One or more embodiments relate to an organic light-emitting display device, and more particularly, to an organic light-emitting display device with improved light efficiency.
Generally, an organic light-emitting display device includes an organic light-emitting diode (OLED) having an intermediate layer including an emission layer between two electrodes. In the organic light-emitting display device, it is generally desirable for light generated from the emission layer to be directed toward a user. However, since light generated from the emission layer of the organic light-emitting display device generally travels in a plurality of directions, brightness in a front direction in which the user is located is low.
One or more embodiments include an organic light-emitting display device with improved light efficiency. However, this object is merely exemplary, and the scope of the inventive concept is not limited thereto.
Additional aspects will be set forth in part in the description which follows and, in part, will be apparent from the description, or may be learned by practice of the presented embodiments.
According to one or more embodiments, an organic light-emitting display device includes: a plurality of pixel electrodes, each corresponding to one of at least a first pixel, a second pixel, and a third pixel; a pixel-defining layer covering an edge of each of the pixel electrodes and exposing a central portion of each of the pixel electrodes; an intermediate layer over the pixel electrode, the intermediate layer comprising an emission layer; an opposite electrode over the intermediate layer; and a lens layer over the opposite electrode, the lens layer comprising a plurality of condensing lenses each having a circular lower surface. An area of the portion of a pixel electrode corresponding to the first pixel and exposed by the pixel-defining layer is Ar; an area of the lower surface of a condensing lens over the first pixel is Br; and the ratio Br/Ar ranges from about 1.34 to about 2.63. An area of the portion of a pixel electrode corresponding to the second pixel and exposed by the pixel-defining layer is Ag; an area of the lower surface of a condensing lens over the second pixel is Bg; and the ratio Bg/Ag ranges from about 1.43 to about 3.00. An area of the portion of a pixel electrode corresponding to the third pixel and exposed by the pixel-defining layer is Ab; an area of the lower surface of a condensing lens over the third pixel is Bb; and the ratio Bb/Ab ranges from about 1.30 to about 2.43.
When the light emitted from the emission layer is red light, Br/Ar may be about 1.62, when the light emitted from the emission layer is green light, Bg/Ag may be about 1.77, and when the light emitted from the emission layer is blue light, Bb/Ab may be about 1.55.
According to one or more embodiments, a plurality of pixel electrodes, each corresponding to one of at least a red pixel, a green pixel, and a blue pixel; a pixel-defining layer covering an edge of each of the pixel electrodes and exposing a central portion of each of the pixel electrodes; an intermediate layer over the pixel electrode, the intermediate layer including an emission layer; an opposite electrode over the intermediate layer; and a lens layer over the opposite electrode, the lens layer comprising a plurality of condensing lenses each having a quadrangular lower surface. An area of the portion of a pixel electrode corresponding to the red pixel and exposed by the pixel-defining layer is Ar; an area of the lower surface of a condensing lens over the red pixel is Br; and the ratio Br/Ar ranges from about 1.71 to about 3.36. An area of the portion of a pixel electrode corresponding to the green pixel and exposed by the pixel-defining layer is Ag; an area of the lower surface of a condensing lens over the green pixel is Bg; and the ratio Bg/Ag ranges from about 1.83 to about 3.82. An area of the portion of a pixel electrode corresponding to the blue pixel and exposed by the pixel-defining layer is Ab; an area of the lower surface of a condensing lens over the blue pixel is Bb; and the ratio Bb/Ab ranges from about 1.66 to about 3.09.
The ratio Br/Ar may be about 2.07; the ratio Bg/Ag may be about 2.26; and the ratio Bb/Ab may be about 1.98.
The lens layer may include a first lens layer and a second lens layer between the first lens layer and the opposite electrode, the second lens layer having a refractive index less than the refractive index of the first lens layer.
The second lens layer may include a concave portion concave in a direction toward the opposite electrode, the first lens layer may fill the concave portion, and an area of the lower surface of the condensing lens may be an area occupied by the concave portion in a surface of the second lens layer in a direction to the first lens layer.
The concave portion may have a depth of about ⅖ to about ⅗ of a thickness of a non-concave portion of the second lens layer.
The second lens layer may include a photoresist.
The second lens layer may include acrylate.
