1. Field of the Invention
The present invention relates to systems and methods for imaging distant or near sources of gamma rays using the Compton Effect.
2. Related Art
Systems and methods for imaging distant or nearby sources of gamma rays using the Compton Effect are commonly referred to as a Compton telescope. A Compton telescope typically comprises one or many gamma ray detectors combined with electronics to determine the direction and energy of gamma rays incident on the telescope. Since gamma rays are not easily focused by refractive or reflective optics in the manner of visible light and lower energy photons, existing Compton telescopes usually do not rely on focusing optics to form images, but instead use the physics of Compton scattering and multiple particle interactions within the telescope to determine the energy and momentum (and hence direction) of incident gamma rays.
Gamma ray detectors may be classified into several types according to their composition and principles of operation. The different types vary widely in their cost, available size, and detection capabilities. These classifications may include Gas Ionization detectors, Organic scintillators, Inorganic scintillators and Semiconductor Gamma Ray Detectors. Each type is discussed briefly below.
Gas Ionization detectors such as the well-known Geiger-Müller Tube or Geiger Counter produce a pulse of electric current when a gamma ray or other energetic particle ionizes an inert gas in a high voltage chamber. Low-cost gas ionization detectors (<$200 (USD) each) such as the Geiger Counter count gamma rays above a certain energy threshold but cannot measure the energy of the gamma ray. More expensive Geiger-Müller proportional ionization detectors can measure the energy deposited by a gamma ray. Very expensive (>$100,000) multi-wire proportional gas ionization chambers can measure the energy and also track the momentum of charged particles that recoil from multiple gamma ray collisions, allowing imaging of gamma ray sources.
Organic scintillators are typically solid organic polymers (plastics) like polyvinyl toluene (PVT) or liquid organic solvents like benzene containing fluorescent organic compounds (fluors) like 2,5-diphenyloxazole (PPO). When a gamma ray interacts with a scintillator, it deposits energy that excites nearby fluors. The fluors emit visible light proportional to the amount of energy deposited, and this visible light can be measured with photomultiplier tubes (PMTs) or photodiodes. Typical plastic scintillators in bulk quantities cost less than $80 per kilogram (1 kg PVT is about 1 Liter volume), while liquid scintillators may be an order of magnitude less expensive per unit volume. (David C. Stromswold, Edward R. Siciliano, John E. Schweppe, James H. Ely, Brian D. Milbrath, Richard T. Kouzes, and Bruce D. Geelhood, “A Comparison of Plastic and NaI(Tl) Scintillators for Vehicle Portal Monitor Applications,” IEEE Nuclear Science Symposium Conference Record 2003, Vol. 2, p. 1065 (2003).). For large volume particle detectors, these materials are among the least expensive known. Organic scintillators are usually used for counting gamma rays but not for measuring their energy, because the low density and low nuclear charge Z of these organic materials result in poor capture efficiency: a gamma ray with energy over 100 keV will usually Compton scatter out of an organic detector several cm in size, depositing some but not all of its energy.
Inorganic scintillators are typically fluorescing salt or oxide crystals of much higher density and higher nuclear charge Z than organic scintillators. The most common and least expensive is thallium-doped sodium iodide or NaI(Tl). Inorganic scintillators have much higher gamma ray capture efficiency than organic scintillators, and are often used to measure the energy of gamma rays in the range 10 keV to 3 MeV for laboratory, research, safety, environmental monitoring, minerals exploration, and security purposes. A typical block of inorganic scintillator can measure the energy of gamma rays between 500 keV and 3 MeV with 3% to 7% energy resolution. As a common laboratory example, a 7.5 cm diameter×7.5 cm long cylinder of NaI(Tl) has about 30% efficiency in capturing the full energy of incident mono-energetic 2.2 MeV gamma rays from the nuclear reaction n+p→2H+2.2 MeV γ. An energy spectrum of this gamma ray source in such a NaI(Tl) detector would show a peak at 2.2 MeV with a 5% full-width-at-half-maximum (FWHM) resolution. Sodium iodide scintillators in bulk quantities currently cost at least $2500 per cubic decimeter (Liter volume), while other inorganic scintillators with higher capture efficiency and better energy resolution cost from 3× to 10× as much per unit volume.
