Parthenogenic activation of human oocytes for the production of neuronal cells

Information

  • Patent Grant
  • 11324778
  • Patent Number
    11,324,778
  • Date Filed
    Wednesday, November 18, 2015
    9 years ago
  • Date Issued
    Tuesday, May 10, 2022
    2 years ago
Abstract
Methods of producing human stem cells are disclosed for parthenogenetically activating human oocytes by manipulation of O2 tension, including manipulation of Ca2+ under high O2 tension and contacting oocytes with serine threonine kinase inhibitors under low O2 tension, isolating inner cell masses (ICMs) from the activated oocytes, and culturing the cells of the isolated ICMs under high O2 tension. Moreover, methods are described for the production of stems cells from activated oocytes in the absence of non-human animal products, including the use of human feeder cells/products for culturing ICM/stem cells. Stem cells produced by the disclosed methods are also described.
Description
BACKGROUND OF THE INVENTION
Field of the Invention

The present invention relates generally to embryonic stems cells, and more specifically to a process for obtaining human embryonic stem cells using parthenogenetically activated oocytes.


Background Information

Human embryonic stem cells (ES) cells are pluripotent cells that can differentiate into a large array of cell types. When injected into immune-deficient mice, embryonic stem cells form differentiated tumors (teratomas). However, embryonic stem into tissue types suitable for a patient's needs or the appropriate pharmacological test. Associated with this is a need for an efficient and reliable method of producing differentiated cells from embryonic stem cells.


Currently, human embryonic stem cells (hES) are derived from three sources: blastocysts remaining after infertility treatments and donated for research, blastocysts generated from donated gametes (oocytes and sperm), and the products of nuclear transfer (NT). Cadaveric fetal tissue is the only source of human embryonic germ cells (hEG). hES and hEG cells offer remarkable scientific and therapeutic possibilities, involving potential for generating more specialized cells or tissues. Ethical concerns about the sources of hES and hEG cells, however, and fears that use of NT for research could lead to use of NT to produce a human being, have fostered a great deal of public discussion and debate.


Parthenogenic activation of mammalian oocytes may be used as an alterative to fertilization by sperm/NT to prepare oocytes for embryonic stem cell generation. Parthenogenic activation is the production of embryonic cells, with or without eventual development into an adult, from a female gamete in the absence of any contribution from a male gamete.


Parthenogenetic activation of mammalian oocytes has been induced in a number of ways. Using an electrical stimulus to induce activation is of particular interest because electrofusion is part of the current nuclear transfer procedure. Parthenogenetic activation in vitro by electrical stimulation with electrofusion apparatus used for embryonic cell-oocyte membrane fusion has been reported.


Mouse oocytes have been activated by exposure to Ca+2—Mg+2 free medium, medium containing hyaluronidase, exposure to ethanol, Ca+2 ionophores or chelators, inhibitors of protein synthesis, and electrical stimulation. These procedures have led to high rates of parthenogenic activation and development of mouse oocytes, but did not activate and/or lead to a lower development rate of young bovine oocytes. Further, fertilization and parthenogenic activation of mouse oocytes is also dependent on post ovulatory aging.


Activation of bovine oocytes has been reported by ethanol, electrical stimulation, exposure to room temperature, and a combination of electrical stimulation and protein inhibition with cycloheximide. While these processes are thought to raise intracellular Ca+2, they are most successful when the oocytes have been aged for more than 28 hours.


SUMMARY OF THE INVENTION

The present invention is based on the seminal discovery that certain conditions are optimal for parthenogenically activating human oocytes.


In one embodiment, a method of producing human stem cells is provided including parthenogenetically activating an oocyte, where activation includes contacting the oocyte with an ionophore at high oxygen (O2) tension and contacting the oocyte with a serine-threonine kinase inhibitor under low O2 tension, cultivating the activated oocyte at low O2 tension until blastocyst formation, transferring the blastocyst to a layer of feeder cells, and culturing the transferred blastocyst under high O2 tension, mechanically isolating an inner cell mass (ICM) from trophectoderm of the blastocyst, and culturing the cells of the ICM on a layer of feeder cells, where culturing the ICM cells is carried out under high O2 tension. Preferably, the oocyte is human.


In a related aspect, low O2 tension is maintained by incubation in a gas mixture environment comprising an O2 concentration of about 2% O2 to about 5% O2, where the gas mixture environment further comprises about 5% CO2 and about 90% nitrogen (N2) to 93% N2.


In another embodiment, a method of activating human metaphase II oocytes is provided including incubating human metaphase II oocytes in in vitro fertilization (IVF) media under high O2 tension, activating by incubating the cells in IVF media comprising an ionophore under high O2 tension, and subsequently incubating the cells in IVF media comprising a serine-threonine kinase inhibitor (STKI) under low O2 tension, and incubating the STKI treated cells until blastocyst formation under low O2 tension, where inner cell masses (ICM) obtained from the blastocyst produce culturable stem cells. High O2 tension may be maintained by incubating the cells in a gas mixture environment having about 5% CO2, about 20% O2, and about 75% N2.


In a related aspect, the O2 tension for the incubating steps subsequent to activation is maintained by incubating the cells in a gas mixture environment comprising an O2 concentration of about 2% O2 to about 5% O2, where the gas mixture environment further includes about 5% CO2 and about 90% N2 to about 93% N2.


In another related aspect, the IVF media is essentially free of non-human products.


In a further related aspect, isolated oocytes prepared by the invention methods are provided, including isolated inner cell masses (ICM) prepared from such oocytes and corresponding stem cells isolated therefrom.


In another embodiment, human parthenogenic activation of mammalian oocytes resulting in embryogenic stem cells and their differentiated progeny is provided. Such cells and progeny are substantially isogenic to the oocyte donor, thus allowing for autologous transplantation of cells relative to the oocyte donor, and rejection by the oocyte donor's immune system is typically avoided.


In a related aspect, a cell bank of hES cell lines derived from parthenogenically activated oocytes is provided.


In one embodiment, a method for producing human stem cells from a cryopreserved oocyte or parthenote is provided, including microinjecting into the cytoplasm of the oocyte or parthenote a cryopreservation agent, freezing the oocyte or parthenote to a cryogenic temperature to cause it to enter a dormant state, storing the oocyte or parthenote in the dormant state, thawing the oocyte or parthenote, parthenogenically activating the oocyte, where the activation includes contacting the oocyte with an ionophore at high O2 tension and contacting the oocyte with a serine-threonine kinase inhibitor under low O2 tension, cultivating the parthenote or activated oocyte under low O2 tension until blastocyst formation, isolating an inner cell mass (ICM) from the trophectoderm of the blastocyst, and culturing the cells of the ICM on a layer of feeder cells, where culturing is carried out under high O2 tension.


In another embodiment, autologous stem cells derived from parthenogenetically activated oocytes from a human donor are provided. In one aspect, the stem cells possess a substantially identical haplotype as the donor cell. In a related aspect, stem cells are substantially identical genetically to the donor cell.


In one aspect, a stem cell is identified as a full sibling of the donor according to single nucleotide polymorphism (SNP) markers. In another aspect, a stem cell is genomically imprinted according to donor origin.


In one embodiment, a differentiated cell derived from a stem cell obtained from a parthenogenetically activated oocyte from a human donor is disclosed. In a related aspect, the differentiated cell includes, but is not limited to, a neuronal cell, a cardiac cell, a smooth muscle cell, a striated muscle cell, an endothelial cell, an osteoblast, an oligodendrocyte, a hematopoietic cell, an adipose cell, a stromal cell, a chondrocyte, an astrocyte, a dendritic cell, a keratinocyte, a pancreatic islet, a lymphoid precursor cell, a mast cell, a mesodermal cell, and an endodermal cell. In a further related aspect, the differentiated cell expresses one or more markers, including but not limited to, neurofiliment 68, NCAM, beta III-tubulin, GFAP, alpha-actinin, desmin, PECAM-1, VE-Cadherin, alpha-fetoprotein, or a combination thereof.


In another embodiment, a cell line comprising autologous stem cells is disclosed, where the stem cells are derived from parthenogenetically activated oocytes from a human donor. In one aspect, the cells do not express SSEA-1. In another aspect, the cells of the cell line give rise to ectodermal, mesodermal, and endodermal germ lines.


In one embodiment, a cell bank is disclosed including cryopreserved parthenotes, where the parthenotes are derived from parthenogenetically activated oocytes from one or more human donors. In a related aspect, the parthenotes have been cultivated under low O2 tension until blastocyst formation.


In one embodiment, a cell bank is disclosed including cryopreserved autologous stem cells, where the stem cells are derived from parthenogenetically activated oocytes from one or more human donors.


In another embodiment, a method of treating a subject in need thereof, comprising administering a cellular composition comprising differentiated cells, wherein the differentiated cells are derived from a stem cell obtained from a parthenogenetically activated oocyte from a human donor. In one aspect, the differentiated cell is selected from the group consisting of a neuronal cell, cardiac cell, smooth muscle cell, striated muscle cell, endothelial cell, osteoblast, oligodendrocyte, hematopoietic cell, adipose cell, stromal cell, chondrocyte, astrocyte, dendritic cell, keratinocyte, pancreatic islet, lymphoid precursor cell, mast cell, mesodermal cell, and endodermal cell.


In a related aspect, the subject presents a disease selected from the group consisting of Parkinson's disease, Huntington's disease, Alzheimer's disease, ALS, spinal cord defects or injuries, multiple sclerosis, muscular dystrophy, cystic fibrosis, liver disease, diabetes, heart disease, retinal disease (such as macular degeneration and retinitis pigmentosa), cartilage defects or injuries, burns, foot ulcers, vascular disease, urinary tract disease, AIDS, and cancer.


In one embodiment, a method of generating cloned human embryonic stem cells is disclosed, including removing a first pronuclei from a previously fertilized human oocyte, transferring a second pro-nuclei into the enucleated oocyte, where the second pro-nuclei is derived from a donor oocyte or an oocyte from the mother of the donor, or a parthenogenetically activated oocyte, where the pro-nuclei of the oocyte has been replaced by the nucleus of a donor somatic cell prior to activation, and cultivating the resulting oocyte until blastocyst formation, where an inner cell mass from the blastocyst contains the embryonic stem cells.


Exemplary methods and compositions according to this invention are described in greater detail below.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1A shows a micrograph of the surface marker expression of alkaline phosphatase for the parthenogenically derived hES cells.



FIG. 1B shows a micrograph of the expression for the surface marker Oct4.



FIG. 1C shows a micrograph of the expression for the surface marker SSEA-1.



FIG. 1D shows a micrograph of the expression for the surface marker SSEA-3.



FIG. 1E shows a micrograph of the expression for the surface marker SSEA-4.



FIG. 1F shows a micrograph of the expression for the surface marker TRA-1-60.



FIG. 1G shows a micrograph of the expression for the surface marker TRA-1-81.



FIG. 2A shows the analysis of telomerase activity for the parthenogenically derived hES cells. 500, 1000, and 10000 (units) of extract was used to perform the analysis. AH-heat treated test extract (negative control); positive control-telomerase positive cells; CHAPS-lysis buffer; TSR8-control template.



FIG. 2B shows a micrograph of embryoid body formation from parthenogenically derived hES cells, 9 day culture.



FIG. 2C shows a micrograph of embryoid body formation from parthenogenically derived hES cells, 10 day culture.



FIG. 2D illustrates the karyotype of parthenogenically derived hES cells.



FIG. 2E shows the results from DNA finger printing analysis of parthenogenically derived hES cells. 1-DNA from the blood of the oocyte donor; 2-DNA from the parthenogenic hES cells derived from the same donor; 3-DNA from human feeder fibroblasts.



FIG. 3 shows a Northern blot characterizing the expression of genes associated with genomic imprinting. DNA probes: SNRPN, Peg1_2, Peg1_A, H19, and GAPDH (as an internal control). NSF, neonatal skin fibroblasts; hES, human embryonic stem cell line derived from fertilized oocytes; 1, phESC-1; 2, phESC-3, 3, phESC-4, 4, phESC-5; 5, phESC-6; 6 phESC-7. NSF RT−, hES RT−, 1 RT− are negative controls.



FIG. 4 shows the differentiation of phESC into derivatives of all three germ layers. Ectoderm differentiation is presented by positive immunocytochemical staining for neuron specific markers 68 (A), NCAM (B), beta III-tubulin (C) and glial cell marker GFAP (D, M). Differentiated cells were positive for mesodermal markers: muscle specific alpha actinin (G) and desmin (J), endothelial markers PECAM-1 (E) and VE-Cadherin (F). Endoderm differentiation is presented by positive staining for alpha-fetoprotein (H, L). The phESC produce pigmented epithelial-like cells (I, K). Magnification (I)×100; (A-H, J-M), ×400.



FIG. 5 shows the characterization of phESC lines for specific markers. Undifferentiated colonies of phESC on human feeder layer cells (A-F), negative staining for SSEA-1 (G-L), expression of cell surface markers SSEA-3 (M-R), SSEA-4 (S-X). Magnification (A) to (E)×100; (F)×200; (G) to (X)×400. Alkaline phosphatase positive staining of phESC colonies on feeder cells (A-F), OCT-4 (G-L), TRA-1-60 (K-R) and TRA-1-81 (S-X). Magnification (A, B, O, R)×100; (C-F, M, S, X)×200; (G-L, N, P, Q, T-W)×400.



FIG. 6 demonstrates that phESC cells possess high levels of telomerase activity by comparison with positive control cells: “+”-extract from 500 cells; “−”-heat treated cell extract with inactivated telomerase; “Control +”-telomerase positive cell extract (applied with TRAPEZE Kit); “B”-CHAPS lysis buffer, primer-dimer/PCR contamination control; TSR8-telomerase quantitative control template (0.1 and 0.2 amole/μl); “M”-marker, DNA ladder.



FIG. 7 shows the G-banded karyotyping of phESC lines. The phESC-1 (A), phESC-3 (B), phESC-4 (C), phESC-5 (D) and phESC-6 (E) lines have normal 46, XX karyotype. The phESC-7 line has 47, XXX karyotype (F).





DETAILED DESCRIPTION OF THE INVENTION

Before the present composition, methods, and culturing methodologies are described, it is to be understood that this invention is not limited to particular compositions, methods, and experimental conditions described, as such compositions, methods, and conditions may vary. It is also to be understood that the terminology used herein is for purposes of describing particular embodiments only, and is not intended to be limiting, since the scope of the present invention will be limited only in the appended claims.


As used in this specification and the appended claims, the singular forms “a”, “an”, and “the” include plural references unless the context clearly dictates otherwise. Thus, for example, references to “the method” includes one or more methods, and/or steps of the type described herein which will become apparent to those persons skilled in the art upon reading this disclosure and so forth.


“Differentiation” refers to a change that occurs in cells to cause those cells to assume certain specialized functions and to lose the ability to change into certain other specialized functional units. Cells capable of differentiation may be any of totipotent, pluripotent or multipotent cells. Differentiation may be partial or complete with respect to mature adult cells.


Gynogenesis refers to the production of an embryo containing a discernible trophectoderm and inner cell mass that results upon activation of a cell, such as an oocyte, or other embryonic cell type, containing mammalian DNA of all female origin, preferably human female origin, e.g., human or non-human primate oocyte DNA. Such female mammalian DNA may be genetically modified, e.g., by insertion, deletion or substitution of at least one DNA sequence, or may be unmodified. For example, the DNA may be modified by the insertion or deletion of desired coding sequences, or sequences that promote or inhibit embryogenesis. Typically, such an embryo will be obtained by in vitro activation of an oocyte that contains DNA of all female origin. Gynogenesis is inclusive of parthenogenesis which is defined below. It also includes activation methods where the spermatozoal DNA does not contribute to the DNA in the activated oocyte.


In a related aspect, oocytes are obtained from superovulating subjects prepared for IVF. “Superovulation” techniques, such as treatment of a female subject with hormones, used in IVF are designed to stimulate the ovaries to produce several eggs (oocytes) rather than the usual single egg as in a natural cycle.


The medications required to boost egg production may include, but are not limited to the following: Lupron (gonadotropin releasing hormone-agonist), Orgalutran, Antagon or Cetrotide (gonadotropin releasing hoi mone-antagonist), Follistim, Bravelle or Gonal-F (FSH, follicle stimulating hormone), Repronex (combination of FSH and LH, luteinizing hormone), and Pregnyl or Novarel (hCG, human chorionic gonadotropin).


In a related aspect, collection of eggs can be performed under transvaginal ultrasound guidance. To accomplish this, a needle is inserted (e.g., under IV sedation) through the vaginal wall into the ovaries using ultrasound to locate each follicle. The follicular fluid is drawn up into a test tube to obtain the eggs.


“Parthenogenesis” (“parthenogenically activated” and “parthenogenetically activated” is used interchangeably) the process by which activation of the oocyte occurs in the absence of sperm penetration, and refers to the development of an early stage embryo comprising trophectoderm and inner cell mass that is obtained by activation of an oocyte or embryonic cell, e.g., blastomere, comprising DNA of all female origin. In a related aspect, a “parthenote” refers to the resulting cell obtained by such activation. In another related aspect, “blastocyst” refers to a cleavage stage of a fertilized or activated oocyte comprising a hollow ball of cells made of outer trophoblast cells and an inner cell mass (ICM). In a further related aspect, “blastocyst formation” refers to the process, after oocyte fertilization or activation, where the oocyte is subsequently cultured in media for a time to enable it to develop into a hollow ball of cells made of outer trophoblast cells and ICM (e.g., 5 to 6 days).


In one embodiment, the process of creating cloned human embryonic stem cell line by parthenogenetically activated oocytes is disclosed. While pathogenesis is not an uncommon form of reproduction in nature, mammals are not known to be capable of this form of reproduction. However, a 10% rate of spontaneous parthenogenesis can be found in oocytes from females of the inbred mouse strain LT/Sv (Ozil and Huneau, Development (2001) 128:917-928; Vrana et al., Proc Natl Acad Sci USA (2003) 100 (Suppl 1):11911-11916; Berkowitz and Goldstein, New Eng J Med (1996) 335(23):1740-1748). Oocytes from placental mammals can be induced to undergo parthenogenesis in vitro; however, embryonic development is unsuccessful.


Following parthenogenic activation of mammalian oocytes and transfer of the activated oocyte into a surrogate mother, there is limited embryonic survival: ten days in mice; 21 days in sheep; 29 days in pigs; and 11.5 days in rabbits (Kure-bayashi et al., Theriogenology (2000) 53:1105-1119; Hagemann et al., Mol Reprod Dev (1998) 50:154-162; Surani and Barton, Science (1983) 222:10344036). The reason for this arrested development is likely due to genetic imprinting. It has been shown that maternal and paternal genomes are epigentically different and that both sets are required for successful embryonic development (Surani, Cell (1998) 93:309-312; Sasaki et al., (1992) 6:1843-1856). In parthenotes, all of the genetic material should be of maternal origin, a therefore should lack paternal imprinting. Paternal imprinting is thought to be responsible for extra-embryo tissue development, thus the development of trophoblastic tissue following fertilization of an enucleated oocyte (Stevens, Nature (1978) 276:266-267). In animals, therefore, enucleated zygotes may be useful for nuclear transfer with subsequent parthenogenic activation.


Mammalian parthenotes undergo only limited development with eventual death of the embryo. In Macaca fascicularis, only 14 percent of oocytes in stage II metaphase following in vitro Parthenogenetic activation developed to the blastocyst stage following 8 days of culture (Monk, Genes Dev (1988) 2:921-925). Similarly, 12 percent of human oocytes that were parthenogenetically activated in vitro following nuclear transfer developed to the blastocyst state (Monk, 1988). In both cases, one stem cell line was created.


Embryos formed in spontaneously activated parthenotes in virgin females of the LT/Sv inbred mouse strain die within a few days. When nuclear transfer is performed from cells comprising the inner cell mass (ICM) of these embryos into fertilized enucleated C57BL/6j mouse oocytes, cloned mice with the LT/Sv genome are obtained (Kaufman et al., Nature (1977) 265:53-55). Thus, the use of a fertilized oocyte allows for full-term development of a parthenote. In one aspect, a fertilized enucleated human oocyte can be used to support development of a parthenogenetic embryo containing a donor's nuclei until the blastocyst stage.


In one embodiment, the pronuclei of a donor's oocyte or from the oocyte of the mother of a donor, following parthenogenetic activation, can be transferred into a fertilized human oocyte from which the male and female pronuclei have been extracted.


In another embodiment, a two stage process is disclosed for generating human stem cells including transferring the nucleus of a donor's somatic cell into a donor oocyte, where the oocyte is subsequently activated by parthenogenesis and transferring the pronuclei of the activated oocyte into a fertilized oocyte, where the male and female pronuclei have been extracted.


In another embodiment, the nucleus from a donor's somatic cell can be transferred into a fertilized enucleated human oocyte with subsequent parthenogenetic activation. The three embodiments above are illustrated by the following flow diagrams:



















Case 1







Female patient →
Remove oocyte →
Parthenogenetic →
Remove →
Add pronuclei to





activation
pronuclei
enucleated fertilized







oocyte



Male patient →
Obtain oocyte from →
Parthenogenetic →
Remove →
Add pronuclei to




patient's mother
activation
pronuclei
enucleated fertilized







oocyte



Case 2







Obtain donor →
Remove →
Add nucleus from →
Parthenogenetic →
Remove →
Add pronuclei


oocyte
pronuclei
patient's somatic
activation
pronuclei
to enucleated




cell using nuclear


fertilized




transfer


oocyte


Case 3







Obtain donor oocyte →
Fertilize →
Remove nucleus →
Add patient's →
Parthenogenetic






somatic cell
activation






nucleus









“Pluripotent cell” refers to a cell derived from an embryo produced by activation of a cell containing DNA of all female or male origin that can be maintained in vitro for prolonged, theoretically indefinite period of time in an undifferentiated state, that can give rise to different differentiated tissue types, i.e., ectoderm, mesoderm, and endoderm. The pluripotent state of the cells is preferably maintained by culturing inner cell mass or cells derived from the inner cell mass of an embryo produced by androgenetic or gynogenetic methods under appropriate conditions, for example, by culturing on a fibroblast feeder layer or another feeder layer or culture that includes leukemia inhibitory factor (LIF). The pluripotent state of such cultured cells can be confirmed by various methods, e.g., (i) confirming the expression of markers characteristic of pluripotent cells; (ii) production of chimeric animals that contain cells that express the genotype of the pluripotent cells; (iii) injection of cells into animals, e.g., SCID mice, with the production of different differentiated cell types in vivo; and (iv) observation of the differentiation of the cells (e.g., when cultured in the absence of feeder layer or LIF) into embryoid bodies and other differentiated cell types in vitro.


“Diploid cell” refers to a cell, e.g., an oocyte or blastomere, having a diploid DNA content of all male or female origin.


“Haploid cell” refers to a cell, e.g., an oocyte or blastomere, having a haploid DNA content, where the haploid DNA is of all male or female origin.


Activation refers to a process where a fertilized or unfertilized oocyte, for example, but not limited to, in metaphase II of meiosis, undergoes a process typically including separation of the chromatid pairs, extrusion of the second polar body, resulting in an oocyte having a haploid number of chromosomes, each with one chromatid. Activation includes methods whereby a cell containing DNA of all male or female origin is induced to develop into an embryo that has a discernible inner cell mass and trophectoderm, which is useful for producing pluripotent cells but which is itself is likely to be incapable of developing into a viable offspring. Activation may be carried out, for example, under one of the following conditions: (1) conditions that do not cause second polar body extrusion; (ii) conditions that cause polar body extrusion but where the polar body extrusion is inhibited; or (iii) conditions that inhibit first cell division of the haploid oocyte.


“Metaphase II” refers to a stage of cell development where the DNA content of a cell consists of a haploid number of chromosomes with each chromosome represented by two chromatids.


In one embodiment, metaphase II oocytes are activated by incubating oocytes under various O2 tension gas environments. In a related aspect, the low O2 tension gas environment is created by a gas mixture comprising an O2 concentration of about 2%, 3%, 4%, or 5%. In a further related aspect, the gas mixture comprises about 5% CO2. Further, the gas mixture comprises about 90% N2, 91% N2, or 93% N2. This gas mixture is to be distinguished from 5% CO2 air, which is approximately about 5% CO2, 20% O2, and 75% N2.


“O2 tension” refers to the partial pressure (pressure exerted by a single component of a gas mixture) of oxygen in a fluid (i.e., liquid or gas). Low tension is when the partial pressure of oxygen (pO2) is low and high tension is when the pO2 is high.


“Defined-medium conditions” refer to environments for culturing cells where the concentration of components therein required for optimal growth are detailed. For example, depending on the use of the cells (e.g., therapeutic applications), removing cells from conditions that contain xenogenic proteins is important; i.e., the culture conditions are animal-free conditions or free of non-human animal proteins. In a related aspect, “in vitro fertilization (IVF) media” refers to a nutrient system which contains chemically defined substances on or in which fertilized oocytes can be grown.


“Extracellular matrix (ECM) substrates” refer to a surface beneath cells which supports optimum growth. For example, such ECM substrates include, but are not limited to, Matrigel, laminin, gelatin, and fibronectin substrates. In a related aspect, such substrates may comprise collagen IV, entactin, heparin sulfate proteoglycan, to include various growth factors (e.g., bFGF, epidermal growth factor, insulin-like growth factor-1, platelet derived growth factor, nerve growth factor, and TGF-β-1).


“Embryo” refers to an embryo that results upon activation of a cell, e.g., oocyte or other embryonic cells containing DNA of all male or female origin, which optionally may be modified, that comprises a discernible trophectoderm and inner cell mass, which cannot give rise to a viable offspring and where the DNA is of all male or female origin. The inner cell mass or cells contained therein are useful for the production of pluripotent cells as defined previously.


“Inner cell mass (ICM)” refers to the inner portion of an embryo which gives rise to fetal tissues. Herein, these cells are used to provide a continuous source of pluripotent cells in vitro. Further, the ICM includes the inner portion of the embryo that results from androgenesis or gynogenesis, i.e., embryos that result upon activation of cells containing DNA of all male or female origin. Such DNA, for example, will be human DNA, e.g., human oocyte or spermatozoal DNA, which may or may not have been genetically modified.


“Trophectoderm” refers to another portion of early stage embryo which gives rise to placental tissues, including that tissue of an embryo that results from androgenesis or gynogenesis, i.e., embryos that result from activation of cells that contain DNA of all male or female origin, e.g., human ovarian or spermatozoan.


“Differentiated cell” refers to a non-embryonic cell that possesses a particular differentiated, i.e., non-embryonic, state. The three earliest differentiated cell types are endoderm, mesoderm, and ectoderm.


“Substantially identical” refers to a quality of sameness regarding a particular characteristic that is so close as to be essentially the same within the ability to measure difference (e.g., by HLA typing, SNP analysis, and the like).


“Histocompatible” refers to the extent to which an organism will tolerate a graft of a foreign tissue.


“Genomic imprinting” refers to the mechanism by which a number of genes throughout the genome are monoallelically expressed according to their parental origin.


“Homoplasmy,” including grammatical variations thereof, refers to the presence of the same type of the mitochondrial DNA (mtDNA) within a cell or individual.


“Heteroplasmy,” including grammatical variations thereof, refers to the presence of a mixture of more than one type of mitochondrial DNA (mtDNA) within a cell or individual.


“Uniparental” refers to one or more cells or individuals from which another arises and to which it remains subsidiary.


“Mechanically isolating” refers to the process of separating cell aggregates by physical forces. For example, such a process would exclude the use of enzymes (or other cell cleavage products) which might contain non-human materials.


In the native environment, immature oocytes (eggs) from the ovary undergo a process of maturation which results in the progression through meiosis to metaphase II of meiosis. The oocytes then arrest at metaphase II. In metaphase II, the DNA content of the cell consists of a haploid number of chromosomes, each represented by two chromatids.


Such oocytes may be maintained indefinitely by cryopreserving by, for example, but not limited to, microinjection with a sugar.


In one embodiment, a method for producing human stem cells from a cryopreserved oocyte or parthenote is provided, including microinjecting into the cytoplasm of the oocyte or parthenote a cryopreservation agent, freezing the oocyte or parthenote to a cryogenic temperature to cause it to enter a dormant state, storing the oocyte or parthenote in the dormant state, thawing the oocyte or parthenote, parthenogenically activating the oocyte under high O2 tension in the presence or an ionophore followed by contacting the oocyte with a serine-threonine kinase inhibitor under low O2 tension, culturing the activated oocyte or parthenote until blastocyst formation, isolating an inner cell mass (ICM) from the blastocyst, and culturing the cells of the ICM on a layer of human feeder cells, where culturing the ICM cells is carried out under high O2 tension.


In one aspect, oocytes obtained as described are transferred to modified, isotonic IVF covered with embryo-tested mineral oil (Sigma), or any other suitable medium. If desired, the oocytes may be incubated with an extracellular sugar at the same concentration as the amount planned for microinjection. For example, to inject 0.1 M sugar, oocytes may be equilibrated in DMEM/F-12 with 0.1 M sugar. In one aspect, the cryopreservation agent comprises a lower Na+ concentration than standard DMEM (i.e., Na+ low media). In a related aspect, the cryopreservation agent comprises a higher K+ concentration than standard DMEM (i.e., K+ high). In a further related aspect, the cryopreservation agent comprises both a lower Na+ and higher K+ concentration than standard DMEM (i.e., Na+ low/K+ high media). In one aspect, the cryopreservation agent comprises an organic buffer, including but not limited to, HEPES. In another aspect, the cryopreservation agent comprises moieties that inhibit apoptotic protein (e.g., caspases).


Alternatively, the oocytes may be optionally equilibrated with any other substantially non-permeable solute, such a NaCl, to decrease their cell volume prior to microinjection. This initial decrease in cell volume may result in a smaller final volume of the microinjected oocytes compared to oocytes not incubated in a hypertonic media prior to microinjection. This smaller final volume may minimize any potential adverse effect from the swelling of the oocytes. This general procedure for the preparation of cells for microinjection may also be used for other cell types (e.g., activated oocytes, hES cells, and the like).


The oocytes are then microinjected with a cryopreservation agent. Microinjection equipment and procedures are well characterized in the art and microinjection equipment known for use in injecting small molecules into cells may be used with the invention. In an exemplary microinjection step, oocytes can be microinjected at a pressure of 10 psi for 30 milliseconds. Another example of a standard microinjection technique is the method described by Nakayama and Yanagimachi (Nature Biotech. 16:639-642, 1998).


A cryopreservation agent useful in this process includes any chemical that has cryo-protective properties and is ordinarily non-permeable. In particular, the cryopreservation agent can include sugars either alone or mixed together with other traditional cryopreservation agents. Carbohydrate sugars such as trehalose, sucrose, fructose, and raffinose, may be microinjected to concentrations less than or equal to about 1.0 M, and more preferably, less than or equal to about 0.4 M. In one aspect, the concentration is between 0.05 and 0.20 M, inclusive. Additionally, an extracellular sugar or traditional cryopreservation agent may be added prior to storage. If the cells were incubated in a hypertonic solution prior to microinjection, the substantially non-permeable solute may be allowed to remain in the media after microinjection or may be removed from the media by washing the cells with media containing a lower concentration, or none, of this solute.


Certain sugars or polysaccharides which ordinarily do not permeate cell membranes because they are too large to pass through the membrane have superior physiochemical and biological properties for cryopreservation purposes. While these sugars ordinarily do not permeate cell membranes on their own, using the method as described, these ordinarily non-permeating sugars may be microinjected intracellularly to result in a beneficial effect.


Non-permeating sugars having a stabilizing or preserving effect on cells that are especially useful as the cryopreservation agent in the present method include sucrose, trehalose, fructose, dextran, and raffinose. Among these sugars, trehalose, a non-reducing disaccharide of glucose, has been shown to be exceptionally effective in stabilizing cell structures at low concentrations. The addition of extracellular glycolipids or glycoproteins may also stabilize the cell membrane.


Following the microinjection of the cryopreservation agent, the cells are prepared for storage. A variety of methods for freezing and/or drying may be employed to prepare the cells for storage. In particular, three approaches are described herein: vacuum or air drying, freeze drying, and freeze-thaw protocols. Drying processes have the advantage that the stabilized biological material may be transported and stored at ambient temperatures.


Typically, oocytes loaded with 1 to 2M DMSO are cooled at a very slow cooling rate (0.3 to 0.5° C./min) to an intermediate temperature (—60° C. to −80° C.) before plunging in liquid nitrogen for storage. The sample can then be stored at this temperature.


The suspended material can then be stored at cryopreservation temperatures, for example, by leaving the vials in liquid nitrogen (LN2), for the desired amount of time.


Protocols for vacuum or air drying and for freeze drying proteins are well characterized in the art (Franks et al., “Materials Science and the Production of Shelf-Stable Biologicals,” BioPharm, October 1991, p. 39; Shalaev et al., “Changes in the Physical State of Model Mixtures during Freezing and Drying: Impact on Product Quality,” Cryobiol. 33, 14-26 (1996)) and such protocols may be used to prepare cell suspensions for storage with the method as described. In addition to air drying, other convective drying methods that may be used to remove water from cell suspensions include the convective flow of nitrogen or other gases.


An exemplary evaporative vacuum drying protocol useful with the method of the invention may include placing 20 μl each into wells on 12 well plates and vacuum drying for 2 hours at ambient temperature. Of course, other drying methods could be used, including drying the cells in vials. Cells prepared in this manner may be stored dry, and rehydrated by diluting in DMEM or any other suitable media.


A method of the invention using freeze drying to prepare the cells for storage begins with freezing the cell suspension. While methods of freezing known in the art may be employed, the simple plunge freezing method described herein for the freeze-thaw method may also be used for the freezing step in the freeze drying protocol.


After freezing, a two stage drying process may be employed. In the first stage, energy of sublimation is added to vaporize frozen water. Secondary drying is performed after the pure crystalline ice in the sample has been sublimated. Freeze dried cells can be stored and hydrated in the same manner as described above for vacuum drying. Viable cells may then be recovered.


After the recovery of cells from a frozen or dried state, any external cryopreservation agent may be optionally removed from the culture media. For example, the media may be diluted by the addition of the corresponding media with a lower concentration of cryopreservation agent. For example, the recovered cells may be incubated for approximately five minutes in media containing a lower concentration of sugar than that used for cell storage. For this incubation, the media may contain the same sugar that was used as the cryopreservation agent; a different cryopreservation agent, such as galactose; or any other substantially non-permeable solute. To minimize any osmotic shock induced by the decrease in the osmolarity of the media, the concentration of the extracellular cryopreservation agent may be slowly decreased by performing this dilution step multiple times, each time with a lower concentration of cryopreservation agent. These dilution steps may be repeated until there is no extracellular cryopreservation agent present or until the concentration of cryopreservation agent or the osmolarity of the media is reduced to a desired level.


The parthenogenetically activated oocytes, blastocysts, ICM, and autologous stem cells can be stored or “banked” in a manner that allows the cells to be revived as needed in the future. An aliquot of the parthenogenetically activated oocytes and autologous stem cells can be removed at any time, to be grown into cultures of many undifferentiated cells and then differentiated into a particular cell type or tissue type, and may then be used to treat a disease or to replace malfunctioning tissues in a subject. Since the cells are parthenogenetically derived from the donor, the cells can be stored so that an individual or close relative can have access to cells for an extended period of time.


In one embodiment, a cell bank is provided for storing parthenogenetically activated oocytes, blastocysts, ICM, and/or autologous stem cell samples. In another embodiment, methods for administering such a cell bank are provided. U.S. Published Patent Application No. 20030215942, which is incorporated by reference herein in its entirety, provides an example of a stem cell bank system.


Using methods such as those described above, the isolation and in vitro propagation of parthenogenetically activated oocytes, blastocysts, ICM, and autologous stem cell samples and their cryopreservation facilitates the establishment of a “bank” of transplantable human stem cells. Because it is possible to store smaller aliquots of cells, the banking procedure could take up a relatively small space. Therefore, the cells of many individuals could be stored or “banked” on a short term or long term basis, with relatively little expense.


In one embodiment, a portion of the sample is made available for testing, either before or after processing and storage.


This invention also provides methods of recording or indexing the parthenogenetically activated oocyte, blastocyst, ICM, and/or autologous stem cell samples so that when a sample needs to be located, it can be easily retrieved. Any indexing and retrieval system can be used to fulfill this purpose. Any suitable type of storage system can be used so that the parthenogenetically activated oocytes, blastocysts, ICM, and/or autologous stem cells can be stored. The samples can be designed to store individual samples, or can be designed to store hundreds, thousands, and even millions of different cell samples.


The stored parthenogenetically activated oocyte, blastocyst, ICM, and/or autologous stem cell samples can be indexed for reliable and accurate retrieval. For example, each sample can be marked with alphanumeric codes, bar codes, or any other method or combinations thereof. There may also be an accessible and readable listing of information enabling identification of each parthenogenetically activated oocyte, blastocyst, ICM, and/or autologous stem cell sample and its location in the bank and enabling identification of the source and/or type the cell sample, which is outside of the bank. This indexing system can be managed in any way known in the art, e.g., manually or non-manually, e.g. a computer and conventional software can be used.


In one embodiment, the cell samples are organized using an indexing system so that the sample will be available for the donor's use whenever needed. In other embodiments, the cell samples can be utilized by individuals related to the original donor. Once recorded into the indexing system, the cell sample can be made available for matching purposes, e.g., a matching program will identify an individual with matching type information and the individual will have the option of being provided the matching sample.


The storage banking system can comprise a system for storing a plurality of records associated with a plurality of individuals and a plurality of cell samples. Each record may contain type information, genotypic information or phenotypic information associated with the cell samples or specific individuals. In one embodiment, the system will include a cross-match table that matches types of the samples with types of individuals who wish to receive a sample.


In one embodiment, the database system stores information for each parthenogenetically activated oocyte, blastocyst, ICM, and/or autologous stem cell sample in the bank. Certain information is stored in association with each sample. The information may be associated with a particular donor, for example, an identification of the donor and the donor's medical history. For example, each sample may be HLA typed and the HLA type information may be stored in association with each sample. The information stored may also be availability information. The information stored with each sample is searchable and identifies the sample in such a way that it can be located and supplied to the client immediately.


Accordingly, embodiments of the invention utilize computer-based systems that contain information such as the donor, date of submission, type of cells submitted, types of cell surface markers present, genetic information relating to the donor, or other pertinent information, and storage details such as maintenance records and the location of the stored samples, and other useful information.


The term “a computer-based system” refers to the hardware, software, and any database used to store, search, and retrieve information about the stored cells. The computer-based system preferably includes the storage media described above, and a processor for accessing and manipulating the data. The hardware of the computer-based systems of this embodiment comprises a central processing unit (CPU) and a database. A skilled artisan can readily appreciate that any one of the currently available computer-based systems are suitable.


In one embodiment, the computer system includes a processor connected to a bus that is connected to a main memory (preferably implemented as RAM) and a variety of secondary storage devices, such as a hard drive and removable medium storage device. The removable medium storage device can represent, for example, a floppy disk drive, a DVD drive, an optical disk drive, a compact disk drive, a magnetic tape drive, etc. A removable storage medium, such as a floppy disk, a compact disk, a magnetic tape, etc. containing control logic and/or data recorded therein can be inserted into the removable storage device. The computer system includes appropriate software for reading the control logic and/or the data from the removable medium storage device once inserted in the removable medium storage device. Information relating to the parthenogenetically activated oocyte, blastocyst, ICM, and/or autologous stem cell can be stored in a well known manner in the main memory, any of the secondary storage devices, and/or a removable storage medium. Software for accessing and processing these data (such as search tools, compare tools, etc.) reside in main memory during execution.


As used herein, “a database” refers to memory that can store any useful information relating to the parthenogenetically activated oocyte and/or autologous stem cell collections and the donors.


The data relating to the stored parthenogenetically activated oocyte, blastocyst, ICM, and/or autologous stem cell can be stored and manipulated in a variety of data processor programs in a variety of formats. For example, the data can be stored as text in a word processing file, such as Microsoft WORD or WORDPERFECT, an ASCII file, an html file, or a pdf file in a variety of database programs familiar to those of skill in the art, such as DB2, SYBASE, or ORACLE.


A “search program” refers to one or more programs that are implemented on the computer-based system to search for details or compare information relating to the cryopreserved samples within a database. A “retrieval program” refers to one or more programs that can be implemented on the computer-based system to identify parameters of interest in the database. For example, a retrieval program can be used to find samples that fit a particular profile, samples having specific markers or DNA sequences, or to find the location of samples corresponding to particular individuals.


There is no upper limit on the number of cell samples that can be stored in one cell bank. In one embodiment, hundreds of products from different individuals will be stored at one bank or storage facility. In another embodiment, up to millions of products may be stored in one storage facility. A single storage facility may be used to store parthenogenetically activated oocyte and/or autologous stem cell samples, or multiple storage facilities may be used.


In some embodiments of the present invention, the storage facility may have a means for any method of organizing and indexing the stored cell samples, such as, for example, automated robotic retrieval mechanisms and cell sample manipulation mechanisms. The facility may include micromanipulation devices for processing cell samples. Known conventional technologies can be used for efficient storage and retrieval of the cell samples. Exemplary technologies include but are not limited to Machine Vision, Robotics, Automated Guided Vehicle System, Automated Storage and Retrieval Systems, Computer Integrated Manufacturing, Computer Aided Process Planning, Statistical Process Control, and the like.


The type information or other information associated with the individual in need of a sample may be recorded into a system that can be used to identify an appropriate matching product, such as, for example, a database system, an indexing system, and the like. Once recorded in the system, a match can be made between the type of the individual and a donor cell sample. In preferred embodiments, the donor sample is from the same individual as the individual in need of the sample. However, similar but not identical donor/recipient matches can also be used. The matching sample is available for the individual possessing the matching type identifier. In one embodiment of this invention, the individual's identification information is stored in connection with the cell sample. In some embodiments, the matching process occurs around the time of harvesting the sample, or can occur at any time during processing, storage, or when a need arises. Accordingly, in some embodiments of the invention, the matching process occurs before the individual is in actual need of the cell sample.


When the parthenogenetically activated oocyte, blastocyst, ICM, and/or autologous stem cell sample is needed by an individual, it may be retrieved and made available for research, transplantation or other purposes within minutes, if desired. The sample may also be further processed to prepare it for transplantation or other needs.


Normally, the oocyte is ovulated at this stage and fertilized by the sperm. The sperm initiates the completion of meiosis in a process called activation. During activation, the pairs of chromatids separate, the second polar body is extruded, and the oocyte retains a haploid number of chromosomes, each with one chromatid. The sperm contributes the other haploid complement of chromosomes to make a full diploid cell with single chromatids. The chromosomes then progress through DNA synthesis during the first cell cycle. These cells then develop into embryos.


