1. Field of the Invention
The present invention relates to an oxide semiconductor, a thin film transistor in which the oxide semiconductor is used, and a display device in which the thin film transistor is used.
2. Description of the Related Art
The most commonly used material for thin film transistor is hydrogenated amorphous silicon (a-Si:H). Hydrogenated amorphous silicon can be deposited as a thin film over a substrate at a temperature of 300° C. or lower. However, a-Si:H has a disadvantage in that it has a mobility (a field effect mobility in the case of a thin film transistor) of only about 1 cm2/V·sec.
A transparent thin-film field-effect transistor is disclosed in which a thin film of a homologous compound InMO3(ZnO)m (M is In, Fe, Ga, or Al, and m is an integer number of greater than or equal to 1 and less than 50), as an oxide semiconductor material that can be formed into a thin film like a-Si:H, is used as an active layer (see Patent Document 1).
In addition, a thin film transistor is disclosed in which an amorphous oxide whose electron carrier concentration is less than 1018/cm3 is used for a channel layer and which is an oxide that contains In, Ga, and Zn, where the ratio of In atoms to Ga and Zn atoms is 1:1:m (m<6) (see Patent Document 2).
Nevertheless, so far an on-off ratio of about 103 only has been obtained with a conventional thin film transistor in which an oxide semiconductor is used. In other words, even if a thin film transistor having a predetermined on current is obtained, it cannot be considered of normally-off type because the off current is too high. Therefore, the thin film transistor is not yet at the level of practical application. Such an on-off ratio of about 103 is at a level that can be easily achieved with a conventional thin film transistor in which amorphous silicon is used.
It is an object of the present invention to increase field effect mobility of a thin film transistor in which a metal oxide is used and to reduce an off current to obtain a sufficient on-off ratio.
According to an embodiment that is given as an example, an oxide semiconductor contains In, Ga, and Zn as components and has a composition in which the concentration of Zn is lower than the concentrations of In and Ga. The oxide semiconductor preferably has an amorphous structure.
According to an embodiment that is given as an example, an oxide semiconductor is represented by InMO3(ZnO)m (M is one or a plurality of elements selected from Ga, Fe, Ni, Mn, Co, and Al, and m is a non-integer number of greater than 0 and less than 1) and has a composition in which the concentration of Zn is lower than the concentrations of In and M (M is one or a plurality of elements selected from Ga, Fe, Ni, Mn, Co, and Al). The oxide semiconductor preferably has an amorphous structure.
Here, m is preferably a non-integer number of greater than 0 and less than 1.
According to an embodiment that is given as an example, in a thin film transistor, a layer of any of the oxide semiconductors according to the above embodiments is used as a channel formation region. An oxide insulating layer is preferably provided in contact with the oxide semiconductor layer. It is more preferable that the oxide insulating layer be provided over and under the oxide semiconductor layer. A nitride insulating layer is preferably provided outside of the oxide semiconductor layer.
According to an embodiment that is given as an example, in a display device, any of the thin film transistors of the above embodiments is provided for at least one pixel.
According to an embodiment that is given as an example, in a display device, the thin film transistors of any of the above embodiments are provided for at least one pixel and a driver circuit for controlling a signal to be transmitted to the thin film transistor provided in the pixel.
Of In, Ga, and Zn that are contained as components of the oxide semiconductor, the concentration of Zn is set lower than the concentrations of In and Ga, whereby the carrier concentration can be decreased and, furthermore, the oxide semiconductor can have an amorphous structure.
Such an oxide semiconductor layer is used as a channel formation region, whereby the off current of the thin film transistor can be reduced and the on-off ratio thereof can be increased.
Hereinafter, Embodiment of the present invention will be described with reference to the accompanying drawings. Note that it is easily understood by those skilled in the art that the present invention can be carried out in many different modes, and the modes and details disclosed herein can be modified in various ways without departing from the spirit and scope of the present invention. Therefore, the present invention should not be construed as being limited to the description below of Embodiment.
(Oxide Semiconductor Material)
An oxide semiconductor material according to this embodiment contains In, Ga, and Zn as components and has a composition in which the concentration of Zn is lower than the concentrations of In and Ga. For example, an oxide semiconductor material according to this embodiment is an oxide semiconductor material that is represented by InMO3(ZnO)m and has a composition in which the concentration of Zn is lower than the concentrations of In and M (M is one or a plurality of elements selected from Ga, Fe, Ni, Mn, Co, and Al). Moreover, in the said oxide semiconductor, in some cases, a transition metal element such as Fe or Ni or an oxide of the transition metal is contained as an impurity element in addition to a metal element M.
In the above oxide semiconductor represented by InMO3(ZnO)m (M is one or a plurality of elements selected from Ga, Fe, Ni, Mn, Co, and Al, and m is a non-integer number of greater than 0 and less than 1), m represents a non-integer number of greater than 0 and less than 1. An oxide semiconductor whose composition in a crystal state is represented by InGaO3(ZnO)m, where m is an integer number of greater than or equal to 1 and less than 50, is known. However, in consideration of control during manufacture, a composition of InMO3(ZnO)m, where m is a non-integer number, is preferable, in which case control is easily performed. In addition, m is preferably a non-integer number so that an amorphous structure of the oxide semiconductor material is maintained stably.
Here, m is preferably a non-integer number of greater than 0 and less than 1.
In the oxide semiconductor that is represented by InMO3(ZnO)m (M is one or a plurality of elements selected from Ga, Fe, Ni, Mn, Co, and Al, and m is a non-integer number of greater than 0 and less than 1), the following composition is preferable: In is contained at a concentration of less than 20 atomic %, M (e.g., Ga) is contained at a concentration of less than 20 atomic %, and Zn is contained at a concentration of less than 10 atomic % when the total of the concentrations of In, M, Zn, and O is defined as 100%. A more preferable composition of the oxide semiconductor material that contains In, Ga as M, and Zn is as follows: In and Ga are each contained at a concentration of greater than or equal to 15.0 atomic % and less than or equal to 20.0 atomic %, and Zn is contained at a concentration of greater than or equal to 5.0 atomic % and less than or equal to 10.0 atomic %.
The oxide semiconductor has an amorphous structure, and it is not crystallized even by heat treatment at 500° C. in a nitrogen atmosphere. When the temperature of the heat treatment is increased to 700° C., nanocrystals are generated in the amorphous structure in some cases. In either case, the oxide semiconductor is a non-single-crystal semiconductor.
The concentration of Zn is made to be lower than the concentrations of In and Ga so that the oxide semiconductor has an amorphous structure. In the oxide semiconductor, the concentration of Zn is preferably less than or equal to the half of each of the concentrations of In and Ga. In the case where the proportion of Zn or ZnO in the oxide semiconductor is high, a film formed by a sputtering method is a crystallized film. In addition, in the case where the proportion of Zn or ZnO in the oxide semiconductor is high, even if the oxide semiconductor is amorphous in the initial state, it is easily crystallized by heat treatment at several hundred degrees Celsius. On the other hand, when the concentration of Zn is made to be lower than the concentrations of In and Ga, the range of composition by which an amorphous structure is obtained in the oxide semiconductor can be expanded.
