The present disclosure generally relates to a paving machine, and more particularly, to an oscillation assembly for smoothening and initial compaction on a recently formed asphalt mat laid by a screed assembly of the paving machine.
Paving machines are well known in the art to apply paving mixtures, such as a hot asphaltic bituminous concrete paving material, to a surface of a roadway. Paving machines typically have hopper at a front of the paving machine, a conveyor which extends from the hopper to a rear of the paving machine, an augur at a discharge end of the conveyor for spreading the paving material on the surface, and a screed assembly for smoothening the paving material to form an asphalt mat on the surface. However, in certain scenarios, the surface texture and smoothness of the asphalt mat laid by the screed assembly may be less than optimal, which in turn affects a durability of the asphalt mat.
German Utility Model No. 29514231 relates to a paver for a concrete pavement having a smoothening device disposed at a rear of a screed of the paver. The smoothing device includes one or more trowels rotating about a vertical axis perpendicular to the concrete pavement for smoothing the concrete laid by the screed.
In one aspect, the disclosure is directed towards an oscillation assembly for a paving machine. The oscillation assembly includes an arcuate member for contacting a recently formed asphalt mat laid by a screed assembly of the paving machine. The arcuate member is adapted to oscillate about an axis extending generally horizontally and substantially perpendicular to a direction of travel of the paving machine. The oscillation assembly further includes a drive assembly for powering an oscillation of the arcuate member. The drive assembly includes a drive motor and a linkage coupling the drive motor to the arcuate member.
In another aspect, the disclosure relates to a paving machine. The paving machine includes a screed assembly configured to lay an asphalt mat on a surface, and an oscillation assembly mounted at a rear end of the screed assembly. The oscillation assembly includes an arcuate member for contacting a recently formed asphalt mat. The arcuate member is adapted to oscillate about an axis extending generally horizontally and substantially perpendicular to a direction of travel of the paving machine. The oscillation assembly further includes a drive assembly for powering an oscillation of the arcuate member. The drive assembly includes a drive motor and a linkage coupling the drive motor to the arcuate member.
Reference will now be made in detail to specific embodiments or features, examples of which are illustrated in the accompanying drawings. Wherever possible, corresponding or similar reference numbers will be used throughout the drawings to refer to the same or corresponding parts.
Referring to
Traction devices 106 may be powered by any suitable power source, such as an engine, and may be used to propel the paving machine 100 along the surface 112 to be paved. Traction devices 106 may include, for example, a plurality of wheels or a track system. The screed assembly 110 may be used to smoothen the paving material applied to the surface 112, and may include a generally flat surface running substantially perpendicular to a travel direction ‘A’ of the paving machine 100 to form a mat 122, such as an asphalt mat 124. Screed assembly 110 may be adjustable in various ways to properly smoothen the paving material as it is applied to the surface 112. For example, the screed assembly 110 may be adjusted for height, angle, temperature, and/or vibration.
Referring to
The oscillation assembly 102 further includes an arcuate member 136 for contacting the asphalt mat 124 laid by the screed assembly 110, and a drive assembly 140 for powering an oscillation (see oscillation direction T′,
In an exemplary embodiment, the arcuate member 136 is a sector of a circular disc and includes an apex 150 and an outer surface 152 disposed opposite to the apex 150. The outer surface 152 of the arcuate member 136 contacts the mat 122 and smoothens the mat 122 as the arcuate member 136 oscillates about the axis 142. A pivot location of the arcuate member 136 may be proximate to the apex 150 relative to the outer surface 152. In an embodiment, the arcuate member 136 may extend along an entire length of the screed assembly 110.
The drive assembly 140 includes a drive motor 160 for providing power to move (i.e., to oscillate about the axis 142) the arcuate member 136. In an embodiment, the drive motor 160 may be a hydraulic motor or an electric motor. In certain implementations, the drive motor 160 may be mounted on the arm 130 and includes a drive shaft 162 that is configured to rotate about a rotational axis 164. In an embodiment, the rotational axis 164 is parallel to the axis 142. The drive assembly 140 further includes a linkage 166 for coupling the drive shaft 162 (i.e., the drive motor 160) to the arcuate member 136, and converting a rotational movement of the drive shaft 162 (i.e., the drive motor 160) to an oscillational movement of the arcuate member 136.
In an exemplary embodiment, the linkage 166 may include a first member 170 and a second member 172. The first member 170 is mounted/connected to the drive shaft 162 and rotates with the drive shaft 162 about the rotational axis 164 of the drive shaft 162. The first member 170 may be an elongated linear member having a first end 174 coupled with the drive shaft 162 and a second end 176 is coupled to the second member 172. Although the first member 170 is contemplated as the elongated linear member, it may be appreciated that first member 170 may be an eccentric member known in the art. The second end 176 of the first member 170 is coupled to a first end 178 of the second member 172. In an embodiment, the second member 172 may be pivotally coupled to the first member 170 and may be configured to move along with the movement of the first member 170. The second member 172 may be an elongated member and a second end 180 of the second member 172 may be coupled to the arcuate member 136. In an embodiment, the second member 172 is coupled to the arcuate member 136 at a location that is offset from a pivot ‘P’ (defined by the pivot axis 144) of the arcuate member 136 with the arm 130. Thus, the second member 172 is coupled to the arcuate member 136 at a location that is offset from the axis 142. In certain implementations, the first member 170 may be omitted. In such a case, the second member 172 may be coupled to the drive shaft 162 at a location offset from the rotational axis 164 of the drive shaft 162.
