1. Field of the Invention
The present invention relates generally to the reading and placement of labels, markings, or other items on parcels or other items being conveyed along a conveying path and the subsequent sortation of such items.
2. Description of Related Art
The prior art includes many different methods and apparatuses for applying labels to parcels or other items to parcels as they pass along a conveying path. However, there are always needs in the art and improvements needed thereto.
The present invention overcomes the deficiencies of the prior art by providing a method and apparatus for attaching labels or other articles to parcels or other items.
Generally described, the invention is directed towards a conveying and labeling apparatus for receiving a parcel having first indicia thereon on a first side and for providing second indicia atop a second side of the parcel, the apparatus comprising: a first conveying device configured to accept the parcel from an outside source such that the first side is directed towards a first direction and for conveying the parcel along a first conveying path, a second conveying device for receiving the parcel from the first conveying device and for conveying the parcel along a second conveying path, the first and second conveying devices defining a gap therebetween, an indicia reading device for reading the first indicia on the first side of the parcel as the parcel is transferred across the gap between the first conveying device and second conveying device, the indicia reading device configured to view the first indicia along a reading axis, and an indicia adding device for providing second indicia atop the second surface of the parcel while the parcel is atop the second conveying device and traveling along the second conveying path.
The invention is further directed towards a conveying and labeling apparatus for receiving a parcel having first indicia thereon on a first side and for providing second indicia atop a second side of the parcel, the apparatus comprising: a first conveying device including spaced apart placement indicia thereon, the first conveying device configured to accept the parcel from an outside source atop the placement indicia such that the first side is directed towards a first direction and for conveying the parcel along a first conveying path, a second conveying device for receiving the parcel from the first conveying device and for conveying the parcel along a second conveying path, the first and second conveying devices defining a gap therebetween, an indicia reading device for reading the first indicia on the first side of the parcel as the parcel is transferred across a gap between the first conveying device and the second conveying device, the indicia reading device configured to view the first indicia along a reading axis, a parcel location estimating device for estimating parcel location on the second conveying device, and a label adding device for providing a label, with second indicia thereon, atop the second surface of the parcel while the parcel is atop the second conveying device and traveling along the second conveying path.
The invention is further directed towards a conveying and labeling apparatus for receiving a plurality of parcels each having first indicia thereon on a first side and for providing second indicia atop a second side of the parcel, the apparatus comprising: a first conveying device configured to accept the plurality of parcels from an outside source such that the first side of each of the parcels is directed towards a first direction and for conveying the parcels along a first conveying path, a second conveying device for receiving the plurality of parcels from the first conveying device and for conveying the plurality of parcels along a second conveying path, the first and second conveying devices defining a gap therebetween, an indicia reading device for reading the first indicia on the first side of each of the plurality of parcels as each of the plurality of parcels is transferred across the gap between the first conveying device and second conveying device, the indicia reading device configured to view the first indicia along a reading axis, an indicia adding device for providing the second indicia on a label atop the second surface of each of the plurality of parcels while each of the parcels is atop the second conveyor and traveling along the second conveying path, the indicia adding device blowing the labels through the air to contact the parcels, the indicia adding device including a holding portion configured to hold the labels prior to being blown, the holding portion being a label holding portion distance above the portion of the second conveyor proximate the location the parcels are labeled, and a parcel height limiting device positioned above the first conveying device, the parcel height limiting device configured to discourage parcels having a height equal to or greater than the label holding portion distance, such that the plurality of parcels do not interfere with the indicia adding device along the second conveying path.
The invention is further directed towards a method for receiving a plurality of parcels each having first indicia thereon on a first side and for providing second indicia atop a second side of the parcel, the method comprising the steps of: conveying the parcels on a first conveying device configured to accept the parcels from an outside source such that the first side of each of the parcels is directed towards a first direction and each of the parcels are conveyed along the first conveying device, transferring the parcels on the first conveying device to the second conveying device across a gap between the first and second conveying devices and for conveying the parcels along the conveying device, reading the first indicia on each the first side of the parcels as each the parcel is transferred across the gap between the first conveying device and second conveying device, the indicia reading device configured to view the first indicia along a reading axis, and providing second indicia atop the second surface of the parcel while each of the parcels is atop the second conveying device and traveling along the second conveying path.
