The present invention relates generally to serially interconnected devices and in particular to an apparatus and a method for generating a device identifier (ID) for serially interconnected devices, for example memory devices, and to an apparatus utilizing such a method.
Memory systems on system boards are designed to incorporate higher density and faster operation due to the demands of applications that operate on the system boards. Two design techniques that may be employed to incorporate higher density of a memory system on a system board include using serial interconnection configurations such as daisy chain cascading and parallel interconnection configurations such as multi-dropping. These design techniques may be used to overcome density issues that relate to the cost and operating efficiency of memory swapping between a hard disk and a memory system. Multi-dropping has a shortcoming relative to the daisy chain cascading of memory systems. In particular, if the number of devices in a multi-drop memory system increases, delay time increases as a result of a loading effect of each pin. Moreover, the total performance of multi-drop configurations is degraded by wire resistor-capacitor (RC) loading and the pin capacitance of the memory device.
The use of serialized port connections on system boards has become commonplace in electronic products to reduce interference noise and to reduce board implementation size. The device identifier (ID) assignment of a memory device connected in a serial configuration has been performed with additional pin-by-pin connections to Vdd and Vss so that an ID number can be easily assigned to each device on a cascaded chain. However, this approach requires more pins to make a hard-wired ID number on the system board.
U.S. Pat. No. 5,404,460 granted to Thomsen et al. on Apr. 4, 1995 discloses the configuration of multiple identical serial I/O devices connected in a daisy chain fashion on a serial bus and the generation of device numbers. In the configuration, at power-up or reset, the end I/O device configures itself as Device 0 and provides data to the next device to configure as that device as Device 1. Device 1 provides data to configure the next device as Device 2 and so on. As such, all devices in the chain are assigned a device number. Therefore, all devices are configured to unique addresses without additional external pins or intervention by a system controller. The data is transmitted in a six bit packet. The first three bits consist of the start bit and two packet bits which represent command. The following bits are used as ID bits followed by a stop bit. There is an optional bit. Due to the sequential serial stream on a daisy chain, during one cycle, packet command input processing and the generation of a new command for the next device needs to take place within one clock cycle.
A serial link in a device, such as a memory device, may utilize a single pin input that receives all address, command, and data serially. According to embodiments of the present invention, there is provided an apparatus for making a serial daisy chain cascading configuration and for controlling command bits, address bits, and data bits effectively through the cascading configuration. By providing a serial daisy chain cascading configuration, the embodiment advantageously obviates having to employ many pins to carry data. Moreover, the technique enhances bandwidth due to less interference among data lines which typically occurs in systems employing a parallel data connection of a memory device at a system board level. In addition, less noise enables high frequency (fast) operation at the system board level to be achieved.
In some embodiments, the IDs are generated in a packet basis by interpreting serial packet-basis commands received at the serial input in response to clocks. A clock latency is controlled in response to the interpreted ID and the clock. In accordance with the controlled clock latency, a new ID is provided in a packet basis. In a high frequency generation (e.g., 1 GHz), two adjacent devices connected in a daisy chain fashion provide enough time margin to perform the interpretation of packet commands.
According to one broad aspect, the invention provides an apparatus comprising: a plurality of devices in a serial interconnection configuration, each device having a serial input connection (SI) for receiving serial input data and a serial output connection (SO) for providing serial output data, at least one of the devices having a packet based processing circuit for receiving a first packet containing a first ID (device identifier), generating a second ID as a function of the first ID and generating a second packet containing the second ID for transmission to another device in response to clocks such that there is a time gap between receiving the first packet and the transmission of the second packet.
In some embodiments, in respect of each device having a packet based processing circuit, the first ID is established as the ID of that device, and the second ID is to be established as the ID of the other device.
In some embodiments, in respect of each device having a packet based processing circuit, the second ID is established as the ID of the that device.
In some embodiments, each device comprises: an input/output data processing circuit for processing serial input data provided through the serial input connection, and generating serial output data to be sent through the serial output connection, the second packet being provided to the other device through the serial output connection for the at least one of the devices.
In some embodiments, the input/output data processing circuit comprises: an interpreter circuit for interpreting serial packet-based commands received at the serial input connection and for providing an interpreted ID as said first ID in response to the clock.
In some embodiments, the input/output data processing circuit further comprises: an ID generation circuit for performing a calculation based on the first ID to produce the second ID.