By contrast, embryos described herein are developed by artificial activation of cells, typically mammalian oocytes or blastomeres containing DNA of all male or female origin. As discussed in the background of the invention, many methods have been reported in the literature for artificial activation of unfertilized oocytes. Such methods include physical methods, e.g., mechanical methods such as pricking, manipulation or oocytes in culture, thermal methods such as cooling and heating, repeated electric pulses, enzymatic treatments, such as trypsin, pronase, hyaluronidase, osmotic treatments, ionic treatments such as with divalent cations and calcium ionophores, such as ionomycin and A23187, the use of anesthetics such as ether, ethanol, tetracaine, lignocaine, procaine, phenothiazine, tranquilizers such as thioridazine, trifluoperazine, fluphenazine, chlorpromazine, the use of protein synthesis inhibitors such as cycloheximide, puromycin, the use of phosphorylation inhibitors, e.g., protein kinase inhibitors such as staurosporine, 2-aminopurine, sphingosine, and DMAP, combinations thereof, as well as other methods.


Such activation methods are well known in the art and are discussed U.S. Pat. No. 5,945,577, incorporated herein by reference.


In one embodiment, a human cell in metaphase II, typically an oocyte or blastomere comprising DNA of all male or female origin, is artificially activated for effecting artificial activation of oocytes.


In a related aspect, the activated cell, e.g., oocyte, which is diploid, is allowed to develop into an embryo that comprises a trophectoderm and an inner cell mass. This can be effected using known methods and culture media that facilitate blastocyst development.


After the gynogenetic embryos have been cultured to produce a discernable trophectoderm and inner cell mass, the cells of the inner cell mass are then used to produce the desired pluripotent cell lines. This can be accomplished by transferring cells derived from the inner cell mass or the entire inner cell mass onto a culture that inhibits differentiation. This can be effected by transferring the inner cell mass cells onto a feeder layer that inhibits differentiation, e.g., fibroblasts or epithelial cells, such as fibroblasts derived from postnatal human tissues, etc., or other cells that produce LIF. Other factors/components may be employed to provide appropriate culture conditions for maintaining cells in the undifferentiated state including, but not limited to, addition of conditioned media (Amit et al., Developmental Biol (2000) 227:271-278), bFGF and TGF-β1 (with or without LIF) (Amit et al., Biol Reprod (2004) 70:837-845), factors which activate the gp130/STAT3 pathway (Hoffman and Carpenter, Nature Biotech (2005) 23(6):699-708), factors which activate the PI3K/Akt, PKB pathway (Kim et al., FEBS Lett (2005) 579:534-540), factors that are members of the bone morphogenetic protein (BMP) super family (Hoffman and Carpenter (2005), supra), and factors which activate the canonical/β-catenin Wnt signaling pathway (e.g., GSK-3-specific inhibitor; Sato et al., Nat Med (2004) 10:55-63). In a related aspect, such factors may comprise culture conditions that include feeder cells and/or ECM substrates (Hoffman and Carpenter (2005), supra).


In one aspect, the inner cell mass cells are cultured on human postnatal foreskin or dermal fibroblast cells or other cells which produce leukemia inhibitory factor, or in the presence of leukemia inhibitory factor. In a related aspect, feeder cells are inactivated prior to seeding with the ICM. For example, the feeder cells can be mitotically inactivated using an antibiotic. In a related aspect, the antibiotic can be, but is not limited to, mitomycin C.


Culturing will be effected under conditions that maintain the cells in an undifferentiated, pluripotent state, for prolonged periods, theoretically indefinitely. In one embodiment, oocytes are parthenogenically activated with calcium ionophores under high O2 tension followed by contacting the oocytes with a serine-threonine kinase inhibitor under low O2 tension. The resulting ICM from the parthenogenically activated oocytes is cultured under high O2 tension, where the cells, for example, are maintained using a gas mixture comprising 20% O2. In one aspect, culturable refers to being capable of, or fit for, being cultivated. In a related aspect, ICM isolation is carried out mechanically after four days of blastocyst cultivation, where the cultivation is carried out on feeder cells. Such cultivation, for example, eliminates the need to use materials derived from animal sources, as would be the case for immunosurgery.


In a related aspect, culture media for the ICM is supplemented with non-animal sera, including but not limited to, human umbilical cord serum, where the serum is present in defined media (e.g., IVF, available from MediCult A/S, Denmark; Vitrolife, Sweden; or Zander IVF, Inc., Vero Beach, Fla.). In another aspect, the media and processes as provided are free of animal products. In a related aspect, animal products are those products, including serum, interferons, chemokines, cytokines, hormones, and growth factors, that are from non-human sources.


The pluripotent state of the cells produced by the present invention can be confirmed by various methods. For example, the cells can be tested for the presence or absence of characteristic ES cell markers. In the case of human ES cells, examples of such markers are identified supra, and include SSEA-4, SSEA-3, TRA-1-60, TRA-1-81 and OCT 4, and are known in the art.


Also, pluripotency can be continued by injecting the cells into a suitable animal, e.g., a SCID mouse, and observing the production of differentiated cells and tissues. Still another method of confirming pluripotency is using the subject pluripotent cells to generate chimeric animals and observing the contribution of the introduced cells to different cell types. Methods for producing chimeric animals are well known in the art and are described in U.S. Pat. No. 6,642,433, incorporated by reference herein.


Yet another method of confirming pluripotency is to observe ES cell differentiation into embryoid bodies and other differentiated cell types when cultured under conditions that favor differentiation (e.g., removal of fibroblast feeder layers). This method has been utilized and it has been confirmed that the subject pluripotent cells give rise to embryoid bodies and different differentiated cell types in tissue culture.


The resultant pluripotent cells and cell lines, preferably human pluripotent cells and cell lines, which are derived from DNA of entirely female original, have numerous therapeutic and diagnostic applications. Such pluripotent cells may be used for cell transplantation therapies or gene therapy (if genetically modified) in the treatment of numerous disease conditions.


In this regard, it is known that mouse embryonic stem (ES) cells are capable of differentiating into almost any cell type. Therefore, human pluripotent (ES) cells produced according to the invention should possess similar differentiation capacity. The pluripotent cells according to the invention will be induced to differentiate to obtain the desired cell types according to known methods. For example, human ES cells produced according to the invention may be induced to differentiate into hematopoietic stem cells, muscle cells, cardiac muscle cells, liver cells, islet cells, retinal cells, cartilage cells, epithelial cells, urinary tract cells, etc., by culturing such cells in differentiation medium and under conditions which provide for cell differentiation. Medium and methods which result in the differentiation of ES cells are known in the art as are suitable culturing conditions.


For example, Palacios et al, Proc. Natl. Acad. Sci., USA, 92:7530-7537 (1995) teach the production of hematopoietic stem cells from an embryonic cell line by subjecting stem cells to an induction procedure comprising initially culturing aggregates of such cells in a suspension culture medium lacking retinoic acid followed by culturing in the same medium containing retinoic acid, followed by transferal of cell aggregates to a substrate which provides for cell attachment.


Moreover, Pedersen, J. Reprod. Fertil. Dev., 6:543-552 (1994) is a review article which references numerous articles disclosing methods for in vitro differentiation of embryonic stem cells to produce various differentiated cell types including hematopoietic cells, muscle, cardiac muscle, nerve cells, among others.


Further, Bain et al, Dev. Biol., 168:342-357 (1995) teach in vitro differentiation of embryonic stem cells to produce neural cells which possess neuronal properties. These references are exemplary of reported methods for obtaining differentiated cells from embryonic or stem cells. These references and in particular the disclosures therein relating to methods for differentiating embryonic stem cells are incorporated by reference in their entirety herein. Thus, using known methods and culture medium, one skilled in the art may culture the subject ES cells, including genetically engineered or transgenic ES cells, to obtain desired differentiated cell types, e.g., neural cells, muscle cells, hematopoietic cells, etc. Pluripotent cells produced by the methods described herein may be used to obtain any desired differentiated cell type. Therapeutic usages of differentiated human cells are unparalleled. For example, human hematopoietic stem cells may be used in medical treatments requiring bone marrow transplantation. Such procedures are used to treat many diseases, e.g., late stage cancers such as ovarian cancer and leukemia, as well as diseases that compromise the immune system, such as AIDS. Hematopoietic stem cells can be obtained, e.g., by incorporating male or female DNA derived from a male or female cancer or AIDS patient with an enucleated oocyte, obtaining pluripotent cells as described above, and culturing such cells under conditions which favor differentiation, until hematopoietic stem cells are obtained. Such hematopoietic cells may be used in the treatment of diseases including cancer and AIDS.


Alternatively, the subject pluripotent cells may be used to treat a patient with a neurological disorder by culturing such cells under differentiation conditions that produce neural cell lines. Specific diseases treatable by transplantation of such human neural cells include, by way of example, Parkinson's disease, Alzheimer's disease, ALS and cerebral palsy, among others. In the specific case of Parkinson's disease, it has been demonstrated that transplanted fetal brain neural cells make the proper connections with surrounding cells and produce dopamine. This can result in long-term reversal of Parkinson's disease symptoms. In a related aspect, nerve precursors can be used to reanneal severed/damaged nerve fibers to restore movement after hand, leg, and spinal cord injuries.


One object of the subject invention is that it provides an essentially limitless supply of pluripotent, human cells that can be used to produce differentiated cells suitable for autologous transplantation for the oocyte donor. Human embryonic stem cells and their differentiated progeny derived from blastocysts remaining after infertility treatments, or created using NT, will likely be rejected by a recipient's immune system when used in allogenic cell transplantation therapy. Parthenogenically derived stem cells should result in differentiated cells that could alleviate the significant problem associated with current transplantation methods, i.e., rejection of the transplanted tissue which may occur because of host-vs-graft or graft-vs-host rejection relative to the oocyte donor. Conventionally, rejection is prevented or reduced by the administration of anti-rejection drugs such as cyclosporin. However, such drugs have significant adverse side-effects, e.g., immunosuppression, carcinogenic properties, as well as being very expensive. Cells produced by the methods as disclosed should eliminate, or at least greatly reduce, the need for anti-rejection drugs relative to the oocyte donor.


Another object of the subject invention is that it provides an essentially limitless supply of pluripotent, human cells that can be used to produce differentiated cells suitable for allogenic transplantation to members of the oocyte donor's family (e.g., siblings). The cells will be immunologically and genetically similar to those of the oocytes donor's direct family members and thus less likely to be rejected by the donor's family members.


Another object of this method is that parthenogenic activation of mammalian oocytes is a relatively simple procedure when compared to SCNT and results in the creation of stem cells with less cell manipulation.


Parthenogenic activation of mammalian oocytes has shown to be more efficient in the creation of stem cells than methods requiring mechanical manipulation of the oocyte (e.g., SCNT).


One drawback of SCNT is that subjects with deficient mitochondrial respiratory chain activity present phenotypes with striking similarities to abnormalities commonly encountered in SCNT fetuses and offspring (Hiendleder et al, Repro Fertil Dev (2005) 17(1-2):69-83). Cells normally contain only one type of mitochondrial DNA (mtDNA), termed homoplasmy, however, heteroplasmy does exist, usually as a combination of mutant and wild-type mt DNA molecules or form a combination of wild-type variants (Spikings et al., Hum Repro Update (2006) 12(4):401-415). As heteroplasmy can result in mitochondrial disease, various mechanisms exist to ensure maternal-only transmission. However, with the increasing use of protocols which bypass normal mechanisms for homoplasmy maintenance (e.g., cytoplasmic transfer (CT) and SCNT), perturbed mitochondrial function may be intrinsic to stem cells derived from these sources.


In one aspect, as the parthenotes are uniparental, the possibility of heteroplasmy is minimized.


Other diseases and conditions treatable by cell therapy include, by way of example, spinal cord injuries, multiple sclerosis, muscular dystrophy, diabetes, liver diseases Including acute diseases (viral hepatitis, drug overdoses (acetaminophen) and others), chronic diseases (chronic hepatitis and others (generally leading to cirrhosis)), heritable liver defects (hemophilia B, factor IX deficiency, bilirubin metabolism defects, urea cycle defects, lysosomal storage disease, al-antitrypsin deficiency and others), heart diseases, cartilage replacement, burns, foot ulcers, gastrointestinal diseases, vascular diseases, kidney disease, retinal disease, urinary tract disease, and aging related diseases and conditions.


This methodology can be used to replace defective genes, e.g., defective immune system genes, cystic fibrosis genes, or to introduce genes which result in the expression of therapeutically beneficial proteins such as growth factors, lymphokines, cytokines, enzymes, etc.


For example, the gene encoding brain derived growth factor may be introduced into human pluripotent cells produced according to the invention, the cells differentiated into neural cells and the cells transplanted into a Parkinson's patient to retard the loss of neural cells during such disease.


Also, the subject pluripotent human ES cells, may be used as an in vitro model of differentiation, in particular for the study of genes which are involved in the regulation of early development. Also, differentiated cell tissues and organs produced using the subject ES cells may be used in drug studies.


Further, the subject ES cells or differentiated cells derived therefrom may be used as nuclear donors for the production of other ES cells and cell colonies.


Still further, pluripotent cells obtained according to the present disclosure may be used to identify proteins and genes that are involved in embryogenesis. This can be effected, e.g., by differential expression, i.e., by comparing mRNAs that are expressed in pluripotent cells provided according to the invention to mRNAs that are expressed as these cells differentiate into different cell types, e.g., neural cells, myocardiocytes, other muscle cells, skin cells, etc. Thereby, it may be possible to determine what genes are involved in differentiation of specific cell types.


Further, ES cells and/or their differentiated progeny that have specific genetic defects, such as the genetic defect that leads to Duchene's Muscular Dystrophy, may be used as models to study the specific disease associated with the genetic defect.


Also, it is another object of the present disclosure to expose pluripotent cell lines produced according to the described methods to cocktails of different growth factors, at different concentrations and under different cell culture conditions such as cultured on different cell matrices or under different partial pressures of gases so as to identify conditions that induce the production and proliferation of desired differentiated cell types.


The following examples are intended to illustrate but not limit the invention.


Example 1
Production of Human Parthenogenic Embryogenic Stem Cells

Materials and Methods


Donors voluntarily donated oocytes, cumulous cells, and blood (for DNA analysis) with no financial payment. Donors signed comprehensive informed consent documents and were informed that all donated materials were to be used for research and not for reproductive purposes. Before ovarian stimulation, oocyte donors underwent medical examination for suitability according to FDA eligibility determination guidelines for donors of human cells, tissues, and cellular and tissue-based products (Food and Drug Administration. (Draft) Guidance for Industry: Eligibility Determination for Donors of Human Cells, Tissues, and Cellular and Tissue Based Products (HCT/Ps) dated May 2004) and order N 67 (Feb. 26, 2003) of Russian Public Health Ministry. It included X-ray, blood and urine analysis, and liver function test. Donors were also screened for syphilis, HIV, HBV, and HCV.


Oocytes were obtained using standard hormonal stimulation to produce superovulation in the subject donor. Each donor egg underwent ovarian stimulation by FSH from the 3rd to the 13th days of their menstrual cycle. A total of 1500 IU of FSh was given. From the 10th to the 14th day of the donor's menstrual cycle, gonadoliberin antagonist Orgalutran (Organon, Holland) was injected at 0.25 mg/day. From the 12th to the 14th day of the donor's menstrual cycle a daily injection of 75 IU FSH+75 IU LH (Menopur, Ferring GmbH, Germany) was given. If an ultrasound examination displayed follicles between 18 and 20 mm in diameter, a single 8000 IU dose of hGC (Choragon, Ferring GmbH, Germany) was administered on the 14th day of the donor's menstrual cycle. Trans-vaginal punction was performed 35 hours after hCG injection on approximately the 16th day. Follicular fluid was collected from the antral follicles of anesthetized donors by ultrasound-guided needle aspiration into sterile tubes.


Cumulus oocyte complexes (COCs) were picked from the follicular fluid, washed in Flushing Medium (MediCult) and then incubated in Universal IVF medium (MediCult, see Table 1) with a Liquid Paraffin (MediCult) overlay for 2 hours in a 20% O2, 5% CO2, at 37° C. humidified atmosphere.









TABLE 1





IVF media.


COMPOSITION

















Calcium Chloride



EDTA



Glucose



Human Serum Albumin



Magnesium Sulfate



Penicillin G



Potassium Chloride



Potassium di-Hydrogen Phosphate



Sodium Bicarbonate



Sodium Chloride



Sodium Lactate



Sodium Pyruvate



Water










Before activation, cumulus-oocyte complexes (COCs) were treated with SynVitro Hyadase (MediCult, A/S, Denmark) to remove cumulus cells followed by incubation in Universal IVF medium with a paraffin overlay for 30 minutes.


From this point onward, the culture of oocytes and embryos was performed in a humidified atmosphere at 37° C. using O2-reduced gas mixture (90% N2+5% O2+5% CO2), with the exception of the ionomycin treatment. The oocytes were activated by incubation in 5 μM ionomycin for 5 minutes in a CO2 incubator at 37° C. in a gas environment of 20% O2, 5% CO2, followed by culture with 1 mM 6-dimethylaminopurine (DMAP) for 4 hours in IVF medium, with paraffin overlay, in a gas environment of 90% N2, 5% O2, and 5% CO2 at 37° C. The oocytes were then washed 3 times in IVF. Activation and cultivation were carried out in 4-well plates (Nunclon, A/S, Denmark) in 500 μl of medium overlaid with liquid paraffin oil (MediCult, A/S, Denmark).


Activated oocytes were cultivated in IVF medium in a gas environment comprising 5% O2, 5% CO2, and 90% N2, and embryos generated from the activated oocytes were cultured in the same gas mixture.


Activated oocytes were allowed to incubate in IVF under the above conditions (i.e., low O2 tension) until fully expanded blastocysts containing an inner cell mass (ICM) at a Blastocyst Scoring Modification of 1AA or 2AA (Shady Grove Fertility Center, Rockville, Md., and Georgia Reproductive Specialists, Atlanta, Ga.) was observed.


The zona pellucida was removed by 0.5% pronase (Sigma, St. Louis) treatment. The ICM from blastocysts was isolated by immuno-surgery where the blastocysts were incubated with horse antiserum to human spleen cells followed by exposure to guinea pig complement. Trophoectodern cells were removed from the ICM by gently pipetting the treated blastocysts.


For the derivation of ICM from whole blastocysts, the blastocysts were placed on a feeder layer in medium designed for culture of phESC (i.e., VitroHES™ media, e.g., DMEM/high glucose medium, VitroLife, Sweden) supplemented with 10% human umbilical cord blood serum, 5 ng/ml human recombinant LIF (Chemicon Int'l, Inc., Temecula, Calif.), 4 ng/ml recombinant human FGF (Chemicon Int'l, Inc., Temecula, Calif.) and penicillin-streptomycin (100 U/100 m)). When blastocysts attached and trophoplast cells spread, the ICM became visible. Through three to four days of additional culture, the ICM was isolated through mechanical slicing of the ICM from the trophoectoderm outgrowth using a finely drawn glass pipette. Further, the IMC cells were cultured on a feeder cell layer of mitotically inactivated post natal human dermal fibroblasts, in VirtroHES™ media (as formulated above) in a 96-well plate in 5% CO2 and 20% O2 at 37° C. This gas mixture was used to culture stem cells. Human fibroblast cultures were made using non-animal materials. Inactivation of fibroblasts was carried out using 10 μg/ml mitomycin C (Sigma, St. Louis, Mo.) for 3 hours.


In a separate method, immuno-surgery was performed by incubating blastocysts with horse antiserum to human spleen cells followed by exposure to rabbit complement. The trophectoderm cells were removed from the ICM through gentle pipetting of the treated blastocyts. Further culturing of the isolated ICMs was performed on a feeder layer of neonatal human skin fibroblasts (HSF) obtained from a genetically unrelated individual (with parental consent) derived using medium containing human umbilical cord blood serum. The HSF feeder layer was mitotically inactivated using mitomycin C.


The medium for the culture of HSF consisted of 90% DMEM (high glucose, with L-glutamine (Invitrogen), 10% human umbilical cord blood serum and penicillin-streptomycin (100 U/100 mg) Invitrogen).


For the culture of ICM and phESC, VitroHES™ (Vitrolife) supplemented with 4 ng/ml hrbFGF, 5 ng/ml hrLIF and 10% human umbilical cord blood serum was used. The ICM was mechanically plated on a fresh feeder layer and cultured for three to four days. The first colony was mechanically cut and replated after five days of culture. All subsequent passages were made after five to six days in culture. For early passages, colonies were mechanically divided into clumps and replated. Further passing of phESC was performed with collagenase IV treatment and mechanical dissociation. The propagation of phESC was performed at 37° C., 5% CO2 in a humidified atmosphere.


Oocyte Activation


From the initial donor, four oocytes were activated, and the activated oocytes were cultivated in IVF medium in a gas environment comprising 5% O2, 5% CO2, and 90% N2 and followed over five (5) days. Table 2 shows the progress of maturation of the activated oocytes. Each oocyte was separated in a 4-well plate.









TABLE 2







Cultured Activated Oocytes.*












Day 1
Day 2
Day 3
Day 5















N1
1 pronucleus (pn),
2 blastomers
4 bl equal,
1 morula,



1 polar body (pb)
(bl) equal,
fr-2%
fr-15%




fragmentation




(fr)-0%


N2
0 pn,
4 bl not equal,
5 bl not equal,
4 bl not equal,



1 pb
fr-4%
fr-20%
fr-40%


N3
1 pn,
2 bl not equal,
6 bl equal,
early



1 pb
ft-0%
ft-0%
blastocysts


N4
1 pn,
4 bl equal,
4 bl equal,
Fully expanded



1 pb
fr-10%
fr-20%
blastocyst with






good ICM IAA





*Cells were incubated in M1 ™ media (MediCult) on the first day and M2 ™ media (MediCult) on days 2-5. Media was changed everyday. M1 ™ and M2 ™ contain human serum albumin, glucose and derived metabolites, physiological salts, essential amino acids, non-essential amino acids, vitamins, nucleotides, sodium bicarbonate, streptomycin (40 mg/l), penicillin (40.000 IU/l) and phenol red.






Inner cell masses were isolated from N4 and transferred to human fibroblast feeder cells as outlined above. N1 and N2 degenerated on Day 6. Further, on Day 6, N3 produced fully expanded blastocyst with ICM 2AB. N3 was then transferred to human fibroblast feeder cells on Day 6. ICM from N4 was unchanged. N3 was used to isolate stem cells.


ICM cells were cultivated in VitroHES™ medium in a gas environment comprising 5% CO2, and 95% N2 and followed over forty-five (45) days. Table 2a shows the progress of N3 ICM cell cultivation.









TABLE 2a





Progress of N3-ICM Cultivation.*
















Day 3
ICM transplanted on fresh feeder cells.


Day 8
Colony of cells divided mechanically into 6 pieces and



cultivated in 3 wells of a 96-well plate-1st passage.


Day 14
From five (5) colonies of 1st passage, cells were mechanically



divided, and 20 colonies of a 2nd passage were cultivated in 3



wells of a 24-well plate.


Day 20
Cells were plated in 35 mm dish-3rd passage.


Day 24
Five (5) 35 mm dishes were seeded with cells-4th passage. One



dish was divided chemically with 5% pronase (Sigma) at room



temperature.


Day 30
Twenty-five (25) 35 mm were seeded with cells-5th** passage.


Day 34
6th** cell passage.


Day 35
11 ampules were frozen from the 6th passage.


Day 37
7th** cell passage.


Day 44
12 ampules were frozen from the 7th passage.


Day 45
8th cell passage.





*Cells were grown on M2 ™ media (MediaCult).


**These passages were made with pronase digestion.






Stem Cell Isolation.


From the oocytes from 5 donors, the use of MediCult media followed by a culture under reduced oxygen allowed for the production of 23 blastocysts on the fifth or sixth day of culture. Eleven of the blastocysts had visible ICMs (Table 3).









TABLE 3







Generation of Parthenotes and Parthenogenetic Embryonic Stem Cell Lines.










Blastocysts derived


















Normally


Without



Donor
Oocytes
Oocytes
activated
Parthenotes
With
visible
Lines


Number
harvested
donated
oocytes
created
ICM
ICM
generated

















1
8
4
4
4
2

phESC-1









immunosurgery


2
15
8
8
8
3
3
phESC-3









phESC-4









phESC-5









all from whole









blastocysts


3
27
14 
121
112
3
2
phESC-6 from









whole









blastocysts


4
22
11 
103
10 
2
3
phESC-7 from









whole









blastocysts


5
20

94

7
7
1
4
No cell line









generated






1two oocytes were not activated;




2one oocyte degenerated after activation;




3one oocyte was not activated;




4two oocytes were at metaphase stage I and were discarded.







These results indicate an approximate 57.5% success rate in the formation of blastocysts from parthenogenetically activated oocytes.


Immunohistochemical Staining


For immunostaining, hES cell colonies and phESC cells on feeder layers were seeded onto micro cover glass, washed twice with PBS and fixed with 100% methanol for 5 minutes at −20° C. Cells were washed twice with PBS+0.05% Tween-20 and permeabilized with PBS+0.1% Triton X-100 for 10 minutes at room temperature. After cell washing, non-specific binding was blocked by incubation with blocking solution (PBS+0.05% Tween-20+four percent goat serum plus three percent human umbilical cord blood serum) for 30 minutes at room temperature (RT). Monoclonal antibodies were diluted in blocking solution and used for one hour at RT: SSEA-1 (MAB4301) (1:30), SSEA-3 (MAB4303) (1:10), SSEA-4 (MAB4304) (1:50), OCT-4 (MAB4305) (1:30), TRA-1-60 (MAB4360) (1:50), and TRA-1-81 (MAB4381) (1:50) from Chemicon. After the cells were washed, secondary antibodies Alexa Fluor 546 (orange-fluorescent) and 488 (green-fluorescent) (Molecular Probes, Invitrogen) were diluted 1:1000 in PBS+0.05% Tween-20 and applied for one hour at RT. Cells were washed and nuclei were stained with DAPI (Sigma) 0.1 μg/ml in PBS+0.05% Tween-20 during ten minutes at RT. Cells were washed and mounted on slides with Mowiol (Calbiochem). Fluorescence images were visualized with a fluorescence microscope.


For the detection of mesodermal markers in three week old embryoid bodies or in contractile embryoid bodies, monoclonal mouse anti-desmina antibody anti-human alpha actinin antibody (Chemicon) as the muscle specific markers, and anti-human CD31/PECAM-1 antibody (R&D Systems), antihuman VE Cadherin (DC144) antibody (R&D Systems) as the endothelial markers were used.


For detection of the endodermal markers in embryoid bodies, monoclonal mouse anti-human alpha-fetoprotein antibody (R&D Systems) was used.


Alkaline Phosphatase and Telomerase Activity


Alkaline phosphatase and telomerase activity were performed according to the manufacturer's specifications with AP kit and TRAPEZE™ Kit (Chemicon).


Karyotyping


To analyse the karyotype, hES cells were treated with 10 μg/ml Demecolcine (Sigma) for two hours, harvested with 0.05% trypsin/EDTA (Invitrogen) and centrifuged at 700×rpm for three minutes. The pellet was resuspended in 5 ml of 0.56% KCl, and incubated for 15 minutes at RT. After repeated centrifugation, the supernatant was removed and cells were resuspended and fixed with 5 ml of an ice cold mixture of methanol/acetic acid (3:1) for five minutes at +4° C. The fixation of the cells was repeated twice, after that the cell suspension was placed onto microscope slides and the preparations were stained with Giemsa Modified Stain (Sigma). Metaphases from cells prepared in this manner were analyzed by a standard G-banding method. Quantity of 5/1000 metaphase spreads were revealed and 63 metaphases were analyzed.


Embryoid Body Formation


hES and phESC cell colonies were mechanically divided into clumps and placed in wells of a 24 well plate precoated with 1.5% agarose (Sigma) in medium containing 85% Knockout DMEM, 15% human umbilical cord blood serum, 1×MEM NEAA, 1 mM Glutamax, 0.055 mM β-mercaptoethanol, penicillin-streptomycin (50 U/50 mg), 4 ng/ml hrbFGF (all from Invitrogen, except serum). Human EBs were cultured for 14 days in suspension culture and placed on a culture dish to give outgrowth or cultivated in suspension for an additional week.


Neural differentiation was induced by the cultivation of two week old embryoid bodies attached to a culture dish surface over a period of a week in differentiation medium: DMEM/F12, B27, 2 mM Glutamax, penicillin-streptomycin (100 U/100 m) and 20 ng/ml hrbFGF (all from Invitrogen). Some embryoid bodies gave rise to differentiated cells with neural morphology, others were dissected and additionally cultured to produce neurospheres.


Rhythmically beating embryoid bodies appeared spontaneously following five days of culture after plating on an adhesive surface in the same medium as was used for embryoid body generation.


HLA Typing


Genomic DNA was extracted from donor blood, hES, phESC cells, and human newborn skin fibroblasts (NSFs) with Dynabeads DNA Direct Blood from Dynal (Invitrogen). HLA typing was performed by PCR with allele-specific sequencing primers (PCR-SSP, Protrans) according to the manufacturer's specifications. HLA class I genes (HLA A*,B*,Cw*) were typed with PROTRANS HLA A*B*Cw* defining A*01-A*80, B*07-B*83, Cw*01-Cw*18 regions. HLA class II genes (HLA DRB1*, DRB3*, DRB4*, DRB5*, DQA1*, DQB1*) were analyzed with PROTRANS HLA DRB1* defining DRB1*01-DRB1*16 (DR1-DR18), DRB3*, DRB4*, DRB5* regions and PROTRANS HLA DQB1* DQA1*defining DQB1*02-DQB1*06 (DQ2-DQ9), DQA1*0101-DQA1*0601 regions. PCR amplification was achieved: at 94° C. for 2 min; 10 cycles at 94° C. for 10 sec, 65° C. for 1 min; 20 cycles at 94° C. for 10 sec, 61° C. for 50 sec, 72° C. for 30 sec. Amplified products were detected in 2% agarose gel.


Affimetrix SNP Microarray Analysis


Genomic DNA was isolated from blood, cumulus cells, phESC and NSF by phenol/chloroform extraction method. These DNA samples obtained from four Caucasian subjects were genotyped with Affimetrix Mapping 50K Hind 240 Array (part of Affimetrix GeneChip Mapping 100K kit). Initially, the dataset contained 57,244 binary SNP markers. Since the number of markers is more than would be necessary to identify the equivalency of genomic samples and to study heterozygosity, 15 (chromosomes 1-15) out of 22 autosomal chromosomes were chosen. The shorter seven chromosomes were removed to reduce the chance that no marker, or only a single marker for a given chromosome, is selected during random sampling. The 1,459 markers were analyzed by Relcheck (version 0.67, Copyright © 2000 Karl W. Broman, Johns Hopkins University, Licensed under GNU General Public License version 2 (June 1991)).


Genomic Imprinting Analysis


Total nucleic acid was prepared as described Li et al. (J Biol Chem (2002) 277(16):13518-13527). RNA and DNA were extracted from cells using Tri-reagent (Sigma) or by using an RNA preparation kit from Qiagen (Valencia, Calif.).


Northern blots containing RNA from the various samples (see FIG. 3) were blotted onto filters by standard methods (See, e.g., Sambrook et al., Molecular Cloning: A Laboratory Manual, 1989, 2nd ed, Cold Spring Harbor Press). The Northern filter was hybridized with single stranded oligonucleotide probes that hybridized specifically to the mRNAs. The oligonucleotide probes were end-labeled with [γ32P]ATP (Amersham Biosciences). The filters were subsequently washed three times for 10 min each with 0.2×SSC (1×SSC=0.15 M NaCl and 0.015 M sodium citrate) containing 0.1% SDS at 60° C. and analyzed by PhosphorImager (Molecular Dynamics). The sequences of the oligonucleotide probes were obtained from sequences based on the following Accession Nos.: NP002393 (Peg1_2 and Peg1_A; for these genes, human PEG1 is transcribed from two alternative promoters, resulting in the transcription of two isoforms, of which only one (isoform 1_2) is imprinted. Paternal expression isoform 1 occurs in conjunction with an unmethylated CpG island in exon 1 of the paternal allele, whereas the corresponding CpG island in the maternal gene (isoform 1_A) is fully methylated. See, e.g., Li et al. (2002), supra); CAG29346 (SNRPN); AF087017 (H19); NR_001564 (inactive X specific transcripts-XIST); and P04406 (GAPDH).


DNA Fingerprinting Analysis


Genomic DNA was isolated from blood, hES cells, and NSFs through a phenol/chloroform extraction, digested with HinfI restriction enzyme (Fermentas) and loaded in a 0.8% agarose gel. Following electrophoresis, denatured DNA was transferred to a nylon membrane (Hybond N, Amersham) by Southern blotting and hybridized with 32P-labeled (CAC) 5 oligonucleotide probe. mData were analyzed after membrane exposition on X-ray film (Kodak XAR) using Cronex intensifying screens.


Monolocus PCR Genotyping


In order to determine allelic identities for minisatellite loci between blood donor DNA and stem cell DNA, 11 polymorphic sites ((1) 3′ Apolipoprotein B hypervariable minisatellite locus (3′ApoB); (2) D1S80 (PMCT118) hypervariable minisatellite locus (D1S80); (3) D6S366; (4) D16S359; (5) D7S820; (6) Human von Willebrand factor gene hypervariable minisatellite locus II (vWFII); (7) D13S317; (8) Human von Willebrand factor gene hypervariable microsatellite locus (vWA); (9) Human c-fms proto-oncogene for CFS-1 receptor gene microsatellite locus (CSF1PO); (10) Human thyroid peroxidase gene microsatellite locus (TPDX); and (11) Human tyrosine hydroxylase gene microsatellite locus (TH01)) were analyzed by PCR genotyping. Allele frequencies for known populations (i.e., Russian and Caucasian-American populations) determined for the above polymorphic sites were compared to allele frequencies of these sites in test samples (i.e., hES, NSF, and donor blood DNA). Chromosomal location, Genbank locus and locus definition, repeat sequence data, allelic ladder range, VNTR ladder size range, other known alleles, allele sizes, PCR protocols, and allele frequency results for the 11 minisatellite loci of the disclosed populations analyzed are provided below.

    • (1) 3′ Apolipoprotein B hypervariable minisatellite locus (3′ApoB VNTR)


Chromosomal location: 2p23-p23


GenBank locus and locus definition: APOB, apolipoprotein B (including Ag(x) antigen) untranslated region











Repeat sequence 5′-3′: 



(SEQ ID NO: 1)



(TATAATTAAATATTTTATAATTAAAATATT)n






Allelic ladder size range (bases): 450+10+2 primer+links


VNTR ladder size range (# of repeats, according to Ludwig et al, 1989): 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50, 52


Other known alleles (# of repeats): 25, 27, 28, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49, 51, 53, 54, 55


Promega K562 DNA® Allele sizes (# of repeats): 36/36


PCR Protocol:












Thermal cycler:DNA Technology Ltd., Russia


















Initial Incubation:
95° C., 2′



Cycling for 30 cycles:



 Denaturation
94° C., 1′



 Elongation and primer linking
60° C., 2′



Extension step:
72° C., 5′



Hold step:
 4° C., unlimited time











The analysis may be done as described in Verbenko et al. (Apolipoprotein B 3′-VNTR polymorphism in Eastern European populations. Eur J Hum Gen (2003) 11(1):444-451). See Table 4.









TABLE 4





Allele Frequencies for Russian Populations



















Number of Alleles


Allele
Allele frequency
observed





25
0.001
1


30
0.079
75


32
0.071
68


33
0.001
1


34
0.238
227


35
0.004
4


36
0.393
375


37
0.001
1


38
0.036
36


39
0.001
1


40
0.014
13


42
0.001
1


44
0.042
41


45
0.006
6


46
0.033
31


48
0.067
64


50
0.011
10


52
0.001
1













Homozygotes
94



Heterozygotes
333



Total samples
427












    • (2) D1S80 (pMCT118) hypervariable minisatellite locus (D1S80 VNTR)





Chromosomal location: 1p35-36


GenBank locus and locus definition: Human D1S80 and MCT118 gene











Repeat sequence 5′-3′: 



(SEQ ID NO: 2)



(GAAGACAGACCACAG)n 






Allelic ladder size range (bases): 387-762


VNTR ladder size range (# of repeats): 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 34, 35, 36, 37, 40, 41


Other known alleles (# of repeats): 13, 14, 15, 38, 39, >41


Promega K562 DNA® Allele sizes (# of repeats): 18/29


PCR Protocol:












Thermal cycler: DNA Technology Ltd., Russia


















Initial Incubation:
95° C., 2′



Cycling for 30 cycles:



 Denaturation
94° C., 45″



 Primer linking
60° C., 30″



 Elongation
72° C., 45″



Extension step:
72° C., 5′



Hold step:
 4° C., unlimited time










The analysis may be done as described in Verbenko et al. (Allele frequencies for D1S80 (pMCT118) locus in some Eastern European populations. J Forensic Sci (2003) 48(1):207-208). See Table 5.









TABLE 5





Allele Frequencies for Russian Populations



















Number of Alleles


Allele
Allele frequency
observed





18
0.280
33


20
0.017
2


21
0.009
1


22
0.042
5


23
0.017
2


24
0.390
46


25
0.017
2


26
0.025
3


28
0.068
8


29
0.009
1


30
0.034
4


31
0.059
7


33
0.017
2


34
0.008
1


36
0.008
1













Homozygotes
15



Heterozygotes
44



Total samples
59












    • (3) D6S366





Chromosomal location: 6q21-qter


GenBank locus and locus definition: NA


Allelic ladder size range (bases): 150-162


STR ladder size range (# of repeats): 12, 13, 15


Other known alleles (# of repeats): 10, 11, 14, 16, 17


Promega K562 DNA® Allele sizes (# of repeats): 13/14


PCR Protocol:












Thermal cycler: DNA Technology Ltd., Russia


















Initial Incubation:
95° C., 2′



Cycling for 30 cycles:



 Denaturation
94° C., 1′



 Elongation and primer linking
60° C., 2′



Extension step:
72° C., 5′



Hold step:
 4° C., unlimited time










The analysis may be done as described in Efremov et al. (An expert evaluation of molecular genetic individualizing systems based on the HUMvWFII and D6S366 tetranucleotide tandem repeats. Sud Med Ekspert (1998) 41(2):33-36). See Table 6.









TABLE 6





Allele Frequencies for Russian Populations



















Number of Alleles


Allele
Allele frequency
observed





10
0.008
3


11
0.059
21


12
0.316
112


13
0.251
89


14
0.085
30


15
0.175
62


16
0.015
7


17
0.011
4













Total samples
177












    • (4) D16S539





Chromosomal location: 16q24-qter


GenBank locus and locus definition: NA











Repeat sequence 5′-3′: 



(AGAT)n






Allelic ladder size range (bases): 264-304


STR ladder size range (# of repeats): 5, 8, 9, 10, 11, 12, 13, 14, 15


Promega K562 DNA® Allele sizes (# of repeats): 11/12


PCR Protocol:












Thermal cycler: DNA Technology Ltd., Russia


















Initial Incubation:
95° C., 2′



Cycling for 30 cycles:



 Denaturation
94° C., 45″



 Primer linking
64° C., 30″



 Elongation
72° C., 30″



Extension step:
72° C., 5′



Hold step:
 4° C., unlimited time










The analysis has been done as described in GenePrint® STR Systems (Silver Stain Detection) Technical Manual No. D004. Promega Corporation, Madison, Wis. USA: 1993-2001. See Table 7.









TABLE 7





Allele Frequencies for Caucasian-Americans

















Allele
Allele frequency
Number of Alleles observed





6
0.000
0


7
0.000
0


8
0.026
11


9
0.107
45


10
0.079
33


11
0.319
134


12
0.269
113


13
0.167
70


14
0.031
13


15
0.002
1













Homozygotes
57



Heterozygotes
153



Total samples
210












    • (5) D7S820





Chromosomal location: 7q11.21-22


GenBank locus and locus definition: NA











Repeat sequence 5′-3′: 



(AGAT)n






Allelic ladder size range (bases): 215-247


VNIK ladder size range (# of repeats): 6, 7, 8, 9, 10, 11, 12, 13, 14


Promega K562 DNA® Allele sizes (# of repeats): 9/11


PCR Protocol:












Thermal cycler: DNA Technology Ltd., Russia


















Initial Incubation:
95° C., 2′



Cycling for 30 cycles:




 Denaturation
94° C., 45″



 Primer linking
64° C., 30″



 Elongation
72° C., 30″



Extension step:
72° C., 5′



Hold step:
 4° C., unlimited time









The analysis has been done as described in GenePrint® STR Systems (Silver Stain Detection) Technical Manual No. D004. Promega Corporation, Madison, Wis. USA: 1993-2001. See Table 8.









TABLE 8







Allele Frequencies for D7S820 in Different Populations












Allele frequency
Number of
Allele
Number of



for Caucasian-
Alleles
frequency
Alleles


Allele
Americans
observed
for Russians
observed














6
0.002
1
0.0012
1


7
0.010
4
0.0087
7


8
0.155
65
0.1928
155


9
0.152
64
0.1480
119


10
0.295
124
0.2524
203


11
0.195
82
0.2040
164


12
0.121
51
0.1580
127


13
0.057
24
0.0299
24


14
0.012
5
0.0050
4









Homozygotes
43
92


Heterozygotes
167
310


Total samples
210
402











    • (6) Human von Willebrand factor gene hypervariable microsatellite locus II (vWFII)





Chromosomal location: 12p13.3-12p13.2


GenBank locus and locus definition: HUMvWFII, Human von Willebrand factor gene











Repeat sequence 5′-3′: 



(ATCT)n/(AGAT)n






Allelic ladder size range (bases): 154-178


STR ladder size range (# of repeats): 9, 11, 12, 13


Other known alleles (# of repeats): 8, 10, 14, 15


Promega K562 DNA® Allele sizes (# of repeats): 13/13


PCR Protocol:












Thermal cycler: DNA Technology Ltd., Russia


















Initial Incubation:
95° C., 2′



Cycling for 30 cycles:




 Denaturation
94° C., 1′



 Elongation and primer linking
60° C., 2′



Extension step:
72° C., 5′



Hold step:
 4° C., unlimited time









The analysis has been done as described in Efremov et al. (An expert evaluation of molecular genetic individualizing systems based on the HUMvWFII and D6S366 tetranucleotide tandem repeats. Sud Med Ekspert (1998) 41(2):33-36). See Table 9.