(Method for Forming Oxide Semiconductor Film)
An oxide semiconductor film is preferably formed by a physical vapor deposition (PVD) method. Although a sputtering method, a resistance heating evaporation method, an electron beam evaporation method, an ion beam deposition method, or the like can be employed as a PVD method for forming the oxide semiconductor film, the sputtering method is preferably employed so that deposition of the oxide semiconductor film over a large substrate can be easily performed.
As a preferable deposition method, a reactive sputtering method can be employed in which metal targets made of In, M (M is one or a plurality of elements selected from Ga, Fe, Ni, Mn, Co, and Al), Zn, and the like are used and reacted with oxygen to deposit an oxide semiconductor film over a substrate. As another deposition method, a sputtering method can be employed in which a target made by sintering oxides of In, M (M is one or a plurality of elements selected from Ga, Fe, Ni, Mn, Co, and Al), and Zn is used. Further, as another deposition method, a reactive sputtering method can be employed in which a target made by sintering oxides of In, M (M is one or a plurality of elements selected from Ga, Fe, Ni, Mn, Co, and Al), and Zn is used and the target is reacted to deposit an oxide semiconductor film over a substrate.
As an example of a target used in the sputtering method, a sintered body of In2O3, Ga2O3, and ZnO can be employed. The proportions of elements of such a target are preferably set as follows: the proportions of In2O3, Ga2O3, and ZnO are set to the same value, or the proportion of ZnO is smaller than the proportions of In2O3 and Ga2O3. Although the composition of the oxide semiconductor film deposited over the substrate is changed depending on a sputtering rate of a target material to a sputtering gas, the use of at least the above composition of the target makes it possible to obtain an oxide semiconductor film in which In, Ga, and Zn are contained as components and the concentration of Zn is lower than the concentrations of In and Ga.
Sputtering is performed in such a manner that DC power is applied to the above target to generate plasma in a deposition chamber. Use of a pulsed DC power source is preferable, in which case dust can be reduced and film thickness distribution can be uniform.
Of In, Ga, and Zn that are contained as components of the oxide semiconductor, the concentration of Zn is set lower than the concentrations of In and Ga, whereby the carrier concentration can be decreased and the oxide semiconductor can have an amorphous structure.
(Thin Film Transistor)
As a substrate for manufacturing a thin film transistor using an oxide semiconductor film for a channel formation region, a glass substrate, a plastic substrate, a plastic film, or the like can be used. As the glass substrate, a glass substrate of barium borosilicate glass, aluminoborosilicate glass, aluminosilicate glass, or the like can be used. For example, a glass substrate containing barium oxide (BaO) at a higher composition ratio than that of boric oxide (B2O3) and having a strain point of 730° C. or higher is preferably used. The oxide semiconductor film can be formed at 200° C. or lower by a sputtering method, and a substrate made of a plastic material typified by polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polyethersulfone (PES), or polyimide, a plastic film of the above plastic material which has a thickness of 200 μm or less can be used.
The thin film transistor illustrated in
The gate electrode 102 is preferably formed of a refractory metal such as Ti, Mo, Cr, Ta, or W. Alternatively, the gate electrode 102 may have a structure in which a layer of a refractory metal typified by Mo, Cr, or Ti is provided either over an Al film or over an Al film to which Si, Ti, Nd, Sc, Cu, or the like is added.
The gate insulating layer 103 is preferably formed of oxide or nitride of silicon, such as silicon oxide, silicon nitride, or silicon oxynitride. In particular, when the gate insulating layer 103 is formed of silicon oxide, the leakage current between the source electrode and the gate electrode and between the drain electrode and the gate electrode can be as low as about 10−10 A, or less. These insulating layers can be formed by a plasma CVD method, a sputtering method, or the like.
For example, as the gate insulating layer 103, a silicon oxide layer can be formed by a CVD method using an organosilane gas. As the organosilane gas, a silicon-containing compound such as tetraethoxysilane (TEOS) (chemical formula: Si(OC2H5)4), tetramethylsilane (TMS) (chemical formula: Si(CH3)4), tetramethylcyclotetrasiloxane (TMCTS), octamethylcyclotetrasiloxane (OMCTS), hexamethyldisilazane (HMDS), triethoxysilane (SiH(OC2H5)3), or trisdimethylaminosilane (SiH(N(CH3)2)3) can be used.
The source electrode 104 and the drain electrode 105 are preferably formed of a refractory metal such as Ti, Mo, Cr, Ta, or W. In particular, a metal material having high affinity for oxygen, typified by Ti, is preferably used. This is because such a metal material easily makes an ohmic contact with the oxide semiconductor layer 106. Other than Ti, Mo can also be used to obtain a similar effect. The source electrode 104 and the drain electrode 105 are preferably processed by etching to have a tapered end shape. In this manner, their contact areas with the oxide semiconductor layer 106 can be increased. Between the source and drain electrodes 104 and 105 and the oxide semiconductor film, an oxide semiconductor film having an oxygen-deficient defect (an oxide semiconductor film having a lower resistance than the oxide semiconductor film which is used for a channel formation region) may be provided.
As another mode of the source electrode 104 and the drain electrode 105, the electrodes may have a structure in which a layer of a refractory metal typified by Mo, Cr, or Ti is provided over and/or under an Al film or an Al film to which Si, Ti, Nd, Sc, Cu, or the like is added. This structure is advantageous when a wiring for transmitting signals is formed at the same time and with the same layer as a layer for forming the source electrode 104 and the drain electrode 105. The layer of a refractory metal provided in contact with the Al film is preferably provided in order to prevent hillocks or whiskers from being formed on the Al film. Note that the term “hillock” refers to a phenomenon in which as crystal growth of Al proceeds, growing components impinge on each other to form a bump. The term “whisker” refers to a phenomenon in which Al grows into a needle-like shape due to abnormal growth.
The oxide semiconductor layer 106 is formed by a PVD method typified by a sputtering method. As a sputtering target, a sintered body of oxides of In, M (M is one or a plurality of elements selected from Ga, Fe, Ni, Mn, Co, and Al), and Zn is preferably used as described above. For example, the oxide semiconductor film is formed by a sputtering method using a sintered body of In2O3, Ga2O3, and ZnO as a target.
As a sputtering gas, a rare gas typified by argon is used. In order to control the oxygen-deficient defect of the oxide semiconductor film, a predetermined amount of an oxygen gas may be added to a rare gas. By increasing the ratio of an oxygen gas to a rare gas in a sputtering gas, the oxygen-deficient defect in an oxide semiconductor can be reduced. The control of the oxygen-deficient defect in an oxide semiconductor makes it possible to control the threshold voltage of a thin film transistor.
Before the oxide semiconductor layer 106 is formed, it is preferable to perform treatment for cleaning a deposition surface by introducing an argon gas into a deposition chamber of a sputtering apparatus and generating plasma. Instead of an argon atmosphere, nitrogen, helium, or the like may be used. Alternatively, the treatment may be performed in an atmosphere obtained by adding oxygen, N2O, or the like to an argon atmosphere. Still alternatively, the treatment may be performed in an atmosphere obtained by adding Cl2, CF4, or the like to an argon atmosphere.
After the oxide semiconductor layer 106 is formed, heat treatment at 200° C. to 600° C., preferably 300° C. to 400° C., is performed in air or in a nitrogen atmosphere. Through this heat treatment, the field-effect mobility of a thin film transistor can be increased. The field-effect mobility of the thin film transistor with the oxide semiconductor described in this embodiment can be as high as 5 cm2/Vsec, or more.