In some embodiments, the ID generation circuit comprises: a calculation circuit for adding a predetermined increment value to the first ID to provide the second ID.
In some embodiments, the ID generation circuit comprises: a calculation circuit for subtracting a predetermined decrement value to the first ID to provide the second ID.
In some embodiments, the interpreter circuit comprises: a serial packet interpreter for interpreting the serial packet-basis commands to provide interpreted packet commands and for further interpreting the interpreted packet commands to provide the interpreted ID
In some embodiments, the input/output data processing circuit further comprises: a controller for controlling a clock latency in response to the interpreted ID and the clock to provide a clock latency control signal, the clock latency control signal controlling the output of the second packet such that there is a time gap between receiving the first packet and the transmission of the second packet.
In some embodiments, the controller comprises: a clock delay element (D-FFs) including a series-connected selectable time delay circuits and a selection circuit for selecting a combination of the selectable time delay circuits, in response to a latency control signal (CLC).
In some embodiments, the controller further comprises: at least one clock delay element that does not require selection and introduces a fixed delay.
In some embodiments, the command interpreter generates the CLC.
In some embodiments, the input/output data processing circuit further comprises: a packet output circuit for outputting an packet based ID in accordance with the new ID, in response to the clock latency control signal and the clock, the output packet based ID being provided to the serial output.
In some embodiments, the device comprises a memory for storing data.
In some embodiments, the memory includes a DRAM, a SRAM or flash memory.
In some embodiments, each device further comprises an ID register for storing the first ID, thereafter the device being adapted to treat the first ID as the ID for the device.
According to another broad aspect, the invention provides a method for generating a device identifier (ID) coupled to one of a plurality of devices in a serial interconnection configuration, the one device having a serial input connection for receiving serial input data and a serial output connection for providing serial output data, the method comprising: receiving a first packet containing a first ID to be used as a device identifier; generating a second ID as a function of the first ID for another device; sending a second packet containing the packet based ID for the other device, the first and second packets being non-overlapped in time.
In some embodiments, the method further comprises: interpreting serial packet-basis commands received at the serial input to provide an interpreted ID as said first ID in response to a clock.
In some embodiments, the step of generating further comprises: performing a calculation based on the interpreted ID to generate the second ID.
In some embodiments, the step of performing a calculation comprises: adding a predetermined increment value to the interpreted ID to provide the second ID.
In some embodiments, the step of interpreting comprises: interpreting the serial packet-basis commands to provide interpreted packet commands; and further interpreting the interpreted packet commands to provide the interpreted ID.
In some embodiments, the method further comprises: controlling a clock latency in response to the interpreted ID and the clock to provide a clock latency control signal, so that the packets for two devices are non-overlapped in time.
According to another broad aspect, the invention provides a method for generating a device identifier (ID) at a first device coupled to a second device in a serial interconnection configuration, the first device having serial input connection coupled to serial output connection of a previous device in the serial interconnection configuration and the second device having serial input connection coupled to serial output connection of the first device, the method comprising: receiving a command to write an ID in the first device in a first packet; generating a device ID from signal received at the serial input connection of the first device in a packet basis in response to a clock; and transferring the generated device ID to the second device from the serial output connection of the first device to the serial input connection of the second device in a second packet, the first and second packets being non-overlapped in time.
In some embodiments, the method further comprises: interpreting the received command to obtain the ID for the device; controlling clock latency between interpreted serial input and the clock, so that the first and second packets are non-overlapped in time; generating the device ID in response to the controlled clock latency and the new ID, the generated ID being provided through the serial output connection.
In some embodiments, the devices are in memory devices having memory portions for storing data that is accessed in a normal operation mode.
According to another broad aspect, the invention provides a latency controller for use in an apparatus comprising a plurality of devices in a serial connected arrangement, each device having a serial input connection (SI) for receiving serial input data and a serial output connection (SO) for providing serial output data, at least one of the devices having a packet based processing circuit for receiving a first packet containing a first ID (device identifier) for the device, generating a second ID for another one of the devices and generating a second packet containing the second ID for transmission to the other device in response to clocks, the latency controller comprising: a control circuit for controlling a clock latency in response to a received ID and the clock to provide a clock latency control signal, the clock latency control signal being used to ensure the first and second packets are non-overlapped in time.