TABLE 9







Allele Frequencies for Russian Populations











Number of Alleles


Allele
Allele frequency
observed












9
0.082
37


10
0.088
40


11
0.392
177


12
0.296
134


13
0.069
31


14
0.058
26


15
0.015
7








Total samples
226











    • (7) D13S317





Chromosomal location: 13q22-q31


GenBank locus and locus definition: NA











Repeat sequence 5′-3′: 



(AGAT)n






Allelic ladder size range (bases): 165-197


STR ladder size range (# of repeats): 8, 9, 10, 11, 12, 13, 14, 15


Other known alleles (# of repeats): 7


Promega K562 DNA® Allele sizes (# of repeats): 8/8


PCR Protocol:












Thermal cycler: DNA Technology Ltd., Russia


















Initial Incubation:
95° C., 2′



Cycling for 30 cycles:




 Denaturation
94° C., 45″



 Primer linking
64° C., 30″



 Elongation
72° C., 30″



Extension step:
72° C., 5′



Hold step:
 4° C., unlimited time









The analysis has been done as described in GenePrint® STR Systems (Silver Stain Detection) Technical Manual No. D004. Promega Corporation, Madison, Wis. USA: 1993-2001. See Table 10.









TABLE 10







Allele Frequencies for D13S317 in Different Populations












Allele frequency
Number of
Allele
Number of



for Caucasian-
Alleles
frequency
Alleles


Allele
Americans
observed
for Russians
observed














7
0.000
0
0
0


8
0.143
60
0.1393
112


9
0.052
22
0.0883
71


10
0.052
22
0.0684
55


11
0.305
128
0.3706
298


12
0.307
129
0.2040
164


13
0.083
35
0.0871
70


14
0.057
24
0.0423
34


15
0.000
0
0
0









Homozygotes
61
90


Heterozygotes
149
312


Total samples
210
402











    • (8) Human von Willebrand factor gene hypervariable microsatellite locus (vWA)





Chromosomal location: 12p12pter


GenBank locus and locus definition: HUMVWFA31, Human von Willebrand factor gene











Repeat sequence 5′-3′: 



(AGAT)n






Allelic ladder size range (bases): 139-167


STR ladder size range (# of repeats): 14, 16, 17, 18


Other known alleles (# of repeats): 11, 12, 13, 15, 19, 20, 21


Promega K562 DNA® Allele sizes (# of repeats): 16/16


PCR Protocol:












Thermal cycler: DNA Technology Ltd., Russia


















Initial Incubation:
95° C., 2′



Cycling for 30 cycles:




 Denaturation
94° C., 1′



 Elongation and primer linking
60° C., 2′



Extension step:
72° C., 5′



Hold step:
 4° C., unlimited time









The analysis has been done as described in GenePrint® STR Systems (Silver Stain Detection) Technical Manual No. D004. Promega Corporation, Madison, Wis. USA: 1993-2001. See Table 11.









TABLE 11







Allele Frequencies for HUMVWFA31 in Different Populations












Allele frequency
Number of
Allele
Number



for Caucasian-
Alleles
frequency
of Alleles


Allele
Americans
observed
for Russians
observed














13
0.000
0
0.0025
2


14
0.131
56
0.0796
64


15
0.082
35
0.0920
74


16
0.211
90
0.2127
171


17
0.265
113
0.2836
228


18
0.202
86
0.2251
181


19
0.087
37
0.0833
67


20
0.021
9
0.0199
16


21
0.000
0
0.0012
1









Homozygotes
38
70


Heterozygotes
175
332


Total samples
213
402











    • (9) Human c-fms proto-oncogene for CSF-1 receptor gene microsatellite locus (CSFIPO)





Chromosomal location: 5q33.3-34


GenBank locus and locus definition: HUMCSF1PO, Human c-fms proto-oncogene











Repeat sequence 5′-3 ′: 



(AGAT)n






Allelic ladder size range (bases): 295-327


STR ladder size range (# of repeats): 7, 8, 9, 10, 11, 12, 13, 14, 15


Other known alleles (# of repeats): 6


Promega K562 DNA® Allele sizes (# of repeats): 9/10


PCR Protocol:












Thermal cycler: DNA Technology Ltd., Russia


















Initial Incubation:
95° C., 2′



Cycling for 30 cycles:




 Denaturation
94° C., 45″



 Primer linking
64° C., 30″



 Elongation
72° C., 30″



Extension step:
72° C., 5′



Hold step:
 4° C., unlimited time









The analysis has been done as described in GenePrint® STR Systems (Silver Stain Detection) Technical Manual No. D004. Promega Corporation, Madison, Wis. USA: 1993-2001. See Table 12.









TABLE 12







Allele Frequencies for Caucasian-Americans











Allele
Allele frequency
Number of Alleles observed















6
0.000
0



7
0.000
0



8
0.002
1



9
0.033
14



10
0.251
108



11
0.309
133



12
0.330
142



13
0.060
26



14
0.014
6



15
0.000
0










Homozygotes
47



Heterozygotes
168



Total samples
215












    • (10) Human thyroid peroxidase gene microsatellite locus (TPDX)





Chromosomal location: 2p25.1-pter


GenBank locus and locus definition: HUMTPOX, Human thyroid peroxidase gene











Repeat sequence 5′-3′: 



(AATG)n






Allelic ladder size range (bases): 224-252


STR ladder size range (# of repeats): 6, 7, 8, 9, 10, 11, 12, 13


Other known alleles (# of repeats): none


Promega K562 DNA® Allele sizes (# of repeats): 8/9


PCR Protocol:












Thermal cycler: DNA Technology Ltd., Russia


















Initial Incubation:
95° C., 2′



Cycling for 30 cycles:




 Denaturation
94° C., 45″



 Primer linking
64° C., 30″



 Elongation
72° C., 30″



Extension step:
72° C., 5′



Hold step:
 4° C., unlimited time









The analysis has been done as described in GenePrint® S′I′R Systems (Silver Stain Detection) Technical Manual No. D004. Promega Corporation, Madison, Wis. USA: 1993-2001. See Table 13.









TABLE 13







Allele Frequencies for Caucasian-Americans











Allele
Allele frequency
Number of Alleles observed















6
0.002
1



7
0.000
0



8
0.528
227



9
0.093
40



10
0.056
24



11
0.284
122



12
0.037
16



13
0.000
0










Homozygotes
76



Heterozygotes
139



Total samples
215












    • (11) Human tyrosine hydroxylase gene microsatellite locus (TH01)





Chromosomal location: 5q33.3-34


GenBank locus and locus definition: HUMTHO1, Human tyrosine hydroxylase gene











Repeat sequence 5′-3′: 



(AATG)n






Allelic ladder size range (bases): 179-203


STR ladder size range (# of repeats): 5, 6, 7, 8, 9, 10, 11


Other known alleles (# of repeats): 9.3


Promega K562 DNA® Allele sizes (# of repeats): 9.3/9.3


PCR Protocol:












Thermal cycler: DNA Technology Ltd., Russia


















Initial Incubation:
95° C., 2′



Cycling for 30 cycles:




 Denaturation
94° C., 45″



 Primer linking
64° C., 30″



 Elongation
72° C., 30″



Extension step:
72° C., 5′



Hold step:
 4° C., unlimited time









The analysis has been done as described in GenePrint® STR Systems (Silver Stain Detection) Technical Manual No. D004. Promega Corporation, Madison, Wis. USA: 1993-2001. See Table 14.









TABLE 14







Allele Frequencies for Caucasian-Americans









Allele
Allele frequency
Number of Alleles observed












5
0.007
3


6
0.237
101


7
0.148
63


8
0.117
50


9
0.155
66


9.3
0.331
141


10
0.005
2


11
0.000
0











Homozygotes
50


Heterozygotes
163


Total samples
213









Results


The hES cells from this method display many features that are typical for embryonic stem cells: cytoplasmic lipid bodies, small cytoplasmic/nuclear ratio and clearly distinguishable nucleoli. The hES cell colonies display similar morphology to that reported previously for human embryonic stem cells derived after in vitro fertilization. The cells were immunoreactively positive for alkaline phosphatase (FIG. 1A), octamer-binding transcription factor 4 mRNA (Oct-4) (FIG. 1B), stage-specific embryonic antigen 1 (SSEA-1) (FIG. 1C), stage-specific embryonic antigen 3 (SSEA-3) (FIG. 1D), stage-specific embryonic antigen 4 (SSEA-4) (FIG. 1E), tumor rejection antigen 1-60 (TRA-1-60) (FIG. 1F), tumor rejection antigen 1-81 (TRA-1-81) (FIG. 1G), and negative for stage-specific embryonic antigen 1 (SSEA-1) (FIG. 1C), (which is positive for mouse embryonic stem cells, but not for human). Telomerase activity is often correlated with replicative immortality and is typically expressed in germ cells, cancer cells, and a variety of stem cells, including stem cells, but absent in most somatic cell types. The cells prepared by this method after three months in in vitro proliferation maintained their undifferentiated morphology and displayed high levels of telomerase activity (FIG. 2A). The pluripotency of the cells was investigated in vitro by embryoid body formation (FIG. 2B, 2C), G-banded karyotyping shows that cells have normal human 46XX karyotype (FIG. 2D).


DNA fingerprinting analysis was performed on the blood of the oocyte donor, on the ES cells, and on the HNSF feeder cells by Southern blotting and hybridization with a 32P-labeled (CAC)s oligonucleotide probe (FIG. 2E), and monolocus polymerase chain reaction (PCR) with different locuses.


For monolocus PCR, genotyping revealed identical alleles for all loci (but one, D7S820) between blood (donor) DNA and OL1 DNA. See Table 15.









TABLE 15







Monolocus PCR genotyping.














Chromosomal





NN
Locus definition
location
hES
NSF
Blood















1.
3′ApoB
2p24-p23
36/48
36/36
36/48


2.
D1S80
1p35-36
18/24
22/31
18/24


3.
D6S366
6q21-qter
13/15
17/17
13/15


4.
D165359
16q24-qter
 8/13
12/13
8/13


5.
D7S820
7q11.21-22
11/11
 9/10
10/11


6.
vWFII
12p13.3-12p13.2
11/13
 9/11
11/13


7.
D135317
13q22-q31
 9/12
11/12
 9/12


8.
vWA
12p12pter
14/18
17/18
14/18


9.
CSF1PO
5q33.3-34
12/12
12/13
12/12


10.
TPOX
2p25.1-pter
 8/11
 8/11
 8/11


11.
TH01
5q33.3-34
6/6
  6/9.3
6/6









Heterozygosity (heterozygosis) of all heterozygous donor loci (but one, D7S820) was not changed in hES loci. Homozygosity (homozygosis) of D7S820 locus in hES DNA is a result of mutation (insertion of one AGAT monomer in microsatellite repeat) due to slipped-strand mispairing during DNA replication and DNA repair.


These results are in accordance with those obtained with multilocus DNA fingerprinting (when substantially identical fingerprint patterns for donor DNA and hES DNA were found).



FIG. 2E demonstrated heterozygosity of hES cells and their identity with the oocyte donor's blood, and there was no similarity between the hES cells and the feeder cells. The DNA profile of hES cell line was confirmed by PCR-based haplotype analysis using polymorphic genes within the MHC class I and class II. Total genomic DNA from the oocyte donor blood cells, from hES cells, and feeder HNSFs were genotyped and compared. The data demonstrated that hES cells and cells from donor blood were indistinguishable from each other and therefore should be considered autologous, and both distinguished from DNA of the feeder cells (Table 16).









TABLE 16







HLA Typing.










MHC I
MHC II














HLA-A
HLA-B
HLA-C
DRB1
DQB1
DQA1

















pHES-1
A*01
B*15(63)
Cw*04
DRB1*12
DQB1*06
DQA1*01



A*02
B*35
Cw*0708
DRB1*13
DQB1*03
DQA1*0505


Donor
A*01
B*15(63)
Cw*04
DRB1*12
DQB1*06
DQA1*01



A*02
B*35
Cw*0708
DRB1*13
DQB1*03
DQA1*0505


HNSF
A*25
B*15(62)
Cw*12
DRB1*04
DQB1*06
DQA1*01



A*32
B*18
Cw*12
DRB1*15
DQB1*03
DQA1*03









DNA fingerprinting and HLA typing analysis confirmed that the hES cells are heterozygous and contain the whole donor genetic material. These results coincide with data from parthenogenetic monkey stem cell lines (Vrana et al., Proc Natl Acad Sci USA (2003) 100(Suppl 1):11911-11916), and do not coincide with data from parthenogenetic mouse stem cell lines (Lin et al., Stem Cells (2003) 21:153-161), which contains half of the donor genetic material.


The phESC lines display a morphology expected in hES cells, forming colonies with tightly packed cells, prominent nucleoli and a small cytoplasm to nucleus ratio (FIG. 4). These cells express traditional hES markers SSEA-3, SSEA-4, TRA-1-60, TRA-1-81, and OCT-4, and do not express SSEA-1, a positive marker for undifferentiated mouse embryonic stem cells (FIG. 4). The cells derived from all lines demonstrate high levels of alkaline phosphatase and telomerase activity (FIG. 5 and FIG. 6). G-banded karyotyping showed that phESC lines have a normal human 46,XX karyotype, with the exception of the phESC-7 line (FIG. 7). Approximately 91% of cells from the phESC-7 line have a 47,XXX karyotype and 9% of the cells have a 48,XXX,+6 karyotype. A different degree of X chromosome heteromorphism was observed in the lines; approximately 12% of the phESC-1 and phESC-6 lines; 42% for the phESC-5 line; and 70, 80, and 86% for the cell lines phESC7, phESC-3, and phESC-4, respectively (FIG. 7).


Comparative DNA profiling of was performed on all the phESC lines, the donor somatic cells and the feeder cells. These studies used Affimetrix SNP microarrays (Mapping 50K Hind 240 Arrays) to study chromosome changes and to confirm the genetic similarity of the phESC to the donor's somatic cells. All paired genotype relationships between phESC lines and their associated donor somatic cells were identified as “full siblings”, and all other combinations of pairs were identified as “unrelated”. Internal controls identified the paired genotype relationship between split cultures derived from the same phESC line as “monozygotic twins” (Table 17, Database S1).









TABLE 17







Database S1.


Database S1 Identifying DNA samples from phESC and related donors





















putative
inferred





LOD
LOD
LOD
LOD


genotype 1
genotype 2
relationship
relationship
IBS 0
IBS 1
IBS 2
n_typed
MZtwins
par/off
fullsibs
halfsibs
unrelated






















1
2
unrelated
unrelated
166
662
631
1459
−1503.03
−300.45
−23.15
−8.41
0


1
3
unrelated
unrelated
241
616
602
1459
−1560.65
−434.85
−28.04
−12.22
0


1
4
unrelated
unrelated
225
623
611
1459
−1535.94
−400.61
−31.39
−14.39
0


1
5
unrelated
unrelated
225
623
611
1459
−1535.94
−400.61
−31.39
−14.39
0


1
6
unrelated
unrelated
243
644
572
1459
−1642.35
−445.78
−31.74
−14.54
0


1
7
unrelated
unrelated
252
638
569
1459
−1641.11
−453.5
−29.25
−12.86
0


1
8
unrelated
unrelated
250
643
566
1459
−1656.02
−460.02
−32.86
−15.32
0


1
9
unrelated
unrelated
219
657
583
1459
−1605.31
−382.39
−27.37
−11.58
0


1
10
unrelated
unrelated
158
707
594
1459
−1591.43
−279.21
−26.37
−10 . . . 89
0


1
11
unrelated
unrelated
193
668
598
1459
−1584.71
−354.76
−29.65
−13 . . . 31
0


1
12
unrelated
unrelated
166
671
622
1459
−1523.1
−300.5
−30.53
−13 . . . 92
0


2
3
unrelated
full sibs
0
282
1177
1459
−440.02
−146.3
0
−167.42
−363.63


2
4
unrelated
unrelated
233
627
599
1459
−1569.66
−423.24
−28.24
−12.91
0


2
5
unrelated
unrelated
233
627
599
1459
−1569.66
−423.24
−28.24
−12.91
0


2
6
unrelated
unrelated
217
650
592
1459
−1584.75
−388.44
−22.62
−8.53
0


2
7
unrelated
unrelated
243
650
566
1459
−1645.94
−437.91
−23.23
−8.72
0


2
8
unrelated
unrelated
225
649
585
1459
−1603.18
−404.41
−27.04
−11.97
0


2
9
unrelated
unrelated
210
639
610
1459
−1532.75
−360.46
−24.72
−9.89
0


2
10
unrelated
unrelated
144
683
632
1459
−1491.18
−243.56
−16.82
−4.51
0


2
11
unrelated
unrelated
172
680
607
1459
−1556.46
−310.03
−23.5
−9.7
0


2
12
unrelated
unrelated
176
667
616
1459
−1538.57
−327.95
−27.31
−12 . . . 06
0


3
4
unrelated
unrelated
336
457
666
1459
−1391.57
−599.92
−30.6
−14.62
0


3
5
unrelated
unrelated
336
457
666
1459
−1391.57
−599.92
−30.6
−14.62
0


3
6
unrelated
unrelated
322
482
655
1459
−1415.98
−571.23
−26.08
−11.86
0


3
7
unrelated
unrelated
369
442
648
1459
−1432.05
−664.95
−27.39
−11.93
0


3
8
unrelated
unrelated
334
483
642
1459
−1449.86
−597.75
−31.68
−15.14
0


3
9
unrelated
unrelated
307
493
659
1459
−1395.19
−530.45
−24.56
−10
0


3
10
unrelated
unrelated
215
623
621
1459
−1503.92
−364.97
−17.26
−4.43
0


3
11
unrelated
unrelated
264
582
613
1459
−1531.91
−473.48
−28.41
−12 . . . 81
0


3
12
unrelated
unrelated
254
595
610
1459
−1544.73
−460.57
−29.92
−13 . . . 88
0


4
5
unrelated
MZ twins
0
0
1459
1459
0
−379.58
−45.47
−401.67
−677.74


4
6
unrelated
unrelated
334
475
650
1459
−1436.59
−599.55
−32.73
−15.19
0


4
7
unrelated
unrelated
365
439
655
1459
−1418.34
−656.01
−31.6
−14.56
0


4
8
unrelated
unrelated
329
486
644
1459
−1450.75
−586.4
−32.06
−14.88
0


4
9
unrelated
unrelated
332
466
661
1459
−1395.18
−590.12
−28.69
−12.94
0


4
10
unrelated
unrelated
245
606
608
1459
−1542.32
−438.93
−28.75
−12 . . . 74
0


4
11
unrelated
unrelated
273
569
617
1459
−1530.97
−492.84
−29.03
−12 . . . 34
0


4
12
unrelated
full sibs
0
224
1235
1459
−326.17
−162.34
0
−183.44
−393.46


5
6
unrelated
unrelated
334
475
650
1459
−1436.59
−599.55
−32.73
−15.19
0


5
7
unrelated
unrelated
365
439
655
1459
−1418.34
−656.01
−31.6
−14.56
0


5
8
unrelated
unrelated
329
486
644
1459
−1450.75
−586.4
−32.06
−14.88
0


5
9
unrelated
unrelated
332
466
661
1459
−1395.18
−590.12
−28.69
−12.94
0


5
10
unrelated
unrelated
245
606
608
1459
−1542.32
−438.93
−28.75
−12 . . . 74
0


5
11
unrelated
unrelated
273
569
617
1459
−1530.97
−492.84
−29.03
−12 . . . 34
0


5
12
unrelated
full sibs
0
224
1235
1459
−326.17
−162.34
0
−183.44
−393.46


6
7
unrelated
full sibs
45
176
1238
1459
−277.78
−217.21
0
−165.72
−390.62


6
8
unrelated
full sibs
44
187
1228
1459
−289.8
−201.32
0
−153.75
−365.51


6
9
unrelated
unrelated
333
481
645
1459
−1436.5
−595.4
−30.3
−13.77
0


6
10
unrelated
unrelated
240
601
618
1459
−1518.17
−425.03
−27.11
−11 . . . 53
0


6
11
unrelated
full sibs
0
164
1295
1459
−209.27
−191.66
0
−213.25
−440.56


6
12
unrelated
unrelated
234
615
610
1459
−1547.15
−416.14
−30.21
−13 . . . 64
0


7
8
unrelated
full sibs
38
225
1196
1459
−326.62
−150.16
0
−121.55
−334.09


7
9
unrelated
unrelated
359
473
627
1459
−1479.28
−642.41
−30.61
−14.47
0


7
10
unrelated
unrelated
252
623
584
1459
−1598.35
−443.81
−28.88
−13 . . . 09
0


7
11
unrelated
full sibs
0
230
1229
1459
−318.49
−137.93
0
−159.55
−389.58


7
12
unrelated
unrelated
265
583
611
1459
−1539.33
−472.91
−30.55
−13 . . . 87
0


8
9
unrelated
unrelated
347
480
632
1459
−1472.41
−625.68
−30.93
−14.31
0


8
10
unrelated
unrelated
244
614
601
1459
−1561.3
−434
−28.07
−12 . . . 37
0


8
11
unrelated
full sibs
0
175
1284
1459
−223.73
−178.56
0
−200.12
−428.04


8
12
unrelated
unrelated
236
610
613
1459
−1539.08
−417.14
−29.32
−13 . . . 14
0


9
10
unrelated
full sibs
0
228
1231
1459
−315.15
−152.88
0
−174.27
−392.91


9
11
unrelated
unrelated
269
567
623
1459
−1502.69
−479.57
−28.47
−12 . . . 55
0


9
12
unrelated
unrelated
245
612
602
1459
−1557.25
−438.53
−26.07
−11 . . . 15
0


10
11
unrelated
unrelated
187
635
637
1459
−1478.7
−328.06
−25.52
−10.6
0


10
12
unrelated
unrelated
181
662
616
1459
−1534.36
−329
−25.2
−10.6
0





DNA samples were numbered as follows: 1-human neonatal skin fibroblasts; 2-phESC-7 line donor; 3-phESC-7 line; 4-phESC-1 line; 5-phESC-1 line; 6-phESC-3 line; 7-phESC-4 line; 8-phESC-5 line; 9-phESC-6 line; 10-phESC-6 line donor; 11-phESC-3 to phESC-5 lines donor; and 12-phESC-1 line donor.


The result shows that only one pair (sample 4-5), has been identified as monozygotic (MZ) twins. Ten other pairs (samples 2-3, 4-12, 5-12, 6-7, 6-11, 7-8, 7-11, 8-11, 9-10) have been identified as full siblings, and all the other combination of pairs have been identified as unrelated. The IBS columns in the output display the number of markers at which the pair are both typed and share 0, 1, or 2 alleles identical by state (For MZ twins under ideal conditions of no genotyping errors, all markers must be placed under IBS = 2). The output does not display P (observed markers | given relationship) directly, but it displays LOD score − log10 {P(observed markers | putative relationship/P(observed markers | relationship for which maximum likelihood was obtained and thus the call was made)} as a measure of similarity. The smaller the LOD score is, the less likely the putative relationship between two samples it.






Comparative analysis of 1,459 SNP markers revealed phESC heterozygosity and showed that changes had occurred in the phESC cell genotype in comparison to the related donor somatic cell genotype. Some segments of the somatic cell genome that had formerly been heterozygous became homozygous in the related phESC line genome. This heterozygous to homozygous pattern occurred in 11-15% of the phESC-1, PhESC-3, phESC-4, phESC-5 and phESC-6 lines, and was 19% for the phESC7 line (Database S2). Moreover, genetic differences were observed between the phESC and phESC-5 lines that had been derived from the same oocyte donor (Table 18, Database S2).









TABLE 18







Database S2.


Database S2 Heterozygosity of phESC (Abbreviated as “pC”) Lines






















chromo-

RS ID

basepair
Freq A in

pC-1



N3-5

pC-6

pC-7


some
SNP ID
(dbSNP)
basepair
(Mb)
Caucasian
pC-1
donor
pC-3
pC-4
pC-5
donor
pC-6
donor
pC-7
donor

























