Packaging structure of a magnetic device

Information

  • Patent Grant
  • 9959965
  • Patent Number
    9,959,965
  • Date Filed
    Sunday, November 15, 2015
    9 years ago
  • Date Issued
    Tuesday, May 1, 2018
    6 years ago
Abstract
An inductor is disclosed, the inductor comprising: a T-shaped magnetic core, being made of a material comprising an annealed soft magnetic metal material and having a base and a pillar integrally formed with the base, wherein the volume of the base is V1 and the volume of the pillar is V2; a coil wound on the pillar; and a magnetic body encapsulating the pillar, the coil and a portion of the base, wherein the ratio of V1 to V2 (V1/V2) is configured in a pre-determined range so as to reduce the total core loss of the inductor with the equivalent permeability of the inductor being between 28.511 and 52.949.
Description
BACKGROUND OF THE INVENTION

1. Field of the Invention


The present invention relates to a magnetic device, and more particularly to a choke with high saturation current and low core loss.


2. Background of the Invention


A choke is one type of magnetic device used for stabilizing a circuit current to achieve a noise filtering effect, and a function thereof is similar to that of a capacitor, by which stabilization of the current is adjusted by storing and releasing electrical energy of the circuit. Compared to the capacitor that stores the electrical energy by an electrical field (electric charge), the choke stores the same by a magnetic field.



FIG. 1A illustrates a conventional choke with a toroidal core. However, a traditional choke with a toroidal core requires manual winding of the wire coil onto the toroidal core. Therefore, the manufacturing cost of a traditional choke is high due to the high labor cost.


In addition, chokes are generally applied in electronic devices. Recent trends to produce increasingly powerful, yet smaller chokes have led to numerous challenges to the electronics industry. In particular, when the size of a traditional choke with a toroidal core is reduced to a certain extent, it becomes more and more difficult to manually wind the wire coil onto the smaller toroidal core, and the choke can no longer produce a desired output at a high saturation current.



FIG. 1B illustrates a conventional sealed choke with a ferrite core. However, the sealed choke cannot produce a desired output at a high saturation current. In addition, it also becomes more and more difficult to wind the wire coil onto the ferrite core when the size of the sealed choke shrinks to a certain extent.



FIG. 1C illustrates a conventional molding choke with an iron-powder core. However, the iron-powder core has a relatively high core loss. In addition, since the wire coil is placed in the mold during the molding process and the wire coil cannot sustain high temperature, it is not possible to perform an annealing process to reduce the core loss of the molded core after the molding process.


In view of the above, how to reduce the manufacturing cost and minimize the size of the chokes while still keeping the features of high saturation current and low core loss at heave load becomes an important issue to be solved.


SUMMARY OF THE INVENTION

Accordingly, it is an object of the present invention to provide a low cost, compact choke with high saturation current at heavy load and low core loss at light load.


To achieve the above-mentioned object, in accordance with one aspect of the present invention, a magnetic device comprises: a T-shaped magnetic core including a base and a pillar, the base having a first surface and a second surface opposite to the first surface, the pillar being located on the first surface of the base, the second surface of the base being exposed to outer environment as an outer surface of the choke, the T-shaped magnetic core being made of an annealed soft magnetic metal material, a core loss PCL (mW/cm3) of the T-shaped magnetic core satisfying: 0.64×f0.95×Bm2.20≤PCL≤7.26×f1.41×Bm1.08, where f (kHz) represents a frequency of a magnetic field applied to the T-shaped magnetic core, and Bm (kGauss) represents the operating magnetic flux density of the magnetic field at the frequency; a wire coil surrounding the pillar, the wire coil having two leads; and a magnetic body fully covering the pillar, any part of the base that is located above the second surface of the base, and any part of the wire coil that is located directly above the first surface of the base.


Further scope of applicability of the present invention will become apparent from the detailed description given hereinafter. However, it should be understood that the detailed description and specific examples, while indicating preferred embodiments of the invention, are given by way of illustration only, since various changes and modifications within the spirit and scope of the invention will become apparent to those skilled in the art from this detailed description.





