One or more embodiments described herein relate to an organic light emitting diode display.
A variety of flat panel displays have been developed. Examples include a liquid crystal display, a plasma display panel, an organic light emitting diode (OLED) display, a field effect display, and an electrophoretic display. Each pixel of an OLED display has an organic emission layer between two electrodes. Electrons injected from one electrode and holes injected from another electrode combine in the organic emission layer to generate excitons. Light is emitted when excitons change state.
An OLED display has self-luminance characteristics which allow it to achieve improved performance and efficiency, e.g., low power consumption, high luminance, and high response speed. Also, because an OLED display does not require an additional light source (e.g., a backlight), it is also able to be thinner and lighter than other displays.
Recently, a bendable, foldable, stretchable, or extensible display device has been developed. In a stretchable display device, light-emitting devices may be formed on a stretchable substrate. When the stretchable substrate is stretched, the light-emitting devices or wires laminated on an upper portion of the stretchable substrate may be damaged.
In accordance with one or more embodiments, an organic light emitting diode display includes a stretchable substrate; a plurality of pixel forming plates on the substrate and spaced apart from each other; and first and second pixels on respective first and second pixel forming plates of the plurality of the pixel forming plates adjacent in a first direction, the first and second pixel forming plates connected by a first bridge, and a cut-out groove in the first and second pixel forming plates and adjacent to an area connected to the first bridge.
The first bridge may be curved in a second direction crossing the first direction. The first bridge may have a predetermined width. The first bridge may have a predetermined radius of curvature. The first bridge may be upwardly curved along the second direction.
The first pixel forming plate may include a first main supporting plate; a first wing plate on one lateral surface of the first main supporting plate, wherein one side end portion of the first wing plate is connected to the first bridge; a second wing plate on another lateral surface of the first main supporting plate and adjacent to the one side end portion of the first wing plate; and a first cut-out groove between one side end portion of the second wing plate and the first bridge.
The second pixel forming plate may include a second main supporting plate; a third wing plate on one lateral surface of the second main supporting plate to face the first wing plate of the first pixel forming plate, one side end portion of the third wing plate connected to the first bridge; a fourth wing plate on another lateral surface of the second main supporting plate and adjacent to the one side end portion of the third wing plate; and a second cut-out groove between one side end portion of the fourth wing plate and the first bridge.
The base layer may include a third pixel forming plate adjacent to the first pixel forming plate in the second direction; a third pixel on the third pixel forming plate; and a second bridge connecting the first and third pixel forming plates.
The third pixel forming plate may include a third main supporting plate; a fifth wing plate on one lateral surface of the third main supporting plate to face the second wing plate of the first pixel forming plate, one side end portion of the fifth wing plate connected to the second bridge; and a sixth wing plate on another lateral surface of the third main supporting plate to be adjacent to the one side end portion of the fifth wing plate, wherein the second bridge is connected to the another end portion of the second wing plate of the first pixel forming plate, and a third cut-out groove between one side end portion of the sixth wing plate and the second bridge.
The display may include a plurality of first to third wires on the first pixel forming plate connected to the first pixel, and the first wires may be connected to a second pixel of the second pixel forming plate through an upper side of the first bridge. The first wires may extend in a length direction of the first bridge and may be disposed in an outer side of a center line of the first bridge passing through a center of the first bridge.
The display may include a plurality of dummy wires on the first bridge and disposed above and below the first wires to overlap a portion of the first wires, wherein strain on the dummy wires is greater than that on the first wires. The dummy wires may extend in a length direction of the first bridge and may be disposed in an inner side of a center line of the first bridge passing through a center of the first bridge. The lengths of the dummy wires may decrease from the inner side of the first bridge toward an outer side thereof.
The display may include a sensing thin film transistor on the respective pixel forming plates and connected to at least one of the first to third wires to measure strain on the at least one of the first to third wires. The first wires may include a plurality of gate lines. The second bridge may be curved in the first direction. The second bridge may have a predetermined width. The second bridge may have a predetermined radius of curvature.
The second and third wires may be connected to a third pixel on the third pixel forming plate through an upper side of the second bridge. Based on a center line of the second bridge extending in a length direction of the second bridge and passing through a center of the second bridge, a portion of the second and third wires that have strain in a first range may be disposed in an outer side of the center line, and another portion of the second and third wires that have strain in a second range may be disposed in an inner side of the center line, the second range greater than the first range. The second wires may include a plurality of data lines and the third wires include a plurality of driving voltage lines. The first bridge may be downwardly curved along the second direction.
