1. Field of the Invention
This invention relates to a particle beam processing apparatus and materials treatable using such apparatus. In particular, this invention relates to a particle beam processing apparatus including a particle generating assembly, a foil support assembly having a thin foil, and a processing zone. When the treatable material is exposed to the particles generated by the apparatus, the particles cause a chemical reaction on a coating of the material.
2. Description of the Related Art
A particle beam processing device is commonly used to expose a substrate or coating to highly accelerated particle beams, such as an electron beam (EB), to cause a chemical reaction on the substrate or coating.
An electron is a negatively charged particle found in all matter. Electrons revolve around the nucleus of an atom much like planets revolve around the sun. By sharing electrons, two or more atoms bind together to form molecules. In EB processing, energetic electrons are used to modify the molecular structure of a wide variety of products and materials. For example, electrons can be used to alter specially designed liquid coatings, inks and adhesives. During EB processing, electrons break bonds and form charged particles and free radicals. These radicals then combine to form large molecules. By this process, the liquid is transformed into a solid. This process is known as polymerization.
Liquid coatings treated with EB processing may include printing inks, varnishes, silicone release coatings, primer coatings, pressure sensitive adhesives, barrier layers and laminating adhesives. EB processing may also be used to alter and enhance the physical characteristics of solid materials such as paper, substrates and non-woven textile substrates, all specially designed to react to EB treatment.
A particle beam processing device generally includes three zones, i.e., a vacuum chamber zone where a particle beam is generated, a particle accelerator zone, and a processing zone. In the vacuum chamber, a tungsten filament is heated to about 2400K, which is the thermionic emission temperature of tungsten, to create a cloud of electrons. A positive voltage differential is then applied to the vacuum chamber to extract and simultaneously accelerate these electrons. Thereafter, the electrons pass through a thin foil and enter the processing zone. The thin foil functions as a barrier between the vacuum chamber and the processing zone. Accelerated electrons exit the vacuum chamber through the thin foil and enter the processing zone at atmospheric conditions.
Electron beam processing devices that are commercially available at the present time generally operate at a minimum voltage of 125 kVolts. These existing EB units utilize thin foil made of titanium having a thickness of 12.5 micrometers, to cure coatings on substrates that are being fed through the processing devices at a rate of 800–1000 feet per minute. Such an EB unit may be purchased from Energy Sciences, Inc. of Wilmington, Mass., Model No. 125/105/1200. The current technology cannot be used in certain industries, e.g., flexible food packaging. An EB unit operating at 125 kVolts deposits substantial amounts of the energy onto the polyethylene based sealant films which contact the food being packaged. This deposit causes off-odors in the films and increases its seal initiation temperatures.
The efficiency of such EB units can be improved by reducing the operating voltage below 125 kVolts. In addition, operating below 125 kVolts allows better control of the depth of energy deposition and minimizes the electron energy absorbed by the sealant films. However, when the voltage is reduced below 125 kVolts, the kinetic energy of the electrons traveling through the titanium foil decreases because more energy is being absorbed by the titanium foil, causing the foil to heat up excessively. Excessive heat causes the titanium foil to become blue, brittle, and lose its mechanical strength. Excessive heat also poses a problem with heat management of the system. Consequently, the feed rate of the substrate must be substantially reduced which makes the processing device commercially unviable.
In light of the foregoing, there is a need for a particle beam processing device that operates more efficiently, is smaller in size, has a reduced power demand, and is cheaper to construct.
Methods, and materials made by the methods, are provided herein for treating materials with a particle beam processing device. According to one illustrative embodiment, a method for treating a material with a particle beam processing device is provided that includes: providing a particle beam generating assembly including at least one filament for creating a plurality of particles; applying an operating voltage greater than about 110 kV to the filament to create the plurality of particles; causing the plurality of particles to pass through a thin foil having a thickness of about 10 microns or less; and treating a material with the plurality of particles.