1
SNP_A-
rs10752719
3744122
3.744122
0.436
AB
AB
BB
AB
AB
AB
BB
BB
BB
BB



1697748


1
SNP_A-
rs806104
5977200
5.9772
0.631
AB
AB
AA
AB
AB
AB
AB
AB
AA
AA



1743594


1
SNP_A-
rs301791
8402638
8.402638
0.274
AB
AB
BB
BB
BB
BB
AB
AB
AA
AB



1687843


1
SNP_A-
rs1474868
11978430
11.97843
0.333
BB
BB
AA
AA
AA
AA
AA
AA
AA
AA



1647681


1
SNP_A-
rs1417144
14211391
14.211391
0.548
AA
AA
AB
AB
AB
AB
AA
AA
AB
AB



1673737


1
SNP_A-
rs860379
18414756
18.414756
0.25
BB
BB
BB
BB
BB
BB
BB
BB
BB
BB



1747116


1
SNP_A-
rs10492997
19514677
19.514677
0.631
AA
AA
BB
BB
BB
BB
AB
AB
AA
AA



1662223


1
SNP_A-
rs559346
28077956
28.077956
0.583
BB
AB
AB
AB
AB
AB
AB
AB
AA
AB



1662225


1
SNP_A-
rs4949455
31783886
31.783886
0.382
AA
AB
AB
BB
AB
AB
AB
AB
AA
AA



1646469


1
SNP_A-
rs6661190
33872782
33.872782
0.274
BB
BB
BB
BB
BB
BB
BB
BB
BB
AB



1695076


1
SNP_A-
rs4653029
34558585
34.558585
0.274
BB
BB
BB
BB
BB
BB
BB
BB
BB
BB



1679571


1
SNP_A-
rs7531479
36798680
36.79868
0.714
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA



1675060


1
SNP_A-
rs1010805
37858235
37.858235
0.738
AA
AA
AB
AA
BB
AB
AA
AA
BB
BB



1753902


1
SNP_A-
rs6693076
39972196
39.972196
0.441
AA
AA
AB
AA
BB
AB
AB
AB
BB
BB



1691977


1
SNP_A-
rs407752
40472948
40.472948
0.333
BB
BB
AB
AA
BB
AB
BB
BB
BB
BB



1723259


1
SNP_A-
rs7515340
41055964
41.055964
0.381
AB
AB
AA
AA
AA
AA
AA
AA
BB
BB



1692103


1
SNP_A-
rs4660575
41902429
41.902429
0.429
BB
BB
BB
BB
BB
BB
AA
AA
BB
AB



1696731


1
SNP_A-
rs1408412
42787470
42.78747
0.679
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA



1701070


1
SNP_A-
rs1771551
45552736
45.552736
0.738
AA
AA
AA
AA
AA
AA
AA
AA
BB
AB



1729559


1
SNP_A-
rs2245122
47358015
47.358015
0.598
AA
AA
AA
AA
AA
AA
BB
BB
BB
AB



1670587


1
SNP_A-
rs1875645
50501900
50.5019
0.524
AB
AB
BB
BB
BB
BB
BB
BB
BB
BB



1711898


1
SNP_A-
rs625643
54349188
54.349188
0.25
BB
BB
BB
BB
BB
BB
BB
BB
BB
BB



1645411


1
SNP_A-
rs10493206
56531172
56.531172
0.488
AA
AA
BB
BB
BB
BB
AB
AB
AA
AB



1718210


1
SNP_A-
rs1831870
57339224
57.339224
0.524
AB
AB
AB
AA
BB
AB
BB
BB
BB
AB



1752670


1
SNP_A-
rs852766
57998529
57.998529
0.564
AA
AA
AA
AA
AA
AA
AA
AA
BB
AB



1669308


1
SNP_A-
rs1969772
58917123
58.917123
0.738
AA
AA
AA
AA
AA
AA
AB
AB
AA
AB



1681141


1
SNP_A-
rs10489908
61576784
61.576784
0.738
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA



1690420


1
SNP_A-
rs2765249
62441479
62.441479
0.75
AA
AA
AA
AA
AA
AA
BB
BB
AA
AB



1727043


1
SNP_A-
rs3861943
63439667
63.439667
0.405
BB
BB
BB
BB
BB
BB
AB
AB
AA
AB



1646105


1
SNP_A-
rs592298
64000081
64.000081
0.25
BB
BB
BB
BB
BB
BB
AB
AB
BB
AB



1654674


1
SNP_A-
rs746633
64503887
64.503887
0.692
AA
AA
BB
BB
BB
BB
BB
BB
AA
AB



1708628


1
SNP_A-
rs1171279
65700514
65.700514
0.345
BB
BB
BB
BB
BB
BB
BB
BB
BB
AB



1713897


1
SNP_A-
rs1280310
66928844
66.928844
0.655
AB
AB
AB
BB
AA
AB
AB
AB
AA
AB



1717648


1
SNP_A-
rs1408956
67849084
67.849084
0.536
AB
AB
AB
AA
BB
AB
AB
AB
BB
BB



1712508


1
SNP_A-
rs1413953
70834525
70.834525
0.571
AB
AB
AA
AA
AA
AA
AB
AB
AA
AB



1688631


1
SNP_A-
rs1338655
73569634
73.569634
0.429
AB
AB
AA
AA
AA
AA
AA
AA
BB
BB



1720162


1
SNP_A-
rs10493539
74427598
74.427598
0.25
AA
AA
BB
BB
BB
BB
BB
BB
AA
AB



1697494


1
SNP_A-
rs277355
75002805
75.002805
0.345
BB
BB
BB
BB
BB
BB
AB
AB
BB
AB



1649261


1
SNP_A-
rs1250876
75905253
75.905253
0.345
AB
AB
AB
BB
AA
AB
AB
AB
BB
BB



1744876


1
SNP_A-
rs3928852
76926021
76.926021
0.607
AA
AA
AA
AA
AA
AA
AB
AB
AA
AA



1739854


1
SNP_A-
rs10493596
77438262
77.438262
0.718
AA
AA
AA
AA
AA
AA
AB
AB
AA
AA



1687047


1
SNP_A-
rs1248480
79071260
79.07126
0.357
BB
BB
AA
AA
AA
AA
AB
AB
BB
BB



1732619


1
SNP_A-
rs2127436
79792017
79.792017
0.488
AB
AB
AB
BB
AA
AB
BB
BB
AA
AB



1664985


1
SNP_A-
rs2389016
80511350
80.51135
0.738
AA
AA
AB
BB
AA
AB
AB
AB
AA
AB



1644541


1
SNP_A-
rs10518660
82094088
82.094088
0.738
AB
AB
AA
AA
AA
AA
AA
AA
AA
AA



1645927


1
SNP_A-
rs6598991
82697988
82.697988
0.524
BB
BB
AB
AA
AB
AB
AA
AA
AA
AA



1693780


1
SNP_A-
rs2268667
85505767
85.505767
0.321
BB
BB
AB
AA
AB
AB
BB
BB
BB
AB



1674234


1
SNP_A-
rs306322
88673430
88.67343
0.726
AA
AA
AA
AA
AA
AA
AB
AB
BB
AB



1752288


1
SNP_A-
rs1831298
90211840
90.21184
0.262
AB
AB
BB
BB
BB
BB
AA
AA
BB
AB



1736094


1
SNP_A-
rs4233429
90811924
90.811924
0.25
BB
BB
AB
BB
AB
AB
BB
BB
BB
BB



1711115


1
SNP_A-
rs665484
91375951
91.375951
0.512
AB
AB
AA
AA
AA
AA
AA
AA
BB
BB



1714794


1
SNP_A-
rs490800
92304926
92.304926
0.369
BB
BB
AB
BB
AB
AB
AB
AB
BB
AB



1675488


1
SNP_A-
rs6703310
93500761
93.500761
0.393
AB
AB
AB
AA
AB
AB
BB
BB
BB
BB



1656572


1
SNP_A-
rs223237
96276742
96.276742
0.476
BB
BB
BB
BB
BB
BB
AA
AA
AA
AA



1755223


1
SNP_A-
rs1911500
98291841
98.291841
0.738
AA
AA
AA
AA
AA
AA
AB
AB
AA
AB



1691383


1
SNP_A-
rs1838587
101983453
101.983453
0.525
AA
AA
AB
AA
AB
AB
AB
AB
AA
AB



1725993


1
SNP_A-
rs7521799
102944538
102.944538
0.619
BB
BB
AB
AA
AB
AB
AA
AB
BB
BB



1689489


1
SNP_A-
rs1576516
104210964
104.210964
0.452
AB
AB
AA
AA
AA
AA
BB
BB
AA
AA



1684273


1
SNP_A-
rs1919894
107240697
107.240697
0.381
BB
BB
BB
BB
BB
BB
AA
AB
BB
BB



1733369


1
SNP_A-
rs10494081
108114145
108.114145
0.667
AA
AA
AA
AA
AA
AA
AA
AB
BB
AB



1715038


1
SNP_A-
rs2026485
108978565
108.978565
0.333
BB
BB
AB
BB
AB
AB
BB
BB
BB
AB



1699288


1
SNP_A-
rs6682717
110527665
110.527665
0.441
AA
AA
AB
BB
AB
AB
AA
AB
AA
AA



1750726


1
SNP_A-
rs694180
111438255
111.438255
0.464
AB
AB
BB
BB
BB
BB
BB
BB
AA
AB



1648811


1
SNP_A-
rs1936061
112187978
112.187978
0.595
AA
AA
AA
AA
AA
AA
BB
AB
BB
BB



1753842


1
SNP_A-
rs2359417
113685242
113.685242
0.452
BB
BB
BB
BB
BB
BB
AA
AB
BB
BB



1689065


1
SNP_A-
rs3767824
118152606
118.152606
0.429
BB
BB
BB
BB
BB
BB
BB
BB
BB
BB



1746401


1
SNP_A-
rs1766803
119095860
119.09586
0.366
BB
AB
BB
BB
BB
BB
BB
BB
BB
BB



1688653


1
SNP_A-
rs477992
119969618
119.969618
0.286
AA
AB
BB
BB
BB
AB
BB
BB
BB
AB



1708513


1
SNP_A-
rs10494240
143040559
143.040559
0.321
AB
AB
AA
AA
AA
AA
BB
AB
AA
AB



1701244


1
SNP_A-
rs10494267
148366991
148.366991
0.321
BB
BB
BB
BB
BB
BB
AB
AB
BB
BB



1706430


1
SNP_A-
rs2879490
149760236
149.760236
0.381
BB
BB
BB
BB
BB
AB
AA
AA
AA
AA



1680305


1
SNP_A-
rs10494303
150706096
150.706096
0.571
BB
BB
AA
AA
AA
AB
AB
AB
AA
AA



1723421


1
SNP_A-
rs884664
151516798
151.516798
0.702
AA
AA
AA
AA
AA
AB
AA
AA
AA
AA



1681003


1
SNP_A-
rs10494315
154072954
154.072954
0.655
AB
AB
AA
AA
AA
AB
BB
BB
BB
AB



1667931


1
SNP_A-
rs919477
155585918
155.585918
0.25
BB
BB
BB
BB
BB
BB
BB
BB
BB
AB



1647211


1
SNP_A-
rs1149392
157241261
157.241261
0.286
BB
BB
BB
BB
BB
BB
BB
BB
BB
BB



1662451


1
SNP_A-
rs6683968
158923070
158.92307
0.571
AA
AA
BB
BB
BB
BB
AA
AA
AA
AA



1695012


1
SNP_A-
rs869513
159832184
159.832184
0.607
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA



1716490


1
SNP_A-
rs4656422
161688624
161.688624
0.25
AB
AB
AA
AA
AB
AB
BB
BB
BB
BB



1727494


1
SNP_A-
rs4657482
162563307
162.563307
0.405
AB
AB
BB
BB
BB
BB
AB
AB
BB
BB



1646555


1
SNP_A-
rs2093658
164086850
164.08685
0.317
AA
AA
AA
AA
AB
AB
AA
AA
AA
AA



1743854


1
SNP_A-
rs1358948
165590931
165.590931
0.31
BB
BB
BB
BB
BB
BB
AB
AB
AA
AB



1681011


1
SNP_A-
rs2205848
166407951
166.407951
0.31
BB
BB
BB
BB
BB
BB
BB
BB
BB
AB



1751990


1
SNP_A-
rs10494487
167046739
167.046739
0.298
AB
AB
BB
BB
BB
BB
BB
BB
BB
BB



1736240


1
SNP_A-
rs3753538
168481215
168.481215
0.691
AA
AA
AA
AA
AA
AA
AA
AA
BB
AB



1674510


1
SNP_A-
rs10489280
169204277
169.204277
0.488
AA
AA
BB
BB
BB
BB
AA
AA
BB
BB



1719434


1
SNP_A-
rs989423
171514180
171.51418
0.75
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA



1753950


1
SNP_A-
rs1359587
172487558
172.487558
0.691
AB
AB
BB
BB
AB
AB
AB
AB
AA
AB



1722081


1
SNP_A-
rs2861746
173128066
173.128066
0.452
AB
AB
AA
AA
AA
AA
AB
AB
BB
BB



1694706


1
SNP_A-
rs2493119
175995013
175.995013
0.333
BB
BB
BB
BB
BB
BB
BB
BB
AA
AB



1733825


1
SNP_A-
rs1281294
178629596
178.629596
0.714
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA



1671505


1
SNP_A-
rs2274984
179839103
179.839103
0.524
AB
AB
AB
BB
AB
AB
AA
AA
BB
BB



1694118


1
SNP_A-
rs1184639
180355276
180.355276
0.357
BB
BB
BB
BB
BB
BB
BB
BB
BB
AB



1644471


1
SNP_A-
rs2840274
180942462
180.942462
0.429
AA
AA
BB
BB
BB
BB
AA
AB
BB
BB



1711261


1
SNP_A-
rs170885
181673406
181.673406
0.512
AB
AB
AA
AA
AA
AA
BB
AB
BB
AB



1706912


1
SNP_A-
rs10489701
182242226
182.242226
0.595
AA
AA
AB
BB
AB
AB
AA
AA
AA
AA



1703470


1
SNP_A-
rs10489756
182835425
182.835425
0.262
BB
BB
AB
AA
AB
AB
AA
AA
BB
AB



1696277


1
SNP_A-
rs726706
183604111
183.604111
0.429
AB
AB
BB
BB
BB
BB
BB
BB
AA
AB



1744486


1
SNP_A-
rs7543266
184360480
184.36048
0.595
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA



1693312


1
SNP_A-
rs6665263
185050414
185.050414
0.452
BB
BB
BB
BB
BB
BB
BB
BB
AA
AA



1739170


1
SNP_A-
rs10494626
186275233
186.275233
0.464
AA
AA
BB
BB
BB
BB
BB
BB
BB
AB



1726093


1
SNP_A-
rs815160
186988747
186.988747
0.427
AB
AB
AA
AA
AA
AA
AA
AA
AA
AA



1658415


1
SNP_A-
rs1563191
187849406
187.849406
0.333
AB
AB
AB
BB
AB
AB
BB
BB
BB
BB



1666089


1
SNP_A-
rs1338034
188358939
188.358939
0.393
BB
BB
BB
BB
BB
BB
BB
BB
BB
BB



1753798


1
SNP_A-
rs4657868
190164348
190.164348
0.524
AB
AB
BB
BB
BB
BB
BB
AB
BB
BB



1688981


1
SNP_A-
rs10494707
191296870
191.29687
0.357
BB
BB
BB
BB
BB
BB
AA
AB
BB
BB



1723115


1
SNP_A-
rs822456
191826836
191.826836
0.439
BB
BB
BB
BB
BB
BB
BB
BB
AA
AB



1651749


1
SNP_A-
rs10494728
192402426
192.402426
0.25
AB
AB
BB
BB
BB
BB
AA
AB
BB
BB



1642592


1
SNP_A-
rs3762271
193802099
193.802099
0.6
AB
AB
AA
AA
AA
AA
BB
BB
AA
AB



1658925


1
SNP_A-
rs1927246
195048356
195.048356
0.702
AB
AB
AB
BB
AB
AB
AA
AA
AA
AB



1687705


1
SNP_A-
rs10494808
196821529
196.821529
0.548
AB
AB
AA
AA
AA
AA
BB
BB
BB
AB



1725025


1
SNP_A-
rs6667172
197375495
197.375495
0.5
BB
BB
AA
AA
AA
AA
AA
AB
AA
AB



1665029


1
SNP_A-
rs832174
197990176
197.990176
0.25
AA
AA
BB
BB
BB
BB
BB
BB
BB
BB



1747494


1
SNP_A-
rs7555556
199822633
199.822633
0.293
AB
AB
AB
AB
AB
AB
AA
AB
BB
AB



1651207


1
SNP_A-
rs10494844
200501548
200.501548
0.75
AA
AA
AA
AA
AA
AA
AA
AB
AA
AA



1714962


1
SNP-A-
rs10494852
201189443
201.189443
0.655
BB
BB
BB
BB
BB
BB
AA
AB
AA
AA



1724123


1
SNP_A-
rs311286
203999303
203.999303
0.286
AB
AB
BB
BB
BB
BB
BB
BB
BB
BB



1673439


1
SNP_A-
rs684431
204553812
204.553812
0.381
BB
BB
AA
AB
AA
AB
BB
BB
AB
AB



1669116


1
SNP_A-
rs2358452
208747444
208.747444
0.707
AA
AA
AA
AA
AA
AA
BB
BB
AA
AA



1650733


1
SNP_A-
rs340840
210516282
210.516282
0.393
AB
AB
BB
BB
BB
BB
BB
BB
AA
AA



1651975


1
SNP_A-
rs10494987
211525052
211.525052
0.691
AB
AB
AA
AA
AA
AA
AA
AA
AA
AA



1683565


1
SNP_A-
rs10495003
212237742
212.237742
0.417
AB
AB
BB
AB
BB
AB
AA
AB
AA
AA



1750462


1
SNP_A-
rs6604634
213109650
213.10965
0.524
BB
BB
AA
AA
AA
AA
BB
BB
AA
AA



1683969


1
SNP_A-
rs10495045
213806233
213.806233
0.714
AA
AA
AA
AB
AA
AB
BB
BB
AB
AB



1731002


1
SNP_A-
rs618171
215537693
215.537693
0.631
AB
AB
AA
AA
AA
AA
AA
AA
AB
AB



1677675


1
SNP_A-
rs10495156
217494419
217.494419
0.298
BB
BB
BB
BB
BB
BB
AA
AA
AB
AB



1703136


1
SNP_A-
rs1338077
218118775
218.118775
0.321
BB
BB
BB
AB
BB
AB
BB
BB
BB
BB



1711849


1
SNP_A-
rs4481859
219121051
219.121051
0.512
AB
AB
AA
AA
AA
AA
BB
BB
BB
BB



1755399


1
SNP_A-
rs10495236
221802391
221.802391
0.691
AB
AB
AA
AB
AA
AB
AB
AB
AB
AB



1739524


1
SNP_A-
rs710805
225430849
225.430849
0.429
AB
AB
BB
AB
BB
AB
AB
AB
AA
AA



1710164


1
SNP_A-
rs1998067
226545242
226.545242
0.298
BB
BB
AA
AA
AA
AA
BB
BB
BB
BB



1688357


1
SNP_A-
rs9286801
229119361
229.119361
0.476
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA



1732138


1
SNP_A-
rs1892298
230387334
230.387334
0.714
AA
AA
AA
AA
AA
AA
AA
AB
AA
AA



1747040


1
SNP_A-
rs2463190
232711157
232.711157
0.441
AB
AB
BB
AB
BB
AB
AA
AA
AA
AA



1717898


1
SNP_A-
rs819639
233219640
233.21964
0.56
AB
AB
AA
AA
AA
AA
BB
AB
AA
AA



1710935


1
SNP_A-
rs2819774
234214896
234.214896
0.691
AA
AA
AA
AA
AA
AA
BB
AB
AB
AB



1755297


1
SNP_A-
rs6685861
235621137
235.621137
0.357
BB
BB
AA
AA
AA
AA
AA
AB
AA
AA



1677233


1
SNP_A-
rs732160
236262770
236.26277
0.298
BB
BB
BB
BB
BB
BB
BB
BB
AB
AB



1679485


1
SNP_A-
rs1039529
238918670
238.91867
0.619
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA



1679759


1
SNP_A-
rs879725
240732087
240.732087
0.464
BB
AB
AA
AA
AA
AA
AA
AB
AB
AB



1664943


1
SNP_A-
rs1093961
241902498
241.902498
0.415
BB
AB
AB
BB
AB
AB
AA
AB
AB
AB



1724627


1
SNP_A-
rs3844080
243632874
243.632874
0.655
BB
BB
AA
AA
AA
AA
BB
AB
AA
AA



1672603


2
SNP_A-
rs10519439
108913
0.108913
0.274
BB
BB
BB
BB
BB
BB
AB
AB
BB
BB



1753456


2
SNP_A-
rs6759198
2342478
2.342478
0.56
AA
AA
BB
BB
BB
BB
AB
AB
BB
BB



1746820


2
SNP_A-
rs2119075
4395806
4.395806
0.607
AA
AA
AA
AB
AB
AB
AB
AB
AB
AB



1697325


2
SNP_A-
rs963964
5206872
5.206872
0.321
BB
BB
BB
BB
BB
BB
BB
BB
AB
AB



1740868


2
SNP_A-
rs1429220
5881639
5.881639
0.369
BB
BB
BB
BB
BB
BB
BB
BB
BB
BB



1677893


2
SNP_A-
rs6727796
7605796
7.605796
0.512
BB
BB
AA
AA
AA
AA
BB
BB
AB
AB



1650909


2
SNP_A-
rs9287698
8437894
8.437894
0.281
BB
BB
BB
BB
BB
BB
AB
AB
AA
AA



1663651


2
SNP_A-
rs2271333
9323848
9.323848
0.5
AB
AB
AA
AA
AA
AA
BB
BB
BB
BB



1647101


2
SNP_A-
rs2241113
10226344
10.226344
0.31
BB
BB
AB
AB
AB
AB
BB
AB
BB
BB



1717786


2
SNP_A-
rs1686426
10899146
10.899146
0.5
BB
BB
AB
AB
AB
AB
BB
BB
BB
BB



1706150


2
SNP_A-
rs4669806
12151350
12.15135
0.619
BB
BB
AA
AA
AA
AA
AA
AA
AB
AB



1676173


2
SNP_A-
rs625842
12779571
12.779571
0.583
BB
BB
AA
AA
AA
AA
BB
BB
AB
AB



1664687


2
SNP_A-
rs7568703
15041402
15.041402
0.571
AA
AA
AB
AB
AB
AB
BB
BB
AA
AA



1696327


2
SNP_A-
rs4668968
15835884
15.835884
0.369
BB
BB
BB
BB
BB
BB
BB
BB
BB
BB



1683239


2
SNP_A-
rs9306902
16971747
16.971747
0.631
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA



1677981


2
SNP_A-
rs10495699
19918971
19.918971
0.56
AB
AB
AB
AB
AA
AB
AA
AB
AB
AB



1714454


2
SNP_A-
rs10495705
20662972
20.662972
0.564
AA
AA
AA
AA
AA
AA
BB
AB
AA
AA



1668860


2
SNP_A-
rs7594267
23344557
23.344557
0.571
AA
AA
BB
BB
BB
BB
BB
BB
AA
AA



1693698


2
SNP_A-
rs1275963
26804398
26.804398
0.643
AB
AB
AA
AA
AA
AA
AA
AA
AA
AA



1751070


2
SNP_A-
rs2014701
30210694
30.210694
0.631
AA
AA
AA
AA
AA
AA
BB
AB
BB
BB



1684619


2
SNP_A-
rs10490360
32207919
32.207919
0.441
BB
BB
AA
AA
AA
AA
BB
BB
AB
AB



1648557


2
SNP_A-
rs219145
33123165
33.123165
0.634
AA
AA
AA
AA
AA
AA
AA
AA
BB
BB



1671421


2
SNP_A-
rs10495796
34029149
34.029149
0.274
BB
BB
BB
BB
BB
BB
BB
BB
BB
BB



1696185


2
SNP_A-
rs2049638
34866446
34.866446
0.738
AA
AA
AA
AA
AA
AA
AA
AB
AB
AB



1642658


2
SNP_A-
rs1401242
35923474
35.923474
0.417
AB
AB
AB
AB
AA
AB
AA
AB
AB
AB



1696029


2
SNP_A-
rs2161905
36427824
36.427824
0.286
BB
BB
BB
BB
BB
BB
AA
AB
BB
BB



1748242


2
SNP_A-
rs975315
38407251
38.407251
0.631
AB
AB
AA
AA
AA
AA
AA
AB
AA
AA



1660238


2
SNP_A-
rs9309043
39939220
39.93922
0.643
BB
BB
AB
AB
BB
AB
BB
BB
BB
BB



1719460


2
SNP_A-
rs2059338
41186539
41.186539
0.714
AB
AB
AB
AB
BB
AB
AA
AB
BB
BB



1714203


2
SNP_A-
rs10495900
43528810
43.52881
0.369
AB
AB
BB
BB
BB
BB
BB
BB
BB
BB



1690204


2
SNP_A-
rs4276071
44121457
44.121457
0.417
BB
BB
AA
AA
AA
AA
AB
AB
BB
BB



1740164


2
SNP_A-
rs6708061
44721790
44.72179
0.357
BB
BB
BB
BB
BB
BB
AA
AA
AB
AB



1685265


2
SNP_A-
rs6737073
45442330
45.44233
0.286
BB
BB
BB
BB
BB
BB
AA
AA
AB
AB



1680505


2
SNP_A-
rs935661
45967008
45.967008
0.56
AB
AB
AB
AA
AB
AB
AB
AB
AB
AB



1680749


2
SNP_A-
rs7589621
46494033
46.494033
0.738
AB
AB
AA
AA
AA
AA
AA
AA
AA
AA



1721531


2
SNP_A-
rs6544955
47235732
47.235732
0.643
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA



1734011


2
SNP_A-
rs10495972
49412546
49.412546
0.298
AB
AB
BB
BB
BB
BB
BB
BB
BB
BB



1699364


2
SNP_A-
rs10495987
50064931
50.064931
0.286
AB
AB
AA
AA
AA
AA
BB
BB
BB
BB



1696353


2
SNP_A-
rs10490176
50979585
50.979585
0.738
AB
AB
AA
AA
AA
AA
AA
AA
AA
AA



1646009


2
SNP_A-
rs1160297
53148971
53.148971
0.321
AB
AB
BB
BB
BB
BB
BB
BB
AB
AB



1676509


2
SNP_A-
rs843622
54460133
54.460133
0.524
BB
BB
AA
AA
AA
AA
BB
BB
AA
AA



1742892


2
SNP_A-
rs5008666
59390639
59.390639
0.65
AA
AA
BB
BB
BB
BB
AA
AA
AA
AB



1704006


2
SNP_A-
rs1517401
63452358
63.452358
0.738
AA
AA
BB
BB
BB
BB
AB
AB
AA
AA



1673301


2
SNP_A-
rs2581047
64219699
64.219699
0.286
BB
BB
BB
BB
BB
BB
BB
BB
BB
BB



1711471


2
SNP_A-
rs2971828
66466238
66.466238
0.667
BB
BB
AA
AA
AA
AA
AA
AA
AA
AA



1652253


2
SNP_A-
rs9309400
67746695
67.746695
0.738
AB
AB
AA
AA
AA
AA
BB
BB
AA
AA



1722279


2
SNP_A-
rs10496165
68531740
68.53174
0.333
BB
BB
BB
BB
BB
BB
BB
BB
AA
AB



1656216


2
SNP_A-
rs2312209
69633766
69.633766
0.524
BB
BB
AA
AA
AB
AB
BB
BB
BB
BB



1703772


2
SNP_A-
rs10489986
70719802
70.719802
0.75
AA
AA
AA
AA
AA
AA
AB
AB
AA
AA



1753748


2
SNP_A-
rs6724782
73591645
73.591645
0.286
AA
AB
BB
BB
BB
BB
AB
AB
BB
BB



1723065


2
SNP_A-
rs730148
76269470
76.26947
0.408
BB
BB
AA
AA
AB
AB
AA
AA
BB
BB



1665193


2
SNP_A-
rs1446707
77141310
77.14131
0.429
BB
BB
AA
AA
AA
AA
AA
AA
BB
BB



1718918


2
SNP_A-
rs4852483
79513076
79.513076
0.75
AA
AB
BB
BB
BB
BB
AA
AA
AA
AA



1749208


2
SNP_A-
rs216616
80715814
80.715814
0.298
BB
BB
AA
AA
AA
AA
BB
BB
BB
BB



1745171


2
SNP_A-
rs9309572
81381197
81.381197
0.321
BB
BB
BB
BB
BB
AB
AA
AA
BB
AB



1750234


2
SNP_A-
rs7577293
85846940
85.84694
0.274
AA
AB
BB
BB
BB
BB
BB
BB
AA
AB



1728812


2
SNP_A-
rs9308826
99738211
99.738211
0.738
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA



1676217


2
SNP_A-
rs9308849
101983905
101.983905
0.714
AA
AA
AA
AA
AA
AA
AA
AB
BB
AB



1655416


2
SNP_A-
rs956966
103046093
103.046093
0.512
AA
AA
BB
BB
BB
AB
BB
BB
BB
BB



1655538


2
SNP_A-
rs1869070
106074094
106.074094
0.714
AA
AA
AA
AA
AA
AA
AB
AB
AB
AB



1690274


2
SNP_A-
rs1398132
106705516
106.705516
0.607
AB
AB
AA
AA
AA
AA
BB
BB
AB
AB



1742362


2
SNP_A-
rs826690
108705477
108.705477
0.429
BB
BB
AA
AA
AB
AB
AB
AB
AB
AB



1654768


2
SNP_A-
rs1469529
109207139
109.207139
0.583
AB
AB
AA
AA
AB
AB
AB
AB
AA
AA



1709888


2
SNP_A-
rs3961919
112959552
112.959552
0.298
BB
BB
AA
AA
AB
AB
AB
AB
AB
AB



1671489


2
SNP_A-
rs2166965
114191141
114.191141
0.679
AA
AA
AA
AA
AB
AB
AA
AA
AA
AA



1720080


2
SNP_A-
rs1346762
114988791
114.988791
0.72
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA



1712138


2
SNP_A-
rs9284719
118395025
118.395025
0.595
AB
AB
AA
AA
AA
AA
AA
AA
AA
AA



1752188


2
SNP_A-
rs1370380
120731125
120.731125
0.286
AB
AB
AA
AA
AA
AA
BB
BB
AB
AB



1685413


2
SNP_A-
rs4848174
122659698
122.659698
0.655
AA
AA
AA
AA
AB
AB
AB
AB
AA
AA



1721631


2
SNP_A-
rs1215318
125809045
125.809045
0.536
AA
AA
BB
BB
BB
BB
BB
BB
AB
AB



1707304


2
SNP_A-
rs548032
127461866
127.461866
0.631
AA
AA
AA
AA
AA
AA
AA
AA
AB
AB



1673583


2
SNP_A-
rs2124432
128900396
128.900396
0.61
AB
AB
AA
AA
AA
AA
AA
AA
AA
AA



1671177


2
SNP_A-
rs10496731
135431360
135.43136
0.488
BB
BB
AB
BB
AB
AB
AB
AB
BB
BB



1676259


2
SNP_A-
rs10496750
137176540
137.17654
0.667
AB
AB
AB
AA
AB
AB
AA
AA
AB
AB



1689435


2
SNP_A-
rs10490739
137712397
137.712397
0.287
BB
BB
BB
BB
BB
BB
BB
BB
BB
BB



1695208


2
SNP_A-
rs3884566
139082237
139.082237
0.357
AB
AB
BB
BB
BB
BB
AB
AB
AB
AB



1651715


2
SNP_A-
rs3922799
139592638
139.592638
0.476
BB
BB
BB
BB
BB
BB
BB
BB
AA
AA



1665733


2
SNP_A-
rs838042
140153918
140.153918
0.262
AA
AA
AB
AA
AB
AB
BB
BB
BB
BB



1713885


2
SNP_A-
rs1518441
140908218
140.908218
0.286
AA
AA
BB
BB
BB
BB
AB
AB
AB
AB



1663529


2
SNP_A-
rs10496859
141502410
141.50241
0.536
BB
BB
AA
AA
AA
AA
AA
AA
BB
BB



1643152


2
SNP_A-
rs355562
142245134
142.245134
0.321
BB
BB
BB
BB
BB
BB
BB
BB
BB
BB



1689866


2
SNP_A-
rs7560400
143121832
143.121832
0.75
AA
AA
AB
BB
AB
AB
AB
AB
AA
AA



1688373


2
SNP_A-
rs1437717
146329325
146.329325
0.571
AB
AB
AB
BB
AB
AB
AB
AB
AA
AA



1725903


2
SNP_A-
rs1528842
148291308
148.291308
0.75
AB
AB
AB
BB
AB
AB
AA
AA
AA
AA



1729119


2
SNP_A-
rs6734792
151450390
151.45039
0.738
AA
AA
AA
AA
AA
AA
BB
BB
AA
AA



1716616


2
SNP_A-
rs9287956
151979514
151.979514
0.464
BB
BB
AA
AA
AA
AA
AB
AB
AB
AB



1645341


2
SNP_A-
rs1370502
153235438
153.235438
0.667
BB
BB
BB
BB
BB
BB
AA
AA
AB
AB



1711079


2
SNP_A-
rs10497129
153977886
153.977886
0.31
AB
AB
AA
AA
AA
AA
BB
BB
BB
BB



1751360


2
SNP_A-
rs1469155
155088509
155.088509
0.726
AA
AA
AA
AA
AA
AA
BB
BB
AB
AB



1682179


2
SNP_A-
rs6750583
159423695
159.423695
0.738
BB
BB
AB
BB
AA
AB
AB
AB
AB
AB



1729675


2
SNP_A-
rs997163
161593412
161.593412
0.366
AA
AA
BB
BB
BB
BB
AA
AA
BB
BB



1710753


2
SNP_A-
rs1227921
162517707
162.517707
0.512
BB
BB
AB
BB
AA
AB
AB
AB
BB
BB



1657420


2
SNP_A-
rs1446471
164812395
164.812395
0.345
BB
BB
AB
AA
BB
AB
AA
AA
BB
BB



1681353


2
SNP_A-
rs10497261
166152395
166.152395
0.702
AB
AB
AA
AA
AA
AA
AB
AB
BB
AB



1755647


2
SNP_A-
rs9287874
167411538
167.411538
0.738
AA
AA
AA
AA
AA
AA
AB
AB
BB
AB



1656096


2
SNP_A-
rs2278785
168822282
168.822282
0.381
BB
BB
BB
BB
BB
BB
AA
AA
BB
BB



1673653


2
SNP_A-
rs830995
169955143
169.955143
0.702
AA
AA
AA
AA
AA
AA
AB
AB
AA
AB



1702574


2
SNP_A-
rs961313
170759024
170.759024
0.274
BB
BB
BB
BB
BB
BB
AB
AB
BB
BB



1645337


2
SNP_A-
rs731693
171622741
171.622741
0.667
AA
AA
AA
AA
AA
AA
AB
AB
BB
BB



1687817


2
SNP_A-
rs4095835
172330518
172.330518
0.429
BB
BB
BB
BB
BB
BB
BB
BB
BB
AB



1749036


2
SNP_A-
rs7575189
173840675
173.840675
0.512
BB
BB
AB
BB
AA
AB
AB
AB
BB
BB



1683223


2
SNP_A-
rs2119137
174843221
174.843221
0.333
AB
AB
AB
AA
BB
AB
AB
AB
BB
BB



1743510


2
SNP_A-
rs1993385
175563974
175.563974
0.476
AA
AA
AB
BB
AA
AB
AB
AB
AA
AB



1673703


2
SNP_A-
rs9287989
176543248
176.543248
0.643
BB
BB
AA
AA
AA
AA
AA
AA
AA
AB



1730586


2
SNP_A-
rs6722762
177140660
177.14066
0.345
AB
AB
BB
BB
BB
BB
AB
AB
AA
AB



1676261


2
SNP_A-
rs10497467
177733918
177.733918
0.75
AA
AA
AB
BB
AA
AB
AB
AB
AA
AA



1668972


2
SNP_A-
rs2008999
179796838
179.796838
0.643
AA
AA
BB
BB
BB
BB
AA
AA
AA
AA



1643400


2
SNP_A-
rs259845
180560120
180.56012
0.75
AA
AA
AA
AA
AA
AA
BB
BB
BB
BB



1721647


2
SNP_A-
rs9288052
181299542
181.299542
0.488
BB
BB
BB
BB
BB
BB
BB
BB
BB
BB



1643999


2
SNP_A-
rs288332
183450856
183.450856
0.262
BB
BB
AA
AA
AA
AA
AA
AA
AA
AB



1668465


2
SNP_A-
rs1454042
184407382
184.407382
0.357
BB
BB
BB
BB
BB
BB
AB
AB
AA
AB



1723211


2
SNP_A-
rs10490389
186428458
186.428458
0.702
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA



1668055


2
SNP_A-
rs2044683
187026818
187.026818
0.366
BB
BB
BB
BB
BB
BB
AB
AB
BB
BB



1678177


2
SNP_A-
rs840611
188023952
188.023952
0.583
BB
BB
BB
BB
BB
BB
BB
BB
AA
AA



1728072


2
SNP_A-
rs10497725
192818722
192.818722
0.667
AA
AA
BB
BB
BB
BB
AA
AA
AA
AB



1750900


2
SNP_A-
rs10497744
194316402
194.316402
0.31
BB
BB
BB
BB
BB
BB
BB
BB
BB
AB



1642958


2
SNP_A-
rs1350208
198911771
198.911771
0.571
AB
AB
AB
BB
AB
AB
AA
AA
AA
AB



1669242


2
SNP_A-
rs10497821
199463403
199.463403
0.31
BB
BB
BB
BB
BB
BB
BB
BB
AA
AB



1673517


2
SNP_A-
rs1376877
204097596
204.097596
0.607
AA
AA
BB
BB
BB
BB
BB
BB
BB
AB



1645863


2
SNP_A-
rs6707500
204941128
204.941128
0.667
AB
AB
AA
AA
AA
AA
AA
AA
AA
AA



1650883


2
SNP_A-
rs10490293
206049378
206.049378
0.274
BB
BB
AA
AA
AA
AA
BB
BB
BB
BB



1757786


2
SNP_A-
rs10490474
207934338
207.934338
0.571
BB
BB
AB
AA
AB
AB
AB
AB
AA
AA



1752790


2
SNP_A-
rs10497888
208586741
208.586741
0.679
AA
AA
BB
BB
BB
BB
AA
AA
AA
AA



1642246


2
SNP_A-
rs1607181
209364109
209.364109
0.655
AA
AB
AA
AA
AA
AA
AB
AB
BB
AB



1644145


2
SNP_A-
rs1816532
212093746
212.093746
0.75
AA
AA
BB
BB
BB
BB
AA
AA
AA
AA



1669816


2
SNP_A-
rs1402769
212906949
212.906949
0.274
BB
BB
BB
BB
BB
BB
BB
BB
BB
AB



1661335


2
SNP_A-
rs10497986
213664725
213.664725
0.702
AA
AA
BB
BB
BB
BB
AB
AB
AA
AA



1720206


2
SNP_A-
rs9283527
214674151
214.674151
0.417
AA
AA
AB
BB
AB
AB
AA
AA
AA
AA



1701518


2
SNP_A-
rs2166459
215505298
215.505298
0.31
AA
AB
BB
BB
BB
BB
AA
AA
BB
AB



1692929


2
SNP_A-
rs1250225
216151895
216.151895
0.744
BB
AB
AA
AA
AA
AA
AA
AA
AA
AA



1755667


2
SNP_A-
rs1110998
217169458
217.169458
0.429
BB
BB
AB
AA
AB
AB
BB
BB
BB
BB



1705890


2
SNP_A-
rs6719545
218277340
218.27734
0.286
BB
AB
BB
BB
BB
BB
BB
BB
AA
AB



1743410


2
SNP_A-
rs1344645
219363524
219.363524
0.405
AA
AB
BB
BB
BB
BB
AA
AA
BB
BB



1728154


2
SNP_A-
rs715345
220649461
220.649461
0.274
AA
AA
AB
AB
AB
AB
BB
BB
BB
BB



1726837


2
SNP_A-
rs1356399
221348562
221.348562
0.702
AA
AA
AB
AB
AB
AB
BB
AB
AA
AA



1721280


2
SNP_A-
rs1430234
222049201
222.049201
0.274
BB
BB
BB
BB
BB
BB
BB
BB
BB
AB



1655920


2
SNP_A-
rs4673013
222802583
222.802583
0.619
BB
AB
AB
AB
AB
AB
AA
AA
AA
AB



1711521


2
SNP_A-
rs1961637
223730613
223.730613
0.452
AA
AB
AB
AB
AB
AB
BB
BB
BB
BB



1695224


2
SNP_A-
rs10498158
224777152
224.777152
0.417
AA
AB
BB
BB
BB
BB
BB
BB
BB
BB



1713318


2
SNP_A-
rs10498171
225622115
225.622115
0.524
BB
AB
AA
AA
AA
AA
BB
AB
BB
AB



1702406


2
SNP_A-
rs1835533
226193946
226.193946
0.738
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA



1643000


2
SNP_A-
rs1522804
226814661
226.814661
0.548
AA
AB
AB
AB
AB
AB
BB
BB
BB
AB



1739924


2
SNP_A-
rs1950134
227888457
227.888457
0.714
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA



1683533


2
SNP_A-
rs1524023
228615089
228.615089
0.75
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA



1663421


2
SNP_A-
rs6759815
229797926
229.797926
0.571
BB
BB
AA
AA
AA
AA
BB
BB
BB
AB



1707748


2
SNP_A-
rs4973304
230936568
230.936568
0.298
BB
BB
BB
BB
BB
BB
AA
AA
AA
AB



1661533


2
SNP_A-
rs10498257
231818543
231.818543
0.702
BB
AB
AB
AB
AB
AB
BB
AB
AA
AA



1727506


2
SNP_A-
rs3791711
233258388
233.258388
0.524
BB
AB
BB
BB
BB
BB
BB
AB
AA
AB



1728658


2
SNP_A-
rs1880747
235240125
235.240125
0.512
BB
AB
AA
AA
AA
AA
BB
AB
AA
AA



1747120


2
SNP_A-
rs103718
239180488
239.180488
0.441
AA
AA
AA
AA
AA
AA
AB
AB
AA
AA



1738177


3
SNP_A-
rs1516342
147906
0.147906
0.262
AB
AB
BB
BB
BB
BB
AA
AB
BB
BB



1675236


3
SNP_A-
rs10510204
981912
0.981912
0.405
AA
AA
AA
AA
AA
AA
AA
AB
AA
AA



1754907


3
SNP_A-
rs1720194
2366613
2.366613
0.631
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA



1726483


3
SNP_A-
rs1508734
3538991
3.538991
0.607
AB
AB
AB
BB
BB
AB
BB
AB
AB
AB



1717220


3
SNP_A-
rs4684484
5437541
5.437541
0.441
BB
BB
AA
AA
AA
AA
AA
AA
AA
AA



1668475


3
SNP_A-
rs9311817
6172932
6.172932
0.72
AB
AB
AA
AA
AA
AA
AA
AA
AB
AB



1646075


3
SNP_A-
rs1450097
7520521
7.520521
0.293
BB
BB
BB
BB
BB
BB
AB
AB
AB
AB



1658187


3
SNP_A-
rs486012
9016299
9.016299
0.56
AA
AA
AA
AA
AA
AA
AB
AB
AA
AB



1718736


3
SNP_A-
rs2160871
10421826
10.421826
0.75
AB
AB
AB
BB
BB
AB
AA
AA
AA
AB



1679373


3
SNP_A-
rs6792718
11409380
11.40938
0.429
AB
AB
AA
AA
AA
AA
AA
AA
AA
AA



1649097


3
SNP_A-
rs172429
14880517
14.880517
0.25
BB
BB
BB
BB
BB
BB
BB
BB
BB
BB



1713577


3
SNP_A-
rs1983085
15504547
15.504547
0.56
AA
AA
BB
BB
BB
BB
AB
AB
AA
AA



1719120


3
SNP_A-
rs2733528
17211259
17.211259
0.571
AB
AB
AA
AA
AA
AA
AB
AB
BB
BB



1701284


3
SNP_A-
rs336615
18605807
18.605807
0.619
AA
AA
AB
BB
BB
AB
AB
AB
BB
AB



1653347


3
SNP_A-
rs2053506
19350795
19.350795
0.595
AA
AA
AA
AA
AA
AA
AA
AA
BB
BB



1753110


3
SNP_A-
rs6770717
20406548
20.406548
0.726
AB
AB
AA
AA
AA
AA
AA
AA
AA
AA



1649119


3
SNP_A-
rs365392
21465872
21.465872
0.583
BB
BB
AB
BB
BB
AB
AB
AB
BB
AB



1685927


3
SNP_A-
rs3732395
23209622
23.209622
0.378
AA
AB
BB
BB
BB
BB
BB
BB
BB
AB



1738848


3
SNP_A-
rs10510568
25577736
25.577736
0.679
BB
AB
AA
AA
AA
AA
AB
AB
AA
AB



1730534


3
SNP_A-
rs9284859
26883268
26.883268
0.655
BB
BB
AB
AB
BB
AB
AB
AB
BB
AB



1725077


3
SNP_A-
rs7639905
27951868
27.951868
0.429
BB
AB
BB
BB
BB
BB
BB
BB
AA
AA



1647333


3
SNP_A-
rs9310901
29477393
29.477393
0.274
BB
AB
AA
AA
AA
AA
AB
AB
BB
AB



1744932


3
SNP_A-
rs795347
30720945
30.720945
0.369
AA
AB
AB
AB
AB
AB
BB
BB
BB
BB



1741570


3
SNP_A-
rs347163
32435579
32.435579
0.393
BB
BB
BB
BB
BB
BB
BB
BB
AB
AB



1747050


3
SNP_A-
rs1376015
35274750
35.27475
0.595
BB
AB
AB
AB
AB
AB
AB
AB
BB
BB



1735191


3
SNP_A-
rs10510667
35834447
35.834447
0.476
BB
BB
AA
AA
AA
AA
BB
BB
AB
AB



1717686


3
SNP_A-
rs10510695
37621200
37.6212
0.738
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA



1643995


3
SNP_A-
rs2220345
41411812
41.411812
0.429
AA
AB
AA
AA
AA
AA
AB
AB
AB
AB



1649705


3
SNP_A-
rs531888
43047989
43.047989
0.476
BB
AB
AB
AB
AB
AB
AB
AB
AA
AA



1699750


3
SNP_A-
rs2742393
45732421
45.732421
0.417
AA
AA
AB
AB
AB
AB
BB
BB
AA
AA



1722715


3
SNP_A-
rs7620394
55206368
55.206368
0.345
BB
BB
AA
AA
AA
AA
BB
BB
AB
AB



1694360


3
SNP_A-
rs6445844
57028961
57.028961
0.726
BB
BB
AB
AB
AB
AB
AB
AB
AA
AA



1643909


3
SNP_A-
rs10510803
59329572
59.329572
0.488
BB
BB
AB
AB
AB
AB
AB
AB
AB
AB



1652229


3
SNP_A-
rs3843360
60016727
60.016727
0.393
BB
