date Country Kind 371c Date
PCT/DE01/03164 8/17/2001 WO 00 7/25/2003
Publishing Document Publishing Date Country Kind
WO02/15264 2/21/2002 WO A
US Referenced Citations (87)
Number Name Date Kind
3512052 Maclver et al. May 1970 A
3769096 Ashkin Oct 1973 A
3955098 Kawamoto May 1976 A
4302648 Sado et al. Nov 1981 A
4340657 Rowe Jul 1982 A
4442019 Marks Apr 1984 A
4865197 Craig Sep 1989 A
4926052 Hatayama et al. May 1990 A
5173835 Cornett et al. Dec 1992 A
5206525 Yamamoto et al. Apr 1993 A
5259926 Kuwabara et al. Nov 1993 A
5321240 Takihira Jun 1994 A
5347144 Garnier et al. Sep 1994 A
5364735 Akamatsu et al. Nov 1994 A
5395504 Saurer et al. Mar 1995 A
5480839 Ezawa et al. Jan 1996 A
5486851 Gehner et al. Jan 1996 A
5502396 Desarzens Mar 1996 A
5546889 Wakita et al. Aug 1996 A
5569879 Gloton et al. Oct 1996 A
5574291 Dodabalapur et al. Nov 1996 A
5578513 Maegawa Nov 1996 A
5580794 Allen Dec 1996 A
5629530 Brown et al. May 1997 A
5630986 Charlton et al. May 1997 A
5652645 Jain Jul 1997 A
5691089 Smayling Nov 1997 A
5729428 Sakata et al. Mar 1998 A
5854139 Aratani et al. Dec 1998 A
5869972 Birch et al. Feb 1999 A
5892244 Tanaka et al. Apr 1999 A
5946551 Dimitrakopoulos Aug 1999 A
5967048 Fromson et al. Oct 1999 A
5970318 Choi et al. Oct 1999 A
5973598 Beigel Oct 1999 A
5997817 Crismore et al. Dec 1999 A
6036919 Thym et al. Mar 2000 A
6045977 Chandross et al. Apr 2000 A
6060338 Tanaka et al. May 2000 A
6083104 Choi Jul 2000 A
6087196 Sutrm et al. Jul 2000 A
6133835 DeLeeuw et al. Oct 2000 A
6150668 Bao et al. Nov 2000 A
6197663 Chandross et al. Mar 2001 B1
6207472 Calligari et al. Mar 2001 B1
6215130 Dodabalapur Apr 2001 B1
6221553 Wolk et al. Apr 2001 B1
6251513 Rector et al. Jun 2001 B1
6284562 Batlogg et al. Sep 2001 B1
6300141 Segal et al. Oct 2001 B1
6321571 Themont et al. Nov 2001 B1
6322736 Bao Nov 2001 B1
6329226 Jones et al. Dec 2001 B1
6330464 Colvin et al. Dec 2001 B1
6335539 Dimitrakopoulos et al. Jan 2002 B1
6340822 Brown et al. Jan 2002 B1
6344662 Dimitrakopoulos et al. Feb 2002 B1
6362509 Hart Mar 2002 B1
6403396 Gudesen et al. Jun 2002 B1
6407669 Brown et al. Jun 2002 B1
6429450 Mutsaers et al. Aug 2002 B1
6498114 Amundson et al. Dec 2002 B1
6506438 Duthaler et al. Jan 2003 B2
6517995 Jacobsen et al. Feb 2003 B1
6555840 Hudson et al. Apr 2003 B1
6593690 McCormick et al. Jul 2003 B1
6603139 Tessler et al. Aug 2003 B1
6621098 Jackson et al. Sep 2003 B1
6852583 Bernds et al. Feb 2005 B2
6903958 Bernds et al. Jun 2005 B2
20020018911 Bernius et al. Feb 2002 A1
20020022284 Heeger Feb 2002 A1
20020025391 Angelopoulos Feb 2002 A1
20020053320 Duthaler May 2002 A1
20020056839 Joo et al. May 2002 A1
20020068392 Lee et al. Jun 2002 A1
20020130042 Moerman et al. Sep 2002 A1
20020170897 Hall Nov 2002 A1
20020195644 Dodabalapur et al. Dec 2002 A1
20030059987 Sirringhaus et al. Mar 2003 A1
20030112576 Brewer et al. Jun 2003 A1
20030175427 Loo et al. Sep 2003 A1
20040002176 Xu Jan 2004 A1
20040013982 Jacobson et al. Jan 2004 A1
20040026689 Bernds et al. Feb 2004 A1
20040084670 Tripsas et al. May 2004 A1
20040211329 Funahata et al. Oct 2004 A1
Foreign Referenced Citations (141)
Number Date Country
33 38 597 May 1985 DE