According to another illustrative embodiment, a multi-layered material is provided that includes a first material layer, a second EB cured adhesive layer, a third material layer, a fourth EB cured adhesive layer, and a fifth material layer.
According to another illustrative embodiment, a method for treating a material with a plurality of particles emanating from a particle beam processing device is provided that includes: selecting a foil thickness through which the plurality of particles passes, and selecting an operating voltage, wherein the foil thickness and the operating voltage are selected to achieve at least about 80% surface dose at a depth of at least about 20 grams/m2.
It is to be understood that both the foregoing general description and the following detailed description are exemplary and explanatory only and are not restrictive of the invention as claimed. Additional advantages will be set forth in the description that follows, and in part will be understood from the description, or may be learned by practice of the invention. The advantages and purposes may be obtained by means of the combinations set forth in the attached claims.
The accompanying drawings, which are incorporated in and constitute a part of this specification, illustrate several embodiments of the invention and, together with the description, serve to explain the principles of the invention. In the drawings,
Reference will now be made in detail to several embodiments of apparatus, materials, and methods consistent with the invention, examples of which are illustrated in the accompanying drawings. Wherever possible, the same reference numbers will be used throughout the drawings to refer to the same or like parts. Moreover, the invention will be further clarified by the examples which follow.
A particle beam processing device according to one illustrative embodiment of the present invention can be made relatively small in size and to operate at high efficiency due to at least two features: (1) the operating voltage is reduced to 110 kVolts or less, and (2) the thin foil, if made of titanium or alloys thereof, has a thickness of 10 micrometers or less, and if made of aluminum or alloys thereof, has a thickness of 20 micrometers or less.
In accordance with the principles of the present invention, a particle beam processing device comprises a power supply, a particle generating assembly, a foil support assembly, and a processing assembly.
Particle beam generating assembly 110 is preferably kept in a vacuum environment of vessel or chamber 114. In an EB processing device, particle generating assembly 110 is commonly referred to as an electron gun assembly. Evacuated chamber 114 may be constructed of a tightly sealed vessel in which particles, such as electrons, are generated. Vacuum pump 212 (shown in
Filament 112 then glows white hot and generates a cloud of electrons. Electrons are then drawn from filament 112 to areas of higher voltage, since electrons are negatively charged particles, as described below and accelerated to extremely high speeds. Filament 112 may be constructed of one or more wires commonly made of tungsten, and may be configured to be spaced evenly across the length of foil support 144 and emits electron beams across the width of a substrate 10.
As shown in
Extractor grid 116, operating at a slightly different voltage, preferably higher than filament 112, attracts electrons away from filament 112 and guides them toward terminal grid 118. Extractor grid 116 controls the quantity of electrons being drawn from the cloud, which determines the intensity of the electron beam.
Terminal grid 118, operating generally at the same voltage as extractor grid 116, acts as the final gateway for electrons before they accelerate to extremely high speeds for passage through foil support assembly 140.
According to one embodiment of the present invention, for example, filament 112 may operate at −110,000 Volts and foil support assembly 140 may be grounded or set at 0 Volt. Repeller plate 120 may be selected to operate at −110,010 Volts to repell any electrons towards filament 112. Extractor grid 116 and terminal grid 118 may be selected to operate in a range of −110,000 Volts to −109,700 Volts.
The electrons then exit vacuum chamber 114 and enter the foil support assembly 140 through a thin foil 142 to penetrate a coated material or substrate 10 for the chemical reaction. The chemical reaction includes, for example, polymerization, crosslinking or sterilization. The speed of the electrons may be as high as or above 100,000 miles per second. Foil support assembly 140 may be made up of a series of parallel copper ribs (not shown). Thin foil 142, as shown in
In accordance with the principles of this illustrative embodiment of the present invention, the particle beam generating device can be made smaller in size and operate at a higher efficiency level when the thin foil of the foil support assembly is made of titanium or alloys thereof and having a thickness of 10 micrometers or less, preferably in a range of 3–10 micrometers, more preferably in a range of 5–8 micrometers. Alternatively, thin foil 142 may also be constructed of aluminum or alloys thereof having a thickness of 20 micrometers or less, preferably in a range of 6–20 micrometers, more preferably in a range of 10–16 mircometers.