Semiconductor Gamma Ray Detectors are based on doped silicon, germanium, and similar semiconductors, placed across high voltage electrodes and often cooled to cryogenic temperatures for better performance. When a gamma-ray interaction excites electrons from the valence band to the conduction band in these materials, a conduction current flows between the electrodes, giving a very accurate measurement of the energy deposited by the gamma ray. Detectors of this type usually have higher capture efficiency per unit volume than organic scintillators but lower capture efficiency than inorganic scintillators. Semiconductor detectors have the best energy resolution of all standard particle detectors, able to measure 100 keV to 3 MeV events with better than 1% energy resolution and in some cases better than 0.1% FWHM. Semiconductor detectors also have the highest cost per unit volume, currently over $100,000 per cubic decimeter, although semiconductor detectors greater than a few hundred cubic cm are never in practice manufactured as a single detector element, but typically as a segmented array of detector strips or blocks for particle tracking.
Compton telescopes have been designed, built, and operated for astrophysical observations. These include the CompTel Gamma Ray Telescope, launched in 1991 on the Compton Gamma Ray Observatory satellite (CGRO). CompTel used a two-layer Compton telescope design consisting of organic Ne-213A liquid scintillator cells in the first layer and NaI(Tl) inorganic scintillator blocks in the second layer. According to published statistics, CompTel has an upper layer active area of 4188 cm2 with a gamma ray captures efficiency from 1.2% to 0.5% for gamma rays in the energy range 0.8 MeV to 30 MeV, with an energy resolution of 5% to 8% FWHM and angular resolution 2° to 4° for gamma rays over this energy range. Since CompTel was launched, the United States Naval Research Lab (NRL) along with many partner institutions has proposed several successor Compton telescope instruments including the ATHENA concept and the ACT concept. These proposed designs achieve higher performance than CompTel but require higher component costs, using arrays of semiconductor detectors typically in conjunction with scintillators to achieve higher gamma ray capture efficiency, better energy and angular resolution than CompTel, and in some cases a wider range of gamma ray energies.
NRL developed a significant theoretical breakthrough with the 3-Compton Principle. R. A. Kroeger, W. N. Johnson, et al, “Three-Compton Telescope: Theory, Simulations, and Performance,” IEEE Trans. Nucl. Science, Vol. 49, No. 4, p. 1887 (2002). See also U.S. Pat. No. 6,528,759, to Kurfess et al, issued Mar. 4, 2003. This discovery shows how the energy and direction vector of an incident gamma ray can be recovered in a Compton telescope if the gamma ray Compton-scatters 3 times or more inside the device. Prior to this discovery, CompTel and other early Compton telescopes only processed gamma ray events that interacted in exactly two detector layers. The 3-Compton Principle allows Compton telescopes of much higher capture efficiency, since an arbitrary number of layers of detector material may be used.
Previous large-area Compton telescopes have existed only as one-of-a-kind research instruments, with many hand-assembled components built by graduate students, laboratory engineers, and post-doctoral scientists, usually for astrophysical research applications. As a result, these large Compton instruments typically cost many millions of (US) dollars. Smaller Compton-scatter imaging systems have been built for medical research applications, but these generally use very expensive cryogenic semiconductor elements that cannot be scaled up cost-effectively to large collection areas.
There are several current applications that would benefit from a Compton telescope with a large collection area (from several square feet up to several square meters), high gamma ray capture efficiency, modest cost, and modest energy and angular resolution requirements. For example, in the field of Homeland Security, a large area Compton telescope would be useful for monitoring points of national entry and major urban centers to search for smuggled nuclear weapons, radiological dirty bombs, or Special Nuclear Materials (SNMs). However, the exceptionally high cost of existing Compton telescope designs renders this technology outside the realm of practical reality.
Another likely application is in the detection of large concealed explosives such as the roadside Improvised Explosive Devices (IEDs) used by insurgents in conflict areas to attack convoys of vehicles, or concealed vehicle-born explosives moving through a security checkpoint toward a sensitive target such as a federal building, landmark skyscraper, bridge, or crowded stadium. While conventional explosives do not emit gamma rays, they can be identified by the method of Prompt-Gamma Neutron Activation Analysis (PGNAA), using a neutron source to probe a suspected target and a gamma ray detector to analyze the element-specific gamma rays emitted by the material. This technique is described in detail in U.S. Pat. No. 7,573,044 to Norris, issued Aug. 11, 2009, the entire disclosure of which is hereby incorporated by reference.