According to another broad aspect, the invention provides an apparatus for generating a device identifier (ID) at a first device coupled to a second memory device in a serial interconnection configuration, the first device having serial input connections coupled to serial output connections of a previous device in the serial interconnection configuration and the second device having serial input connections coupled to serial output connections of the first device, the apparatus comprising: an ID production circuit for producing a device ID from signals received at the serial input connections of the first device in a packet basis; a transfer circuit for transferring the generated device ID in a packet to the second device from the serial output connections of the first device to the serial input connections of the second device, packets containing IDs for two devices being non-overlapped in time.
According to another broad aspect, the invention provides an ID producing apparatus for producing a device identifier (ID) coupled to one of a plurality of devices in a serial interconnection configuration, the one device having at least one cell for storing data, the one device having a serial input connection for receiving serial input data and a serial output connection for providing serial output data, the apparatus comprising: an input registration circuit for registering serial N-bit ID data contained in the serial input data and for providing the registered N-bit ID data as parallel N-bit ID data, N being an integer that is one or greater than one; a calculating circuit for performing a calculation based on the parallel N-bit ID data and given number data to provide N-bit calculation data as a generated device ID; a parallel-serial circuit for registering the N-bit calculation data as parallel N-bit calculated data and for providing the registered parallel N-bit calculated data as serial N-bit data, the serial N-bit data being forwarded to an input registering circuit included in another generating apparatus coupled to another device; and a transfer circuit for transferring the N-bit calculation data to the second device from the serial output connections of the first device to the serial input connections of the second device.
Other aspects and features of the present invention will become apparent to those ordinarily skilled in the art upon review of the following description of specific embodiments of the invention in conjunction with the accompanying figures.
Embodiments of the present invention will now be described, by way of example only, with reference to the attached Figures, wherein:
In the following detailed description of sample embodiments of the technique, reference is made to the accompanying drawings which form a part hereof, and in which is shown by way of illustration specific sample embodiments in which the technique may be practiced. These embodiments are described in sufficient detail to enable those skilled in the art to practice the technique, and it is to be understood that other embodiments may be utilized and that logical, mechanical, electrical, and other changes may be made without departing from the scope of the technique. The following detailed description is, therefore, not to be taken in a limiting sense, and the scope is defined by the appended claims.
In general, the one cycle latency between two adjacent devices connected in a daisy chain fashion as provided by the configuration taught by the above-referenced Thomson et al. may not provide enough time margin to perform the interpretation and generation of packet commands in a manner that is suitable for systems operating at high frequency, e.g., over 1 GHz. Generally, the present invention relates to a device identifier (ID) generation which is implemented in serial daisy chain cascading arrangement of various memory devices (e.g., DRAMs, flash memories). The memory devices need their identifiers (IDs). Each of the memory devices generates IDs for next memory devices and transmits the generated IDs between devices in a manner that at each device, an incoming packet containing an ID does not overlap in time with outgoing packet containing an ID for a next device.
In some implementations, to begin, input command data and previously generated ID data are synchronously registered. The registered data is synchronously output and provided as parallel data for calculation of a new ID for the next device. The calculated parallel ID data is synchronously output as serial data which is transferred to the next device. The calculation may for example be the addition or subtraction by a predetermined value (e.g., one) for generating the ID. The maximum ID bit number is determined by the bit sizes of the register and calculator, not the number of physical pins. Therefore, a large number of IDs can be generated and a large of memory devices can be connected in a single serial interconnection configuration.
An embodiment of the present invention will now be described as a daisy chain cascading of devices. In accordance with an embodiment of the present invention, a packet based ID generation employs packets that have a command field that is set to indicate ID generation to indicate that an ID is being transferred to the next device. Specific examples are detailed below.
The devices 1101-110-N shown in
Referring to
Referring to
A clock producer 317 receives the clock signal CLK through the clock input buffer 313. The clock producer 317 also receives a clock generation control signal 314 from a command interpreter 321. For packet based ID generation using the circuit 111-1 of
The command interpreter 321 receives the serial packet interpreted output signal 316 from the serial packet interpreter 315 and responds to the command clock signal 319C. From the serial packet interpreter 315, only command related bits are sent to the command interpreter 321 for decoding. The command interpreter 321 also provides the clock generation control signal 314 to the clock producer 317. A specific command is defined to indicate that packet contains an ID. The actual details of the command are implementation specific; suffice it to say, that the ID generation command simply needs to be distinguishable from other commands.
