The present invention relates to an ozone generator and an ozone producer which is provided therewith.
Generic ozonisers comprise a plurality of ozone generators, arranged in parallel to one another between two tube sheets in the manner of a tube-bundle heat exchanger. Internally, the tubes create discharge chambers in the form of hollow cathodes. Anode rods with dielectric are arranged in these discharge chambers, which during operation are impinged upon by a high voltage and which cause a corona discharge between the anode rod and the tube. An oxygenated gas or pure oxygen is passed through this interstice. The corona discharge generates ozone molecules in the oxygenated gas from oxygen molecules. The gas flow enriched with ozone in this way can, by way of example, be used for disinfection purposes.
Most of the electrical power that has to be supplied to an ozone generator results in waste heat. This waste heat is dissipated by cooling measures, such as for example liquid cooling of the outer electrode. Here, the cooling water heats up as it passes through the tube bundle and is cooled to a temperature of a few degrees Celsius in a circuit by a heat exchanger in a cooling unit.
A mechanism that impairs the efficiency of an ozoniser is the unavoidable temperature gradient that arises along the tubes between the cooling water entry and the cooling water exit.
The efficiency of ozonisers is highly dependent on the temperature in the discharge gap. The formation of ozone preferably takes place at low temperature. In addition, the ozone increasingly disintegrates as the temperature rises. This temperature-induced ozone depletion reduces the overall efficiency of the ozoniser. To raise the ozone yield, therefore, a targeted manipulation of the effective reaction temperature along the ozone generator is desired.
An ozone generator is known from JP-H-0881205 having a conical outer electrode, in contact with a dielectric, which in a first embodiment has a thickness that increases along the length of the ozone generator and in a second exemplary embodiment has a constant thickness. What these arrangements have in common is that the power recorded in the gas gap decreases continuously over the length of the ozone generator. In this way, the increase in temperature over the length of the ozone generator is reduced, as a result of which the effective reaction temperature can be kept almost constant. The disadvantage here is that the manufacture of the outer electrode and of the dielectric is relatively complicated and cost-intensive.
The object of the present invention is to provide an ozone generator in which the degree of efficiency is increased by reducing the electrical power supplied to the electrode surface unit in the flow direction of the gas, wherein the ozone generator is constructed in the most simple and cost-effective manner possible.
This object is achieved by an ozone generator with a high-voltage electrode (5) and at least one counter electrode (1), which define an interstice, in which at least one dielectric (2) is arranged and though which a gas flows in the flow direction, wherein the high-voltage electrode (5) and the at least one counter electrode (1) are provided with a connection for an electrical voltage supply (7) in order to produce corona discharges which are discharged from surface locations, and wherein the mean spacing between the high-voltage electrode (5) and the at least one counter-electrode (1) and the mean sparking distance are constant, characterised in that the number of surface locations from which the corona discharges are discharged decreases in the flow direction.
Accordingly, there is provided an ozone generator having a high-voltage electrode and at least one counter-electrode which delimit an intermediate space in which at least one dielectric is arranged and through which a gas flows in a flow direction, wherein the high-voltage electrode and the at least one counter-electrode are provided with a connection for an electrical power supply in order to produce corona discharges which are discharged from surface locations, and wherein the mean spacing between the high-voltage electrode and the at least one counter-electrode and the mean sparking distance are constant, wherein the number of surface locations from which the corona discharges are discharged decreases in the flow direction. As a result of this variation of the surface locations, the electrical power which is introduced and consequently the effective reaction temperature can be influenced. The number of surface locations decreases per unit of length. Since the mean spacing between the high-voltage electrode and the at least one counter-electrode and the mean sparking distance are constant, this ozone generator is simple and cost-effective to produce.
Preferably, the number of surface locations available for the electrical discharges continuously decreases.
In an embodiment, there is provision for the surface locations to be formed by means of a profiling of the high-voltage electrode. However, there may also be provision for the dielectric and/or the high-voltage electrode to be profiled. Furthermore, the same effect can be achieved if the counter-electrode is profiled at the inner side.
Preferably, the surface locations are formed by means of a wire braiding. In this instance, the wire braiding may inter alia form the high-voltage electrode itself or be part of the high-voltage electrode.