Therefore it is an aspect of the present invention to provide an improved method and apparatus for parcel labeling, conveying, and sorting objects such as parcels.
It is a further aspect of the present invention to provide an improved method and apparatus for parcel labeling, conveying, and sorting objects such as parcels, which is efficient in operation.
It is a further aspect of the present invention to provide an improved method and apparatus for parcel labeling, conveying, and sorting objects such as parcels, which is effective in operation.
It is a further aspect of the present invention to provide an improved method and apparatus for parcel labeling, conveying, and sorting objects such as parcels, which accommodates operator variables.
It is a further aspect of the present invention to provide an improved method and apparatus for parcel labeling, conveying, and sorting objects such as parcels, which can accommodate a variety of objects.
It is a further aspect of the present invention to provide an improved apparatus for parcel labeling, conveying, and sorting objects such as parcels, which is compact in operation.
Other objects, features, and advantages of the present invention will become apparent upon reading the following detailed description of the preferred embodiment of the invention when taken in conjunction with the drawing and the appended claims.
Having thus described the invention in general terms, reference will now be made to the accompanying drawings, which are not necessarily drawn to scale, and wherein:
The present inventions now will be described more fully hereinafter with reference to the accompanying drawings, in which some but not all embodiments of the inventions are shown. Indeed, these inventions may be embodied in many different forms and should not be construed as limited to the embodiments set forth herein; rather, these embodiments are provided so that this disclosure will satisfy applicable legal requirements. Like numbers refer to like elements throughout.
Overall Assembly and Construction
Generally described, the method and apparatus according to the present invention includes the use of first and second adjacent conveyors with a gap therebetween, the gap being sufficiently narrow to allow passage of parcels placed on the first conveyor by an operator to be conveyed from the first conveyor to the second conveyor. Parcels crossing the gap are exposed to a reading device having a reading axis passing upwardly through the gap to read indicia, typically a code on a “first” label, on the side of the parcel which contacted the first conveyor belt prior to the parcel reaching the gap. This same side is the side which contacts the belt of the first and second conveyors. After processing information relating to the read indicia, a processing device sends information to a printing device which prints a “second” label which is blown or otherwise transferred to a second side of the parcel, which in one embodiment opposes the first side, while the label is on the second conveyor. The parcel then exits the second conveyor to be sorted downstream by use of the second label.
Other features under the invention relate to the use and relative positioning of a height limiting device proximate the first conveyor to limit the height of parcels conveyed thereon, and the use of said limiting device in conjunction with a printer/applicator at a suitably positioned height. Other features include the use of positioning assistance indicia on the first conveyor belt, and processing features relating to the positioning of the label on the typically upwardly-facing second parcel side.
Other features include the use of the invention to include the use of information related to sortation stations downstream of the conveyors, suitable to allow for information to be provided on the second labels which facilitates improved sorting of the parcels into various sortation stations. This information can be altered as desired to facilitate changes in the configuration of the sortation stations such that such changes can be readily and quickly accommodated in the sortation process.
Finally, features of the invention include accommodation of the apparatus and method to accommodate variables introduced by human operators loading parcels on the first conveyor, both between different operators and between different levels of performance a particular operator may provide over a time period.
