The following detailed description illustrates an embodiment of the present disclosure; however, it is not intended to limit the scope of the appended claims in any manner.
The microplatelet cellulose MPC particles of the present disclosure may be obtained by passing a suspension of fiber pulps through a high-friction grinder or buhrstone mill under an atmospheric pressure at a temperature range of about 20° C. to about 95° C. The fiber pulps were repeatedly subjected to the grinding process for multiple times, and the volume average particle sizes of the resulting MPC in aqueous suspension were measured after each pass using Microtrac X-100 Tri-Laser-System, a laser light scattering particle size analyzer.
The MPC of the present disclosure has a volume average particle size range of from about 20 microns to about 150 microns, a number average particle size range of from about 5 microns to about 20 microns, and a 95th percentile volume average particle size of no more than about 300 microns. The 95th percentile volume average particle size is defined as the volume average particle size of 95% of total MPC. The particle size of the disclosed MPC may be varied, depending on the targeted end use applications. The concentration of MPC particles was typically about 2% to about 3% solids, but a higher or lower % solid may be produced according to the selected applications.
The water retention value of MPC was determined by placing 50 ml of 1.5% solids aqueous solution of MPC in a centrifuge tube at room temperature. The tubes used were 30 mm in diameter×100 mm in length with a scaled volume of 50 ml. The filled tubes were centrifuged for 15 min at 3000 rpm using a IEC CL2 centrifuge (1500 G). The tubes were carefully removed from the centrifuge, and the volume at the interface between the clear aqueous phase and opaque MPC layer was measured. The water phase was then decanted off and the MPC layer was dried in an oven at 105° C. for 48 hours to determine the weight of MPC. The water retention value was calculated using the following equation:
Water retention value=ml (volume of precipitate in tube)/g (O.D. weight of MPC)
The MPC of the present invention may have a water retention value in a range of from about 5 ml/g to about 80 ml/g.
Cellulosic fibers from various natural origins may be used in the present disclosure. These include, but are not limited to, softwood fibers, hardwood fibers, cotton fibers, Esparto grass, bagasse, hemp, flax and vegetable-based fiber such as sugar beet and citrus pulp. Wood pulps may be made by chemical treatment such as Kraft, sulfite, and sulfate processes; mechanical pulps such as groundwood and thermomechanical pulp; and combination thereof. The fiber pulps may be modified before being subjected to a high friction grinding process. Several modifications may be applied including, but are not limited to, chemical modification, enzymatic treatment, mechanical treatment, and combinations thereof. Furthermore, synthetic fibers and/or fillers such as clay or titanium dioxide may be subjected to a high friction grinder in combination with fiber pulps.
MPC particles of the present disclosure may be used for surface treatment of board and/or for secondary layer in the basecoat of board. The surface treatment may be carried out by various techniques known in the arts. These include, but are not limited to, size-press, roll coating, blade coating, rod coating, spraying, curtain coating, and surface layer forming by headbox on paperboard machine.
In one embodiment of the present disclosure, the disclosed paperboard contains MPC in an amount range of from about 0.10 lbs to about 20 lbs per 1,000 ft2 of the paperboard.
In one embodiment of the present disclosure, the disclosed paperboard contains MPC in an amount range of from about 0.1% to about 50%, based on total weight of the paperboard.
In one embodiment of the present disclosure, the disclosed paperboard containing MPC has a MD-CD geometric mean Taber stiffness value of about 25 g-cm to about 500 g-cm.
MPC in a Secondary Layer of Paperboard Basecoat
Handsheets consisting of a primary layer containing softwood pulp, and a secondary layer containing softwood pulp and a different amount of MPC particles were made using the dynamic sheet former (DSF). The DSF sheet containing solely softwood pulp in the secondary layer (0% MPC) was used as a control. MPC particles were added to the secondary layer at 2.5% and 5% weight of total secondary layer, which correlated to 1.4, and 2.8 lb/1,000 ft2, respectively. The obtained DSF handsheets containing different levels of MPC particles were evaluated for porosity, opacity, tensile strength, and smoothness.