BB
AB
AB
AB
AB
AB
AB
AA
AA



1669748


3
SNP_A-
rs1996520
61592725
61.592725
0.488
BB
BB
BB
BB
BB
BB
AB
AB
AB
AB



1678019


3
SNP_A-
rs7650561
62466087
62.466087
0.643
AA
AA
AB
AB
AB
AB
AA
AA
AB
AB



1665709


3
SNP_A-
rs10510929
64709076
64.709076
0.583
BB
BB
BB
BB
BB
BB
AA
AA
BB
AB



1684953


3
SNP_A-
rs725160
66943022
66.943022
0.464
AA
AA
BB
BB
BB
BB
AB
AB
BB
BB



1688393


3
SNP_A-
rs4145917
68099517
68.099517
0.679
AB
AB
AA
AA
AA
AA
AA
AA
AA
AA



1678015


3
SNP_A-
rs2872939
69802192
69.802192
0.405
AB
AB
AA
AA
AA
AA
AB
AB
BB
BB



1707438


3
SNP_A-
rs10510996
70545357
70.545357
0.75
AA
AA
AA
AB
AB
AB
AA
AA
AA
AB



1663707


3
SNP_A-
rs830644
71748249
71.748249
0.5
AB
AB
BB
BB
BB
BB
BB
BB
AA
AB



1650625


3
SNP_A-
rs4677226
73154304
73.154304
0.613
BB
BB
BB
BB
BB
BB
AB
AB
AA
AA



1713028


3
SNP_A-
rs1107768
73959415
73.959415
0.726
AB
AB
AA
AA
AA
AA
BB
AB
AA
AA



1685633


3
SNP_A-
rs10511039
76184447
76.184447
0.583
AA
AA
BB
BB
BB
BB
AA
AA
BB
BB



1722733


3
SNP_A-
rs251552
76852596
76.852596
0.539
AB
AB
AA
AA
AA
AA
AA
AB
BB
AB



1648479


3
SNP_A-
rs9309840
80029943
80.029943
0.588
BB
BB
BB
BB
BB
BB
BB
AB
BB
BB



1642486


3
SNP_A-
rs2639611
81623522
81.623522
0.274
BB
BB
BB
BB
BB
BB
BB
BB
AA
AA



1685115


3
SNP_A-
rs9309888
82418655
82.418655
0.262
BB
AB
BB
BB
BB
BB
BB
BB
AA
AB



1642250


3
SNP_A-
rs10511085
85614577
85.614577
0.619
BB
AB
BB
AB
BB
AB
AA
AA
AA
AB



1732971


3
SNP_A-
rs1509783
87634505
87.634505
0.476
BB
BB
BB
BB
BB
BB
AA
AB
BB
BB



1731608


3
SNP_A-
rs9310061
88146455
88.146455
0.631
AA
AA
BB
BB
BB
AB
AA
AA
AA
AB



1721601


3
SNP_A-
rs724972
89664098
89.664098
0.607
AA
AB
AA
AA
AA
AA
AA
AA
AA
AA



1715294


3
SNP_A-
rs10511152
96638708
96.638708
0.381
BB
BB
AA
AA
AA
AB
AA
AB
BB
AB



1648583


3
SNP_A-
rs3856571
99031739
99.031739
0.298
BB
AB
BB
BB
BB
BB
BB
BB
BB
BB



1701406


3
SNP_A-
rs10511169
100116062
100.116062
0.691
AA
AA
AA
AA
AA
AA
AA
AB
BB
AB



1643841


3
SNP_A-
rs2700633
100643241
100.643241
0.643
AA
AB
AA
AA
AA
AA
AA
AA
BB
AB



1697988


3
SNP_A-
rs10511183
102046105
102.046105
0.738
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA



1740468


3
SNP_A-
rs974059
103277828
103.277828
0.25
BB
BB
BB
BB
BB
BB
AA
AB
BB
AB



1746982


3
SNP_A-
rs1391423
103923668
103.923668
0.732
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA



1687227


3
SNP_A-
rs10511221
105099054
105.099054
0.726
BB
AB
AA
AA
AB
AB
AA
AA
AA
AB



1677819


3
SNP_A-
rs6783422
106031580
106.03158
0.393
AA
AA
AA
AA
AA
AA
BB
BB
AA
AA



1663937


3
SNP_A-
rs10511243
106653352
106.653352
0.667
AA
AA
AA
AA
AA
AA
BB
AB
AA
AB



1674588


3
SNP_A-
rs2222039
108202685
108.202685
0.691
BB
AB
AA
AA
AA
AA
AA
AA
AA
AA



1652015


3
SNP_A-
rs1525873
111232702
111.232702
0.702
BB
AB
BB
BB
BB
BB
AA
AA
AA
AB



1722407


3
SNP_A-
rs1512514
111766406
111.766406
0.488
BB
AB
AA
AA
AA
AA
AA
AA
AA
AA



1674512


3
SNP_A-
rs1797626
114308943
114.308943
0.702
AA
AA
BB
BB
AB
AB
AA
AA
AA
AA



1747616


3
SNP_A-
rs1553209
116705663
116.705663
0.476
BB
AB
AA
AA
AA
AA
BB
BB
BB
BB



1668954


3
SNP_A-
rs7621196
117804184
117.804184
0.321
BB
BB
AA
AA
AA
AA
BB
AB
AA
AB



1674292


3
SNP_A-
rs1218621
118459636
118.459636
0.31
AA
AA
BB
BB
BB
BB
BB
BB
BB
BB



1643903


3
SNP_A-
rs950649
121567065
121.567065
0.691
BB
AB
AA
AA
AA
AA
AA
AA
AA
AA



1728638


3
SNP_A-
rs2126140
122627958
122.627958
0.5
BB
AB
AB
AA
AB
AB
AB
AB
AA
AA



1730195


3
SNP_A-
rs10511409
123610479
123.610479
0.738
BB
AB
AA
AA
AA
AA
AB
AB
BB
AB



1741126


3
SNP_A-
rs1373606
125496637
125.496637
0.342
AA
AA
BB
BB
BB
BB
AA
AA
AA
AA



1739520


3
SNP_A-
rs1374804
127391196
127.391196
0.524
AA
AB
AB
AA
AB
AB
BB
BB
AA
AA



1727336


3
SNP_A-
rs2718880
132343455
132.343455
0.75
AA
AA
AA
AA
AA
AA
AB
AB
AA
AA



1683659


3
SNP_A-
rs1553975
132999274
132.999274
0.369
BB
BB
AB
AA
AB
AB
AB
AB
BB
BB



1747192


3
SNP_A-
rs2310229
133541978
133.541978
0.691
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA



1744702


3
SNP_A-
rs711923
136539253
136.539253
0.744
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA



1730051


3
SNP_A-
rs838623
144671624
144.671624
0.619
AA
AA
AA
AA
AA
AA
AA
AA
BB
AB



1654278


3
SNP_A-
rs4610179
146387799
146.387799
0.726
AB
AB
AA
AA
AA
AA
AA
AA
AA
AA



1730514


3
SNP_A-
rs4592991
147111601
147.111601
0.393
BB
BB
BB
BB
BB
BB
AA
AA
AB
AB



1700733


3
SNP_A-
rs7645488
149410366
149.410366
0.31
AB
AB
BB
BB
BB
BB
BB
BB
AB
AB



1744174


3
SNP_A-
rs2130319
150976344
150.976344
0.333
AB
AB
BB
BB
BB
BB
AA
AA
AB
AB



1718574


3
SNP_A-
rs7648424
151906089
151.906089
0.488
AB
AB
BB
BB
BB
BB
AA
AB
AB
AB



1718772


3
SNP_A-
rs10513399
152600180
152.60018
0.488
BB
BB
BB
BB
BB
BB
BB
BB
AB
AB



1663723


3
SNP_A-
rs2418925
155234610
155.23461
0.524
AA
AA
AB
AB
AA
AB
BB
BB
BB
BB



1746211


3
SNP_A-
rs6772323
157710345
157.710345
0.667
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA



1658251


3
SNP_A-
rs4679851
160261035
160.261035
0.274
AB
AB
BB
BB
BB
BB
BB
AB
AB
AB



1736960


3
SNP_A-
rs10513549
161237209
161.237209
0.25
BB
BB
AB
AB
AA
AB
BB
AB
AB
AB



1716368


3
SNP_A-
rs336583
162564683
162.564683
0.417
AA
AA
BB
BB
BB
BB
BB
BB
BB
BB



1726685


3
SNP_A-
rs7635791
163720371
163.720371
0.655
AA
AA
AB
AB
AA
AB
BB
AB
AB
AB



1721879


3
SNP_A-
rs9290201
164397051
164.397051
0.31
AB
AB
AB
AB
AA
AB
BB
AB
AB
AB



1745785


3
SNP_A-
rs4352381
165179142
165.179142
0.369
BB
BB
AA
AA
AA
AA
AA
AB
AB
AB



1697475


3
SNP_A-
rs2643191
165861395
165.861395
0.524
AA
AA
AA
AA
AA
AA
BB
BB
BB
BB



1748578


3
SNP_A-
rs1371900
167443656
167.443656
0.286
AB
AB
AB
AB
AA
AB
BB
BB
AB
AB



1687865


3
SNP_A-
rs1877269
170109722
170.109722
0.548
AB
AB
AB
AB
AA
AB
AB
AB
AB
AB



1680949


3
SNP_A-
rs8192675
172207585
172.207585
0.732
AB
AB
AB
AB
BB
AB
AA
AA
AA
AA



1731022


3
SNP_A-
rs7627220
173288405
173.288405
0.441
AB
AB
AA
AA
AA
AA
BB
BB
AB
AB



1656780


3
SNP_A-
rs792354
174456847
174.456847
0.357
BB
BB
AA
AA
AA
AA
BB
BB
BB
BB



1720350


3
SNP_A-
rs1377828
177727744
177.727744
0.286
AA
AA
BB
BB
BB
BB
BB
BB
BB
BB



1662989


3
SNP_A-
rs2160836
179192927
179.192927
0.662
AB
AB
BB
BB
BB
BB
AA
AA
AA
AA



1651103


3
SNP_A-
rs6762743
180494702
180.494702
0.667
AA
AA
AA
AA
AA
AA
AA
AA
AB
AB



1699226


3
SNP_A-
rs262958
184975690
184.97569
0.583
AB
AB
AA
AA
AA
AA
BB
BB
AB
AB



1655724


3
SNP_A-
rs10513799
186032241
186.032241
0.75
AB
AB
AA
AA
AA
AA
AB
AB
AB
AB



1726281


3
SNP_A-
rs1962838
189742951
189.742951
0.405
AB
AB
AB
AB
AB
AB
AA
AA
AB
AB



1649485


3
SNP_A-
rs2378464
190305279
190.305279
0.262
AB
AB
BB
BB
BB
BB
AB
AB
BB
BB



1756920


3
SNP_A-
rs3773928
191066407
191.066407
0.405
BB
BB
AB
AB
AB
AB
BB
BB
AB
AB



1734403


3
SNP_A-
rs1405036
192749559
192.749559
0.262
AB
AB
AB
AB
AB
AB
BB
BB
BB
BB



1720858


3
SNP_A-
rs1403033
193538911
193.538911
0.441
AB
AB
AA
AA
AA
AA
AB
AB
AB
AB



1706600


3
SNP_A-
rs587612
195020261
195.020261
0.369
AA
AA
BB
BB
BB
BB
AA
AA
BB
BB



1643612


4
SNP_A-
rs1059159
5647306
5.647306
0.683
AB
AB
AA
AA
AA
AA
AA
AA
BB
BB



1669560


4
SNP_A-
rs10489076
9947117
9.947117
0.691
AB
AB
AA
AA
AA
AA
AB
AB
AA
AB



1743690


4
SNP_A-
rs959233
10578428
10.578428
0.452
AA
AA
AA
AA
AA
AA
AB
AB
BB
BB



1736300


4
SNP_A-
rs10516254
12310930
12.31093
0.714
AA
AA
AB
AB
AB
AB
BB
BB
BB
AB



1750658


4
SNP_A-
rs10489092
13327021
13.327021
0.286
AB
AB
AA
AA
AA
AA
AB
AB
AA
AB



1712820


4
SNP_A-
rs10488982
14088975
14.088975
0.5
AB
AB
AB
AA
AB
AB
BB
BB
BB
BB



1709160


4
SNP_A-
rs1496747
16275503
16.275503
0.476
BB
BB
AB
BB
AB
AB
AB
AB
BB
BB



1748456


4
SNP_A-
rs10516339
19549340
19.54934
0.725
AA
AB
AA
AA
AA
AA
AA
AA
AA
AA



1674656


4
SNP_A-
rs6834573
20123113
20.123113
0.298
BB
BB
BB
BB
BB
BB
BB
BB
BB
BB



1659171


4
SNP_A-
rs10516397
21369936
21.369936
0.405
BB
BB
AB
BB
AB
AB
BB
BB
AA
AA



1687559


4
SNP_A-
rs2036713
22984189
22.984189
0.357
BB
AB
AB
BB
AB
AB
BB
BB
BB
AB



1695570


4
SNP_A-
rs1527354
24561836
24.561836
0.655
BB
AB
BB
BB
BB
BB
AA
AA
BB
BB



1649429


4
SNP_A-
rs7697266
25453418
25.453418
0.393
BB
BB
BB
BB
BB
BB
BB
BB
BB
BB



1710973


4
SNP_A-
rs9291495
27032051
27.032051
0.75
AA
AA
AA
AA
AA
AA
AA
AA
AA
AB



1748352


4
SNP_A-
rs1397438
28093488
28.093488
0.463
BB
BB
BB
BB
BB
BB
BB
BB
AA
AA



1737486


4
SNP_A-
rs939573
28670407
28.670407
0.75
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA



1660740


4
SNP_A-
rs1441691
29221732
29.221732
0.274
BB
BB
AB
BB
AB
AB
BB
BB
BB
AB



1659069


4
SNP_A-
rs2571468
29891942
29.891942
0.667
AA
AA
AB
AA
AB
AB
AB
AB
AA
AA



1731582


4
SNP_A-
rs412253
31119019
31.119019
0.72
AA
AA
AB
BB
AB
AB
AB
AB
AA
AA



1666099


4
SNP_A-
rs10517232
31725815
31.725815
0.321
BB
BB
AA
AA
AA
AA
BB
BB
AA
AA



1659419


4
SNP_A-
rs2588544
36822899
36.822899
0.281
AA
AB
BB
BB
BB
BB
BB
BB
BB
BB



1743944


4
SNP_A-
rs7693744
42094241
42.094241
0.488
AA
AA
AB
AA
AA
AB
AA
AB
AA
AA



1650541


4
SNP_A-
rs10517054
42743857
42.743857
0.726
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA



1651577


4
SNP_A-
rs10517094
44153139
44.153139
0.31
BB
BB
BB
BB
BB
BB
BB
BB
BB
BB



1708293


4
SNP_A-
rs10517121
44712712
44.712712
0.583
AA
AA
AB
AA
AA
AB
AA
AB
BB
AB



1672145


4
SNP_A-
rs1552419
45366813
45.366813
0.583
AA
AB
AA
AA
AA
AA
BB
AB
AA
AA



1742914


4
SNP_A-
rs279842
46181884
46.181884
0.439
BB
BB
BB
BB
BB
BB
BB
AB
AA
AB



1741538


4
SNP_A-
rs3934674
46854066
46.854066
0.305
BB
BB
BB
BB
BB
BB
BB
BB
BB
BB



1726797


4
SNP_A-
rs6447614
47908885
47.908885
0.549
AA
AB
AA
AA
AA
AB
AA
AA
BB
AB



1734487


4
SNP_A-
rs6850277
54268853
54.268853
0.667
AB
AB
AA
AA
AA
AA
AA
AB
AA
AA



1659623


4
SNP_A-
rs2726610
55528245
55.528245
0.548
BB
BB
BB
BB
BB
BB
BB
AB
AA
AB



1724073


4
SNP_A-
rs4580704
56167635
56.167635
0.643
AB
AB
AA
AA
AA
AA
AA
AA
AA
AB



1643184


4
SNP_A-
rs10517400
58338522
58.338522
0.679
AB
AB
BB
BB
AB
AB
AB
AB
BB
BB



1647321


4
SNP_A-
rs10517453
60065841
60.065841
0.679
AA
AA
BB
BB
BB
BB
AB
AB
BB
BB



1685901


4
SNP_A-
rs2129274
61712878
61.712878
0.613
BB
BB
BB
BB
BB
BB
BB
BB
AA
AA



1660836


4
SNP_A-
rs2345043
62476674
62.476674
0.619
AA
AA
AA
AA
AA
AA
BB
BB
BB
BB



1712860


4
SNP_A-
rs2199219
63012534
63.012534
0.321
AB
AB
AA
AA
AA
AA
BB
BB
AA
AB



1706808


4
SNP_A-
rs7674285
65578799
65.578799
0.536
BB
BB
BB
BB
BB
BB
AA
AA
AA
AA



1657186


4
SNP_A-
rs1450036
67486005
67.486005
0.619
AA
AA
AA
AA
AB
AB
AA
AA
AA
AB



1701798


4
SNP_A-
rs2736466
70507268
70.507268
0.679
AB
AB
AA
AA
AA
AA
AA
AA
AB
AB



1734479


4
SNP_A-
rs3775745
71293834
71.293834
0.536
BB
BB
AA
AA
AA
AA
AA
AA
AB
AB



1645045


4
SNP_A-
rs7678694
75663264
75.663264
0.476
BB
BB
AA
AA
AA
AA
BB
BB
AA
AA



1741102


4
SNP_A-
rs925454
77604654
77.604654
0.595
AA
AA
AA
AA
AB
AB
AA
AA
AB
AB



1670999


4
SNP_A-
rs2703134
78171011
78.171011
0.691
AB
AB
AA
AA
AA
AA
AA
AB
AA
AA



1738063


4
SNP_A-
rs10518188
79483184
79.483184
0.405
AB
AB
BB
BB
BB
BB
BB
AB
BB
BB



1654306


4
SNP_A-
rs2119421
80807501
80.807501
0.714
AA
AA
AA
AA
AA
AA
AA
AA
BB
BB



1661108


4
SNP_A-
rs9307787
83047673
83.047673
0.75
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA



1703940


4
SNP_A-
rs6813014
84235884
84.235884
0.548
AB
AB
AA
AA
BB
AB
BB
BB
AA
AA



1650367


4
SNP_A-
rs10516708
85194717
85.194717
0.643
AA
AA
AA
AA
AA
AA
AA
AA
AB
AB



1752998


4
SNP_A-
rs10516739
86522131
86.522131
0.655
AB
AB
BB
BB
AA
AB
AA
AA
AB
AB



1669642


4
SNP_A-
rs10516760
87083328
87.083328
0.25
BB
BB
BB
BB
BB
BB
AA
AA
AA
AA



1725569


4
SNP_A-
rs4693803
88425710
88.42571
0.5
AA
AA
AA
AA
BB
AB
AA
AA
AB
AB



1732366


4
SNP_A-
rs10516796
89213912
89.213912
0.634
AA
AA
AA
AA
AA
AA
BB
AB
BB
BB



1657663


4
SNP_A-
rs1903002
90098072
90.098072
0.464
BB
BB
AA
AA
BB
AB
AA
AA
AB
AB



1718322


4
SNP_A-
rs7693500
90643667
90.643667
0.691
AA
AA
AA
AA
AA
AA
AA
AB
BB
BB



1659867


4
SNP_A-
rs4694023
91613152
91.613152
0.393
AB
AB
BB
BB
BB
BB
AA
AA
AB
AB



1705800


4
SNP_A-
rs7696847
92155216
92.155216
0.714
AA
AA
BB
BB
AA
AB
AA
AB
AB
AB



1757446


4
SNP_A-
rs6827937
94157783
94.157783
0.452
BB
BB
BB
BB
BB
BB
AA
AB
AB
AB



1749382


4
SNP_A-
rs10516919
94713877
94.713877
0.667
AB
AB
AA
AA
AA
AA
AA
AA
AA
AA



1727842


4
SNP_A-
rs1048627
95944765
95.944765
0.595
AA
AA
AA
AA
BB
AB
AA
AA
AA
AA



1745861


4
SNP_A-
rs1384869
96613355
96.613355
0.274
BB
BB
AA
AA
AA
AA
BB
AB
BB
BB



1683945


4
SNP_A-
rs6853079
99800789
99.800789
0.286
BB
BB
BB
BB
BB
BB
BB
BB
AA
AA



1756011


4
SNP_A-
rs1230164
100343201
100.343201
0.274
AB
AB
BB
BB
AA
AB
BB
AB
BB
BB



1703546


4
SNP_A-
rs238486
103377982
103.377982
0.595
AA
AA
AA
AA
BB
AB
AA
AA
BB
BB



1740940


4
SNP_A-
rs227284
103964838
103.964838
0.655
AA
AA
AA
AA
BB
AB
BB
BB
AB
AB



1684917


4
SNP_A-
rs445761
104804695
104.804695
0.679
AB
AB
AA
AA
AA
AA
AA
AA
AA
AA



1753948


4
SNP_A-
rs2866685
105649408
105.649408
0.5
BB
BB
AA
AA
BB
AB
AB
AB
AB
AB



1747884


4
SNP_A-
rs1873361
106282703
106.282703
0.345
BB
BB
AA
AA
AA
AA
BB
BB
BB
BB



1720092


4
SNP_A-
rs715706
106873632
106.873632
0.286
BB
BB
BB
BB
BB
BB
BB
BB
AA
AA



1721929


4
SNP_A-
rs1468221
108745388
108.745388
0.31
AA
AA
BB
BB
BB
BB
AB
AB
BB
BB



1662125


4
SNP_A-
rs7654940
110143969
110.143969
0.524
AB
AB
BB
BB
AA
AB
AB
AB
AB
AB



1642856


4
SNP_A-
rs6841595
113711446
113.711446
0.317
BB
BB
BB
BB
BB
BB
BB
BB
AB
AB



1686749


4
SNP_A-
rs10516593
114436416
114.436416
0.524
BB
BB
BB
BB
AB
AB
AA
AA
AA
AA



1736814


4
SNP_A-
rs998359
116228635
116.228635
0.441
BB
BB
BB
BB
BB
BB
BB
BB
AB
AB



1732667


4
SNP_A-
rs292910
117406405
117.406405
0.607
AA
AA
AA
AA
AA
AA
AA
AA
AB
AB



1671469


4
SNP_A-
rs2125710
118964366
118.964366
0.25
BB
BB
BB
BB
BB
BB
BB
BB
AB
AB



1696003


4
SNP_A-
rs10518293
119688966
119.688966
0.691
AA
AA
BB
BB
BB
BB
AA
AA
AB
AB



1695754


4
SNP_A-
rs10518336
120880537
120.880537
0.536
AA
AA
BB
BB
AB
AB
BB
BB
AB
AB



1745189


4
SNP_A-
rs2036696
121573324
121.573324
0.667
AA
AA
BB
BB
BB
BB
BB
BB
AB
AB



1648947


4
SNP_A-
rs998327
122441717
122.441717
0.726
AA
AA
AA
AA
AB
AB
AA
AA
AA
AA



1702984


4
SNP_A-
rs4833836
123858274
123.858274
0.381
BB
BB
BB
BB
BB
BB
AB
AB
BB
BB



1733111


4
SNP_A-
rs444646
124370464
124.370464
0.548
AB
AB
AA
AA
AB
AB
BB
BB
AA
AA



1643743


4
SNP_A-
rs10518307
125084153
125.084153
0.262
AB
AB
BB
BB
BB
BB
BB
BB
BB
BB



1746251


4
SNP_A-
rs7682791
125875709
125.875709
0.631
AA
AA
AA
AA
AA
AA
AA
AA
BB
BB



1648121


4
SNP_A-
rs953211
126708654
126.708654
0.488
AB
AB
AA
AA
AA
AA
AB
AB
AA
AA



1699868


4
SNP_A-
rs4834083
127331109
127.331109
0.726
AA
AA
BB
BB
AB
AB
AA
AA
AB
AB



1706772


4
SNP_A-
rs318510
130173248
130.173248
0.571
AA
AA
BB
BB
BB
BB
AA
AA
AA
AA



1653649


4
SNP_A-
rs2969001
131140397
131.140397
0.643
AA
AA
AA
AA
AA
AA
AB
AB
AA
AA



1655974


4
SNP_A-
rs6846560
131988611
131.988611
0.357
BB
BB
BB
BB
BB
BB
AB
AB
BB
AB



1694056


4
SNP_A-
rs10518609
133609659
133.609659
0.658
AA
AA
BB
BB
BB
BB
AA
AA
AA
AA



1719820


4
SNP_A-
rs9307688
134441091
134.441091
0.726
BB
BB
AA
AA
AA
AA
AA
AA
BB
AB



1721507


4
SNP_A-
rs9307703
135374277
135.374277
0.321
BB
BB
BB
BB
BB
BB
AB
AB
BB
BB



1716218


4
SNP_A-
rs6535037
135968531
135.968531
0.691
AB
AB
AA
AA
AA
AA
AB
AB
AA
AB



1719154


4
SNP_A-
rs10519369
137048788
137.048788
0.619
AB
AB
AA
AB
AB
AB
AB
AB
AA
AB



1718316


4
SNP_A-
rs7692053
138020209
138.020209
0.631
AB
AB
BB
BB
BB
BB
AA
AA
AA
AA



1643751


4
SNP_A-
rs1376088
139852726
139.852726
0.357
BB
BB
BB
BB
BB
BB
AB
AB
BB
BB



1712218


4
SNP_A-
rs10519540
141950175
141.950175
0.429
AB
AB
BB
BB
BB
BB
AA
AB
AA
AB



1688437


4
SNP_A-
rs2062597
143153292
143.153292
0.61
AA
AA
AA
AA
AA
AA
BB
BB
AA
AA



1669152


4
SNP_A-
rs331963
144031456
144.031456
0.369
AA
AA
AB
AB
AB
AB
AA
AA
BB
AB



1651007


4
SNP_A-
rs789351
146225975
146.225975
0.679
BB
BB
AA
AA
AA
AA
AA
AA
AA
AA



1705078


4
SNP_A-
rs10519824
148107681
148.107681
0.658
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA



1700284


4
SNP_A-
rs6810951
149441717
149.441717
0.333
BB
BB
AB
AB
AB
AB
BB
AB
BB
BB



1655082


4
SNP_A-
rs10489053
150276232
150.276232
0.643
AB
AB
AA
AA
AA
AA
AA
AA
AA
AB



1650743


4
SNP_A-
rs991529
151852936
151.852936
0.488
BB
BB
BB
BB
BB
BB
AA
AA
AA
AA



1695870


4
SNP_A-
rs361101
153131731
153.131731
0.631
BB
BB
AB
AB
AA
AB
AA
AA
BB
AB



1750768


4
SNP_A-
rs7662116
154375569
154.375569
0.691
AA
AA
AA
AA
AA
AA
BB
AB
AA
AA



1694614


4
SNP_A-
rs1125228
155126657
155.126657
0.738
AA
AA
BB
BB
BB
BB
BB
BB
BB
BB



1651497


4
SNP_A-
rs6536240
158751762
158.751762
0.381
AB
AB
BB
BB
BB
BB
AB
AB
BB
AB



1732214


4
SNP_A-
rs7678486
159498426
159.498426
0.25
BB
BB
BB
BB
BB
BB
BB
BB
AA
AB



1721547


4
SNP_A-
rs7665879
160305968
160.305968
0.31
AB
AB
BB
BB
BB
BB
AB
AB
BB
AB



1695472


4
SNP_A-
rs6856295
160845965
160.845965
0.595
BB
BB
AB
AB
AA
AB
AB
AB
AA
AA



1653797


4
SNP_A-
rs9308000
161359479
161.359479
0.655
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA



1705238


4
SNP_A-
rs195894
163885040
163.88504
0.366
BB
BB
AB
AB
BB
AB
BB
BB
BB
BB



1679349


4
SNP_A-
rs4057797
164602658
164.602658
0.381
BB
BB
AA
AA
AA
AA
BB
BB
BB
AB



1719176


4
SNP_A-
rs4404502
165513434
165.513434
0.738
AA
AA
AA
AA
AA
AA
AB
AB
AA
AB



1657975


4
SNP_A-
rs4691246
167437606
167.437606
0.402
BB
BB
AB
AB
AA
AB
AB
AB
BB
BB



1669824


4
SNP_A-
rs7435411
169800826
169.800826
0.524
BB
BB
AB
AB
BB
AB
AB
AB
AA
AB



1701924


4
SNP_A-
rs13212
170689681
170.689681
0.274
BB
BB
BB
BB
BB
BB
BB
BB
BB
BB



1673825


4
SNP_A-
rs449424
171884933
171.884933
0.631
AA
AA
AB
AB
AA
AB
AA
AA
AA
AA



1736222


4
SNP_A-
rs1485870
173125585
173.125585
0.744
BB
AB
AA
AA
AA
AA
AA
AA
AA
AA



1745583


4
SNP_A-
rs10520252
174445689
174.445689
0.619
AA
AA
AB
AB
AA
AB
AB
AB
AA
AA



1717120


4
SNP_A-
rs10520282
175752491
175.752491
0.738
AA
AA
AB
AB
AA
AB
AA
AA
AA
AA



1714548


4
SNP_A-
rs393279
177816548
177.816548
0.488
AA
AA
BB
BB
BB
BB
BB
BB
BB
AB



1662283


4
SNP_A-
rs10520383
178915654
178.915654
0.357
BB
BB
BB
BB
BB
BB
AB
AB
BB
AB



1675843


4
SNP_A-
rs2706012
179727204
179.727204
0.718
AA
AA
AA
AA
AA
AA
AA
AA
BB
AB



1737632


4
SNP_A-
rs10520430
180911694
180.911694
0.679
AA
AA
AB
AB
AA
AB
AA
AA
BB
BB



1720252


4
SNP_A-
rs7667245
181665445
181.665445
0.695
AA
AB
AB
AB
BB
AB
AA
AA
AA
AA



1644751


4
SNP_A-
rs10520479
182667862
182.667862
0.702
AA
AA
AA
AA
AA
AA
BB
BB
AA
AA



1649573


4
SNP_A-
rs10520518
183365702
183.365702
0.369
BB
AB
AB
AB
BB
AB
AA
AA
BB
BB



1689263


4
SNP_A-
rs830838
187288258
187.288258
0.333
BB
AB
BB
AB
AB
AB
BB
BB
AB
AB



1738928


4
SNP_A-
rs1280100
187913282
187.913282
0.345
AA
AB
AA
AA
AA
AA
AB
AB
BB
BB



1713082


4
SNP_A-
rs1505509
188945352
188.945352
0.345
AA
AB
BB
BB
BB
BB
AA
AA
BB
BB



1654608


4
SNP_A-
rs2376743
189829781
189.829781
0.679
AA
AA
AA
AA
AA
AA
AB
AB
AB
AB



1680395


5
SNP_A-
rs10512651
1816661
1.816661
0.405
BB
BB
AB
AB
BB
AB
AA
AA
AB
AB



1689409


5
SNP_A-
rs1445862
3675257
3.675257
0.25
BB
BB
AB
AB
BB
AB
BB
AB
BB
BB



1642488


5
SNP_A-
rs272190
5103830
5.10383
0.25
AB
AB
AA
AA
AA
AA
AB
AB
BB
BB



1651781


5
SNP_A-
rs2560294
5619114
5.619114
0.726
AA
AA
AA
AA
AA
AA
AB
AB
AB
AB



1663379


5
SNP_A-
rs10512858
6486915
6.486915
0.613
BB
BB
AB
AB
AB
AB
AA
AA
AB
AB



1643560


5
SNP_A-
rs4629562
7847326
7.847326
0.619
AB
AB
AB
AB
AB
AB
AA
AA
AB
AB



1651637


5
SNP_A-
rs9313236
8348429
8.348429
0.25
BB
BB
BB
BB
BB
BB
BB
BB
BB
BB



1693207


5
SNP_A-
rs12515692
9883408
9.883408
0.357
AB
AB
BB
BB
BB
BB
BB
BB
AB
AB



1744546


5
SNP_A-
rs2937513
11007551
11.007551
0.619
AB
AB
BB
BB
BB
BB
AB
AB
BB
BB



1721268


5
SNP_A-
rs173671
12217918
12.217918
0.476
AB
AB
AB
BB
AB
AB
AB
AB
AA
AA



1702624


5
SNP_A-
rs1476154
13000353
13.000353
0.691
BB
BB
AA
AA
AA
AA
AA
AA
AA
AA



1695478


5
SNP_A-
rs3734108
13806984
13.806984
0.56
AA
AA
AB
BB
AB
AB
AB
AB
AB
AB



1757294


5
SNP_A-
rs2938832
15817866
15.817866
0.25
AB
AB
BB
BB
BB
BB
AB
AB
AB
AB



1696687


5
SNP_A-
rs585991
17246633
17.246633
0.274
BB
BB
AA
AA
AA
AA
BB
BB
BB
BB



1713461


5
SNP_A-
rs1394215
18359538
18.359538
0.548
BB
BB
AA
AA
AA
AA
BB
BB
AA
AA



1661473


5
SNP_A-
rs2942296
19421031
19.421031
0.429
BB
BB
AB
AA
AB
AB
AB
AB
AA
AA



1646961


5
SNP_A-
rs248202
21159137
21.159137
0.274
BB
BB
BB
BB
BB
BB
AB
AB
AB
AB



1698916


5
SNP_A-
rs7705523
23659025
23.659025
0.714
AA
AA
AB
BB
AB
AB
AA
AA
AB
AB



1757332


5
SNP_A-
rs1995599
24552793
24.552793
0.548
AB
AB
AB
BB
AB
AB
BB
BB
AB
AB



1672683


5
SNP_A-
rs9293241
26606178
26.606178
0.56
AB
AB
AA
AA
AA
AA
AB
AB
AB
AB



1660984


5
SNP_A-
rs921469
29989233
29.989233
0.583
AB
AB
AA
AA
AA
AA
AA
AA
AB
AB



1704664


5
SNP_A-
rs1921111
30906615
30.906615
0.405
BB
BB
BB
BB
BB
BB
AA
AA
AB
AB



1644843


5
SNP_A-
rs893551
33493407
33.493407
0.607
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA



1678791


5
SNP_A-
rs716302
35846025
35.846025
0.357
AB
AB
AA
AA
AA
AA
AA
AB
BB
BB



1724049


5
SNP_A-
rs159751
37035755
37.035755
0.464
AA
AA
BB
BB
BB
BB
BB
BB
AA
AA



1703432


5
SNP_A-
rs4072686
38003109
38.003109
0.405
AB
AB
BB
BB
BB
BB
BB
BB
BB
AB



1645375


5
SNP_A-
rs675502
39878266
39.878266
0.679
AB
AB
BB
BB
AA
AB
AA
AA
AA
AA



1719252


5
SNP_A-
rs1697938
40890439
40.890439
0.441
AA
AA
AA
AA
AA
AA
BB
BB
AA
AA



1685613


5
SNP_A-
rs276278
42016012
42.016012
0.298
BB
BB
BB
BB
BB
BB
BB
BB
BB
AB



1731232


5
SNP_A-
rs1072746
43646445
43.646445
0.441
AA
AB
BB
BB
BB
BB
BB
AB
AA
AB



1694450


5
SNP_A-
rs2404958
50098792
50.098792
0.619
AA
AB
AA
AA
BB
AB
AA
AA
AA
AA



1675759


5
SNP_A-
rs9283709
51510492
51.510492
0.595
BB
AB
BB
BB
AB
AB
AA
AA
BB
BB



1723309


5
SNP_A-
rs10512988
52085030
52.08503
0.357
BB
AB
AA
AA
AA
AA
BB
AB
AA
AA



1728968


5
SNP_A-
rs9292039
53454075
53.454075
0.268
BB
BB
BB
BB
BB
BB
AA
AB
BB
AB



1746984


5
SNP_A-
rs6450270
54287290
54.28729
0.714
AA
AA
AA
AA
AA
AA
BB
AB
AA
AA



1697874


5
SNP_A-
rs889310
56000924
56.000924
0.476
BB
BB
AB
AA
AB
AB
BB
AB
AA
AB



1684501


5
SNP_A-
rs2539731
57109292
57.109292
0.475
BB
BB
BB
BB
BB
BB
AB
AB
BB
BB



1673657


5
SNP_A-
rs9292159
57677129
57.677129
0.31
BB
BB
BB
BB
BB
BB
BB
BB
BB
BB



1716782


5
SNP_A-
rs9292180
58192447
58.192447
0.25
BB
BB
AB
AA
AB
AB
BB
BB
AA
AB



1724117


5
SNP_A-
rs10514860
58859777
58.859777
0.726
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA



1755537


5
SNP_A-
rs6859376
59471964
59.471964
0.56
AA
AB
BB
BB
BB
BB
AB
AB
BB
BB



1653871


5
SNP_A-
rs159375
60469024
60.469024
0.691
AA
AA
AA
AA
AA
AA
BB
BB
BB
AB



1653455


5
SNP_A-
rs356598
63380121
63.380121
0.631
BB
BB
AA
AA
AA
AA
BB
BB
BB
AB



1682537


5
SNP_A-
rs7704890
66151331
66.151331
0.357
AA
AB
BB
BB
BB
BB
BB
BB
AA
AB



1755307


5
SNP_A-
rs6858907
67817289
67.817289
0.417
BB
BB
AB
BB
AB
AB
BB
BB
BB
BB



1671457


5
SNP_A-
rs1600073
74472493
74.472493
0.61
BB
BB
AB
BB
AB
AB
AB
AB
AA
AA



1654744


5
SNP_A-
rs10514059
75460983
75.460983
0.658
AA
AA
AA
AA
AA
AA
AA
AA
BB
BB



1653531


5
SNP_A-
rs2972341
76504599
76.504599
0.536
AB
AB
AA
AA
AA
AA
AB
AB
AA
AB



1720510


5
SNP_A-
rs949645
78478278
78.478278
0.564
AA
AA
AB
BB
AB
AB
BB
BB
AA
AB



1682839


5
SNP_A-
rs264986
79206180
79.20618
0.31
BB
BB
BB
BB
BB
BB
BB
BB
BB
BB



1747624


5
SNP_A-
rs964102
80843469
80.843469
0.679
AB
AB
AA
AA
AA
AA
AB
AB
BB
BB



1730614


5
SNP_A-
rs10514249
82540612
82.540612
0.56
AA
AA
AA
AA
AA
AA
BB
AB
BB
BB



1732246


5
SNP_A-
rs4639197
83381853
83.381853
0.25
BB
BB
BB
BB
BB
BB
BB
BB
BB
BB



1729977


5
SNP_A-
rs323744
86861304
86.861304
0.5
BB
BB
AA
AA
AA
AA
BB
AB
AA
AB



1742238


5
SNP_A-
rs819344
89093506
89.093506
0.463
AA
AA
AB
BB
AA
AB
BB
AB
BB
BB



1751644


5
SNP_A-
rs2935499
89626568
89.626568
0.548
AA
AA
BB
BB
BB
BB
AA
AB
AB
AB



1690642


5
SNP_A-
rs52308
90817903
90.817903
0.512
BB
BB
AA
AA
AA
AA
BB
BB
AA
AA



1744488


5
SNP_A-
rs248339
95229134
95.229134
0.643
AA
AA
BB
BB
BB
BB
BB
AB
AB
AB



1670907


5
SNP_A-
rs31248
96040439
96.040439
0.275
BB
BB
AB
BB
AA
AB
AA
AB
BB
BB



1729028


5
SNP_A-
rs10515273
97821155
97.821155
0.75
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA



1657092


5
SNP_A-
rs2887526
98552712
98.552712
0.667
AB
AB
AA
AA
AA
AA
AA
AA
AA
AA



1643346


5
SNP_A-
rs2369754
99184261
99.184261
0.488
AA
AA
AB
BB
AA
AB
AA
AB
BB
BB



1722905


5
SNP_A-
rs1477625
101358141
101.358141
0.271
BB
BB
BB
BB
BB
BB
BB
BB
BB
BB



1664073


5
SNP_A-
rs9327861
101895776
101.895776
0.655
BB
BB
AA
AA
AA
AA
BB
AB
AA
AA



1742802


5
SNP_A-
rs39984
102625191
102.625191
0.31
AA
AA
BB
BB
BB
BB
AA
AA
BB
BB



1745283


5
SNP_A-
rs10515355
103975436
103.975436
0.738
AB
AB
AA
AA
AA
AA
BB
BB
AA
AA



1734843


5
SNP_A-
rs4957531
106511277
106.511277
0.463
AA
AA
AA
AA
AA
AA
AA
AB
AB
AB



1730932


5
SNP_A-
rs245243
109258634
109.258634
0.714
AB
AB
AB
AA
BB
AB
AA
AB
AA
AA



1757418


5
SNP_A-
rs10491424
110481705
110.481705
0.56
BB
BB
AB
AB
BB
AB
AA
AA
AA
AA



1646761


5
SNP_A-
rs1213404
111130917
111.130917
0.35
BB
BB
BB
BB
BB
BB
BB
AB
BB
BB



1691719


5
SNP_A-
rs971517
112050154
112.050154
0.476
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA



1747768


5
SNP_A-
rs10519378
113555966
113.555966
0.738
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA



1726679


5
SNP_A-
rs2546480
114841054
114.841054
0.452
AB
AB
BB
BB
BB
BB
BB
BB
AB
AB



1738592


5
SNP_A-
rs2662458
115402242
115.402242
0.655
AB
AB
AB
AB
BB
AB
AA
AA
AB
AB



1708792


5
SNP_A-
rs1027292
116078486
116.078486
0.548
BB
BB
AA
AA
AA
AA
AA
AA
AB
AB



1720512


5
SNP_A-
rs1504978
118638459
118.638459
0.655
AB
AB
AB
AB
AA
AB
AA
AA
AA
AA



1701708


5
SNP_A-
rs10519615
119189176
119.189176
0.643
BB
BB
BB
BB
BB
BB
AB
AB
AB
AB



1689317


5
SNP_A-
rs6897147
119692229
119.692229
0.691
AA
AA
AA
AA
AA
AA
BB
BB
AA
AA



1751260


5
SNP_A-
rs161011
123703275
123.703275
0.286
AA
AA
AB
AB
AB
AB
BB
BB
BB
BB



1654688


5
SNP_A-
rs7716491
124265772
124.265772
0.738
AB
AB
AA
AA
AA
AA
AB
AB
AB
AB



1699578


5
SNP_A-
rs1826263
124839517
124.839517
0.571
BB
BB
AA
AA
AA
AA
AB
AB
AB
AB



1703238


5
SNP_A-
rs964185
125631547
125.631547
0.345
AA
AA
AB
AB
AB
AB
BB
BB
AB
AB



1715428


5
SNP_A-
rs1345663
126678081
126.678081
0.31
BB
AB
AA
AA
AA
AA
AA
AA
AA
AA



1751090


5
SNP_A-
rs9327460
127338947
127.338947
0.524
AA
AA
AA
AA
AA
AA
AB
AB
BB
BB



1694738


5
SNP_A-
rs1181962
128414700
128.4147
0.333
BB
BB
AA
AA
AA
AA
AB
AB
BB
BB



1658519


5
SNP_A-
rs25810
129015788
129.015788
0.595
AA
AA
AA
AA
AA
AA
AA
AA
AB
AB



1677377


5
SNP_A-
rs10520083
129967905
129.967905
0.345
AA
AA
AB
AB
AB
AB
AB
AB
AB
AB



1673843


5
SNP_A-
rs9327673
133230970
133.23097
0.286
BB
BB
BB
BB
BB
BB
AB
AB
AB
AB



1705560


5
SNP_A-
rs10515473
134961986
134.961986
0.714
BB
AB
AA
AA
AA
AA
AA
AA
AB
AB



1662391


5
SNP_A-
rs10515481
136007946
136.007946
0.536
BB
AB
AA
AA
AA
AA
AA
AA
BB
BB



1707797


5
SNP_A-
rs1560930
136590879
136.590879
0.537
BB
BB
AA
AA
AA
AA
AA
AA
AB
AB



1720076


5
SNP_A-
rs288019
138219292
138.219292
0.39
BB
BB
AB
AB
AB
AB
BB
AB
BB
BB



1697724


5
SNP_A-
rs2336977
139130436
139.130436
0.61
AA
AB
AB
AB
AB
AB
BB
AB
AA
AA



1707038


5
SNP_A-
rs6860077
139725338
139.725338
0.31
BB
AB
BB
BB
BB
BB
BB
BB
AB
AB



1703312


5
SNP_A-
rs246002
140321288
140.321288
0.5
BB
BB
AB
AB
AB
AB
AA
AB
AA
AA



1742086


5
SNP_A-
rs32927
141102251
141.102251
0.298
AA
AB
BB
BB
BB
BB
BB
AB
AB
AB



1730974


5
SNP_A-
rs997833
141815738
141.815738
0.286
AA
AB
AB
AB
AB
AB
BB
BB
BB
BB



1736416


5
SNP_A-
rs325227
143131067
143.131067
0.31
AA
AB
AA
AA
AA
AA
AA
AA
BB
BB



1722681


5
SNP_A-
rs10515600
147316068
147.316068
0.548
AB
AB
AB
AB
AB
AB
AA
AA
BB
BB



1749482


5
SNP_A-
rs185021
148147283
148.147283
0.524
AB
AB
AB
AB
AB
AB
BB
BB
AA
AA



1716760


5
SNP_A-
rs10515632
149082624
149.082624
0.333
BB
BB
AB
AB
AB
AB
BB
AB
AA
AA



1642124


5
SNP_A-
rs1277464
150234035
150.234035
0.354
BB
BB
AB
AB
AB
AB
AB
AB
BB
BB



1737743


5
SNP_A-
rs2304054
150923278
150.923278
0.548
AB
AB
AA
AA
AA
AA
BB
BB
AB
AB



1678329


5
SNP_A-
rs10515686
152529312
152.529312
0.619
AA
AA
AB
AB
AB
AB
BB
AB
AB
AB



1649583


5
SNP_A-
rs4129128
153102070
153.10207
0.321
AB
AB
AA
AA
AA
AA
BB
AB
BB
BB



1652471


5
SNP_A-
rs991314
154438135
154.438135
0.744
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA



1700286


5
SNP_A-
rs2569031
155177249
155.177249
0.488
AB
AB
AB
AB
AB
AB
AA
AA
AB
AB



1752802


5
SNP_A-
rs873343
157106698
157.106698
0.25
AB
AB
AB
AB
AB
AB
AA
AA
BB
BB



1706578


5
SNP_A-
rs9313777
157878177
157.878177
0.75
AA
AA
AA
AA
AA
AA
AA
AA
AB
AB



1757398


5
SNP_A-
rs10515781
158633942
158.633942
0.321
AB
AB
AB
AB
AB
AB
BB
BB
BB
BB



1736540


5
SNP_A-
rs411005
160517741
160.517741
0.476
AB
AB
AA
AA
AA
AA
BB
BB
AA
AA



1647073


5
SNP_A-
rs2170901
161840216
161.840216
0.429
BB
BB
AB
AB
AB
AB
BB
BB
AA
AA



1724235


5
SNP_A-
rs300238
162682948
162.682948
0.452
AB
AB
AB
AB
AB
AB
AA
AA
AB
AB



1754048


5
SNP_A-
rs158295
163217790
163.21779
0.25
BB
BB
BB
BB
BB
BB
AA
AB
BB
BB



1745987


5
SNP_A-
rs6869856
166017651
166.017651
0.412
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA



1720394


5
SNP_A-
rs1911557
169681232
169.681232
