Overmolded access port including anchoring and identification features

Information

  • Patent Grant
  • 9717895
  • Patent Number
    9,717,895
  • Date Filed
    Thursday, June 25, 2015
    9 years ago
  • Date Issued
    Tuesday, August 1, 2017
    7 years ago
Abstract
An access port for providing subcutaneous access to a patient is disclosed. In one embodiment, the port includes an internal body defining a fluid cavity that is accessible via a septum. A compliant outer cover including silicone is disposed about at least a portion of the body. A flange is included with the port body and is covered by the outer cover. The flange radially extends about a perimeter of the port body proximate the septum so as to impede penetration of a needle substantially into the outer cover in instances where the needle misses the septum. The flange can further include both an anchoring feature for securing the outer cover to the port body and an identification feature observable via x-ray imaging technology for conveying information indicative of at least one attribute of the access port. The outer cover provides a suitable surface for application of an antimicrobial/antithrombotic coating.
Description
BRIEF SUMMARY

Briefly summarized, embodiments of the present invention are directed to an access port for providing subcutaneous access to a patient. In particular, in one implementation the access port is implanted in the patient's body, then is fluidly connected to a catheter that has been introduced into the patient's vasculature. So positioned and configured, the access port can be transcutaneously accessed by a needle or other infusion/aspiration device so as to administer medicaments to the patient's vasculature via the port and catheter, or to aspirate blood or other fluids therefrom.


In one embodiment, the port includes an internal body defining a fluid cavity that is accessible via a septum. A compliant outer cover including silicone is disposed about at least a portion of the body. A flange is included with the port body and is covered by the outer cover. The flange radially extends about a perimeter of the port body proximate the septum so as to impede penetration of a needle a substantial distance into the outer cover, such as in instances where the needle misses the septum while attempting to access the port.


In one embodiment, the flange of the access port can further include both an anchoring feature for securing the outer cover to the port body and an identification feature observable via x-ray imaging technology for conveying information indicative of at least one attribute of the access port. The outer cover also provides a suitable surface for application of an antimicrobial/antithrombotic coating.


These and other features of embodiments of the present invention will become more fully apparent from the following description and appended claims, or may be learned by the practice of embodiments of the invention as set forth hereinafter.





BRIEF DESCRIPTION OF THE DRAWINGS

A more particular description of the present disclosure will be rendered by reference to specific embodiments thereof that are illustrated in the appended drawings. It is appreciated that these drawings depict only typical embodiments of the invention and are therefore not to be considered limiting of its scope. Example embodiments of the invention will be described and explained with additional specificity and detail through the use of the accompanying drawings in which:



FIGS. 1A-1D are various views of an implantable overmolded access port according to one embodiment;



FIGS. 2A-2D are various views of the access port of FIGS. 1A-1D with the overmolding removed;



FIGS. 3A-3E are various views of an implantable overmolded access port according to one embodiment;



FIG. 3F is a bottom view of an access port body according to one embodiment;



FIG. 4 is a top view of a port flange for use with the access port of FIGS. 3A-3E;



FIG. 5 is a top view of a port flange according to one embodiment;



FIGS. 6A-6C are various views of a port flange and related components according to one embodiment;



FIG. 7 is a perspective view of an implantable overmolded access port according to one embodiment;



FIG. 8 is a perspective view of an implantable overmolded access port according to one embodiment;



FIG. 9 is a cross sectional view of an implantable access port including an identification feature according to one embodiment;



FIG. 10 is a perspective view of a body portion of an implantable access port including anchoring features according to one embodiment;



FIG. 11 is a perspective view of a body portion of an implantable access port including anchoring features according to one embodiment;



FIG. 12 is a perspective view of a body portion of an implantable access port including anchoring features according to one embodiment;



FIGS. 13A-13B are various views of an implantable access port including a complaint body portion according to one embodiment; and



FIGS. 14A-14B are various views of an implantable access port body including anchoring features according to one embodiment.





DETAILED DESCRIPTION OF SELECTED EMBODIMENTS

Reference will now be made to figures wherein like structures will be provided with like reference designations. It is understood that the drawings are diagrammatic and schematic representations of exemplary embodiments of the present invention, and are neither limiting nor necessarily drawn to scale.


For clarity it is to be understood that the word “proximal” refers to a direction relatively closer to a clinician using the device to be described herein, while the word “distal” refers to a direction relatively further from the clinician. For example, the end of a catheter placed within the body of a patient is considered a distal end of the catheter, while the catheter end remaining outside the body is a proximal end of the catheter. Also, the words “including,” “has,” and “having,” as used herein, including the claims, shall have the same meaning as the word “comprising.”



FIGS. 1A-14B depict various features of embodiments of the present invention, which are generally directed to an access port for providing subcutaneous access to the body of a patient. In particular, in one implementation the access port is implanted in the patient's body, then is fluidly connected to a catheter that has been introduced into the patient's vasculature. So positioned and configured, the access port can be transcutaneously accessed by a needle or other infusion/aspiration device so as to administer medicaments to the patient's vasculature via the port and catheter, or to aspirate blood or other fluids therefrom.


Further, in embodiments to be described herein, the access port includes a compliant outer cover that increases patient comfort upon implantation and provides for enhanced options for suturing or otherwise securing the port within the patient's body. In addition, the compliant outer cover in one embodiment includes a biocompatible material such as silicone that provides a suitable surface on which an antimicrobial and/or antithrombotic coating can be applied in order to reduce patient risk or infection as a result of implantation of the access port. Additional features of the access port include, in one embodiment, identification features for identifying an attribute of the port via x-ray imaging, and anchoring features for securing the outer cover to the internal port body.


Reference is first made to FIGS. 1A-2D, which show various views of an implantable access port (“port”), generally designated at 10, according to one embodiment. As shown, the port 10 includes an internal body 12 that defines a bottom surface 14 and a fluid cavity 20 (FIG. 2A). An outer cover 16, to be discussed further below, is disposed about the body 12 to substantially cover it, with the exception of an opening 22 to the fluid cavity 20 and a penetrable septum 24 that is placed in the opening to cover the fluid cavity.


In greater detail, the septum 24 in the illustrated embodiment is held in place within the opening 22 of the fluid cavity 20 by a retaining ring 26 that is inserted into the opening 22 to engage the port body 12 in an interference fit. The outer cover 16 covers the surface of the body 12 of the port 10 up to a circular region about the retaining ring 26, as best seen in FIG. 1C. The outer cover can include other configurations in addition to what is explicitly shown in the accompanying figures.


In the present embodiment, the body 12 of the port 10 includes titanium or other suitable metallic material. In other embodiments to be described herein, the port body includes non-metallic materials. Additional details of the port 10 include a plurality of palpation features 28 included on a top surface of the septum 28 to assist in identification of the port after subcutaneous placement, and a fluid outlet 30 in fluid communication with the fluid cavity 20. A stem 32 defining a conduit is fixedly received within the fluid outlet 30 so as to provide a fluid pathway between the fluid cavity 20 and a catheter attached to the stem.


As mentioned, the outer cover 16 includes a compliant material and covers the port body 12. In one embodiment, the outer cover 16 includes silicone of 30 Shore A durometer, a biocompatible material, though it is appreciated that other suitable biocompatible and compliant materials can also be employed, including thermoplastic elastomers. Due to its compliant nature, the outer cover 16 provides increased comfort for the patient's body when implanted therein. Additionally, the outer cover 16 is pierceable by a needle to enable sutures to be secured through any number of locations in the outer cover to facilitate ease of securing the port within the patient's body.


Furthermore, the compliant outer cover 16 in one embodiment provides a suitable surface for the application of one or more coatings for the part 10. This is true in cases, for instance, where the port body 12 includes titanium or other metal, or an acetyl resin sold under the name DELRIN™, materials where coatings have been traditionally relatively difficult to adhere to.


In one example embodiment, an antimicrobial and/or antithrombotic coating(s) can be applied to the surface of the outer cover 16 in order to prevent the growth of microbes and/or formation of thrombus on or around the port 10. Non-limiting examples of coatings that may be applied to the outer cover 16 of the port 10 can be found in the following: U.S. Patent Application Publication No. 2007/0003603, filed Aug. 1, 2005, and entitled “Antimicrobial Silver Compositions;” U.S. Application Publication No. 2007/0207335, filed Feb. 8, 2007, and entitled “Methods and Compositions for Metal Nanoparticle Treated Surfaces;” and U.S. Application Publication No. 2007/0293800, filed Apr. 25, 2007, and entitled “Antimicrobial Site Dressings.” Further coating examples can be found in the following: U.S. Pat. No. 6,808,738, entitled “Method of Making Anti-Microbial Polymeric Surfaces;” U.S. Pat. No. 6,475,516, entitled “Drug Delivery via Therapeutic Hydrogels;” and U.S. Patent Application No. 2004/0086568, filed Feb. 26, 2002, and entitled “Method of Making Anti-Microbial Polymeric Surfaces.” Each of the afore-mentioned patents and applications is incorporated herein by reference in its entirety. Other coatings can also be employed as may be appreciated by one skilled in the art.


In one embodiment, an antimicrobial coating applied to the outer cover includes silver and further includes a component to prevent apparent discoloration of the outer cover, such as a dye component commonly known as Brilliant Green, CAS number 633-03-4. In yet another embodiment, an antimicrobial, antithrombotic, or other suitable material can be added to the outer cover materials and configured to elute therefrom at a desired rate in order to provide desired properties to the surface of the outer cover. The outer cover in one embodiment can be colored to fall within a specific color range on the PANTONE® Matching System (Pantone Inc., Carlstadt, N.J.), such as Pantone 3272M and proximate colors, for instance.


Note that the body 12 and the retaining ring 26 of the port 10 shown in the present embodiment of FIGS. 1A-2D include titanium. In some embodiments described below, other materials are employed for the port body. It should be remembered that, in addition to what is disclosed herein, other suitable materials can be employed for the various components of the port without departing from the spirit of the embodiments described herein.


In accordance with one embodiment, the port 10 further includes a flange 40 that extends radially about a perimeter of the body 12 of the port. As best seen in FIG. 1B, the flange 40 is positioned circumferentially about and proximate to the septum 24 and opening 22 of the fluid cavity 20. So configured, the flange 40 functions as a needle guard for preventing penetration by a needle or other infusion/aspiration device into a portion of the outer cover 16 relatively close to the septum 24 of the port 10. This in turn prevents a user of the needle from penetrating the compliant outer cover 16 and thus believing the needle has accessed the septum 24, which in one embodiment also includes a complaint material such as silicone. In such a case, needle penetration into the outer cover by the user will be impeded by the flange 40, which will indicate to the user the need to re-insert the needle to access the septum 24, thus preventing further problems. It is appreciated that in the present embodiment the flange is formed integrally with the port body and thus includes titanium. In other embodiments, however, the flange can be separately manufactured, can include other suitable materials, can extend from other areas of the port body other than proximate the septum, and can include different shapes and configurations.


In one embodiment, the flange 40 also serves to enable identification of the port as including a particular characteristic or attribute. For instance, the flange 40 can include one or more identification features that are observable via x-ray or other similar imaging technology so as to enable identification of a corresponding attribute of the port after implantation thereof into the body of the patient. One example of an attribute that can be indicated by the identification feature is the ability of the port to participate in the infusion of fluids therethrough at a relatively high flow rate, commonly referred to as power injection. Such power injectability is useful, for instance, when injecting contrast media through the port 10 in connection with computed tomography (“CT”) imaging procedures on the patient's body. Power injection flow through the port in one example is performed at a rate of about zero to five milliliters per second, though this can vary according to a number of factors.


In accordance with the above, the port flange 40 in one embodiment includes one or more identification features 50, best seen in FIGS. 1C, 1D, and 2D. In particular, the identification features 50 of the present embodiment include alphanumeric indicia 52 that are defined in the body of the flange 40. In greater detail, the flange 40 in the present embodiment includes a set of three alphanumeric indicia 52, wherein each indicium includes the letters “CT” defined through the thickness of the flange so as to provide a radiographic contrast between the CT holes and the surrounding body of the flange when the port is imaged via x-ray. The orientation of the “CT” letters is such that observation thereof in an x-ray will indicate whether the port is properly positioned and oriented within the body of the patient.


It is contemplated that the identification features 50 described above can be one or more alphanumeric characters, such as the “CT” depicted in FIGS. 1A-2D. Additionally, the instant disclosure contemplates the use on the flange of other markings, such as one or more symbols, patterns, characters, designs, a combination thereof, etc. The identification feature(s) can be of any size, shape, or both in order to tailor the identification feature for the specific identification of one or more of a variety of attributes of the access port. Specifically, in one embodiment the identification feature(s) can convey information to a practitioner regarding the power-injectability of the implanted port, as has been discussed. Other examples of attributes the identification feature can convey include port type, catheter type, date of manufacture, lot number, part number, etc. In other embodiments, the identification feature can be defined in other ways.


In one embodiment, the flange 40 serves yet another function as an anchoring feature in securing engagement between the port body 12 and the outer cover 16. As mentioned above, the alphanumeric indicia (“CT”) 52 in the present embodiment are defined as holes through the thickness of the flange 40, which flange is included with the internal body 12 of the port 10. During manufacture of the port 10, the outer cover 16 of the envelops the port body 12 via an overmolding process, wherein silicone or another suitable, flowable material is injected into a mold containing the port body 12 such that the silicone envelops the majority of the port body, including the flange 40. The silicone is then allowed to cure to form the outer cover 16. During the overmolding process, the flowable silicone flows through the holes of the CT indicia 52 and remains therein after curing is complete such that a bond in and through the CT holes is defined by the silicone, thus anchoring the outer cover 16 as a single piece to the port body 12 and preventing separation therebetween.


As will be seen further below, the anchoring features as described here can be modified from what is shown in FIGS. 1A-2D. In one embodiment, an adhesive can be used to adhere the outer cover 16 to the port body 12, especially about the circular termination of the outer cover proximate the port body opening 22. Adhering the outer cover in this area can serve to prevent seepage under the outer cover 16 of any coatings or layers applied to the external surface of the outer cover. Examples of suitable adhesives are available from NuSil Technology LLC of Carpinteria, Calif.


As best seen in FIG. 1D, in one embodiment, an insert 56 including the same material as the outer cover 16 is affixed to the bottom surface 14 of the internal port body 12 before overmolding of the outer cover occurs. The purpose of the insert 56 is to help stabilize and secure the internal port body 12 within the mold before the outer cover is overmolded on to the body. In one embodiment, both the outer cover 16 and the insert 56 include silicone such that both integrate together during the overmolding process. In another embodiment shown in FIG. 3F, a disk 70 including a suitable radiopaque material, such as titanium, can replace the insert 56 on the bottom surface 14 of the internal port body 12 and can include an identification feature 50 observable via interaction with x-ray imaging apparatus such that a characteristic or attribute of the port can be identified after implantation. In the illustrated embodiment, the disk includes alphanumeric cutouts of the letters “CT.”



FIGS. 3A-3E depict various views of the port 10 according to another embodiment, wherein the internal body 12 of the port includes a thermoplastic, such as an acetyl resin commonly sold under the name DELRIN™. As best seen in FIG. 3B, the port body 12 includes a base 12A and a cap 12B that are mated together via ultrasonic welding or other suitable process to define the fluid cavity 20 and to capture therebetween the septum 24. As such, no retaining ring is employed as in the metallic port of the previous embodiment of FIGS. 1A-2D.


The port 10 of FIGS. 3A-3E includes the flange 40 as a separately manufactured component that is attached to the body 12 of the port 10. Specifically, and with additional reference to FIG. 4, the flange 40 of the present embodiment includes a central hole 40A to enable the flange to receive the port body 12 therethrough and to sit atop a ledge defined on the cap 12B, as best seen in FIGS. 3B and 3C. A plurality of notches 60 are defined about the perimeter of the central hole 40A of the flange 40 and correspond with a plurality of extending tabs 62 included on the cap 12B on the ledge thereof. The notches 60 and corresponding tabs 62 are keyed relative to one another so as to enable the flange 40 to seat in only the correct orientation atop the ledge, that is, to ensure the alphanumeric indicia are positioned in the correct orientation with respect to the port.


In the present embodiment, after the flange 40 has been properly positioned on the cap 12B during manufacture as shown in FIG. 3C, the notches 60 thereof will be seated over the tabs 62 of the cap. The tabs 62 can then be deformed by a melting, mechanical, or other suitable deformation process so as to lock the flange 40 on the cap 12B and prevent its removal therefrom.


As mentioned, FIG. 4 shows further details of the flange 40, including the alphanumeric indicia 52 of each identification feature 50, the central hole 40A, and the notches 60. Note that in the present embodiment, the flange includes titanium and the outer perimeter of the flange 40 generally defines a bulged triangle with a corresponding one of the alphanumeric indicia 52, which indicia serve as both identification features and anchoring features for securing the outer cover 16 to the port body 12, positioned at each of the vertices of the triangle. The “CT” indicia 52 are formed in the flange 40 in one embodiment by wire EDM cutting, though other acceptable methods can also be employed including stamping, molding, etc. It is appreciated that the size, shape, and composition of the flange, together with the configuration of the identification features, can vary from what is shown and described herein. For instance, other suitable materials the flange may include can be found in U.S. Pat. No. 8,029,842, which is incorporated herein by reference in its entirety.