(i) Porosity Property
The porosity of the DSF sheets was measured using Gurley porosity, according to the TAPPI method T 460 om-96. Gurley porosity (in sec) measures the time required for air to permeate through the DSF sheet. An increase in Gurley porosity value indicates the reduction of air permeability through the sheet due to the decrease in sheet porosity. (TABLE I)
The DSF sheet containing 5% MPC particles in the secondary layer (2.8 lb/1,000 ft2) showed more than 5 times reduction in board porosity, indicated by the increase of Gurley porosity from 140 sec for the DSF sheet containing no MPC particle to 790 sec for the sheet containing MPC particles at 2.8 lb/1,000 ft2. (TABLE I)
When applied in the secondary layer of the DSF sheet, MPC particles filled the fiber voids and formed a very smooth layer on the treated sheet surface. (
(ii) Opacity Property
For opacity property, the DSF handsheets containing different levels of MPC particles in the secondary layer were calendered at a pressure of 20 bars and a temperature of 125° F., followed by topcoating with a pigment coating formulation containing about 80% clay based on total solid weight. The pigment coating was applied to the board surface using wire-wound rods No. 5 and No. 12. The brightness of DSF sheet was measured using a Brightimeter Micro S-5 manufactured by the Technidyne Corporation. The DSF sheet having only a basecoat was used as a control. (TABLE II)
When MPC particles were added to the secondary layer of DSF sheet, the brightness of the coated sheet increased compared to that of the control, even at the reduced coating level. When MPC particles were used in the secondary layer, MPC filled the surface voids of the softwood base layer, thus improving the coating performance.
(iii) Tensile Strength Property
The tensile properties of the DSF handsheets containing different levels of MPC particles in the secondary layer were tested in the MD and CD directions.
The MD:CD ratio ranged from 2.4 to 3.0 with no apparent effect from the type of secondary layer applied. The modulus increased significantly when MPC particles were applied as secondary layer. The addition of 7.5% MPC particles in the secondary layer of the sheet increased modulus from 617 to 806 Kpsi (a 30% increase), indicating that the strength of sheet may be increased by an addition of MPC particles to the secondary layer of the sheet. (TABLE III)
MPC may be blended with fiber pulps and added to the paperboard at the secondary headbox during a papermaking process.
(i) Surface Analysis
The SEM surface negative images and cross section negative images were taken for the paperboard having softwood base layer and the secondary layer containing wood pulps and MPC particles, in which MPC particles were added in a secondary headbox during the papermaking process (
(ii) Tensile Strength and Porosity
The MPC-modified paperboard containing MPC particles about 1 lb/1,000 ft2 had a 47% increase in tensile strength and a 33% increase in an elastic modulus compared to the paperboard containing no MPC particle. The porosity measurement showed about 10 times decrease in air permeability; from a Gurley porosity of only 4 sec/100 cc of air for the paperboard containing no MPC particle to about 42 sec/100 cc for the MPC-modified paperboard.
Application of MPC at Different Positions of Papermaking Process
MPC particles of the present disclosure may be applied to the paperboard at different stages in the wet end of papermaking process using several means of applications. They may be added in a secondary headbox of the papermaking process as a blend with hardwood fibers for the secondary layer or added solely (without hardwood fibers) to the softwood base layer. Furthermore, the disclosed MPC may be applied to the paperboard on the wet end or dry end of the papermaking process using typical paper coating equipments such as slot coating, curtain coater, and spray coating.
The smoothness of the TiO2 topcoated-MPC basecoat paperboard was determined using a Parker Print Smoothness (PPS-10) according to the TAPPI method T 555 pm-94, wherein the lower PPS-10 numbers represent the higher smoothness of board. The brightness of paperboard was measured using a Brightimeter Micro S-5 manufactured by the Technidyne Corporation, wherein the brightness of board increases relative to the brightness value. (Table IV).
The brightness property of the TiO2 topcoat, MPC-modified paperboard was directly proportional to the smoothness of the board. This confirmed that MPC was retained as a thin film that filled fiber-to-fiber voids on the unbleached fiber surface of board, as shown in the SEM images
The TiO2 topcoated paperboard containing MPC of the present disclosure had higher opacity for hiding the unbleached brown board layer compared to the TiO2 topcoated paperboard containing no MPC, as indicated by both brightness and yellowness optical values. These enhanced optical properties of the TiO2 topcoated, MPC-modified paperboard was due to the smoothness improvement of board surface, as MPC filled the fiber voids and formed a thin film on the surface of fiber web base layer. Consequently, the amount of TiO2 pigment required on the topcoat of paperboard to hide the unbleached brown fibers in the base layer, could be minimized when the disclosed MPC was present in the secondary layer of paperboard prior to the application of TiO2 topcoat.