The first pixel forming plate may include a first main supporting plate; a first wing plate on one lateral surface of the first main supporting plate; and a second wing plate on another lateral surface of the first main supporting plate, wherein one side end portion of the second wing plate is connected to the first bridge, and wherein a first cut-out groove is between one side end portion of the first wing plate adjacent to the one side end portion of the second wing plate and the first bridge.
The second pixel forming plate may include a second main supporting plate; a third wing plate formed on one lateral surface of the second main supporting plate to face the first wing plate of the first pixel forming plate; and a fourth wing plate formed on another lateral surface of the second main supporting plate, wherein one side end portion of the fourth wing plate is connected to the first bridge, and wherein a second cut-out groove is between one side end portion of the third wing plate adjacent to the one side end portion of the fourth wing plate and the first bridge.
The display may include a plurality of the first pixels, and a plurality of the second pixels. Each of the first pixels and the second pixels may include at least one pixel circuit. Each of the first pixels and the second pixels may include a plurality of subpixels. Each of the pixel forming plates may have substantially a polygonal shape.
In accordance with one or more other embodiments, an organic light emitting diode display includes a stretchable substrate; a plurality of pixel forming plates on the substrate and spaced apart from each other; and first and second pixels on respective first and second pixel forming plates of the plurality of the pixel forming plates adjacent in a first direction; and first to third wires on the first pixel forming plate connected to the first pixels, wherein the first and second pixel forming plates are connected by the first bridge, and wherein the first wires are connected to the second pixels of the second pixel forming plate through an upper side of the first bridge.
The first bridge may have a predetermined width and may be curved in a second direction crossing the first direction. The first bridge may have a predetermined radius of curvature. The first wires may extend in a length direction of the first bridge and may be disposed in an outer side of a center line of the first bridge passing through a center of the first bridge.
The display may include a plurality of dummy wires on the first bridge and above and below the first wires overlapping a portion of the first wires, wherein the dummy wires extend in a length direction of the first bridge and are disposed in an inner side of a center line of the first bridge passing through a center of the first bridge, and wherein strain on the dummy wires is greater than strain on the first wires.
The base layer may includes a third pixel forming plate adjacent to the first pixel forming plate in the second direction crossing the first direction, and a second bridge connecting the first and third pixel forming plates, wherein the second and third wires are connected to third pixels on the third pixel forming plate through an upper side of the second bridge. The second bridge may have a predetermined width and is curved in the first direction. The second bridge may have a predetermined radius of curvature.
Based on a center line of the second bridge extending in a length direction of the second bridge and passing through a center of the second bridge, a portion of the second and third wires may have strain in a first range and may be disposed in an outer side of the center line, and another portion of the second and third wires may have strain in a second range and may be disposed in an inner side of the center line, the second range greater than the first range.
Features will become apparent to those of skill in the art by describing in detail exemplary embodiments with reference to the attached drawings in which:
Example embodiments are described more fully hereinafter with reference to the accompanying drawings; however, they may be embodied in different forms and should not be construed as limited to the embodiments set forth herein. Rather, these embodiments are provided so that this disclosure will be thorough and complete, and will fully convey exemplary implementations to those skilled in the art. The embodiments may be combined to form additional embodiments.
It will also be understood that when a layer or element is referred to as being “on” another layer or substrate, it can be directly on the other layer or substrate, or intervening layers may also be present. Further, it will be understood that when a layer is referred to as being “under” another layer, it can be directly under, and one or more intervening layers may also be present. In addition, it will also be understood that when a layer is referred to as being “between” two layers, it can be the only layer between the two layers, or one or more intervening layers may also be present. Like reference numerals refer to like elements throughout.
In
Referring to
In addition, even though the substrate 100 is stretched, the pixel PX structures on the islands IS are not modified. However, bridges BR connecting the pixel PX structures to each other, and areas CN in which the bridges and the pixels PX are connected, may be modified.
Referring to
Referring to
Each of the pixels may include a pixel circuit for driving an organic light emitting element. The pixel circuit may include, for example, a thin film transistor and a storage capacitor Cst for driving a pixel.
Each of the pixel forming plates 1110 may have a shape corresponding to a sectional shape of the island IS of the substrate 100. In one embodiment, the pixel forming plate 1110 may have substantially a quadrangular shape. The pixel forming plate 1110 may have a different shape in another embodiment, e.g., polygonal shape, such as a circular, triangular, or pentagonal shape corresponding to a sectional shape of the island IS of the substrate 100.
Referring to
The first pixel forming plate 1111 includes a first main supporting plate 1111a, and first and second wing plates 1111b and 1111c. The first main supporting plate 1111a is in a center area of the first pixel forming plate 1111. A thin film transistor, an organic light emitting element are formed on the first main supporting plate 1111a. The first main supporting plate 1111a may have substantially a quadrangular shape.
