The present invention is directed to an outside rear view mirror power system for use with vehicles.
Modern vehicle systems increasingly utilize electronic controls for a variety of operations. The proliferation of electronic systems adds convenience and functionality, but also increases processing needs and wiring complexity. The added complexity further increases the strain on power systems as well as adds weight to the vehicle, which requires additional energy to provide uninterrupted use of the increased number of features that have become standard in many vehicle platforms.
An outside rear view mirror control system, in accordance with the present invention, reduces the complexity and resources needed to control a motorized mirror fold system for a plurality of mirrors. The system of the present invention departs from existing mirror fold control system approaches by integrating wiring and coupling elements, thereby simplifying the manufacture and reducing costs for such a system.
In accordance with an example embodiment of the present invention, a system for controlling movement of an outside rear view mirror of a vehicle includes one or more outside rear view mirrors, each mirror comprising a mirror housing and at least one motor configured to control mirror tilt, and one motor to control an inward/outward fold of the mirror housing. An electronic control unit includes a controller to process mirror movement commands, one or more switches to provide said mirror movement commands, and a plurality of drivelines. Each of the motors is connected to a shared driveline and to an associated driveline.
In accordance with one aspect of the present invention, the electronic control unit is connected to an ignition switch to actuate a mirror fold motor in response to a state of the ignition switch.
In accordance with another aspect of the present invention, a fold command switch is used to control the mirror fold motor.
The present invention provides a system and method for controlling movement of an outside rear view mirror (also known in the art as a side view mirror) located in a mirror housing that includes a folding function of the outside rear view mirror housing. Rear view mirror assemblies include two mirror control motors, one for controlling vertical tilt and one for controlling horizontal tilt. A third motor is provided to controlling a folding function of the entire mirror housing relative to the vehicle body. Known remote control mirror assembly systems have required a plurality of drivelines to provide commands to control the drive motors. The outside rear view mirror assembly in accordance with an example embodiment of the present invention described herein employs fewer drivelines in order to control associated drive motors.
In some vehicle platforms, user controls for each of the above-mentioned control motors can be situated on the driver's side door panel (e.g., the left side of the vehicle), which would require a plurality of cut lines to accomplish the desired control features. A cut line is a particular length of wire that runs from one terminal connection to another. Typically, if the control switch is in the driver door, one piece of wire or cut line runs between each switch terminal and its associated motor terminal in the driver door. If the control switch is in the driver door and the mirror motor is in the passenger door, each connection between the switch terminals and the associated motor terminals requires three pieces of wire or three cut lines with the first cut wire being in the driver door, the second cut wire extending through the dash board and the third cut wire being in the passenger door. The three cut wire or cut lead grouping requires two connectors to connect the door cut line, the dash board cut line and the passenger door cut line together. By eliminating the dedicated driveline 30A, a cut lead (e.g., wiring) to the left mirror (driver's side) is eliminated, as well as three cut leads that were previously required for controlling a mirror fold control motor 12 for the right (passenger side) mirror. In effect, by sharing the driveline 130 with each motor 12, 14 and 16 of the drivers side and motor 12′, 14′ and 16′ in passenger's side mirrors, three cut leads and two couplings (e.g., cut lead connections) are eliminated. See, for example,
A user can operate one or more input controls associated with mirror movement. Such input can be initiated by a user or alternatively provided automatically in response to a specific action. By way of the input controls, a specific mirror and function can be selected and operated for each mirror. For instance, a switch 116 can select one of a driver's side mirror control or a passengers side mirror control. A joystick 114 then controls the horizontal and vertical tilt movement of the selected mirror by engaging one of a horizontal control and a vertical control. Joystick 114 can be configured to manipulate the movement of the selected mirror, for example, by pressing the joystick 114 forward and backward so that the selected mirror can be tilted vertically up or down. By pressing joystick 114 to the left and right, the selected mirror can be tilted horizontally. When not engaged, joystick 114 is biased in a null position, disconnecting each of the horizontal control and the vertical control from power source 124. Moreover, predetermined settings can be assigned to one or more drivers. As an example, upon identification of a particular user (e.g., by a key with one or more identifiers, or by entrance of a code associated with the driver), the ECU 110 can automatically adjust one or more mirror movements to a predetermined position associated with the particular user.
Alternatively, the controller can also be configured to respond to a fold command signal, such as through a user input. As an example, a user may initiate a mirror fold by engaging fold switch 122. Fold switch 122 can send a signal to the microprocessor 112 to send a current through a driveline 130 or 132 in order to reverse the position of the mirror housing. For example, if the mirror housing is retracted (i.e., folded inward against the vehicle body), engaging the fold switch 122 can initiate outward movement to extend the mirror housing into the normal operating position. If the mirror is extended, engaging the fold switch 122 can initiate inward movement to fold the mirror housing inward against the vehicle body.
Additionally, the ECU 110 can respond to a vehicle ignition switch 120 to automatically initiate an inward or outward fold of the mirror housing of one or both mirrors 140 and 150. In one embodiment, by engaging (e.g., turning on) the ignition switch 120 in preparation for operating the vehicle, the ECU 110 can send a signal to fold the mirror or mirrors outward. When the ignition switch 120 is disengaged (e.g., turned off), the ECU 110 can send a signal instructing the mirror housing to fold each of the mirror housings inward, to reduce the mirror profile. For example, when a voltage is provided in a first direction, such as through the fold driveline 132, the mirror may fold outward. When a voltage is provided in the opposite direction, such as through the shared driveline 130, the mirror may fold inward.
Moreover,
It should be appreciated that motor movement is controlled by controlling the direction of current flow through the motors, which is accomplished by controlling the driveline connectors between the low side drive and high side drive circuits.
From the above description of the invention, those skilled in the art will perceive improvements, changes and modifications. Such improvements, changes and modifications within the skill of the art are intended to be covered by the present invention.
The present application hereby claims priority to U.S. Provisional Patent Application Ser. No. 62/009,470, entitled OUTSIDE REAR VIEW MIRROR MOTORIZED FOLD SYSTEM to Allen K. Schwartz, filed Jun. 9, 2014, assigned and which is hereby incorporated herein by reference.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US2015/034365 | 6/5/2015 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2015/191378 | 12/17/2015 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
4504117 | Mittelhaeuser | Mar 1985 | A |
5008603 | Nakayama | Apr 1991 | A |
Number | Date | Country |
---|---|---|
2027-28090 | Feb 2013 | CN |
202728090 | Feb 2013 | CN |
203063818 | Jul 2013 | CN |
2002-008350 | Jan 2007 | JP |
2007-008350 | Jan 2007 | JP |
2007008350 | Jan 2007 | JP |
Entry |
---|
PCT/US15/34365 International Search Report and Written Opinion, dated Aug. 14, 2015. |
Number | Date | Country | |
---|---|---|---|
20170080864 A1 | Mar 2017 | US |
Number | Date | Country | |
---|---|---|---|
62009470 | Jun 2014 | US |