In the past, PGNAA has been used successfully to identify concealed explosives inside metal containers at ranges up to about 50 cm from a neutron source and gamma detector. To make a useful IED or vehicle-born explosive detector, the effective PGNAA range must be extended to at least several meters, and this requires a large area gamma ray detector with imaging capability to distinguish threatening concentrations of nitrogen from harmless background concentrations such as are found in ambient air.
As yet another exemplary application, it has been estimated that there are billions of (US) dollars of recoverable metals in mining tailings around the world. Currently, the cost of assaying very large fields of mining tailings is often high enough to prevent the recovery of much of this metal, since the process requires samples to be collected from survey locations, analyzed chemically in a laboratory for minerals of interest, and then after a delay, the mineral content of tailings zones is reconstructed from the lab results. PGNAA with a range of several meters could allow mineral concentrations for large volumes of tailings to be analyzed more promptly on site, making minerals recovery from tailings more profitable.
Accordingly, there is a need in the art for a low cost, large-collection-area Compton telescope. However, one perceived obstacle to the prospect of low cost, large-collection-area Compton telescopes has been the assumption, in the gamma ray detector literature, that organic scintillators cannot measure particle energy accurately enough. As H. H. Vo and colleagues at the University of Osaka have recently shown (H. H. Vo, S. Kanamaru, C. Marquet, H. Nakamura, M. Nomachi, F. Piquemal, J. S. Ricol, Y. Sugaya, and K. Yasuda, “Energy Resolution of Plastic Scintillation Detector for Beta Rays”, IEEE Trans. Nucl. Science, Vol. 55, No. 6, p. 3723, 2008), plastic scintillators can indeed measure particle energy accurately enough, but not when coupled to a single photomultiplier tube (PMT) as in the standard apparatus in the art of gamma ray detection. Because plastic scintillators have low gamma ray stopping power and imperfect optical transparency, they do not produce a uniform optical signal from everywhere within the volume of a single organic scintillator element large enough to capture a statistically significant fraction of energetic gamma rays. H. H. Vo and colleagues showed that by coupling multiple photodetectors to a single large plastic scintillator element, the sum of the signals of the multiple photodetectors could produce a consistent energy measurement with adequate energy resolution (7% to 4% resolution for particles in the energy range from 700 keV to 1700 keV).
According to the invention, a Compton telescope-type gamma-ray imaging device is provided including a plurality of scintillators. The device includes a chassis. The chassis includes at least three discrete layers spaced-apart from one another and supported in an aligned, generally parallel orientation. At least one gamma ray detector is operatively disposed in each layer. Each gamma ray detector comprises a plurality of scintillator pixels. The gamma ray detectors on at least two of the layers include organic scintillator pixels.
According to another aspect of the invention, a method of operating a Compton telescope-type gamma-ray imaging device including plural scintillators is provided. The method comprises the steps of: supporting at least three discrete layers of gamma ray detectors in spaced-apart generally parallel alignment; each said gamma ray detector including a plurality of substantially identical scintillator pixels; and forming a plurality of the scintillator pixels in at least two of the layers from an organic scintillator material composition.
The present invention enables the manufacture and operation of low-cost, large-collection-area Compton telescopes by configuring arrays of organic scintillator pixels on multiple detector layers.
These and other features and advantages of the present invention will become more readily appreciated when considered in connection with the following detailed description and appended drawings, wherein:
Each layer 24 of the Compton telescope 20 includes 50 to 100 pixels 28, preferably 15×15 cm in area×10 cm thick, producing a total collection area of preferably one square meter. The number of layers, number of pixels 28 per layer, and number of photodetectors per pixel 28 may be determined based on an analysis of performance vs. cost, because increasing the number of photodetectors, pixels 28 and layers 24 will increase the size, cost, and performance of the instrument. The proposed 10 cm thickness of each layer 24 has been shown to be effective for Compton telescope 20 capture and tracking of 10.8 MeV gamma rays, based on Monte-Carlo analysis of gamma ray transport using the MCNP5 code developed at Los Alamos National Labs, and separate Monte-Carlo analyses of scintillator light transport and diffuse reflection within each pixel. For other applications, generally thinner PVT layers 24 could be chosen because most terrestrial gamma ray sources produce energies lower than 10.8 MeV.