Additionally, or optionally, the oscillation assembly 102 may include one or more dead weights 190 attached to the arm 130 for providing additional compression force on the asphalt mat 124 by the arcuate member 136. In an embodiment, the number of dead weights attached to the arm 130 may be based on the desired compression or smoothening of the recently formed asphalt mat 124 laid by the screed assembly 110. It may be appreciated that a total mass of the dead weights 190 can be changed by an operator of the paving machine 100.
Further, in some embodiments, the oscillation assembly 102 may also include an actuator (not shown) for raising or lowering the arcuate member 136 relative to the mat 122 by pivoting the arm 130 relative to the frame 132. For example, it may be desirable to lift the arcuate member 136 off the mat 122 when the paving machine 100 is travelling without performing a paving operation. To do so, the actuator may move the arm 130 to a storage position such that the arcuate member 136 is lifted and maintains a distance from the asphalt mat 124. In an embodiment, the actuator may be a fluid cylinder coupled to the frame 132 and the arm 130. Further, although a single arcuate member 136 extending along an entire length of the screed assembly 110 is contemplated, it may be appreciated that there may be multiple arcuate members arrayed along the length of the screed assembly 110. In certain scenarios, there may more than two arrays, each having multiple arcuate members. In such cases, it may be appreciated that each arcuate member may have a separate drive assembly or a common drive assembly.
During operation, the paving material is conveyed from the hopper 104 by the conveyor and is discharged ahead of a front end of the screed assembly 110. As the paving machine 100 travels in the travel direction ‘A’, the screed assembly 110 moves over the recently laid paving material, and flattens the paving material over the surface 112, thus laying and forming the asphalt mat 124 on the surface 112. Further, in certain scenarios, the asphalt mat 124 laid by the screed assembly 110 may include bumps. To remove the bumps and smoothen the recently formed asphalt mat 124 laid by the screed assembly 110, an operator of the paving machine 100 may actuate the oscillation assembly 102. The operator may actuate the oscillation assembly 102 by actuating or starting the drive motor 160. In an embodiment, a controller (not shown) may actuate or start the drive motor 160 based on a detection of a formation of the asphalt mat 124 (or bumps on the asphalt mat 124) by the screed assembly 110.
As the drive motor 160 is started or actuated, the drive shaft 162 starts rotating about the rotational axis 164, which in turn causes a rotation of the first member 170 about the rotational axis 164. A rotational movement of the first member 170 causes a movement of the second member 172. As the second member 172 is connected to the arcuate member 136, the movement of the second member 172 causes an oscillation of the arcuate member 136 about the axis 142. Due to oscillation or reciprocation of the arcuate member 136 about the axis 142, and upon a contact of the arcuate member 136 with the asphalt mat 124, the asphalt mat 124 is compressed/compacted, removing any bumps present on the asphalt mat 124. In an embodiment, the operator or the controller may vary a speed of the drive motor 160 based on a travelling speed of the paving machine 100. The speed of drive motor 160 is varied to achieve a desired smoothening of the asphalt mat 124. In this manner, the oscillation assembly 102 of the present disclosure facilitates a removal of the bumps from a recently formed asphalt mat 124 laid by the screed assembly 110, and therefore facilitates a smoothening and an initial compaction of the recently formed asphalt mat 124 laid by the screed assembly 110 to a desired level.
Number | Name | Date | Kind |
---|---|---|---|
1038732 | Dunham | Sep 1912 | A |
3986782 | Durham | Oct 1976 | A |
4507015 | Furukawa | Mar 1985 | A |
5213442 | Sovik | May 1993 | A |
5549412 | Malone | Aug 1996 | A |
5735634 | Ulrich et al. | Apr 1998 | A |
5752783 | Malone | May 1998 | A |
5879104 | Ulrich | Mar 1999 | A |
5971656 | Kitsmiller | Oct 1999 | A |
6027282 | Horn | Feb 2000 | A |
6238135 | Rower | May 2001 | B1 |
6467992 | Dietrich | Oct 2002 | B1 |
6749364 | Baker | Jun 2004 | B1 |
9476169 | Knapp | Oct 2016 | B1 |
9534349 | Horn | Jan 2017 | B2 |
20170159250 | Maeyama et al. | Jun 2017 | A1 |
Number | Date | Country |
---|---|---|
2212625 | Sep 1973 | DE |
29514231 | Oct 1995 | DE |
4565039 | Oct 2010 | JP |