FIGS. 5-9 show details of additional embodiments relating to the flange 40. FIG. 5 shows the flange 40 according to one embodiment, wherein the identification features 50—here represented as the alphanumeric indicia 52—are not defined through the entire thickness of the flange, but are only defined partially therethrough so as to form recessed features. In one embodiment, the indicia 52 are defined to a depth in the flange 40 of about 0.015 inch, the flange including a total thickness of about 0.020 inch, though other depths and flange thicknesses are possible. This enables the “CT” indicia 52 to be viewed visually (before implantation) only when the port 10 is viewed from a top-looking-down perspective, such as the perspective shown in FIGS. 1C and 3D. Further, the CT indicia 52 formed in this manner provide sufficient radiographic contrast to enable the indicia to be imaged via x-ray imaging after port implantation, thus serving the desired role as identification features for the port 10. The indicia 52 can be formed by wire EDM machining, laser etching, etc. In addition, a plurality of through holes 76 is defined through the thickness of the flange 40 to serve as anchoring features for the flange. The flange 40 is positioned similarly to that shown in FIGS. 1A-3E.


Note that in the above embodiment and in selected embodiments to follow, the identification features for identifying an attribute of the port are configured such that they are visually viewable (e.g., before implantation) from only predetermined perspectives, such as a top-looking-down perspective shown in FIG. 5 for instance. Such limited perspective visual viewing of the identification feature is useful in one embodiment to indicate to a clinician the top of the port; that is, when the port is placed top-side-up, the identification feature can be visually identified, indicating a proper orientation for inserting the port into the body of the patient. When the port is upside-down, however, the identification feature is not visually observable, thus indicating to the clinician that the port is upside-down. This feature can thus serve to eliminate confusion for the clinician as to the proper orientation of the port. In addition, it is appreciated that in one embodiment, all or a portion of the outer cover of the port can be made opaque so as to eliminate the possibility for a clinician to mistake the CT indicia cutouts of the flange for suture holes through which sutures are to pass.



FIGS. 6A-6C show the flange 40 according to another embodiment, wherein the “CT” alphanumeric indicia 52, each serving as the identification feature 50, are defined as cutouts through the thickness of the flange, as in previous embodiments. A compliant, opaque triangular plug 80 defining the letters “CT” in raised relief to correspond with the “CT” of each of the indicia 52 is inserted into the “CT” cutout of each of the indicia so as to be retained thereby. So positioned, the plug enables the “CT” indicia 52 to be viewed visually (before implantation) only when the port 10 is viewed from a top-looking-down perspective, such as the perspective shown in FIGS. 1C and 3D. When visually viewed from the port bottom, the plug prevents the respective indicia 52 from being observed. Instead, the shape of the plug bottom, a triangle in the present embodiment, is seen. Note that the shape of the plug can vary, as can the raised relief on a top surface thereof in order to correspond with the cutout design of the indicia into which the plug is to be inserted.



FIG. 7 shows the port 10 according to one embodiment, wherein the outer cover 16 of the port includes a frosted surface 84 or otherwise obscured surface so as to render the outer cover opaque. The frosted surface 16 of the port 10 in one embodiment is achieved during the overmolding phase, wherein the surfaces of the mold used to overmold the outer cover 16 to the internal port body 12 include a roughened surface, achieved for instance via bead blasting of the mold surface. When the outer cover 16 is overmolded in such a mold, the frosted surface 84 of FIG. 7 results. It is appreciated that other suitable methods for providing a frosted or opaque surface to the outer cover 16 can also be employed. In yet another embodiment, only a bottom surface of the outer cover is frosted.


In another embodiment, a fabric or mesh structure can be incorporated/imbedded into the outer cover of the port so as to render it opaque. In yet another embodiment, instead of bead blasting, the mold surface can be treated to define thereon diamond-shaped mesh surface features that will impart to the port outer cover when molded therein a roughened, opaque surface. In yet another embodiment, logos or other features can be inscribed into the port outer cover, or included as surface features in the mold surface in which the outer cover is overmolded to the port body so as to render the outer cover at least partially opaque. These and other treatments for outer cover opacity are therefore contemplated.



FIG. 8 shows the port 10 according to one embodiment, wherein a colorant or other suitable opaque additive is included with the material that is used to form the outer cover 16, e.g., silicone, so as to render the outer cover opaque. In one embodiment, a colorant such as Kreative Color Purple, K-6050-13, provided by Kreative Liquid Color of Ontario, Calif., is intermixed with the silicone before the overmolding process, resulting in an opaque outer cover 16 for the port 10 after overmolding is complete. Of course, other materials and methods can be employed to render the outer cover opaque. Desired characteristics of the colorant or opaque additive in one embodiment include radiotranslucence, biocompatibility, and compatibility with the material from which the outer cover is made.



FIG. 9 shows the port 10 according to another embodiment, wherein in addition to the flange 40, a secondary plate 90 is positioned below the flange as shown in FIG. 9. Like the flange 40, the plate 90 is covered by the outer cover 16 and in one embodiment includes through holes to serve as an anchoring feature for securing the engagement between the outer cover 16 and the internal body 12 of the port 10. Also like the flange 40, the plate 90 can include titanium, bismuth trioxide or other suitable material, or can differ in composition from the flange 40. Positioning of the plate 90 as shown in FIG. 9 limits visual observation of the indicia serving as identification features of the flange 40 to a top-looking-down point of view, as in FIGS. 1C and 3D.



FIGS. 10-12 depict various embodiments disclosing additional examples of anchoring features for the internal body 12 of the port 10. The anchoring features to be described operate similar to the “CT” indicia cutouts and other anchoring features of the flange 40 described in the above embodiments in securing the overmolded outer cover to the internal port body.


In FIG. 10, anchoring features 130 are included on a flange 140 of the port body 12. The flange 140 is positioned circumferentially about and proximate to the septum 24 included on the port body 12. In particular, the anchoring features are implemented as a plurality of through holes 142 defined through the flange 140. In addition, one or more extensions 146 extend from the port body 12 below the flange 140 a sufficient distance to define additional through holes 148. As has been described relating to this and other embodiments herein including anchoring features, the silicone or other suitable material used to form the outer cover flows about the internal body 12 of the port during the overmolding process, passing through the anchoring features 130 to desirably enhance the adhesion of the outer cover to the port body.



FIG. 11 shows another example of an anchoring feature 130 for the port body 12, wherein an annular groove 150 is defined proximate the bottom 14 of the port body 12. A plurality of through holes 152 is defined in the groove so as to extend from the groove to the port body bottom surface 14 to enable flow therethrough of the outer cover material during the overmolding process.



FIG. 12 depicts yet another example of anchoring features 130, wherein a plurality of teeth 160 extends from surfaces of the port body 12. In particular, opposing pairs of teeth 160 are shown extending toward one another in FIG. 12, providing a gap not only between opposing teeth, but between the teeth and the adjacent side surface of the port body 12 so as to provide a suitable space through which the outer cover material can flow before solidifying after overmolding to anchor the outer cover to the port body. The size, shape, number, and position of the teeth can vary in a number of ways. More generally, it is appreciated that the preceding embodiments are merely examples of anchoring features and that other types and configurations of anchoring features can reside within the principles of the embodiments of the present invention.



FIGS. 13A and 13B depict a port 210 according to one embodiment, wherein a body 212 of the port includes a first body portion 212A defining a nose of the body and a second body portion 212B defining the remaining portion of the body. In the present embodiment, the first body portion 212A includes a relatively rigid biocompatible material, such as acetyl resin or other thermoplastic, while the second body portion 212B includes a compliant overmolded material, such as silicone or other suitable biocompatible material. So configured, the port body nose defined by the first body portion 212A is relatively rigid to assist in placement of the port into a pocket defined in the tissue of the patient, while the remainder portion of the port body 212 defined by the second body portion 212B is compliant to increase patient comfort and to increase suturability of the port 210. Overmolding of the second body portion can be achieved in a manner similar to previous embodiments.



FIGS. 14A and 14B depict yet another example of anchoring features 130, wherein a plurality of dovetail extensions 220 extends from the circular side surface of the port body cap 12B about the circumference thereof. The dovetail extensions 220 provide ample surface area and entrapment areas between adjacent dovetails through which the outer cover material can flow before solidifying after overmolding to anchor the outer cover to the port body. The size, shape, number, position, and spacing of the dovetails teeth can vary in a number of ways. For instance, in addition to their inclusion on the port cap, the dovetail extensions could be included on the port base. Also, though shown extending about the entirety of the port cap circumference, in one embodiment the dovetail extensions could be defined only partially thereabout. These and other variations are contemplated.


Embodiments of the invention may be embodied in other specific forms without departing from the spirit of the present disclosure. The described embodiments are to be considered in all respects only as illustrative, not restrictive. The scope of the embodiments is, therefore, indicated by the appended claims rather than by the foregoing description. All changes that come within the meaning and range of equivalency of the claims are to be embraced within their scope.

Claims
  • 1. A power-injectable access port, comprising: a body defining a fluid cavity accessible via a septum;a continuous annular flange circumscribing the septum at a top section of the body proximal of the fluid cavity, the flange formed from a radiopaque material, the flange including one or more identification features that convey to a user that the power-injectable access port is capable of power injection; anda compliant outer cover disposed about the body and in contact with the flange.
  • 2. The power-injectable access port according to claim 1, wherein the flange is integrally formed with the body.
  • 3. The power-injectable access port according to claim 2, wherein the flange and body are formed from a titanium material.
  • 4. The power-injectable access port according to claim 1, wherein the one or more identification features are openings designed for anchoring the outer cover to the body.
  • 5. The power-injectable access port according to claim 4, further comprising an adhesive to adhere the outer cover to the body.
  • 6. The power-injectable access port according to claim 1, wherein the one or more identification features are openings formed into alphanumeric or symbolic characters.
  • 7. The power-injectable access port according to claim 1, wherein the body includes a cap and a base, the flange positioned around a top section of the cap.
  • 8. The power-injectable access port according to claim 7, wherein the compliant outer cover substantially covers the cap and the base to define an outer surface of the power-injectable access port.
  • 9. The power-injectable access port according to claim 1, wherein the body includes one of a plurality of teeth and a plurality of dovetail extensions extending from the body.
  • 10. The power-injectable access port according to claim 1, wherein the outer cover includes at least one of an antimicrobial component and an antithrombotic component.
  • 11. The power-injectable access port according to claim 1, wherein the body is formed from a first material and the flange is formed from a second material different from the first material, and wherein the flange is separate from the body and attached to the body.
  • 12. The power-injectable access port according to claim 11, wherein the flange includes a plurality of keyed notches that each fit over correspondingly keyed tabs on the body, and wherein the tabs are capable of being deformed after the notches are placed over the tabs such that the flange is retained by the body.
  • 13. The power-injectable access port according to claim 12, wherein the body of the power-injectable access port includes acetyl resin, and wherein the annular flange includes titanium.
  • 14. The power-injectable access port according to claim 1, wherein the flange generally defines a triangular shape including three vertices, and wherein the one or more identification features include alphanumeric indicia disposed at each of the three vertices of the flange.
  • 15. The power-injectable access port according to claim 14, wherein the alphanumeric indicia are defined as recessed features in the flange, and wherein the flange further comprises a plurality of openings defined through the flange.
  • 16. The power-injectable access port according to claim 1, wherein the compliant outer cover provides a suitable surface for application of a coating thereon to inhibit at least one of microbe adhesion and thrombus formation.
  • 17. The power-injectable access port according to claim 1, wherein the compliant outer cover includes silicone, and wherein at least a portion of a surface of the compliant outer cover is frosted so as to render the portion of the surface substantially opaque.
  • 18. The power-injectable access port according to claim 17, wherein the outer cover includes silicone mixed with a colorant so as to render the silicone opaque.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a continuation of U.S. patent application Ser. No. 12/917,323, filed Nov. 1, 2010, now U.S. Pat. No. 9,079,004, which claims the benefit of U.S. Provisional Patent Application No. 61/262,126, filed Nov. 17, 2009, and titled “Implantable Overmolded Access Port Including Anchoring Identification Feature,” each of which is incorporated herein by reference in its entirety.