When a voltage of about 5 V is applied between a source electrode and a drain electrode of such a thin film transistor as described above and when no voltage is applied to a gate electrode, the current flowing between the source electrode and the drain electrode can be as low as 1×10−11 A, or less. Even in a state where a voltage of −10 V is applied to the gate electrode, the current flowing between the source electrode and the drain electrode is 1×10−11 A, or less.
The thin film transistor illustrated in
In the thin film transistor having such a structure, the gate insulating layer 103, the oxide semiconductor layer 106, and a conductive layer for forming the source electrode 104 and the drain electrode 105 can be formed successively. In other words, these layers can be stacked without exposing the interface between the gate insulating layer 103 and the oxide semiconductor layer 106 and the interface between the oxide semiconductor layer 106 and the conductive layer to air; thus, each interface can be prevented from being contaminated.
Further, the off current can be reduced by performing etching to remove a superficial portion of the oxide semiconductor layer 106 which is exposed between the source electrode 104 and the drain electrode 105. Furthermore, by performing oxygen plasma treatment on the exposed portion of the oxide semiconductor layer 106 or the surface obtained by etching removal, the resistance of the superficial portion exposed to plasma can be increased. This is because the oxygen-deficient defect in the oxide semiconductor is oxidized and thus the carrier concentration (electron concentration) is decreased. By this oxygen plasma treatment, the off current of the thin film transistor can be reduced.
The thin film transistor illustrated in
(Device Including Thin Film Transistor)
A thin film transistor with the oxide semiconductor described in this embodiment can be used for a variety of applications because of its high field-effect mobility and high on-off ratio. A mode of a display device will be described as an example.
In the pixel portion 110 including a plurality of scan lines 115 and a plurality of signals lines 116 which intersect with the scan lines 115, pixel transistors 117 are provided. The pixel transistors 117 are arranged in matrix. To the pixel transistors 117, scan signals are input through the scan lines 115 and video signals are input through the signal lines 116. Video signals are input to input terminals 113 from the driver IC 114. The driver IC 114 is formed on a single crystal substrate and mounted by a tape-automated bonding (TAB) method or a chip-on-glass (COG) method.
The operation of the selector circuit 112 illustrated in
As illustrated in
By dividing one gate selection period into three as described above, the selector circuit 112 of
The scan line driver circuit 111 can also be formed with thin film transistors whose channel formation regions are each provided in an oxide semiconductor layer. The scan line driver circuit 111 includes a shift register as a component. When a clock signal (CLK) and a start pulse signal (SP) are input to the shift register, a selection signal is generated. The generated selection signal is buffered and amplified by a buffer, and the resulting signal is supplied to a corresponding scan line 115. Gate electrodes of pixel transistors 117 of one line are connected to each scan line 115. A mode of a shift register 123 included in part of the scan line driver circuit 111 will be described here with reference to
Although the case where all TFTs included in the flip-flop circuit 124 illustrated in
A first electrode (one of a source electrode and a drain electrode) of the TFT (1) 125 is connected to a wiring (4) 136, and a second electrode (the other of the source electrode and the drain electrode) of the TFT (1) 125 is connected to a wiring (3) 135.
A first electrode of the TFT (2) 126 is connected to a wiring (6) 138, and a second electrode of the TFT (2) 126 is connected to the wiring (3) 135.
A first electrode of the TFT (3) 127 is connected to a wiring (5) 137; a second electrode of the TFT (3) 127 is connected to a gate electrode of the TFT (2) 126; and a gate electrode of the TFT (3) 127 is connected to the wiring (5) 137.
A first electrode of the TFT (4) 128 is connected to the wiring (6) 138; a second electrode of the TFT (4) 128 is connected to the gate electrode of the TFT (2) 126; and a gate electrode of the TFT (4) 128 is connected to a gate electrode of the TFT (1) 125.
A first electrode of the TFT (5) 129 is connected to the wiring (5) 137; a second electrode of the TFT (5) 129 is connected to the gate electrode of the TFT (1) 125; and a gate electrode of the TFT (5) 129 is connected to a wiring (1) 133.
A first electrode of the TFT (6) 130 is connected to the wiring (6) 138; a second electrode of the TFT (6) 130 is connected to the gate electrode of the TFT (1) 125; and a gate electrode of the TFT (6) 130 is connected to the gate electrode of the TFT (2) 126.
A first electrode of the TFT (7) 131 is connected to the wiring (6) 138; a second electrode of the TFT (7) 131 is connected to the gate electrode of the TFT (1) 125; and a gate electrode of the TFT (7) 131 is connected to a wiring (2) 134. A first electrode of the TFT (8) 132 is connected to the wiring (6) 138; a second electrode of the TFT (8) 132 is connected to the gate electrode of the TFT (2) 126; and a gate electrode of the TFT (8) 132 is connected to the wiring (1) 133.
A thin film transistor whose channel formation region is provided in an oxide semiconductor layer has high field-effect mobility and thus its operation frequency can be set high. In addition, because the frequency characteristics of the thin film transistor are high, the scan line driver circuit 111 can operate at high speed, and a display device can operate with high frame frequency.
In
When employed as the display medium 118, a light-emitting element formed using an electroluminescent material is more suitable for a time gray scale method than a liquid crystal element because its response speed is higher than that of a liquid crystal element or the like. For example, in the case of performing display by a time gray scale method, one frame period is divided into a plurality of subframe periods. Then, in accordance with video signals, the light-emitting element is set in a light-emitting state or in a non-light-emitting state during each subframe period. By dividing one frame period into a plurality of subframe periods, the total length of time, in which pixels actually emit light during one frame period, can be controlled with video signals so that gray scales can be displayed.
An example of a pixel in the case where the pixel portion 110 includes light-emitting elements is illustrated in
A pixel 139 includes a switching TFT 140, a driving TFT 141, a light-emitting element 142, and a capacitor 145. A gate of the switching TFT 140 is connected to a scan line 115; a first electrode (one of a source electrode and a drain electrode) of the switching TFT 140 is connected to a signal line 116; and a second electrode (the other of the source electrode and the drain electrode) of the switching TFT 140 is connected to a gate of the driving TFT 141. The gate of the driving TFT 141 is connected to a power supply line 146 through the capacitor 145; a first electrode of the driving TFT 141 is connected to the power supply line 146; and a second electrode of the driving TFT 141 is connected to a first electrode (a pixel electrode) 143 of the light-emitting element 142. A second electrode (a counter electrode) 144 of the light-emitting element 142 is connected to a common potential line 147.
The second electrode (the counter electrode) 144 of the light-emitting element 142 is set to have a low power supply potential. Note that the low power supply potential refers to a potential satisfying the formula (the low power supply potential)<(a high power supply potential) based on the high power supply potential set to the power supply line 146. As the low power supply potential, GND, 0 V, or the like may be set, for example. In order to make the light-emitting element 142 emit light by applying a potential difference between the high power supply potential and the low power supply potential to the light-emitting element 142 so that current is supplied to the light-emitting element 142, each of the potentials is set so that the potential difference between the high power supply potential and the low power supply potential is equal to or higher than the forward threshold voltage of the light-emitting element 142.