If any command needs addresses, the packet will also contain address bits. The address bits output by the serial packet interpreter are registered in the address register 323 that responds to the address clock signal 319A. The address register 323 is not involved during ID generation mode. Only normal operations, such as, write or read, will utilize the address register 323. Like address register, the data register 325 is for a normal operation with the clock signal. The data bits contained in the serial packet interpreted output signal 316 to be written into a memory are stored in the data register 325 in response to the data clock signal 319D.
The ID temporary register 327 receives the serial packet interpreted output signal 316 and the ID clock signal 3191. In the ID generation mode, the ID bits contained in the serial packet interpreted output signal 316 are registered in the ID temporary register 327 in response to the ID clock signal 3191. ID generation is performed by an ID generator 329 to create a new ID number for another device on a serial interconnection configuration such as daisy chain cascading. The ID generator 329 generates an address for the next device, for example by performing an adding operation for the next device (e.g., +1 operation). More generally, the address generation simply needs to be capable of generating a unique address compared to all of those assigned thus far. While an ID number is being created through each device with the daisy chain, the ID generator 329 generates a new ID that will function as an address for the next device.
In the detailed embodiments described, it is assumed that the ID that is received by a given device is then established as that device's ID. The device generates an ID for the next device. In another embodiment, not described in detail, the ID that is received by a given device is a previous device's ID, and the device generates an ID for itself. Implementation of this alternative embodiment should be readily apparent to one of skill in the art having regard to the other embodiments described herein.
In this embodiment, the system including the plurality of devices 110-1-110-N controlled by the system controller 100 (see
The command interpreter 321 provides a clock latency enable signal 331 to a latency controller 337, a data process control signal 332 to the processing circuit 350, and an ID process enable signal 336 to the ID temporary register 327 and an ID latch controller 333. The clock latency enable signal 331, the data process control signal 332 and the ID process enable signal 336 are provided to convey internal instructions from the command interpreter 321 to the relevant circuits as detailed below. The format of these instructions is implementation specific.
When an ID generation command is decoded and directs that operation, an ID latch controller 333 is enabled by the ID process enable signal 336 and generates a latch signal 334 to store the ID number in the ID register 335. The ID number contained in an ID number signal 328 is output from the ID temporary register 327. The ID is latched by the ID register 335 until power off.
The memory 357 is for example a DRAM, SRAM or flash memory. The data processing circuit 351 receives a registered address signal 353 from the address register 323 and a registered data signal 355 from the data register 325. In response to a data access instruction contained in the data process control signal 332, the data processing circuit 351 performs data access (write and/or read) to the memory 357 for data processing. The processed data is provided by a data output signal 359 to a data packet circuit 341.
For ID generation mode, between two serial packets, there needs to be a time gap between the receipt of a packet by the serial packet interpreter 315 and the output of a packet by the data packet circuit 341 of the previous device, so as to ensure the high speed operation (e.g., over 1 GHz). To meet with the requirement, the serial packet for next device is delayed through the latency controller 337. For example, if a packet needs a 10-cycle delay to avoid the overlapping, the outgoing packet is generated 10 cycles later, in response to the clock latency control signal CLC provided by the system controller 100 (see
It can be seen that for the circuit of
In the embodiment shown in
In the ID generation mode shown in
Referring to
In the example shown in
Referring to
Bit configuration of serial input packet is packet start bits+first bits (command, any bit sizes depending on the system requirement and memory operation modes)+ID values (several bits)+packet end (optional).
Packet based operations typically contain packet start and end and include command bits to accomplish an expected operation based on serial stream data transmission to a packet data interpreter in each device. ID generation command is just one of type of command suitable for use with sets of daisy chain devices. Typical implementations will include functional blocks (not shown) that may be defined on an implementation specific basis to perform the processing of other input command types.
In the embodiment described, a single data rate (SDR) interface is adopted as the interface type of the system and the rising edge of clock latches input data. In case of a double data rate (DDR) interface type, both edges of the clock are used to latch input streams to speed up the write and read operations. Furthermore, other types of interfaces such as QDR (quadruple data rate) and the like may be employed.
In the embodiment described above, the device elements and circuits are connected to each other as shown in the figures, for the sake of simplicity. In practical applications of the techniques to memory systems, devices, elements, circuits, etc. may be connected or coupled directly to each other. As well, devices, elements, circuits etc. may be connected or coupled indirectly to each other through other devices, elements, circuits, etc., as necessary for operation of the memory systems.