4243832 Jun 1994 DE
19852312 May 1999 DE
19816860 Nov 1999 DE
19918193 Nov 1999 DE
100 06 257 Sep 2000 DE
100062575 Sep 2000 DE
19921024 Nov 2000 DE
19933757 Jan 2001 DE
69519782 Jan 2001 DE
19935527 Feb 2001 DE
19937262 Mar 2001 DE
10012204 Sep 2001 DE
10033112 Jan 2002 DE
100 45 192 Apr 2002 DE
100 47 171 Apr 2002 DE
10043204 Apr 2002 DE
100 58 559 May 2002 DE
100 61 297 Jun 2002 DE
10061297 Jun 2002 DE
101 17 663 Oct 2002 DE
101 20 687 Oct 2002 DE
10219905 Dec 2003 DE
0 128 529 Dec 1984 EP
0 268 370 May 1988 EP
0 268 370 May 1988 EP
0 350 179 Jan 1990 EP
0 442 123 Aug 1991 EP
0442123 Aug 1991 EP
0460242 Dec 1991 EP
0501456 Sep 1992 EP
0501456 Sep 1992 EP
0511807 Nov 1992 EP
0528662 Feb 1993 EP
0685985 Dec 1995 EP
0716458 Jun 1996 EP
0 785 578 Jul 1997 EP
0 785 578 Jul 1997 EP
0 615 256 Sep 1998 EP
0962984 Dec 1999 EP
0966182 Dec 1999 EP
0979715 Feb 2000 EP
0981165 Feb 2000 EP
0989614 Mar 2000 EP
1 052 594 Nov 2000 EP
1048912 Nov 2000 EP
1065725 Jan 2001 EP
1065725 Jan 2001 EP
1 083 775 Mar 2001 EP
1 102 335 May 2001 EP
1 104 035 May 2001 EP
1103916 May 2001 EP
1 134 694 Sep 2001 EP
1224999 Jul 2002 EP
1237207 Sep 2002 EP
1 318 084 Jun 2003 EP
2793089 Nov 2000 FR
723598 Feb 1955 GB
2 058 482 Apr 1981 GB
54069392 Jun 1979 JP
60117769 Jun 1985 JP
61001060 Jan 1986 JP
61167854 Jul 1986 JP
362065477 Mar 1987 JP
01169942 Jul 1989 JP
05152560 Jun 1993 JP
05259434 Oct 1993 JP
05347422 Dec 1993 JP
08197788 Aug 1995 JP
09083040 Mar 1997 JP
09320760 Dec 1997 JP
10026934 Jan 1998 JP
2969184 Nov 1999 JP
2001085272 Mar 2001 JP
WO9316491 Aug 1993 WO
WO9417556 Aug 1994 WO
WO 9506240 Mar 1995 WO
WO9531831 Nov 1995 WO
WO9602924 Feb 1996 WO
WO 9619792 Jun 1996 WO
WO 9712349 Apr 1997 WO
WO9718944 May 1997 WO
WO9818156 Apr 1998 WO
WO9818186 Apr 1998 WO
WO9840930 Sep 1998 WO
WO9907189 Feb 1999 WO
WO9910929 Mar 1999 WO
WO9910939 Mar 1999 WO
WO9921233 Apr 1999 WO
PCTIB9801843 Jun 1999 WO
WO9940631 Aug 1999 WO
PCTUS9907853 Oct 1999 WO
WO9954936 Oct 1999 WO
WO 9966540 Dec 1999 WO
WO 0033063 Jun 2000 WO
WO0036666 Jun 2000 WO
WO0079617 Dec 2000 WO
WO 0103126 Jan 2001 WO
WO 0106442 Jan 2001 WO
WO0108241 Feb 2001 WO
WO 0115233 Mar 2001 WO
WO 0117029 Mar 2001 WO
WO0115233 Mar 2001 WO
WO0117041 Mar 2001 WO
WO0127998 Apr 2001 WO
WO 0146987 Jun 2001 WO
WO0147044 Jun 2001 WO
WO0147044 Jun 2001 WO
WO0147045 Jun 2001 WO
WO0173109 Oct 2001 WO
WO0173109 Oct 2001 WO
WO 0205360 Jan 2002 WO
WO0205361 Jan 2002 WO
WO 0215264 Feb 2002 WO
WO0219443 Mar 2002 WO
WO 0229912 Apr 2002 WO
WO 0243071 May 2002 WO
WO0247183 Jun 2002 WO
WO02065557 Aug 2002 WO
WO 02071139 Sep 2002 WO
WO 02071505 Sep 2002 WO
WO 02076924 Oct 2002 WO
WO 02091495 Nov 2002 WO
WO02095805 Nov 2002 WO
WO02095805 Nov 2002 WO
WO 02099908 Dec 2002 WO
WO 0299907 Dec 2002 WO
WO 03046922 Jun 2003 WO
WO 03069552 Aug 2003 WO
WO03067680 Aug 2003 WO
WO 03081671 Oct 2003 WO
WO 03095175 Nov 2003 WO
WO 2004032257 Apr 2004 WO
WO 2004042837 May 2004 WO
WO 2004042837 May 2004 WO
WO2004042837 May 2004 WO
WO2004007194 Jun 2004 WO
WO2004007194 Jun 2004 WO
WO2004047144 Jun 2004 WO
WO2004047144 Jun 2004 WO
WO 2004083859 Sep 2004 WO
Related Publications (1)
Number Date Country
20040026689 A1 Feb 2004 US