In the case of a voltage-input voltage driving method, a video signal is input to the gate of the driving TFT 141 such that the driving TFT 141 is in either of two states of being sufficiently turned on and turned off. That is, the driving TFT 141 operates in the linear region. A voltage higher than a voltage of the power supply line 146 is applied to the gate of the driving TFT 141 so that the driving TFT 141 operates in the linear region. Note that a voltage equal to or higher than the voltage represented by the formula (the voltage of the power supply line)+(the threshold voltage of the driving TFT 141) is applied to the signal line 116.
Instead of digital time gray scale driving, analog gray scale driving can also be applied to the structure of the pixel illustrated in
Although
Although
(Light-Emitting Device)
A structure of a pixel of a light-emitting device, which is one mode of a display device, will be described with reference to
A channel formation region of a switching TFT 140 is formed in an oxide semiconductor layer 153. The oxide semiconductor layer 153 is similar to that which is described in this embodiment. The switching TFT 140 has a gate electrode 148 formed with the same layer as a scan line 115, and the oxide semiconductor layer 153 is provided over a gate insulating layer 152. The oxide semiconductor layer 153 is in contact with a source/drain electrode 155 and a source/drain electrode 156 which are formed with the same layer as a signal line 116 over the gate insulating layer 152. The source/drain electrode 156 is connected to a gate electrode 149 of a driving TFT 141 via a contact hole 159 which is provided in the gate insulating layer 152.
Note that the term “source/drain electrode” refers to an electrode provided in a thin film transistor including a source, a drain, and a gate as its major components, at a portion serving as the source or the drain.
The signal line 116, the source/drain electrode 155, and the source/drain electrode 156 are preferably formed with an Al film or an Al film to which Si, Ti, Nd, Sc, Cu, or the like is added, so that the resistance of a wiring or an electrode can be lowered. A layer of a refractory metal typified by Mo, Cr, or Ti is preferably provided over and/or under the Al film so that the generation of hillocks or whiskers on the Al film can be prevented.
The gate electrode 149 functions also as a capacitor electrode 150 of a capacitor 145. The capacitor 145 is formed by stacking the capacitor electrode 150, the gate insulating layer 152, and a capacitor electrode 151 which is formed with the same layer as a power supply line 146.
The gate electrode 149 of the driving TFT 141 is formed with the same layer as the scan line 115, and an oxide semiconductor layer 154 is provided over the gate insulating layer 152. The oxide semiconductor layer 154 is in contact with a source/drain electrode 157 and a source/drain electrode 158 which are formed with the same layer as the power supply line 146 over the gate insulating layer 152.
Over the oxide semiconductor layer 153 and the oxide semiconductor layer 154, an oxide insulating layer 107 is provided. A first electrode (a pixel electrode) 143 is provided over the oxide insulating layer 107. The first electrode (the pixel electrode) 143 and the source/drain electrode 158 are connected to each other via a contact hole 160 provided in the oxide insulating layer 107. A partition layer 161 having an opening to the first electrode (the pixel electrode) 143 is formed with an inorganic insulating material or an organic insulating material. The partition layer 161 is formed such that its end portion at the opening has a gently curved surface.
A light-emitting element 142 has a structure in which an EL layer 162 is provided between the first electrode (the pixel electrode) 143 and a second electrode (a counter electrode) 144. One of the first electrode (the pixel electrode) 143 and the second electrode (the counter electrode) 144 is a hole injecting electrode; the other is an electron injecting electrode. The hole injecting electrode is preferably formed with a material which has a work function of 4 eV or higher, and a material such as indium oxide containing tungsten oxide, indium zinc oxide containing tungsten oxide, indium oxide containing titanium oxide, indium tin oxide containing titanium oxide, indium tin oxide, indium zinc oxide, or indium tin oxide to which silicon oxide is added is used. The electron injecting electrode is preferably formed with a material which has a work function lower than 4 eV, and calcium (Ca), aluminum (Al), calcium fluoride (CaF), magnesium silver (MgAg), aluminum lithium (AlLi), or the like is desirable. The EL layer 162 is a layer for obtaining light emission by electroluminescence and is formed by combining a carrier (hole or electron) transporting layer and a light-emitting layer as appropriate.
The oxidation of a surface of the input terminal layer 170 which is formed of a metal leads to an increase in contact resistance; the increase in contact resistance can be prevented in the case where the transparent conductive film 172 formed with an oxide conductive material is provided.
(Contrast Medium Display Device)
For example, there is a display method, which is called a twisting ball display method, in which spherical particles each colored in white and black are disposed between the first electrode (the pixel electrode) 143 and the second electrode (the counter electrode) 144 and the orientation of the spherical particles is controlled by a potential difference generated between the electrodes.
Instead of the twisting balls, an electrophoretic element can also be used. A microcapsule having a diameter of approximately 10 μm to 200 μm, in which a transparent filler 164, positively charged white microparticles, and negatively charged black microparticles are encapsulated, is used. The microcapsule is sandwiched between the first electrode (the pixel electrode) 143 and the second electrode (the counter electrode) 144, and the positively charged white microparticles and the negatively charged black microparticles are moved separately in different directions by a potential difference between the electrodes. A display element using this principle is an electrophoretic display element and is generally called electronic paper. The electrophoretic display element has a higher reflectivity than a liquid crystal display element and accordingly does not require an auxiliary light and consumes less power, and a display portion can be recognized even in a dim place. In addition, even when power is not supplied to the display portion, an image which has been displayed once can be maintained. Accordingly, a displayed image can be stored even if a semiconductor device having a display function (which may simply be referred to as a display device or a semiconductor device provided with a display device) is distanced from an electric wave source.
(Liquid Crystal Display Device)
A structure of a pixel of a liquid crystal display device, which is one mode of a display device, will be described with reference to
A pixel of a liquid crystal display device illustrated in
A liquid crystal layer 169 is provided between the first electrode (the pixel electrode) 143 and a second electrode (a counter electrode) 144. The first electrode (the pixel electrode) 143 is provided over the oxide insulating layer 107. Alignment films 168 are provided on the first electrode (the pixel electrode) 143 and the second electrode (the counter electrode) 144.
As described above, a display device having excellent operation characteristics can be completed with a thin film transistor whose channel formation region is formed in an oxide semiconductor layer in accordance with this embodiment.
Oxide semiconductor layers were formed over glass substrates by a sputtering method under the conditions described below.
(Condition 1)
Target composition: In2O3:Ga2O3:ZnO=1:1:1
(In:Ga:Zn=1:1:0.5)
Ar gas flow rate: 40 sccm
Pressure: 0.4 Pa
Electric power (DC): 500 W
Substrate temperature: room temperature
(Condition 2)
Target composition: In2O3:Ga2O3:ZnO=1:1:1
(In:Ga:Zn=1:1:0.5)
Ar gas flow rate: 10 sccm
Oxygen gas flow rate: 5 sccm
Pressure: 0.4 Pa
Electric power (DC): 500 W
Substrate temperature: room temperature
The oxide semiconductor layers formed under Conditions 1 and 2 were evaluated by inductively coupled plasma mass spectrometry (ICP-MS). Table 1 shows typical examples of measurement. The oxide semiconductor layer obtained under Condition 1 has a composition that is represented by the following formula: InGa0.95Zn0.41O3.33. The oxide semiconductor layer obtained under Condition 2 has a composition that is represented by the following formula: InGa0.94Zn0.40O3.31.