BRIEF DESCRIPTION OF THE DRAWINGS

The present invention will become more fully understood from the detailed description given hereinbelow and the accompanying drawings which are given by way of illustration only, and thus are not limitative of the present invention, and wherein:



FIGS. 1A-1C illustrate three types of conventional chokes;



FIGS. 2A-2G illustrate a prospective view of a T-shaped magnetic core, a wire coil, and a choke in accordance with various embodiments of the present invention;



FIG. 3A is a cross-sectional view of a choke in accordance with an embodiment of the present invention;



FIG. 3B is a prospective view of a T-shaped magnetic core in accordance with another embodiment of the present invention;



FIG. 3C is a cross-sectional view of a choke with the T-shaped magnetic core as show in FIG. 3B in accordance with an embodiment of the present invention;



FIG. 3D is a cross-sectional view of a choke in accordance with still another embodiment of the present invention;



FIG. 4A is a top view of a T-shaped magnetic core in accordance with an embodiment of the present invention;



FIG. 4B is a top view of a T-shaped magnetic core in accordance with another embodiment of the present invention;



FIGS. 5A and 5B are lateral views and top views of T-shaped magnetic cores in accordance with two embodiments of the present invention;



FIG. 6 illustrates curves showing the upper limit and the lower limit of the permeability of the T-shaped core and the permeability of the magnetic body and the relationship between the permeability of the T-shaped core and the permeability of the magnetic body in accordance with an embodiment of the present invention; and



FIG. 7 illustrates the efficiency comparison between a choke in accordance with an embodiment of the present invention and a conventional choke with a toroidal core.





DETAILED DESCRIPTION OF THE ILLUSTRATED EMBODIMENTS

The present invention will now be described in detail with reference to the accompanying drawings, wherein the same reference numerals will be used to identify the same or similar elements throughout the several views. It should be noted that the drawings should be viewed in the direction of orientation of the reference numerals.



FIGS. 2A-2C is a perspective view of a choke in accordance with an embodiment of the present invention. As embodied in FIGS. 2A-2C, the choke 1 as a magnetic device comprises a T-shaped magnetic core 2, a wire coil 3 and a magnetic body 4. The T-shaped magnetic core 2 includes a base 21 and a pillar 22. The base 21 has a first/top surface and a second/bottom surface opposite to the first/top surface. The pillar 22 is located on the first/top surface of the base 21. The second/bottom surface of the base 21 is exposed to the outer environment as an outer surface of the choke 1. The wire coil 3 forms a hollow part for accommodating the pillar 22 such that the wire coil 3 surrounds the pillar 22. In one embodiment of the present invention, as shown in FIG. 2C, the wire has two leads 31, 32 as welding pins without the need of using electrodes on the base 21. In another embodiment of the present invention, as shown in FIG. 3D, the wire has two leads 31, 32 respectively connected to two electrodes 5 and 6 on the base 21. The magnetic body 4 fully covers the pillar 22, any part of the base 21 that is located above the second/bottom surface of the base 21, and any part of the wire coil 3 that is located above the first/top surface of the base 21.


In an embodiment of the present invention, the T-shaped magnetic core 2 is made of an annealed soft magnetic metal material. In particular, a soft magnetic metal material selected from the group consisting of Fe—Si alloy powder, Fe—Si—Al alloy powder, Fe—Ni alloy powder, Fe—Ni—Mo alloy powder, and a combination of two or more thereof is first pressed to form the T-shaped structure (i.e., base+pillar) of the T-shaped magnetic core 2. After the T-shaped structure is formed, an annealing process is performed on the T-shaped structure to obtain the annealed T-shaped magnetic core 2 with low core loss.