In one preferred embodiment of this Compton telescope, optimized for detection of 10.8 MeV gamma rays from materials at standoff ranges of 10 meters or more, 5 to 10 layers 24 of plastic scintillator are made of PVT containing dissolved fluors. The most likely candidate plastic scintillator materials are BC428 provided by Saint Gobain Crystals Inc. and EJ260 provided by Eljen Technology, because these scintillators are available at low cost and high quality, and they produce scintillation light in the blue-green range (490 nm) of the optical spectrum instead of the blue-violet range (410 nm) where most scintillators are active. Available photodiodes and avalanche photodiodes 30 are more sensitive to green light than to blue light.
The embodiment of the pixel 28′ design shown in
When a 10.8 MeV gamma-ray is incident on the front face of a Compton telescope 20 constructed according to the principles of this invention, a number of interactions may occur. Most commonly, the gamma ray will pass through one or several layers 24 of the plastic scintillator with no interaction, and then will Compton scatter from an electron in one of the scintillator layers. Typically between 1 MeV and 10 MeV of the gamma ray energy will be transferred to the electron, while the scattered gamma ray continues forward in a new direction carrying the remainder of the original 10.8 MeV energy. The recoil electron from the Compton scatter event deposits its energy in the plastic scintillator near the location of the first collision, producing a fluorescent signal that is measured by several photodetectors 30 on that pixel 28 to determine its (x,y) location within the pixel 28 and the amount of energy deposited. If the scattered gamma ray then goes on to deposit the rest of its energy in subsequent layers 24 of the Compton telescope, this two-point or multi-point interaction often gives enough information to calculate the initial momentum and direction of the incident 10.8 MeV gamma ray.
While hundreds of thousands of gamma rays will typically hit the Compton telescope 20 per second, over 99.9% of them will be ignored by the signal processing system because their total energy will be below 9 MeV. Since the plastic scintillator pixels 28, 28′ and photodetectors 30, 30′ in this exemplary embodiment have an exemplary 10-nanosecond response time, even a million gamma ray events per second can easily be separated in time by fast analog triggering. At the individual pixel 28 level in this example, only events depositing more than 0.6 MeV (or other threshold based on suitable laboratory data) will trigger the sample-and-hold amplifiers that pass the signal on to Layer Data 74 and Vector Data 44 systems (see
The Vector Processor 44 applies a series of selection rules to each qualifying cluster event to determine if that gamma ray momentum is trackable by Compton Scattering laws. A first selection rule may require the event cluster depositing at least 0.6 MeV (or other appropriate threshold to be determined) in at least two different detector layers 24 to produce useful vector information. Event clusters that pass the first selection rule are then calibrated to improve their energy resolution using lookup tables generated by pixel 28 calibration during instrument fabrication. A second selection rule may require the energy-calibrated events to sum to a total energy between 9.3 and 11.3 MeV (or other thresholds to be determined). A third selection rule may evaluate the (x,y,z) position and energy deposited in the first collision event, and compare that to the (x,y,z) position of the second collision event, and the total energy of all concurrent events, to see if the direction vector and gamma ray energies before and after the first collision are consistent with the law of Compton scattering for a 10.8 MeV gamma ray incident on the front face of the Compton telescope.