As described above, the measurement by ICP-MS confirms that m in InMO3(ZnO)m is not an integer number. In addition, the proportions of components confirm that the concentration of Zn is lower than the concentrations of In and Ga.
(Structure of Oxide Semiconductor Layer)
A structure of an oxide semiconductor layer formed to a thickness of 400 nm over a glass substrate under Condition 2 described above was evaluated by X-ray diffraction.
Note that when a sample formed using a target whose composition ratio of In2O3 to Ga2O3 and ZnO was 1:1:2 was also evaluated by X-ray diffraction, the similar evaluation results were obtained, which confirms that the oxide semiconductor layer formed in this example has an amorphous structure.
(Characteristics of Thin Film Transistor)
This application is based on Japanese Patent Application serial no. 2008-274564 filed with Japan Patent Office on Oct. 24, 2008, the entire contents of which are hereby incorporated by reference.
Number | Date | Country | Kind |
---|---|---|---|
2008-274564 | Oct 2008 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
5623157 | Miyazaki et al. | Apr 1997 | A |
5731856 | Kim et al. | Mar 1998 | A |
5744864 | Cillessen et al. | Apr 1998 | A |
5847410 | Nakajima | Dec 1998 | A |
6294274 | Kawazoe et al. | Sep 2001 | B1 |
6563174 | Kawasaki et al. | May 2003 | B2 |
6586346 | Yamazaki et al. | Jul 2003 | B1 |
6727522 | Kawasaki et al. | Apr 2004 | B1 |
6960812 | Yamazaki et al. | Nov 2005 | B2 |
7049190 | Takeda et al. | May 2006 | B2 |
7061014 | Hosono et al. | Jun 2006 | B2 |
7064346 | Kawasaki et al. | Jun 2006 | B2 |
7105868 | Nause et al. | Sep 2006 | B2 |
7211825 | Shih et al | May 2007 | B2 |
7282782 | Hoffman et al. | Oct 2007 | B2 |
7297977 | Hoffman et al. | Nov 2007 | B2 |
7301211 | Yamazaki et al. | Nov 2007 | B2 |
7323356 | Hosono et al. | Jan 2008 | B2 |
7385224 | Ishii et al. | Jun 2008 | B2 |
7402506 | Levy et al. | Jul 2008 | B2 |
7411209 | Endo et al. | Aug 2008 | B2 |
7453065 | Saito et al. | Nov 2008 | B2 |
7453087 | Iwasaki | Nov 2008 | B2 |
7462862 | Hoffman et al. | Dec 2008 | B2 |
7468304 | Kaji et al. | Dec 2008 | B2 |
7501293 | Ito et al. | Mar 2009 | B2 |
7655566 | Fujii | Feb 2010 | B2 |
7674650 | Akimoto et al. | Mar 2010 | B2 |
7704859 | Sato | Apr 2010 | B2 |
7732819 | Akimoto et al. | Jun 2010 | B2 |
7893431 | Kim et al. | Feb 2011 | B2 |
8143678 | Kim et al. | Mar 2012 | B2 |
8188472 | Park et al. | May 2012 | B2 |
8232552 | Yano et al. | Jul 2012 | B2 |
8421070 | Kim et al. | Apr 2013 | B2 |
20010046027 | Tai et al. | Nov 2001 | A1 |
20020056838 | Ogawa | May 2002 | A1 |
20020132454 | Ohtsu et al. | Sep 2002 | A1 |
20030189401 | Kido et al. | Oct 2003 | A1 |
20030218222 | Wager et al. | Nov 2003 | A1 |
20040038446 | Takeda et al. | Feb 2004 | A1 |
20040127038 | Carcia et al. | Jul 2004 | A1 |
20050017302 | Hoffman | Jan 2005 | A1 |
20050039670 | Hosono et al. | Feb 2005 | A1 |
20050199959 | Chiang et al. | Sep 2005 | A1 |
20060035452 | Carcia et al. | Feb 2006 | A1 |
20060043377 | Hoffman et al. | Mar 2006 | A1 |
20060091793 | Baude et al. | May 2006 | A1 |
20060108529 | Saito et al. | May 2006 | A1 |
20060108636 | Sano et al. | May 2006 | A1 |
20060110867 | Yabuta et al. | May 2006 | A1 |
20060113536 | Kumomi et al. | Jun 2006 | A1 |
20060113539 | Sano et al. | Jun 2006 | A1 |
20060113549 | Den et al. | Jun 2006 | A1 |
20060113565 | Abe et al. | Jun 2006 | A1 |
20060169973 | Isa et al. | Aug 2006 | A1 |
20060170111 | Isa et al. | Aug 2006 | A1 |
20060197092 | Hoffman et al. | Sep 2006 | A1 |
20060208977 | Kimura | Sep 2006 | A1 |
20060228974 | Thelss et al. | Oct 2006 | A1 |
20060231882 | Kim et al. | Oct 2006 | A1 |
20060238135 | Kimura | Oct 2006 | A1 |
20060244107 | Sugihara et al. | Nov 2006 | A1 |
20060284171 | Levy et al. | Dec 2006 | A1 |
20060284172 | Ishii | Dec 2006 | A1 |
20060292777 | Dunbar | Dec 2006 | A1 |
20070024187 | Shin et al. | Feb 2007 | A1 |
20070046191 | Saito | Mar 2007 | A1 |
20070052025 | Yabuta | Mar 2007 | A1 |
20070054507 | Kaji et al. | Mar 2007 | A1 |
20070072439 | Akimoto et al. | Mar 2007 | A1 |
20070090365 | Hayashi et al. | Apr 2007 | A1 |
20070108446 | Akimoto | May 2007 | A1 |
20070152217 | Lai et al. | Jul 2007 | A1 |
20070172591 | Seo et al. | Jul 2007 | A1 |
20070187678 | Hirao et al. | Aug 2007 | A1 |
20070187760 | Furuta et al. | Aug 2007 | A1 |
20070194379 | Hosono et al. | Aug 2007 | A1 |
20070205976 | Takatori et al. | Sep 2007 | A1 |
20070252147 | Kim et al. | Nov 2007 | A1 |
20070252928 | Ito et al. | Nov 2007 | A1 |
20070272922 | Kim et al. | Nov 2007 | A1 |
20070278490 | Hirao et al. | Dec 2007 | A1 |
20070287296 | Chang | Dec 2007 | A1 |
20080006877 | Mardilovich et al. | Jan 2008 | A1 |
20080038882 | Takechi et al. | Feb 2008 | A1 |
20080038929 | Chang | Feb 2008 | A1 |
20080050595 | Nakagawara et al. | Feb 2008 | A1 |
20080073653 | Iwasaki | Mar 2008 | A1 |
20080083950 | Pan et al. | Apr 2008 | A1 |
20080106191 | Kawase | May 2008 | A1 |
20080128689 | Lee et al. | Jun 2008 | A1 |
20080129195 | Ishizaki et al. | Jun 2008 | A1 |
20080166834 | Kim et al. | Jul 2008 | A1 |
20080182358 | Cowdery-Corvan et al. | Jul 2008 | A1 |
20080203387 | Kang et al. | Aug 2008 | A1 |
20080224133 | Park et al. | Sep 2008 | A1 |
20080254569 | Hoffman et al. | Oct 2008 | A1 |
20080258139 | Ito et al. | Oct 2008 | A1 |
20080258140 | Lee et al. | Oct 2008 | A1 |
20080258141 | Park et al. | Oct 2008 | A1 |