The first and second wing plates 1111b and 1111c are formed on lateral surfaces of the first pixel forming plate 1111, and are combined with bridges connecting pixel forming plates to each other. The second wing plate 1111c is on the first main supporting plate 1111a and adjacent to the first wing plate 1111b. In
In addition to the first and second wing plates 1111b and 1111c, an additional wing plate may be formed on a lateral surface of the first main supporting plate 1111a. As shown in
In addition, the second pixel forming plate 1113 includes a second main supporting plate 1113a, and third and fourth wing plates 1113b and 1113c. Like the first main supporting plate 1111a, the second main supporting plate 1113a is in a center area of the second pixel forming plate 1113. A thin film transistor, an organic light emitting element, and the like, are formed on the second main supporting plate 1113a. The second main supporting plate 1113a have substantially a quadrangular shape.
The third and fourth wing plates 1113b and 1113c are on lateral surfaces of the second pixel forming plate 1113, and are combined with bridges connecting pixel forming plates to each other. The third wing plate 1113b is on a lateral surface of the second main supporting plate 1113a to face the first wing plate 1111b of the first pixel forming plate 1111. The fourth wing plate 1113c is on the second main supporting plate 1113a and adjacent to the third wing plate 1113b.
In addition to the third and fourth wing plates 1113b and 1113c, an additional wing plate may be formed on the lateral surface of the second main supporting plate 1113a. As shown in
The third pixel forming plate 1115 include a third main supporting plate 1115a, and fifth and sixth wing plates 1115b and 1115c. Like the first main supporting plate 1111a, the third main supporting plate 1115a is in a center area of the third pixel forming plate 1115, and a thin film transistor, an organic light emitting element, and the like, are on the third main supporting plate 1115a. The third main supporting plate 1115a may have substantially a quadrangular shape.
The fifth and sixth wing plates 1115b and 1115c are on lateral surfaces of the third pixel forming plate 1115, and are combined with bridges connecting pixel forming plates to each other. The fifth wing plate 1115b is on a lateral surface of the third main supporting plate 1115a to face the second wing plate 1111c of the first pixel forming plate 1111. The sixth wing plate 1115c is on the third main supporting plate 1115a and adjacent to the fifth wing plate 1115b.
In addition to the fifth and sixth wing plates 1115b and 1115c, an additional wing plate may be formed on the lateral surface of the third main supporting plate 1115a. As shown in
In one embodiment, the first wing plate 1111b of the first pixel forming plate 1111 and the third wing plate 1113b of the second pixel forming plate 1113 are connected by the first bridge 1131. The first bridge 1131 is combined with the same side end portions of the first wing plate 1111b and the third wing plate 1113b.
The first bridge 1131 may have a curved shape, e.g., a bent shape. The first bridge 1131 may have a predetermined constant width. In one embodiment the first bridge 1131 may have a predetermined radius of curvature. In this case, the shape of the first bridge 1131 is modified when the substrate 100, that is disposed below the first bridge 1131, is stretched.
Referring to
Referring again to
Like the first bridge 1131, the second bridge 1133 may be curved. In this case, the second bridge 1133 may have a predetermined width. In one embodiment, the second bridge 1133 may have a predetermined radius of curvature.
Like the first bridge 1131, the shape of the second bridge 1133 is modified when the substrate 100, that is disposed below the second bridge 1133, is stretched. When the substrate 100 is stretched, the shape of the second bridge 1133 connecting the first and third pixel forming plates 1111 and 1115 is modified. In this case, the radius of curvature of the second bridge 1133 increases, so that the area of the base layer 110 may be expanded or the length thereof may extend in one direction.
In one embodiment, a first cut-out groove 30a is formed in the first pixel forming plate 1111 to be adjacent to an area connected with the first bridge 1131. For example, the first cut-out groove 30a may be formed between the first pixel forming plate 1111 and the first bridge 1131.
More specifically, the first cut-out groove 30a may be formed between one side end portion of the second wing plate 1111c of the first pixel forming plate 1111 and the first bridge 1131. The first cut-out groove 30a may prevent the base layer from being broken due to stress occurring between one side end portion of the second wing plate 1111c and the first bridge 1131.
In
In addition, a second cut-out groove 30b is formed in the second pixel forming plate 1113 to be adjacent to an area connected with the first bridge 1131. For example, the second cut-out groove 30b may be formed between the second pixel forming plate 1113 and the first bridge 1131.
More specifically, the second cut-out groove 30b may be formed between one side end portion of the fourth wing plate 1113c of the second pixel forming plate 1113 and the first bridge 1131. Similar to the first cut-out groove 30a, the second cut-out groove 30b may prevent the base layer from being broken due to stress occurring between one side end portion of the fourth wing plate 1113c and the first bridge 1131.