More Detailed Discussion
Details relating to particular elements and processes are now provided. The previous description of the figures may be referenced in combination with this discussion. As shown in the embodiment of the present invention illustrated in
First Conveyor Assembly 20
As shown in
As shown in the embodiment depicted in
Height Limiting Assembly 30
As shown in
Referring now also to
As shown in
To keep packages from hitting the cross-beam 62, the height sensor 44, if tripped, communicates with the control assembly 100 to simultaneously shut down the first and second conveyor belts (22, 61). If a tall package makes it past the height sensor 44 without tripping the cut off switch, the package will be prevented from proceeding downstream by the physical presence of the cross-beam 62, which provides a physical barrier to prevent tall packages from proceeding downstream. In one embodiment, the height of the cross-beam 62 is set approximately half an inch lower than a downstream printing and labeling device, discussed in further detail below. In the embodiment shown in
It should be understood that other sensor configurations could be used to sense height. For example, a retro-reflective unit, an infrared camera, or a physical contact equipped with a limit switch can be used in alternative embodiments.
Trigger Sensor 50
As shown in
The cofacing trigger sensor devices 50 combine to provide an effective “curtain” of known height and width, and provide an output signal if this curtain is broken. The transverse cross section of this curtain is represented in line form in the sensor 50 shown in
The beam curtain is provided in one embodiment by the use of multi-beam emitters and sensors. In one embodiment, the trigger sensors 50 can be any conventional off-the-shelf products. For example, in one embodiment, the trigger sensors 50 are Banner Multi-Beam LS10 sensors. The LS10 system comprises two self-contained units, an emitter and a receiver. Multiple infrared LEDs in the emitter are aligned in a vertical row and strobed, i.e., turned on one at a time, in a specific sequence and at a high frequency. The receiver unit contains a matching array of phototransistors. The trigger sensors 50 cooperate to transmit a multitude of light beams that are capable of detecting the packages, as shown in
In some embodiments, the light beams passing between the transmitters and receivers run diagonally across the width of the belt, so that that two or more of the beams criss-cross each other. In other embodiments, the lights beams run parallel to the width of the belt. The LS1O trigger sensors 50 are approximately 90 mm (3.5′) in height and are mounted at the upstream end of the first conveyor assembly 20, one sensor one each side of the belt.
As stated above, the trigger sensors 50 are mounted so that at least part of the sensor extends below the level of the first conveyor belt 22. In the embodiment shown in
Illuminating Reading Assembly 40
The illuminating reading assembly 40 (hereinafter referred to as “reading assembly”) includes a light source and a code reading device, such as a camera. This assembly works in conjunction with a mirror 80 to read code on the lower surface 11-LS of a typical parcel such as box 11 shown in
In the embodiment shown in
Other embodiments of the reading assembly 40 can be used to illuminate and read labels attached to packages. For example, in alternative embodiments of the present invention, coplanar cameras that utilize sodium or halogen lamps to illuminate the camera's line of sight can be used. In addition, labels can be scanned using non-coplanar camera and illumination assemblies. For example, in alternative embodiments, the lighting axis and line of sight of a camera can lie in different planes. Because the overall apparatus 10 is designed so that the camera will always be reading on the same plane, the light source can come from almost any direction so long as the lighting axis and reading axis intersect at the point or line that includes the plane of the belt. What is important is that the light path suitably lights up the gap G between the first and second conveyor belts (22, 61) to effectively illuminate the label attached to a package for reading purposes.
As shown in
The Mirror 80
In the embodiment shown in
Second conveyor assembly 60
Much like the first conveyor assembly 20, the second conveyor assembly 60 comprises a frame and a belt 61. This element 60 can also include off-the-shelf items. The conveyor does not have to be a belt but could be another suitable assembly such as a powered roller conveyor.
Unlike the first conveyor assembly 20, the second conveyor assembly 60 is shaft-encoded. As will be described in greater detail below, the shaft encoder 65 allows the control assembly 100 to track the position of the belt 61, which in turn allows the control assembly 100 to track the position of packages as they are conveyed downstream on the second conveyor belt 61. As shown in
Label Printing and Application Assembly 90
The label printing and application assembly 90 can be generally as known in the art, and includes a printing device 91 and a labeling device 92. As shown in
The printing device 91 is such as known in the art. In one embodiment, the printing device 91 comprises a SATO label printer. In other embodiments, the printing device 91 includes a blowing feature to push the label onto the label application head of the labeling device 92.