20080258143 | Kim et al. | Oct 2008 | A1 |
20080296568 | Ryu et al. | Dec 2008 | A1 |
20080308796 | Akimoto et al. | Dec 2008 | A1 |
20080308797 | Akimoto et al. | Dec 2008 | A1 |
20080308804 | Akimoto et al. | Dec 2008 | A1 |
20080308805 | Akimoto et al. | Dec 2008 | A1 |
20080308806 | Akimoto et al. | Dec 2008 | A1 |
20090008639 | Akimoto et al. | Jan 2009 | A1 |
20090065771 | Iwasaki et al. | Mar 2009 | A1 |
20090068773 | Lai et al. | Mar 2009 | A1 |
20090073325 | Kuwabara et al. | Mar 2009 | A1 |
20090114910 | Chang | May 2009 | A1 |
20090134399 | Sakakura et al. | May 2009 | A1 |
20090152506 | Umeda et al. | Jun 2009 | A1 |
20090152541 | Maekawa et al. | Jun 2009 | A1 |
20090189153 | Iwasaki et al. | Jul 2009 | A1 |
20090278122 | Hosono et al. | Nov 2009 | A1 |
20090280600 | Hosono et al. | Nov 2009 | A1 |
20100025675 | Yamazaki et al. | Feb 2010 | A1 |
20100025678 | Yamazaki et al. | Feb 2010 | A1 |
20100072468 | Yamazaki et al. | Mar 2010 | A1 |
20100133525 | Arai et al. | Jun 2010 | A1 |
20110042669 | Kim et al. | Feb 2011 | A1 |
20110050733 | Yano et al. | Mar 2011 | A1 |
20110101342 | Kim et al. | May 2011 | A1 |
20110101343 | Kim et al. | May 2011 | A1 |
20120273779 | Yamazaki et al. | Nov 2012 | A1 |
20120273780 | Yamazaki et al. | Nov 2012 | A1 |
20120280230 | Akimoto et al. | Nov 2012 | A1 |
Number | Date | Country |
---|---|---|
101060139 | Oct 2007 | CN |
1737044 | Dec 2006 | EP |
2149910 | Feb 2010 | EP |
2149911 | Feb 2010 | EP |
2226847 | Sep 2010 | EP |
60-198861 | Oct 1985 | JP |
63-210022 | Aug 1988 | JP |
63-210023 | Aug 1988 | JP |
63-210024 | Aug 1988 | JP |
63-215519 | Sep 1988 | JP |
63-239117 | Oct 1988 | JP |
63-265818 | Nov 1988 | JP |
03-231472 | Oct 1991 | JP |
05-251705 | Sep 1993 | JP |
06-232129 | Aug 1994 | JP |
08-264794 | Oct 1996 | JP |
11-505377 | May 1999 | JP |
2000-044236 | Feb 2000 | JP |
2000-150900 | May 2000 | JP |
2002-076356 | Mar 2002 | JP |
2002-289859 | Oct 2002 | JP |
2003-086000 | Mar 2003 | JP |
2003-086808 | Mar 2003 | JP |
2004-103957 | Apr 2004 | JP |
2004-273614 | Sep 2004 | JP |
2004-273732 | Sep 2004 | JP |
3587537 | Nov 2004 | JP |
2007-059893 | Mar 2007 | JP |
2007-096055 | Apr 2007 | JP |
2007-123861 | May 2007 | JP |
2007-250983 | Sep 2007 | JP |
2007-281409 | Oct 2007 | JP |
2007-299913 | Nov 2007 | JP |
2007-316110 | Dec 2007 | JP |
2008-199005 | Aug 2008 | JP |
2008-216529 | Sep 2008 | JP |
2008-243928 | Oct 2008 | JP |
2009-533884 | Sep 2009 | JP |
WO-2004114391 | Dec 2004 | WO |
WO-2005088726 | Sep 2005 | WO |
WO-2007032294 | Mar 2007 | WO |
WO-2007119386 | Oct 2007 | WO |
WO-2007120010 | Oct 2007 | WO |
WO-2008096768 | Aug 2008 | WO |
Entry |
---|
Park et al., “Amorphous Indium-Gallium-Zinc Oxide TFTs and their Application for Large Size AMOLED,” AM-FPD '08 Digest of Technical Papers, Jul. 2, 2008, pp. 275-278. |
Dembo.H et al., “RFCPUS on Glass and Plastic Substrates Fabricated by TFT Transfer Technology,”, IEDM 05: Technical Digest of International Electron Devices Meeting, Dec. 5, 2005, pp. 1067-1069. |
Ikeda.T et al., “Full-Functional System Liquid Crystal Display Using CG-Silicon Technology,”, SID Digest '04 : SID International Symposium Digest of Technical Papers, 2004, vol. 35, pp. 860-863. |
Nomura.K et al., “Room-Temperature Fabrication of Transparent Flexible Thin-Film Transistors Using Amorphous Oxide Semiconductors,”, Nature, Nov. 25, 2004, vol. 432, pp. 488-492. |
Takahashi.M et al., “Theoretical Analysis of IGZO Transparent Amorphous Oxide Semiconductor,”, IDW '08 : Proceedings of the 15th International Display Workshops, Dec. 3, 2008, pp. 1637-1640. |
Prins.M et al., “A Ferroelectric Transparent Thin-Film Transistor,”, Appl. Phys. Lett. (Applied Physics Letters) , Jun. 17, 1996, vol. 68, No. 25, pp. 3650-3652. |
Nakamura.M et al., “The phase relations in the In2O3-Ga2ZnO4-ZnO system at 1350° C.,”, Journal of Solid State Chemistry, Aug. 1, 1991, vol. 93, No. 2, pp. 295-315. |
Kimizuka.N et al., “Syntheses and Single-Crystal Data of Homologous Compounds, In2O3(ZnO)m (m=3, 4, and 5), InGaO3(ZnO)3, and Ga2O3(ZnO)m (m=7, 8, 9, and 16) in the In2O3-ZnGa2O4-ZnO System,”, Journal of Solid State Chemistry, Apr. 1, 1995, vol. 116, No. 1, pp. 170-178. |
Nomura.K et al., “Thin-Film Transistor Fabricated in Single-Crystalline Transparent Oxide Semiconductor,”, Science, May 23, 2003, vol. 300, No. 5623, pp. 1269-1272. |
Osada.T et al., “15.2: Development of Driver-Integrated Panel using Amorphous In-Ga-Oxide TFT,”, SID Digest '09 : SID International Symposium Digest of Technical Papers, May 31, 2009, pp. 184-187. |
Li.C et al., “Modulated Structures of Homologous Compounds InMO3(ZnO)m (M=In,Ga; m=Integer) Described by Four-Dimensional Superspace Group,”, Journal of Solid State Chemistry, 1998, vol. 139, pp. 347-355. |
Lee.J et al., “World's Largest (15-Inch) XGA AMLCD Panel Using IGZO Oxide TFT,”, SID Digest '08 : SID International Symposium Digest of Technical Papers, May 20, 2008, vol. 39, pp. 625-628. |
Nowatari.H et al., “60.2: Intermediate Connector With Suppressed Voltage Loss for White Tandem OLEDs,”, SID Digest '09 : SID International Symposium Digest of Technical Papers, May 31, 2009, pp. 899-902. |
Kanno.H et al., “White Stacked Electrophosphorecent Organic Light-Emitting Device Employing MoO3 as a Change-Generation Layer,”, Adv. Mater. (Advanced Materials), 2006, vol. 18, No. 3, pp. 339-342. |