A relationship can be used describe the core losses of the magnetic material. This relationship takes the following form:

PL=C×fa×Bmb,


In this relationship, PL is the core loss per unit volume (mW/cm3), f (kHz) represents a frequency of a magnetic field applied to the magnetic material, and Bm (kGauss, and is usually less than one (1)) represents the operating magnetic flux density of the magnetic field at the frequency. In addition, the coefficients C, a and b are based on factors such as the permeability of the magnetic materials.


TABLES 1-4 illustrate the coefficients C, a and b when different soft magnetic metal materials with different permeabilities are used to form the annealed T-shaped magnetic core 2.









TABLE 1







Fe—Ni—Mo alloy powder (MPP)












Permeability μCC
C
a
b















14
2.33
1.31
2.19



26
1.39
1.28
1.29



60
0.64
1.41
2.20



125
1.02
1.40
2.03



147
1.08
1.40
2.04



160
1.08
1.40
2.04



173, 200
1.08
1.40
2.04
















TABLE 2







Fe—Ni alloy powder (High Flux)












Permeability μCC
C
a
b















14
7.26
0.95
1.91



26
3.19
1.22
1.08



60
3.65
1.15
2.16



125
1.62
1.32
2.20



147
1.74
1.32
2.10



160
1.74
1.32
2.10
















TABLE 3







Fe—Si—Al alloy powder (Sendust)












Permeability μCC
C
a
b






14
3.18
1.21
2.09



26
2.27
1.26
2.08



60, 75, 90, 125
2.00
1.31
2.16
















TABLE 4







Fe—Si alloy powder (Power Flux)












Permeability μCC
C
a
b






60, 90
4.79
1.25
2.05









In view of the above, in accordance with some embodiments of the present invention, the core loss PCL (mW/cm3) of the annealed T-shaped magnetic core 2 satisfies:

0.64×f0.95×Bm2.20≤PCL<7.26×f1.41×Bm1.08.


In some embodiments of the present invention, the permeability μC of the annealed T-shaped magnetic core 2 has the average permeability μCC with ±20% deviation, and the average permeability μCC is equal or larger than 60. For example, the annealed T-shaped magnetic core 2 is an annealed T-shaped structure made from soft magnetic metal material such as Fe—Si alloy powder with the average permeability μCC of the annealed T-shaped magnetic core 2 between 60 and 90 (i.e., permeability μC is between 48 (i.e., 80% of 60) and 108 (120% of 90)), Fe—Si—Al alloy powder with the average permeability μCC of the annealed T-shaped magnetic core 2 between 60 and 125 (i.e., permeability μC is between 48 (i.e., 80% of 60) and 150 (120% of 125)), Fe—Ni alloy powder with the average permeability μCC of the annealed T-shaped magnetic core 2 between 60 and 160 (i.e., permeability μC is between 48 (i.e., 80% of 60) and 192 (120% of 160)), or Fe—Ni—Mo alloy powder with the average permeability μCC of the annealed T-shaped magnetic core 2 between 60 and 200 (i.e., permeability μC is between 48 (i.e., 80% of 60) and 240 (120% of 200)), and the core loss PCL (mW/cm3) of the annealed T-shaped magnetic core 2 satisfies:

0.64×f1.15×Bm2.20≤PCL≤4.79×f1.41×Bm1.08.


In some embodiments of the present invention, the annealed T-shaped magnetic core 2 is an annealed T-shaped structure made from soft magnetic metal material such as Fe—Si—Al alloy powder with the average permeability μCC of the annealed T-shaped magnetic core 2 between 60 and 125 (i.e., permeability μC is between 48 (i.e., 80% of 60) and 150 (120% of 125)), Fe—Ni alloy powder with the average permeability μCC of the annealed T-shaped magnetic core 2 between 60 and 160 (i.e., permeability μC is between 48 (i.e., 80% of 60) and 192 (120% of 160)), or Fe—Ni—Mo alloy powder with the average permeability μCC of the annealed T-shaped magnetic core 2 between 60 and 200 (i.e., 80% of 60) and 240 (120% of 200)), and the core loss PCL (mW/cm3) of the annealed T-shaped magnetic core 2 satisfies:

0.64×f1.31×Bm2.20≤PCL≤2.0×f1.41×Bm1.08


In addition, the value of μCC× Hsat is a major bottleneck for the current tolerance of a choke, where Hsat (Oe) is a strength of the magnetic field at 80% of μC0, and μC0 is the permeability of the T-shaped magnetic core 2 when the strength of the magnetic field is 0. TABLE 5 illustrates the value of μCC×Hsat when different annealed soft magnetic metal materials with different permeabilities are used to form the annealed T-shaped magnetic core 2.