US Referenced Citations (842)
Number Name Date Kind
445896 Kinsman Feb 1891 A
546440 Tufts Sep 1895 A
574387 Buckler Jan 1897 A
611357 Dembinski Sep 1898 A
966696 Merrill Aug 1910 A
D44302 Director Jul 1913 S
1713267 Crowley May 1929 A
2029553 Bartischi et al. Feb 1936 A
D130852 Rothschild Dec 1941 S
2433480 Rendich Dec 1947 A
2891689 Gould Jun 1959 A
D198453 Weichselbaum Jun 1964 S
3159175 Macmillan Dec 1964 A
3211431 Meysembourg et al. Oct 1965 A
3293663 Cronin Dec 1966 A
3341417 Sinaiko Sep 1967 A
3477438 Allen et al. Nov 1969 A
3518428 Ring Jun 1970 A
3525357 Koreski Aug 1970 A
3529633 Vailancourt Sep 1970 A
3540670 Rissberger Nov 1970 A
3541438 Nelsen et al. Nov 1970 A
3643358 Morderosian Feb 1972 A
D223340 Diedrich Apr 1972 S
3669323 Harker et al. Jun 1972 A
3674183 Venable et al. Jul 1972 A
3811466 Ohringer May 1974 A
3829904 Ling et al. Aug 1974 A
3831549 Parsons Aug 1974 A
3831583 Edmunds, Jr. et al. Aug 1974 A
3840009 Michaels et al. Oct 1974 A
3853127 Spademan Dec 1974 A
3891997 Herbert Jul 1975 A
3915162 Miller Oct 1975 A
3919724 Sanders et al. Nov 1975 A
3922726 Trentani et al. Dec 1975 A
3951147 Tucker et al. Apr 1976 A
3955594 Snow May 1976 A
3971376 Wichterle Jul 1976 A
4027391 Samis Jun 1977 A
4035653 Karasko Jul 1977 A
4121108 Manor Oct 1978 A
4123806 Amstutz et al. Nov 1978 A
4143853 Abramson Mar 1979 A
4168586 Samis Sep 1979 A
4181132 Parks Jan 1980 A
4190040 Schulte Feb 1980 A
4190057 Hill et al. Feb 1980 A
4194122 Mitchell et al. Mar 1980 A
4196731 Laurin et al. Apr 1980 A
4202349 Jones May 1980 A
4222374 Sampson et al. Sep 1980 A
4233964 Jefferts et al. Nov 1980 A
4274006 Caine Jun 1981 A
D263335 Bujan Mar 1982 S
4349498 Ellis et al. Sep 1982 A
4361153 Slocum et al. Nov 1982 A
4405305 Stephen et al. Sep 1983 A
4406567 Samis Sep 1983 A
4425119 Berglund Jan 1984 A
4445896 Gianturco May 1984 A
4447237 Frisch et al. May 1984 A
4450592 Niederer et al. May 1984 A
4450985 Beard May 1984 A
4456011 Warnecke Jun 1984 A
4469483 Becker et al. Sep 1984 A
4479798 Parks Oct 1984 A
4494545 Slocum et al. Jan 1985 A
4506676 Duska Mar 1985 A
4529635 Sheldon Jul 1985 A
4543088 Bootman et al. Sep 1985 A
4549879 Groshong et al. Oct 1985 A
4559043 Whitehouse et al. Dec 1985 A
4559046 Groshong et al. Dec 1985 A
4560375 Schulte et al. Dec 1985 A
4569675 Prosl et al. Feb 1986 A
4571749 Fischell Feb 1986 A
4576595 Aas et al. Mar 1986 A
4610665 Matsumoto et al. Sep 1986 A
4612877 Hayes et al. Sep 1986 A
4626244 Reinicke Dec 1986 A
4627844 Schmitt Dec 1986 A
4634427 Hannula et al. Jan 1987 A
4636194 Schulte et al. Jan 1987 A
4636213 Pakiam Jan 1987 A
4645495 Vaillancourt Feb 1987 A
4653508 Cosman Mar 1987 A
4655765 Swift Apr 1987 A
4657024 Coneys Apr 1987 A
4662652 Hargis May 1987 A
4668221 Luther May 1987 A
4671796 Groshong et al. Jun 1987 A
4673394 Fenton, Jr. et al. Jun 1987 A
4681560 Schulte et al. Jul 1987 A
4684365 Reinicke Aug 1987 A
4685447 Iversen et al. Aug 1987 A
4685905 Jeanneret nee Aab Aug 1987 A
4692146 Hilger Sep 1987 A
4695273 Brown Sep 1987 A
4697595 Breyer et al. Oct 1987 A
4701166 Groshong et al. Oct 1987 A
4704103 Stober et al. Nov 1987 A
4707389 Ward Nov 1987 A
4710167 Lazorthes Dec 1987 A
4710174 Moden et al. Dec 1987 A
4718894 Lazorthes Jan 1988 A
4723947 Konopka Feb 1988 A
4728894 Yoda et al. Mar 1988 A
4743231 Kay et al. May 1988 A
4753640 Nichols et al. Jun 1988 A
4755173 Konopka et al. Jul 1988 A
4760837 Petit Aug 1988 A
4762517 McIntyre et al. Aug 1988 A
4767410 Moden et al. Aug 1988 A
4772270 Wiita et al. Sep 1988 A
4772276 Wiita et al. Sep 1988 A
4773552 Boege et al. Sep 1988 A
4778452 Moden et al. Oct 1988 A
4781680 Redmond et al. Nov 1988 A
4781685 Lehmann et al. Nov 1988 A
4781695 Dalton Nov 1988 A
4784646 Feingold Nov 1988 A
4802885 Weeks et al. Feb 1989 A
4804054 Howson et al. Feb 1989 A
4820273 Reinicke Apr 1989 A
4822341 Colone Apr 1989 A
4840615 Hancock et al. Jun 1989 A
4848346 Crawford Jul 1989 A
4857053 Dalton Aug 1989 A
4861341 Woodburn Aug 1989 A
4863470 Carter Sep 1989 A
4886501 Johnston et al. Dec 1989 A
4886502 Poirier et al. Dec 1989 A
4892518 Cupp et al. Jan 1990 A
4895561 Mahurkar Jan 1990 A
4897081 Poirier et al. Jan 1990 A
4904241 Bark Feb 1990 A
4905709 Bieganski et al. Mar 1990 A
4908029 Bark et al. Mar 1990 A
4909250 Smith Mar 1990 A
4915690 Cone et al. Apr 1990 A
4928298 Tanaka May 1990 A
4929236 Sampson May 1990 A
4955861 Enegren et al. Sep 1990 A
4961267 Herzog Oct 1990 A
4963133 Whipple Oct 1990 A
4966583 Debbas Oct 1990 A
4973319 Melsky Nov 1990 A
4983162 Metais et al. Jan 1991 A
5002735 Alberhasky et al. Mar 1991 A
5006115 McDonald Apr 1991 A
5009391 Steigerwald Apr 1991 A
5009644 McDonald Apr 1991 A
5013298 Moden et al. May 1991 A
5041098 Loiterman et al. Aug 1991 A
5044955 Jagmin Sep 1991 A
5045060 Melsky et al. Sep 1991 A
5045064 Idriss Sep 1991 A
5053013 Ensminger et al. Oct 1991 A
5059186 Yamamoto et al. Oct 1991 A
5069206 Crosbie Dec 1991 A
5084015 Moriuchi Jan 1992 A
5085216 Henley, Jr. et al. Feb 1992 A
5090066 Schoepe et al. Feb 1992 A
5092849 Sampson Mar 1992 A
5108317 Beinhaur et al. Apr 1992 A
5108375 Harrison et al. Apr 1992 A
5108377 Cone et al. Apr 1992 A
5112301 Fenton, Jr. et al. May 1992 A
5112303 Pudenz et al. May 1992 A
5129891 Young Jul 1992 A
5137529 Watson et al. Aug 1992 A
5147483 Melsky et al. Sep 1992 A
5152753 Laguette et al. Oct 1992 A
5156600 Young Oct 1992 A
5158547 Doan et al. Oct 1992 A
5167629 Vertenstein et al. Dec 1992 A
5167633 Mann et al. Dec 1992 A
5167638 Felix et al. Dec 1992 A
5169393 Moorehead et al. Dec 1992 A
5171228 McDonald Dec 1992 A
5176653 Metals Jan 1993 A
5176662 Bartholomew et al. Jan 1993 A
5178612 Fenton, Jr. Jan 1993 A
5180365 Ensminger et al. Jan 1993 A
5185003 Brethauer Feb 1993 A
5189690 Samuel Feb 1993 A
5193106 DeSena Mar 1993 A
5195122 Fabian Mar 1993 A
5195123 Clement Mar 1993 A
5201715 Masters Apr 1993 A
5201722 Moorehead et al. Apr 1993 A
5203771 Melker et al. Apr 1993 A
5203777 Lee Apr 1993 A
5205834 Moorehead et al. Apr 1993 A
5207644 Strecker May 1993 A
5213574 Tucker May 1993 A
5215537 Lynn et al. Jun 1993 A
5222499 Allen et al. Jun 1993 A
D337637 Tucker Jul 1993 S
5224938 Fenton, Jr. Jul 1993 A
5242415 Kantrowitz et al. Sep 1993 A
5246462 Bekki et al. Sep 1993 A
5249598 Schmidt Oct 1993 A
5263930 Ensminger Nov 1993 A
D342134 Mongeon Dec 1993 S
5281199 Ensminger et al. Jan 1994 A
5281205 McPherson Jan 1994 A
5290263 Wigness et al. Mar 1994 A
5295658 Atkinson et al. Mar 1994 A
5299253 Wessels Mar 1994 A
5300048 Drewes, Jr. et al. Apr 1994 A
5309863 Leeb, Jr. May 1994 A
5312337 Flaherty et al. May 1994 A
5318545 Tucker Jun 1994 A
5320100 Herweck et al. Jun 1994 A
5328480 Melker et al. Jul 1994 A
5332398 Miller et al. Jul 1994 A
5336194 Polaschegg et al. Aug 1994 A
5338398 Szwejkowski et al. Aug 1994 A
5350360 Ensminger et al. Sep 1994 A
5352204 Ensminger Oct 1994 A
5356381 Ensminger et al. Oct 1994 A
5360407 Leonard et al. Nov 1994 A
5383223 Inokuchi Jan 1995 A
5383233 Russell Jan 1995 A
5383585 Weiss Jan 1995 A
5383858 Reilly et al. Jan 1995 A
D355240 Gladfelter et al. Feb 1995 S
5387192 Glantz et al. Feb 1995 A
5394457 Leibinger et al. Feb 1995 A
5395324 Hinrichs et al. Mar 1995 A
5396925 Poli Mar 1995 A
5397329 Allen Mar 1995 A
5399168 Wadsworth, Jr. et al. Mar 1995 A
5405402 Dye et al. Apr 1995 A
5417565 Long May 1995 A
5417656 Ensminger et al. May 1995 A
5421814 Geary Jun 1995 A
5423334 Jordan Jun 1995 A
5425762 Muller Jun 1995 A
5453097 Paradis Sep 1995 A
5456698 Byland et al. Oct 1995 A
5476451 Ensminger et al. Dec 1995 A
5476460 Montalvo Dec 1995 A
5476880 Cooke et al. Dec 1995 A
5484402 Saravia et al. Jan 1996 A
5503630 Ensminger et al. Apr 1996 A
5507813 Dowd et al. Apr 1996 A
5509805 Jagmin Apr 1996 A
5513637 Twiss et al. May 1996 A
5514103 Srisathapat et al. May 1996 A
5520632 Leveen et al. May 1996 A
5520643 Ensminger et al. May 1996 A
5527277 Ensminger et al. Jun 1996 A
5527278 Ensminger et al. Jun 1996 A
5527307 Srisathapat et al. Jun 1996 A
5531684 Ensminger et al. Jul 1996 A
5542923 Ensminger et al. Aug 1996 A
5545143 Fischell Aug 1996 A
5554117 Ensminger et al. Sep 1996 A
5556381 Ensminger et al. Sep 1996 A
5558641 Glantz et al. Sep 1996 A
5558829 Petrick Sep 1996 A
5562617 Finch, Jr. et al. Oct 1996 A
5562618 Cai et al. Oct 1996 A
5575770 Melsky et al. Nov 1996 A
5593028 Haber et al. Jan 1997 A
5593434 Williams Jan 1997 A
5607393 Ensminger et al. Mar 1997 A
5607407 Tolkoff et al. Mar 1997 A
5613945 Cai et al. Mar 1997 A
5620419 Lui et al. Apr 1997 A
5632729 Cai et al. May 1997 A
5637102 Tolkoff et al. Jun 1997 A
5638832 Singer et al. Jun 1997 A
5647855 Trooskin Jul 1997 A
RE35601 Eckenhoff Sep 1997 E
5662600 Watson et al. Sep 1997 A
5662612 Niehoff Sep 1997 A
5662616 Bousquet Sep 1997 A
5676146 Scarborough Oct 1997 A
5695490 Flaherty Dec 1997 A
5702128 Maxim et al. Dec 1997 A
5702363 Flaherty Dec 1997 A
5704915 Melsky et al. Jan 1998 A
5707357 Mikhail et al. Jan 1998 A
5709668 Wacks Jan 1998 A
5713844 Peyman Feb 1998 A
5713858 Heruth et al. Feb 1998 A
5713859 Finch, Jr. et al. Feb 1998 A
5718382 Jaeger Feb 1998 A
5718682 Tucker Feb 1998 A
5725507 Petrick Mar 1998 A
5733336 Neuenfeldt et al. Mar 1998 A
5733400 Gore et al. Mar 1998 A
5741228 Lambrecht et al. Apr 1998 A
5743873 Cai et al. Apr 1998 A
5743891 Tolkoff et al. Apr 1998 A
5746460 Marohl et al. May 1998 A
5755780 Finch, Jr. et al. May 1998 A
5758667 Slettenmark Jun 1998 A
5769823 Otto Jun 1998 A
5773552 Hutchings et al. Jun 1998 A
5776188 Shepherd et al. Jul 1998 A
5792104 Speckman et al. Aug 1998 A
5792116 Berg et al. Aug 1998 A
5792123 Ensminger Aug 1998 A
5797886 Roth et al. Aug 1998 A
5810789 Powers et al. Sep 1998 A
5814016 Valley et al. Sep 1998 A
5824071 Nelson et al. Oct 1998 A
5830172 Leveen et al. Nov 1998 A
5833654 Powers et al. Nov 1998 A
5835563 Navab et al. Nov 1998 A
5836935 Ashton et al. Nov 1998 A
5840063 Flaherty Nov 1998 A
5843069 Butler et al. Dec 1998 A
5848989 Villani Dec 1998 A
5851221 Rieder et al. Dec 1998 A
5853394 Tolkoff et al. Dec 1998 A
5868702 Stevens et al. Feb 1999 A
5879322 Lattin et al. Mar 1999 A
5882341 Bousquet Mar 1999 A
5882353 VanBeek et al. Mar 1999 A
5895424 Steele, Sr. et al. Apr 1999 A
5897528 Schultz Apr 1999 A
5899856 Schoendorfer et al. May 1999 A
5904934 Maruyama May 1999 A
5906592 Kriesel et al. May 1999 A
5906596 Tallarida May 1999 A
5908413 Lange et al. Jun 1999 A
5908414 Otto et al. Jun 1999 A
5911706 Estabrook et al. Jun 1999 A
5913998 Butler et al. Jun 1999 A
5916263 Goicoechea et al. Jun 1999 A
5919160 Sanfilippo, II Jul 1999 A
5925017 Kriesel et al. Jul 1999 A
5925030 Gross et al. Jul 1999 A
5927345 Samson Jul 1999 A
5928197 Niehoff Jul 1999 A
5928744 Heilmann et al. Jul 1999 A
5931829 Burbank et al. Aug 1999 A
5941856 Kovacs et al. Aug 1999 A
5944023 Johnson et al. Aug 1999 A
5944688 Lois Aug 1999 A
5944698 Fischer et al. Aug 1999 A
5944712 Frassica et al. Aug 1999 A
D413672 Fogarty Sep 1999 S
5947953 Ash et al. Sep 1999 A
5951512 Dalton Sep 1999 A
5951522 Rosato et al. Sep 1999 A
5951929 Wilson Sep 1999 A
5954687 Baudino Sep 1999 A
5954691 Prosl Sep 1999 A
5957890 Mann et al. Sep 1999 A
5961497 Larkin Oct 1999 A
5968011 Larsen et al. Oct 1999 A
5970162 Kawashima Oct 1999 A
5989216 Johnson et al. Nov 1999 A
5989239 Finch et al. Nov 1999 A
5989641 Oulie Nov 1999 A
5997524 Burbank et al. Dec 1999 A
6007516 Burbank et al. Dec 1999 A
6013051 Nelson Jan 2000 A
6013058 Prosl et al. Jan 2000 A
6017331 Watts et al. Jan 2000 A
6022335 Ramadan Feb 2000 A
6033389 Cornish Mar 2000 A
6039712 Fogarty et al. Mar 2000 A
6056717 Finch et al. May 2000 A
6077756 Lin et al. Jun 2000 A
6086555 Eliasen et al. Jul 2000 A
6090066 Schnell Jul 2000 A
6099508 Bousquet Aug 2000 A
6102884 Squitieri Aug 2000 A
6113572 Gailey et al. Sep 2000 A
6120492 Finch et al. Sep 2000 A
6152909 Bagaoisan et al. Nov 2000 A
6161033 Kuhn Dec 2000 A
6171198 Lizama Troncoso et al. Jan 2001 B1
6171298 Matsuura et al. Jan 2001 B1
6186982 Gross et al. Feb 2001 B1
6190352 Haarala et al. Feb 2001 B1
6193684 Burbank et al. Feb 2001 B1
6198807 DeSena Mar 2001 B1
6200338 Solomon et al. Mar 2001 B1
6203570 Baeke Mar 2001 B1
6210366 Sanfilippo, II Apr 2001 B1
6213973 Eliasen et al. Apr 2001 B1
6228088 Miller et al. May 2001 B1
6251059 Apple et al. Jun 2001 B1
D445175 Bertheas Jul 2001 S
6261259 Bell Jul 2001 B1
6269148 Jessop et al. Jul 2001 B1
6272370 Gillies et al. Aug 2001 B1
6287293 Jones et al. Sep 2001 B1
6290677 Arai et al. Sep 2001 B1
6305413 Fischer et al. Oct 2001 B1
6306124 Jones et al. Oct 2001 B1
D450115 Bertheas Nov 2001 S
6315762 Recinella et al. Nov 2001 B1
6332874 Eliasen et al. Dec 2001 B1
6351513 Bani-Hashemi et al. Feb 2002 B1
6355021 Nielsen et al. Mar 2002 B1
6356782 Sirimanne et al. Mar 2002 B1
6361557 Gittings et al. Mar 2002 B1
6398764 Finch, Jr. et al. Jun 2002 B1
6419680 Cosman et al. Jul 2002 B1
6450937 Mercereau et al. Sep 2002 B1
6459772 Wiedenhoefer et al. Oct 2002 B1
6473638 Ferek-Petric Oct 2002 B2
6475516 DiCosmo et al. Nov 2002 B2
6478783 Moorehead Nov 2002 B1
6482217 Pintor et al. Nov 2002 B1
6494867 Skansen et al. Dec 2002 B1
6497062 Koopman et al. Dec 2002 B1
6500155 Sasso Dec 2002 B2
6503228 Li et al. Jan 2003 B1
6527754 Tallarida et al. Mar 2003 B1
6537255 Raines Mar 2003 B1
RE38074 Recinella et al. Apr 2003 E
6562023 Marrs et al. May 2003 B1
6572583 Olsen et al. Jun 2003 B1
6582418 Verbeek et al. Jun 2003 B1
6592571 Verbeek et al. Jul 2003 B1
6610031 Chin Aug 2003 B1
6613002 Clark et al. Sep 2003 B1
6613662 Wark et al. Sep 2003 B2
6626936 Stinson Sep 2003 B2
D480942 Ishida et al. Oct 2003 S