The lowest part of the label printing and application assembly 90 is shown in
Control Assembly 100
In one embodiment, the control assembly comprises a PLC (programmable logic controller), as opposed to more complex and expensive equipment, which reduces the cost. The control assembly 100 can be any suitable off-the-shelf PLC. In one embodiment, the PLC is a Momentum M1E, produced by Schneider. This embodiment uses an Ethernet communications backbone to allow users to perform a wide range of functions over the Ethernet, including data acquisition, peer-to-peer communications and I/O scanning. The open architecture of a PLC (a Momentum M1E in one embodiment) allows the control assembly 100 to perform a variety of automation functions.
As stated above, the PLC 101 is configured to synchronize the movement of the first conveyor belt 22 with the second conveyor belt 61. As shown in
As stated above, the control assembly 100 also monitors the position of each package located on the second conveyer belt 61. The PLC 101 tracks the position of packages through a synchronization process using data received from the shaft encoder 65 and trigger sensor 50. When a package triggers the trigger sensor 50, the PLC 101 begins counting pulses sent from the shaft encoder 65. Simultaneously, the PLC 101 receives information indicating the leading and trailing ends of the package from the trigger sensor 50 and uses the pulse count sent from the shaft encoder 65 to determine (1) the packages length and (2) the package's position on the second conveyor belt 61. As the packages continue toward the label application assembly 90, the PLC 101 continues tracking the package using pulses from the shaft encoder 65. Using this data, the PLC 101 can synchronize the movement of the package with the printing device 91 and labeling device 92. When the package is positioned underneath the label applicator, the PLC 101 will communicate with the printing device 91 so that an appropriate label is blown onto the package's upper surface.
Operational Functionality
The following section outlines the operational functionality of the apparatus 10 described above. Generally described, in one particular embodiment, the apparatus 10 can be used to sort a plurality of small packages within a package distribution center. In the package transportation industry, the need to store, manipulate and transmit package level detail is becoming increasingly important. The volume of packages grows exponentially each year, along with customer requirements for greater package tracking and faster delivery. These factors present an ongoing challenge to shippers throughout the country and shippers work continuously to automate the sortation process to meet this challenge. Much of the success of this effort depends on the shipper's ability to acquire enough detail to effectively route packages through the sortation system and ultimately, onto a shelf in a package car.
A critical stage in a package delivery system is the small sortation process, otherwise known as “smalls” to those skilled in the art. As the name suggests, the small sortation process involves the sorting of smaller sized packages. More specifically, smaller sized packages are sorted by one or more operators into one or more package bins 17. As shown in
Processing a Package
The following describes one embodiment in which the apparatus 10 is used to apply labels to a plurality of outbound packages. Referring to
Once the operator has loaded the package onto the positioning indicia 23, the package will begin moving downstream on the first conveyor belt 22 at a predetermined belt speed. The belt speed of the first conveyor belt 22 varies depending on the desired rate of package throughput. In the preferred embodiment, in which a plurality of flats (e.g. 8×12 inch letters) are being sorted, the belt speed is set at 85 feet per minute and the positioning indicia 23 are spaced approximately 24 inches apart. In alternative embodiments, the belt speed can be either decreased or increased.