The first lens layer may include a material cured by irradiation of an ultraviolet ray.
The first lens layer or the second lens layer may include siloxane and at least one of zirconium oxide, aluminum oxide, and titanium oxide.
According to one or more embodiments, an organic light-emitting display device includes: a plurality of pixel electrodes, each corresponding to one of at least a red pixel, a green pixel, and a blue pixel; a pixel-defining layer covering an edge of each of the pixel electrodes and exposing a central portion of each of the pixel electrodes; an intermediate layer over the pixel electrode, the intermediate layer including an emission layer; an opposite electrode over the intermediate layer; and a lens layer over the opposite electrode, the lens layer comprising a plurality of condensing lenses each having a polygonal lower surface. An area of the portion of a pixel electrode corresponding to the red pixel and exposed by the pixel-defining layer is Ar; an area of the biggest circle that would fit inside the polygon of the lower surface of a condensing lens over the red pixel is Br; and the ratio Br/Ar ranges from about 1.34 to about 2.63. An area of the portion of a pixel electrode corresponding to the green pixel and exposed by the pixel-defining layer is Ag; an area of the biggest circle that would fit inside the polygon of the lower surface of a condensing lens over the green pixel is Bg; and the ratio Bg/Ag ranges from about 1.43 to about 3.00. An area of the portion of a pixel electrode corresponding to the blue pixel and exposed by the pixel-defining layer is Ab; an area of the biggest circle that would fit inside the polygon of the lower surface of a condensing lens over the blue pixel is Bb; and the ratio Bb/Ab ranges from about 1.30 to about 2.43.
The ratio Br/Ar may be about 1.62; the ratio Bg/Ag may be about 1.77; and the ratio Bb/Ab may be about 1.55.
The lens layer may include a first lens layer and a second lens layer between the first lens layer and the opposite electrode, the second lens layer having a refractive index less than the refractive index of the first lens layer.
The second lens layer may include a plurality of concave portions each concave in a direction toward the opposite electrode, the first lens layer may fill the concave portions, and each of the areas Br, Bg, and Bb may be an area of a circle of a maximum size inside a corresponding concave portion in a surface of the second lens layer in a direction to the first lens layer.
According to embodiments, an organic light-emitting display device that improves light efficiency may be implemented. However, the scope of the inventive concept is not limited by this effect.
These and/or other aspects will become apparent and more readily appreciated from the following description of the embodiments, taken in conjunction with the accompanying drawings in which:
As the inventive concept allows for various changes and numerous embodiments, exemplary embodiments will be illustrated in the drawings and described in detail in the written description. An effect and a characteristic of the inventive concept, and a method of accomplishing these will be apparent when referring to embodiments described with reference to the drawings. This inventive concept may, however, be embodied in many different forms and should not be construed as limited to the exemplary embodiments set forth herein.
Hereinafter, the inventive concept will be described more fully with reference to the accompanying drawings, in which exemplary embodiments of the inventive concept are shown. When description is made with reference to the drawings, like reference numerals in the drawings denote like or corresponding elements, and repeated description thereof will be omitted.
As used herein, the term “and/or” includes any and all combinations of one or more of the associated listed items.
Expressions such as “at least one of” when preceding a list of elements, modify the entire list of elements and do not modify the individual elements of the list.
Sizes of elements in the drawings may be exaggerated for convenience of explanation. In other words, since sizes and thicknesses of components in the drawings may be arbitrarily illustrated for convenience of explanation, the following embodiments are not limited thereto.
In the following examples, the x-axis, the y-axis and the z-axis are not limited to the three axes of the rectangular coordinate system, and may be interpreted in a broader sense. For example, the x-axis, the y-axis, and the z-axis may be perpendicular to one another or may represent different directions that are not perpendicular to one another.