TABLE 5







Core

Fe—Si alloy powder


Material
Fe—Si—Al alloy powder (Sendust)
(Power Flux)
















μCC
60
75
90
125
60
90


Hsat (Oe)
42
32
29
18
70
48


μCC × Hsat
2520
2400
2610
2250
4200
4320











Core



Material
Fe—Ni—Mo alloy powder (MPP)
















μCC
60
125
147
160
173
200


Hsat (Oe)
60
30
28
23
21
16


μCC × Hsat
3600
3750
4116
3680
3633
3200











Core



Material
Fe—Ni alloy powder (High Flux)
















μCC
60
125
147
160




Hsat (Oe)
105
42
39
32




μCC × Hsat
6300
5250
5733
5120









In view of the above, in accordance with the embodiments of the present invention, the following requirement is also satisfied:

μCC×Hsat≥2250


In an embodiment of the present invention, the two electrodes 5, 6 are located at the bottom of the base 21, as show in FIG. 3A. In another embodiment of the present invention, the two electrodes 5, 6 are embedded in the base 21, as shown in FIGS. 3B, 3C and 3D. As shown in FIG. 3B, the bottom surface of each of the two electrodes 5, 6 is substantially coplanar with the second/bottom surface of the base 21, and a lateral surface of each of the two electrodes 5, 6 is substantially coplanar with a corresponding one of two opposite lateral surfaces of the base 21. The embedded electrodes provide the features that more magnetic materials can occupy the annealed T-shaped magnetic core 2 when the dimension of the annealed T-shaped magnetic core 2 is fixed, which enhance the effective permeability of the annealed T-shaped magnetic core 2.


In another embodiment of the present invention, as shown in FIGS. 2A and 3D, the base 21 has two recesses 211, 212 respectively located on two lateral sides of the base 21, and the two recesses 211, 212 respectively receive the two leads 31, 32 of the wire coil 3. In the embodiment as shown in FIGS. 2A-2C, the two leads 31, 32 pass through the base 21 via the two recesses 211, 212 without electrodes on the base 21. In the embodiment as shown in FIG. 3D, the two leads 31, 32 are respectively in contact with the two electrodes 5, 6 via the two recesses 211, 212. In another embodiment of the present invention, as shown in FIG. 2D, the base 21 does not have the recesses for receiving the two leads 31, 32; instead, the two leads 31, 32 extend through the magnetic body 4 at the lateral side of the choke 1 without passing through the base 21. In still other embodiments of the present invention, as shown in FIGS. 2E and 2F, the base 21 has two recesses on the same lateral side for receiving the two leads 31, 32. In still another embodiment of the present invention, as shown in FIG. 2G, the base 21 does not have the recesses for receiving the two leads 31, 32; instead, the two leads 31, 32 are fully located above the base 21, and are in contact with the two electrodes 5, 6 on the top surface of the base 21. The two electrodes 5, 6 in the embodiment shown in FIG. 2G extend from the bottom surface of the base 21 to the top surface of the base 21. In the embodiments shown in FIGS. 2A-2G, the magnetic body 4 fully covers the pillar 22, and any part of the base 21 that is located above the second/bottom surface of the base 21.