The law of Compton scattering, based on the conservation of momentum and energy in a 2-body collision between a gamma ray and an electron, requires that the scattering angle θ of the gamma ray, as shown in
where:
m=the rest mass of the electron
c=the speed of light
E1=the energy of the incident gamma ray
E2=the energy of the Compton-scattered gamma ray
If a cluster of events within a suitable time window, for example 20-nanoseconds, produces a result incompatible with the Compton scatter relation and the detector geometry, then that cluster of events will be rejected as an artifact. By way of example, a result incompatible with the Compton scatter relation and the detector geometry may arise if the calculated angle implies that the gamma ray came from behind or through the sides 26 of the Compton telescope 20 rather than from the front. Non-Compton-scatter artifacts can be produced for example when the first gamma-ray interaction in the Compton telescope 20 is an electron-positron pair production, followed by positron annihilation, instead of a Compton scatter event. Other examples of artifacts include cases where two energetic gamma rays happen to enter the Compton telescope 20 within the same (e.g., 20 nanosecond) time window, or where a Compton recoil electron generates a high energy bremsstrahlung photon that carries too much of the energy from the first Compton scatter into another layer 24 of the Compton telescope. MCNP5 models indicate that a Compton telescope 20 with 7 layers 24 of PVT-based scintillator, each 10 cm thick, will achieve a clean Compton scatter event, followed by capture of enough of the remaining gamma ray energy in subsequent layers 24 to apply the Compton scatter law, in up to 15% of cases where a 10.8 MeV gamma ray is incident on the front face of the Compton telescope. By comparison, the CompTel two-layer gamma ray telescope 20 had capture efficiency less than 2% for this scenario.
The digital data from those events that meet all the selection criteria including the Compton scatter law are passed from the Vector Processor 44 to a data acquisition system on a computer with hardware and software that generates an image of the 9 MeV to 11 MeV gamma ray landscape in the field of view of the Compton telescope.
Since the scattering angle θ of the first Compton scatter interaction in the telescope 20 does not uniquely determine the direction of an incident gamma ray, the intensity of the gamma ray image must be expressed as a cone-shaped zone of probability for each gamma ray event acquired, as indicated in
This is shown in
Other relevant data, such as data from coincidence or anti-coincidence detectors, from time-of-flight measurements related to a pulsed neutron source, or from visible/infrared image acquisition systems may be integrated with the gamma ray image in the data imaging computer, and post-processing of the data in this computer may provide interpretive results (such as statistical confidence of a threat detection or object of interest) to the Compton telescope 20 user, depending on operational and user interface requirements.
The present invention differs from prior Compton telescope 20 designs in several compelling ways. For instance, as stated earlier, costs are reduced by using multiple layers 24 of organic scintillator pixels 28, 28′ for all or most of the active gamma-detecting mass in the instrument. Most proposed and constructed Compton telescopes have used very expensive cryogenic semiconductor detectors or combinations of semiconductor detectors and inorganic scintillators, which are typically more than 10 times as expensive per unit of detector mass as inorganic scintillators. Even in the prior art CompTel design, which used low-cost organic scintillators for one of its two detection layers, over 85% of the active telescope 20 detector mass was in the form of the much more expensive inorganic scintillator NaI(Tl). The use of much less expensive organic scintillators 28, 28′ for at least three detector layers 24 in the present invention allows the total gamma detection mass to be scaled up to large collection area and high collection efficiency at substantially reduced price. Monte Carlo analyses have shown that by placing five to ten organic scintillator layers 24 in front of one another as suggested
Furthermore, costs are reduced and gamma ray capture efficiencies are increased in the present invention relative to prior Compton telescope 20 designs by optimizing the design for a particular gamma ray energy of interest, accepting modest energy resolution such as 5% at that design energy, and accepting modest angular resolution such as 0.05 to 0.09 radians (3° to 5°). The design requirements of other Compton telescopes specify energy and angular resolutions better than this over a very wide energy range, to observe a wide variety of different phenomena, and result in accordingly much higher detector costs. Industrial and security applications, however, can generally be served by a narrow energy range detector. For example, the 10.8 MeV gamma ray emitted by nitrogen is the primary energy of interest for PGNAA detection of large concealed explosives. Monte Carlo models show that for any given gamma ray energy, there is an optimal organic scintillator thickness that maximizes the multi-layer 24 Compton telescope 20 capture efficiency for that particular energy.
For mass-production and rapid assembly, the preferred embodiment of the present invention uses a large array of identical organic scintillator pixels 28, 28′. Each pixel 28, 28′ has several photodiodes or avalanche photodiodes 30, 30′ in a regular pattern bonded onto a factory-cut or factory-molded organic scintillator block or scintillator container, as shown in
While most scintillator-based gamma-ray detectors use photomultiplier tubes (PMTs) to capture the light resulting from gamma ray induced scintillation, the present invention preferably uses an array of photodiodes, or avalanche photodiodes 30 instead, to reduce the amount of non-scintillator mass inside the telescope 20 that would otherwise reduce the Compton telescope 20 efficiency, to increase the mechanical robustness of the telescope, and to reduce the cost of telescope 20 assembly by enabling the use of printed circuit board 32 and optical telecommunications automated manufacturing techniques.