As illustrated in
Each of the OLEDs includes a pixel electrode, an intermediate layer over the pixel electrode, the intermediate layer including an emission layer, and an opposite electrode over the intermediate layer. The OLEDs may be over various layers. For example, as illustrated in
The pixel electrodes 110R, 110G, and 110B may be (semi) transparent electrodes or reflective electrodes. In the case in which the pixel electrodes 110R, 110G, and 110B are the (semi) transparent electrodes, the pixel electrodes 110R, 110G, and 110B may include ITO, IZO, ZnO, In2O3, IGO, or AZO, for example. In the case in which the pixel electrodes 110R, 110G, and 110B are the reflective electrodes, the pixel electrodes 110R, 110G, and 110B may include a reflective layer including Ag, Mg, Al, Pt, Pd, Au, Ni, Nd, Ir, Cr, or a compound thereof, etc., and a layer including ITO, IZO, ZnO, In2O3, IGO, or AZO. The inventive concepts are not limited thereto, and the pixel electrodes 110R, 110G, and 110B may include various materials and may have various structures such as a single layer or multiple layers.
Each of the pixel electrodes 110R, 110G, and 110B may be electrically connected to a thin film transistor (not shown). For example, the thin film transistors may be below the planarization layer or the protective layer 10, and the pixel electrodes 110R, 110G, and 110B may be electrically connected to corresponding thin film transistors, respectively, via contact holes in the planarization layer or the protective layer 10. In this case, portions of the pixel electrodes 110R, 110G, and 110B that correspond to the contact holes may be covered with a pixel-defining layer 200.
A portion, not the entire surface, of the pixel electrodes 110R, 110G, and 110B contacts intermediate layers 120R, 120G, and 120B each including an emission layer. That is, the pixel-defining layer 200 covers the edge of each of the pixel electrodes 110R, 110G, and 110B such that the central portion of each of the pixel electrodes 110R, 110G, and 110B is exposed. The pixel-defining layer 200 defines a pixel by having openings respectively correspond to sub-pixels, that is, by having the openings expose the central portions of at least the pixel electrodes 110R, 110G, and 110B. Also, the pixel-defining layer 200 prevents arc, etc. from occurring at the edges of pixel electrodes 110R, 110G, and 110B by increasing a distance between the edge of each of the pixel electrodes 110R, 110G, and 110B and the opposite electrode 130 over the pixel electrodes 110R, 110G, and 110B. The pixel-defining layer 200 may include, for example, an organic material such as polyimide (PI) or hexamethyldisiloxane (HMDSO).
The intermediate layers 120R, 120G, and 120B each including the emission layer may include a low molecular material or a polymer material. In the case in which the intermediate layers 120R, 120G, and 120B include the low molecular material, the intermediate layers 120R, 120G, and 120B may have a structure in which a hole injection layer (HIL), a hole transport layer (HTL), an emission layer (EML), an electron transport layer (ETL), an electron injection layer (EIL), etc. are stacked in a single or composite structure. The intermediate layers 120R, 120G, and 120B may include various organic materials such as copper phthalocyanine (CuPc), N,N′-Di(naphthalene-1-yl)-N,N′-diphenyl-benzidine (NPB), and/or tris-8-hydroxyquinoline aluminum (Alq3). These layers may be formed by using a vacuum deposition method.
In the case in which the intermediate layers 120R, 120G, and 120B include the polymer material, the intermediate layers 120R, 120G, and 120B may generally have a structure including an HTL and an EML. In this case, the HTL may include a PEDOT, and the EML may include a polymer material such as a poly-phenylenevinylene (PPV)-based material and a polyfluorene-based material. The intermediate layers 120R, 120G, and 120B may be formed by using screen printing, an inkjet printing method, or laser induced thermal imaging (LITI), etc.
Though
As illustrated in
Since the OLEDs 100R, 100G, and 100B may be easily damaged by external moisture or oxygen, etc., an encapsulation layer 300 may cover the OLEDs 100R, 100G, and 100B and protect the same. As illustrated in
The first inorganic encapsulation layer 310 may cover the opposite electrode 130 and include a silicon oxide, a silicon nitride, and/or a silicon oxynitride, etc. In other embodiments, other layers such as a capping layer may be between the first inorganic encapsulation layer 310 and the opposite electrode 130. Since the first inorganic encapsulation layer 310 is along a structure therebelow, the upper surface of the first inorganic encapsulation layer 310 is not planarized as illustrated in
Since the thin film encapsulation layer 300 includes the first inorganic encapsulation layer 310, the organic encapsulation layer 320, and the second inorganic encapsulation layer 330, even when a crack occurs inside the encapsulation layer 300, the crack may not be allowed to be connected between the first inorganic encapsulation layer 310 and the organic encapsulation layer 320 or between the organic encapsulation layer 320 and the second inorganic encapsulation layer 330 due to the above-described multi-layered structure. Through this, forming of a path via which external moisture or oxygen, etc. penetrates into the OLEDs 100R, 100G, and 100B may be prevented or minimized.