In addition, similar to the first and second cut-out grooves 30a and 30b described above, a fourth cut-out groove 50b may be formed in the first pixel forming plate 1111 to be adjacent to an area connected with the second bridge 1133. Further, a third cut-out groove 50a may be formed in the third pixel forming plate 1115 to be adjacent to an area connected with the second bridge 1133.
Referring to
An equivalent circuit diagram of one pixel or subpixel, on each of the pixel forming plates 1110 will be described with reference to
The signal lines include gate lines 121 for transmitting a scanning signal, data lines 171 for transmitting a data signal, a driving voltage line 172 for transmitting a driving voltage. The gate lines 121 substantially extend in a row direction and are nearly parallel to each other. The data lines 171 substantially extend in a column direction and are nearly parallel to each other. The driving voltage lines 172 are illustrated to substantially extend in the column direction, but may extend in the row or column direction or have a net-like shape.
A single subpixel includes a thin film transistor including a switching transistor T1 and a driving transistor T2, a storage capacitor Cst, and an organic light emitting element LD. One pixel PX, or subpixel, may include a thin film transistor and a capacitor to compensate a current supplied to the organic light emitting element LD.
The switching transistor T1 includes a control terminal N1, an input terminal N2, and an output terminal N3. The control terminal N1 is connected to the gate line 121, the input terminal N2 is connected to the data line 171, and the output terminal N3 is connected to the driving transistor T2.
The switching transistor T1 transmits the data signal from the data line 171 to the driving transistor T2 based on the scanning signal transmitted via the gate line 121.
The driving transistor T2 includes a control terminal N3, an input terminal N4, and an output terminal N5. The control terminal N3 is connected to the switching transistor T1, the input terminal N4 is connected to the driving voltage line 172, and the output terminal N5 is connected to the organic light emitting element LD. The driving transistor T2 outputs an output current Id in an amount which varies according to a voltage applied between the control terminal N3 and the output terminal N5.
In this case, the capacitor Cst is connected between the control terminal N3 and the input terminal N4 of the driving transistor T2. The capacitor Cst is charged with a data signal applied to the control terminal N3 of the driving transistor T2, and maintains the data signal even after the switching transistor T1 is turned off.
For example, as an organic light emitting diode (OLED), the organic light emitting element LD has an anode connected to the output terminal N5 of the driving transistor T2 and a cathode connected to a common voltage Vss. The organic light emitting element LD emits light of varying intensities according to the output current Id of the driving transistor T2.
The organic light emitting element LD may include an organic material that represents one or more primary colors, e.g., red, green, and blue. The OLED display displays a desired image with a spatial sum of these colors.
The switching transistor T1 and the driving transistor T2 are n-channel electric effect transistors (FETs), but at least one of them may be a p-channel FET. In addition, a connection relationship between the transistors T1 and T2, the capacitor Cst, and the organic light emitting element LD may be different in another embodiment.
The OLED display formed on each of the pixel forming plates 1110 will be described more fully with reference to
A buffer layer 120 is formed on the base layer 110. The buffer layer 120 may be formed as a single layer of a silicon nitride (SiNx) or as a dual-layer in which a silicon nitride (SiNx) and a silicon oxide (SiOx) are laminated. The buffer layer 120 serves to flatten a surface while preventing permeation of unnecessary materials such as impurities or moisture.
A switching semiconductor layer 135a and a driving semiconductor layer 135b are formed on the buffer layer 120 and separated from each other. These semiconductor layers 135a and 135b may include, for example, polysilicon or an oxide semiconductor. The oxide semiconductor may include, for example, an oxide based on titanium (Ti), hafnium (Hf), zirconium (Zr), aluminum (Al), tantalum (Ta), germanium (Ge), zinc (Zn), gallium (Ga), tin (Sn), or indium (In), and complex oxides thereof such as zinc oxide (ZnO), indium-gallium-zinc oxide (InGaZnO4), indium-zinc oxide (Zn—In—O), zinc-tin oxide (Zn—Sn—O), indium-gallium oxide (In—Ga—O), indium-tin oxide (In—Sn—O), indium-zirconium oxide (In—Zr—O), indium-zirconium-zinc oxide (In—Zr—Zn—O), indium-zirconium-tin oxide (In—Zr—Sn—O), indium-zirconium-gallium oxide (In—Zr—Ga—O), indium-aluminum oxide (In—Al—O), indium-zinc-aluminum oxide (In—Zn—Al—O), indium-tin-aluminum oxide (In—Sn—Al—O), indium-aluminum-gallium oxide (In—Al—Ga—O), indium-tantalum oxide (In—Ta—O), indium-tantalum-zinc oxide (In—Ta—Zn—O), indium-tantalum-tin oxide (In—Ta—Sn—O), indium-tantalum-gallium oxide (In—Ta—Ga—O), indium-germanium oxide (In—Ge—O), indium-germanium-zinc oxide (In—Ge—Zn—O), indium-germanium-tin oxide (In—Ge—Sn—O), indium-germanium-gallium oxide (In—Ge—Ga—O), titanium-indium-zinc oxide (Ti—In—Zn—O), and hafnium-indium-zinc oxide (Hf—In—Zn—O).
