This application claims the benefit of European patent application No. 08 162 162.5, filed Aug. 11, 2008, the entire disclosure of which is herein incorporated by reference.
The present invention is directed to a plastic film suitable for an oven cooking process.
There is today a requirement for ovenable films. Ovenable films are films used for cooking food inside in real oven conditions.
The basic requirements for an ovenable film are:
Very well known films for this kind of applications include monolayer PET films and monolayer PA66 films. These films have very high resistance to heat and therefore are suitable for oven cooking, but they are very difficult to heat seal. So they are not suitable for convenient use for making bags.
Typical food which can be oven cooked are different soups, macaroni, chicken breasts, meat pieces and other food.
It is, therefore, an object of the present invention to provide a multilayer film achieving the above properties.
The film has at least three layers, where
The multilayer film has preferably at least 3 layers, more preferably at least 5 layers. The multilayer film is preferably produced with hot blown film method. Other production methods like biaxial orientation (double bubble or tenter frame) are also possible.
Preferably the film structure is of the configuration:
Outer layer/tie layer/core layer/tie layer/inner layer
Where the outer layer is the layer directly exposed to the outdoor environment and the inner layer is the layer at the inside of the tube.
The total thickness of the film preferably is in the range of 30 to 400 microns, more preferably 50 to 200 microns. Preferable thickness for each inner and outer layer are 10 to 150 microns, more preferably 10 to 100 microns.
In the inner and outer layers some of the well known additives in the art may be used.
Such additives are slip, antiblock, antifog, flame retardant, antioxidants, fragrance, odour removal, anticorrosive. Inorganic fillers such as calcium carbonate, talc, mica, wollastonite, glass fibers and others well known in the art may be added.
Slip agents could be oleamide, erucamide and other amides known in the art. As antiblock agents natural and synthetic silica are preferred.
The film has an oxygen barrier of less than 100 cc/m2*DAY*ATM in 23° C. and 75% relative humidity, measured according to ASTM F 1927. In a more preferable case the oxygen transmission is less than 50 cc/m2*atm*day at 23° C., 75% RH, measured with ASTM F 1927.
The film is irradiated by e-beam or gamma radiation from 0.5 to 20 MRADS. Irradiation is increasing the strength of some materials by crosslinking, as is well known in the art.
The definitions used in the following are as follows:
The term “film” refers to a flat or tubular flexible structure of thermoplastic material.
All measurement methods mentioned herein are readily available for the skilled person. For example, they can be obtained from the American National Standards Institute at: www.webstore.ansi.org
The phrase “longitudinal direction” or “machine direction” herein abbreviated “MD” refers to a direction along the length of the film.
The phrase “outer layer” refers to the film layer which comes in immediate contact with the outside environment (atmosphere).
The phrase “inner layer” refers to the film layer that comes in direct contact with the product packed. This is also called “sealing layer” as this layer must be hermetically sealed in order to protect the product from ingress of air.
As used herein, the term “homopolymer” refers to a polymer resulting from polymerization of a single monomer.
As used herein, the term “copolymer” refers to a polymer resulting from polymerization of at least two different polymers.
As used herein, the term “polymer” includes both above types.
As used herein the term “polyethylene” identifies polymers consisting essentially of the ethylene repeating unit. The ones that have a density more than 0.940 g/cm3 are called high density polyethylene (HDPE), the ones that are have less than 0.940 g/cm3 are low density polyethylene (LDPE).
As used herein the phrase “ethylene alpha olefin copolymer” refers to polymers like linear low density polyethylene (LLDPE), medium density polyethylene (MDPE), very low density polyethylene (VLDPE), ultra low density polyethylene (ULDPE), metallocene catalysed polymers and polyethylene plastomers and elastomers.
As used herein the phrase “styrene polymers” refers to styrene homopolymer such as polystyrene and to styrene copolymers such as styrene-butadiene copolymers, styrene-butadiene-styrene copolymers, styrene-isoprene-styrene copolymers, styrene-ethylene-butadiene-styrene copolymers, ethylene-styrene copolymers and the like.
As used herein, the term “ethylene ester copolymers” refers to copolymers of ethylene and esters. This term includes materials like ethylene vinyl acetate copolymers, ethylene methacrylate copolymers, ethylene butyl acrylate copolymers and other polymers.
As used herein the phrase “ethylene methacrylate copolymers” refers to copolymers of ethylene and methacrylate monomer. The monomer content is preferably less than 40%.
As used herein the phrase “ethylene vinyl acetate copolymer” refers to copolymers of ethylene and vinyl acetate.
As used herein, the term EVOH refers to saponified products of ethylene vinyl ester copolymers. The ethylene content is typically in the range of 25 to 50%.
As used herein the term PVDC refers to a vinylidene chloride copolymer wherein a major amount of the copolymer comprises vinylidene chloride and a minor amount of the copolymer comprises one or more monomers such as vinyl chloride and/or alkyl acrylates and methacrylates.
As used herein the term polyamide refers to homopolymers and copolymers. Typical examples are polyamide 6, polyamide 66, polyamide 6/66, polyamide 12, polyamide 11, polyamide 6/12, polyamide 6/66/12, polyamide 6I/6T and others.
As used herein the term “polypropylene” refers to any homopolymer, copolymer, terpolymer, tetrapolymer etc. that includes mer units of propylene. The term as used in the present application includes homopolymers, random copolymers, propylene alpha olefin copolymers, propylene ethylene copolymers propylene-ethylene-alpha olefin copolymers and other propylene polymers.
A 5 layer film is produced in multilayer hot blown film line, with the following structure.
See Table 1
A commercial material was used for comparison reasons. The material is a monolayer polyamide.
The film was irradiated by e-beam process to a dose of 10 MRAD.
Two tests were executed.
1. Oven Behaviour Testing.
The test was executed as follows:
Chicken pieces were vacuum packed in the material. Then, a small hole was made using a fork and the pack was inserted in an oven.
The oven temperature was 190° C. and it was kept at this temperature.
After 3 hours the packs were taken out of the oven and examined as per their appearance. Degradation and charring of the film were the main points to be noted.
The film of the invention had much less signs of thermal degradation (less charring) versus the commercial material. This is surprising because the inventive multilayer structure comprises materials with much lower melting points than the exposure temperature in an oven.
2. Bag Making
Both the inventive and the commercial film were checked for sealing properties on a Bosch sealing machine.
The commercial polyamide film was extremely difficult to heat seal. In the extreme conditions that this was possible, the seal was very brittle.
The inventive film was much easier to heat seal. The seals were much better.
Number | Date | Country | Kind |
---|---|---|---|
08 162 162.5 | Aug 2008 | EP | regional |