The inventions described herein may be manufactured, used and licensed by or for the U.S. Government for U.S. Government purposes.
The invention relates in general to munitions and in particular to countermeasures for rocket propelled grenades (RPG).
Rocket propelled grenades, used by enemy forces, pose a serious threat to U.S. military vehicles and personnel. Heavily armored vehicles, such as the Abrams tank and the Bradley Fighting Vehicle, are equipped with advanced armors to defeat the RPG's shaped charge warhead. Most other military vehicles, however, cannot survive a direct hit from an RPG.
An existing approach to defeating RPG's approaching these other vehicles requires adding bulky special armor packages to the exterior of the vehicle. This additional armor is heavy and voluminous and consequently limits the transportability and maneuverability of the protected vehicle. Also, such armor engages the incoming RPG very close to the exterior of the vehicle where the RPG may still cause significant damage to the vehicle, its' occupants, and adjacent personnel.
Another existing approach to defeating incoming RPG's involves the use of an active protection system (APS) with explosive counter munitions. The main disadvantages of such a system are the precise timing required for achieving a successful intercept, and the possibility of the explosive counter munitions causing damage to the protected vehicle and personnel. The present invention provides a simple countermeasure to defeat incoming RPG's that overcomes the drawbacks of existing systems.
The invention will be better understood, and further objects, features, and advantages thereof will become more apparent from the following description of the preferred embodiments, taken in conjunction with the accompanying drawings.
In the drawings, which are not necessarily to scale, like or corresponding parts are denoted by like or corresponding reference numerals.
A purpose of the present invention is to damage, disturb or cause premature detonation of an incoming RPG by deploying a parachute into its flight path. An array of launchers (similar to the M6 discharger found on U.S. combat vehicles), pointing in different directions, are affixed to an object to be protected. The object to be protected may be a vehicle or a stationary structure such as a building. The invention uses a known apparatus for tracking the incoming RPG. Such apparatus are capable of tracking incoming projectiles using radar and determining the incoming projectile's velocity and flight path direction. This information is then used by a firing solution computer to calculate the optimum time to launch the countermeasure and to determine from which tube it should be launched.
When an incoming munition such as an RPG is detected by the tracking apparatus 12, the firing solution computer 14 determines the time of launch and the particular launch tube 16 and sends a firing signal to the igniter 24 of the appropriate launch tube 16. The igniter 24 initiates the propelling charge 22. As the propelling charge 22 burns, expanding gases 40 (
Simultaneously, the resultant force acting on the connecting ring 28 will cause the mass 20 to rapidly rotate as shown by the arrow w in
A significant amount of the momentum of the parachute 30 and mass 20 (which is similar to the momentum of the incoming RPG 38) will be transferred to the RPG 38, thereby slowing it and possibly causing it to miss the intended target. Secondly, the collision will cause damage to the RPG 38 such as breaking fins or crushing the nose cone. Damage to the fins and disturbance upon impact will cause the RPG angle of attack to grow, thereby greatly reducing its terminal effectiveness. Crushing the nose cone can short the RPG fuzing system, rendering the warhead inoperable. The collision between the parachute 30 and RPG 38 will take place well away from the protected vehicle 10. If the collision causes the warhead to detonate prematurely it is much less likely to hit or damage the protected vehicle 10.
While the invention has been described with reference to certain preferred embodiments, numerous changes, alterations and modifications to the described embodiments are possible without departing from the spirit and scope of the invention as defined in the appended claims, and equivalents thereof.
This application claims benefit under 35 USC 199(e) of provisional application 60/521,453, filed Apr. 28, 2004, the entire file wrapper contents of which provisional application are herein incorporated by reference as though fully set forth at length.
Number | Name | Date | Kind |
---|---|---|---|
3593664 | Davis et al. | Jul 1971 | A |
4912869 | Govett | Apr 1990 | A |
5069109 | Lavan, Jr. | Dec 1991 | A |
5583311 | Rieger | Dec 1996 | A |
6231002 | Hibma et al. | May 2001 | B1 |
6626077 | Gilbert | Sep 2003 | B1 |
6904838 | Dindl | Jun 2005 | B1 |
Number | Date | Country | |
---|---|---|---|
60521453 | Apr 2004 | US |