6629950 Levin Oct 2003 B1
6632217 Harper et al. Oct 2003 B2
6652486 Bialecki et al. Nov 2003 B2
6652503 Bradley Nov 2003 B1
6663646 Shah Dec 2003 B1
6676633 Smith et al. Jan 2004 B2
6697664 Kienzle III et al. Feb 2004 B2
6705316 Blythe et al. Mar 2004 B2
6719721 Okazaki et al. Apr 2004 B1
6719739 Verbeek et al. Apr 2004 B2
6726063 Stull et al. Apr 2004 B2
6738531 Funahashi May 2004 B1
6755842 Kanner et al. Jun 2004 B2
6758841 Haarala et al. Jul 2004 B2
6767356 Kanner et al. Jul 2004 B2
6784783 Scoggin et al. Aug 2004 B2
6808738 DiTizio et al. Oct 2004 B2
D498894 Gould Nov 2004 S
6826257 Sayre et al. Nov 2004 B2
6827709 Fujii Dec 2004 B2
6852106 Watson et al. Feb 2005 B2
6856055 Michaels et al. Feb 2005 B2
6878136 Fleury et al. Apr 2005 B2
6878137 Benchetrit Apr 2005 B2
6929631 Brugger et al. Aug 2005 B1
6949084 Marggi et al. Sep 2005 B2
6953453 Recinella et al. Oct 2005 B2
6962577 Tallarida et al. Nov 2005 B2
6962580 Adams et al. Nov 2005 B2
6994315 Ryan et al. Feb 2006 B2
6997914 Smith et al. Feb 2006 B2
7008377 Beane et al. Mar 2006 B2
7008412 Maginot Mar 2006 B2
7016456 Basu et al. Mar 2006 B2
7018361 Gillespie, Jr. et al. Mar 2006 B2
D518573 French Apr 2006 S
7033335 Haarala et al. Apr 2006 B2
7033339 Lynn Apr 2006 B1
7044942 Jolly et al. May 2006 B2
7056316 Burbank et al. Jun 2006 B1
7070591 Adams et al. Jul 2006 B2
7072704 Bucholz Jul 2006 B2
7074232 Kanner et al. Jul 2006 B2
7076305 Imran et al. Jul 2006 B2
7083593 Stultz Aug 2006 B2
7108686 Burke et al. Sep 2006 B2
7123690 Brown et al. Oct 2006 B1
7124570 Blatter et al. Oct 2006 B2
7127040 Sayre et al. Oct 2006 B2
7131962 Estabrook et al. Nov 2006 B1
7140769 Kay Nov 2006 B2
7186236 Gibson et al. Mar 2007 B2
7191011 Cantlon Mar 2007 B2
7198631 Kanner et al. Apr 2007 B2
7214207 Lynch et al. May 2007 B2
7214215 Heinzerling et al. May 2007 B2
7223257 Shubayev et al. May 2007 B2
7229417 Foerster et al. Jun 2007 B2
7232429 Moreci Jun 2007 B2
7235067 Morris et al. Jun 2007 B2
D546440 Burnside Jul 2007 S
7242982 Singhal et al. Jul 2007 B2
7248668 Galkin Jul 2007 B2
7252469 Zaluzec et al. Aug 2007 B2
7252649 Sherry Aug 2007 B2
7261705 Edoga et al. Aug 2007 B2
D550355 Racz et al. Sep 2007 S
D554253 Kornerup Oct 2007 S
7275682 Excoffier et al. Oct 2007 B2
7276075 Callas et al. Oct 2007 B1
D556153 Burnside Nov 2007 S
7306579 Fujii Dec 2007 B2
7311702 Tallarida et al. Dec 2007 B2
7318816 Bobroff et al. Jan 2008 B2
7318818 Yashiro et al. Jan 2008 B2
7322953 Redinger Jan 2008 B2
D562442 Blateri Feb 2008 S
D562443 Zinn et al. Feb 2008 S
7331130 Schweikert Feb 2008 B2
7331948 Skarda Feb 2008 B2
7333013 Berger Feb 2008 B2
D564449 Dewberry Mar 2008 S
7347838 Kulli Mar 2008 B2
7347843 Adams et al. Mar 2008 B2
7351233 Parks Apr 2008 B2
7377915 Rasmussen et al. May 2008 B2
D574950 Zawacki et al. Aug 2008 S
7413564 Morris et al. Aug 2008 B2
D578203 Bizup Oct 2008 S
7445614 Bunodiere et al. Nov 2008 B2
D582032 Bizup et al. Dec 2008 S
7465847 Fabian Dec 2008 B2
7485148 Wozencroft et al. Feb 2009 B2
7497850 Halili Mar 2009 B2
D590499 Chesnin Apr 2009 S
7552853 Mas et al. Jun 2009 B2
7553298 Hunt et al. Jun 2009 B2
D595892 Smith et al. Jul 2009 S
7563025 Kay Jul 2009 B2
7618411 Appling Nov 2009 B2
7628776 Gibson et al. Dec 2009 B2
7658196 Ferreri et al. Feb 2010 B2
D612479 Zawacki et al. Mar 2010 S
D613394 Linden Apr 2010 S
7713251 Tallarida et al. May 2010 B2
7722580 Dicarlo et al. May 2010 B2
D619242 Zinn et al. Jul 2010 S
7766880 Spinoza Aug 2010 B1
7785302 Powers Aug 2010 B2
7803143 Tallarida et al. Sep 2010 B2
7806888 Frassica Oct 2010 B2
7811266 Eliasen Oct 2010 B2
D629503 Caffey et al. Dec 2010 S
7846139 Zinn et al. Dec 2010 B2
7850660 Uth et al. Dec 2010 B2
7862546 Conlon et al. Jan 2011 B2
D634840 Lombardi, III et al. Mar 2011 S
7909804 Stats Mar 2011 B2
7931619 Diamond et al. Apr 2011 B2
7947022 Amin et al. May 2011 B2
7959615 Stats et al. Jun 2011 B2
7972314 Bizup et al. Jul 2011 B2
8007474 Uth et al. Aug 2011 B2
8021324 Bizup et al. Sep 2011 B2
8025639 Powers et al. Sep 2011 B2
8029482 Maniar et al. Oct 2011 B2
D650475 Smith et al. Dec 2011 S
8075536 Gray et al. Dec 2011 B2
8092435 Beling et al. Jan 2012 B2
8147455 Butts et al. Apr 2012 B2
8172894 Schmid et al. May 2012 B2
8172896 McNamara et al. May 2012 B2
8177762 Beasley et al. May 2012 B2
8182453 Eliasen May 2012 B2
8197454 Mann Jun 2012 B2
8202259 Evans et al. Jun 2012 B2
8257325 Schweikert et al. Sep 2012 B2
D676955 Orome Feb 2013 S
8366687 Girard et al. Feb 2013 B2
8377034 Tallarida et al. Feb 2013 B2
8382723 Powers et al. Feb 2013 B2
8382724 Maniar et al. Feb 2013 B2
8409153 Tallarida et al. Apr 2013 B2
8475417 Powers et al. Jul 2013 B2
8545460 Beasley et al. Oct 2013 B2
8585660 Murphy Nov 2013 B2
8585663 Powers et al. Nov 2013 B2
8603052 Powers et al. Dec 2013 B2
8608712 Bizup et al. Dec 2013 B2
8608713 Beasley et al. Dec 2013 B2
8641676 Butts et al. Feb 2014 B2
8641688 Powers et al. Feb 2014 B2
8805478 Powers et al. Aug 2014 B2
8852160 Schweikert et al. Oct 2014 B2
8932271 Hamatake et al. Jan 2015 B2
8939947 Maniar et al. Jan 2015 B2
8998860 Sheetz et al. Apr 2015 B2
9079004 Wiley et al. Jul 2015 B2
9248268 Wiley et al. Feb 2016 B2
9265912 Draper et al. Feb 2016 B2
9295733 Trieu Mar 2016 B2
9421352 Butts et al. Aug 2016 B2
9579496 Evans et al. Feb 2017 B2
9603992 Powers Mar 2017 B2
9603993 Powers Mar 2017 B2
9642986 Beasley May 2017 B2
20010016699 Burbank et al. Aug 2001 A1
20010016717 Haarala et al. Aug 2001 A1
20010047165 Makower et al. Nov 2001 A1
20010051766 Gazdzinski Dec 2001 A1
20010053889 Marggi et al. Dec 2001 A1
20010056266 Tallarida et al. Dec 2001 A1
20020013557 Sherry Jan 2002 A1
20020052576 Massengale May 2002 A1
20020055715 Young et al. May 2002 A1
20020095205 Edwin et al. Jul 2002 A1
20020121530 Socier Sep 2002 A1
20020138068 Watson Sep 2002 A1
20020169418 Menzi et al. Nov 2002 A1
20020173769 Gray et al. Nov 2002 A1
20020173772 Olsen Nov 2002 A1
20020183846 Kuslich et al. Dec 2002 A1
20020188282 Greenberg Dec 2002 A1
20030028173 Forsberg Feb 2003 A1
20030093029 McGuckin et al. May 2003 A1
20030109856 Sherry Jun 2003 A1
20030130627 Smith et al. Jul 2003 A1
20030135388 Martucci et al. Jul 2003 A1
20030139812 Garcia et al. Jul 2003 A1
20030141477 Miller Jul 2003 A1
20030181878 Tallarida et al. Sep 2003 A1
20030191452 Meglin et al. Oct 2003 A1
20030208184 Burke et al. Nov 2003 A1
20030216694 Tollini Nov 2003 A1
20030217659 Yamamoto et al. Nov 2003 A1
20040002693 Bright et al. Jan 2004 A1
20040006316 Patton Jan 2004 A1
20040020462 Sauler et al. Feb 2004 A1
20040020492 Dubrul et al. Feb 2004 A1
20040024361 Fago et al. Feb 2004 A1
20040044306 Lynch et al. Mar 2004 A1
20040054352 Adams et al. Mar 2004 A1
20040056266 Suh et al. Mar 2004 A1
20040064110 Forsell Apr 2004 A1
20040073196 Adams et al. Apr 2004 A1
20040078000 Borchard et al. Apr 2004 A1
20040086568 Ditizio et al. May 2004 A1
20040087877 Besz et al. May 2004 A1
20040087885 Kawano et al. May 2004 A1
20040106878 Skujins et al. Jun 2004 A1
20040106891 Langan et al. Jun 2004 A1
20040106942 Taylor et al. Jun 2004 A1
20040116901 Appling Jun 2004 A1
20040133173 Edoga et al. Jul 2004 A1
20040156472 Galkin Aug 2004 A1
20040157952 Soffiati et al. Aug 2004 A1
20040158207 Hunn et al. Aug 2004 A1
20040167543 Mazzocchi et al. Aug 2004 A1
20040176743 Morris et al. Sep 2004 A1
20040186444 Daly et al. Sep 2004 A1
20040199129 DiMatteo Oct 2004 A1
20040199220 Cantlon Oct 2004 A1
20040204692 Eliasen Oct 2004 A1
20040204759 Blom et al. Oct 2004 A1
20040225254 Tanaka et al. Nov 2004 A1
20040254536 Conlon et al. Dec 2004 A1
20040254537 Conlon et al. Dec 2004 A1
20050010176 Dikeman et al. Jan 2005 A1
20050010286 Vijay Jan 2005 A1
20050027234 Waggoner et al. Feb 2005 A1
20050027261 Weaver et al. Feb 2005 A1
20050038390 Fago et al. Feb 2005 A1
20050044759 Schweikert Mar 2005 A1
20050049553 Triplett et al. Mar 2005 A1
20050070875 Kulessa Mar 2005 A1
20050075614 Bunodiere et al. Apr 2005 A1
20050080401 Peavey Apr 2005 A1
20050085778 Parks Apr 2005 A1
20050086071 Fox et al. Apr 2005 A1
20050113806 De Carvalho et al. May 2005 A1
20050124980 Sanders Jun 2005 A1
20050131352 Conlon et al. Jun 2005 A1
20050148866 Gunderson Jul 2005 A1
20050148869 Masuda Jul 2005 A1
20050148956 Conlon et al. Jul 2005 A1
20050148957 Girard et al. Jul 2005 A1
20050152841 Sayre et al. Jul 2005 A1
20050171502 Daly et al. Aug 2005 A1
20050182857 Kong Aug 2005 A1
20050209573 Brugger et al. Sep 2005 A1
20050215874 Wang et al. Sep 2005 A1
20050241203 Lizotte et al. Nov 2005 A1
20050256451 Adams et al. Nov 2005 A1
20050256500 Fujii Nov 2005 A1
20050277899 Conlon et al. Dec 2005 A1
20050283119 Uth et al. Dec 2005 A1
20060009788 Freeman et al. Jan 2006 A1
20060017341 Hahn et al. Jan 2006 A1
20060020256 Bell et al. Jan 2006 A1
20060084929 Eliasen Apr 2006 A1
20060089619 Ginggen Apr 2006 A1
20060100592 Eliasen May 2006 A1
20060116648 Hamatake Jun 2006 A1
20060149189 Diamond et al. Jul 2006 A1
20060171980 Helmus et al. Aug 2006 A1
20060173410 Moberg et al. Aug 2006 A1
20060173424 Conlon Aug 2006 A1
20060178647 Stats Aug 2006 A1
20060178648 Barron et al. Aug 2006 A1
20060184141 Smith et al. Aug 2006 A1
20060184142 Schon et al. Aug 2006 A1
20060217359 Wentworth et al. Sep 2006 A1
20060217659 Patton Sep 2006 A1
20060217668 Schulze et al. Sep 2006 A1
20060224128 Lurvey et al. Oct 2006 A1
20060224129 Beasley et al. Oct 2006 A1
20060224235 Rucker Oct 2006 A1
20060241465 Huennekens et al. Oct 2006 A1
20060247584 Sheetz et al. Nov 2006 A1
20060253076 Butts et al. Nov 2006 A1
20060264897 Lobl et al. Nov 2006 A1
20060264898 Beasley et al. Nov 2006 A1
20060271012 Canaud et al. Nov 2006 A1
20070003603 Karandikar et al. Jan 2007 A1
20070004981 Boese et al. Jan 2007 A1
20070007839 Lin Jan 2007 A1
20070010881 Soye et al. Jan 2007 A1
20070016162 Burbank et al. Jan 2007 A1
20070049806 Adams et al. Mar 2007 A1
20070049876 Patton Mar 2007 A1
20070055290 Lober Mar 2007 A1
20070073250 Schneiter Mar 2007 A1
20070078391 Wortley et al. Apr 2007 A1
20070078416 Eliasen Apr 2007 A1
20070078432 Halseth et al. Apr 2007 A1
20070083111 Hossack et al. Apr 2007 A1
20070083156 Muto et al. Apr 2007 A1
20070100302 Dicarlo et al. May 2007 A1
20070112332 Harding et al. May 2007 A1
20070120683 Flippen et al. May 2007 A1
20070123831 Haindl et al. May 2007 A1
20070135775 Edoga et al. Jun 2007 A1
20070149920 Michels et al. Jun 2007 A1
20070149921 Michels et al. Jun 2007 A1
20070149947 Byrum Jun 2007 A1
20070161958 Glenn Jul 2007 A1
20070179456 Glenn Aug 2007 A1
20070185462 Byrum Aug 2007 A1
20070191773 Wojcik Aug 2007 A1
20070207335 Karandikar et al. Sep 2007 A1
20070208313 Conlon et al. Sep 2007 A1
20070219510 Zinn et al. Sep 2007 A1
20070233017 Zinn et al. Oct 2007 A1
20070233018 Bizup et al. Oct 2007 A1
20070233042 Moehle et al. Oct 2007 A1
20070255226 Tennican et al. Nov 2007 A1
20070255234 Haase et al. Nov 2007 A1
20070270691 Bailey et al. Nov 2007 A1
20070270770 Bizup Nov 2007 A1
20070276344 Bizup et al. Nov 2007 A1
20070276355 Nielsen et al. Nov 2007 A1
20070282308 Bell Dec 2007 A1
20070293800 McMaken et al. Dec 2007 A1
20070299408 Alferness et al. Dec 2007 A1
20080004642 Birk et al. Jan 2008 A1
20080008654 Clarke et al. Jan 2008 A1
20080015701 Garcia et al. Jan 2008 A1
20080021392 Lurvey et al. Jan 2008 A1
20080039820 Sommers et al. Feb 2008 A1
20080048855 Berger Feb 2008 A1
20080051731 Schweikert et al. Feb 2008 A1
20080108949 Beasley et al. May 2008 A1
20080114308 di Palma et al. May 2008 A1
20080133265 Silkaitis et al. Jun 2008 A1
20080137923 Spahn Jun 2008 A1
20080138387 Machiraju Jun 2008 A1
20080140025 Sheetz et al. Jun 2008 A1
20080208236 Hobbs et al. Aug 2008 A1
20080281279 Hoendervoogt et al. Nov 2008 A1
20080319398 Bizup Dec 2008 A1
20080319399 Schweikert Dec 2008 A1
20080319405 Bizup Dec 2008 A1
20090024024 Zinn Jan 2009 A1
20090024098 Bizup et al. Jan 2009 A1
20090035582 Nakatani et al. Feb 2009 A1
20090118683 Hanson et al. May 2009 A1
20090156928 Evans et al. Jun 2009 A1
20090204072 Amin et al. Aug 2009 A1
20090204074 Powers et al. Aug 2009 A1
20090216216 Powers et al. Aug 2009 A1
20090221976 Linden Sep 2009 A1
20090227862 Smith et al. Sep 2009 A1
20090227951 Powers et al. Sep 2009 A1
20090227964 DiCarlo et al. Sep 2009 A1
20090264901 Franklin et al. Oct 2009 A1
20090315684 Sacco et al. Dec 2009 A1
20090322541 Jones et al. Dec 2009 A1
20100010339 Smith et al. Jan 2010 A1
20100042073 Oster et al. Feb 2010 A1
20100063451 Gray et al. Mar 2010 A1
20100069743 Sheetz et al. Mar 2010 A1
20100106094 Fisher et al. Apr 2010 A1
20100121283 Hamatake et al. May 2010 A1
20100211026 Sheetz et al. Aug 2010 A2
20100268165 Maniar et al. Oct 2010 A1
20100268174 Steinke et al. Oct 2010 A1
20100319700 Ng Dec 2010 A1
20110021922 Berard-Anderson et al. Jan 2011 A1
20110092921 Beling et al. Apr 2011 A1
20110098662 Zinn Apr 2011 A1
20110098663 Zinn Apr 2011 A1
20110118677 Wiley et al. May 2011 A1
20110160673 Magalich et al. Jun 2011 A1
20110183712 Eckstein et al. Jul 2011 A1
20110213700 Sant'Anselmo Sep 2011 A1
20110257609 Bizup et al. Oct 2011 A1
20110264058 Linden et al. Oct 2011 A1
20110271856 Fisher et al. Nov 2011 A1
20110275930 Jho et al. Nov 2011 A1
20110276015 Powers et al. Nov 2011 A1
20110288502 Hibdon et al. Nov 2011 A1
20110288503 Magalich et al. Nov 2011 A1
20110311337 Amin et al. Dec 2011 A1
20120018073 Maniar et al. Jan 2012 A1
20120059250 Gray et al. Mar 2012 A1
20120065622 Cornish et al. Mar 2012 A1
20120078201 Mikami Mar 2012 A1
20120078202 Beling et al. Mar 2012 A1
20120191071 Butts et al. Jul 2012 A1
20120226244 Beasley et al. Sep 2012 A1