Tsuda.K et al., “Ultra Low Power Consumption Technologies for Mobile TFT-LCDs ,”, IDW '02 : Proceedings of the 9th International Display Workshops, Dec. 4, 2002, pp. 295-298. |
Jeong.J et al., “3.1: Distinguished Paper: 12.1-Inch WXGA AMOLED Display Driven by Indium-Gallium-Zinc Oxide TFTs Array,”, SID Digest '08 : SID International Symposium Digest of Technical Papers, May 20, 2008, vol. 39, No. 1, pp. 1-4. |
Kurokawa.Y et al., “UHF RFCPUS on Flexible and Glass Substrates for Secure RFID Systems,”, Journal of Solid-State Circuits , 2008, vol. 43, No. 1, pp. 292-299. |
Ohara.H et al., “Amorphous In-Ga-Zn-Oxide TFTs with Suppressed Variation for 4.0 inch QVGA AMOLED Display,”, AM-FPD '09 Digest of Technical Papers, Jul. 1, 2009, pp. 227-230, The Japan Society of Applied Physics. |
Coates.D et al., “Optical Studies of the Amorphous Liquid-Cholesteric Liquid Crystal Transition:The “Blue Phase”,”, Physics Letters, Sep. 10, 1973, vol. 45A, No. 2, pp. 115-116. |
Cho.D et al., “21.2:AL and SN-Doped Zinc Indium Oxide Thin Film Transistors for AMOLED Back-Plane,”, SID Digest '09 : SID International Symposium Digest of Technical Papers, May 31, 2009, pp. 280-283. |
Lee.M et al., “15.4:Excellent Performance of Indium-Oxide-Based Thin-Film Transistors by DC Sputtering,”, SID Digest '09 : SID International Symposium Digest of Technical Papers, May 31, 2009, pp. 191-193. |
Jin.D et al., “65.2:Distinguished Paper:World-Largest (6.5″) Flexible Full Color Top Emission AMOLED Display on Plastic Film and Its Bending Properties,”, SID Digest '09 : SID International Symposium Digest of Technical Papers, May 31, 2009, pp. 983-985. |
Sakata.J et al., “Development of 4.0-in. AMOLED Display With Driver Circuit Using Amorphous In-Ga-Zn-Oxide TFTs,”, IDW '09 : Proceedings of the 16th International Display Workshops, 2009, pp. 689-692. |
Park.J et al., “Amorphous Indium-Gallium-Zinc Oxide TFTs and Their Application for Large Size AMOLED,”, AM-FPD '08 Digest of Technical Papers, Jul. 2, 2008, pp. 275-277. |
Park.S et al., “Challenge to Future Displays: Transparent AM-OLED Driven by PEALD Grown ZnO TFT,”, IMID '07 Digest, 2007, p. 1249-1252. |
Godo.H et al., “Temperature Dependence of Characteristics and Electronic Structure for Amorphous In-Ga-Zn-Oxide TFT,”, AM-FPD '09 Digest of Technical Papers, Jul. 1, 2009, pp. 41-44. |
Osada.T et al., “Development of Driver-Integrated Panel Using Amorphous In-Ga-Zn-Oxide TFT,”, AM-FPD '09 Digest of Technical Papers, Jul. 1, 2009, pp. 33-36. |
Hirao.T et al., “Novel Top-Gate Zinc Oxide Thin-Film Transistors (ZNO TFTs) for AMLCDS,”, Journal of the SID , 2007, vol. 15, No. 1, pp. 17-22. |
Hosono.H, “68.3:Invited Paper:Transparent Amorphous Oxide Semiconductors for High Performance TFT,”, SID Digest '07 : SID International Symposium Digest of Technical Papers, 2007, vol. 38, pp. 1830-1833. |
Godo.H et al., “P-9:Numerical Analysis on Temperature Dependence of Characteristics of Amorphous In-Ga-Zn-Oxide TFT,”, SID Digest '09 : SID International Symposium Digest of Technical Papers, May 31, 2009, pp. 1110-1112. |
Ohara.H et al., “21.3:4.0 in. QVGA AMOLED Display Using In-Ga-Zn-Oxide TFTs With a Novel Passivation Layer,”, SID Digest '09 : SID International Symposium Digest of Technical Papers, May 31, 2009, pp. 284-287. |
Miyasaka.M, “58.2 Invited Paper : SUFTLA Flexible Microelectronics on Their Way to Business,”, SID Digest '07 : SID International Symposium Digest of Technical Papers, 2007, vol. 38, pp. 1673-1676. |
Chern.H et al., “An Analytical Model for the Above-Threshold Characteristics of Polysilicon Thin-Film Transistors,”, IEEE Transactions on Electron Devices, Jul. 1, 1995, vol. 42, No. 7, pp. 1240-1246. |
Kikuchi.H et al., “39.1:Invited Paper:Optically Isotropic Nano-Structured Liquid Crystal Composites for Display Applications,”, SID Digest '09 : SID International Symposium Digest of Technical Papers, May 31, 2009, pp. 578-581. |
Asaoka.Y et al., “29.1: Polarizer-Free Reflective LCD Combined With Ultra Low-Power Driving Technology,”, SID Digest '09 : SID International Symposium Digest of Technical Papers, 2009, pp. 395-398. |
Lee.H et al., “Current Status of, Challenges to, and Perspective View of AM-OLED ,”, IDW '06 : Proceedings of the 13th International Display Workshops, Dec. 7, 2006, pp. 663-666. |
Kikuchi.H et al., “62.2:Invited Paper:Fast Electro-Optical Switching in Polymer-Stabilized Liquid Crystalline Blue Phases for Display Application,”, SID Digest '07 : SID International Symposium Digest of Technical Papers, 2007, vol. 38, pp. 1737-1740. |
Kikuchi.H et al., “Polymer-Stabilized Liquid Crystal Blue Phases,”, Nature Materials, Sep. 2, 2002, vol. 1, pp. 64-68. |
Kimizuka.N et al., “Spinel,YbFe2O4, and Yb2Fe3O7 Types of Structures for Compounds in the In2O3 and Sc2O3-A2O3-BO Systems [A: Fe, Ga, or Al; B: Mg, Mn, Fe, Ni, Cu, or Zn] at Temperatures Over 1000° C.,”, Journal of Solid State Chemistry, 1985, vol. 60, pp. 382-384. |
Kitzerow.H et al., “Observation of Blue Phases in Chiral Networks,”, Liquid Crystals, 1993, vol. 14, No. 3, pp. 911-916. |
Costello.M et al., “Electron Microscopy of a Cholesteric Liquid Crystal and Its Blue Phase,”, Phys. Rev. A (Physical Review A), May 1, 1984, vol. 29, No. 5, pp. 2957-2959. |
Meiboom.S et al., “Theory of the Blue Phase of Cholesteric Liquid Crystals,”, Phys. Rev. Lett. (Physical Review Letters), May 4, 1981, vol. 46, No. 18, pp. 1216-1219. |