A lens layer 400 is over the opposite electrode 130, for example, on the encapsulation layer 300. In other embodiments, other elements such as a touch electrode layer 500, etc. for implementing a touchscreen function may be between the encapsulation layer 300 and the lens layer 400. The lens layer 400 may include a condensing lens and adjust a light path of light occurring from the intermediate layers 120R, 120G, and 120B each including the emission layer. The lens layer 400 includes a condensing lens and adjusts a light path of light traveling in a lateral direction (a direction between +x direction and +z direction, or a direction between −x direction and +z direction) from among light occurring from the intermediate layers 120R, 120G, and 120B each including the emission layer, thereby allowing light to approximately travel in a front direction (+z direction) in which a user is located. Through this, light efficiency may improve by improving the brightness of the display device in the front direction.
The lens layer 400 having the condensing lens may be formed by various methods. As illustrated in
The second lens layer 420 having a relatively low refractive index is allowed to have a concave portion that is concave in the direction (−z direction) toward the opposite electrode 130. Also, the first lens layer 410 having a relatively high refractive index fills the concave portion. When the first lens layer 410 and the second lens layer 420 are formed as described above, it may be understood that the concave portion of the second lens layer 420 and a corresponding portion of the first lens layer 410 form the condensing lens. Through this, a condensing effect in the front direction (+z direction) may be allowed to appear by changing a path of light passing through an interface between the first lens layer 410 and the second lens layer 420 in the concave portion. The depth of the concave portion of the second lens layer 420 may be about ⅖ to ⅗ of the thickness of a portion of the second lens layer 420 that is not concaved.
While forming the second lens layer 420, the concave portions respectively corresponding to the pixel electrodes 110R, 110G, and 110B are formed as illustrated in
The first lens layer 410 over the second lens layer 420 may not require separate patterning but may have a refractive index greater than that of the second lens layer 420. To increase a refractive index, the first lens layer 410 may include siloxane and at least one of zirconium oxide particles, aluminum oxide particles, and titanium oxide particles. The first lens layer 410 may have a refractive index of about 1.6 or more and may be formed by using an inkjet printing method or screen printing, etc.
After the intermediate layers 120R, 120G, and 120B, the opposite electrode 130, the encapsulation layer 300, etc. are formed, the lens layer 400 including the first lens layer 410 and the second lens layer 420 may be formed thereon. Damage of the intermediate layers 120R, 120G, and 120B, etc. below the lens layer 400 may be prevented during a process of forming the lens layer 400. Particularly, while forming the lens layer 400, a material that does not require heat-curing at high temperature may be used so that the already formed intermediate layers 120R, 120G, and 120B, etc. would not have to undergo heat-curing at high temperature and avoid being damaged thereby. The above-described material for the first lens layer 410 and material for the second lens layer 420 may be materials that allow heat-curing at low temperature or materials that allow ultraviolet-curing, so that the intermediate layers 120R, 120G, and 120B do not become damaged or influenced.
To increase light-condensing efficiency by using the lens layer 400, the area of a lower surface of the condensing lens may be suitably adjusted. Here, the area of the lower surface of the condensing lens may be understood as an area occupied by a concave portion in the second lens layer 420 in the direction (+z direction) to the first lens layer 410. First, a case of a condensing lens having a circular lower surface represented by a reference numeral L1 in
As the graph of
However, the range of the diameter of the lower surface of the condensing lens that results in optimized light efficiency changes depending on the area of the exposed portion of the red pixel electrode 110R that is not covered with the pixel-defining layer 200. That is, when the area of the exposed portion of the red pixel electrode 110R that is not covered with the pixel-defining layer 200 widens, the upper limit and the lower limit of the diameter of the lower surface of the condensing lens that result in optimized light efficiency also increase, respectively. When the area of the exposed portion of the red pixel electrode 110R that is not covered with the pixel-defining layer 200 narrows, the upper limit and the lower limit of the diameter of the lower surface of the condensing lens that result in optimized light efficiency also reduce, respectively. Therefore, determining the optimal range of the diameter of the lower surface of the condensing lens may require taking into account a ratio of the area of the exposed portion of the red pixel electrode 110R that is not covered with the pixel-defining layer 200 to the area of the lower surface of the condensing lens.