20120259296 Sheetz et al. Oct 2012 A1
20120283560 Schweikert et al. Nov 2012 A1
20120302969 Wiley et al. Nov 2012 A1
20130165773 Powers et al. Jun 2013 A1
20130172733 Maniar et al. Jul 2013 A1
20130218103 Tallarida et al. Aug 2013 A1
20130225990 Powers et al. Aug 2013 A1
20130225991 Powers Aug 2013 A1
20130245574 Powers et al. Sep 2013 A1
20130338494 Wiley et al. Dec 2013 A1
20140058275 Gregorich et al. Feb 2014 A1
20140081219 Powers et al. Mar 2014 A1
20140100534 Beasley et al. Apr 2014 A1
20140107619 Butts et al. Apr 2014 A1
20140330118 Powers et al. Nov 2014 A1
20150008891 Li et al. Jan 2015 A1
20150025478 Hibdon et al. Jan 2015 A1
20150088091 Beasley et al. Mar 2015 A1
20150112284 Hamatake et al. Apr 2015 A1
20150290445 Powers et al. Oct 2015 A1
20170028185 Wiley et al. Feb 2017 A1
Foreign Referenced Citations (163)
Number Date Country
2008299945 Mar 2009 AU
2663853 Apr 2008 CA
2692142 Dec 2008 CA
2693972 Jan 2009 CA
2757836 May 2017 CA
102421469 Apr 2012 CN
102612343 Jul 2012 CN
3618390 Nov 1987 DE
3720414 Dec 1987 DE
42 25 524 Feb 1994 DE
29512576 Oct 1995 DE
10346470 May 2005 DE
10 2009 018837 Nov 2010 DE
0128525 Dec 1984 EP
0134745 Mar 1985 EP
0343910 Nov 1989 EP
0366814 May 1990 EP
0239244 Sep 1991 EP
0534782 Mar 1993 EP
0537892 Apr 1993 EP
0619101 Oct 1994 EP
1238682 Sep 2002 EP
1486229 Dec 2004 EP
1635899 Mar 2006 EP
1858565 Nov 2007 EP
1874393 Jan 2008 EP
1896117 Mar 2008 EP
1998842 Dec 2008 EP
2004272 Dec 2008 EP
2018209 Jan 2009 EP
2081634 Jul 2009 EP
2164559 Mar 2010 EP
2167182 Mar 2010 EP
2180915 May 2010 EP
2190517 Jun 2010 EP
2320974 May 2011 EP
2324879 May 2011 EP
2365838 Sep 2011 EP
2571563 Mar 2013 EP
2601999 Jun 2013 EP
2324879 Jan 2014 EP
2324878 Aug 2014 EP
2308547 Sep 2014 EP
2324880 Dec 2014 EP
1 965 854 Sep 2015 EP
2939703 Mar 2017 EP
1509165 Jan 1968 FR
2508008 Dec 1982 FR
2809315 Nov 2001 FR
178998 May 1922 GB
749942 Jun 1956 GB
966137 Aug 1964 GB
1559140 Jan 1980 GB
2102398 Feb 1983 GB
2191701 Dec 1987 GB
2350352 Nov 2000 GB
62155857 Jul 1987 JP
62281966 Dec 1987 JP
64-011562 Jan 1989 JP
H05-200107 Aug 1993 JP
6296633 Oct 1994 JP
2000-79168 Mar 2000 JP
2000-079168 Mar 2000 JP
2002500076 Jan 2002 JP
2002-83281 Mar 2002 JP
2002-209910 Jul 2002 JP
2002-531149 Sep 2002 JP
2003-510136 Mar 2003 JP
2004-350937 Dec 2004 JP
2006025948 Feb 2006 JP
2007-533368 Nov 2007 JP
3142990 Jul 2008 JP
2008-539025 Nov 2008 JP
2009-077965 Apr 2009 JP
2009-142520 Jul 2009 JP
2012-523284 Oct 2012 JP
2013-510652 Mar 2013 JP
2013-526376 Jun 2013 JP
8600213 Jan 1986 WO
8911309 Nov 1989 WO
9001958 Mar 1990 WO
9206732 Apr 1992 WO
9300945 Jan 1993 WO
9305730 Apr 1993 WO
9308986 May 1993 WO
9405351 Mar 1994 WO
9515194 Jun 1995 WO
9516480 Jun 1995 WO
96-35477 Nov 1996 WO
9701370 Jan 1997 WO
9706845 Feb 1997 WO
9711726 Apr 1997 WO
9723255 Jul 1997 WO
9726931 Jul 1997 WO
9817337 Apr 1998 WO
9818506 May 1998 WO
9831417 Jul 1998 WO
9910250 Mar 1999 WO
9934859 Jul 1999 WO
9938553 Aug 1999 WO
9942166 Aug 1999 WO
0012171 Mar 2000 WO
0016844 Mar 2000 WO
0020050 Apr 2000 WO
0033901 Jun 2000 WO
0123023 Apr 2001 WO
0160444 Aug 2001 WO
0170304 Sep 2001 WO
0195813 Dec 2001 WO
0247549 Jun 2002 WO
03030962 Apr 2003 WO
03084832 Oct 2003 WO
03090509 Nov 2003 WO
2004004800 Jan 2004 WO
2004012787 Feb 2004 WO
2004028611 Apr 2004 WO
2004071555 Aug 2004 WO
2004091434 Oct 2004 WO
2005037055 Apr 2005 WO
2005068009 Jul 2005 WO
2005072627 Aug 2005 WO
2005089833 Sep 2005 WO
2006078915 Jul 2006 WO
2006096686 Sep 2006 WO
2006116438 Nov 2006 WO
2006116613 Nov 2006 WO
2006130133 Dec 2006 WO
2006134100 Dec 2006 WO
2007041471 Apr 2007 WO
2007079024 Jul 2007 WO
2007092210 Aug 2007 WO
2007094898 Aug 2007 WO
2007098771 Sep 2007 WO
2007109164 Sep 2007 WO
2007126645 Nov 2007 WO
2007136538 Nov 2007 WO
2008008126 Jan 2008 WO
2008024440 Feb 2008 WO
2008019236 Feb 2008 WO
2008048461 Apr 2008 WO
2008048361 Apr 2008 WO
2008062173 May 2008 WO
2008063226 May 2008 WO
2008147760 Dec 2008 WO
2008157763 Dec 2008 WO
2009002839 Dec 2008 WO
2009012385 Jan 2009 WO
2009012395 Jan 2009 WO
2009035582 Mar 2009 WO
2009046439 Apr 2009 WO
2009046725 Apr 2009 WO
2009108669 Sep 2009 WO
2010030351 Mar 2010 WO
2010062633 Jun 2010 WO
2010118144 Oct 2010 WO
2011046604 Apr 2011 WO
2011053499 May 2011 WO
2011056619 May 2011 WO
2011062750 May 2011 WO
2011133950 Oct 2011 WO
2011146649 Nov 2011 WO
2013165935 Nov 2013 WO
2014031763 Feb 2014 WO
Non-Patent Literature Citations (536)
Entry
U.S. Appl. No. 11/725,287, filed Mar. 19, 2007 Non-final Office Action issued on Mar. 29, 2010.
U.S. Appl. No. 11/937,302, filed Nov. 8, 2007 Final Office Action dated Nov. 8, 2012.
U.S. Appl. No. 11/937,302, filed Nov. 8, 2007 Final Office Action dated Oct. 13, 2011.
U.S. Appl. No. 11/937,302, filed Nov. 8, 2007 Non-Final Office Action dated Jun. 18, 2012.
U.S. Appl. No. 11/937,302, filed Nov. 8, 2007 Final Office Action dated Feb. 11, 2011.
U.S. Appl. No. 11/937,302, filed Nov. 8, 2007 Non-Final Office Action dated Apr. 15, 2011.
U.S. Appl. No. 11/937,302, filed Nov. 8, 2007 Non-Final Office Action dated Sep. 13, 2010.
U.S. Appl. No. 12/023,280, filed Jan. 31, 2008 Final Office Action dated Mar. 9, 2010.
U.S. Appl. No. 12/023,280, filed Jan. 31, 2008 Non-Final Office Action dated Dec. 13, 2010.
U.S. Appl. No. 12/023,280, filed Jan. 31, 2008 Non-Final Office Action dated Jul. 23, 2009.
U.S. Appl. No. 12/023,280, filed Jan. 31, 2008 Non-Final Office Action dated Oct. 5, 2009.
U.S. Appl. No. 12/023,280, filed Jan. 31, 2008 Notice of Allowance dated Mar. 28, 2011.
U.S. Appl. No. 12/143,377, filed Jun. 20, 2008 Final Office Action mailed Oct. 19, 2009.
U.S. Appl. No. 12/143,377, filed Jun. 20, 2008 Non-final Office Action mailed Apr. 27, 2009.
U.S. Appl. No. 12/175,182, filed Jul. 17, 2008 Non-final Office Action mailed Sep. 3, 2009.
U.S. Appl. No. 12/267,160, filed Nov. 7, 2008 Examiner's Answer dated Dec. 5, 2012.
U.S. Appl. No. 12/267,160, filed Nov. 7, 2008 Final Office Action dated Jun. 1, 2012.
U.S. Appl. No. 12/267,160, filed Nov. 7, 2008 Non-Final Office Action dated Nov. 1, 2011.
U.S. Appl. No. 12/419,854, filed Apr. 7, 2009 Advisory Action dated May 17, 2013.
U.S. Appl. No. 12/419,854, filed Apr. 7, 2009 Final Office Action dated Feb. 14, 2013.
U.S. Appl. No. 12/419,854, filed Apr. 7, 2009 Final Office Action dated Nov. 29, 2011.
U.S. Appl. No. 12/419,854, filed Apr. 7, 2009 Non-Final Office Action dated Aug. 5, 2011.
U.S. Appl. No. 12/419,854, filed Apr. 7, 2009 Non-Final Office Action dated Jun. 26, 2012.
U.S. Appl. No. 12/419,854, filed Apr. 7, 2009 Notice of Allowance dated Apr. 7, 2014.
U.S. Appl. No. 12/419,957, filed Apr. 7, 2009 Advisory Action dated Feb. 18, 2011.
U.S. Appl. No. 12/419,957, filed Apr. 7, 2009 Final Office Action dated Dec. 7, 2010.
U.S. Appl. No. 12/419,957, filed Apr. 7, 2009 Non-Final Office Action dated Feb. 18, 2010.
U.S. Appl. No. 12/419,957, filed Apr. 7, 2009 Non-Final Office Action dated Jul. 29, 2010.
U.S. Appl. No. 12/419,957, filed Apr. 7, 2009 Non-Final Office Action dated Jun. 30, 2009.
U.S. Appl. No. 12/419,957, filed Apr. 7, 2009 Notice of Allowance dated Mar. 7, 2011.
U.S. Appl. No. 12/420,007, filed Apr. 7, 2009 Final Office Action dated Mar. 22, 2013.
U.S. Appl. No. 12/420,007, filed Apr. 7, 2009 Non-Final Office Action dated Oct. 16, 2012.
U.S. Appl. No. 12/420,007, filed Apr. 7, 2009 Final Office Action dated Feb. 18, 2010.
U.S. Appl. No. 12/420,007, filed Apr. 7, 2009 Non-Final Office Action dated Jul. 14, 2009.
U.S. Appl. No. 12/420,028, filed Apr. 7, 2009 Non-Final Office Action dated Jan. 5, 2011.
U.S. Appl. No. 12/420,028, filed Apr. 7, 2009 Notice of Allowance dated Apr. 1, 2011.
U.S. Appl. No. 12/617,981, filed Nov. 13, 2009 Final Office Action dated Aug. 2, 2012.
U.S. Appl. No. 12/617,981, filed Nov. 13, 2009 Advisory Action dated Sep. 15, 2011.
U.S. Appl. No. 12/617,981, filed Nov. 13, 2009 Final Office Action dated Jun. 21, 2011.
U.S. Appl. No. 12/617,981, filed Nov. 13, 2009 Non-Final Office Action dated Dec. 21, 2011.
U.S. Appl. No. 12/617,981, filed Nov. 13, 2009 Non-Final Office Action dated Jan. 5, 2011.
U.S. Appl. No. 12/796,133, filed Jun. 8, 2010 Non-Final Office Action dated Feb. 17, 2011.
U.S. Appl. No. 12/796,133, filed Jun. 8, 2010 Notice of Allowance dated Jun. 9, 2011.
U.S. Appl. No. 12/917,323, filed Nov. 1, 2010 Advisory Action dated Apr. 10, 2013.
U.S. Appl. No. 12/917,323, filed Nov. 1, 2010 Final Office Action dated Jan. 29, 2013.
U.S. Appl. No. 12/917,323, filed Nov. 1, 2010 Non-Final Office Action dated Aug. 15, 2012.
U.S. Appl. No. 12/917,323, filed Nov. 1, 2010 Non-Final Office Action dated Aug. 26, 2014.
U.S. Appl. No. 12/917,323, filed Nov. 1, 2010 Notice of Allowance dated Jan. 21, 2015.
CN 201080051911.7 filed May 16, 2012 First Office Action dated Dec. 27, 2013.
CN 201080051911.7 filed May 16, 2012 Second Office Action dated Jul. 16, 2014.
CN 201080051911.7 filed May 16, 2012 Third Office Action dated Jan. 30, 2015.
Cook Vital-Port® Product Catalog (2000).
Costa, Nancy, “More Than Skin Deep: An Overview of Iodinated Contrast Media . . . ” Journal for the Association for Vascular Access, vol. 8, No. 4, 2003.
Costa, Nancy, “Understanding Contrast Media.” Journal of Infusion Nursing, vol. 27, No. 5, Sep./Oct. 2004.
Coyle, Douglas et al, Power Injection of Contrast Media via Peripherally Inserted Central Catheters for CT, J Vasc Intern Radiol, pp. 809-814, vol. 15, 2004.
Deltec Port Systems (Feb. and Apr. 1996).
Department of Health and Human Services, C-Port 510(k) FDA Clearance, Jun. 5, 2003.
Department of Health and Human Services, PowerPort 510(k) FDA Clearance, Jan. 25, 2007.
ECRI Institute, Healthcare Product Comparison System, Dec. 2007.
EP 06751411 filed Apr. 25, 2006 Decision of the Technical Board of Appeal dated Jul. 24, 2013.
EP 06751411 filed Apr. 25, 2006 Decision Revoking the European Patent dated Aug. 1, 2012.
EP 06751411 filed Apr. 25, 2006 Office Action dated Aug. 10, 2009.
EP 06751411 filed Apr. 25, 2006 Office Action dated Sep. 2, 2008.
EP 06751411 filed Apr. 25, 2006 Opposition by Aesculap AG dated Oct. 5, 2011.
EP 06751411 filed Apr. 25, 2006 Opposition by Fresenius Kabi Deutschland GmbH dated Oct. 11, 2011.
EP 06751411 filed Apr. 25, 2006 Opposition by pfm medical ag dated Oct. 12, 2011.
EP 06751664.1 filed Apr. 27, 2006 First Examination Report dated Jul. 11, 2013.
EP 06751664.1 filed Apr. 27, 2006 Second Examination Report dated Dec. 17, 2014.
EP 06845998 filed Dec. 21, 2006 Office Action dated Mar. 10, 2011.
EP 06845998 filed Dec. 21, 2006 Supplementary Search Report dated Jul. 22, 2010.
EP 06845998.1 filed Dec. 21, 2006 Examination Report dated Feb. 6, 2014.
EP 06845998.1 filed Dec. 21, 2006 Examination Report dated May 13, 2013.
EP 06845998.1 filed Dec. 21, 2006 Examination Report dated Nov. 7, 2012.
EP 06845998.1 filed Dec. 21, 2006 Summons for Oral Proceedings dated Sep. 30, 2014.
EP 10 831 973.2 filed May 30, 2012 Extended European Search Report dated Jul. 4, 2014.
EP 10183380.4 filed Apr. 25, 2006 European Search Report dated May 22, 2013.
EP 10183382.0 filed Apr. 25, 2006 European Search Report dated May 22, 2013.
EP 10183382.0 filed Apr. 25, 2006 Intent to Grant dated Mar. 7, 2014.
EP 10183394.5 filed Apr. 25, 2006 European Search Report dated May 22, 2013.
EP 10183394.5 filed Apr. 25, 2006 Opposition by Smiths Medical ASD, Inc. dated Apr. 25, 2014.
EP 10183398.6 filed Apr. 25, 2006 European Search Report dated May 22, 2013.
EP 10762377.9 filed Oct. 5, 2011 European Search Report dated Aug. 3, 2012.
EP 10762377.9 filed Oct. 5, 2011 Office Action dated Jul. 17, 2013.
EP 11784194.0 filed Nov. 29, 2012 extended European search report dated Feb. 21, 2014.
EP 13158343.7 filed Mar. 8, 2013 Examination Report dated Feb. 4, 2014.
EP 13158343.7 filed Mar. 8, 2013 Extended European Search Report dated May 14, 2013.
EP 13158343.7 filed Mar. 8, 2013 Summons to Attend Oral Proceedings dated Oct. 20, 2014.
EP 99964086 filed Dec. 3, 1999 Office Action dated Dec. 15, 2005.
EP 99964086 filed Dec. 3, 1999 Office Action dated Mar. 1, 2005.
EP 99964086 filed Dec. 3, 1999 Office Action dated Mar. 30, 2005.
Ethanol Lock Technique for Prevention and Treatment of Central line-Associated Bloodstream Infections (Nebraska) Aug. 13, 2011, Accessed: Jun. 29, 2013 http://www.nebraskamed.com/app—files/pdf/careers/education-programs/asp/tnmc—etohlock—final.pdf.
Extravasation of Radiologic Contrast, PA-PSRS Patient Safety Advisory, vol. 1 No. 3, Sep. 2004.
Extreme Access™ Bard Access Systems, Inc. Product Brochure, 2003.
Fallscheer, et al., “Injury to the Upper Extremity Cuased by Extravasation of Contrast Medium: A True Emergency.” Scandinavian Journal of Plastic and Reconstructive Surgery and Hand Surgery, vol. 41, pp. 26-32, 2007.
Fresenius Brochure on Intraport 1, Intraport II, and Bioport (Nov. 1998).
Gebauer, B. et al., “Contrast Media Power Injection Using Central Venous Port Catheters—Results of an In-Vitro Study,” Experimental Radiology 2005: 177: 1417-1423.
Hou, Shaw-Min et al. “Comparisons of Outcomes and Survivals for Two Central Venous Access Port Systems.” Journal of Surgical Oncology, 91:61-66, 2005.
Inamed Health, BioEnterics® LAP-BAND® “Adjustable Gastric Banding System” Product Brochure, Dec. 2003.
Williamson, et al., “Assessing the Adequacy of Peripherally Inserted Central Catheters for Power Injection of Intravenous Contrast Agents for CT.” Journal of Computer Assisted Tomography, vol. 6, No. 6, pp. 932-937, 2001.