0.25
BB
BB
BB
BB
BB
BB
AB
AB
AB
AB



1687531


5
SNP_A-
rs10516089
171083836
171.083836
0.726
AB
AB
AA
AA
AA
AA
AB
AB
AA
AA



1749300


5
SNP_A-
rs1909706
173644330
173.64433
0.707
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA



1665975


5
SNP_A-
rs965017
174509108
174.509108
0.548
AB
AB
AB
AB
BB
AB
AA
AA
AA
AA



1724885


5
SNP_A-
rs1071882
178068646
178.068646
0.702
AA
AA
AB
AB
AA
AB
AA
AA
AA
AA



1644515


5
SNP_A-
rs2892344
180297919
180.297919
0.536
AB
AB
BB
BB
BB
BB
BB
BB
AB
AB



1748220


6
SNP_A-
rs3765437
508013
0.508013
0.536
AA
AA
BB
BB
BB
BB
BB
BB
AA
AA



1732501


6
SNP_A-
rs238073
1192930
1.19293
0.381
AA
AA
BB
BB
BB
BB
AA
AA
AB
AB



1728682


6
SNP_A-
rs6919059
1729095
1.729095
0.691
AA
AB
AA
AA
AA
AA
AB
AB
AA
AA



1747718


6
SNP_A-
rs2326366
3923256
3.923256
0.417
BB
AB
AA
AB
AA
AB
BB
BB
AB
AB



1723553


6
SNP_A-
rs10484314
5593086
5.593086
0.333
BB
BB
BB
BB
BB
BB
BB
BB
AB
AB



1747058


6
SNP_A-
rs3851514
6219569
6.219569
0.75
BB
BB
BB
AB
BB
AB
AB
AB
AA
AA



1673883


6
SNP_A-
rs267202
7799235
7.799235
0.619
AB
AB
AA
AB
AA
AB
AA
AA
AA
AA



1737825


6
SNP_A-
rs1543731
8355978
8.355978
0.346
AA
AA
AA
AB
AA
AB
BB
BB
BB
BB



1680945


6
SNP_A-
rs9296701
9687981
9.687981
0.536
AB
AB
BB
BB
BB
BB
BB
BB
AB
AB



1702006


6
SNP_A-
rs4512212
10379387
10.379387
0.464
BB
BB
AA
AB
AA
AB
BB
BB
BB
BB



1715186


6
SNP_A-
rs2182335
11324963
11.324963
0.714
AA
AA
AA
AB
AA
AB
BB
BB
AA
AA



1680453


6
SNP_A-
rs2841555
13574809
13.574809
0.655
AA
AA
AA
AA
AA
AA
AB
AB
AB
AB



1690060


6
SNP_A-
rs2237166
16755137
16.755137
0.536
AB
AB
AB
AB
BB
AB
BB
BB
AA
AA



1646375


6
SNP_A-
rs2147211
17898170
17.89817
0.714
AA
AA
AA
AA
AA
AA
AB
AB
AB
AB



1744270


6
SNP_A-
rs9297090
18873893
18.873893
0.571
AB
AB
AA
AA
AA
AA
AA
AA
AB
AB



1679405


6
SNP_A-
rs971623
20437442
20.437442
0.405
AB
AB
BB
BB
BB
BB
AB
AB
BB
BB



1717924


6
SNP_A-
rs10485012
22715005
22.715005
0.595
AB
AB
AB
AB
AB
AB
BB
BB
AA
AA



1749068


6
SNP_A-
rs2022330
23554534
23.554534
0.667
AB
AB
AB
AB
AB
AB
AB
AB
AB
AB



1754953


6
SNP_A-
rs499466
24069410
24.06941
0.5
AB
AB
BB
BB
BB
BB
AB
AB
AA
AA



1698352


6
SNP_A-
rs9295755
28141153
28.141153
0.25
BB
BB
BB
BB
BB
BB
AB
AB
BB
BB



1682833


6
SNP_A-
rs2747430
29756485
29.756485
0.702
AB
AB
AA
AA
AA
AA
AA
AA
AA
AA



1656688


6
SNP_A-
rs2395173
32512837
32.512837
0.691
AB
AB
AA
AA
AA
AA
AB
AB
AA
AA



1715492


6
SNP_A-
rs9296266
38990614
38.990614
0.573
AA
AA
AB
AB
AB
AB
AA
AA
AA
AB



1722893


6
SNP_A-
rs2395743
40400147
40.400147
0.488
BB
AB
BB
BB
BB
BB
BB
BB
BB
AB



1724965


6
SNP_A-
rs3804281
41853967
41.853967
0.429
BB
BB
AB
AB
AB
AB
AA
AB
BB
BB



1757782


6
SNP_A-
rs3763234
42725939
42.725939
0.298
AA
AB
BB
BB
BB
BB
BB
BB
BB
AB



1700088


6
SNP_A-
rs525043
44511878
44.511878
0.25
BB
BB
BB
BB
BB
BB
BB
BB
BB
AB



1748380


6
SNP_A-
rs9296453
45335410
45.33541
0.429
AA
AB
BB
BB
BB
BB
AA
AA
AA
AA



1685295


6
SNP_A-
rs9296468
45876662
45.876662
0.726
AA
AA
AB
AB
AB
AB
AA
AA
AA
AA



1708722


6
SNP_A-
rs10498767
46471516
46.471516
0.441
BB
AB
BB
BB
BB
BB
BB
BB
BB
AB



1736458


6
SNP_A-
rs9296547
47474339
47.474339
0.643
AA
AA
BB
BB
BB
BB
BB
AB
AA
AA



1642956


6
SNP_A-
rs2089505
48229201
48.229201
0.643
AA
AA
BB
BB
BB
BB
BB
BB
AA
AA



1742558


6
SNP_A-
rs504213
49411897
49.411897
0.607
AA
AA
AA
AA
AA
AA
AA
AA
BB
AB



1738582


6
SNP_A-
rs10484664
51124482
51.124482
0.256
BB
BB
BB
BB
BB
BB
BB
BB
BB
AB



1658085


6
SNP_A-
rs913098
51750772
51.750772
0.667
AA
AB
AA
AA
AA
AA
AA
AA
AA
AA



1723157


6
SNP_A-
rs509946
52411949
52.411949
0.369
BB
BB
AA
BB
AA
AB
BB
AB
BB
BB



1726221


6
SNP_A-
rs10484785
53457958
53.457958
0.476
BB
AB
BB
BB
BB
BB
AA
AB
BB
BB



1717116


6
SNP_A-
rs1393779
54808762
54.808762
0.464
AA
AB
AA
AA
AA
AA
BB
BB
BB
BB



1717814


6
SNP_A-
rs1925179
56129171
56.129171
0.655
AA
AA
AA
AA
AA
AA
AA
AA
AA
AB



1693069


6
SNP_A-
rs6934928
58422082
58.422082
0.714
BB
AB
AA
AA
AA
AA
BB
AB
AA
AA



1664153


6
SNP_A-
rs565795
62597708
62.597708
0.61
AA
AA
AA
AA
AA
AA
BB
BB
AA
AB



1682123


6
SNP_A-
rs9293849
63255396
63.255396
0.333
BB
BB
BB
AA
BB
AB
AA
AB
BB
AB



1692597


6
SNP_A-
rs9294630
65677619
65.677619
0.702
AA
AB
AA
AA
AA
AA
AA
AA
AA
AB



1729072


6
SNP_A-
rs2502270
67886666
67.886666
0.488
AA
AA
AA
AA
AA
AA
AB
AB
AA
AA



1685655


6
SNP_A-
rs4707479
68787830
68.78783
0.286
AA
AA
BB
BB
BB
BB
BB
BB
BB
AB



1744006


6
SNP_A-
rs579588
69639537
69.639537
0.714
AA
AA
BB
AA
BB
AB
AB
AB
BB
AB



1683273


6
SNP_A-
rs591809
72270133
72.270133
0.524
BB
BB
BB
BB
BB
BB
BB
BB
AA
AB



1659091


6
SNP_A-
rs959369
74620278
74.620278
0.607
AA
AA
AA
AA
AA
AA
AA
AA
AA
AB



1660794


6
SNP_A-
rs1575856
76774483
76.774483
0.262
BB
BB
BB
BB
BB
BB
BB
BB
BB
AB



1656648


6
SNP_A-
rs1457947
77533004
77.533004
0.619
AA
AA
AA
AA
AA
AA
AB
AB
AA
AA



1675424


6
SNP_A-
rs236225
79172654
79.172654
0.744
AA
AA
AA
AA
AA
AA
AB
AB
AA
AA



1657250


6
SNP_A-
rs239500
80761863
80.761863
0.595
AB
AB
AA
AA
AA
AA
AB
AB
BB
BB



1646741


6
SNP_A-
rs310387
81832380
81.83238
0.56
AA
AA
AA
AA
AA
AA
AA
AA
BB
AB



1733643


6
SNP_A-
rs2323435
82365338
82.365338
0.417
BB
BB
BB
BB
BB
BB
BB
BB
BB
BB



1684117


6
SNP_A-
rs958568
83211843
83.211843
0.417
BB
BB
BB
BB
BB
BB
AB
AB
BB
AB



1749278


6
SNP_A-
rs6938512
85412591
85.412591
0.476
AB
AB
BB
BB
BB
BB
AA
AA
BB
BB



1737476


6
SNP_A-
rs3966882
85938190
85.93819
0.46
BB
BB
BB
AA
AB
AB
AB
AB
BB
BB



1658179


6
SNP_A-
rs3857488
88057783
88.057783
0.548
AB
AB
BB
BB
BB
BB
AA
AA
AA
AB



1704672


6
SNP_A-
rs942115
90274825
90.274825
0.691
AA
AA
BB
BB
BB
BB
AA
AA
AA
AA



1750678


6
SNP_A-
rs1753826
91283465
91.283465
0.274
BB
BB
BB
BB
BB
BB
BB
BB
BB
BB



1641794


6
SNP_A-
rs427118
92400922
92.400922
0.622
AB
AB
AA
AA
AA
AA
AA
AA
AB
AB



1747902


6
SNP_A-
rs609590
93182864
93.182864
0.595
AB
AB
AA
AA
AA
AA
AB
AB
AB
AB



1699604


6
SNP_A-
rs1906966
94362973
94.362973
0.571
AA
AA
AA
AA
AA
AA
AB
AB
AB
AB



1671865


6
SNP_A-
rs2380218
95947837
95.947837
0.643
AB
AB
BB
AB
AB
AB
AB
AB
AA
AA



1672477


6
SNP_A-
rs6925466
96483564
96.483564
0.476
AB
AB
AA
AB
AB
AB
BB
BB
AB
AB



1727169


6
SNP_A-
rs2206094
97681917
97.681917
0.595
AB
AB
AA
AA
AA
AA
AB
AB
AB
AB



1669372


6
SNP_A-
rs10484477
103889951
103.889951
0.738
AA
AA
AA
AA
AA
AA
BB
BB
AB
AB



1754567


6
SNP_A-
rs1341123
104971433
104.971433
0.274
BB
BB
BB
BB
BB
BB
BB
BB
AB
AB



1687147


6
SNP_A-
rs1325421
105998201
105.998201
0.643
AB
AB
AA
AB
AB
AB
AA
AA
AA
AA



1696467


6
SNP_A-
rs1462145
107068713
107.068713
0.357
AB
AB
BB
BB
BB
BB
BB
BB
BB
BB



1733167


6
SNP_A-
rs7740028
110825873
110.825873
0.393
AA
AA
BB
BB
BB
BB
AA
AA
BB
BB



1650105


6
SNP_A-
rs2010315
112529340
112.52934
0.679
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA



1680493


6
SNP_A-
rs1378682
113188320
113.18832
0.405
AA
AA
BB
BB
BB
BB
AA
AA
AB
AB



1735595


6
SNP_A-
rs2810160
114329403
114.329403
0.548
AA
AB
BB
BB
BB
BB
AB
AB
AB
AB



1712634


6
SNP_A-
rs1748168
114955404
114.955404
0.56
BB
AB
AA
AA
AA
AA
AB
AB
BB
BB



1687581


6
SNP_A-
rs2250263
116940700
116.9407
0.679
AA
AB
AA
AA
AA
AA
AA
AA
BB
BB



1738139


6
SNP_A-
rs929122
117712442
117.712442
0.726
AA
AA
AA
AA
AA
AA
AA
AA
AB
AB



1729937


6
SNP_A-
rs9285429
118811259
118.811259
0.619
AA
AA
AB
AB
AB
AB
AA
AA
BB
BB



1661803


6
SNP_A-
rs1873553
120164641
120.164641
0.429
BB
BB
BB
BB
BB
BB
AB
AB
AA
AA



1665123


6
SNP_A-
rs6906196
122713901
122.713901
0.369
BB
BB
BB
BB
BB
BB
BB
BB
BB
BB



1679087


6
SNP_A-
rs6924068
124232587
124.232587
0.345
BB
BB
AB
AB
AB
AB
BB
BB
BB
BB



1707510


6
SNP_A-
rs484510
125528599
125.528599
0.691
AA
AA
AA
AA
AA
AA
AA
AA
AB
AB



1745119


6
SNP_A-
rs9321057
126198636
126.198636
0.405
AA
AB
BB
BB
BB
BB
AB
AB
AB
AB



1685381


6
SNP_A-
rs270044
128228176
128.228176
0.405
AA
AB
BB
BB
BB
BB
BB
BB
AB
AB



1751986


6
SNP_A-
rs1508439
129073191
129.073191
0.655
AA
AB
AA
AA
AA
AA
AB
AB
AA
AA



1721422


6
SNP_A-
rs10484282
130107771
130.107771
0.321
BB
AB
BB
BB
BB
BB
AB
AB
BB
BB



1707720


6
SNP_A-
rs766967
130912718
130.912718
0.488
AA
AA
AB
AB
AB
AB
AB
AB
BB
BB



1652817


6
SNP_A-
rs170881
132358254
132.358254
0.655
AA
AA
BB
BB
BB
BB
AB
AB
BB
BB



1653251


6
SNP_A-
rs2745426
133045037
133.045037
0.287
BB
BB
BB
BB
BB
BB
BB
BB
BB
BB



1723663


6
SNP_A-
rs509904
133558775
133.558775
0.713
AA
AB
AA
AA
AA
AA
AA
AA
BB
BB



1751418


6
SNP_A-
rs6570091
137092589
137.092589
0.464
BB
BB
AA
AA
AA
AA
BB
BB
AB
AB



1735812


6
SNP_A-
rs662100
137931606
137.931606
0.512
AA
AA
AA
AA
AA
AA
BB
AB
AA
AA



1669540


6
SNP_A-
rs2473522
139472945
139.472945
0.274
BB
BB
AB
AB
AB
AB
AA
AA
BB
BB



1692831


6
SNP_A-
rs9321743
140005650
140.00565
0.655
AA
AA
AA
AA
AA
AA
AA
AA
AB
AB



1729139


6
SNP_A-
rs225710
142582952
142.582952
0.548
AB
AB
BB
BB
BB
BB
BB
AB
AA
AA



1668519


6
SNP_A-
rs10484804
143972461
143.972461
0.262
AB
AB
BB
BB
BB
BB
BB
BB
BB
BB



1741850


6
SNP_A-
rs4243477
145767511
145.767511
0.655
AA
AA
AA
AA
AA
AA
AA
AB
AB
AB



1699598


6
SNP_A-
rs6923545
146286436
146.286436
0.417
AB
AB
BB
BB
BB
BB
BB
AB
AB
AB



1714061


6
SNP_A-
rs2025157
146851348
146.851348
0.607
AA
AA
AA
AA
AA
AA
AA
AB
BB
BB



1643757


6
SNP_A-
rs10484677
148334072
148.334072
0.702
AA
AA
AA
AA
AA
AA
AA
AA
AB
AB



1746680


6
SNP_A-
rs997682
149708313
149.708313
0.293
BB
BB
AB
AB
AB
AB
BB
AB
BB
BB



1674099


6
SNP_A-
rs1933079
151696424
151.696424
0.464
AA
AA
BB
BB
BB
BB
AA
AB
BB
BB



1742378


6
SNP_A-
rs872371
153469676
153.469676
0.732
AA
AA
BB
BB
BB
BB
AA
AB
AA
AA



1664463


6
SNP_A-
rs612450
154306471
154.306471
0.56
AB
AB
AA
AB
AB
AB
AA
AA
AA
AA



1706738


6
SNP_A-
rs1980602
155248334
155.248334
0.429
AB
AB
AA
AA
AA
AA
BB
AB
AB
AB



1661002


6
SNP_A-
rs1391655
156092837
156.092837
0.298
BB
AB
BB
BB
BB
BB
BB
AB
BB
BB



1700465


6
SNP_A-
rs7770496
156806897
156.806897
0.372
AA
AB
AA
AB
AB
AB
AA
AB
AB
AB



1660620


6
SNP_A-
rs4709298
157885415
157.885415
0.262
BB
AB
BB
AB
AB
AB
AA
AB
AA
AA



1712976


6
SNP_A-
rs7753885
158892133
158.892133
0.488
BB
AB
AA
AB
AB
AB
BB
BB
BB
BB



1676117


6
SNP_A-
rs923459
159532261
159.532261
0.513
BB
AB
AA
AA
AA
AA
BB
BB
AB
AB



1669774


6
SNP_A-
rs927450
160152507
160.152507
0.583
AA
AA
AA
AA
AA
AA
BB
AB
AB
AB



1659978


6
SNP_A-
rs598969
160664317
160.664317
0.425
BB
AB
AA
AA
AA
AA
BB
BB
BB
BB



1670969


6
SNP_A-
rs6910079
164339862
164.339862
0.441
AA
AB
BB
AB
AB
AB
BB
BB
AB
AB



1697554


6
SNP_A-
rs907223
165179009
165.179009
0.702
AA
AA
AA
AA
AA
AA
AA
AA
AB
AB



1641972


6
SNP_A-
rs162293
167420582
167.420582
0.75
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA



1698488


7
SNP_A-
rs1637750
2001052
2.001052
0.655
AA
AA
AA
AA
AA
AA
AB
AB
AA
AA



1647507


7
SNP_A-
rs10257982
3107838
3.107838
0.452
AA
AB
AA
AA
AA
AA
BB
BB
AB
AB



1710599


7
SNP_A-
rs10488360
4184450
4.18445
0.317
BB
BB
BB
BB
BB
BB
BB
BB
BB
BB



1675597


7
SNP_A-
rs719423
7128355
7.128355
0.667
AA
AA
BB
BB
BB
BB
BB
BB
AB
AB



1712104


7
SNP_A-
rs38012
7815795
7.815795
0.464
AB
AB
AB
AB
BB
AB
AB
AB
AB
AB



1649251


7
SNP_A-
rs10253058
10364900
10.3649
0.738
AA
AA
AA
AA
AA
AA
AA
AA
AB
AB



1714013


7
SNP_A-
rs7785008
10921568
10.921568
0.452
AB
AB
BB
BB
BB
BB
AA
AA
AB
AB



1656052


7
SNP_A-
rs10270630
11629477
11.629477
0.738
BB
BB
AB
AB
BB
AB
AA
AA
AB
AB



1678735


7
SNP_A-
rs1036667
12197823
12.197823
0.488
BB
BB
AB
AB
AA
AB
AA
AA
AA
AA



1672885


7
SNP_A-
rs2214867
13507965
13.507965
0.417
AA
AA
AA
AA
AA
AA
BB
BB
AB
AB



1707354


7
SNP_A-
rs7793372
14320689
14.320689
0.619
BB
BB
BB
BB
BB
BB
AA
AA
AB
AB



1724539


7
SNP_A-
rs1527203
15931001
15.931001
0.643
AA
AA
AB
AB
AB
AB
AA
AA
AA
AA



1756798


7
SNP_A-
rs706057
16577230
16.57723
0.56
AB
AB
AB
AB
AB
AB
AB
AB
AB
AB



1755023


7
SNP_A-
rs4721619
17291814
17.291814
0.667
AB
AB
AA
AA
AA
AA
AB
AB
AA
AA



1647845


7
SNP_A-
rs2731551
18050825
18.050825
0.25
BB
BB
AB
AB
AB
AB
BB
BB
BB
BB



1693824


7
SNP_A-
rs10486334
18974842
18.974842
0.726
BB
BB
AB
AB
AB
AB
BB
BB
AA
AA



1724213


7
SNP_A-
rs2248634
21065118
21.065118
0.262
BB
BB
BB
BB
BB
BB
AB
AB
BB
BB



1716746


7
SNP_A-
rs7781044
21636203
21.636203
0.61
AA
AA
AA
AA
AA
AA
AB
AB
AB
AB



1706218


7
SNP_A-
rs2286497
22701238
22.701238
0.305
BB
BB
AB
AB
AB
AB
AB
AB
AB
AB



1718088


7
SNP_A-
rs2521642
24200036
24.200036
0.31
BB
BB
BB
BB
BB
BB
AB
AB
BB
BB



1755947


7
SNP_A-
rs4275130
26366016
26.366016
0.75
AB
AB
AA
AA
AA
AA
AA
AA
AA
AA



1751950


7
SNP_A-
rs6953785
27237607
27.237607
0.536
AB
AB
AB
BB
AB
AB
AB
AB
AA
AA



1725907


7
SNP_A-
rs4498447
28177012
28.177012
0.524
BB
BB
AB
BB
AB
AB
BB
BB
AB
AB



1729503


7
SNP_A-
rs1859681
28699408
28.699408
0.275
BB
BB
BB
BB
BB
BB
BB
BB
BB
BB



1663287


7
SNP_A-
rs1476991
29293282
29.293282
0.571
AA
AA
AA
AA
AA
AA
AA
AA
AB
AB



1728544


7
SNP_A-
rs997349
29955684
29.955684
0.357
BB
BB
BB
BB
BB
BB
BB
BB
BB
BB



1718026


7
SNP_A-
rs10487729
31345524
31.345524
0.726
AA
AA
AA
AA
AA
AA
AB
AB
BB
BB



1695134


7
SNP_A-
rs215675
32156237
32.156237
0.286
AA
AB
BB
BB
BB
BB
BB
BB
AB
AB



1694740


7
SNP_A-
rs10254116
33010729
33.010729
0.631
BB
AB
AA
AA
AA
AA
AA
AA
AA
AA



1717858


7
SNP_A-
rs10486619
33600838
33.600838
0.262
BB
BB
BB
BB
BB
BB
BB
BB
AB
AB



1678175


7
SNP_A-
rs741202
35093154
35.093154
0.262
BB
BB
BB
BB
AB
AB
BB
BB
AA
AA



1749566


7
SNP_A-
rs4720228
36725169
36.725169
0.476
BB
AB
BB
BB
BB
BB
BB
BB
BB
BB



1731924


7
SNP_A-
rs2893552
37928803
37.928803
0.679
AA
AA
AA
AA
AA
AA
BB
BB
AA
AA



1671783


7
SNP_A-
rs4723791
38613746
38.613746
0.56
BB
AB
AA
AA
AA
AA
AA
AA
AA
AA



1730217


7
SNP_A-
rs10486802
39497008
39.497008
0.571
AA
AA
BB
BB
BB
BB
AA
AA
AA
AA



1669882


7
SNP_A-
rs7807596
40599281
40.599281
0.417
AA
AA
BB
BB
AB
AB
AB
AB
AA
AA



1721388


7
SNP_A-
rs384469
41099793
41.099793
0.702
AA
AB
AA
AA
AA
AA
AB
AB
AA
AA



1750290


7
SNP_A-
rs721273
42867596
42.867596
0.702
AA
AA
BB
BB
AB
AB
AA
AA
AA
AA



1695614


7
SNP_A-
rs2330918
43444472
43.444472
0.75
AA
AB
AA
AA
AA
AA
AA
AA
AA
AA



1736506


7
SNP_A-
rs10253161
46769632
46.769632
0.714
AA
AA
AA
AA
AA
AA
AA
AA
BB
AB



1732094


7
SNP_A-
rs7357251
47841498
47.841498
0.417
AA
AA
AA
AA
AA
AB
BB
BB
BB
BB



1710294


7
SNP_A-
rs3923511
48463293
48.463293
0.688
AA
AA
AA
AA
AA
AA
AB
AB
BB
AB



1669906


7
SNP_A-
rs716719
50102978
50.102978
0.262
AA
AA
BB
BB
BB
BB
BB
BB
BB
BB



1748806


7
SNP_A-
rs2159809
52287324
52.287324
0.39
AA
AB
BB
BB
BB
BB
BB
BB
BB
BB



1646085


7
SNP_A-
rs6955211
63316490
63.31649
0.464
BB
AB
AA
AA
AA
AA
AA
AB
BB
BB



1655668


7
SNP_A-
rs9638255
67214110
67.21411
0.655
AA
AA
AA
AA
AA
AA
AA
AB
AA
AA



1695272


7
SNP_A-
rs1699443
68224124
68.224124
0.583
AA
AB
AA
AA
AA
AA
AA
AA
BB
AB



1673105


7
SNP_A-
rs10499812
69098641
69.098641
0.333
AA
AB
BB
BB
BB
BB
BB
BB
BB
BB



1667673


7
SNP_A-
rs6976144
77019455
77.019455
0.5
AA
AB
BB
BB
BB
BB
AB
AB
AA
AB



1757146


7
SNP_A-
rs10485887
77712706
77.712706
0.548
AA
AA
AA
AB
AA
AB
BB
BB
AA
AB



1741890


7
SNP_A-
rs984312
78285441
78.285441
0.631
AA
AA
BB
AB
AB
AB
AA
AA
BB
AB



1663217


7
SNP_A-
rs3211816
79922641
79.922641
0.39
BB
BB
BB
BB
BB
BB
AB
AB
BB
BB



1676663


7
SNP_A-
rs3801720
81447606
81.447606
0.595
AA
AB
BB
AB
AB
AB
AB
AB
BB
AB



1724625


7
SNP_A-
rs1693380
82818863
82.818863
0.738
AA
AA
AA
AA
AA
AA
AB
AB
AA
AA



1701440


7
SNP_A-
rs10499889
84765715
84.765715
0.369
BB
BB
BB
BB
BB
BB
AB
AB
AA
AA



1690947


7
SNP_A-
rs1063964
87480120
87.48012
0.607
AA
AA
AA
AA
AA
AA
AA
AA
BB
AB



1722683


7
SNP_A-
rs7799830
88761617
88.761617
0.429
BB
BB
AA
AA
AA
AA
AB
AB
AA
AA



1697794


7
SNP_A-
rs3802029
90126750
90.12675
0.595
AB
AB
AA
AB
AB
AB
BB
BB
BB
AB



1692549


7
SNP_A-
rs1468180
92759526
92.759526
0.441
BB
BB
AA
AA
AA
AA
AA
AA
AA
AB



1721485


7
SNP_A-
rs6465448
94217939
94.217939
0.548
AB
AB
BB
BB
BB
BB
AA
AA
BB
AB



1705566


7
SNP_A-
rs1403179
96113755
96.113755
0.75
AB
AB
AA
AA
AA
AA
AB
AB
AA
AA



1644895


7
SNP_A-
rs7779090
96790254
96.790254
0.345
BB
BB
BB
BB
BB
BB
AB
AB
BB
AB



1698924


7
SNP_A-
rs2572009
99133656
99.133656
0.524
AA
AA
BB
AB
AB
AB
AA
AA
AA
AA



1755481


7
SNP_A-
rs10487284
102064226
102.064226
0.667
AA
AA
AA
AA
AA
AA
AA
AA
AA
AB



1669180


7
SNP_A-
rs10487162
102860400
102.8604
0.256
AB
AB
BB
AB
AB
AB
BB
BB
BB
AB



1730488


7
SNP_A-
rs2519681
105578447
105.578447
0.369
AB
AB
AA
AB
AB
AB
AB
AB
AA
AB



1715320


7
SNP_A-
rs997381
106280867
106.280867
0.524
AB
AB
BB
BB
BB
BB
AA
AA
BB
BB



1657867


7
SNP_A-
rs3801948
106832398
106.832398
0.643
AA
AA
BB
AB
AB
AB
AA
AA
BB
AB



1703262


7
SNP_A-
rs1015422
107930809
107.930809
0.298
BB
AB
AA
AB
AB
AB
AB
AB
BB
AB



1687475


7
SNP_A-
rs2106442
108493824
108.493824
0.476
AA
AA
BB
BB
BB
BB
AB
AB
AA
AA



1643849


7
SNP_A-
rs10487320
109537858
109.537858
0.619
BB
AB
BB
BB
BB
BB
AA
AB
AA
AA



1688527


7
SNP_A-
rs10500003
110076704
110.076704
0.702
AA
AB
AA
AA
AA
AA
AA
AA
AA
AA



1641802


7
SNP_A-
rs10487331
110945463
110.945463
0.726
AA
AA
AA
AB
AB
AB
BB
AB
AA
AB



1740412


7
SNP_A-
rs2529588
111697006
111.697006
0.726
AA
AA
AA
AA
AA
AA
AA
AB
AA
AB



1745955


7
SNP_A-
rs1548395
112947523
112.947523
0.298
BB
BB
BB
BB
BB
BB
BB
AB
AA
AB



1724315


7
SNP_A-
rs6973150
114297804
114.297804
0.45
BB
BB
AB
AB
AB
AB
BB
BB
BB
BB



1719538


7
SNP_A-
rs10500054
115247129
115.247129
0.5
BB
BB
BB
BB
BB
BB
AA
AB
BB
BB



1736164


7
SNP_A-
rs7783832
116468422
116.468422
0.298
BB
BB
AB
AB
AB
AB
BB
AB
BB
AB



1733815


7
SNP_A-
rs10487392
117466579
117.466579
0.488
BB
BB
AB
AB
AB
AB
AA
AA
AA
AB



1676935


7
SNP_A-
rs10488301
119761267
119.761267
0.262
AA
AB
BB
BB
BB
BB
AA
AB
BB
BB



1647647


7
SNP_A-
rs1206486
121146345
121.146345
0.441
BB
BB
BB
BB
BB
BB
AA
AB
BB
BB



1655036


7
SNP_A-
rs10487974
122442567
122.442567
0.381
AA
AB
AB
AB
AB
AB
BB
BB
BB
BB



1643783


7
SNP_A-
rs6948425
123386447
123.386447
0.476
AA
AA
AB
AB
AB
AB
AA
AB
BB
AB



1690238


7
SNP_A-
rs723444
124253175
124.253175
0.417
BB
BB
AB
AB
AB
AB
BB
BB
BB
BB



1745008


7
SNP_A-
rs2107098
124969695
124.969695
0.488
BB
AB
AA
AA
AA
AA
BB
AB
BB
AB



1675675


7
SNP_A-
rs2299447
125743520
125.74352
0.738
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA



1678693


7
SNP_A-
rs6467115
126530478
126.530478
0.643
AA
AA
AA
AA
AA
AA
AA
AA
BB
BB



1670675


7
SNP_A-
rs10487505
127454114
127.454114
0.464
BB
BB
AB
AB
AB
AB
BB
BB
BB
AB



1708033


7
SNP_A-
rs10488628
127961843
127.961843
0.405
AA
AB
AB
AB
AB
AB
AA
AA
AA
AB



1656498


7
SNP_A-
rs7803075
130199321
130.199321
0.726
AA
AA
BB
BB
BB
BB
BB
AB
AA
AA



1742598


7
SNP_A-
rs1790998
133595635
133.595635
0.476
AA
AA
AB
AB
AB
AB
BB
BB
BB
BB



1695048


7
SNP_A-
rs2551778
134556904
134.556904
0.548
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA



1721434


7
SNP_A-
rs10253975
135674764
135.674764
0.662
BB
AB
AA
AA
AA
AA
AA
AA
AA
AA



1669022


7
SNP_A-
rs2253729
139396073
139.396073
0.583
AA
AB
BB
BB
BB
BB
AA
AA
BB
BB



1715624


7
SNP_A-
rs1527304
141162389
141.162389
0.571
AA
AA
BB
BB
BB
BB
AA
AA
AA
AB



1652925


7
SNP_A-
rs6949653
143162918
143.162918
0.691
AA
AB
AB
AB
AB
AB
AA
AA
AA
AA



1715016


7
SNP_A-
rs4725680
144870787
144.870787
0.369
AA
AB
BB
BB
BB
BB
AA
AA
AA
AA



1666637


7
SNP_A-
rs10487936
145527849
145.527849
0.732
AA
AA
AA
AA
AA
AA
AA
AA
BB
AB



1681703


7
SNP_A-
rs10278315
146403556
146.403556
0.726
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA



1680321


7
SNP_A-
rs1177946
147495250
147.49525
0.643
AA
AA
AA
AA
AA
AA
AA
AA
BB
BB



1720798


7
SNP_A-
rs1403222
149691561
149.691561
0.536
AB
AB
AA
AA
AA
AA
BB
BB
AA
AB



1713513


7
SNP_A-
rs306293
154243700
154.2437
0.643
AA
AA
BB
BB
BB
BB
AA
AA
AB
AB



1736364


7
SNP_A-
rs2301916
156473603
156.473603
0.369
AB
AB
AB
AB
BB
AB
BB
BB
AB
AB



1691199


8
SNP_A-
rs747351
228574
0.228574
0.369
AB
AB
AB
AB
AA
AB
AB
AB
AA
AB



1659972


8
SNP_A-
rs4876153
2291741
2.291741
0.691
BB
BB
AA
AA
AA
AA
AA
AA
AA
AB



1725579


8
SNP_A-
rs9314492
3332437
3.332437
0.476
AA
AA
BB
BB
BB
BB
BB
BB
BB
AB



1651465


8
SNP_A-
rs10503246
4117771
4.117771
0.714
AB
AB
AA
AA
AA
AA
BB
AB
BB
AB



1695486


8
SNP_A-
rs4146469
5253259
5.253259
0.441
AB
AB
AB
AB
AB
AB
BB
AB
BB
BB



1650643


8
SNP_A-
rs6559072
5839489
5.839489
0.679
AB
AB
AA
AA
AA
AA
BB
BB
AA
AA



1714359


8
SNP_A-
rs3020252
6450411
6.450411
0.634
AB
AB
BB
BB
BB
BB
AA
AA
BB
AB



1660050


8
SNP_A-
rs2409113
8849712
8.849712
0.72
AB
AB
AA
AA
AA
AA
AA
AA
AA
AA



1757262


8
SNP_A-
rs1588198
9929939
9.929939
0.655
AB
AB
AB
AB
AB
AB
AA
AB
AA
AA



1680667


8
SNP_A-
rs2278335
10740863
10.740863
0.702
AB
AB
AA
AA
AA
AA
AA
AA
AA
AB



1679891


8
SNP_A-
rs10503478
13876453
13.876453
0.607
AA
AA
AB
AB
AB
AB
AA
AB
BB
BB



1715348


8
SNP_A-
rs2410193
14445035
14.445035
0.738
AA
AA
AA
AA
AA
AA
BB
BB
AA
AB



1659353


8
SNP_A-
rs351572
16065839
16.065839
0.595
AA
AA
AA
AA
AA
AA
AA
AA
BB
AB



1756484


8
SNP_A-
rs7003503
17226143
17.226143
0.25
BB
BB
AB
AA
AB
AB
BB
BB
BB
AB



1750990


8
SNP_A-
rs7006702
19316813
19.316813
0.333
AA
AB
AB
BB
AB
AB
BB
BB
BB
AB



1688509


8
SNP_A-
rs2083637
19909455
19.909455
0.738
AA
AB
AB
BB
AB
AB
AB
AB
AA
AA



1747706


8
SNP_A-
rs2306518
22526253
22.526253
0.357
BB
AB
BB
BB
BB
BB
BB
BB
AA
AA



1646595


8
SNP_A-
rs10503733
23589963
23.589963
0.714
AA
AB
AA
AA
AA
AA
AB
AB
AA
AA



1699334


8
SNP_A-
rs2976457
24923988
24.923988
0.548
BB
AB
AA
AA
AA
AA
AB
AB
BB
BB



1752532


8
SNP_A-
rs10503776
25765786
25.765786
0.671
BB
BB
AA
AA
AA
AA
AB
AB
AA
AA



1746191


8
SNP_A-
rs10503872
30556573
30.556573
0.476
AA
AB
BB
AA
AA
AB
AA
AA
BB
BB



1742962


8
SNP_A-
rs10503907
32291552
32.291552
0.607
AA
AA
AA
BB
BB
AB
AB
AB
AA
AB



1710298


8
SNP_A-
rs1551652
34443033
34.443033
0.662
AA
AA
BB
AA
AA
AB
BB
BB
AA
AA



1646333


8
SNP_A-
rs10503970
34985910
34.98591
0.262
BB
BB
BB
AA
AA
AB
AB
AB
BB
BB



1679337


8
SNP_A-
rs581187
37119893
37.119893
0.286
BB
BB
AA
AA
AA
AA
BB
BB
BB
AB



1701068


8
SNP_A-
rs3935233
39307991
39.307991
0.31
AA
AB
BB
BB
BB
BB
BB
BB
BB
BB



1747018


8
SNP_A-
rs9298596
40431722
40.431722
0.333
AA
AA
BB
AA
AA
AB
BB
BB
BB
BB



1730295


8
SNP_A-
rs341817
50186153
50.186153
0.56
AA
AA
AA
BB
BB
AB
AA
AB
BB
AB



1664173


8
SNP_A-
rs318913
51075845
51.075845
0.262
BB
BB
BB
BB
BB
BB
BB
BB
BB
BB



1712754


8
SNP_A-
rs10504120
52554998
52.554998
0.726
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA



1716236


8
SNP_A-
rs2249236
53110767
53.110767
0.286
AA
AB
AA
BB
AB
AB
AA
AB
BB
BB



1645251


8
SNP_A-
rs360956
54063839
54.063839
0.61
BB
BB
BB
AA
AB
AB
AA
AA
BB
BB



1674928


8
SNP_A-
rs7824078
55966296
55.966296
0.631
AA
AA
BB
AA
AB
AB
AA
AA
AA
AB



1661925


8
SNP_A-
rs2670052
57666163
57.666163
0.583
AA
AB
AA
BB
AB
AB
AA
AA
AA
AA



1734483


8
SNP_A-
rs9297980
58641477
58.641477
0.476
AA
AA
AB
BB
AB
AB
AA
AB
AB
AB



1649879


8
SNP_A-
rs7012230
62449232
62.449232
0.31
BB
BB
BB
BB
BB
BB
BB
BB
AB
AB



1689109


8
SNP_A-
rs874777
65147501
65.147501
0.583
BB
BB
BB
BB
BB
BB
AA
AA
AA
AA



1729837


8
SNP_A-
rs977467
67469418
67.469418
0.56
BB
AB
AA
AA
AA
AA
AA
AB
AB
AB



1688563


8
SNP_A-
rs900896
68690751
68.690751
0.702
AA
AA
AB
AA
AB
AB
AA
AA
AA
AA



1656454


8
SNP_A-
rs1404605
69369253
69.369253
0.585
BB
AB
AA
AA
AA
AA
BB
BB
AA
AA



1673083


8
SNP_A-
rs10504451
70626182
70.626182
0.524
AA
AB
BB
BB
BB
BB
AA
AA
AB
AB



1673921


8
SNP_A-
rs10504477
71500739
71.500739
0.487
BB
AB
AB
AA
AB
AB
BB
AB
AB
AB



1660240


8
SNP_A-
rs2732090
72080811
72.080811
0.5
AA
AB
AA
AA
AA
AA
AA
AB
AB
AB



1698932


8
SNP_A-
rs10504526
73129106
73.129106
0.548
AA
AA
AA
AA
AA
AA
BB
AB
AA
AA



1710462


8
SNP_A-
rs10504552
75038119
75.038119
0.286
BB
BB
AA
AA
AA
AA
AA
AA
AA
AA



1684163


8
SNP_A-
rs1375646
76679672
76.679672
0.321
BB
BB
BB
BB
BB
BB
BB
BB
AB
AB



1673775


8
SNP_A-
rs1993196
78213269
78.213269
0.583
BB
BB
AA
AA
AA
AA
AB
AB
AA
AA



1753574


8
SNP_A-
rs2461063
80781668
80.781668
0.631
AA
AA
AB
BB
AB
AB
AB
AB
AB
AB



1713893


8
SNP_A-
rs1199030
81917969
81.917969
0.357
BB
BB
AA
AA
AA
AA
BB
BB
BB
BB



1650035


8
SNP_A-
rs1525339
83916405
83.916405
0.738
AA
AA
AA
AA
AA
AA
BB
BB
AA
AA



1709456


8
SNP_A-
rs1465809
85243012
85.243012
0.25
BB
BB
BB
BB
BB
BB
BB
BB
AB
AB



1747972


8
SNP_A-
rs3808538
86308563
86.308563
0.738
AA
AA
BB
BB
BB
BB
AA
AA
AB
AB



1690861


8
SNP_A-
rs10504819
87183400
87.1834
0.369
BB
BB
AA
AA
AA
AA
AA
AA
BB
BB



1642120


8
SNP_A-
rs997597
88259667
88.259667
0.274
BB
BB
BB
BB
BB
BB
BB
BB
BB
BB



1704458


8
SNP_A-
rs10504855
88844371
88.844371
0.345
BB
BB
BB
BB
BB
BB
AB
AB
AB
AB



1731702


8
SNP_A-
rs160410
90717844
90.717844
0.658
AA
AA
BB
BB
BB
BB
AA
AA
AA
AA



1669078


8
SNP_A-
rs1818193
91886818
91.886818
0.631
AA
AA
AA
AA
AA
AA
AA
AA
AB
AB



1713264


8
SNP_A-
rs2245797
95329376
95.329376
0.31
BB
BB
BB
BB
BB
BB
AB
AB
AB
AB



1679699


8
SNP_A-
rs962451
101400186
101.400186
0.583
AA
AA
AA
AA
AA
AA
AA
AA
BB
BB



1738642


8
SNP_A-
rs4495397
103476369
103.476369
0.268
BB
BB
AA
AA
AA
AA
BB
BB
BB
BB



1677965


8
SNP_A-
rs543736
104082125
104.082125
0.619
AB
AB
BB
BB
BB
BB
AA
AB
AA
AA



1718730


8
SNP_A-
rs10505064
105831730
105.83173
0.345
AB
AB
BB
BB
BB
BB
BB
AB
BB
BB



1724051


8
SNP_A-
rs2930485
107881851
107.881851
0.607
AB
AB
AB
BB
AB
AB
AA
AB
BB
BB



1691919


8
SNP_A-
rs10505107
108392560
108.39256
0.619
AA
AA
AB
AA
AB
AB
AA
AA
AA
AA



1652191


8
SNP_A-
rs1353298
108959098
108.959098
0.321
BB
BB
BB
BB
BB
BB
BB
BB
AB
AB



1756952


8
SNP_A-
rs5772
110167808
110.167808
0.571
AB
AB
AB
BB
AB
AB
AA
AB
AB
AB



1695466


8
SNP_A-
rs10505135
111120579
111.120579
0.345
AA
AA
BB
BB
BB
BB
AA
AB
AB
AB



1747370


8
SNP_A-
rs10505156
112369457
112.369457
0.25
AB
AB
BB
BB
BB
BB
BB
BB
BB
BB



1745327


8
SNP_A-
rs10505180
113392265
113.392265
0.726
AB
AB
AA
AA
AA
AA
AA
AA
AA
AA



1681911


8
SNP_A-
rs2125552
113984509
113.984509
0.274
BB
BB
AB
BB
AB
AB
BB
AB
BB
BB



1694542


8
SNP_A-
rs9297496
114629527
114.629527
0.321
BB
BB
BB
BB
BB
BB
BB
BB
AB
AB



1713409


8
SNP_A-
rs7828185
116438576
116.438576
0.286
BB
BB
BB
BB
BB
BB
BB
BB
BB
BB



1725803


8
SNP_A-
rs10505328
119219639
119.219639
0.441
AB
AB
BB
BB
BB
BB
BB
BB
BB
BB



1698988


8
SNP_A-
rs3924784
121618858
121.618858
0.667
AA
AA
AA
AA
AA
AA
BB
AB
AB
AB



1753414


8
SNP_A-
rs17478
122793072
122.793072
0.595
AA
AA
AB
AA
AB
AB
BB
AB
AB
AB



1735413


8
SNP_A-
rs6470143
124219594
124.219594
0.345
BB
BB
BB
BB
BB
BB
BB
AB
AA
AA



1655430


8
SNP_A-
rs3909562
124803864
124.803864
0.405
AA
AB
AA
AA
AA
AA
BB
BB
AB
AB



1754805


8
SNP_A-
rs2382993
125770106
125.770106
0.345
BB
AB
BB
BB
BB
BB
BB
AB
BB
BB



1696789


8
SNP_A-
rs897153
126747483
126.747483
0.643
BB
AB
AB
BB
AB
AB
AA
AB
AB
AB



1686811


8
SNP_A-
rs2091933
127485749
127.485749
0.679
AA
AB
BB
BB
BB
BB
AA
AA
AB
AB



1753008


8
SNP_A-
rs10505486
128074016
128.074016
0.441
BB
BB
BB
BB
BB
BB
BB
AB
AB
AB



1651085


8
SNP_A-
rs4123791
129288419
129.288419
0.417
BB
BB
AA
AA
AA
AA
AA
AA
AA
AA



1682761


8
SNP_A-
rs9297775
129805894
129.805894
0.333
BB
AB
BB
BB
BB
BB
BB
BB
BB
BB



1692841


8
SNP_A-
rs10505545
130646449
130.646449
0.538
AA
AA
AB
AB
AB
AB
BB
BB
BB
BB



1653731


8
SNP_A-
rs7460225
131408555
131.408555
0.464
AA
AB
AB
AB
AB
AB
AA
AB
AA
AA



1655374


8
SNP_A-
rs7008202
132143592
132.143592
0.357
BB
AB
AA
AA
AA
AA
BB
BB
AB
AB



1672735


8
SNP_A-
rs4736424
133782292
133.782292
0.31
BB
BB
BB
BB
BB
BB
AA
AB
BB
BB



1725115


8
SNP_A-
rs10505607
134527931
134.527931
0.441
AA
AB
BB
BB
BB
BB
BB
BB
AB
AB



1647079


8
SNP_A-
rs4909801
135948341
135.948341
0.702
AA
AB
BB
BB
BB
BB
AA
AB
AA
AA



1700220


8
SNP_A-
rs4909582
137288153
137.288153
0.488
AA
AA
BB
AB
AB
AB
BB
BB
AA
AA



1675316


8
SNP_A-
rs9324439
138086052
138.086052
0.452
BB
AB
BB
BB
BB
BB
BB
BB
AB
AB



1661056


8
SNP_A-
rs1325053
139156386
139.156386
0.732
AA
AA
AA
AB
AB
AB
BB
BB
AA
AA



1689603


8
SNP_A-
rs2468705
140618265
140.618265
0.75
AB
AB
BB
AB
AB
AB
AA
AA
AA
AA



1710354


9
SNP_A-
rs10491691
336963
0.336963
0.655
AB
AB
AA
AA
AA
AA
AB
AB
BB
BB



1643050


9
SNP_A-
rs2370220
907667
0.907667
0.726
AA
AA
AB
AB
AB
AB
AA
AA
AA
AA



1704718


9
SNP_A-
rs7040916
2645520
2.64552
0.726
BB
BB
AA
AA
AA
AA
AA
AA
AA
AA



1681445


9
SNP_A-
rs1358908
3162093
3.162093
0.524
AA
AA
BB
BB
BB
BB
BB
BB
AA
AA



1734535


9
SNP_A-
rs1455177
3782613
3.782613
0.488
BB
BB
BB
BB
BB
BB
AB
AB
AB
AB



1685961


9
SNP_A-
rs10491650
5193054
5.193054
0.354
BB
BB
BB
BB
BB
BB
BB
BB
BB
BB



1642494


9
SNP_A-
rs1407473
7989681
7.989681
0.31
BB
BB
BB
BB
BB
BB
BB
BB
BB
BB



1696419


9
SNP_A-
rs1433548
8927116
8.927116
0.31
AB
AB
AB
AB
AB
AB
BB
BB
BB
BB



1709516


9
SNP_A-
rs1613507
9791755
9.791755
0.563
AB
AB
AA
AA
AA
AA
BB
BB
AA
AA



1682679


9
SNP_A-
rs10511545
10341048
10.341048
0.726
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA



1673445


9
SNP_A-
rs4740473
11080005
11.080005
0.369
AB
AB
AA
AA
AA
AA
BB
BB
BB
BB



1679185


9
SNP_A-
rs1825739
11777410
11.77741
0.429
BB
BB
BB
BB
BB
BB
AB
AB
AA
AB



1744452


9
SNP_A-
rs1086377
12824688
12.824688
0.702
AA
AA
BB
BB
BB
BB
AB
AB
AA
AA



1714556


9
SNP_A-
rs7038474
13355816
13.355816
0.702