The graph of
As the graph of
However, the range of the diameter of the lower surface of the condensing lens that results in optimized light efficiency changes depending on the area of the exposed portion of the green pixel electrode 110G that is not covered with the pixel-defining layer 200. That is, when the area of the exposed portion of the green pixel electrode 110G that is not covered with the pixel-defining layer 200 widens, the upper limit and the lower limit of the diameter of the lower surface of the condensing lens that result in optimized light efficiency also increase, respectively. When the area of the exposed portion of the green pixel electrode 110G that is not covered with the pixel-defining layer 200 narrows, the upper limit and the lower limit of the diameter of the lower surface of the condensing lens that result in optimized light efficiency also reduce, respectively. Therefore, determining the optimal range of the diameter of the lower surface of the condensing lens may require taking into account a ratio of the area of the exposed portion of the green pixel electrode 110G that is not covered with the pixel-defining layer 200 to the area of the lower surface of the condensing lens.
The graph of
As the graph of
However, the range of the diameter of the lower surface of the condensing lens that results in optimized light efficiency changes depending on the area of the exposed portion of the blue pixel electrode 110B that is not covered with the pixel-defining layer 200. That is, when the area of the exposed portion of the blue pixel electrode 110B that is not covered with the pixel-defining layer 200 widens, the upper limit and the lower limit of the diameter of the lower surface of the condensing lens that result in optimized light efficiency also increase, respectively. When the area of the exposed portion of the blue pixel electrode 110B that is not covered with the pixel-defining layer 200 narrows, the upper limit and the lower limit of the diameter of the lower surface of the condensing lens that result in optimized light efficiency also reduce, respectively. Therefore, determining the optimal range of the diameter of the lower surface of the condensing lens may require taking into account a ratio of the area of the exposed portion of the blue pixel electrode 110B that is not covered with the pixel-defining layer 200 to the area of the lower surface of the condensing lens.
The graph of
Up to now, the case of the condensing lens having the lower surface like the circle represented by the reference numeral L1 in
While the area (refer to a reference numeral PAR of
That is, under a circumstance in which the area of the exposed portion of the red pixel electrode 110R that is not covered with the pixel-defining layer 200 is fixed as about 233.27 μm2, a graph of a change in a brightness ratio in a front direction while changing the length (the length represented by LL in
Similar to the description above, the range of the length of one side of the lower surface of the condensing lens having the square lower surface that results in the above-described optimized light efficiency changes depending on the area of the exposed portion of the red pixel electrode 110R that is not covered with the pixel-defining layer 200. That is, when the area of the exposed portion of the red pixel electrode 110R that is not covered with the pixel-defining layer 200 widens, the upper limit and the lower limit of the length of one side of the lower surface of the condensing lens having the square lower surface that result in optimized light efficiency also increase, respectively. When the area of the exposed portion of the red pixel electrode 110R that is not covered with the pixel-defining layer 200 narrows, the upper limit and the lower limit of the length of one side of the lower surface of the condensing lens having the square lower surface that result in optimized light efficiency also reduce, respectively. Therefore, determining the optimal range of the length of one side of the lower surface of the condensing lens having the square lower surface may require taking into account a ratio of the area of the exposed portion of the red pixel electrode 110R that is not covered with the pixel-defining layer 200 to the area of the lower surface of the condensing lens having the square lower surface.
The graph of
The discussion made for the red sub-pixel 100R is also applicable to the green sub-pixel 100G. That is, under a circumstance in which the area of the exposed portion of the green pixel electrode 110G that is not covered with the pixel-defining layer 200 is fixed as about 233.27 μm2, a graph of a change in a brightness ratio in a front direction while changing the length (the length represented by LL in
Even in this case, it has been revealed that when the length of one side of the lower surface of the condensing lens having the square lower surface is about 18 μm, the graph is drastically bent; when the length of one side is about 20 μm, a maximum brightness ratio appears; and when the length of one side is about 26 μm, the graph is also drastically bent. Therefore, the length of one side of the lower surface of the condensing lens having the square lower surface may be about 18 μm to about 26 μm. When the length of one side of the lower surface of the condensing lens having the square lower surface is less than about 18 μm or greater than about 26 μm, light efficiency drastically deteriorates.