When the semiconductor layers 135a and 135b include an oxide semiconductor material, a separate passivation layer may be added to protect the oxide semiconductor from environmental influences, e.g., high temperature or the like.
The semiconductor layers 135a and 135b include a channel region where impurities are not doped. Source and drain regions are at opposite sides of the channel region where the impurities are doped. The doped impurities may be different depending on the type of the thin film transistor and may, for example, include n-type or p-type impurities.
The switching semiconductor layer 135a and the driving semiconductor layer 135b are divided into channel regions 1355 and source and drain regions 1356 and 1357 respectively formed at opposite sides of the channel region 1355. The channel regions 1355 of the switching semiconductor layer 135a and the driving semiconductor layer 135b may include polysilicon that is not doped with the impurities, e.g., may be an intrinsic semiconductor.
The source and drain regions 1356 and 1357 of the switching semiconductor layer 135a and the driving semiconductor layer 135b may include polysilicon doped with conductive impurities, e.g., may be an impurity semiconductor.
A gate insulating layer 140 is on the switching semiconductor layer 135a and the driving semiconductor layer 135b. The gate insulating layer 140 may be a single layer or multiple layers including, for example, at least one of a silicon nitride or a silicon oxide.
A gate line 121, a driving gate electrode 125b, and a first capacitor electrode 128 are on the gate insulating layer 140. The gate line 121 extends in a horizontal direction and transmits a scan signal to a switching transistor T1. The gate line 121 includes a switching gate electrode 125a that protrudes toward switching semiconductor layer 135a.
The driving gate electrode 125b protrudes toward the driving semiconductor layer 135b from the first capacitor electrode 128. Each of the switching gate electrode 125a and the driving gate electrode 125b overlap the channel region 1355.
An interlayer insulating layer 160 is on the gate line 121, the driving gate electrode 125b, and the first capacitor electrode 128. The interlayer insulating layer 160 may include, for example, a silicon nitride, a silicon oxide, or the like, as is the gate insulating layer 140.
In the interlayer insulating layer 160 and the gate insulating layer 140, a source contact hole 61 and a drain contact hole 62 are formed to respectively expose the source region 1356 and the drain region 1357. A storage contact hole 63 is formed to expose some of the first capacitor electrode 128.
A data line 171 having a switching source electrode 176a, a driving voltage line 172 having a driving source electrode 176b and a second capacitor electrode 178, and a switching drain electrode 177a and a driving drain electrode 177b connected to the first capacitor electrode 128 are formed on the interlayer insulating layer 160.
The data line 171 transmits a data signal and extends to cross the gate line 121. The driving voltage line 172 transmits a driving voltage and is separated from the data line to extend in the same direction as the data line 171.
The switching source electrode 176a protrudes toward the switching semiconductor layer 135a from the data line 171. The driving source electrode 176b protrudes toward the driving semiconductor layer 135b from driving voltage line 172. Each of the switching source electrode 176a and the driving source electrode 176b is connected to the source region 1356 through the source contact hole 61. The switching drain electrode 177a faces the switching source electrode 176a, and the driving drain electrode 177b faces the driving source electrode 176b.
Each of the switching drain electrode 177a and the driving drain electrode 177b is connected to the drain region 1357 through the drain contact hole 62. The switching drain electrode 177a is extended to be electrically connected to the first capacitor electrode 128 and the driving gate electrode 125b through the contact hole 63 in the interlayer insulating layer 160.
The second capacitor electrode 178 protrudes from the driving voltage line 172 to overlap the first capacitor electrode 128. Accordingly, the first capacitor electrode 128 and the second capacitor electrode 178 form the storage capacitor Cstl, with the interlayer insulating layer 160 serving as a dielectric material.
The switching semiconductor layer 135a, the switching gate electrode 125a, the switching source electrode 176a, and the switching drain electrode 177a form a switching thin film transistor T1. Meanwhile, the driving semiconductor layer 135b, the driving gate electrode 125b, the driving source electrode 176b, and the driving drain electrode 177b form a driving thin film transistor T2. The switching thin film transistor T1 and the driving thin film transistor T2 correspond to switching elements.