The above-described embodiments of the present invention are intended to be examples only. Alterations, modifications and variations may be effected to the particular embodiments by those of skill in the art without departing from the scope of the invention, which is defined solely by the claims appended hereto.
Number | Name | Date | Kind |
---|---|---|---|
4135181 | Bogacki et al. | Jan 1979 | A |
4174536 | Misunas et al. | Nov 1979 | A |
4617566 | Diamond | Oct 1986 | A |
4733376 | Ogawa | Mar 1988 | A |
4796231 | Pinkham | Jan 1989 | A |
5126808 | Montalvo et al. | Jun 1992 | A |
5136292 | Ishida | Aug 1992 | A |
5175819 | Le Ngoc et al. | Dec 1992 | A |
5204669 | Dorfe et al. | Apr 1993 | A |
5243703 | Farmwald et al. | Sep 1993 | A |
5260977 | Kinoshita | Nov 1993 | A |
5280539 | Yeom et al. | Jan 1994 | A |
5319598 | Aralis et al. | Jun 1994 | A |
5365484 | Cleveland et al. | Nov 1994 | A |
5377228 | Ohara et al. | Dec 1994 | A |
5404460 | Thomsen et al. | Apr 1995 | A |
5430859 | Norman et al. | Jul 1995 | A |
5440694 | Nakajima | Aug 1995 | A |
5452259 | McLaury | Sep 1995 | A |
5473563 | Suh et al. | Dec 1995 | A |
5473566 | Rao | Dec 1995 | A |
5473577 | Miyake et al. | Dec 1995 | A |
5535336 | Smith et al. | Jul 1996 | A |
5596724 | Mullins et al. | Jan 1997 | A |
5602780 | Diem et al. | Feb 1997 | A |
5636342 | Jeffries | Jun 1997 | A |
5671178 | Park et al. | Sep 1997 | A |
5721840 | Soga | Feb 1998 | A |
5740379 | Hartwig | Apr 1998 | A |
5761146 | Yoo et al. | Jun 1998 | A |
5771199 | Lee | Jun 1998 | A |
5802006 | Ohta | Sep 1998 | A |
5806070 | Norman et al. | Sep 1998 | A |
5809013 | Kackman | Sep 1998 | A |
5818785 | Ohshima | Oct 1998 | A |
5828899 | Richard et al. | Oct 1998 | A |
5835935 | Estakhri et al. | Nov 1998 | A |
5859809 | Kim | Jan 1999 | A |
5872994 | Akiyama et al. | Feb 1999 | A |
5914957 | Dean et al. | Jun 1999 | A |
5937425 | Ban | Aug 1999 | A |
5941974 | Babin | Aug 1999 | A |
5959930 | Sakurai | Sep 1999 | A |
5995417 | Chen et al. | Nov 1999 | A |
5999023 | Kim | Dec 1999 | A |
6002638 | John | Dec 1999 | A |
6085290 | Smith et al. | Jul 2000 | A |
6091660 | Sasaki et al. | Jul 2000 | A |
6107658 | Itoh et al. | Aug 2000 | A |
6144576 | Leddige et al. | Nov 2000 | A |
6148364 | Srinivasan et al. | Nov 2000 | A |
6178135 | Kang | Jan 2001 | B1 |
6188262 | Sutherland | Feb 2001 | B1 |
6304125 | Sutherland | Oct 2001 | B1 |
6304921 | Rooke | Oct 2001 | B1 |
6317350 | Pereira et al. | Nov 2001 | B1 |
6317352 | Halbert et al. | Nov 2001 | B1 |
6317812 | Lofgren et al. | Nov 2001 | B1 |
6339800 | Won et al. | Jan 2002 | B1 |
6438064 | Ooishi | Aug 2002 | B2 |
6442098 | Kengeri | Aug 2002 | B1 |
6442644 | Gustavson et al. | Aug 2002 | B1 |
6510503 | Gillingham et al. | Jan 2003 | B2 |
6535948 | Wheeler et al. | Mar 2003 | B1 |
6567878 | Wettroth et al. | May 2003 | B2 |
6584303 | Kingswood et al. | Jun 2003 | B1 |
6594183 | Lofgren et al. | Jul 2003 | B1 |
6601199 | Fukuda et al. | Jul 2003 | B1 |
6611466 | Lee et al. | Aug 2003 | B2 |
6658509 | Bonella et al. | Dec 2003 | B1 |