Preferably, the ozone generator has a single counter-electrode and the dielectric is arranged in abutment with the counter-electrode. The ozone generator is consequently constructed as a single column system. The sparking distance is in this instance defined as the spacing between the dielectric and the high-voltage electrode.
The ozone generator may be constructed as a tubular or plate-like ozone producer. In a plate-like ozone producer, the high-voltage electrode and the at least one counter-electrode are plates.
Furthermore, as a result of the described technical advantages, it is advantageous to use and produce for the disinfection of water or for the bleach of wood pulp, chemical pulp or pulp in paper production an ozone producer which has at least one ozone generator having one of the above features.
A preferred embodiment of the invention is explained in more detail below using the drawings, wherein:
In the structure shown, the inner electrode is formed solely by the mesh 5, while the rod 3 as the insulator performs a support function, ensuring at the same time the filling of the interior of the dielectric 2 with the wire mesh 5. The gap width or striking distance d is the distance between an electrode and the dielectric. The electrical voltage supply 7 supplies the ozone generator with a sinusoidal voltage. The shape of the electrode results in a superimposition of volume and surface charge.
In contrast to ozone generators which have a defined gap width, as a result of the profiling of the high-voltage electrode 5, there are produced specific surface locations from which the corona discharges are discharged.
The temperature in the gas gap is dependent inter alia on the wall temperature (coolant temperature) but also on the electrical power introduced. The electrical power introduced is in turn dependent on the ignited gap width and the number of discharges.
According to the invention, the surface locations available for discharging along the ozone generator varies so that the electrical power introduced decreases in the flow direction of the gas. In this case, the mean gap width remains substantially constant and the number of discharges per length unit decreases.
The variation of the surface locations may in this instance be carried out both continuously and discontinuously.
The number of discharges per unit of length is influenced along the ozone producer by a change of the distribution of the surface locations from which discharges are discharged. The spacing between the outer and the inner electrode and the sparking distance remains on average constant.
In a first embodiment, there is provision for the distribution of the surface locations to be produced by means of a change of the profiling of one of the electrodes. The profiling of the electrode produces a distribution of specific surface locations, from which discharges are discharged. The remaining surface of the electrode is not available for the production of discharges. As a result of variation of profiling or surface locations in the flow direction of the gas, the number of discharges per unit of length can be reduced. A variation possibility is, with an electrode 5 of wire braiding, to adapt the mesh width W, W′, see
The high-voltage electrode is an electrically conducting material, preferably stainless steel with a profiled surface. The high-voltage electrode may be a wire braiding or a knitted fabric, a woven fabric or also a wire winding or a granulate applied to a surface. Fibrous structures such as fleeces or felts are equally suitable as structures which are applied to the electrode by means of mechanical processing or coating. In this instance, the profiling is preferably distributed in a stochastic or periodic manner both in the longitudinal and in the peripheral direction of the electrode. In one embodiment, this high-voltage electrode extends as far as the dielectric, that is to say, there are locations at which the braiding, woven fabric or the like is in abutment with the dielectric.
However, it is also conceivable in place of the electrode to profile the dielectric, whereby the same effect can be achieved.
The ozone generator according to the invention is not limited to a tubular electrode arrangement. It can be used for both tubular and plate-like generic ozonisers. In this instance, provision is made for application in single-column and multi-column systems. The electrically conductive material of the electrode can be introduced into the discharge space with or without carrier material.
Due to the variation according to the invention of the surface locations from which discharges are discharged, it is possible to reduce the electrical power supplied to the electrode surface unit in the flow direction of the gas and thus influence the gas temperature in the discharge gap and increase the efficiency of the ozone generator. Due to the particularly simple geometry of the electrode arrangement the ozone generator can be manufactured simply and inexpensively.
Number | Date | Country | Kind |
---|---|---|---|
10 2015 002 102.8 | Feb 2015 | DE | national |
This patent application is a U.S. National Phase Patent Application of PCT Application No. PCT/EP2016/050761, filed Jan. 15, 2016, which claims priority to German Patent Application No. 102015002102.8, filed Feb. 23, 2015, each of which is incorporated by reference herein in its entirety.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/EP2016/050761 | 1/15/2016 | WO | 00 |