In an embodiment of the present invention, the base 21 is a rectangular (including a square) base with four right-angled corners or four curved corners (see FIGS. 5A and 5B), and a shortest distance (a, b, c, d as shown in FIGS. 4A and 4B) from each of the four ends of the rectangular base 21 to the pillar 22 is substantially the same (i.e., a=b=c=d). As a result, the magnetic circuit of the T-shaped magnetic core 2 is uniform and the core loss of the T-shaped magnetic core 2 can be minimized. It should be noted that FIGS. 4A and 4B simply illustrate the embodiments of the rectangular base 21 with four right-angled corners; however, the same features (i.e., a shortest distance (a, b, c, d) from each of the four ends of the rectangular base 21 to the pillar 22 is substantially the same (i.e., a=b=c=d)) also applied to the embodiments of the rectangular base 21 with four curved corners as shown in FIG. 5B.


In an embodiment of the present invention, the magnetic body 4 is made by mixing a thermal setting material (such as resin) and a material selected from the group consisting of iron-based amorphous powder, Fe—Si—Al alloy powder, permally powder, ferro-Si alloy powder, nanocrystalline alloy powder, and a combination of two or more thereof, and the mixture is then hot-pressed into a thermal setting mold where the T-shaped magnetic core 2 with the wire coil 3 thereon is located. Therefore, the hot-pressed mixture (i.e., the magnetic body 4) fully covers the pillar 22, any part of the base 21 that is located above the second/bottom surface of the base 21, and any part of the wire coil 3 that is located above the first/top surface of the base 21 as shown in FIGS. 2C and 2E-2G. In the embodiment as shown in FIG. 2D, the hot-pressed mixture (i.e., the magnetic body 4) fully covers the pillar 22, any part of the base 21 that is located above the second/bottom surface of the base 21, and any part of the wire coil 3 that is located directly above the first/top surface of the base 21, but does not cover a part of the wire coil 3 that is not located directly above the first/top surface of the base 21 (e.g., the two leads that are not located directly above the first/top surface of the base 21).


In an embodiment of the present invention, the permeability μB of the magnetic body has ±20% deviation from an average permeability PBC of the magnetic body 4, the average permeability μBC is equal to or larger than 6, and the core loss PBL (mW/cm3) of the magnetic body 4 satisfies:

2×f1.29×Bm2.2≤PBL≤14.03×f1.29×Bm1.08


In another embodiment of the present invention, the permeability μB of the magnetic body 4 satisfies: 9.85<μB≤64.74, and the core loss PBL (mW/cm3) of the magnetic body further satisfies:

2×f1.29×Bm2.2≤PBL≤11.23×f1.29×Bm1.08


In another embodiment of the present invention, the permeability μB of the magnetic body 4 satisfies: 20≤μB×40, and the core loss PBL (mW/cm3) of the magnetic body further satisfies:

2×f1.29×Bm2.2≤PBL≤3.74×f1.29×Bm1.08


In addition, in an embodiment of the present invention, the following requirement is also satisfied:

μBC×Hsat≥2250,


where Hsat (Oe) is a strength of the magnetic field at 80% of μB0, where μB is the permeability of the magnetic body 4 when the strength of the magnetic field is 0.


In addition, the dimension of the T-shaped magnetic core 2 will also affect the core loss of the choke. TABLE 6 shows the total core loss of the chokes with different dimensions of the T-shaped magnetic cores, where C is the diameter of the pillar 22, D is the height of the pillar 22, E is the thickness of the base 21, and the T-shaped magnetic cores in TABLE 6 have the same height B (6 mm) and same width A (14.1 mm), as shown in FIG. 5A. In addition, V1 is the volume of the base 21, V2 is the volume of the pillar 22, Vc is the volume of the T-shaped magnetic core 2 (i.e., V1+V2), and V is the volume of the thermal setting mold/choke 1. As shown in FIGS. 5A and 5B, the base of the T-shaped magnetic core 2 is a rectangular base with four right-angled corners or four curved corners.