AB
AB
AA
AA
AA
AA
BB
BB
BB
AB



1672461


9
SNP_A-
rs10511587
13970584
13.970584
0.738
AB
AB
AA
AA
AA
AA
AB
AB
AA
AA



1704214


9
SNP_A-
rs4615688
14495861
14.495861
0.714
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA



1714243


9
SNP_A-
rs10511603
15006475
15.006475
0.536
BB
BB
BB
BB
BB
BB
AB
AB
AA
AA



1741448


9
SNP_A-
rs1001265
17618726
17.618726
0.726
BB
BB
AA
AA
AA
AA
AA
AA
AA
AA



1742240


9
SNP_A-
rs7862683
18257947
18.257947
0.427
BB
BB
AA
AA
AB
AB
AB
AB
BB
BB



1675206


9
SNP_A-
rs7859334
20660966
20.660966
0.56
AA
AA
BB
BB
AB
AB
AB
AB
BB
AB



1706426


9
SNP_A-
rs871024
21793880
21.79388
0.441
AA
AA
AA
AA
AA
AA
AB
AB
BB
AB



1669996


9
SNP_A-
rs10511705
22537789
22.537789
0.512
BB
BB
BB
BB
AB
AB
AB
AB
BB
AB



1662201


9
SNP_A-
rs9298846
23216243
23.216243
0.655
AB
AB
AA
AA
AA
AA
AA
AA
AA
AB



1673761


9
SNP_A-
rs10511761
25602704
25.602704
0.441
BB
BB
BB
BB
BB
BB
AA
AA
AA
AA



1752066


9
SNP_A-
rs4978049
26131011
26.131011
0.381
AB
AB
BB
BB
BB
BB
BB
BB
BB
BB



1690106


9
SNP_A-
rs983863
26681668
26.681668
0.345
BB
BB
BB
BB
AB
AB
AA
AA
AA
AA



1700687


9
SNP_A-
rs1452357
28090846
28.090846
0.707
BB
BB
BB
BB
AB
AB
AA
AA
AA
AA



1690672


9
SNP_A-
rs824257
28765262
28.765262
0.655
AA
AA
AA
AA
AA
AA
AA
AA
BB
BB



1693514


9
SNP_A-
rs10511842
30009704
30.009704
0.25
AA
AB
BB
BB
AB
AB
BB
BB
AA
AB



1665553


9
SNP_A-
rs10511886
31826555
31.826555
0.607
BB
AB
BB
BB
AB
AB
AB
AB
BB
BB



1724125


9
SNP_A-
rs20583
33016572
33.016572
0.452
AA
AB
BB
BB
BB
BB
AA
AA
AA
AB



1648177


9
SNP_A-
rs6476493
35884737
35.884737
0.691
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA



1717742


9
SNP_A-
rs4880042
36940301
36.940301
0.393
AA
AA
BB
BB
BB
BB
BB
BB
BB
BB



1671263


9
SNP_A-
rs2181139
38364977
38.364977
0.25
BB
AB
AA
AA
AA
AA
AB
AB
BB
AB



1681599


9
SNP_A-
rs4111409
40345280
40.34528
0.262
BB
BB
BB
BB
BB
BB
BB
BB
BB
BB



1666811


9
SNP_A-
rs7864775
69030853
69.030853
0.548
BB
BB
BB
BB
BB
BB
BB
BB
AA
AB



1727790


9
SNP_A-
rs10511972
69672094
69.672094
0.619
BB
BB
AA
AA
AA
AB
BB
AB
BB
BB



1699350


9
SNP_A-
rs10511984
70399849
70.399849
0.75
AA
AA
AA
AA
AA
AA
AA
AB
AA
AA



1753754


9
SNP_A-
rs10511999
71526051
71.526051
0.595
AA
AA
AA
AA
AA
AA
AA
AA
BB
AB



1748876


9
SNP_A-
rs1998372
72123726
72.123726
0.369
BB
BB
BB
BB
BB
AB
BB
BB
BB
BB



1750024


9
SNP_A-
rs2377524
76002013
76.002013
0.321
BB
BB
BB
BB
BB
BB
BB
BB
BB
AB



1733975


9
SNP_A-
rs10512079
78602073
78.602073
0.25
AA
AA
AA
AA
AB
AB
AA
AB
BB
BB



1707951


9
SNP_A-
rs1316823
79531349
79.531349
0.643
AB
AB
AA
AA
AA
AA
AA
AA
AA
AA



1655498


9
SNP_A-
rs1572147
80160841
80.160841
0.634
AA
AA
AB
AA
AB
AB
AA
AA
BB
AB



1721234


9
SNP_A-
rs7873639
80780459
80.780459
0.286
BB
BB
BB
BB
BB
BB
AA
AA
AA
AB



1757764


9
SNP_A-
rs2774635
82184146
82.184146
0.286
BB
BB
BB
BB
BB
BB
BB
BB
AA
AB



1685995


9
SNP_A-
rs1436932
83903397
83.903397
0.476
AB
AB
AA
AA
AA
AA
AA
AA
AA
AB



1698246


9
SNP_A-
rs7030902
85064645
85.064645
0.548
AA
AA
AB
BB
AB
AB
BB
BB
AA
AB



1743644


9
SNP_A-
rs1475524
87362117
87.362117
0.357
BB
BB
AB
AA
AB
AB
AA
AB
AA
AA



1642838


9
SNP_A-
rs4744114
91732136
91.732136
0.452
BB
BB
AB
AA
AB
AB
BB
BB
AA
AA



1683979


9
SNP_A-
rs1547201
95896039
95.896039
0.548
AA
AA
BB
BB
BB
BB
AB
AB
AB
AB



1645449


9
SNP_A-
rs1924001
102134812
102.134812
0.643
BB
BB
AA
AA
AA
AA
AB
AB
AA
AA



1751508


9
SNP_A-
rs1463983
105506339
105.506339
0.429
BB
BB
AB
AA
AB
AB
BB
BB
AB
AB



1724479


9
SNP_A-
rs2418076
110092906
110.092906
0.298
BB
BB
AA
AA
AA
AA
BB
BB
BB
BB



1653563


9
SNP_A-
rs1813202
111767658
111.767658
0.286
AB
AB
BB
BB
BB
BB
AB
AB
BB
BB



1744924


9
SNP_A-
rs10513222
113757379
113.757379
0.321
BB
BB
AB
BB
AB
AB
AA
AA
BB
BB



1731818


9
SNP_A-
rs10513267
115067920
115.06792
0.75
AA
AB
AA
AA
AA
AA
AA
AA
AA
AA



1733479


9
SNP_A-
rs4112759
117313823
117.313823
0.75
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA



1643236


9
SNP_A-
rs7849366
118191918
118.191918
0.286
AA
AA
AB
BB
AB
AB
AB
AB
BB
BB



1750306


9
SNP_A-
rs10514837
118919482
118.919482
0.321
BB
BB
BB
BB
BB
BB
BB
BB
BB
BB



1686447


9
SNP_A-
rs10491529
120012279
120.012279
0.25
BB
AB
AB
AB
AB
AB
BB
BB
BB
BB



1656426


9
SNP_A-
rs306796
121206889
121.206889
0.631
AA
AA
AA
AA
AA
AA
AA
AA
AB
AB



1677789


9
SNP_A-
rs7043602
126285054
126.285054
0.738
AA
AA
AA
AA
AA
AA
AB
AB
AA
AA



1705544


9
SNP_A-
rs883335
129165519
129.165519
0.595
BB
BB
AB
AB
AB
AB
AA
AA
AB
AB



1653355


9
SNP_A-
rs2269337
130602238
130.602238
0.742
BB
AB
AA
AA
AA
AA
AA
AA
AA
AA



1699424


9
SNP_A-
rs2809243
132799854
132.799854
0.298
BB
BB
AA
AA
AA
AA
AB
AB
AA
AA



1747024


10
SNP_A-
rs1392827
1234414
1.234414
0.667
AA
AA
AB
AB
AB
AB
AB
AB
AA
AA



1659685


10
SNP_A-
rs4880915
1747289
1.747289
0.293
BB
BB
BB
BB
BB
BB
BB
BB
BB
BB



1753764


10
SNP_A-
rs9329289
2532389
2.532389
0.405
AA
AA
AB
AB
AB
AB
AB
AB
AB
AB



1727231


10
SNP_A-
rs2388557
3181527
3.181527
0.321
BB
BB
BB
BB
BB
BB
AB
AB
BB
BB



1732637


10
SNP_A-
rs1679440
4468715
4.468715
0.286
BB
BB
BB
BB
BB
BB
BB
BB
BB
BB



1679829


10
SNP_A-
rs946785
7041660
7.04166
0.595
AA
AA
AB
AB
AB
AB
BB
BB
AB
AB



1713889


10
SNP_A-
rs4385796
8539643
8.539643
0.286
BB
BB
BB
BB
BB
BB
BB
BB
AA
AB



1717612


10
SNP_A-
rs1762757
9449776
9.449776
0.726
AA
AA
AA
AA
AA
AA
BB
BB
AA
AA



1740604


10
SNP_A-
rs10508380
10003736
10.003736
0.738
AA
AA
AB
AB
AA
AB
BB
BB
AA
AA



1686911


10
SNP_A-
rs1041044
10644387
10.644387
0.5
BB
BB
AB
AB
BB
AB
AB
AB
BB
BB



1739848


10
SNP_A-
rs4750093
11829643
11.829643
0.429
BB
BB
BB
BB
BB
BB
BB
BB
BB
BB



1721418


10
SNP_A-
rs1108131
12537753
12.537753
0.75
AB
AB
AB
AB
AA
AB
BB
BB
AA
AA



1739768


10
SNP_A-
rs564166
13110955
13.110955
0.738
AB
AB
AA
AA
AA
AA
AA
AA
AA
AA



1737160


10
SNP_A-
rs10508465
13725194
13.725194
0.429
AA
AA
AB
AB
BB
AB
AB
AB
AA
AA



1678303


10
SNP_A-
rs10508473
14241057
14.241057
0.417
BB
BB
BB
BB
BB
BB
AB
AB
AA
AA



1669628


10
SNP_A-
rs1361588
16119457
16.119457
0.298
BB
BB
BB
BB
BB
BB
BB
BB
BB
AB



1714770


10
SNP_A-
rs10490962
17240369
17.240369
0.56
AB
AB
BB
BB
BB
BB
AB
AB
BB
BB



1700268


10
SNP_A-
rs10508555
18316688
18.316688
0.441
AB
AB
AB
AB
BB
AB
BB
BB
BB
BB



1744374


10
SNP_A-
rs984292
19028813
19.028813
0.393
BB
BB
AB
AB
AA
AB
BB
BB
AA
AB



1748644


10
SNP_A-
rs2358348
19533421
19.533421
0.643
AA
AA
BB
BB
BB
BB
AA
AA
AA
AA



1686549


10
SNP_A-
rs788977
21229153
21.229153
0.262
BB
BB
AB
AB
BB
AB
BB
BB
BB
BB



1678189


10
SNP_A-
rs1417374
23168481
23.168481
0.298
BB
BB
AA
AA
AA
AA
AA
AA
AA
AB



1672001


10
SNP_A-
rs2150651
24829491
24.829491
0.321
BB
BB
BB
BB
BB
BB
BB
BB
BB
BB



1726471


10
SNP_A-
rs10508686
25367068
25.367068
0.714
AA
AA
AB
AB
AA
AB
AA
AA
AA
AA



1751938


10
SNP_A-
rs4747530
25876455
25.876455
0.56
AB
AB
AB
AB
BB
AB
AB
AB
AA
AA



1713661


10
SNP_A-
rs10508717
26712334
26.712334
0.524
AA
AA
AB
AB
AA
AB
BB
BB
BB
BB



1706402


10
SNP_A-
rs1970631
28271741
28.271741
0.452
AA
AA
BB
BB
BB
BB
AA
AA
AA
AB



1713649


10
SNP_A-
rs703041
29265782
29.265782
0.25
BB
BB
AB
AB
BB
AB
BB
BB
BB
AB



1707064


10
SNP_A-
rs2776644
30294654
30.294654
0.488
AB
AB
AB
AB
BB
AB
BB
AB
BB
BB



1755663


10
SNP_A-
rs2490527
32711123
32.711123
0.631
BB
AB
AB
BB
BB
AB
AA
AB
AA
AA



1679427


10
SNP_A-
rs2269101
33546185
33.546185
0.286
AA
AB
AB
AA
AA
AB
BB
AB
BB
AB



1678169


10
SNP_A-
rs224750
34271036
34.271036
0.619
AA
AA
AA
AA
AA
AA
BB
AB
AA
AA



1674978


10
SNP_A-
rs1032408
43808849
43.808849
0.738
AA
AA
BB
BB
BB
BB
AA
AA
AA
AA



1722205


10
SNP_A-
rs1583421
45099157
45.099157
0.583
BB
AB
AA
AA
AA
AA
AA
AA
AA
AA



1700828


10
SNP_A-
rs10508908
49643864
49.643864
0.5
BB
BB
AA
BB
BB
AB
AA
AB
AB
AB



1718604


10
SNP_A-
rs10508929
51841987
51.841987
0.423
AA
AB
AA
BB
BB
AB
BB
BB
AA
AA



1741518


10
SNP_A-
rs2339628
52548976
52.548976
0.679
AA
AB
BB
BB
BB
BB
BB
BB
AB
AB



1674358


10
SNP_A-
rs1937666
53326630
53.32663
0.464
AB
AB
AA
BB
BB
AB
AA
AB
BB
BB



1665161


10
SNP_A-
rs10508976
54302305
54.302305
0.56
BB
BB
BB
AA
AB
AB
AB
AB
BB
BB



1648887


10
SNP_A-
rs422296
54965065
54.965065
0.714
AA
AA
BB
AA
AB
AB
AA
AA
AB
AB



1660432


10
SNP_A-
rs6481257
58608558
58.608558
0.274
BB
BB
BB
BB
BB
BB
BB
BB
BB
BB



1642640


10
SNP_A-
rs10509093
60193775
60.193775
0.452
AA
AA
BB
BB
BB
BB
AA
AA
AA
AA



1697033


10
SNP_A-
rs4245585
61596196
61.596196
0.286
BB
BB
BB
AA
AB
AB
BB
BB
BB
BB



1723683


10
SNP_A-
rs10509139
62150158
62.150158
0.691
AB
AB
AA
AA
AA
AA
AA
AA
AA
AA



1653973


10
SNP_A-
rs2787720
63018471
63.018471
0.488
BB
BB
BB
BB
BB
BB
BB
BB
BB
BB



1713014


10
SNP_A-
rs1255484
65108003
65.108003
0.488
BB
BB
BB
BB
BB
BB
AB
AB
AA
AA



1667099


10
SNP_A-
rs7073489
67452445
67.452445
0.274
AB
AB
BB
BB
BB
BB
BB
BB
BB
BB



1658163


10
SNP_A-
rs4746654
68476694
68.476694
0.441
AB
AB
BB
BB
BB
BB
BB
BB
AB
AB



1642112


10
SNP_A-
rs7918860
70340702
70.340702
0.583
BB
BB
AA
BB
AB
AB
AA
AA
AB
AB



1720304


10
SNP_A-
rs10509321
71655739
71.655739
0.298
AB
AB
AA
AA
AA
AA
BB
BB
AB
AB



1729287


10
SNP_A-
rs10509334
73110058
73.110058
0.427
BB
BB
BB
BB
BB
BB
AB
AB
AA
AA



1707688


10
SNP_A-
rs1865636
77473753
77.473753
0.5
AA
AA
BB
AA
AB
AB
BB
BB
BB
BB



1654508


10
SNP_A-
rs10509384
78693188
78.693188
0.726
AB
AB
AA
AA
AA
AA
AB
AB
AB
AB



1697249


10
SNP_A-
rs1344967
79197624
79.197624
0.262
AA
AA
BB
BB
BB
BB
BB
BB
AB
AB



1679101


10
SNP_A-
rs10509397
79905374
79.905374
0.476
BB
BB
AA
BB
AB
AB
AB
AB
AA
AA



1748530


10
SNP_A-
rs7914988
80540330
80.54033
0.441
AB
AB
AA
BB
AB
AB
AA
AA
AB
AB



1736610


10
SNP_A-
rs342372
84579316
84.579316
0.536
AB
AB
BB
AA
AB
AB
AA
AA
AB
AB



1665139


10
SNP_A-
rs2067731
86973180
86.97318
0.381
BB
BB
AB
AA
AB
AB
BB
BB
AA
AA



1715818


10
SNP_A-
rs2949392
87497414
87.497414
0.5
AA
AA
AB
AA
AB
AB
BB
BB
AB
AB



1689101


10
SNP_A-
rs391683
90510663
90.510663
0.679
BB
BB
AB
AA
AB
AB
AB
AB
AA
AA



1657815


10
SNP_A-
rs303212
91151335
91.151335
0.298
AB
AB
BB
BB
BB
BB
BB
BB
BB
BB



1706118


10
SNP_A-
rs747334
92734724
92.734724
0.476
AA
AA
AB
AB
AB
AB
AB
AB
AA
AA



1703070


10
SNP_A-
rs716361
93308518
93.308518
0.321
AB
AB
BB
BB
BB
BB
BB
BB
AB
AB



1717632


10
SNP_A-
rs2490739
94587885
94.587885
0.631
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA



1713435


10
SNP_A-
rs3781270
95520148
95.520148
0.607
AA
AA
AA
AA
AA
AA
BB
BB
AB
AB



1642080


10
SNP_A-
rs10509692
97226588
97.226588
0.583
AB
AB
AB
AB
AB
AB
AA
AA
AB
AB



1680183


10
SNP_A-
rs10509700
97884521
97.884521
0.5
AA
AA
AB
AB
AB
AB
AA
AA
BB
BB



1705694


10
SNP_A-
rs793515
98978459
98.978459
0.345
BB
BB
BB
BB
BB
BB
BB
BB
BB
BB



1753314


10
SNP_A-
rs10509754
103711687
103.711687
0.262
AB
AB
BB
BB
BB
BB
BB
BB
AB
AB



1742188


10
SNP_A-
rs2451500
106622867
106.622867
0.707
AA
AA
AA
AA
AA
AA
AB
AB
BB
BB



1716744


10
SNP_A-
rs10509832
109070424
109.070424
0.667
AA
AA
BB
BB
BB
BB
BB
BB
AB
AB



1684935


10
SNP_A-
rs4113
111223756
111.223756
0.369
AA
AA
AB
AB
AB
AB
BB
BB
BB
BB



1676403


10
SNP_A-
rs7099088
114343455
114.343455
0.631
AB
AB
AB
AB
AB
AB
AB
AB
AA
AA



1726183


10
SNP_A-
rs10509976
115170888
115.170888
0.286
BB
BB
BB
BB
BB
BB
BB
BB
AB
AB



1732939


10
SNP_A-
rs2420070
116671318
116.671318
0.548
AB
AB
BB
BB
BB
BB
BB
BB
BB
BB



1675599


10
SNP_A-
rs4447088
117536799
117.536799
0.274
BB
BB
BB
BB
BB
BB
AB
AB
AB
AB



1700278


10
SNP_A-
rs880977
118409221
118.409221
0.452
AB
AB
AA
AA
AA
AA
AB
AB
AB
AB



1660760


10
SNP_A-
rs2619111
118956986
118.956986
0.702
AA
AA
AB
AB
AB
AB
AA
AA
AA
AA



1747698


10
SNP_A-
rs10490913
120144426
120.144426
0.537
AB
AB
BB
BB
BB
BB
AB
AB
AB
AB



1682085


10
SNP_A-
rs1980030
120960017
120.960017
0.393
AB
AB
BB
BB
BB
BB
AB
AB
BB
BB



1731688


10
SNP_A-
rs1326654
122305416
122.305416
0.405
AB
AB
BB
BB
BB
BB
BB
BB
BB
BB



1641760


10
SNP_A-
rs2420995
123842994
123.842994
0.393
BB
BB
BB
BB
BB
BB
AB
AB
AB
AB



1741090


10
SNP_A-
rs845101
125180422
125.180422
0.631
AB
AB
AA
AA
AA
AA
AA
AA
AA
AA



1751948


10
SNP_A-
rs1278305
127801415
127.801415
0.524
BB
BB
BB
BB
BB
BB
AB
AB
BB
BB



1711689


10
SNP_A-
rs10510154
128412532
128.412532
0.738
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA



1715610


10
SNP_A-
rs2251104
130003906
130.003906
0.333
AA
AA
BB
BB
BB
BB
AB
AB
AB
AB



1706112


10
SNP_A-
rs1886380
130596834
130.596834
0.702
AA
AA
AB
BB
AA
AB
AA
AA
AB
AB



1712012


10
SNP_A-
rs4077516
133237947
133.237947
0.369
AA
AB
BB
BB
BB
BB
BB
BB
AB
AB



1652639


11
SNP_A-
rs2499935
5066470
5.06647
0.417
BB
BB
AA
AB
BB
AB
BB
BB
BB
BB



1727870


11
SNP_A-
rs2001778
5575584
5.575584
0.452
BB
BB
BB
BB
BB
BB
BB
BB
AB
AB



1656094


11
SNP_A-
rs10500667
6284499
6.284499
0.274
BB
BB
AA
AB
BB
AB
BB
BB
BB
BB



1680969


11
SNP_A-
rs2595456
6841339
6.841339
0.524
BB
BB
BB
BB
BB
BB
BB
AB
AB
AB



1656388


11
SNP_A-
rs3884596
7488751
7.488751
0.571
AB
AB
BB
BB
BB
BB
AA
AB
AB
AB



1649885


11
SNP_A-
rs3993279
10627568
10.627568
0.321
BB
BB
AB
AB
AA
AB
BB
BB
BB
BB



1663461


11
SNP_A-
rs10500740
11167698
11.167698
0.274
AB
AB
BB
BB
BB
BB
AB
AB
AB
AB



1723239


11
SNP_A-
rs1344613
12408280
12.40828
0.31
AB
AB
BB
BB
BB
BB
AB
AB
BB
BB



1712474


11
SNP_A-
rs1894131
15104916
15.104916
0.441
AA
AB
AA
AA
AA
AA
AB
AB
BB
BB



1705810


11
SNP_A-
rs2190454
17490211
17.490211
0.333
AA
AB
BB
BB
BB
BB
BB
BB
AB
AB



1674594


11
SNP_A-
rs211102
18003069
18.003069
0.25
BB
BB
AB
AB
AA
AB
BB
BB
AB
AB



1701156


11
SNP_A-
rs894556
19822510
19.82251
0.56
BB
BB
AB
AB
AB
AB
AA
AA
AB
AB



1685951


11
SNP_A-
rs10500886
20976742
20.976742
0.607
BB
AB
AA
AA
AA
AA
AA
AA
AA
AA



1685201


11
SNP_A-
rs6483807
21873219
21.873219
0.5
BB
BB
AA
AB
AB
AB
BB
BB
AA
AA



1668135


11
SNP_A-
rs10500927
22398998
22.398998
0.262
BB
AB
BB
BB
BB
BB
AB
AB
AB
AB



1713403


11
SNP_A-
rs1600958
23180524
23.180524
0.388
BB
BB
BB
AB
AB
AB
AA
AA
AA
AA



1697826


11
SNP_A-
rs975980
24515539
24.515539
0.441
AA
AB
BB
BB
BB
BB
AA
AA
AB
AB



1753516


11
SNP_A-
rs10501011
25497059
25.497059
0.417
AA
AB
BB
BB
BB
BB
AA
AA
AB
AB



1652525


11
SNP_A-
rs980562
30413393
30.413393
0.726
AA
AB
AA
AB
AB
AB
AB
AB
AA
AA



1665219


11
SNP_A-
rs1848394
30965654
30.965654
0.619
BB
BB
BB
AB
AB
AB
BB
BB
BB
BB



1720570


11
SNP_A-
rs10488689
31659092
31.659092
0.286
BB
BB
AA
AA
AA
AA
BB
BB
AB
AB



1749112


11
SNP_A-
rs1033717
33023147
33.023147
0.342
BB
BB
BB
BB
BB
BB
BB
BB
BB
BB



1701102


11
SNP_A-
rs2136509
34753380
34.75338
0.537
BB
BB
BB
AB
AB
AB
AA
AA
AB
AB



1752850


11
SNP_A-
rs10501163
36830990
36.83099
0.286
AA
AA
AA
AA
AA
AA
AA
AA
BB
BB



1691121


11
SNP_A-
rs992118
40016469
40.016469
0.286
BB
AB
AA
AB
AB
AB
AA
AB
BB
BB



1725595


11
SNP_A-
rs7102885
40922404
40.922404
0.655
AA
AA
AA
AB
AB
AB
BB
AB
BB
AB



1667717


11
SNP_A-
rs1531932
41781058
41.781058
0.643
AA
AA
BB
AB
AA
AB
AA
AA
AA
AA



1717738


11
SNP_A-
rs692726
50396846
50.396846
0.321
AA
AA
BB
BB
BB
BB
BB
AB
BB
BB



1709380


11
SNP_A-
rs629948
55113024
55.113024
0.643
AA
AA
AA
BB
BB
AB
AA
AA
AA
AA



1752494


11
SNP_A-
rs1080800
56067666
56.067666
0.381
AA
AB
BB
AA
AA
AB
BB
AB
BB
BB



1697650


11
SNP_A-
rs540505
56621831
56.621831
0.536
AA
AB
BB
BB
BB
BB
BB
AB
BB
AB



1658985


11
SNP_A-
rs612688
57333672
57.333672
0.25
BB
BB
BB
BB
BB
BB
AA
AA
BB
BB



1749414


11
SNP_A-
rs10501369
57870148
57.870148
0.512
AA
AA
AA
AA
AA
AA
BB
BB
AA
AA



1698180


11
SNP_A-
rs1941030
59982334
59.982334
0.56
BB
BB
AA
BB
BB
AB
AB
AB
AA
AA



1729269


11
SNP_A-
rs528736
65461684
65.461684
0.393
BB
AB
AB
BB
BB
AB
AA
AA
BB
BB



1656934


11
SNP_A-
rs624765
69826722
69.826722
0.714
AA
AB
AA
AA
AA
AA
AA
AA
AA
AA



1738462


11
SNP_A-
rs527529
74298448
74.298448
0.573
AA
AA
BB
BB
BB
BB
AB
AB
AA
AA



1645461


11
SNP_A-
rs1793483
76653115
76.653115
0.583
AA
AA
AA
AA
AA
AA
AA
AA
AA
AB



1711405


11
SNP_A-
rs3819256
77379509
77.379509
0.571
BB
BB
AB
BB
AB
AB
BB
BB
AA
AB



1739334


11
SNP_A-
rs7128417
77883622
77.883622
0.25
BB
BB
BB
BB
BB
BB
BB
BB
BB
BB



1712184


11
SNP_A-
rs483089
78543310
78.54331
0.655
AA
AA
AB
BB
AB
AB
AA
AA
AA
AB



1734963


11
SNP_A-
rs1569168
79525377
79.525377
0.441
AB
AB
AB
AA
AB
AB
AA
AA
BB
AB



1695384


11
SNP_A-
rs10501496
80598450
80.59845
0.298
AB
AB
AA
AA
AA
AA
AB
AB
AA
AB



1695760


11
SNP_A-
rs666649
81460553
81.460553
0.56
AB
AB
AB
BB
AB
AB
AB
AB
BB
AB



1679629


11
SNP_A-
rs2000922
82720260
82.72026
0.619
AA
AA
AA
AA
AA
AA
AB
AB
AA
AA



1674894


11
SNP_A-
rs7924334
83853909
83.853909
0.714
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA



1645839


11
SNP_A-
rs10501586
84433725
84.433725
0.726
AA
AA
AA
AA
AA
AA
AB
AB
AA
AB



1654894


11
SNP_A-
rs10501612
85594787
85.594787
0.342
BB
BB
BB
BB
BB
BB
AB
AB
BB
BB



1756404


11
SNP_A-
rs503952
86520236
86.520236
0.268
AB
AB
BB
BB
BB
BB
BB
BB
AA
AB



1722491


11
SNP_A-
rs10501723
89922680
89.92268
0.5
AB
AB
AB
AA
AB
AB
AA
AA
AA
AB



1740548


11
SNP_A-
rs1528760
90459676
90.459676
0.738
AA
AA
AA
AA
AA
AA
AA
AA
AA
AB



1741388


11
SNP_A-
rs10501759
91082163
91.082163
0.537
BB
BB
BB
BB
BB
BB
AA
AA
AA
AA



1755135


11
SNP_A-
rs554735
91994827
91.994827
0.524
AB
AB
AA
AA
AA
AA
BB
BB
AA
AB



1656446


11
SNP_A-
rs2605592
92842667
92.842667
0.702
AA
AA
AA
AA
AA
AA
AB
AB
BB
AB



1720756


11
SNP_A-
rs609493
93708735
93.708735
0.286
BB
BB
BB
BB
BB
BB
AA
AB
BB
AB



1672903


11
SNP_A-
rs12627
94442268
94.442268
0.607
AA
AA
AB
AA
AB
AB
BB
BB
AA
AB



1659851


11
SNP_A-
rs1940201
95387950
95.38795
0.31
AB
AB
AB
AA
AB
AB
BB
BB
AB
AB



1649021


11
SNP_A-
rs10501859
95973889
95.973889
0.298
AB
AB
BB
BB
BB
BB
BB
AB
AB
AB



1706350


11
SNP_A-
rs1939713
99567868
99.567868
0.631
AA
AA
AB
AA
AB
AB
BB
AB
AA
AA



1670058


11
SNP_A-
rs667504
100221671
100.221671
0.738
AA
AA
AA
AA
AA
AA
AA
AA
AB
AB



1712712


11
SNP_A-
rs313403
102697742
102.697742
0.524
AA
AA
BB
BB
BB
BB
AA
AB
AA
AA



1729283


11
SNP_A-
rs260818
103425315
103.425315
0.417
BB
BB
BB
BB
BB
BB
BB
BB
AB
AB



1643334


11
SNP_A-
rs10502051
104808805
104.808805
0.286
BB
BB
BB
BB
BB
BB
BB
AB
BB
BB



1690312


11
SNP_A-
rs10502080
106341710
106.34171
0.346
BB
BB
BB
BB
BB
BB
BB
BB
BB
BB



1746850


11
SNP_A-
rs2640757
107936868
107.936868
0.31
AA
AA
BB
BB
BB
BB
BB
BB
BB
BB



1718590


11
SNP_A-
rs2298501
109571744
109.571744
0.56
AA
AA
BB
BB
BB
BB
BB
BB
BB
BB



1739572


11
SNP_A-
rs170486
110202174
110.202174
0.452
AB
AB
AA
AA
AA
AA
AA
AA
AA
AA



1742110


11
SNP_A-
rs10502152
111296905
111.296905
0.321
BB
BB
BB
BB
BB
BB
AA
AB
BB
BB



1720008


11
SNP_A-
rs7118530
113395335
113.395335
0.357
AA
AB
BB
BB
BB
BB
AA
AA
AA
AA



1658493


11
SNP_A-
rs2247060
114257194
114.257194
0.536
BB
AB
BB
BB
BB
BB
BB
AB
BB
BB



1689389


11
SNP_A-
rs572619
115738853
115.738853
0.619
AA
AA
BB
BB
BB
BB
AA
AB
AA
AA



1652091


11
SNP_A-
rs660443
116265903
116.265903
0.362
AA
AA
AB
AB
AB
AB
AA
AA
AA
AA



1737192


11
SNP_A-
rs1219410
121294459
121.294459
0.691
BB
AB
AA
AA
AA
AA
AA
AA
BB
BB



1643985


11
SNP_A-
rs872414
122170647
122.170647
0.452
AA
AA
AA
AB
AB
AB
BB
AB
BB
BB



1728568


11
SNP_A-
rs2078158
122950070
122.95007
0.333
BB
BB
AA
AB
AB
AB
BB
BB
BB
BB



1696469


11
SNP_A-
rs1940751
127447038
127.447038
0.683
AA
AA
AA
AA
AA
AA
AA
AA
BB
BB



1748196


11
SNP_A-
rs1368850
130433518
130.433518
0.598
AA
AB
AA
AB
AB
AB
BB
BB
AA
AA



1741458


11
SNP_A-
rs748807
131232636
131.232636
0.452
AA
AB
BB
BB
BB
BB
BB
BB
AB
AB



1732434


12
SNP_A-
rs7973282
1095178
1.095178
0.738
AA
AA
AA
AA
AA
AA
AA
AB
AA
AA



1644365


12
SNP_A-
rs215994
2587421
2.587421
0.274
BB
BB
BB
BB
BB
BB
AA
AB
BB
BB



1716332


12
SNP_A-
rs4625554
4286565
4.286565
0.298
AB
AB
BB
BB
BB
BB
BB
BB
BB
BB



1708039


12
SNP_A-
rs1861584
5578079
5.578079
0.702
AA
AA
AB
AB
AB
AB
AA
AB
AB
AB



1727428


12
SNP_A-
rs4883241
9384549
9.384549
0.369
AA
AA
AB
AB
AB
AB
AA
AA
AB
AB



1708085


12
SNP_A-
rs560444
9940542
9.940542
0.321
BB
AB
BB
BB
BB
BB
BB
BB
BB
BB



1709352


12
SNP_A-
rs1009954
11789366
11.789366
0.333
BB
BB
AB
AB
AB
AB
BB
BB
BB
BB



1667917


12
SNP_A-
rs10505774
13327672
13.327672
0.714
AA
AB
AA
AA
AA
AA
BB
BB
AA
AA



1749536


12
SNP_A-
rs10492150
14935164
14.935164
0.333
BB
BB
BB
BB
BB
BB
BB
BB
BB
BB



1696855


12
SNP_A-
rs4366546
18267461
18.267461
0.75
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA



1680095


12
SNP_A-
rs10505845
19976927
19.976927
0.714
AA
AA
AA
AA
AA
AA
BB
BB
BB
AB



1714486


12
SNP_A-
rs4131935
20632200
20.6322
0.738
BB
BB
AA
AA
AA
AA
AB
AB
BB
AB



1729086


12
SNP_A-
rs2417981
21483114
21.483114
0.5
BB
BB
AB
BB
AB
AB
AA
AA
AA
AA



1673313


12
SNP_A-
rs3884510
24249990
24.24999
0.512
AA
AA
AB
BB
AB
AB
AB
AB
AA
AA



1645425


12
SNP_A-
rs10505945
24803300
24.8033
0.381
BB
AB
BB
BB
BB
BB
BB
BB
BB
BB



1672243


12
SNP_A-
rs10505972
25379461
25.379461
0.393
BB
AB
AB
AA
AB
AB
AB
AB
BB
AB



1692085


12
SNP_A-
rs9300175
27617467
27.617467
0.417
BB
BB
BB
BB
BB
BB
BB
BB
AA
AB



1674778


12
SNP_A-
rs148898
29606383
29.606383
0.691
AA
AA
AA
AA
AA
AA
AA
AB
AA
AB



1649795


12
SNP_A-
rs10506065
30342307
30.342307
0.417
BB
AB
BB
BB
BB
BB
BB
BB
BB
BB



1658781


12
SNP_A-
rs7979386
30966129
30.966129
0.464
AA
AB
AA
BB
BB
AB
AA
AB
AA
AA



1722521


12
SNP_A-
rs2593998
32333520
32.33352
0.714
AA
AA
AA
AA
AA
AA
AA
AB
AA
AB



1705996


12
SNP_A-
rs1905428
33450742
33.450742
0.512
AA
AA
AA
AA
AA
AA
BB
AB
BB
AB



1644085


12
SNP_A-
rs2389276
33989158
33.989158
0.595
AA
AB
BB
AA
AA
AB
BB
AB
BB
AB



1711331


12
SNP_A-
rs10506124
37305503
37.305503
0.571
BB
AB
AA
BB
BB
AB
AA
AB
AA
AA



1692149


12
SNP_A-
rs7969928
39561348
39.561348
0.393
AA
AA
BB
BB
BB
BB
BB
BB
BB
AB



1720482


12
SNP_A-
rs7309345
40585255
40.585255
0.75
BB
BB
AA
AA
AA
AA
AA
AA
AA
AA



1659791


12
SNP_A-
rs1369610
41755818
41.755818
0.369
AA
AB
AA
BB
AB
AB
BB
AB
AA
AB



1754513


12
SNP_A-
rs1506678
43535759
43.535759
0.631
AA
AB
AA
AA
AA
AA
AA
AA
AA
AA



1693494


12
SNP_A-
rs7310869
44951653
44.951653
0.536
AA
AB
BB
BB
BB
BB
AA
AA
BB
BB



1702318


12
SNP_A-
rs10506292
49031020
49.03102
0.381
BB
BB
BB
BB
BB
BB
BB
BB
BB
BB



1748898


12
SNP_A-
rs7968810
52445260
52.44526
0.738
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA



1733843


12
SNP_A-
rs10506393
56672989
56.672989
0.691
AA
AB
BB
AA
AA
AB
BB
BB
BB
AB



1712318


12
SNP_A-
rs3913094
57197682
57.197682
0.655
AA
AA
AA
BB
BB
AB
AA
AA
AA
AB



1657234


12
SNP_A-
rs10506408
58834234
58.834234
0.512
AA
AB
AA
AA
AA
AA
BB
AB
AA
AB



1662747


12
SNP_A-
rs7308021
61145687
61.145687
0.571
BB
AB
AA
BB
BB
AB
AA
AA
BB
BB



1688045


12
SNP_A-
rs513203
62226007
62.226007
0.56
BB
BB
BB
AA
AA
AB
AB
AB
AB
AB



1749010


12
SNP_A-
rs1596727
63609374
63.609374
0.583
AA
AA
AA
AA
AA
AA
BB
BB
AA
AA



1730271


12
SNP_A-
rs8756
64646019
64.646019
0.595
AA
AA
BB
BB
BB
BB
BB
BB
AB
AB



1716970


12
SNP_A-
rs10506514
65583191
65.583191
0.298
AB
AB
BB
BB
BB
BB
BB
BB
AA
AA



1721334


12
SNP_A-
rs7313431
66378203
66.378203
0.631
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA



1646303


12
SNP_A-
rs710779
68249633
68.249633
0.476
AB
AB
BB
AA
AA
AB
AB
AB
BB
BB



1695666


12
SNP_A-
rs2567134
69233806
69.233806
0.31
BB
BB
BB
BB
BB
BB
AB
AB
BB
BB



1700862


12
SNP_A-
rs7960254
70109323
70.109323
0.405
AB
AB
BB
AA
AA
AB
BB
BB
BB
BB



1757570


12
SNP_A-
rs10506645
70671767
70.671767
0.31
BB
BB
BB
AA
AA
AB
AB
AB
BB
BB



1676631


12
SNP_A-
rs7964705
72103027
72.103027
0.31
AA
AA
BB
AA
AA
AB
AB
AB
BB
BB



1743470


12
SNP_A-
rs1396226
73586112
73.586112
0.429
BB
BB
AA
BB
BB
AB
AB
AB
AB
AB



1660536


12
SNP_A-
rs1275643
74439702
74.439702
0.393
AB
AB
BB
AA
AA
AB
AB
AB
AA
AA



1662713


12
SNP_A-
rs310877
75889008
75.889008
0.274
BB
BB
BB
BB
BB
BB
BB
BB
AB
AB



1667227


12
SNP_A-
rs7315131
76389953
76.389953
0.381
AB
AB
AA
AA
AA
AA
AA
AB
AA
AA



1732426


12
SNP_A-
rs1796135
77491016
77.491016
0.524
BB
BB
BB
AA
AA
AB
AA
AB
AB
AB



1667491


12
SNP_A-
rs1244908
79104469
79.104469
0.631
AA
AA
BB
BB
BB
BB
AA
AB
AB
AB



1643877


12
SNP_A-
rs10506839
79948071
79.948071
0.31
AA
AA
BB
BB
BB
BB
AA
AA
AB
AB



1737202


12
SNP_A-
rs10506846
80609736
80.609736
0.655
AA
AA
AA
BB
BB
AB
AA
AB
AB
AB



1700433


12
SNP_A-
rs892540
81919943
81.919943
0.667
AB
AB
BB
AA
AA
AB
AA
AA
AA
AA



1738317


12
SNP_A-
rs7960510
82715458
82.715458
0.274
AB
AB
BB
BB
BB
BB
BB
BB
AB
AB



1688895


12
SNP_A-
rs839159
85096176
85.096176
0.726
AB
AB
BB
BB
BB
BB
AA
AA
AB
AB



1675076


12
SNP_A-
rs2635067
85762474
85.762474
0.571
AB
AB
AB
AA
AA
AB
AA
AA
BB
BB



1663055


12
SNP_A-
rs1019206
87893500
87.8935
0.333
BB
BB
BB
BB
BB
BB
BB
BB
BB
BB



1727255


12
SNP_A-
rs2731240
89061896
89.061896
0.31
BB
BB
BB
BB
BB
BB
AA
AB
AA
AA



1657981


12
SNP_A-
rs924328
91753976
91.753976
0.31
BB
BB
BB
BB
BB
BB
AA
AA
BB
BB



1696519


12
SNP_A-
rs4761590
93076279
93.076279
0.655
BB
BB
AA
AA
AA
AA
BB
AB
AB
AB



1747554


12
SNP_A-
rs759572
95985503
95.985503
0.524
BB
BB
AB
AA
AB
AB
AB
AB
BB
BB



1701918


12
SNP_A-
rs1394380
97055132
97.055132
0.75
AA
AA
AA
AA
AA
AA
AB
AB
AA
AA



1734475


12
SNP_A-
rs10492276
97699500
97.6995
0.691
AA
AA
AB
BB
AB
AB
AA
AA
AB
AB



1690482


12
SNP_A-
rs1718312
101743655
101.743655
0.393
BB
BB
BB
BB
BB
BB
BB
BB
BB
BB



1704900


12
SNP_A-
rs10507166
102367680
102.36768
0.369
BB
BB
BB
BB
BB
BB
BB
BB
BB
BB



1698694


12
SNP_A-
rs7954946
103966503
103.966503
0.333
BB
BB
AA
AA
AA
AA
AA
AA
AA
AA



1731482


12
SNP_A-
rs10507197
104564170
104.56417
0.583
AA
AA
AA
AA
AA
AA
BB
BB
AB
AB



1689283


12
SNP_A-
rs1444581
105816718
105.816718
0.488
BB
BB
AA
AA
AA
AA
AA
AA
BB
BB



1723539


12
SNP_A-
rs715447
107449185
107.449185
0.464
BB
BB
AB
AB
AB
AB
BB
BB
AB
AB



1676727


12
SNP_A-
rs10507234
108519202
108.519202
0.714
AB
AB
AA
AA
AA
AA
AB
AB
AA
AA



1742456


12
SNP_A-
rs4767550
116413870
116.41387
0.595
AA
AA
AB
AB
AB
AB
AA
AA
AB
AB



1655216


12
SNP_A-
rs1726392
117061645
117.061645
0.321
BB
AB
AB
AB
AB
AB
BB
BB
BB
BB



1673501


12
SNP_A-
rs3858710
118701913
118.701913
0.573
AA
AB
AA
AA
AA
AA
AA
AA
AB
AB



1748666


12
SNP_A-
rs1558062
124778387
124.778387
0.524
AA
AB
AB
AB
AB
AB
AA
AB
AA
AA



1708029


12
SNP_A-
rs345676
126581103
126.581103
0.643
AA
AB
BB
BB
BB
BB
BB
AB
AA
AA



1716508


12
SNP_A-
rs1983314
129393207
129.393207
0.333
BB
AB
BB
BB
BB
BB
AB
AB
BB
BB



1664795


13
SNP_A-
rs7985257
18787997
18.787997
0.524
BB
BB
AA
AA
AA
AA
BB
AB
AA
AA



1652867


13
SNP_A-
rs535233
20445317
20.445317
0.321
AB
AB
BB
BB
BB
BB
BB
BB
AA
AB



1686943


13
SNP_A-
rs2862901
23933239
23.933239
0.571
AB
AB
AA
AA
AA
AA
BB
AB
AA
AA



1745741


13
SNP_A-
rs10507349
25679528
25.679528
0.274
BB
BB
AA
AA
AA
AB
BB
BB
AB
AB



1642868


13
SNP_A-
rs1161470
28322644
28.322644
0.31
BB
BB
BB
BB
BB
BB
BB
BB
BB
BB



1702806


13
SNP_A-
rs213611
30348913
30.348913
0.705
AA
AA
AA
AA
AA
AA
AB
AB
AB
AB



1664657


13
SNP_A-
rs206079
31818618
31.818618
0.417
BB
BB
BB
BB
BB
BB
AB
AB
AB
AB



1658585


13
SNP_A-
rs4941700
32383381
32.383381
0.262
BB
BB
BB
BB
BB
BB
BB
BB
BB
BB



1685897


13
SNP_A-
rs1538001
33683068
33.683068
0.274
BB
BB
BB
BB
BB
BB
BB
BB
BB
BB



1664201


13
SNP_A-
rs6563348
35588714
35.588714
0.397
AA
AA
BB
BB
BB
BB
AB
AB
BB
BB



1742432


13
SNP_A-
rs2224655
36217500
36.2175
0.298
BB
BB
BB
BB
BB
BB
AB
AB
AA
AA



1709846


13
SNP_A-
rs1359214
36774982
36.774982
0.452
AB
AB
AA
AA
AA
AA
AB
AB
AB
AB



1719156


13
SNP_A-
rs10507466
37361657
37.361657
0.75
AA
AA
AA
AA
AA
AA
AB
AB
AB
AB



1699940


13
SNP_A-
rs2197879
38143188
38.143188
0.286
AB
AB
BB
BB
BB
BB
BB
BB
AA
AA



1757710


13
SNP_A-
rs4566029
39136387
39.136387
0.691
AA
AA
AA
AA
AA
AA
AB
AB
AA
AA



1725889


13
SNP_A-
rs7322754
40220977
40.220977
0.31
BB
BB
BB
AB
AB
AB
BB
BB
BB
BB



1648291


13
SNP_A-
rs1409075
42143450
42.14345
0.5
AB
AB
AB
AB
AB
AB
AA
AA
AA
AA



1644487


13
SNP_A-
rs9316020
42892291
42.892291
0.274
BB
BB
AB
AB
AB
AB
BB
BB
BB
BB



1692131


13
SNP_A-
rs9285153
43710570
43.71057
0.536
BB
BB
BB
BB
BB
BB
AB
AB
AB
AB



1683729


13
SNP_A-
rs10507544
46298746
46.298746
0.286
BB
BB
BB
BB
BB
BB
AB
AB
AB
AB



1675092


13
SNP_A-
rs1983805
48609971
48.609971
0.655
AA
AA
AA
AA
AA
AA
BB
AB
AA
AA



1706220


13
SNP_A-
rs1359613
49664241
49.664241
0.381
AA
AB
AA
AA
AA
AA
BB
BB
AB
AB



1656586


13
SNP_A-
rs9316513
50452286
50.452286
0.643
AA
AB
AA
AA
AA
AA
BB
AB
AA
AA



1687875


13
SNP_A-
rs1891948
52537146
52.537146
0.429
BB
BB
AA
AA
AA
AA
AA
AB
BB
BB



1699260


13
SNP_A-
rs9316642
53093973
53.093973
0.571
AA
AB
BB
BB
BB
BB
BB
BB
BB
BB



1670827


13
SNP_A-
rs1010947
53921670
53.92167
0.702
AA
AB
AA
AA
AA
AA
AA
AA
AA
AA



1664927


13
SNP_A-
rs10507599
54585799
54.585799
0.286
AA
AB
BB
BB
BB
BB
BB
BB
BB
BB



1686045


13
SNP_A-
rs2253408
55216697
55.216697
0.75
AA
AA
AB
AB
AB
AB
BB
AB
BB
BB



1686285


13
SNP_A-
rs959745
56718869
56.718869
0.274
BB
BB
BB
BB
BB
BB
BB
AB
BB
BB



1668215


13
SNP_A-
rs10492603
57769822
57.769822
0.679
AA
AA
BB
BB
BB
BB
AA
AA
AA
AA



1706400


13
SNP_A-
rs2786664
59574054
59.574054
0.417
BB
BB
BB
BB
BB
BB
BB
BB
AA
AA



1695368


13
SNP_A-
rs3102221
60652316
60.652316
0.488
AA
AB
AB
AB
AB
AB
AA
AB
AA
AA



1690895


13
SNP_A-
rs7323089
61693413