Fortunato.E et al., “Wide-Bandgap High-Mobility ZnO Thin-Film Transistors Produced at Room Temperature,”, Appl. Phys. Lett. (Applied Physics Letters) , Sep. 27, 2004, vol. 85, No. 13, pp. 2541-2543. |
Park.J et al., “Improvements in the Device Characteristics of Amorphous Indium Gallium Zinc Oxide Thin-Film Transistors by Ar Plasma Treatment,”, Appl. Phys. Lett. (Applied Physics Letters) , Jun. 26, 2007, vol. 90, No. 26, pp. 262106-1-262106-3. |
Hayashi.R et al., “42.1: Invited Paper: Improved Amorphous In-Ga-Zn-O TFTs,”, SID Digest '08 : SID International Symposium Digest of Technical Papers, May 20, 2008, vol. 39, pp. 621-624. |
Masuda.S et al., “Transparent thin film transistors using ZnO as an active channel layer and their electrical properties,”, J. Appl. Phys. (Journal of Applied Physics) , Feb. 1, 2003, vol. 93, No. 3, pp. 1624-1630. |
Asakuma.N et al., “Crystallization and Reduction of Sol-Gel-Derived Zinc Oxide Films by Irradiation With Ultraviolet Lamp,”, Journal of Sol-Gel Science and Technology, 2003, vol. 26, pp. 181-184. |
Nomura.K et al., “Carrier.transport in transparent oxide semiconductor with intrinsic structural randomness probed using single-crystalline InGaO3(ZnO)5 films,”, Appl. Phys. Lett. (Applied Physics Letters) , Sep. 13, 2004, vol. 85, No. 11, pp. 1993-1995. |
Son.K et al., “42.4L: Late-News Paper: 4 Inch QVGA AMOLED Driven by the Threshold Voltage Controlled Amorphous GIZO (Ga2O3-In2O3-ZnO) TFT,”, SID Digest '08 : SID International Symposium Digest of Technical Papers, May 20, 2008, vol. 39, pp. 633-636. |
Van De Walle.C, “Hydrogen as a Cause of Doping in Zinc Oxide,”, Phys. Rev. Lett. (Physical Review Letters), Jul. 31, 2000, vol. 85, No. 5, pp. 1012-1015. |
Fung.T et al., “2-D Numerical Simulation of High Performance Amorphous In-Ga-Zn-O TFTs for Flat Panel Displays,”, AM-FPD '08 Digest of Technical Papers, Jul. 2, 2008, pp. 251-252, The Japan Society of Applied Physics. |
Park.J et al., “High performance amorphous oxide thin film transistors with self-aligned top-gate structure,”, IEDM 09: Technical Digest of International Electron Devices Meeting, Dec. 7, 2009, pp. 191-194. |
Nakamura, “Synthesis of Homologous Compound with New Long-Period Structure,”, NIRIM Newsletter, Mar. 1, 1995, vol. 150, pp. 1-4. |
Park.Sang-Hee et al., “42.3: Transparent ZnO Thin Film Transistor for the Application of High Aperture Ratio Bottom Emission AM-OLED Display,”, SID Digest '08 : SID International Symposium Digest of Technical Papers, May 20, 2008, vol. 39, pp. 629-632. |
Orita.M et al., “Mechanism of Electrical Conductivity of Transparent InGaZnO4,”, Phys. Rev. B (Physical Review. B), Jan. 15, 2000, vol. 61, No. 3, pp. 1811-1816. |
Nomura.K et al., “Amorphous Oxide Semiconductors for High-Performance Flexible Thin-Film Transistors,”, Jpn. J. Appl. Phys. (Japanese Journal of Applied Physics) , 2006, vol. 45, No. 5B, pp. 4303-4308. |
Janotti.A et al., “Native Point Defects in ZnO,”, Phys. Rev. B (Physical Review. B), 2007, vol. 76, pp. 165202-1-165202-22. |
Park.J et al., “Electronic Transport Properties of Amorphous Indium-Gallium-Zinc Oxide Semiconductor Upon Exposure to Water,”, Appl. Phys. Lett. (Applied Physics Letters) , 2008, vol. 92, pp. 072104-1-072104-3. |
Hsieh.H et al., “P-29:Modeling of Amorphous Oxide Semiconductor Thin Film Transistors and Subgap Density of States,”, SID Digest '08 : SID International Symposium Digest of Technical Papers, 2008, vol. 39, pp. 1277-1280. |
Janotti.A et al., “Oxygen Vacancies in ZnO,”, Appl. Phys. Lett. (Applied Physics Letters) , 2005, vol. 87, pp. 122102-1-122102-3. |
Oba.F et al., “Defect energetics in ZnO: A hybrid Hartree-Fock density functional study,”, Phys. Rev. B (Physical Review. B), 2008, vol. 77, pp. 245202-1-245202-6. |
Orita.M et al., “Amorphous transparent conductive oxide InGaO3(ZnO)m (m<4):a Zn4s conductor,”, Philosophical Magazine, 2001, vol. 81, No. 5, pp. 501-515. |
Hosono.H et al., “Working hypothesis to explore novel wide band gap electrically conducting amorphous oxides and examples,”, J. Non-Cryst. Solids (Journal of Non-Crystalline Solids), 1996, vol. 198-200, pp. 165-169. |
Mo.Y et al., “Amorphous Oxide TFT Backplanes for Large Size AMOLED Displays,”, IDW '08 : Proceedings of the 6th International Display Workshops, Dec. 3, 2008, pp. 581-584. |
Kim.S et al., “High-Performance oxide thin film transistors passivated by various gas plasmas,”, 214th ECS Meeting, 2008, No. 2317. |
Clark.S et al., “First Principles Methods Using Castep,”, Zeitschrift fur Kristallographie, 2005, vol. 220, pp. 567-570. |
Lany.S et al., “Dopability, Intrinsic Conductivity, and Nonstoichiometry of Transparent Conducting Oxides,”, Phys. Rev. Lett. (Physical Review Letters), Jan. 26, 2007, vol. 98, pp. 045501-1-045501-4. |
Park.J et al., “Dry etching of ZnO films and plasma-induced damage to optical properties,”, J. Vac. Sci. Technol. B (Journal of Vacuum Science & Technology B), Mar. 1, 2003, vol. 21, No. 2, pp. 800-803. |
Oh.M et al., “Improving the Gate Stability of ZnO Thin-Film Transistors With Aluminum Oxide Dielectric Layers,”, J. Electrochem. Soc. (Journal of the Electrochemical Society), 2008, vol. 155, No. 12, pp. H1009-H1014. |
Ueno.K et al., “Field-Effect Transistor on SrTiO3 With Sputtered Al2O3 Gate Insulator,”, Appl. Phys. Lett. (Applied Physics Letters) , Sep. 1, 2003, vol. 83, No. 9, pp. 1755-1757. |
Chinese Office Action (Application No. 200910207022.4) Dated Dec. 31, 2012. |
Number | Date | Country | |
---|---|---|---|
20100102311 A1 | Apr 2010 | US |