A passivation layer 180 is formed on the switching source electrode 176a, the driving source electrode 176b, the switching drain electrode 177a, and the driving drain electrode 177b.
A pixel electrode 710 is formed on the passivation layer 180. The pixel electrode 710 may include, for example, a transparent conductive material such as indium tin oxide (ITO), indium zinc oxide (IZO), zinc oxide (ZnO), indium oxide (In2O3), etc., or a reflective metal such as lithium, calcium, lithium fluoride/calcium, lithium fluoride/aluminum, aluminum, silver, magnesium, gold, etc.
The pixel electrode 710 is electrically connected to the driving drain electrode 177b of the driving thin film transistor T2 through a contact hole 181 in the interlayer insulating layer 160, and becomes an anode of the organic light emitting element 70.
A pixel definition layer 350 is formed on edge portions of the passivation layer 180 and the pixel electrode 710. The pixel definition layer 350 includes an opening that exposes the pixel electrode 710. The pixel definition layer 350 include a resin based on, for example, polyacrylates or polyimides, or a silica-based inorganic material.
An organic emission layer 720 is formed in the opening of the pixel definition layer 350. The organic emission layer 720 may be formed with multiple layers including a hole-injection layer (HIL), a hole-transporting layer (HTL), an electron-transporting layer (ETL), and/or an an electron-injection layer. When all of the above layers are included, the HIL may be disposed on the pixel electrode 710 serving as the anode, and the HTL, the emission layer, the ETL, and the EIL may be sequentially laminated thereon.
The organic emission layer 720 may include a red organic emission layer emitting red light, a green organic emission layer emitting green light, and/or a blue organic emission layer emitting blue light. The red organic emission layer, the green organic emission layer, and the blue organic emission layer are respectively formed on a red pixel, a green pixel, and a blue pixel to implement a color image.
The red organic emission layer, the green organic emission layer, and the blue organic emission layer may be integrally laminated on the organic emission layer 720 together with the red pixel, the green pixel, and the blue pixel to respectively form a red color filter, a green color filter, and a blue color filter in each pixel, to thereby implement a color image.
In another embodiment, a white organic emission layer emitting white light is formed on all of the red pixel, the green pixel, and the blue pixel. A red color filter, a green color filter, and a blue color filter may be respectively formed for these pixels to implement a color image. When the color image is implemented using the white organic emission layer and the color filter, a deposition mask for depositing the red organic emission layer, the green organic emission layer, and the blue organic emission layer on individual pixels, that is, the red pixel, the green pixel, and the blue pixel, is not required.
In another embodiment, the white organic emission layer may be formed to have a single organic emission layer, and may further include a configuration in which a plurality of organic emission layers are laminated to emit white light. For example, a configuration in which at least one yellow organic emission layer and at least one blue organic emission layer are combined to emit white light, a configuration in which at least one cyan organic emission layer and at least one red organic emission layer are combined to emit white light, and a configuration in which at least one magenta organic emission layer and at least one green organic emission layer are combined to emit white light, may be further included.
A common electrode 730 is formed on the pixel definition layer 350 and the organic emission layer 720. The common electrode 730 may include, for example, a transparent conductive material such as indium tin oxide (ITO), indium zinc oxide (IZO), zinc oxide (ZnO), indium oxide (In2O3), etc., or a reflective metal such as lithium, calcium, lithium fluoride/calcium, lithium fluoride/aluminum, aluminum, silver, magnesium, gold, etc. The common electrode 730 may be a cathode of the organic light emitting element 70. The pixel electrode 710, the organic emission layer 720, and the common electrode 730 form the organic light emitting element 70. An overcoat may be formed on the common electrode 730 to protect the organic light emitting element 70.
In one embodiment, first to third wires 121, 171, and 172 are connected to the pixel PX1, PX2, PX3, and PX4 on the pixel forming plates 1110, and may be formed on the bridge 1130. For example, a plurality of wires connected to the pixel PX1, PX2, PX3, and PX4 may respectively extend to the pixel forming plates through the bridge.
Referring again to
In one embodiment, the first wire 121 may correspond to the aforementioned gate line 121 for transmitting the scanning signal. In
The second and third wires 171 and 172 extend in the second direction through the pixel PX1 on the first pixel forming plate 1111 and may be formed on the second bridge 1133. The second and third wires 171 and 172 may be connected to the pixel PX3 of the third pixel forming plate 1115. For example, the second and third wires 171 and 172 extend through the first pixel forming plate 1111, the second bridge 1133, and the third pixel forming plate 1115.