6658582 | Han | Dec 2003 | B1 |
6680904 | Kaplan et al. | Jan 2004 | B1 |
6715044 | Lofgren et al. | Mar 2004 | B2 |
6718432 | Srinivasan | Apr 2004 | B1 |
6732221 | Ban | May 2004 | B2 |
6754807 | Parthasarathy et al. | Jun 2004 | B1 |
6763426 | James et al. | Jul 2004 | B1 |
6807103 | Cavaleri et al. | Oct 2004 | B2 |
6816933 | Andreas | Nov 2004 | B1 |
6850443 | Lofgren et al. | Feb 2005 | B2 |
6850992 | Heinrich et al. | Feb 2005 | B2 |
6853557 | Haba et al. | Feb 2005 | B1 |
6853573 | Kim et al. | Feb 2005 | B2 |
6928501 | Andreas et al. | Aug 2005 | B2 |
6944697 | Andreas | Sep 2005 | B2 |
6950325 | Chen | Sep 2005 | B1 |
6967874 | Hosono | Nov 2005 | B2 |
6996644 | Schoch et al. | Feb 2006 | B2 |
7032039 | DeCaro | Apr 2006 | B2 |
7096287 | Champagne et al. | Aug 2006 | B1 |
7139839 | White et al. | Nov 2006 | B2 |
7652922 | Kim et al. | Jan 2010 | B2 |
8010714 | Simon | Aug 2011 | B2 |
20020121922 | Greenstreet et al. | Sep 2002 | A1 |
20020188781 | Schoch et al. | Dec 2002 | A1 |
20030074505 | Andreas et al. | Apr 2003 | A1 |
20030088655 | Leigh et al. | May 2003 | A1 |
20030128702 | Satoh et al. | Jul 2003 | A1 |
20040001380 | Becca et al. | Jan 2004 | A1 |
20040019736 | Kim et al. | Jan 2004 | A1 |
20040024960 | King et al. | Feb 2004 | A1 |
20040039854 | Estakhri et al. | Feb 2004 | A1 |
20040093450 | Andreas | May 2004 | A1 |
20040148482 | Grundy et al. | Jul 2004 | A1 |
20040199721 | Chen | Oct 2004 | A1 |
20040230738 | Lim et al. | Nov 2004 | A1 |
20050094591 | Kwon | May 2005 | A1 |
20050160218 | See et al. | Jul 2005 | A1 |
20050213421 | Polizzi et al. | Sep 2005 | A1 |
20050273539 | Yamamoto | Dec 2005 | A1 |
20060050594 | Park | Mar 2006 | A1 |
20060088044 | Hammerl | Apr 2006 | A1 |
20060200602 | James | Sep 2006 | A1 |
20070162615 | Rusu | Jul 2007 | A1 |
20070165457 | Kim | Jul 2007 | A1 |
20070234071 | Pyeon | Oct 2007 | A1 |
20070250648 | Picard et al. | Oct 2007 | A1 |
20080028176 | Bartley et al. | Jan 2008 | A1 |
20080181214 | Pyeon et al. | Jul 2008 | A1 |
20110032932 | Pyeon et al. | Feb 2011 | A2 |
Number | Date | Country |
---|---|---|
WO 0169411 | Sep 2001 | WO |
Entry |
---|
Samsung Electronics Co. Ltd, “256M x 8 Bit / 128 M x 16 Bit / 512M x 8 Bit NAND Flash Memory”, K9K4G08U1M, May 6, 2005, pp. 1-41. |
Toshiba, “2GBIT (256M x 8 Bits) CMOS NAND E2PROM”, TH58NVG1S3AFT05, May 19, 2003, pp. 1-32. |
Amtel Corp., “High Speed Small Sectored SPI Flash Memory”, pp. 1-22, 2006. |
64 Megabit CMOS 3.0 Volt Flash Memory with 50MHz SPI. |
King, et al., “Communicating with Daisy Chained MCP42XXX Digital Potentiometers”, Microchip AN747, pp. 1-8, 2001. |
Intel Corporation, “Intel® Advanced+ Boot Block Flash Memory (C3)”, May 2005, pp. 1-72. |
M-Systems Flash Disk Pioneers Ltd., “DiskOnChip H1 4Gb (512MByte) and 8Gb (1 GByte) High Capacity Flash Disk with NAND and x2 Technology”, Data Sheet, Rev. 0.5 (Preliminary), pp. 1-66, 2005. |
Tal, A., “Guidelines for Integrating DiskOnChip in a Host System”, AP-DOC-1004, Rev. 1.0, M-Systems Flash Pioneers Ltd., pp. 1-15, 2004. |