In the examples of TABLE 6, the T-shaped magnetic core 2 is made of an annealed Fe—Si—Al alloy powder with permeability of about 60 (Sendust 60), and the magnetic body 4 is made of a hot-pressed mixture of resin and iron-based amorphous powder and has permeability of about 27.5. In addition, the size of the thermal setting mold (and therefore the size of the choke 1) V is 14.5×14.5×7.0=1471.75 mm3.











TABLE 6








Size
Core Material: Sendust 60



14.5 × 14.5 × 7.0
Hot-Pressed Mixture: μ = 27.5












Core

Core Loss




















C
D
E


ΔBm
PCV
Volume
CoreLoss
Total Core



NO.
(mm)
(mm)
(mm)
V1/V2
Part
(mT)
(kW/m3)
(mm3)
(mW)
Loss (mW)
Vc/V





















1
5.5
5.2
0.8
1.288
T-shaped
59.99
689.01
282.6
194.71
362.97
19.2%







Magnetic Core













Magnetic Body
14.79
209.31
803.9
168.26




2
5.0
4.0
2.0
5.065
T-shaped
76.72
1169.26
476.2
556.80
760.52
32.26%







Magnetic Core













Magnetic Body
17.14
291.69
698.4
203.72




3
5.0
4.8
1.2
2.533
T-shaped
78.9
1241.86
332.8
413.29
695.02
22.62%







Magnetic Core













Magnetic Body
18.22
334.65
841.8
281.73




4
6.5
4.8
1.2
1.4986
T-shaped
50.79
481.70
397.9
191.67
428.10
27.04%







Magnetic Core













Magnetic Body
17.51
306.03
772.6
236.43




5
7.5
4.8
1.2
1.1256
T-shaped
38.3
262.56
450.6
118.31
388.46
30.62%







Magnetic Core













Magnetic Body
18.98
366.9
736.3
270.15




6
6
4.8
1.2
1.7587
T-shaped
54.95
570.54
373.11
212.87
408.55
25.35%







Magnetic Core













Magnetic Body
15.67
238.64
819.96
195.67




7
5.5
4.8
1.2
2.093
T-shaped
65.96
845.01
351.59
297.10
483.24
23.89%







Magnetic Core













Magnetic Body
15.35
227.85
816.99
186.15




8
5.7
4.8
1.2
1.9487
T-shaped
60.42
699.78
359.97
251.90
442.22
24.46%







Magnetic Core













Magnetic Body
15.64
237.59
801.03
193.20









As shown in TABLE 6, when the ratio of the volume V1 of the base 21 to the volume V2 of the pillar 22 (V1/V2) is equal to or smaller than 2.533, the total core loss of the choke 1 is 695.02 mW or less (i.e., V1/V2<2.533→total core loss≤695.02 mW). More preferably, when the ratio of the volume V1 of the base 21 to the volume V2 of the pillar 22 (V1/V2) is equal to or smaller than 2.093, the total core loss of the choke 1 is 483.24 mW or less (i.e., V1/V2≤2.093→total core loss≤483.24 mW). As can be seen in TABLE 6, when the size of the choke is set, the smaller the ratio V1/V2, the smaller the total core loss of the choke.


In addition, as shown in Example No. 5 in TABLE 6, the equivalent permeability of the choke is 40.73 with ±30% deviation. In other words, the equivalent permeability of the choke is between 28.511 and 52.949. In particular, the equivalent permeability of the choke may be measured by (but not limited to) a vibrating samples magnetometer (VSM) or determined by (but not limited to) measuring the dimension of the choke, the length and diameter of the wire coil, the wiring manner of the wire coil, and the inductance of the choke, applying the above-noted measurement to simulation software such as ANSYS Maxwell, Magnetics Designer, MAGNET, etc.



FIG. 6 illustrates a relationship between the permeability μC of the annealed T-shaped magnetic core 2 and the permeability μB of the magnetic body 4 based on Example No. 5 in TABLE 6. This relationship is obtained based on the target inductance of the choke 1 of Example No. 5 in TABLE 6 with ±30% deviation and different center permeabilities μCC of the annealed T-shaped magnetic core 2 with±20% deviation (see TABLES 7-11).