Steinbach, Barbara G. , Hardt, N. Sisson, Abbitt, Patricia L., Lanier, Linda, Caffee, H. Hollis, “Breast Implants, Common Complications, and Concurrent Breast Disease.” RadioGraphics, vol. 13, No. 1, pp. 95-118, 1993.
Sullivan et al. “Radiopaque Markers on Mammary Implants.” American Journal of Roentgenology 153(2):428, Aug. 1989.
Takeuchi, Syuhei et al., “Safety Considerations in the Power Injection of Contrast Medium via a Totally Implantable Central Venous Access System,” Japan Journal of Interventional Radiology vol. 20, No. 1, pp. 27-30, Jan. 2005.
U.S. Food and Drug Administration, “Guidance for Institutional Review Boards and Clinical Investigators 1998 Update: Medical Devices.” Version Sep. 10, 2008.
U.S. Appl. No. 60/658,518, filed Mar. 4, 2005, publicly accessible Oct. 5, 2006.
Urquiola, Javier, et al., “Using Lead Foil as a Radiopaque Marker for Computerized Tomography Imaging When Implant Treatment Planning.” The Journal of Prosthetic Dentistry, 1997.
U.S. Appl. No. 10/374,000, filed Feb. 25, 2003 Office Action dated Aug. 28, 2007.
U.S. Appl. No. 10/374,000, filed Feb. 25, 2003 Advisory Action dated Jan. 23, 2007.
U.S. Appl. No. 10/374,000, filed Feb. 25, 2003 Non-Final Office Action dated Feb. 13, 2006.
U.S. Appl. No. 10/374,000, filed Feb. 25, 2003 Non-Final Office Action dated May 20, 2009.
U.S. Appl. No. 10/374,000, filed Feb. 25, 2003 Non-final Office Action mailed Mar. 20, 2008.
U.S. Appl. No. 10/374,000, filed Feb. 25, 2003 Office Action dated Feb. 28, 2007.
U.S. Appl. No. 10/374,000, filed Feb. 25, 2003 Office Action dated Jul. 28, 2006.
U.S. Appl. No. 10/374,000, filed Feb. 25, 2003 Office Action mailed Sep. 30, 2008.
U.S. Appl. No. 10/374,000, filed Feb. 25, 2003 Response to Non-Final Office Action dated May 12, 2006.
U.S. Appl. No. 10/374,000, filed Feb. 25, 2003 Response to Office Action dated Dec. 28, 2006.
U.S. Appl. No. 10/374,000, filed Feb. 25, 2003 Response to Office Action dated Jun. 20, 2008.
U.S. Appl. No. 10/374,000, filed Feb. 25, 2003 Response to Office Action dated Mar. 30, 2009.
U.S. Appl. No. 10/374,000, filed Feb. 25, 2003 Response to Office Action dated May 28, 2007.
U.S. Appl. No. 10/374,000, filed Feb. 25, 2003 Response to Office Action dated Nov. 28, 2006.
U.S. Appl. No. 10/374,000, filed Feb. 25, 2003 Response to Office Action dated Oct. 31, 2007.
U.S. Appl. No. 10/374,000, filed Feb. 25, 2003 Response to Office Action dated Sep. 21, 2009.
U.S. Appl. No. 11/320,223, filed Dec. 28, 2005 Advisory Action dated Dec. 1, 2011.
U.S. Appl. No. 11/320,223, filed Dec. 28, 2005 Notice of Allowance dated Jan. 6, 2012.
U.S. Appl. No. 11/320,223, filed Dec. 28, 2005 Final Office Action dated Aug. 3, 2011.
U.S. Appl. No. 11/320,223, filed Dec. 28, 2005 Final Office Action dated Jun. 19,2009.
U.S. Appl. No. 11/320,223, filed Dec. 28, 2005 Final Office Action dated Jun. 22, 2010.
U.S. Appl. No. 11/320,223, filed Dec. 28, 2005 Non-Final Office Action dated Feb. 13, 2008.
U.S. Appl. No. 11/320,223, filed Dec. 28, 2005 Non-Final Office Action dated Jan. 21, 2010.
U.S. Appl. No. 11/320,223, filed Dec. 28, 2005 Non-Final Office Action dated Mar. 16, 2011.
U.S. Appl. No. 11/320,223, filed Dec. 28, 2005 Non-Final Office Action dated Sep. 18, 2008.
U.S. Appl. No. 11/368,954, filed Mar. 6, 2006 Non-Final Office Action dated Jul. 21, 2009.
U.S. Appl. No. 11/368,954, filed Mar. 6, 2006 Notice of Allowance dated Jun. 24, 2010.
U.S. Appl. No. 11/368,954, filed Mar. 6, 2006 Final Office Action dated Jan. 27, 2010.
U.S. Appl. No. 11/368,954, filed Mar. 6, 2006 Supplemental Non-final Office Action mailed Oct. 2, 2009.
U.S. Appl. No. 11/368,954, filed Apr. 25, 2006 Final Office Action dated Aug. 13, 2010.
U.S. Appl. No. 11/368,954, filed Apr. 25, 2006 Final Office Action dated Oct. 20, 2011.
U.S. Appl. No. 11/380,124, filed Apr. 25, 2006 Final Office Action dated Sep. 21, 2009.
U.S. Appl. No. 11/380,124, filed Apr. 25, 2006 Non-Final Office Action dated Apr. 26, 2010.
U.S. Appl. No. 11/380,124, filed Apr. 25, 2006 Non-Final Office Action dated Apr. 7, 2011.
U.S. Appl. No. 11/380,124, filed Apr. 25, 2006 Non-Final Office Action dated Jan. 16, 2009.
U.S. Appl. No. 11/380,124, filed Apr. 25, 2006 Non-Final Office Action dated Oct. 28, 2010.
U.S. Appl. No. 11/380,124, filed Apr. 25, 2006 Notice of Allowance dated Apr. 29, 2013.
U.S. Appl. No. 11/380,621, filed Apr. 27, 2006 Final Office Action dated Jan. 14, 2010.
U.S. Appl. No. 11/380,621, filed Apr. 27, 2006 Final Office Action dated Jan. 23, 2009.
U.S. Appl. No. 11/380,621, filed Apr. 27, 2006 Final Office Action dated Mar. 8, 2011.
U.S. Appl. No. 11/380,621, filed Apr. 27, 2006 Non-Final Office Action dated Jul. 1, 2009.
U.S. Appl. No. 11/380,621, filed Apr. 27, 2006 Non-Final Office Action dated Jun. 6, 2008.
U.S. Appl. No. 11/725,287, filed Mar. 19, 2007 Non-final Office Action issued on Dec. 3, 2008.
U.S. Appl. No. 11/725,287, filed Mar. 19, 2007 Non-final Office Action issued on Jun. 12, 2009.
Johnson, Kathleen A., “Power Injectable Portal Systems.” Journal of Radiology Nursing, vol. 28, Issue 1, Mar. 2009.
JP 2007-558331 filed Mar. 6, 2006 Office Action dated Aug. 20, 2013.
JP 2007-558331 filed Mar. 6, 2006 Office Action dated Jan. 22, 2013.
JP 2007-558331 filed Mar. 6, 2006 Office Action dated May 17, 2011.
JP 2008-509056 filed Apr. 25, 2006 Office Action dated Apr. 4, 2012.
JP 2008-509056 filed Apr. 25, 2006 Office Action dated Jun. 7, 2011.
JP 2012-156976 filed Jul. 12, 2012 Notice of Reasons for Refusal dated Apr. 8, 2014.
JP 2012-156976 filed Jul. 12, 2012 Notice of Reasons for Refusal dated Aug. 27, 2013.
JP 2012-156976 filed Jul. 12, 2012 Submission of Documents by Third Party dated May 14, 2013.
JP 2012-504826 filed Oct. 6, 2011 First Office Action dated Mar. 4, 2014.
JP 2012-504826 filed Oct. 6, 2011 Second Office Action dated Nov. 17, 2014.
JP 2013-209156 filed Oct. 4, 2013 Non-Final Office Action dated Oct. 7, 2014.
JP 2013-511339 filed Nov. 16, 2012 First Office Action dated Feb. 19, 2015.
Kaste et al., “Safe use of power injectors with central and peripheral venous access devices for pediatric CT,” Pediatr Radiol (1996) 26: 499-501.
L-CATH® for Ports, Luther Medical Products, Inc., Tustin, California, 2 pages, 1994.
LaMaitre Vascular “Port Implantations: using the OptiLock Implantable Port,” product information, available at http://www.lemaitre. com/specs.pop.asp, last accessed Apr. 2003, 14 pages.
LAP-BAND AP™ “System with Adjustable Gastric Banding system with OMNIFORM™ Design,” Product Brochure, Jul. 2007, 16 pages.
LAP-BAND® System Access Port Fill Guide I, “9.75/10.0 cm LAP-BAND System vs. 11 cm LAP-BAND System: For Product Manufactured Prior to Jul. 2001” BioEnterics Corporation. Rev. B. Aug. 15, 2001.
Leslie et al., “A New Simple Power Injector,” Am J Roentgenol 128: 381-384, Mar. 1977.
MedComp “PortCT Technology”, display at SIR Conference (Mar. 2006), Toronto, Canada.
Medcomp Dialysis and Vascular Access Products (MEDCOMP) Jun. 30, 2009, Accessed Jun. 29, 2013 http://www.medcompnet.com/products/flipbook/pdf/PN2114G—Medcomp—Catalog.pdf.
Medtronic IsoMed® Constant-Flow Infusion System: Clinical Reference Guide for Hepatic Arterial Infusion Therapy, Revised Sep. 2000.
MX/a/2011/004499 filed Apr. 28, 2011 First Office Action dated Jul. 25, 2013.
MX/a/2011/004499 filed Apr. 28, 2011 Second Office Action dated May 25, 2014.
MX/a/2011/004499 filed Apr. 28, 2011 Third Office Action dated Jan. 21, 2015.
Navilyst Medical, Implantable Ports with PASV® Valve Technology, Product Overview,<<http://www.navilystmedical.com/Products/index.cfm/9>> last accessed Jun. 4, 2012.
Nebraska Medical Center, Ethanol Lock Technique for Prevention and Treatment of Central Line-Associated Bloodstream Infections, Jul. 2009.
Nucleus Cochlear Implant Systems; User Manual for the ESPrit 3G speech processor and accessories, Issue 2, Dec. 2001 http://www.cochlearamericas.com/PDFs/UserManualSprint.pdf.
Nucleus Cochlear Implant Systems; User Manual for the ESPrit and ESPrit 22 speech processor and accessories, Issue 3, Apr. 2000.
Oct. 22, 2009 Declaration of Kelly Christian, Director of Product Development at BARD Access Systems, Inc, in support of and depicting a product on the market by Quinton Company approximately ten years prior to Oct. 22, 2009, 1 page.
PCT/US1999/028695 filed Dec. 3, 1999 International Preliminary Examination Report dated Apr. 21, 2001.
PCT/US1999/028695 filed Dec. 3, 1999 Search Report dated Apr. 11, 2000.
PCT/US2006/008022 filed Mar. 6, 2006 International Preliminary Report on Patentability dated Sep. 12, 2007.
PCT/US2006/008022 filed Mar. 6, 2006 Search Report dated Jul. 5, 2006.
PCT/US2006/008022 filed Mar. 6, 2006 Written Opinion dated Apr. 9, 2007.
PCT/US2006/008022 filed Mar. 6, 2006 Written Opinion dated Jul. 5, 2006.
PCT/US2006/015695 filed Apr. 25, 2006 Partial Search Report dated Sep. 29, 2006.
PCT/US2006/015695 filed Apr. 25, 2006 Search Report dated Jan. 11, 2007.
PCT/US2006/015695 filed Apr. 25, 2006 Written Opinion dated Jan. 11, 2007.
PCT/US2006/016056 filed Apr. 27, 2006 International Preliminary Report on Patentability dated Oct. 30, 2007.
PCT/US2006/016056 filed Apr. 27, 2006 Search Report dated Sep. 20, 2006.
PCT/US2006/016056 filed Apr. 27, 2006 Written Opinion dated Oct. 27, 2007.
PCT/US2006/016056 filed Apr. 27, 2006 Written Opinion dated Sep. 20, 2006.
PCT/US2006/049007 filed Dec. 21, 2006 International Preliminary Report on Patentability dated Jul. 1, 2008.
PCT/US2006/049007 filed Dec. 21, 2006 Search Report dated Oct. 1, 2007.
PCT/US2006/049007 filed Dec. 21, 2006 Written Opinion dated Oct. 1, 2007.
PCT/US2007/006776 filed Mar. 19, 2007 International Preliminary Report on Patentability dated Jan. 2, 2009.
PCT/US2007/006776 filed Mar. 19, 2007 International Search Report dated Dec. 18, 2007.
PCT/US2007/006776 filed Mar. 19, 2007 Written opinion, dated Dec. 18, 2007.
Carlson, J. E et. al., “Safety Considerations in the Power Injection of Contrast Media Via Central Venous Catheters during Computed Tomographic Examinations” Investigative Radiology, vol. 27, p. 337-340, May 1992.
CN 200980153471.3 filed Jun. 30, 2011 Fifth Office Action dated Jun. 2, 2015.
CN 200980153471.3 filed Jun. 30, 2011 Notice of Grant dated Nov. 5, 2015.
CN 201410216386.X filed May 21, 2014 First Office Action dated Nov. 2, 2015.
CN 201410216386.X filed May 21, 2014 Search Report dated Nov. 2, 2015.
EP 13764254.2 filed Sep. 10, 2014 Extended European Search Report dated Feb. 19, 2016.
EP 13764254.2 filed Sep. 10, 2014 Partial European Search Report dated Oct. 14, 2015.
EP 13830592.5 filed Feb. 24, 2015 Extended European Search Report dated Mar. 21, 2016.
EP 14198524.2 filed Dec. 17, 2014 Extended European Search Report dated Sep. 14, 2015.
EP 2 324 879 filed Apr. 25, 2006 Opposition by Smiths Medical ASD, Inc. dated Dec. 2, 2015.
JP 2012-156976 filed Mar. 6, 2006, Office Action dated Mar. 29, 2016.
JP 2012-156976 filed Mar. 6, 2006, Third Party Submission dated Jul. 29, 2015.
JP 2013-511339 filed Nov. 16, 2012 Office Action and Pre-Appeal Report dated Apr. 12, 2016.
JP 2013-511339 filed Nov. 16, 2012 Second Office Action dated Oct. 16, 2015.
MX/a/2011/004499 filed Apr. 28, 2011 Forth Office Action dated Aug. 3, 2015.
MX/a/2014/011280 filed Mar. 13, 2013, First Office Action dated May 29, 2015.
MX/a/2014/011280 filed Mar. 13, 2013, Second Office Action dated Oct. 27, 2015.
Tilford, C. R., “Pressure and Vacuum Measurements”—Ch 2 of Physical Methods of Chemistry pp. 101-173, 1992.
U.S. Appl. No. 13/571,088, filed Aug. 9, 2012 Final Office Action dated Jul. 6, 2015.
U.S. Appl. No. 13/571,088, filed Aug. 9, 2012 Notice of Allowance dated Sep. 16, 2015.
U.S. Appl. No. 13/801,893, filed Mar. 13, 2013 Notice of Allowance dated Sep. 24, 2015.
U.S. Appl. No. 13/972,538, filed Aug. 21, 2013 Non-Final Office Action dated Feb. 3, 2016.
U.S. Appl. No. 14/083,250, filed Nov. 18, 2013 Non-Final Office Action dated Apr. 1, 2016.
U.S. Appl. No. 14/104,354, filed Dec. 12, 2013 Non-Final Office Action dated Feb. 26, 2016.
U.S. Appl. No. 14/141,263, filed Dec. 26, 2013 Notice of Allowance dated Apr. 20, 2016.
U.S. Appl. No. 14/171,364, filed Feb. 3, 2014 Final Office Action dated Jun. 25, 2015.
U.S. Appl. No. 14/455,660, filed Aug. 8, 2014 Final Office Action dated Nov. 27, 2015.
U.S. Appl. No. 14/455,660, filed Aug. 8, 2014 Non-Final Office Action dated Jul. 6, 2015.
U.S. Appl. No. 14/599,376, filed Jan. 16, 2015 Non-Final Office Action dated Feb. 3, 2016.
U.S. Appl. No. 95/002,089, filed Aug. 20, 2012 Decision on Appeal in U.S. Pat. No. 7,785,302, dated Mar. 11, 2016.
U.S. Appl. No. 95/002,090, filed Aug. 20, 2012 Decision on Appeal in U.S. Pat. No. 7,947,022, dated Mar. 29, 2016.
U.S. Appl. No. 95/002,092 filed Aug. 20, 2012 Decision on Appeal in U.S. Pat. No. 7,959,615, dated Mar. 24, 2016.
C.A. No. 15-218-SLR-SRF, Invalidity Contentions Exhibit A50 dated Jun. 24, 2016.
C.A. No. 15-218-SLR-SRF, Invalidity Contentions Exhibit A51 dated Jun. 24, 2016.
C.A. No. 15-218-SLR-SRF, Invalidity Contentions Exhibit A6 dated Jun. 24, 2016.
C.A. No. 15-218-SLR-SRF, Invalidity Contentions Exhibit A7 dated Jun. 24, 2016.
C.A. No. 15-218-SLR-SRF, Invalidity Contentions Exhibit A8 dated Jun. 24, 2016.
C.A. No. 15-218-SLR-SRF, Invalidity Contentions Exhibit A9 dated Jun. 24, 2016.
C.A. No. 15-218-SLR-SRF, Invalidity Contentions Exhibit B1 dated Jun. 24, 2016.
C.A. No. 15-218-SLR-SRF, Invalidity Contentions Exhibit B10 dated Jun. 24, 2016.
C.A. No. 15-218-SLR-SRF, Invalidity Contentions Exhibit B11 dated Jun. 24, 2016.
C.A. No. 15-218-SLR-SRF, Invalidity Contentions Exhibit B12 dated Jun. 24, 2016.