Similar to the description above, the range of the length of one side of the lower surface of the condensing lens having the square lower surface that results in the above-described optimized light efficiency changes depending on the area of the exposed portion of the green pixel electrode 110G that is not covered with the pixel-defining layer 200. Therefore, determining the optimal range of the length of one side of the lower surface of the condensing lens having the square lower surface may require taking into account a ratio of the area of the exposed portion of the green pixel electrode 110G that is not covered with the pixel-defining layer 200 to the area of the lower surface of the condensing lens having the square lower surface.
The graph of
The discussions made for the red sub-pixel 100R and the green sub-pixel 100G are also applicable to the blue sub-pixel 100B. That is, under a circumstance in which the area of the exposed portion of the blue pixel electrode 110B that is not covered with the pixel-defining layer 200 is fixed as about 290.40 μm2, a graph of a change in a brightness ratio in a front direction while changing the length (the length represented by LL in
Even in this case, it has been revealed that when the length of one side of the lower surface of the condensing lens having the square lower surface is about 22 μm, the graph is drastically bent; when the length of one side is about 24 μm, a maximum brightness ratio appears; and when the length of one side is about 30 μm, the graph is also drastically bent. Therefore, the length of one side of the lower surface of the condensing lens having the square lower surface may be about 22 μm to about 30 μm. When the length of one side of the lower surface of the condensing lens having the square lower surface is less than about 22 μm or greater than about 30 μm, light efficiency drastically deteriorates.
Similar to the description above, the range of the length of one side of the lower surface of the condensing lens having the square lower surface that results in the over-described optimized light efficiency changes depending on the area of the exposed portion of the blue pixel electrode 110B that is not covered with the pixel-defining layer 200. Therefore, determining the optimal range of the length of one side of the lower surface of the condensing lens having the square lower surface may require taking into account a ratio of the area of the exposed portion of the blue pixel electrode 110B that is not covered with the pixel-defining layer 200 to the area of the lower surface of the condensing lens having the square lower surface.
The graph of
Up to now, though the case in which the lower surface of the condensing lens is a square or a circle has been described, the embodiments are not limited thereto.
If the areas of the exposed portions of the red pixel electrode 110R that are not covered with the pixel-defining layer 200 are the same as described above, the brightness in the front direction is the same regardless of whether the lower surface is a square or a circle, as long as the length (the length represented by LL in
Furthermore, the same/similar description may be made to even a case in which the lower surface of a condensing lens included in the lens layer, represented by a reference numeral L3, is a polygon in
Likewise, under a circumstance in which the area of the exposed portion of the green pixel electrode 110G that is not covered with the pixel-defining layer 200 is fixed as about 176.89 μm2, when measuring a change in the brightness ratio in the front direction while changing the size of the polygon such that the diameter (the length represented by LL in
Therefore, assuming that the area of the exposed portion of the red pixel electrode 110R that is exposed by the pixel-defining layer 200 is A, and the area of the virtual circle IC having a maximum size that may be located inside the polygon in the lower surface of the condensing lens having the lower polygonal surface is B, the B/A of the red sub-pixel 100R may be about 1.34 to about 2.63. To represent optimized light efficiency, B/A may be 1.62.
In other embodiments, assuming that the area of the exposed portion of the green pixel electrode 110G that is exposed by the pixel-defining layer 200 is A, and the area of the virtual circle IC having a maximum size that may be located inside the polygon in the lower surface of the condensing lens having the lower polygonal surface is B, the ratio B/A of the green sub-pixel 100G may be about 1.43 to about 3.00. To represent optimized light efficiency, B/A may be 1.77. Also, in other embodiments, assuming that the area of the exposed portion of the blue pixel electrode 110B that is exposed by the pixel-defining layer 200 is A, and the area of the virtual circle IC having a maximum size that may be located inside the polygon in the lower surface of the condensing lens having the lower polygonal surface is B, the ratio B/A of the blue sub-pixel 100B may be about 1.30 to about 2.43. To represent optimized light efficiency, B/A may be 1.55.