In one embodiment, the second and third wires 171 and 172 may correspond to the aforementioned data line 171 for transmitting the data signal and the aforementioned driving voltage line 172 for transmitting the driving voltage, respectively. In
Referring to
The strain on the first bridge 1131 increases closer to the reference point S. That is, the strain increases closer to a center of the first bridge 1131 based on a predetermined radius of curvature. For example, based on a center line through a center of width of the first bridge 1131, strain on an inner side of the center line is greater than on an outer side thereof.
Referring to
Based on the measured results in
Referring to
In one embodiment, the first wires 121 may be uniformly disposed in the bridge 1130. However, dummy wires 800 may be in the inner side of the center line CL. In this case, strain on the dummy wire 800 may be greater than that on the first wire 121.
Referring to
In one embodiment, the first wires 121 may be uniformly above the bridge 1130. However, as shown in
In one embodiment, among the second and third wires 171 and 172 on the bridge 1130, a wire that has relatively small strain is in the outer side of the center line CL. Further, among the second and third wires 171 and 172, a wire that has relatively greater strain is in the inner side of the center line CL. Accordingly, since the wire with the relatively greater strain is disposed in the inner side of the center line CL and the wire with the relatively small strain is disposed in the outer side of the center line CL, the second and third wires 171 and 172 may be prevented from being cut or cracked due to repetitive moving of the first and second pixel forming plates 1111 and 1113.
For example, referring to
In one embodiment, a sensing thin film transistor 900 for measuring strain of the first to third wires 121, 171, and 172 on the bridge 1130 may be disposed on the pixel forming plates 1110. For example, referring to
Referring to
Referring to
Referring to
As shown in
However, as shown in
Configurations of the first to third pixel forming plates 1111″, 1113″, and 1115″ may be the same as those of the first to third pixel forming plates 1111, 1113, and 1115 of the aforementioned embodiment. Also, like the aforementioned embodiment, the first bridge 1131″ may have a predetermined width. Further, the first bridge 1131″ may be bent to a predetermined curvature radius.
Referring to
In this embodiment, a first cut-out groove 30a″ is formed in the first pixel forming plate 1111″ to be adjacent to an area connected with the first bridge 1131″. For example, the first cut-out groove 30a″ may be between the first pixel forming plate 1111″ and the first bridge 1131″. For example, the first cut-out groove 30a″ is between one side end portion of the second wing plate 1111c″ of the first pixel forming plate 1111″ and the first bridge 1131″. The first cut-out groove 30a″ may prevent the base layer from being broken due to stress occurring between one side end portion of the first wing plate 1111b″ and the first bridge 1131″.
In
In addition, a second cut-out groove 30b″ is formed in the second pixel forming plate 1113″ to be adjacent to an area connected with the first bridge 1131″. For example, the second cut-out groove 30b″ may be between the second pixel forming plate 1113″ and the first bridge 1131″. For example, the second cut-out groove 30b″ is between one side end portion of the third wing plate 1113b″ of the second pixel forming plate 1113″ and the first bridge 1131″. Similar to the first cut-out groove 30a″, the second cut-out groove 30b″ may prevent the base layer from being broken due to stress occurring between one side end portion of the third wing plate 1113c″ and the first bridge 1131″.
In addition, similar to the first and second cut-out grooves 30a″ and 30b″ described above, a fourth cut-out groove 50b″ may be formed in the first pixel forming plate 1111″ to be adjacent to an area connected with the second bridge 1133″. Further, a third cut-out groove 50a″ may be formed in the third pixel forming plate 1115″ to be adjacent to an area connected with the second bridge 1133″.
As shown in
According to the second embodiment described above, the first and second pixel forming plates 1111′ and 1113′ are arranged in the first direction. Further, the first and third pixel forming plates 1111′ and 1115′ are arranged in the second direction. In this case, the first and second pixel forming plates 1111′ and 1113′ are connected by the first bridge 1131′, and the first and third pixel forming plates 1111′, 1115′ are connected by the second bridge 1133′.
For example, the first pixel forming plate 1111′ includes a first main supporting plate 1111a′, and first and second wing plates 1111b′ and 1111c′.
The first main supporting plate 1111a′ may have a substantially quadrangular shape in a center area of the first pixel forming plate 1111′. Further, the first and second wing plates 1111b′ and 1111c′ are formed in a lateral surface of the first pixel forming plate 1111′, and are combined with the bridge connecting the pixel forming plates to each other. The second wing plate 1111c′ is disposed in the first main supporting plate 1111a′ to be adjacent to the first wing plate 1111b′. In
In this case, the first and second wing plates 1111b′ and 1111c′ disposed in the lateral surface of the first pixel forming plate 1111′ may be formed to have a substantially triangular shape. As shown in
Similar to the aforementioned first pixel forming plate 1111′, the wing plates of the second and third pixel forming plates 1113′ and 1115′ are also formed to have a triangular shape, and a cut-out groove is not formed between the second and third pixel forming plates 1113′ and 1115′ and the bridge.