C.A. No. 15-218-SLR-SRF, Invalidity Contentions Exhibit B13 dated Jun. 24, 2016.
C.A. No. 15-218-SLR-SRF, Invalidity Contentions Exhibit B14 dated Jun. 24, 2016.
C.A. No. 15-218-SLR-SRF, Invalidity Contentions Exhibit B15 dated Jun. 24, 2016.
C.A. No. 15-218-SLR-SRF, Invalidity Contentions Exhibit B16 dated Jun. 24, 2016.
C.A. No. 15-218-SLR-SRF, Invalidity Contentions Exhibit B17 dated Jun. 24, 2016.
C.A. No. 15-218-SLR-SRF, Invalidity Contentions Exhibit B18 dated Jun. 24, 2016.
C.A. No. 15-218-SLR-SRF, Invalidity Contentions Exhibit B19 dated Jun. 24, 2016.
C.A. No. 15-218-SLR-SRF, Invalidity Contentions Exhibit B2 dated Jun. 24, 2016.
C.A. No. 15-218-SLR-SRF, Invalidity Contentions Exhibit B20 dated Jun. 24, 2016.
C.A. No. 15-218-SLR-SRF, Invalidity Contentions Exhibit B21 dated Jun. 24, 2016.
C.A. No. 15-218-SLR-SRF, Invalidity Contentions Exhibit B22 dated Jun. 24, 2016.
C.A. No. 15-218-SLR-SRF, Invalidity Contentions Exhibit B23 dated Jun. 24, 2016.
C.A. No. 15-218-SLR-SRF, Invalidity Contentions Exhibit B24 dated Jun. 24, 2016.
C.A. No. 15-218-SLR-SRF, Invalidity Contentions Exhibit B25 dated Jun. 24, 2016.
C.A. No. 15-218-SLR-SRF, Invalidity Contentions Exhibit B26 dated Jun. 24, 2016.
C.A. No. 15-218-SLR-SRF, Invalidity Contentions Exhibit B27 dated Jun. 24, 2016.
C.A. No. 15-218-SLR-SRF, Invalidity Contentions Exhibit B28 dated Jun. 24, 2016.
C.A. No. 15-218-SLR-SRF, Invalidity Contentions Exhibit B29 dated Jun. 24, 2016.
C.A. No. 15-218-SLR-SRF, Invalidity Contentions Exhibit B3 dated Jun. 24, 2016.
C.A. No. 15-218-SLR-SRF, Invalidity Contentions Exhibit B30 dated Jun. 24, 2016.
C.A. No. 15-218-SLR-SRF, Invalidity Contentions Exhibit B31 dated Jun. 24, 2016.
C.A. No. 15-218-SLR-SRF, Invalidity Contentions Exhibit B32 dated Jun. 24, 2016.
C.A. No. 15-218-SLR-SRF, Invalidity Contentions Exhibit B33 dated Jun. 24, 2016.
C.A. No. 15-218-SLR-SRF, Invalidity Contentions Exhibit B4 dated Jun. 24, 2016.
C.A. No. 15-218-SLR-SRF, Invalidity Contentions Exhibit B5 dated Jun. 24, 2016.
C.A. No. 15-218-SLR-SRF, Invalidity Contentions Exhibit B6 dated Jun. 24, 2016.
C.A. No. 15-218-SLR-SRF, Invalidity Contentions Exhibit B7 dated Jun. 24, 2016.
C.A. No. 15-218-SLR-SRF, Invalidity Contentions Exhibit B8 dated Jun. 24, 2016.
C.A. No. 15-218-SLR-SRF, Invalidity Contentions Exhibit B9 dated Jun. 24, 2016.
C.A. No. 15-218-SLR-SRF, Invalidity Contentions Exhibit Cl dated Jun. 24, 2016.
C.A. No. 15-218-SLR-SRF, Invalidity Contentions Exhibit C2 dated Jun. 24, 2016.
C.A. No. 15-218-SLR-SRF, Invalidity Contentions Exhibit C3 dated Jun. 24, 2016.
C.A. No. 15-218-SLR-SRF, Invalidity Contentions Exhibit C4 dated Jun. 24, 2016.
C.A. No. 15-218-SLR-SRF, Invalidity Contentions Exhibit C5 dated Jun. 24, 2016.
C.A. No. 15-218-SLR-SRF, Invalidity Contentions Exhibit C6 dated Jun. 24, 2016.
CA 2757836 filed Oct. 5, 2011 Examiner's Report dated May 18, 2016.
Canaud et al. “Dialock: a new vascular access device for extracorporeal renal replacement therapy. Preliminary clinical results” Nephrol. Dial. Transplant 14: 692-698 (1999).
Canaud et al. “Dialock: Pilot Trial of a New Vascular Port Access Device for Hemodialysis” Seminars in Dialysis, vol. 12, No. 5, pp. 382-388 (Sep. 1999).
Canaud et al. “Dialock: Results of french multicentar trial” Nephrology, vol. 22, No. 8, pp. 391-397, (2001).
Center for Devices and Radiological Health, Guidance on 510(k) Submissions for Implanted Infusion Ports, Oct. 1990.
CN 201380016157.7 filed Sep. 23, 2014 First office action dated May 16, 2016.
CN 201410216386.X filed May 21, 2014 Office Action dated Jun. 24, 2016.
Council Directive 93/42/EEC of Jun. 14, 1993 concerning medical devices (Jun. 14, 1993).
Desmeules et al. “Venous Access for Chronic Hemodialysis: ‘Undesirable Yet Unavoidable’”, Artificial Organs 28 (7):611-616 (2004).
EP 06737222.7 filed Aug. 17, 2007 Office Action dated Jul. 27, 2016.
EP 11784194.0 filed Nov. 29, 2012 Examination report dated Jul. 5, 2016.
Gebauer, B. et al., “Contrast Media Power Injection Using Central Venous Port Catheters—Results of an In-Vitro Study,” Experimental Radiology 2005: 177: 1417-1423.—Translation.
HMO 2002 Product Catalog, 2002.
JP 2012-156976 filed Jul. 12, 2012 Office Action dated Jun. 28, 2016.
KR 10-2011-7026328 filed Nov. 4, 2011 Notice of Preliminary Rejection dated Jun. 20, 2016.
Levin et al. “Initial results of a new access device for hemodialysis” Kidney International, vol. 54, pp. 1739-1745, (1998).
Levin et al. “New Access Device for Hemodialysis”, ASAIO Journal (1998).
LifeSite: Instructions for Implantation & Use for the LifeSite Hemodialysis Access System, 2000.
Medtronic IsoMed Technical Manual, Model 8472, (2008).
MX/a/2011/010529 filed Oct. 5, 2011 Office Action dated May 19, 2016.
Norfolk Medical Design Dossier/Technical File Vortex, Dec. 1997.
Picture of HMP Vortex MP Vascular Access Port from Exhibit A11, Jun. 24, 2016.
Port-A-Cath Implantable Vascular Access Systems, brochure, (1996).
Proper Care of the Vortex, Nov. 30, 2000.
Summers, “A New and Growing family of artificial implanted fluid-control devices” vol. XVI Trans. Amer. Soc. Artif. Int. Organs, 1970.
U.S. Department of Health and Human Services, FDA, “Labeling: Regulatory Requirements for Medical Devices” Aug. 1989.
U.S. Appl. No. 13/853,956, filed Mar. 29, 2013 Non-Final Office Action dated Jun. 16, 2016.
U.S. Appl. No. 13/853,961, filed Mar. 29, 2013 Non-Final Office Action dated Jun. 15, 2016.
U.S. Appl. No. 14/104,354, filed Dec. 12, 2013 Final Office Action dated Jun. 21, 2016.
U.S. Appl. No. 14/171,364 filed Feb. 3, 2014 Examiner's Answer dated Jul. 29, 2016.
U.S. Appl. No. 14/599,376, filed Jan. 16, 2015 Final Office Action dated Jun. 8, 2016.
Virot et al. “Long-term use of hemodialysis rooms LifeSite” Nephrologie vol. 24, No. 8, pp. 443-449 (2003).
BardPort, SlimPort, X-Port Instructions for Use, 2012.
Beathard et al. “Initial clinical results with the LifeSite Hemodialysis Access System” Kidney International, vol. 58, pp. 2221-2227, (2000).
Biolink: Products—Dialock System (2002).
Buerger et al “Implantation of a new device for haemodialysis” Nephrol. Dial. Transplant 15: 722-724 (2000).
C. R. Bard, Inc. and Bard Peripheral Vascular, Inc., v. Angiodynamics, Inc., C.A. No. 15-218-SLR-SRF, Angiodynamics, Inc.'s Initial Invalidity Contentions dated Jun. 24, 2016.
C.A. No. 15-218-SLR-SRF, Invalidity Contentions Exhibit A1 dated Jun. 24, 2016.
C.A. No. 15-218-SLR-SRF, Invalidity Contentions Exhibit A10 dated Jun. 24, 2016.
C.A. No. 15-218-SLR-SRF, Invalidity Contentions Exhibit A11 dated Jun. 24, 2016.
C.A. No. 15-218-SLR-SRF, Invalidity Contentions Exhibit A12 dated Jun. 24, 2016.
C.A. No. 15-218-SLR-SRF, Invalidity Contentions Exhibit A13 dated Jun. 24, 2016.
C.A. No. 15-218-SLR-SRF, Invalidity Contentions Exhibit A14 dated Jun. 24, 2016.
C.A. No. 15-218-SLR-SRF, Invalidity Contentions Exhibit A15 dated Jun. 24, 2016.
C.A. No. 15-218-SLR-SRF, Invalidity Contentions Exhibit A16 dated Jun. 24, 2016.
C.A. No. 15-218-SLR-SRF, Invalidity Contentions Exhibit A17 dated Jun. 24, 2016.
C.A. No. 15-218-SLR-SRF, Invalidity Contentions Exhibit A18 dated Jun. 24, 2016.
C.A. No. 15-218-SLR-SRF, Invalidity Contentions Exhibit A19 dated Jun. 24, 2016.
C.A. No. 15-218-SLR-SRF, Invalidity Contentions Exhibit A2 dated Jun. 24, 2016.
C.A. No. 15-218-SLR-SRF, Invalidity Contentions Exhibit A20 dated Jun. 24, 2016.
C.A. No. 15-218-SLR-SRF, Invalidity Contentions Exhibit A21 dated Jun. 24, 2016.
C.A. No. 15-218-SLR-SRF, Invalidity Contentions Exhibit A22 dated Jun. 24, 2016.
C.A. No. 15-218-SLR-SRF, Invalidity Contentions Exhibit A23 dated Jun. 24, 2016.
C.A. No. 15-218-SLR-SRF, Invalidity Contentions Exhibit A24 dated Jun. 24, 2016.
C.A. No. 15-218-SLR-SRF, Invalidity Contentions Exhibit A25 dated Jun. 24, 2016.
C.A. No. 15-218-SLR-SRF, Invalidity Contentions Exhibit A26 dated Jun. 24, 2016.
C.A. No. 15-218-SLR-SRF, Invalidity Contentions Exhibit A27 dated Jun. 24, 2016.
C.A. No. 15-218-SLR-SRF, Invalidity Contentions Exhibit A28 dated Jun. 24, 2016.
C.A. No. 15-218-SLR-SRF, Invalidity Contentions Exhibit A29 dated Jun. 24, 2016.
C.A. No. 15-218-SLR-SRF, Invalidity Contentions Exhibit A3 dated Jun. 24, 2016.
C.A. No. 15-218-SLR-SRF, Invalidity Contentions Exhibit A30 dated Jun. 24, 2016.
C.A. No. 15-218-SLR-SRF, Invalidity Contentions Exhibit A31 dated Jun. 24, 2016.
C.A. No. 15-218-SLR-SRF, Invalidity Contentions Exhibit A32 dated Jun. 24, 2016.
C.A. No. 15-218-SLR-SRF, Invalidity Contentions Exhibit A33 dated Jun. 24, 2016.
C.A. No. 15-218-SLR-SRF, Invalidity Contentions Exhibit A34 dated Jun. 24, 2016.
C.A. No. 15-218-SLR-SRF, Invalidity Contentions Exhibit A35 dated Jun. 24, 2016.
C.A. No. 15-218-SLR-SRF, Invalidity Contentions Exhibit A36 dated Jun. 24, 2016.
C.A. No. 15-218-SLR-SRF, Invalidity Contentions Exhibit A37 dated Jun. 24, 2016.
C.A. No. 15-218-SLR-SRF, Invalidity Contentions Exhibit A38 dated Jun. 24, 2016.
C.A. No. 15-218-SLR-SRF, Invalidity Contentions Exhibit A39 dated Jun. 24, 2016.
C.A. No. 15-218-SLR-SRF, Invalidity Contentions Exhibit A4 dated Jun. 24, 2016.
C.A. No. 15-218-SLR-SRF, Invalidity Contentions Exhibit A40 dated Jun. 24, 2016.
C.A. No. 15-218-SLR-SRF, Invalidity Contentions Exhibit A41 dated Jun. 24, 2016.
C.A. No. 15-218-SLR-SRF, Invalidity Contentions Exhibit A42 dated Jun. 24, 2016.
C.A. No. 15-218-SLR-SRF, Invalidity Contentions Exhibit A43 dated Jun. 24, 2016.
C.A. No. 15-218-SLR-SRF, Invalidity Contentions Exhibit A44 dated Jun. 24, 2016.
C.A. No. 15-218-SLR-SRF, Invalidity Contentions Exhibit A45 dated Jun. 24, 2016.
C.A. No. 15-218-SLR-SRF, Invalidity Contentions Exhibit A46 dated Jun. 24, 2016.
C.A. No. 15-218-SLR-SRF, Invalidity Contentions Exhibit A47 dated Jun. 24, 2016.
C.A. No. 15-218-SLR-SRF, Invalidity Contentions Exhibit A48 dated Jun. 24, 2016.
C.A. No. 15-218-SLR-SRF, Invalidity Contentions Exhibit A49 dated Jun. 24, 2016.
C.A. No. 15-218-SLR-SRF, Invalidity Contentions Exhibit A5 dated Jun. 24, 2016.
PCT/US2007/011015 dated May 7, 2007 Written Opinion dated Jun. 10, 2008.
PCT/US2007/011015 filed May 7, 2007 International Preliminary Report on Patentability dated Oct. 29, 2008.
PCT/US2007/011015 filed May 7, 2007 Search Report dated Jun. 10, 2008.
PCT/US2007/011456 filed May 11, 2007 Search Report dated Aug. 28,2008.
PCT/US2007/011456 filed May 11, 2007 Written Opinion dated Aug. 28, 2008.
PCT/US2008/010520 dated Sep. 8, 2008 Search Report dated Feb. 24, 2009.
PCT/US2008/010520 filed Sep. 8, 2008 Written Opinion dated Feb. 24, 2009.
PCT/US2008/067679 filed Jun. 20, 2008 Search Report dated Sep. 30, 2008.
PCT/US2008/067679 filed Jun. 20, 2008 Written Opinion mailed on Sep. 30, 2008.
PCT/US2008/070330 filed Jul. 17, 2008 Search Report dated Dec. 1, 2008.
PCT/US2008/070330 filed Jul. 17, 2008 Written Opinion dated Dec. 1, 2008.
PCT/US2008/070345 filed Jul. 17, 2008 Search Report mailed on Dec. 1, 2008.
PCT/US2008/070345 filed Jul. 17, 2008 Written Opinion dated Dec. 1, 2008.
PCT/US2008/078976 filed Apr. 2, 2009 Search Report and Written Opinion dated Apr. 3, 2009.
PCT/US2009/035088 filed Feb. 25, 2009 International Search Report dated May 19, 2009.
PCT/US2009/035088 filed Feb. 25, 2009 Written Opinion dated May 19, 2009.
PCT/US2009/062854 filed Oct. 30, 2009 International Preliminary Report on Patentability dated May 5, 2011.
PCT/US2009/062854 filed Oct. 30, 2009 International Search Report dated Dec. 10, 2009.
PCT/US2009/062854 filed Oct. 30, 2009 Search Report dated Dec. 23, 2009.
PCT/US2009/062854 filed Oct. 30, 2009 Written Opinion dated Dec. 10, 2009.
PCT/US2009/062854 filed Oct. 30, 2009 Written Opinion dated Dec. 23, 2009.
PCT/US2010/030256 filed Apr. 7, 2010 Search Report dated Jun. 4, 2010.
PCT/US2010/030256 filed Apr. 7, 2010 Written Opinion dated Jun. 4, 2010.
PCT/US2010/054994 filed Nov. 1, 2010 Search Report dated Jan. 10, 2011.
PCT/US2010/054994 filed Nov. 1, 2010 Written Opinion dated Jan. 10, 2011.
PCT/US2011/037038 filed May 18, 2011 International Preliminary Report on Patentability dated Nov. 29, 2012.
PCT/US2011/037038 filed May 18, 2011 International Search Report and Written Opinion dated Aug. 30, 2011.
PCT/US2011/037038 filed May 18, 2011 Written Opinion and Search Report dated Aug. 30, 2011.
PCT/US2013/031035 filed Mar. 13, 2013 International Search Report and Written Opinion dated Jun. 3, 2013.
PCT/US2013/056019 filed Aug. 21, 2013 International Search Report and Written Opinion dated Feb. 28, 2014.
PFM Medical, Xcela™ Power Injectable Port Directions for Use, 15 pages, © 2008.
Port-A-Cath® P.A.S. PORT® Systems by Deltec, Product Specifications, 1999.
Port-A-Cath® “Implantable Epidural, Aterial and Peritonial Access Systems” Internet Product Listing. <<http://web.archive.org/web/20001119035900/www.deltec.com/cPacspl.htm.>> last accessed Jun. 4, 2012.
Port-A-Cath® “Many Port-A-Cath® System Choices” Product Brochure. © 1996 SIMS Deltec, Inc.
Port-A-Cath® & Port-A-Cath® II Dual-lumen Implantable Venous Access Systems Product Specifications, 2005.
Port-A-Cath® II Implantable Access Systems Information Sheet, Sep. 2006.
Rappolt, Richard T., et al. “Radiopaque Codification and X-ray Identification of Ingested Drugs.” Ingestive Radiology, May-Jun. 1966.
Request for Inter partes Reexamination of U.S. Pat. No. 7,785,302, filed Aug. 20, 2012.
Request for Inter partes Reexamination of U.S. Pat. No. 7,947,022, filed Aug. 20, 2012.
Request for Inter partes Reexamination of U.S. Pat. No. 7,959,615, filed Aug. 20, 2012.