With at least three photodetector 30 elements on each pixel 28 in a triangular array, or at least four photodetector 30 elements on each pixel 28 in a rectangular array, each pixel 28 will produce multiple output signals when energy is deposited by a gamma ray. The signals from different photodetectors 30 will vary as a function of the (x,y) position of the gamma ray collision in the pixel 28. The differences between adjacent photodetector 30 signals will give the (x,y) location of the signal, and the sum of all photodetectors 30 will indicate the total energy deposited in the pixel 28. In other words, the invention here proposes a scintillator pixel 28 (or 28′, etc.) having at least 3 photodetectors 30 together with a control system whereby the sum of the adjacent photodetectors 30 produces a signal indicating the gamma energy deposition, and the difference of adjacent photodetectors 30 divided by (i.e., normalized by) the sum produces a signal indicating the gamma interaction location within the respective pixel 28. Most preferably, the photodetectors 30 (or 30′, etc.) are APDs, photodiodes, or Avalanche-mode solid-state photomultipliers.
One of the main sources of uncertainty in scintillator measurements of gamma ray energy is the variation in signal strength as a function of the collision position within a scintillation detector. For conventional gamma ray detectors with one large PMT on one side of the scintillator, interactions at different locations produce slightly different efficiencies in coupling the scintillator light into the PMT. PMTs in general also have a slight non-uniformity in response across their face. However, with multiple photodetectors 30 distributed across the face of the scintillator pixels 28, the effect of interaction position on total signal can be corrected by calibration. The calibration process can be automated by programming a scanning (x,y) stage at the pixel 28 factory to move a newly assembled pixel 28 across a collimated electron beam or collimated gamma ray source of known energy, recording the signals of the photodetector 30 elements as a function of (x,y) position and saving the resulting data in a lookup table that generates an (x, y, Energy) value for a given combination of signals, as shown in
For Compton telescope 20 applications that use PGNAA with an electronically-pulsed neutron source, the distance to an object producing neutron-activated gamma rays can be estimated by independent means, such as optical or radar sensing, and the corresponding neutron time-of-flight between neutron pulse generation and the returned gamma ray signal can then be calculated for use in gating the telescope. This concept is introduced generally in the co-pending PCT Patent Application Serial No. PCT/US10/30455, filed Apr. 9, 2010, the entire disclosure of which is hereby incorporated by reference. For example, if a 100-microsecond long pulse of neutrons is thermalized in a polyethylene moderator and then broadcast through a collimator at a variety of objects from 2 meters to 10 meters away, the neutron-activated prompt gamma rays from objects 2 meters away will mostly arrive at the Compton telescope 20 between 0.5 milliseconds and 2 milliseconds after the neutron pulse is generated; neutron-activated gamma rays from objects 5 meters away will mostly arrive at the Compton telescope 20 between 1.3 milliseconds and 5 milliseconds after the pulse. Objects 10 meters away will produce prompt gamma rays mostly between 3 and 10 milliseconds later, as in
The cost of electronics in the present invention is greatly reduced by collecting the signals from the large array of pixels 28 into Layer Data processors 74 and Vector Data processors 44, so that full signal processing electronics do not have to be included for every pixel, as in
Embodiments of the present invention include Compton telescopes 20 using three or more layers 24 of scintillator pixels 28 to track Compton scattered incident gamma rays, in which at least two layers 24 are composed, at least in part, of organic scintillator materials. Embodiments of the present invention include Compton telescopes 20 that may have one or more layers 24 of inorganic scintillator pixels, such as NaI(Tl), along with at least two layers 24 of organic scintillator pixels 28 according to the principles of this invention. Embodiments of the present invention include Compton telescopes 20 using either liquid or plastic organic materials for the scintillator pixels 28, including liquid or plastic scintillators incorporating dissolved or suspended organometallic compounds such as tetra-ethyl-lead, tetra-phenyl-lead, tetra-methyl-tin, or other organometallic compounds whose purpose is to increase the gamma ray stopping power of the organic scintillator. This invention is distinguished from prior art concepts by the use of three (3) or more high-efficiency detector layers 24 composed of mass-producible pixels 28 using printed circuit boards 32. Preferably, all identical pixels 28 are identical throughout the entire telescope 20 device, however it is possible that one layer 24 may have pixels 28 of differing characteristics from the pixels 28 in next adjacent layer 24. As a result, practical industrial applications for large-area Compton telescopes 20 are made possible.