Application of MPC Through Size Press vs Surface Coating
MPC was produced by wet grinding a suspension of bleached hardwood using a high-friction grinder. The produced MPC had a nominal volume average particle size of about 50-80 microns and a water retention value of 25-40 ml/g dry fiber as determined by centrifuging a 50 ml of a 1.5% solution of MPC at a rotation speed of 3000 rpm for 15 min, using IEC CL2 Centrifuge with 50 ml swing out buckets with a radius of 150 mm that gave a relative centrifugal force of about 1500 g.
A suspension of the produced MPC at 2.7% solid was formulated with starch (Penford Gum 280 commercially available from Penford Products Co.) and clay (Kaobrite 90 commercially available from Thiele Kaolin Co.) at different compositions as in TABLE V.
For size press application, the formulations were applied to both sides of a 10 mil-bleached SBS paperboard using flooded nip size press having a 12 inch web at a speed of 200 ft/minute and a minimal press load of 35 psi.
For surface coating application, the formulations were applied on one side of a 10 mil-bleached SBS paperboard using bent blade applicator at a speed of 900 ft/min.
Coat weights were calculated from the known ratios of MPC to starch to clay and measured ash content of the paperboards less the uncoated board. (TABLE V)
The coated paperboards were calendered at two different pressures: 50 and 100 pli pressure.
(i) Taber Stiffness
The coated paperboards without calendering were tested for Taber Stiffness as shown in TABLE VI. The Taber stiffness was determined using the geometric mean (GM) of MD and CD stiffness according to a TAPPI test method T 489 om-04, revised version 2004. GM is a geometric mean of MD and CD Taber stiffness, wherein GM=(MD×CD)1/2.
The Taber stiffness of coated paperboards calendering at two different levels was evaluated and compared to those of uncalendered, coated boards. (TABLE VII)
(ii) Surface Smoothness
Using a TAPPI test method T 538 om-01 (revised version 2001), the Sheffield surface smoothness of the calendered, coated paperboards was determined and compared to those of uncalendered, uncoated paperboards. (TABLE VIII)
When the coated paperboards were calendered, its surface smoothness improved while its bending stiffness deteriorated. The higher pressure level the board was calendered, the higher surface smoothness as indicated by a lower Sheffield Smoothness value, but the lower the bending stiffness property as indicated by a lower Taber Stiffness value.
TABLE IX showed the Taber stiffness of paperboards having both surfaces sized with different formulations, after they were calendered to the same Sheffield Smoothness value of 100. The board surface sized with a formulation containing 1% MPC, 8% starch and 8% clay showed a Taber stiffness value of about 20, which was about a 53% increase from the Taber stiffness of paperboard without surface sizing (i.e., sized with water only) having a Taber stiffness of about 13.10. For paperboards surface sized with starch or a combination of starch with clay, their Taber stiffness improved compared to the paperboard without surface sizing) but the enhancement was only about 30%.
TABLE X showed the Taber stiffness of paperboards having one of the surfaces blade-coated with different formulations after being calendered to the same Sheffield Smoothness value of 100. The board blade-coated with a formulation containing 1% MPC, 8% starch and 8% clay showed a Taber stiff ness value of about 20, which was about a 50% increase from the Taber stiffness of paperboard blade-coated with only water having a Taber stiffness of about 13.10. For paperboards blade-coated with a formulation containing 8% starch and 8% clay, its Taber stiffness improved compared to the paperboard blade-coated with only water but the enhancement was only about 34%.
When paperboard is applied with a formulation containing the disclosed MPC either as a surface sizing agent or a coating, calendering may be performed to enhance surface smoothness of the treated paperboard with a significant reduction of a negative impact on bending stiffness performance.
It is to be understood that the foregoing description relates to embodiments that are exemplary and explanatory only and are not restrictive of the invention. Any changes and modifications may be made therein as will be apparent to those skilled in the art. Such variations are to be considered within the scope of the invention as defined in the following claims.
This non-provisional application relies on the filing date of provisional U.S. Application Ser. No. 60/825,311 filed on Sep. 12, 2006, which is incorporated herein by reference, having been filed within twelve (12) months thereof, and priority thereto is claimed under 35 USC § 1.19(e).
Number | Date | Country | |
---|---|---|---|
60825311 | Sep 2006 | US |