As shown in
Assuming the package passes through the height limiting assembly 30 without incident, it will continue down the first conveyor belt 22. As the package reaches the end of the first conveyor assembly 20, it will pass between the trigger sensors 50 and break the beam curtain. Once the beam curtain is broken, the trigger sensor 50 will communicate the event to the PLC 101 and the reading assembly 40. By splitting the output signal from the trigger sensor 50 in half, the triggering event can be seen simultaneously at the PLC 101 and the reading assembly 40. Upon receiving input from the sensor 50, the PLC 101 will begin gathering data from the trigger sensor 50 and shaft encoder 65 to (1) determine the package's length and (2) track the package as it proceeds toward the label applicator. In addition, the output from the trigger sensor 50 will cause the reading assembly 40 to illuminate the gap G and scan for labels attached to the package's lower surface 11-LS. The camera (not shown) within the reading assembly 40 captures an image of the label and sends the image to a computer 86. In the preferred embodiment, the camera of the reading assembly 40 and the computer 86 are configured to perform trailing edge processing. Trailing edge processing means that the camera waits until the trailing edge of each package crosses the camera's reading axis before sending information to the computer 86 for processing. Trailing edge processing allows the camera to scan and capture the entirety of the packages lower surface 11-LS, including any and all labels that are attached.
The computer 86 uses decoding software, such as known in the art, to decode the image. In one embodiment, the computer 86 will send the decoded data to a Package Flow System (PFS) to retrieve sort instructions. In this embodiment, the PFS uses the destination zip code associated with the package's decoded tracking number to assign the appropriate sort instructions. In one embodiment, the sort instructions would be a human readable bin number such as A-2. Once ascertained by the PFS, the sort instructions are sent from the computer 86 to the PLC 101 and from the PLC 101 to the printer device 91. When the package passes underneath the label applicator, the label is blown onto the package's upper surface 11-US.
As depicted in
Alternatives and Options
As opposed to the embodiment described above, where the belt speeds remain constant throughout the sorting process, alternative embodiments are designed to incorporate a more adaptive process. In the package delivery industry, efficiency of the employees and equipment is paramount to a successful business. With this in mind, the apparatus 10 described above could be programmed to adapt to the work habits of a particular operator. In one embodiment, the apparatus 10 could adapt in real-time. For example, if the operator is having difficulty hitting all the positioning indicia 23 at the current belt speed, the control assembly 100 could automatically slow down the belts (22, 61). Likewise, if the operator is hitting every positioning indicia 23, the control assembly 100 could speed the belts up and thereby increase the number of packages processed per hour. The apparatus's adaptive nature produces maximum efficiency for both the operator and the machine.
In another embodiment, the apparatus 10, and more specifically the computer 86, can be further configured to automatically reduce the speed of the belts (22, 61) if the number of packages being placed on the belts exceeds the processing capabilities of either the package flow system 120 or the printing device 91. In other words, if the operator is not using the positioning indicia 23 correctly, i.e., the operator is spacing the packages at a distance S′ that is significantly shorter than the preferred spacing distance S, as shown in
In other embodiments, the control assembly 100 could have set speeds associated with each operator. When the operator starts a shift, they will log in and the control apparatus will use the operator's past performance history to set a preferred belt speed. In yet another embodiment, the belt speed could be controlled by the operator directly. If the operator needs to complete a sort as quickly as possible, he or she could manually increase the speed of the belts. Likewise, the operator could also manually decrease the speed of the belts.
In additional embodiments, the apparatus 10 could include devices for providing the operator with feedback associated with his or her performance. In one such embodiment, the apparatus 10 could provide the operator with a display to indicate the operator's efficiency rate, defined by the number of packages labeled per hour. In another embodiment, the apparatus 10 could include horns or lights that will indicate to the operator when they miss a positioning indicia 23.
The resulting apparatus provides an efficient and inexpensive means of labeling and sorting a plurality of packages. Many modifications and other embodiments of the inventions set forth herein will come to mind to one skilled in the art to which these inventions pertain having the benefit of the teachings presented in the foregoing descriptions and the associated drawings. Therefore, it is to be understood that the inventions are not to be limited to the specific embodiments disclosed and that modifications and other embodiments are intended to be included within the scope of the appended claims. Although specific terms are employed herein, they are used in a generic and descriptive sense only and not for purposes of limitation.