TABLE 7







100% of Target Inductance & 100% of Permeability


μC (i.e., μC = μCC)










μC
μB













60
27.5



75
23.98



90
21.66



125
18.93



150
17.94



200
16.80
















TABLE 8







70% of Target Inductance (−30% deviation) & 80%


of Permeability μC (−20% deviation)










μC
μB













48
16.52



60
14.50



72
13.32



100
11.79



120
11.21



160
10.49
















TABLE 9







130% of Target Inductance (+30% deviation) & 80%


of Permeability μC (−20% deviation)










μC
μB













48
64.74



60
47.98



72
39.50



100
31.69



120
28.86



160
25.81
















TABLE 10







70% of Target Inductance (−30% deviation) & 120%


of Permeability μC (+20% deviation)










μC
μB













72
13.32



90
12.21



108
11.52



150
10.61



180
10.26



240
9.85
















TABLE 11







130% of Target Inductance (+30% deviation) & 120%


of Permeability μC (+20% deviation)










μC
μB













72
39.50



90
33.76



108
30.05



150
26.33



180
25.02



240
23.31









Therefore, as long as the permeability μC of the annealed T-shaped magnetic core 2 and the permeability μB of the magnetic body 4 are located at any point within the range as shown in FIG. 6, the choke having the target inductance with ±30% deviation can be achieved. For example, when the permeability μC of the annealed T-shaped magnetic core 2 is 48, the permeability μB of the magnetic body 4 can be between 16.52 and 64.74; when the permeability μC of the annealed T-shaped magnetic core 2 is 60, the permeability μB of the magnetic body 4 can be between 14.50 and 47.98; when the permeability μC of the annealed T-shaped magnetic core 2 is 240, the permeability μB of the magnetic body 4 can be between 9.85 and 23.31 (see TABLE 12 below). As can be seen in FIG. 6 and TABLE 12, the higher the permeability μC is, the smaller the range of the permeability μB is, and the lower the upper limit and the lower limit of the permeability μB are.











TABLE 12






μC
μB


















48
16.52-64.74



60
14.50-47.98



72
13.32-39.50



90
12.21-33.76



100
11.79-31.69



108
11.52-30.05



120
11.21-28.86



150
10.61-26.33



160
10.49-25.81



180
10.26-25.02



240
 9.85-23.31










FIG. 7 illustrates the efficiency comparison between the choke 1 in Example No. 5 of TABLE 6 and a conventional choke with a toroidal core. In particular, the choke 1 in Example No. 5 of TABLE 6 has the annealed T-shaped magnetic core 2 made of annealed Fe—Si—Al alloy powder (Sendust) with permeability of 60 and the magnetic body 4 made of iron-based amorphous powder with permeability of 27.5, and the dimension of the choke is 14.5×14.5×7 mm3. On the other hand, the conventional choke with a toroidal core made of Fe—Si—Al alloy powder (Sendust) with permeability of 60 and the dimension of the conventional choke is 17×17×12 mm3 (max). TABLE 13 also shows the performance of the choke 1 in Example No. 5 of TABLE 6 and the conventional choke with the toroidal core.















TABLE 13









Current
Power
Power






(A)@
Loss
Loss




L0
DCR
Lsat =
(mw) @
(mw) @



Dimension
(μH)
(mΩ)
4.1 μH
2 A
10.5 A







Conventional
17 ×
6.91
6.35
11.8
485.3 
1360.5


Choke with
17 × 12







Toroidal
mm3 (max)







Core








Choke with
14.5 ×
6.43
5.9 
21.8
412.06
1221.8


Annealed
14.5 × 7







T-shaped
mm3







Magnetic








Core








(Example








No. 5 in








TABLE 6)















As can been seen in FIG. 7 and TABLE 13, the efficiency (higher saturation current and lower power loss at heavy load) of the choke 1 with an annealed T-shaped magnetic core 2 is significantly higher than the conventional choke with a toroidal core. Therefore, the choke with an annealed T-shaped magnetic core provides a superior solution for high saturation current at heavy load and low core loss at light load.