61.693413
0.56
AA
AA
AA
AA
AA
AA
AA
AB
AA
AA



1731184


13
SNP_A-
rs2134898
62767058
62.767058
0.25
BB
BB
AA
AA
AA
AA
BB
AB
BB
BB



1697063


13
SNP_A-
rs9317406
63717021
63.717021
0.417
BB
AB
BB
BB
BB
BB
BB
BB
AB
AB



1707522


13
SNP_A-
rs7321823
65570977
65.570977
0.679
BB
BB
AA
AA
AA
AA
AA
AA
AA
AA



1645393


13
SNP_A-
rs10492592
66385683
66.385683
0.714
AA
AB
AB
AB
AB
AB
AA
AA
AB
AB



1726077


13
SNP_A-
rs176343
68069259
68.069259
0.702
AA
AB
AA
AA
AA
AA
AA
AA
AA
AA



1650731


13
SNP_A-
rs2782448
68801734
68.801734
0.643
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA



1705084


13
SNP_A-
rs3909263
71753222
71.753222
0.321
BB
BB
AB
AB
AB
AB
AA
AA
BB
BB



1715042


13
SNP_A-
rs10507812
72886773
72.886773
0.75
AA
AA
AB
AB
AB
AB
BB
BB
AA
AA



1732673


13
SNP_A-
rs9318226
73391987
73.391987
0.419
BB
BB
AA
AA
AA
AA
AA
AA
BB
BB



1713643


13
SNP_A-
rs9318324
74649787
74.649787
0.658
AA
AA
BB
BB
BB
BB
AA
AA
AB
AB



1756880


13
SNP_A-
rs10507835
75353682
75.353682
0.691
AA
AA
AA
AA
AA
AA
BB
AB
AA
AA



1685215


13
SNP_A-
rs1952548
76037205
76.037205
0.333
BB
BB
BB
BB
BB
BB
BB
BB
BB
BB



1679595


13
SNP_A-
rs7326108
77781442
77.781442
0.393
AB
AB
AA
AA
AA
AA
BB
BB
AB
AB



1687191


13
SNP_A-
rs3903388
78802822
78.802822
0.393
BB
BB
AB
AB
AB
AB
AA
AA
BB
BB



1680379


13
SNP_A-
rs1215462
79594011
79.594011
0.536
BB
BB
AB
AB
AB
AB
AB
AB
BB
BB



1664955


13
SNP_A-
rs1744600
80158809
80.158809
0.631
AB
AB
AB
AB
AB
AB
BB
BB
AA
AA



1727874


13
SNP_A-
rs10507917
80741431
80.741431
0.488
AA
AA
AA
AA
AA
AA
BB
BB
AB
AB



1710116


13
SNP_A-
rs9318868
81947326
81.947326
0.643
AB
AB
AA
AA
AA
AA
AA
AA
AB
AB



1663633


13
SNP_A-
rs9319022
83601961
83.601961
0.345
BB
BB
AB
AB
AB
AB
AB
AB
AB
AB



1693530


13
SNP_A-
rs1331567
84793816
84.793816
0.56
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA



1706422


13
SNP_A-
rs995475
87558036
87.558036
0.357
AB
AB
BB
BB
BB
BB
AB
AB
BB
BB



1733077


13
SNP_A-
rs1113478
88908389
88.908389
0.417
AA
AA
AB
AA
AB
AB
AB
AB
AB
AB



1679861


13
SNP_A-
rs665530
90571947
90.571947
0.726
AA
AA
AA
AA
AA
AA
AB
AB
AA
AA



1649205


13
SNP_A-
rs1926489
91465990
91.46599
0.524
AB
AB
AA
AA
AA
AA
AA
AA
AB
AB



1726887


13
SNP_A-
rs913005
92275844
92.275844
0.607
AB
AB
BB
BB
BB
BB
AA
AA
AA
AA



1714183


13
SNP_A-
rs9301876
92819688
92.819688
0.56
AA
AA
BB
BB
BB
BB
AA
AA
AA
AA



1701716


13
SNP_A-
rs1412938
93661657
93.661657
0.726
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA



1681625


13
SNP_A-
rs9302001
94261393
94.261393
0.274
AA
AA
BB
BB
BB
BB
AB
AB
BB
BB



1648409


13
SNP_A-
rs7324781
95032754
95.032754
0.405
AB
AB
BB
BB
AB
AB
BB
BB
BB
BB



1741482


13
SNP_A-
rs4603415
96610639
96.610639
0.631
AB
AB
AA
AA
AA
AA
AB
AB
AA
AB



1661319


13
SNP_A-
rs285067
97536416
97.536416
0.691
AA
AB
BB
BB
AB
AB
AA
AA
AA
AA



1664929


13
SNP_A-
rs1886553
98448739
98.448739
0.486
BB
BB
AA
AA
AB
AB
AA
AA
BB
AB



1709292


13
SNP_A-
rs2760306
99841672
99.841672
0.298
BB
BB
BB
BB
BB
BB
AB
AB
BB
BB



1749428


13
SNP_A-
rs10508075
101237184
101.237184
0.464
AA
AB
AA
AA
AB
AB
AB
AB
AA
AA



1703098


13
SNP_A-
rs1015795
102023701
102.023701
0.488
AA
AB
BB
BB
BB
BB
AA
AA
BB
BB



1680317


13
SNP_A-
rs279927
102539019
102.539019
0.643
AA
AA
AA
AA
AA
AA
AA
AA
BB
AB



1704124


13
SNP_A-
rs1033147
103460337
103.460337
0.333
AA
AA
BB
BB
BB
BB
AB
AB
BB
BB



1752530


13
SNP_A-
rs9300981
104440279
104.440279
0.286
BB
AB
BB
BB
BB
BB
AB
AB
BB
AB



1654228


13
SNP_A-
rs7318881
105459909
105.459909
0.671
BB
BB
AA
AA
AA
AA
BB
BB
BB
BB



1715354


13
SNP_A-
rs7327250
106243682
106.243682
0.329
BB
AB
BB
BB
BB
BB
BB
AB
BB
BB



1645715


13
SNP_A-
rs1320446
106965333
106.965333
0.679
BB
BB
BB
BB
AB
AB
BB
AB
AA
AA



1756346


13
SNP_A-
rs231604
107524007
107.524007
0.381
AA
AA
BB
BB
BB
BB
BB
BB
BB
BB



1732084


13
SNP_A-
rs4772985
108080882
108.080882
0.25
BB
BB
BB
BB
BB
BB
BB
BB
BB
BB



1681321


13
SNP_A-
rs10492480
108947427
108.947427
0.333
BB
BB
AA
AA
AA
AA
AA
AA
BB
BB



1648777


13
SNP_A-
rs2183850
110513987
110.513987
0.714
BB
BB
AA
AA
AA
AA
BB
BB
AA
AA



1654860


14
SNP_A-
rs1952805
19586195
19.586195
0.345
BB
BB
BB
BB
BB
BB
BB
BB
AB
AB



1733261


14
SNP_A-
rs1923
22511019
22.511019
0.429
BB
AB
AA
AA
AA
AA
AB
AB
AA
AA



1702470


14
SNP_A-
rs4983041
24495978
24.495978
0.595
BB
AB
AB
AA
BB
AB
AA
AA
AB
AB



1645139


14
SNP_A-
rs10483331
26546808
26.546808
0.417
AB
AB
BB
BB
BB
BB
AB
AB
AA
AA



1676969


14
SNP_A-
rs4981658
27234585
27.234585
0.732
AA
AA
AA
AA
AA
AA
AB
AB
AA
AA



1680111


14
SNP_A-
rs2333423
28146939
28.146939
0.381
AB
AB
BB
BB
BB
BB
BB
BB
BB
BB



1734437


14
SNP_A-
rs10483350
28885906
28.885906
0.738
AA
AA
BB
BB
BB
BB
AA
AA
AA
AA



1669916


14
SNP_A-
rs225842
29622687
29.622687
0.441
AB
AB
BB
BB
BB
BB
AB
AB
AB
AB



1732697


14
SNP_A-
rs1278891
31464813
31.464813
0.595
AA
AA
AB
AA
AB
AB
BB
BB
AB
AB



1656700


14
SNP_A-
rs9322929
33377471
33.377471
0.345
AB
AB
AB
BB
AB
AB
BB
BB
BB
BB



1740154


14
SNP_A-
rs799493
34621626
34.621626
0.691
AB
AB
AB
BB
AB
AB
AA
AA
AA
AA



1757044


14
SNP_A-
rs847498
35546428
35.546428
0.607
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA



1676887


14
SNP_A-
rs1950361
36101975
36.101975
0.329
AB
AB
BB
BB
BB
BB
AB
AB
AB
AB



1665507


14
SNP_A-
rs4901596
37659956
37.659956
0.667
AB
AB
AA
AA
AA
AA
AB
AB
BB
BB



1705178


14
SNP_A-
rs6571869
38248210
38.24821
0.679
AA
AA
AB
AB
AB
AB
AB
AB
AA
AA



1654996


14
SNP_A-
rs10483511
39587714
39.587714
0.571
AB
AB
AB
AB
AB
AB
AB
AB
AB
AB



1708854


14
SNP_A-
rs10498360
40670723
40.670723
0.476
AB
AB
BB
BB
BB
BB
BB
BB
AB
AB



1653001


14
SNP_A-
rs1951874
41387217
41.387217
0.345
AA
AA
AB
AB
AB
AB
BB
BB
AA
AA



1753660


14
SNP_A-
rs2010338
45895631
45.895631
0.655
AA
AA
BB
BB
BB
BB
AA
AA
AA
AA



1653419


14
SNP_A-
rs10483573
46932227
46.932227
0.357
BB
BB
AA
AA
AA
AA
AA
AA
AB
AB



1663303


14
SNP_A-
rs698340
47611853
47.611853
0.585
AB
AB
AA
AA
AA
AA
AA
AA
BB
BB



1664801


14
SNP_A-
rs7146291
48172131
48.172131
0.274
BB
BB
BB
BB
BB
BB
BB
BB
AB
AB



1722201


14
SNP_A-
rs8006972
48690753
48.690753
0.31
BB
BB
AB
AB
AA
AB
AA
AA
AB
AB



1650017


14
SNP_A-
rs10498420
49483793
49.483793
0.476
AB
AB
AB
AB
BB
AB
AB
AB
BB
BB



1720778


14
SNP_A-
rs963626
50157439
50.157439
0.691
AA
AA
AA
AA
AA
AA
AB
AB
AA
AA



1743320


14
SNP_A-
rs1956574
51163026
51.163026
0.655
AA
AA
AA
AA
AA
AA
AA
AA
AB
AB



1641756


14
SNP_A-
rs7151306
52273870
52.27387
0.607
AB
AB
BB
BB
BB
BB
AA
AA
AB
AB



1669704


14
SNP_A-
rs877018
52892776
52.892776
0.451
BB
BB
AB
AB
AA
AB
AB
AB
AB
AB



1748272


14
SNP_A-
rs1382978
55788938
55.788938
0.536
AA
AA
BB
BB
BB
BB
AA
AB
AA
AA



1714357


14
SNP_A-
rs10483679
56503799
56.503799
0.61
BB
AB
AB
AB
AA
AB
AA
AA
AB
AB



1714205


14
SNP_A-
rs238376
57129665
57.129665
0.357
AA
AB
BB
BB
BB
BB
AA
AB
AB
AB



1654106


14
SNP_A-
rs10498488
58658876
58.658876
0.451
BB
BB
AB
AB
BB
AB
AA
AA
AA
AA



1690578


14
SNP_A-
rs9323353
59240800
59.2408
0.619
AA
AA
AB
AB
AA
AB
AA
AA
AA
AA



1690058


14
SNP_A-
rs2296274
60986931
60.986931
0.75
BB
AB
AA
AA
AA
AA
AA
AA
AB
AB



1671347


14
SNP_A-
rs9285590
61521469
61.521469
0.417
AA
AA
AA
AA
AA
AA
BB
AB
BB
BB



1755551


14
SNP_A-
rs1271582
64634456
64.634456
0.441
BB
BB
AA
AA
AA
AA
BB
BB
BB
BB



1707294


14
SNP_A-
rs10483805
67325404
67.325404
0.329
BB
AB
AB
AB
BB
AB
BB
BB
AB
AB



1648725


14
SNP_A-
rs1956528
67858721
67.858721
0.631
BB
BB
AA
AA
AA
AA
BB
AB
AB
AB



1699466


14
SNP_A-
rs749397
69414068
69.414068
0.262
BB
BB
AA
AA
AA
AA
BB
BB
BB
BB



1682431


14
SNP_A-
rs2215132
71545542
71.545542
0.262
AA
AB
BB
BB
BB
BB
AA
AA
AB
AB



1674164


14
SNP_A-
rs2803971
72182227
72.182227
0.713
AA
AA
AA
AA
AA
AA
AA
AA
AB
AB



1672631


14
SNP_A-
rs1028258
75447775
75.447775
0.726
AA
AA
AB
AB
BB
AB
AA
AA
AA
AA



1648423


14
SNP_A-
rs7152153
76265708
76.265708
0.286
BB
BB
BB
BB
BB
BB
AA
AA
BB
BB



1700204


14
SNP_A-
rs7156671
76991628
76.991628
0.7
AA
AA
AB
AB
BB
AB
AA
AA
BB
BB



1701478


14
SNP_A-
rs10483905
78043978
78.043978
0.429
BB
BB
AA
AA
AA
AA
BB
BB
BB
BB



1706776


14
SNP_A-
rs997842
78614233
78.614233
0.679
AA
AA
AA
AA
AA
AA
AA
AB
AB
AB



1667157


14
SNP_A-
rs2049826
79383063
79.383063
0.345
BB
BB
BB
BB
BB
BB
BB
BB
BB
BB



1722889


14
SNP_A-
rs2372083
81860288
81.860288
0.452
AB
AB
AA
AA
AA
AA
BB
AB
AB
AB



1645339


14
SNP_A-
rs2372424
83017248
83.017248
0.438
AA
AA
BB
BB
BB
BB
AA
AA
BB
BB



1704748


14
SNP_A-
rs8003423
83533541
83.533541
0.643
BB
BB
AB
AB
AA
AB
AA
AA
AA
AA



1757272


14
SNP_A-
rs1530325
84781909
84.781909
0.702
AB
AB
AA
AA
AA
AA
AA
AB
AB
AB



1644835


14
SNP_A-
rs10498604
86238836
86.238836
0.298
BB
BB
BB
BB
BB
BB
BB
BB
AB
AB



1680733


14
SNP_A-
rs8018273
86867956
86.867956
0.524
AA
AA
BB
BB
BB
BB
AA
AA
AA
AA



1702796


14
SNP_A-
rs429923
87481126
87.481126
0.405
BB
BB
AA
AA
AA
AA
AA
AA
BB
BB



1687761


14
SNP_A-
rs1742083
90256423
90.256423
0.321
AB
AB
AB
AB
AB
AB
AB
AB
AB
AB



1725723


14
SNP_A-
rs10498627
91041872
91.041872
0.583
AA
AA
BB
BB
BB
BB
AA
AA
AB
AB



1661389


14
SNP_A-
rs2148567
93244403
93.244403
0.286
BB
BB
BB
BB
BB
BB
AA
AA
BB
BB



1705392


14
SNP_A-
rs1456988
97557760
97.55776
0.679
AB
AB
AA
AA
AA
AA
AA
AA
BB
BB



1734665


14
SNP_A-
rs200331
98457298
98.457298
0.488
AB
AB
AA
AA
AA
AA
AB
AB
AA
AA



1684765


14
SNP_A-
rs3918051
99023837
99.023837
0.61
BB
AB
AA
AA
AA
AA
AB
AB
AA
AA



1682935


14
SNP_A-
rs10484072
102695759
102.695759
0.631
AA
AA
AB
AB
AB
AB
BB
BB
AB
AB



1734911


14
SNP_A-
rs1048257
104475429
104.475429
0.667
AA
AA
AB
AB
AB
AB
BB
BB
AB
AB



1659209


15
SNP_A-
rs1405186
21306806
21.306806
0.441
BB
AB
BB
BB
BB
BB
BB
BB
BB
BB



1669336


15
SNP_A-
rs2169637
25517776
25.517776
0.262
BB
BB
AA
AA
AA
AA
BB
BB
BB
BB



1690082


15
SNP_A-
rs10519635
27330404
27.330404
0.607
BB
BB
AB
AB
AB
AB
BB
AB
BB
AB



1643639


15
SNP_A-
rs4779462
28026287
28.026287
0.598
BB
BB
AB
AB
AB
AB
AA
AA
AA
AA



1740804


15
SNP_A-
rs2219507
29646927
29.646927
0.691
AA
AA
AA
AA
AA
AA
BB
AB
AA
AA



1722463


15
SNP_A-
rs10519737
30756749
30.756749
0.381
BB
BB
BB
BB
BB
BB
BB
BB
BB
BB



1730684


15
SNP_A-
rs1343900
31431890
31.43189
0.667
AA
AA
AB
AB
AB
AB
AA
AB
BB
BB



1648795


15
SNP_A-
rs10519956
32849133
32.849133
0.345
AB
AB
BB
BB
BB
BB
BB
BB
AA
AB



1755583


15
SNP_A-
rs1948650
33827340
33.82734
0.738
AA
AA
AA
AA
AA
AA
AB
AB
AA
AB



1699406


15
SNP_A-
rs10518868
34381353
34.381353
0.655
AA
AA
AB
AB
AB
AB
AB
AB
AA
AA



1645977


15
SNP_A-
rs471122
41345866
41.345866
0.3
AA
AA
BB
BB
BB
BB
BB
BB
AA
AB



1665819


15
SNP_A-
rs10519044
44169166
44.169166
0.381
BB
BB
AB
AB
AB
AB
BB
BB
BB
BB



1673073


15
SNP_A-
rs493728
48678247
48.678247
0.441
BB
BB
BB
BB
BB
BB
BB
BB
BB
BB



1740676


15
SNP_A-
rs1478200
51948279
51.948279
0.357
BB
AB
BB
BB
BB
BB
AB
AB
BB
BB



1709940


15
SNP_A-
rs2553222
52657040
52.65704
0.691
BB
BB
AA
AA
AA
AA
AB
AB
AA
AB



1720532


15
SNP_A-
rs4534776
55408068
55.408068
0.463
AA
AA
AB
AB
AB
AB
BB
BB
BB
AB



1654466


15
SNP_A-
rs1550574
56000660
56.00066
0.536
AA
AA
BB
BB
BB
BB
AA
AA
AA
AB



1752856


15
SNP_A-
rs2033721
58609267
58.609267
0.714
AA
AB
AB
AB
AB
AB
AA
AA
AA
AB



1735597


15
SNP_A-
rs3935962
59611593
59.611593
0.536
AA
AB
AA
AA
AA
AA
AA
AA
AA
AB



1642536


15
SNP_A-
rs10519148
60507655
60.507655
0.25
BB
BB
BB
BB
BB
BB
BB
BB
BB
BB



1726387


15
SNP_A-
rs2652824
61207054
61.207054
0.286
BB
BB
BB
BB
BB
BB
BB
BB
BB
BB



1750348


15
SNP_A-
rs10518707
65152676
65.152676
0.488
AA
AB
AB
AB
AB
AB
AA
AA
AA
AA



1741266


15
SNP_A-
rs305002
67928959
67.928959
0.595
AA
AA
AA
AA
AA
AA
BB
BB
BB
BB



1739192


15
SNP_A-
rs2128112
69973340
69.97334
0.262
BB
BB
BB
BB
BB
BB
BB
BB
BB
BB



1677047


15
SNP_A-
rs3898352
74308825
74.308825
0.631
BB
AB
AB
AB
AA
AB
BB
BB
AA
AA



1698770


15
SNP_A-
rs1446312
75199244
75.199244
0.738
AA
AA
AA
AA
AA
AA
AB
AB
AA
AB



1654378


15
SNP_A-
rs7163689
76352533
76.352533
0.488
AA
AB
AB
AB
AA
AB
AB
AB
BB
BB



1657306


15
SNP_A-
rs1001460
77291934
77.291934
0.56
AA
AA
AB
AB
BB
AB
AB
AB
AA
AB



1701268


15
SNP_A-
rs1320323
79128502
79.128502
0.59
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA



1689635


15
SNP_A-
rs1846911
80255705
80.255705
0.329
AA
AA
BB
BB
BB
BB
AB
AB
BB
BB



1749864


15
SNP_A-
rs10520585
83462510
83.46251
0.286
BB
AB
AB
AB
AA
AB
BB
BB
BB
AB



1714319


15
SNP_A-
rs1961601
84030610
84.03061
0.31
BB
BB
AB
AB
AA
AB
BB
BB
BB
AB



1654264


15
SNP_A-
rs1122907
84708371
84.708371
0.691
AA
AA
AB
AB
BB
AB
AA
AA
AA
AA



1650691


15
SNP_A-
rs10520655
85887415
85.887415
0.595
BB
AB
AA
AA
AA
AA
AA
AA
AA
AB



1665669


15
SNP_A-
rs3817428
87216251
87.216251
0.75
AA
AA
AA
AA
AA
AA
AB
AB
AA
AA



1694944


15
SNP_A-
rs1079537
89675287
89.675287
0.452
AB
AB
AB
AB
AA
AB
BB
BB
BB
BB



1683397


15
SNP_A-
rs10520710
90688998
90.688998
0.287
BB
BB
BB
BB
BB
BB
BB
AB
BB
AB



1752072


15
SNP_A-
rs1989269
91611056
91.611056
0.305
BB
BB
BB
BB
BB
BB
BB
BB
BB
BB



1731798


15
SNP_A-
rs10520754
92760413
92.760413
0.548
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA



1728656


15
SNP_A-
rs4321143
93957372
93.957372
0.262
BB
BB
BB
BB
BB
BB
BB
BB
BB
BB



1700188


15
SNP_A-
rs1551466
99344619
99.344619
0.345
AB
AB
AB
AB
AB
AB
BB
BB
AB
AB



1686439


15
SNP_A-
rs352716
100155950
100.15595
0.31
AA
AA
BB
BB
BB
BB
BB
AB
AA
AA



1647533









The results show heterozygosity of derived phESC lines and displays changes in genotype by comparison with the related donor genotype. Portions of heterozygous segments of the donor genome became homozygous in phESC. Chromosome-chromosome number; RS ID-RS number in dbSNP database; Base pair-base pair distance as recorded by Affimetrix GeneChip; Freq A in Cauc—the frequency of A allele in Caucasian population.


In prior research, parthenogenetic activation of mouse oocytes has resulted in homozygous embryonic stem cell lines (Lin et al., Stem Cells (2003) 21:152). In human oocytes, the suppression of the second meiotic division after oocyte parthenogenetic activation and the generation of diploid embryos does not lead to the derivation of wholly homozygous hES cells.


Based on the HLA-typing results, differentiated cells derived from all phESC lines should be wholly histocompatible with the oocyte donors, making this a method to create cells of therapeutic use (Table 19).









TABLE 19







HLA-typing for phESC cell lines










MHC I
MHC II














HLA-A
HLA-B
HLA-C
DRB1
DQB1
DQA1

















phESC-1
A*01
B*15(63)
Cw*04
DRB1*12
DQB1*06
DQA1*01



A*02
B*35
Cw*0708
DRB1*13
DQB1*03
DQA1*0505


phESC-1
A*01
B*15(63)
Cw*04
DRB1*12
DQB1*06
DQA1*01


donor
A*02
B*35
Cw*0708
DRB1*13
DQB1*03
DQA1*0505


phESC-3, 4, 5
A*02
B*52
Cw*03
DRB1*01
DQB1*05
DQA1*0101



A*03
B*22
Cw*04
DRB1*03
DQB1*02
DQA1*05


phESC-3, 4,
A*02
B*52
Cw*03
DRB1*01
DQB1*05
DQA1*0101


5 donor
A*03
B*22
Cw*04
DRB1*03
DQB1*02
DQA1*05


phESC-6
A*02
B*07
Cw*04
DRB1*04
DQB1*06
DQA1*01



A*03
B*27
Cw*07
DRB1*15
DQB1*03
DQA1*03


phESC-6
A*02
B*07
Cw*04
DRB1*04
DQB1*06
DQA1*01


donor
A*03
B*27
Cw*07
DRB1*15
DQB1*03
DQA1*03


phESC-7
A*01
B*38
Cw*06
DRB1*13
DQB1*06
DQA1*0106



A*02
B*57
Cw*12
DRB1*14
DQB1*06
DQA1*0103


phESC-7
A*01
B*38
Cw*06
DRB1*13
DQB1*06
DQA1*0106


donor
A*02
B*57
Cw*12
DRB1*14
DQB1*06
DQA1*0103


NSF
A*25
B*15(62)
Cw*12
DRB1*04
DQB1*06
DQA1*01



A*32
B*18
Cw*12
DRB1*15
DQB1*03
DQA1*03









DNA-profiling of the genetic material derived from the human fibroblasts used as feeder cells revealed no contamination of the phESC cell lines with material from the human fibroblasts (Table 19).


The phESC-1 line remained undifferentiated during ten months of culture, spanning 35 passages. The other cell lines were successfully cultivated over at least 21 passages. The cells from all phESC lines formed cystic embryoid bodies in suspension culture and gave rise to derivatives of all three germ layers: ectoderm, mesoderm, and endoderm, after differentiation in vitro (FIG. 4). Approximately 5% of embryoid bodies from the phESC-1 line gave rise to beating cells five days following plating. The phESC-6 line produced pigmented epithelial-like cells (FIG. 4I, K). Ectoderm differentiation is presented by positive immunocytochemical staining for neuron specific markers neurofiliment 68 (FIG. 4A), NCAM (FIG. 4B), beta III-tubulin (FIG. 4C) and the glial cell marker GFAP (FIG. 4D, M). Differentiated cells were positive for mesoderm markers including alpha-actinin (FIG. 4G) and desmin (FIG. 4J), which are muscle specific markers, and the endothelial markers PECAM-1 (FIG. 4E) and VE-Cadherin (FIG. 4F). Endoderm differentiation is presented by positive staining of differentiated derivatives for alpha-fetoprotein. These data demonstrate that phESC can be differentiated into the three germ layers that lead to all cell types of a human body.


The altered karyotype of phESC-7 may be a reason to exclude it form clinical use. Alterations of genomic imprinting in human embryos can contribute to the development of disorders linked to maternally or paternally expressed genes (Gabriel et al., Proc Natl Acad Sci USA (1998) 95:14857). In order to investigate other characteristics of the phESC lines, and to determine their suitability for use in cell therapy, imprinting analysis was performed.


Northern blots were made and screened with DNA probes SNRPN, Peg1_2, Peg1_A, H19, and GAPDH (as an internal control) as outlined above. Blotted nucleic acids were obtained from NSF, neonatal skin fibroblasts; hES, human embryonic stem cell line derived from fertilized oocytes; 1, phESC-1; 2, phESC-3, 3, phESC-4, 4, phESC-5; 5, phESC-6; 6 phESC-7. NSF RT−, hES RT−, 1 RT− are negative controls. FIG. 3 shows the results of the imprinting blot.


The maternal imprinting gene, Peg1_A shows strong binding in all of the cell lines tested. Weaker (relative to Peg1_A), but consistent binding was observed in all of the cell lines for the maternal imprinting gene H19. SNRPN shows binding predominantly in NSF, hES, phESC-4, and phESC-6. Peg1_2 shows binding predominantly in NSF, hES, phESC-1 (weaker signal), phESC-3, phESC-5, and phESC-6. GAPDH binding confirmed similar loading of RNA in all lanes.


Although the invention has been described with reference to the above examples, it will be understood that modifications and variations are encompassed within the spirit and scope of the invention. Accordingly, the invention is limited only by the following claims.


REFERENCES



  • J. Cibelli et al., Methods for Making and Using Reprogrammed Human Somatic Cell Nuclei and Autologous and Isogenic Human Stem Cells. US Patent Application No. 20030232430, Dec. 18, 2003.

  • H. Lin et al., Multilineage Potential of Homozygous Stem Cells Derived from Metaphase II Oocytes. Stem Cells (2003) 21:153-161.

  • K. E. Vrana et al., Nonhuman Primate Parthenogenetic Stem Cells. PNAS (2003) 100 (Suppl 1):11911-11916.

  • J. P. M. Dumoulin et al., Effect of Oxygen Concentration on Human in vitro Fertilization and Embryo Culture. Human Reproduction. (1999) 14(2):465-469.

  • B. Fischer and B. D. Bavister, Oxygen Tension in the Oviduct and Uterus of Rhesus Monkeys, Hamsters and Rabbits. J Reprod Fertil (1993) 99:673-679.

  • D. I. Kau wan and J. A. Mitchell, Intauterine Oxygen Tension during Oestrous Cycle in the Hamster: Patterns of Change. Comp Biochem Physiol Comp Physiol (1994) 107(4):673-678.

  • F. D. Houghton et al., Oxygen Consumption and Energy Metabolism of the Early Mouse Embryo. Mol Reprod Dev (1996) 44:476-485.

  • A. Van Soom et al., Prevalence of Apoptosis and Inner Cell Allocation in Bovine Embryos Cultured under Different Oxygen Tension with or without Cysteine Addition. Theriogenology (2002) 57(5):1453-1465.


Claims
  • 1. A method of preparing neuronal cells for administering to a human subject with Parkinson's disease, comprising: a) parthenogenetically activating a human oocyte, wherein activating comprises: i) contacting the oocyte with an ionophore at high oxygen (O2) tension; and ii) contacting the oocyte with a serine-threonine kinase inhibitor under low O2 tension;b) cultivating the activated oocyte at low O2 tension until blastocyst formation;c) transferring the blastocyst to a layer of human feeder cells and culturing the transferred blastocyst under high O2 tension;d) mechanically isolating an inner cell mass (ICM) from trophectoderm of the blastocyst;e) culturing the cells of the ICM on a layer of human feeder cells under high O2 tension to produce human stem cells; andf) differentiating the human stem cells from (e) into neuronal cells, thereby preparing neuronal cells for administrating to the human subject.
  • 2. The method of claim 1, wherein the stem cell is autologous to the human subject.
  • 3. The method of claim 1, wherein the stem cell is allogenic to the human subject.
  • 4. The method of claim 1, wherein the stem cells express one or more markers selected from the group consisting of neurofiliment 68, NCAM, beta III-tubulin, GFAP, alpha-actinin, desmin, PECAM-1, VE-Cadherin, alpha-fetoprotein, and a combination thereof.
CROSS REFERENCE TO RELATED APPLICATIONS

This application is a divisional application of U.S. application Ser. No. 12/759,654 filed Apr. 13, 2010, now pending; which is a divisional application of U.S. application Ser. No. 11/505,260 filed Aug. 15, 2006, now U.S. Pat. No. 7,732,202; which claims the benefit under 35 USC § 119(e) to U.S. Application Ser. No. 60/813,799 filed Jun. 14, 2006; to U.S. Application Ser. No. 60/758,443 filed Jan. 11, 2006; to U.S. Application Ser. No. 60/733,309 filed Nov. 2, 2005; and to U.S. Application Ser. No. 60/729,177 filed Oct. 21, 2005. The disclosure of each of the prior applications is considered part of and is incorporated by reference in the disclosure of this application. which is a divisional application of U.S. application Ser. No. 11/505,260 filed Aug. 15, 2006, now U.S. Pat. No. 7,732,202; which claims the benefit under 35 USC § 119(e) to U.S. Application Ser. No. 60/733,309 filed Nov. 2, 20015; to U.S. Application Ser. No. 60/758,443 filed Jan. 11, 2006; to U.S. Application Ser. No. 60/813,799 filed Jun. 14, 2006; and to U.S. Application Ser. No. 60/729,177 filed Oct. 21, 2005. The disclosure of each of the prior applications is considered part of and is incorporated by reference in the disclosure of this application.

US Referenced Citations (12)
Number Name Date Kind
5496720 Susko-Parrish et al. Mar 1996 A
5843754 Susko-Parrish et al. Dec 1998 A
6077710 Susko-Parrish et al. Jun 2000 A
6194202 Susko-Parrish et al. Feb 2001 B1
6271436 Piedrahita et al. Aug 2001 B1
6369294 Piedrahita et al. Apr 2002 B1
6673987 King Jan 2004 B1
6680199 Susko-Parrish et al. Jan 2004 B1
20040014206 Robl et al. Jan 2004 A1
20040091936 West May 2004 A1
20050227353 Mummery Oct 2005 A1
20060212948 Kono et al. Sep 2006 A1
Foreign Referenced Citations (6)
Number Date Country
WO 200130978 May 2001 WO
WO 2003046141 Jun 2003 WO
WO 2003100018 Dec 2003 WO
WO 2005011371 Feb 2005 WO
WO 2005032341 Apr 2005 WO
WO 2005060740 Jul 2005 WO
Non-Patent Literature Citations (42)
Entry
Wobus, Physiol Rev 85: 635-678 (Year: 2005).
Banin et al Stem cells, 24, 246-257 (Year: 2006).
Goldman et al Phil. Trans. R. Soc. B, 361, 1463-1475 (Year: 2006).
Fred Gage Nature 392:18-24 (Year: 1998).
Samstein et al. Journal of American Society of Nephrology 12:182-193 (Year: 2001).
Larsson et al Scand. J. Immunol. 52: 249-256 (Year: 2000).
Bjorklund et al Nature Neuroscience, 3(6): 537-544 (Year: 2000).
Goldman et al. Nature Biotechnology, 23(7), 862-871 (Year: 2005).
Armstrong et al Neuroscience, 106(1): 201-216 (Year: 2001).
Loseva et al (Brain Research, 915: 125-132 (Year: 2001).
Doss et al. J. Cell. Mol. Med. vol 8, No. 4, 465-473 (Year: 2004).
Abraham et al.: “Human Pancreatic Islet-Derived Progenitor Cell Engraftment in Immunocompetent Mice”; American J. Pathology, 2004, vol. 164, pp. 817-830.
Banin et al.: “Retinal Incorporation and Differentiation of Neural Precursors Derived from Human Embryonic Stem Cells”; Stem Cells, 2006, vol. 24, pp. 246-257.
Bichet et al.: “Oxygen Tension Modulates /3-globin Switching in Embryoid Bodies,” FASEB J. (1999), 13:285-295.
Bing et al.: “Parthenogenetic activation and subsequent development of porcine oocytes activated by a combined electric pulse and butyrolactone l treatment”, J. Reprod. Dev., 49(2):159-166 (2003).
Booth et al.: “The Effect of Oxygen Tension on Porcine Embryonic Development is Dependent on Embryo Type,”; Theriogenology (2005), 63:2040-2052, Elsevier Inc.
Brevini et al.: “Parthenotes as a Source of Embryonic Stem Cells”; Cell, proliferation, vol. 41, Suppl. 1, pp. 20-30.
Chagraoui et al.: “Fetal liver stroma consists of cells in epithelial-to-mesenchymal transition”; Blood, 2003, vol. 101, pp. 2973-2982.
Chen et al.: “Birth of parthenote mice directly from parthenogenetic embryonic stem cells”; Stem Cells., 27(9):2136-2145 (2009).
Cibelli et al.: “Rapid Communication: Somatic Cell Nuclear Transfer in Humans: Pronuclear and Early Embryonic Development”; e-biomed: The Journal of Regenerative Medicine., 2(5): 25-31 (2001).
Edgar et al.: “A Quantitative Analysis of the Impact of Cryopreservation on the Implementation Potential of Human Early Cleavage Stage Embryos,” Hum. Reprod. (2000), 15(1):175-179, European Society of Human Reproduction and Embryology.
Gassmann et al.: “Oxygen Supply and Oxygen-Dependent Gene Expression in Differentiating Embryonic Stem Cells,” Proc. Natl. Acad. Sci. USA (1996), 99:2867-2872, The American Society of Biochemistry and Molecular Biology, Inc., U.S.A.
Goldman et al.; “Cell replacement therapy in neurological disease”; Philosophical Transactions Royal Society B, 2006, vol. 361, pp. 1463-1475.
Gomez-Lechon et al.: “Effects of Hepatocyte Growth Factor on the Growth and Metabolism of Human Hepatocytes in Primary Culture”; Hepatology, 1995, vol. 21, pp. 1248-1254.
Hwang et al.: “Evidence of a pluripotent human embryonic stem cell line derived from a cloned blastocyst”, Science, 303(5664):1669-74 (2004).
Iwamoto et al.: “Low Oxygen Tension During In Vitro Maturation of Porcine Follicular Oocytes Improves Parthenogenetic Activation and Subsequent Development to the Blastocyst Stage, ”Theriogenology (2005) 63:1277-1289.
Kastenberg et al.: “Alternative sources of pluripotency: science, ethics, and stem cells”, Transplant Rev (Orlando)., 22(3):215-22 (2008).
Kehat et al.: “Human embryonic stem cells can differentiate into myocytes with structural and functional properties of cardiomyocytes”. J. Clinc. Invest., 2001, vol. 108, pp. 407-414.
Kim et al.: “Recombination Signatures Distinguish Embryonic Stem Cells Derived by Parthenogenesis and Somatic Cell Nuclear Transfer”; Cell Stem Cell, 2007, vol. 1, pp. 1-7.
Kono, T et al.: “Birth of parthenogenetic mice that can develop to adulthood”; Nature, vol. 428; 860-864, Apr. 22, 2004.
Kordower et al.: “Fetal Nigral Grafts Survive and Mediate Clinical Benefit in a Patient With Parkinson's Disease”; Movement Disorders, 1998, vol. 13, pp. 383-393.
Mayer-Proschel et al.: “Human neural precursor cells—an in vitro characterization”; Clinical Neurosci. Res., 2002, vol. 2, pp. 5869.
Revazova et al.: “HLA homozygous stem cell lines derived from human parthenogenetic blastocysts”; Cloning Stem Cells, 10(1):11-24 (2008).
Revazova et al.: “Patient-specific stem cell lines derived from human parthenogenetic blastocysts”, Cloning Stem Cells, 9(3):432-49 (2007).
Rhoton-Vlasak et al.: “Efficacy of Calcium lonophore A23187 Oocyte Activation for Generating Parthenotes for Human Embryo Research,” J. Assist. Reprod. Genet. (1996), 13(10):793-796.
Tatari et al.: “HLA-Cw allele analysis by PCR-restriction fragement length polymorphism: Study of Known and additional alleles”, Proc. Natl. Acad. Sci. USA, 92:8803-8807, 1995.
Thomson et al.: “Embryonic Stem Cell Lines Derived from Human Blastocysts,” Science (1998), 282:1145-1147.
Vrana et al.: “Nonhuman primate parthenogenetic stem cells”; Proc. Natl. Acad. Sci. U.S.A. 100 Suppl 1:11911-11916 (2003).
Wan et al.: “HLA-A and—DRB4 Genes in Controlling the Susceptibility to Hashimoto's Thyroiditis”, Human Immunology, 42:131-136, 1995.
Wobus et al.: “Embryonic Stem Cells: Prospects for HentDevelopmental Biology and Cell Therapy”;. Physiological Reviews, 2005, vol. 85, 635-678.
Wu et al.: “Regulated expression of two sets of paternally imprinted genes is necessary for mouse parthenogenetic development to term”, Reproduction., 131(3):481-488 (2006).
Yang et al.: “Functional Roles for PECAM-1 (CD31) and VE-Cadherin (CD144) in Tube Assembly and Lumen Formation in Three-Dimensional Collagen Gels”; American J. Pathol., 1999, vol. 155, pp. 887-895.
Related Publications (1)
Number Date Country
20160143956 A1 May 2016 US
Provisional Applications (4)
Number Date Country
60813799 Jun 2006 US
60758443 Jan 2006 US
60733309 Nov 2005 US
60729177 Oct 2005 US
Divisions (2)
Number Date Country
Parent 12759654 Apr 2010 US
Child 14945326 US
Parent 11505260 Aug 2006 US
Child 12759654 US