Embodiments of the present invention include scintillator layers 24 composed of arrays of square, rectangular, triangular, hexagonal, cylindrical or other geometrically efficient scintillator pixels 28. Each pixel 28 consists of a block or volume of scintillator material, typically unitary in construction and typically homogenous in composition, with at least three photodetectors 30 mounted on it to provide (x, y, energy) information for gamma ray collisions within that pixel, and may include arrays of larger numbers of photodetectors 30 in square, rectangular, triangular, hexagonal, (etc.) grids mounted on the surface of each scintillator pixel 28. Embodiments of the present invention include scintillator pixels 28 that use photodetectors 30 consisting of photodiodes, avalanche photodiodes, or solid-state photomultipliers, where the photodetectors 30 may be mounted on one common face of each pixel 28 or may be mounted along multiple faces of a pixel 28 to reduce obstruction of gamma rays traveling along the axis of the Compton telescope 20 or to provide better energy resolution if needed.
The foregoing invention has been described in accordance with the relevant legal standards, thus the description is exemplary rather than limiting in nature. Variations and modifications to the disclosed embodiment may become apparent to those skilled in the art and fall within the scope of the invention.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/US2010/049735 | 9/22/2010 | WO | 00 | 3/22/2012 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2011/037945 | 3/31/2011 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
3041287 | Hyman, Jr. | Jun 1962 | A |
3463922 | Senftle et al. | Aug 1969 | A |
3581090 | Brown | May 1971 | A |
3717763 | Tanaka et al. | Feb 1973 | A |
3732420 | Brunnett et al. | May 1973 | A |
3781564 | Lundberg | Dec 1973 | A |
3832545 | Bartko | Aug 1974 | A |
4529571 | Bacon et al. | Jul 1985 | A |
4613756 | Iwanczyk et al. | Sep 1986 | A |
4616833 | Geller | Oct 1986 | A |
4851687 | Ettinger et al. | Jul 1989 | A |
4882121 | Grenier | Nov 1989 | A |
4941162 | Vartsky et al. | Jul 1990 | A |
4987582 | Webster et al. | Jan 1991 | A |
5006299 | Gozani et al. | Apr 1991 | A |
5040200 | Ettinger et al. | Aug 1991 | A |
5076993 | Sawa et al. | Dec 1991 | A |
5078952 | Gozani et al. | Jan 1992 | A |
5080856 | Grenier et al. | Jan 1992 | A |
5114662 | Gozani et al. | May 1992 | A |
5124554 | Fowler et al. | Jun 1992 | A |
5153439 | Gozani et al. | Oct 1992 | A |
5159617 | King et al. | Oct 1992 | A |
5247177 | Goldberg et al. | Sep 1993 | A |
5278418 | Broadhurst | Jan 1994 | A |
5293414 | Ettinger et al. | Mar 1994 | A |
5388128 | Gozani | Feb 1995 | A |
5410156 | Miller | Apr 1995 | A |
5410575 | Uhm | Apr 1995 | A |
5420905 | Bertozzi | May 1995 | A |
5442180 | Perkins et al. | Aug 1995 | A |
5600303 | Husseiny et al. | Feb 1997 | A |
5606167 | Miller | Feb 1997 | A |
5692029 | Husseiny et al. | Nov 1997 | A |
5838759 | Armistead | Nov 1998 | A |
5847398 | Shahar et al. | Dec 1998 | A |