The descriptions in over embodiments for the refractive index of the first lens layer 410 or the second lens layer 420, or the process of forming the first lens layer 410 or the second lens layer 420, or materials which may be used for this process, etc. are applicable to the display device including the condensing lens having the lower polygonal surface as described above.
Though the inventive concept has been described with reference to the embodiments illustrated in the drawings, this is merely exemplary, and it will be understood by those of ordinary skill in the art that various changes in form and details and equivalents thereof may be made therein without departing from the spirit and scope of the inventive concept as defined by the following claims.
Number | Date | Country | Kind |
---|---|---|---|
10-2016-0085060 | Jul 2016 | KR | national |
This application is a continuation application of U.S. patent application Ser. No. 16/264,312 filed on Jan. 31, 2019, which is a continuation application of U.S. patent application Ser. No. 15/605,307 filed on May 25, 2017 (now U.S. Pat. No. 10,224,377), which claims priority under 35 USC § 119 to Korean Patent Application No. 10-2016-0085060, filed on Jul. 5, 2016, in the Korean Intellectual Property Office, the disclosures of which are incorporated herein in their entirety by reference.
Number | Name | Date | Kind |
---|---|---|---|
7072096 | Holman et al. | Jul 2006 | B2 |
8330361 | Kim | Dec 2012 | B2 |
8674326 | Iwata | Mar 2014 | B2 |
9065076 | Lee et al. | Jun 2015 | B2 |
9368755 | Kim et al. | Jun 2016 | B2 |
9405188 | Lee et al. | Aug 2016 | B2 |
9818966 | Noh | Nov 2017 | B2 |
20070269917 | Hubert | Nov 2007 | A1 |
20110057221 | Sonoda | Mar 2011 | A1 |
20110109818 | Uneda et al. | May 2011 | A1 |
20120074391 | Sumida et al. | Mar 2012 | A1 |
20120097991 | Ikeda et al. | Apr 2012 | A1 |
20130001609 | Ichinose et al. | Jan 2013 | A1 |
20140027725 | Lim | Jan 2014 | A1 |
20140034919 | Park et al. | Feb 2014 | A1 |
20140178605 | Kim et al. | Jun 2014 | A1 |
20140339509 | Choi et al. | Nov 2014 | A1 |
20150041833 | Nimura | Feb 2015 | A1 |
20150048333 | Choi et al. | Feb 2015 | A1 |
20150277187 | Akasaka | Oct 2015 | A1 |
20160077328 | Chong et al. | Mar 2016 | A1 |
20160087018 | Shim | Mar 2016 | A1 |
20160126496 | Wang | May 2016 | A1 |
20170033315 | Jang et al. | Feb 2017 | A1 |
20170133637 | Kim | May 2017 | A1 |
20170353181 | Kim | Dec 2017 | A1 |
20180040854 | Sung | Feb 2018 | A1 |
20180089485 | Bok | Mar 2018 | A1 |
Number | Date | Country |
---|---|---|
2012-089474 | May 2012 | JP |
2013-016271 | Jan 2013 | JP |
10-2010-0073228 | Jul 2010 | KR |
10-2013-0108028 | Oct 2013 | KR |
10-2013-0129665 | Nov 2013 | KR |
10-2014-0012453 | Feb 2014 | KR |
10-2014-0123731 | Oct 2014 | KR |
10-2015-0019325 | Feb 2015 | KR |
10-2015-0072054 | Jun 2015 | KR |
201246642 | Nov 2012 | TW |
Entry |
---|
Extended European Search Report, Application No. 17179133.8, dated Nov. 27, 2017, pp. 1-11. |
EPO Office Action Report, Application No. 17179133.8, dated Mar. 13, 2019, 6 pages. |
Number | Date | Country | |
---|---|---|---|
20200343317 A1 | Oct 2020 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 16264312 | Jan 2019 | US |
Child | 16927944 | US | |
Parent | 15605307 | May 2017 | US |
Child | 16264312 | US |