The invention being thus described, it will be obvious that the same may be varied in many ways. Such variations are not to be regarded as a departure from the spirit and scope of the invention, and all such modifications as would be obvious to one skilled in the art are intended to be included within the scope of the following claims.

Claims
  • 1. An inductor comprising: a T-shaped magnetic core, being made of a material comprising an annealed soft magnetic metal material and having a base and a pillar integrally formed with the base, the base having a top side and a bottom side opposite to the top side, the pillar being located on the top side of the base, wherein a volume of the base is V1 and a volume of the pillar is V2;a coil wound on the pillar; anda unitary magnetic body encapsulating the pillar, the coil and a portion of the base with a bottom surface of the base being not covered by the unitary magnetic body, wherein a contiguous portion of the unitary magnetic body encapsulates a top surface of the pillar and extends into a gap between a side surface of the pillar and an inner surface of the coil, wherein a ratio of V1 to V2 (V1/V2) is configured in a pre-determined range so as to reduce the total core loss of the inductor with an equivalent permeability of the inductor being between 28.511 and 52.949, wherein V1/V2≤2.533, and the total core loss of the inductor is not greater than 695.02 mW.
  • 2. The inductor of claim 1, wherein the inductor is a choke.
  • 3. The inductor of claim 1, wherein V1/V2≤2.093, and the total core loss of the inductor is not greater than 483.24 mW.
  • 4. The inductor of claim 1, wherein the annealed soft magnetic metal material comprising Fe—Si alloy powder that has been pressed into a T-shaped structure and annealed to have the permeability between 48 and 108.
  • 5. The inductor of claim 1, wherein the annealed soft magnetic metal material comprising Fe—Si—Al alloy powder that has been pressed into the T-shaped structure and annealed to have the permeability between 48 and 150.
  • 6. The inductor of claim 1, wherein the annealed soft magnetic metal material comprising Fe—Ni alloy powder that has been pressed into the T-shaped structure and annealed to have the permeability between 48 and 192.
  • 7. The inductor of claim 1, wherein the annealed soft magnetic metal material comprising Fe—Ni—Mo alloy powder that has been pressed into the T-shaped structure and annealed to have the permeability between 48 and 240.
  • 8. The inductor of claim 1, wherein two electrodes are embedded in the base, said two electrodes being electrically connected to two leads of the coil.
  • 9. The inductor of claim 8, wherein a bottom surface of each of the two electrodes is substantially coplanar with the bottom surface of the base, and a lateral surface of each of the two electrodes is substantially coplanar with a corresponding one of two opposite lateral surfaces of the base.
  • 10. The inductor of claim 8, wherein the base has two recesses respectively located on two lateral sides of the base, the two recesses respectively receiving said two leads of the coil so that the two leads are respectively in contact with the two electrodes via the two recesses.
  • 11. The inductor of claim 1, wherein the coil is a pre-wound hollow coil having two integral leads, wherein said two integral leads of the pre-wound hollow coil extend outside of the body of the inductor for connecting with an external circuit.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a continuation of U.S. patent application Ser. No. 14/251,105 filed on Apr. 11, 2014, which is a continuation of U.S. patent application Ser. No. 13/738,674 filed on Jan. 10, 2013, and the entirety of the above-mentioned U.S. application is incorporated by reference herein and made a part of specification.

US Referenced Citations (5)
Number Name Date Kind
8723629 Liu May 2014 B1
20100007451 Yan Jan 2010 A1
20100182115 Huang Jul 2010 A1
20110121935 Chu May 2011 A1
20120188040 Ogawa Jul 2012 A1
Related Publications (1)
Number Date Country
20160141087 A1 May 2016 US
Continuations (2)
Number Date Country
Parent 14251105 Apr 2014 US
Child 14941647 US
Parent 13738674 Jan 2013 US
Child 14251105 US