Referring to
For example, first wires 121′, extended in the first direction through the pixel PX1′ formed on the first pixel forming plate 1111′, are formed on the first bridge 1131′. Further, the first wires 121′ may be connected to the pixel PX2′ of the second pixel forming plate 1113′. For example, the first wires 121′ are formed to extend in the first direction through the first pixel forming plate 1111′, the first bridge 1131′, and the second pixel forming plate 1113′.
Second and third wires 171′ and 172′, extended in the second direction through the pixel PX1′ formed on the first pixel forming plate 1111′, are formed on the second bridge 1133′. Further, the second and third wires 171′ and 172′ may be connected to the pixel PX3′ of the third pixel forming plate 1115′. For example, the second and third wires 171′ and 172′ are formed to extend through the first pixel forming plate 1111′, the second bridge 1133′, and the third pixel forming plate 1115′.
In the present embodiment, the first to third wires 121′, 171′, and 172′ through the first or second bridge 1131′ or 1133′ may be disposed in the first or second bridge 1131′ or 1133′ in the same way as the embodiment in
Example embodiments have been disclosed herein, and although specific terms are employed, they are used and are to be interpreted in a generic and descriptive sense only and not for purpose of limitation. In some instances, as would be apparent to one of skill in the art as of the filing of the present application, features, characteristics, and/or elements described in connection with a particular embodiment may be used singly or in combination with features, characteristics, and/or elements described in connection with other embodiments unless otherwise indicated. Accordingly, it will be understood by those of skill in the art that various changes in form and details may be made without departing from the spirit and scope of the invention as set forth in the following claims.
Number | Date | Country | Kind |
---|---|---|---|
10-2015-0033419 | Mar 2015 | KR | national |
This is a continuation application based on currently pending U.S. patent application Ser. No. 16/105,361, filed Aug. 20, 2018, the disclosure of which is incorporated herein by reference in its entirety. U.S. patent application Ser. No. 16/105,361 is a continuation application of U.S. patent application Ser. No. 15/786,819, filed Oct. 18, 2017, now U.S. Pat. No. 10,056,435, issued Aug. 21, 2018, the disclosure of which is incorporated herein by reference in its entirety. U.S. Pat. No. 10,056,435 is a continuation application of U.S. patent application Ser. No. 15/064,917, filed Mar. 9, 2016, now U.S. Pat. No. 9,799,708, issued Oct. 24, 2017, the disclosure of which is incorporated herein by reference in its entirety. U.S. Pat. No. 9,799,708 claims priority benefit of Korean Patent Application No. 10-2015-0033419 under 35 U.S.C. § 119, filed on Mar. 10, 2015, the disclosure of which is incorporated herein by reference in its entirety for all purposes.
Number | Name | Date | Kind |
---|---|---|---|
8063400 | Sugimoto | Nov 2011 | B2 |
8084117 | Lalvani | Dec 2011 | B2 |
8207473 | Axisa et al. | Jun 2012 | B2 |
8217381 | Rogers et al. | Jul 2012 | B2 |
8389862 | Arora et al. | Mar 2013 | B2 |
8536667 | Graff et al. | Sep 2013 | B2 |
9391286 | Kwon et al. | Jul 2016 | B1 |
20070122590 | Lalvani | May 2007 | A1 |
20080218369 | Krans et al. | Sep 2008 | A1 |
20100002402 | Rogers et al. | Jan 2010 | A1 |
20100330338 | Boyce et al. | Dec 2010 | A1 |
20120052268 | Axisa et al. | Mar 2012 | A1 |
20140138637 | Yang et al. | May 2014 | A1 |
20140299362 | Park et al. | Oct 2014 | A1 |
Number | Date | Country |
---|---|---|
2008-542834 | Nov 2008 | JP |
2006129232 | Dec 2006 | WO |
2008123416 | Oct 2008 | WO |
2011008459 | Jan 2011 | WO |
Number | Date | Country | |
---|---|---|---|
20200258951 A1 | Aug 2020 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 16105361 | Aug 2018 | US |
Child | 16864587 | US | |
Parent | 15786819 | Oct 2017 | US |
Child | 16105361 | US | |
Parent | 15064917 | Mar 2016 | US |
Child | 15786819 | US |