Samsung Electronics Co. Ltd, OneNAND4G(KFW4G16Q2M-DEB6), OneNAND2G(KFH2G16Q2M-DEB6), OneNAND1G(KFW1G16Q2M-DEB6) Flash Memory, OneNAND™ Specification Ver. 1.2, pp. 1-125, Dec. 23, 2005. |
Kennedy, J., et al., “A 2Gb/s Point-to-Point Heterogeneous Voltage Capable DRAM Interface for Capacity-Scalable Memory Subsystems”, ISSCC 2004/Session 1/DRAM/11.8, IEEE International Solid-State Circuits Conference, Feb. 15-19, 2004, vol. 1, pp. 214-523. |
Kim, Jae-Kwan, et al., “A 3.6Gb/s/pin Simultaneous Bidirectional (SBD) I/O Interface for High-Speed DRAM”, ISSCC 2004/Session 22/DSL and Multi-Gb/s I/O 22.7, IEEE International Solid-State Circuits Conference Feb. 15-19, 2004, vol. 1, pp. 414-415. |
“HyperTransport TM I/O Link Specification”, Revision 2.00, Document No. HTC20031217-0036-00, Hypertransport Technology Consortium, pp. 1-325, 2001. |
“IEEE Standard for High-Bandwidth Memory Interface Based on Scalable Coherent Interface (SCI) Signaling Technology (RamLink)”, IEEE Std. 1596.4-1996, the Institute of Electrical Electronics Engineers, Inc., pp. i-91, (Mar. 1996). |
Oshima, et al., “High-Speed Memory Architectures for Multimedia Applications”, Circuits & Devices, IEEE 8755-3996/97, pp. 8-13, Jan. 1997. |
Gjessing, S., et al., “RamLink: A High-Bandwidth Point-to-Point Memory Architecture”, Proceedings CompCom 1992, IEEE 0/8186-2655-0/92, pp. 328-331, Feb. 24-28, 1992. |
Gjessing, S., et al., “Performance of the RamLink Memory Architecture”, Proceedings of the Twenty-Seventh Annual Hawaii International Conference on System Sciences, IEEE 1060-3425/94, pp. 154-162, Jan. 1994. |
Gjessing, S., et al., “A RAM Link for High Speed”, Special Report/Memory, IEEE Spectrum, pp. 52-53, Oct. 1992. |
Diamond, S.L., “SyncLink: High: High-speed DRAM for the Future”, Micro Standards, IEEE Micro, pp. 74-75, Dec. 1996. |
Samsung Electronics, “DDR2 Fully Buffered DIMM 240pin FBDIMMS based on 512Mb C-die” Rev. 1.3, Sep. 2006, pp. 1-32, Sep. 2006. |
“HyperTransport TM I/O Link Specification”, Revision 3.00, Document No. HTC20051222-0046-0008, Hypertransport Technology Consortium, pp. 1-428, Apr. 2006. |
“8-megabit 2.5-volt Only or 2.7-volt Only DataFlasha®,” Technical Specification, Atmel, Rev. 2225H-DFLSH (2004). |
Samsung Electronics, “K9XXG08UXM Preliminary Flash Memory,” Technical Specification, Samsung Electronics. |
“1024K12C™ CMOS Serial EEPROM,” Technical Specification, Microchip Technology Inc., (2006). |
“The I2C-Bus Specification,” Version 2.1, Philips Semiconductors, Jan. 2000. |
“16 Mbit LPC Serial Flash,” Preliminary Specification, Silicon Storage Technology Inc., (2006). |
“16 Mbit SPI Serial Flash,” Preliminary Specification, Silicon Storage Technology Inc., (2005). |
“2Mbit, Low Voltage, Serial Flash Memory with 40 Mhz SPI Bus Interface,” Technical Specification, STMicroelectronics Group of Companies (2005). |
“NAND Flash Applications Design Guide,” Revision 1.0, Toshiba America Electronics Components, Inc., (Apr. 2003). |
Number | Date | Country | |
---|---|---|---|
20080080492 A1 | Apr 2008 | US |