5880469 | Miller | Mar 1999 | A |
5982838 | Vourvopoulos | Nov 1999 | A |
6215122 | Clifford et al. | Apr 2001 | B1 |
6341150 | Ivanov et al. | Jan 2002 | B1 |
6393085 | Heller et al. | May 2002 | B1 |
6399951 | Paulus et al. | Jun 2002 | B1 |
6444994 | Ohmori et al. | Sep 2002 | B1 |
6472667 | Kline et al. | Oct 2002 | B1 |
6563898 | Vourvopoulos et al. | May 2003 | B1 |
6791090 | Lin et al. | Sep 2004 | B2 |
6906559 | Tuemer | Jun 2005 | B2 |
6922455 | Jurczyk et al. | Jul 2005 | B2 |
6928131 | Olshansky et al. | Aug 2005 | B2 |
7049600 | Levin | May 2006 | B2 |
7151447 | Willms et al. | Dec 2006 | B1 |
7151815 | Ruddy et al. | Dec 2006 | B2 |
7313221 | Sowerby et al. | Dec 2007 | B2 |
7362842 | Leung | Apr 2008 | B2 |
7385201 | Joung et al. | Jun 2008 | B1 |
7405409 | Kearfott | Jul 2008 | B2 |
7430479 | Holslin et al. | Sep 2008 | B1 |
7461032 | Heaton et al. | Dec 2008 | B2 |
7501624 | Farrell et al. | Mar 2009 | B1 |
7505544 | Jestice | Mar 2009 | B2 |
7554089 | Burr et al. | Jun 2009 | B2 |
20020121603 | Wong et al. | Sep 2002 | A1 |
20020131543 | Leung | Sep 2002 | A1 |
20030161526 | Jupiter et al. | Aug 2003 | A1 |
20030165212 | Maglich | Sep 2003 | A1 |
20040008810 | Nelson et al. | Jan 2004 | A1 |
20040036025 | Wong et al. | Feb 2004 | A1 |
20040228433 | Magill et al. | Nov 2004 | A1 |
20040251400 | Moses et al. | Dec 2004 | A1 |
20050058352 | Deliwala | Mar 2005 | A1 |
20050069073 | Ogura et al. | Mar 2005 | A1 |
20050135534 | Jones et al. | Jun 2005 | A1 |
20050139775 | Gono et al. | Jun 2005 | A1 |
20060140326 | Rowland et al. | Jun 2006 | A1 |
20060202125 | Suhami | Sep 2006 | A1 |
20060210007 | Koskelo et al. | Sep 2006 | A1 |
20070295911 | Sved | Dec 2007 | A1 |
20080011052 | Kondo et al. | Jan 2008 | A1 |
20080017806 | Norris | Jan 2008 | A1 |
20080128631 | Suhami | Jun 2008 | A1 |
20080192897 | Piorek et al. | Aug 2008 | A1 |
20080203309 | Frach et al. | Aug 2008 | A1 |
20080210878 | Friedman | Sep 2008 | A1 |
20090095895 | Dent | Apr 2009 | A1 |
20090114834 | Pekarsky | May 2009 | A1 |
20090134334 | Nelson | May 2009 | A1 |
20100025573 | Hahto et al. | Feb 2010 | A1 |
20100219345 | Franch et al. | Sep 2010 | A1 |
20100223010 | Nikitin et al. | Sep 2010 | A1 |
20110186720 | Jongen et al. | Aug 2011 | A1 |
Number | Date | Country |
---|---|---|
1882929 | Jan 2008 | EP |
2099811 | Apr 1990 | JP |
2001051094 | Feb 2001 | JP |
100716495 | May 2007 | KR |
9016072 | Dec 1990 | WO |
9857194 | Dec 1998 | WO |
0194984 | Dec 2001 | WO |
03040713 | May 2003 | WO |
2004043740 | May 2004 | WO |
2005008285 | Jan 2005 | WO |
2006016835 | Feb 2006 | WO |
Entry |
---|
Dogan et al., “Efficiency and angular resolution calculations for a prototype multiple Compton scatter camera,” 1994, Nuclear Instruments and Methods in Physics Research A, vol. 345, pp. 296-302. |
Kwan et al., Bulk Explosives Detection Using Nuclear Resonant Absorption Technique, Plasma Science, Jun. 2-5, 2003, p. 396. |
Number | Date | Country | |
---|---|---|---|
20120217386 A1 | Aug 2012 | US |
Number | Date | Country | |
---|---|---|---|
61244570 | Sep 2009 | US |