Salis et al., “Maximal flow rates possible during power injection through currently available PICCs: An in-vitro study,” J Vasc Interv Radiol 2004; 15:275-281.
Sandstede, Joern, “Pediatric CT,” available online at www.multislice-ct.com, MultiSLICE-CT.com, version 02, May 2, 2003.
Sanelli, et al., “Safety and Feasibility of Using a Central Venous Catheter for Rapid Contrast Injection Rates.” American Journal of Radiology, vol. 183, pp. 1829-1834, Dec. 2004.
Shah, Tilak M., “Radiopaque Polymer Formulations for Medical Devices.” Medical Device and Diagnostic Industry, Mar. 2000.
Smith Medical, Port-A-Cath® “Single-lumen Implantable Vascular Access Systems” Product Specifications, 2004.
Smith, Lisa Hartkoph, “Implanted Ports, Computed Tomography, Power Injectors, and Catheter Rupture.” Clinical Journal of Oncology Nursing, vol. 12 , No. 5. Oct. 2008.
Smiths Medical, “Smiths Medical Launches Implantable Ports for Easy Viewing Under CT Scans” Press Release, Jan. 5, 2011.
Soloman, et al., “CIN Strategies: Anticipate, Manage, Prevent.” Supplement to Imaging Economics, May 2007.
Statement of Prof. Dr. med. Karl R. Aigner, Oct. 11, 2011.
Allergan, Inc. Lap-Band® System Fact Sheet. © 2007.
AngioDynamics, Smart Port Guidelines for Health Care Providers, 1996.
B. Braun, Access Port Systems, Celsite® Product Information, 19 pages, Nov. 2005.
B. Braun, Easypump Product Page, accessed May 11, 2011.
B. Braun, Port Catheter Systems Product Page, accessed May 11, 2011.
Bard Access Systems Mar. 21, 1995 Product Release to Market form for “M.R.I. Port with 8 Fr. ChronoFlexÒ Catheter”, “M.R.I. Port with 8Fr. ChronoFlex Catheter with Intro-Eze™”, “M.R.I. Port with 8. Fr ChronoFlex Catheter and Peel Apart”, “M.R.I. Port with 8Fr. ChronoFlex Catheter Demo Kit”. Drawings included.
Bard Access Systems, Bad Port, SlimPort, X-Port Instructions for Use, 24 pages, Oct. 2012.
Bard Access Systems, BardPort and X-Port Implanted Ports Brochure, © 2007.
Bard Access Systems, BardPort, SlimPort and X-Port Instructions for Use, May 2003.
Bard Access Systems, BardPort™ Implanted Ports Patient Information, Feb. 1993.
Bard Access Systems, Devices for Small Patients, 4 pages, Jul. 1992.
Bard Access Systems, Family of PICCs, 1 page, Mar. 10, 2006.
Bard Access Systems, M.R.I. Dual Port with Septum-Finder Ridge IFU, 2 pages, © 1993.
Bard Access Systems, Ports Brochure, © 2003.
Bard Access Systems, PowerPort and PowerLoc CT Guide, 11 pages, Dec. 2009.
Bard Access Systems, PowerPort and PowerLoc Product Brochure, 6 pages, © 2007.
Bard Access Systems, PowerPort CT Guide, 16 pages, Mar. 2007.
Bard Access Systems, PowerPort Guidelines for CT Technologists, 1 page, Feb. 2007.
Bard Access Systems, PowerPort Guidelines for CT Technologists, 1 page, Jul. 2006.
Bard Access Systems, PowerPort Guidelines for Nurses, 1 page, Feb. 2007.
Bard Access Systems, PowerPort Guidelines for Physicians, 1 page, Feb. 2007.
Bard Access Systems, PowerPort Implanted Port with Open-Ended Catheter Instructions for Use, 8 pages, Dec. 2006.
Bard Access Systems, PowerPort Information for the Patient, 5 pages, © 2006.
Bard Access Systems, PowerPort Prescription Pad, 1 page, © 2007.
Bard Access Systems, PowerPort Product Brochure, 8 pages, © 2009.
Bard Access Systems, PowerPort™ Implantable Port Product Information, © 2007.
Bard Access Systems, Titanium Dome Implantable Port, http://www.bardacess.com, last accessed Jan. 10, 2012.
Bard Access Systems, When in Doubt, SCOUT!, 1 page, © 2007.
Bard Healthcare Leaflet (2001).
Baxter Guidelines on Port Maintainence (Jun. 2003).
Baxter Healthport® Focus (Oct. 1999).
Baxter Healthport® Venous Systems (Oct. 2002).
Baxter Patient Information, Healthport® System (May 1999).
Baxter Therapy Systems, Baxter Healthport® Jan. 1999.
Biffi, R. et al. “Use of totally implantable central venous access ports for high-dose chemotherapy and peripheral blood stem cell transplantation: results of a monocentre series of 376 patients.” Annals of Oncology 15:296-300, 2004.
Biffi, R., et al. “Best Choice of Central Venous Insertion Site for the Prevention of Catheter-Related Complications in Adult Patients Who Need Cancer Therapy: A Randomized Trial.” Annals of Oncology, Jan. 29, 2009.
Biffi, Roberto, et al. “A Randomized, Prospective Trial of Central Venous Ports Connected to Standard Open-Ended or Groshong Catheters in Adult Oncology Patients.” American Cancer Society, vol. 92, No. 5, pp. 1204-1212, Sep. 1, 2001.
BioEnterics Corporation, Lap-Band® “Adjustable Gastric Banding System” Product Brochure Rev. G, Nov. 2000.
Biotronik, Stratos Cardiac Resynchronization Therapy Pacemakers Technical Manual, 179 pages, © 2008.
Boston Scientific, Xcela™ Power Injectable PICC Directions for Use, 12 pages, © 2007.
Braun Product Catalog (Aug. 2005).
Cardiovascular and Interventional Radiology, Review Article, “Central Venous Access Catheters: Radiological Management of Complications,” by U.K. Teichgraber, B. Gebauer, T. Benter, H.J. Wagner, published online Jul. 31, 2003.
Carlson et al., “Safety Considerations in the Power Injection of Contrast Media Via Central Venous Catheters during Computed Tomographic Examinations,” Investigative Radiology, (May 1992) 27: 337-340.
Clinical Plastic Products, “Oncology Jet Port Plus Catheter Systems” Instructions for Use, Oct. 12, 2011.
CN 200980153471.3 filed Jun. 30, 2011 First Office Action dated Dec. 25, 2012.
CN 200980153471.3 filed Jun. 30, 2011 Fourth Office Action dated Nov. 15, 2014.
CN 200980153471.3 filed Jun. 30, 2011 Second Office Action dated Sep. 18, 2013.
CN 200980153471.3 filed Jun. 30, 2011 Third Office Action dated May 28, 2014.
CN 201080020088.3 filed Nov. 7, 2011 First Office Action dated Mar. 4, 2013.
CN 201080020088.3 filed Nov. 7, 2011 Second Office Action dated Nov. 21, 2013.
U.S. Appl. No. 13/110,734, filed May 18, 2011 Non-Final Office Action dated Jul. 7, 2014.
U.S. Appl. No. 13/113,834, filed May 23, 2011 Final Office Action dated Nov. 23, 2012.
U.S. Appl. No. 13/113,834, filed May 23, 2011 Non-Final Office Action dated Jul. 17, 2012.
U.S. Appl. No. 13/159,230, filed Jun. 13, 2011 Notice of Allowance dated Aug. 1, 2012.
U.S. Appl. No. 13/250,909, filed Sep. 30, 2011 Notice of Allowance dated Aug. 6, 2012.
U.S. Appl. No. 13/438,586, filed Apr. 3, 2012 Advisory Action dated May 29, 2013.
U.S. Appl. No. 13/438,586, filed Apr. 3, 2012 Final Office Action dated Mar. 7, 2013.
U.S. Appl. No. 13/438,586, filed Apr. 3, 2012 Non-Final Office Action dated Sep. 19, 2012.
U.S. Appl. No. 13/438,586, filed Apr. 3, 2012 Notice of Allowance dated Sep. 16, 2013.
U.S. Appl. No. 13/471,219, filed May 14, 2012 Non-Final Office Action dated Jul. 10, 2013.
U.S. Appl. No. 13/524,712, filed Jun. 15, 2012 Advisory Action dated May 7, 2014.
U.S. Appl. No. 13/524,712, filed Jun. 15, 2012 Final Office Action dated Mar. 3, 2014.
U.S. Appl. No. 13/524,712, filed Jun. 15, 2012 Non-Final Office Action dated Aug. 21, 2014.
U.S. Appl. No. 13/524,712, filed Jun. 15, 2012 Non-Final Office Action dated Oct. 22, 2013.
U.S. Appl. No. 13/524,712, filed Jun. 15, 2012 Notice of Allowance dated Dec. 12, 2014.
U.S. Appl. No. 13/571,088, filed Aug. 9, 2012 Final Office Action dated Jul. 16, 2013.
U.S. Appl. No. 13/571,088, filed Aug. 9, 2012 Non-Final Office Action dated Feb. 27, 2013.
U.S. Appl. No. 13/571,088, filed Aug. 9, 2012 Non-Final Office Action dated Jan. 7, 2015.
U.S. Appl. No. 13/776,451, filed Feb. 25, 2013 Non-Final Office Action dated Jul. 24, 2013.
U.S. Appl. No. 13/776,517, filed Feb. 25, 2013 Final Office Action dated Jun. 30, 2014.
U.S. Appl. No. 13/776,517, filed Feb. 25, 2013 Non-Final Office Action dated Feb. 27, 2014.
U.S. Appl. No. 13/776,517, filed Feb. 25, 2013 Non-Final Office Action dated Nov. 15, 2013.
U.S. Appl. No. 13/776,517, filed Feb. 25, 2013 Notice of Allowance dated Sep. 23, 2014.
U.S. Appl. No. 13/853,942, filed Mar. 29, 2013 Non-Final Office Action dated Jul. 26, 2013.
U.S. Appl. No. 13/853,956, filed Mar. 29, 2013 Final Office Action dated Feb. 20, 2015.
U.S. Appl. No. 13/853,956, filed Mar. 29, 2013 Non-Final Office Action dated Dec. 3, 2013.
U.S. Appl. No. 13/853,956, filed Mar. 29, 2013 Non-Final Office Action dated Sep. 15, 2014.
U.S. Appl. No. 13/853,961, filed Mar. 29, 2013 Final Office Action dated Feb. 20, 2015.
U.S. Appl. No. 13/853,961, filed Mar. 29, 2013 Non-Final Office Action dated Dec. 3, 2013.
U.S. Appl. No. 13/853,961, filed Mar. 29, 2013 Non-Final Office Action dated Sep. 12, 2014.
U.S. Appl. No. 14/171,364, filed Feb. 3, 2014 Non-Final Office Action dated Feb. 12, 2015.
U.S. Appl. No. 14/455,660, filed Aug. 8, 2014 Non-Final Office Action dated Mar. 18, 2015.
U.S. Appl. No. 29/239,163, filed Sep. 27, 2005 entitled Injectable Power Port, listing Eddie K. Burnside as inventor.
U.S. Appl. No. 29/247,954, filed Jul. 21, 2006 entitled Injectable Power Port, listing Eddie K. Burnside as inventor.
U.S. Appl. No. 29/247,954, filed Jul. 21, 2006 Non-Final Office Action dated Apr. 6, 2007.
U.S. Appl. No. 29/247,954, filed Jul. 21, 2006 Notice of Allowability dated Jul. 30, 2007.
U.S. Appl. No. 29/284,454, filed Sep. 7, 2007 titled Implantable Port Device, listing John A. Zawacki and Annmarie Boswell as inventors, in which a Continued Prosecution Application was filed on Jan. 30, 2008.
U.S. Appl. No. 29/284,456, filed Sep. 7, 2007, titled Implantable Port Device, listing John A. Zawacki and Annemarie Boswell as inventors.
U.S. Appl. No. 29/382,235, filed Dec. 30, 2010 Non-Final Office Action dated Oct. 3, 2012.
U.S. Appl. No. 29/382,246, filed Dec. 30, 2010 Notice of Allowance dated Oct. 3, 2012.
U.S. Appl. No. 95/002,089, filed Aug. 20, 2012 Action Closing Prosecution dated Jun. 12, 2013.
U.S. Appl. No. 95/002,089, filed Aug. 20, 2012 Office Action in and Order Granting/Denying Request for Inter Partes Reexamination dated Nov. 7, 2012.
U.S. Appl. No. 95/002,090, filed Aug. 20, 2012 Action Closing Prosecution dated Jun. 12, 2013.
U.S. Appl. No. 95/002,090, filed Aug. 20, 2012 Office Action in and Order Granting/Denying Request for Inter Partes Reexamination dated Nov. 7, 2012.
U.S. Appl. No. 95/002,092, filed Aug. 20, 2012 Action Closing Prosecution dated Jun. 12, 2013.
U.S. Appl. No. 95/002,092, filed Aug. 20, 2012 Office Action in and Order Granting/Denying Request for Inter Partes Reexamination dated Nov. 13, 2012.
Vergara, et al., “Adverse Reactions to Contrast Medica in CT: Effects of Temperature and Ionic Property.” Radiology, vol. 199, No. 2, May 1996.
Vogelzang, Robert L., “Power Injection Through Central Venous Catheters: Physiological and Hemodynamic Considerations.” The McGaw Medical Center of Northwestern University, Feinberg School of Medicine. Jun. 23, 2004.
Wells, S. “Venous Access in Oncology and Haematology Patients: Part One.” Nursing Standard, vol. 22, No. 52, pp. 39-46, Sep. 3, 2008.
Wikipedia, “Port Catheter”, Dec. 15, 2011.
CN 201410216386.X filed May 21, 2014 Office Action dated Nov. 29, 2016.
CO 14235.202 filed Oct. 23, 2014 Office Action dated Nov. 3, 2016.
EP 15180174 filed Aug. 7, 2015 Office Action dated Jan. 13, 2017.
JP 2013-511339 filed Nov. 16, 2012 Office Action dated Dec. 16, 2016.
JP 2015-501762 filed Sep. 16, 2014 First Office Action dated Oct. 5, 2016.
JP 2016-026954 filed Feb. 16, 2016 Office Action dated Dec. 15, 2016.
KR 10-2011-7026328 filed Nov. 4, 2011 Notice of Last Preliminary Rejection dated Dec. 28, 2016.
MX/a/2011/010529 filed Oct. 5, 2011 Office Action dated Jan. 18, 2017.
Toray “P-U Celsite Port” brochure—Sep. 1999.
U.S. Appl. No. 13/853,956, filed Mar. 29, 2013 Final Office Action dated Jan. 10, 2017.
U.S. Appl. No. 13/853,956, filed Mar. 29, 2013 Final Office Action dated Oct. 18, 2016.
U.S. Appl. No. 13/853,961, filed Mar. 29, 2013 Final Office Action dated Jan. 9, 2017.
U.S. Appl. No. 13/853,961, filed Mar. 29, 2013 Non-Final Office Action dated Oct. 18, 2016.
U.S. Appl. No. 14/083,250, filed Nov. 18, 2013 Non-Final Office Action dated Dec. 12, 2016.
U.S. Appl. No. 14/104,354, filed Dec. 12, 2013 Non-Final Office Action dated Nov. 22, 2016.
U.S. Appl. No. 14/455,660, filed Aug. 8, 2014 Non-Final Office Action dated Oct. 14, 2016.
U.S. Appl. No. 14/587,862, filed Dec. 31, 2014 Non-Final Office Action dated Nov. 3, 2016.
U.S. Appl. No. 14/599,376, filed Jan. 16, 2015 Advisory Action dated Aug. 23, 2016.
U.S. Appl. No. 14/599,376, filed Jan. 16, 2015 Non-Final Office Action dated Nov. 7, 2016.
CN 201380016157.7 filed Sep. 23, 2014 Office Action dated Feb. 4, 2017.
EP 06737222.7 filed Aug. 17, 2007 Office Action dated Mar. 9, 2017.
EP 10183394.5 filed Apr. 25, 2006 interlocutory decision dated Feb. 14, 2017.
EP 15180174 filed Aug. 7, 2015 European Search Report dated Jan. 4, 2016.
JP 2015-501762 filed Sep. 16, 2014 Office Action dated Feb. 1, 2017.
CO 14.235.202 filed Oct. 23, 2014 Office Action dated Apr. 25, 2017.
EP 09824195.3 filed Apr. 13, 2011 Extended European Search Report dated Apr. 28, 2017.
EP 16 193 913.7 filed Oct. 14, 2016 Extended European Search Report dated Apr. 13, 2017.
U.S. Appl. No. 14/455,660, filed Aug. 8, 2014 Final Office Action dated May 19, 2017.
U.S. Appl. No. 14/587,862, filed Dec. 31, 2014 Final Office Action dated May 4, 2017.
U.S. Appl. No. 14/599,376, filed Jan. 16, 2015 Final Office Action dated May 16, 2017.
Related Publications (1)
Number Date Country
20150290446 A1 Oct 2015 US
Provisional Applications (1)
Number Date Country
61262126 Nov 2009 US
Continuations (1)
Number Date Country
Parent 12917323 Nov 2010 US
Child 14750174 US