Once the electrons exit the foil support assembly 140, they enter the processing assembly 170 where the electrons penetrate a coating or web substrate 10 and cause a chemical reaction resulting in polymerization, crosslinking or sterilization. As shown in
The particle beam processing device may include a protective lining surrounding at least a portion of the periphery of the device to absorb radiation, such as X-ray, emitted when the electrons decelerate as they are absorbed in matter.
As shown in
The particle beam processing device may further include a processor, such as a computerized microprocessor, to regulate the quantity of electrons generated so the electron beam output is proportional to the feeding speed of the substrate. As shown in
In operation, particle beam processing device 100 works as follows. A vacuum pump 212 (shown in
During the particle beam processing, a combination of electric fields inside evacuated chamber 114 create a “push/pull” effect that guides and accelerates the electrons toward thin foil 142 of foil support 144, which is at ground (0) potential. The quantity of electrons generated is directly related to the voltage of extractor grid 116. At slow production speeds, extractor grid 116 is set at a lower voltage than at high speeds, when greater voltage is applied. As the voltage of extractor grid 116 increases, so does the quantity of electrons being drawn from filament 112.
The coatings to be cured, for example, inks, adhesives and other coatings, generally require a low oxygen environment to cause the chemical conversion from a liquid state into a solid state. Therefore, the particle beam processing device according to this embodiment may include, as illustrated in
As can be seen from the description above, particle beam processing device 100 can be calibrated to achieve extremely high precision specification because process control system 200 may be set to provide the exact depth level of cure desired on a substrate or coating. Process control system 200 calculates the dose and the depth of electron penetration into the coating or substrate. The higher the voltage, the greater the electron speed and resultant penetration.
Dose is the energy absorbed per unit mass and is measured in terms of megarads (Mrad), which is equivalent to 2.4 calories per gram. A higher number of electrons absorbed reflects a higher dose value. In application, dose is commonly determined by the material of the coating and the depth of substrate to be cured. For example, a dose of 5 Mrad may be required to cure a coating on a substrate that is made of rice paper and having a mass density of 20 gram/m2. Dose is directly proportional to the operating beam current which is the number of electrons extracted, and inversely proportional to the feed speed of the substrate, as expressed by the following formula:
Dose=K·(I/S)
whereby I is the current measured in mAmp, S is the feed speed of the substrate measured in feet/min, and K is a proportionality constant which represents a machine yield of the processing device, or the output efficiency of that particular processing device.
The following examples as illustrated in the charts shown in
The goal of this embodiment of the present invention is to increase the output efficiency of the processing device by applying an operating voltage that is as low as possible to reduce the power needed to generate the operating voltage which makes the processing device more compact and cheaper to build. Thus, as shown in the depth dose profiles of
The data taken in these experiments was measured utilizing thin film dosimetry techniques. Dosimetry techniques involve nylon films which have thicknesses in the range of 9–10 micrometers. The dosimeters contain a radiochromic dye that changes color from colorless to blue when the dye is exposed to electromagnetic radiation. The intensity of the blue color is directly proportional to the amount of radiation exposure obtained from the nylon films. By measuring the intensity or optical density of the blue color using a densitometer, one can convert the measured optical density to the absorbed dose in Mrads. The conversion from optical density to dose in Mrads is achieved by prior calibration of the dosimeters and the densitometer using Co6o Gamma facility at the National Institute of Standards and Technology, Gaithersburg, Md. These experiments utilized Dosimeters Model FWT-60-810 manufactured by Far West Technology, Goleta, Calif. and Densitometer Model 92 SXN 3285 manufactured by Far West Technology, Goleta, Calif.
The result of a first experiment, shown in
In the first experiment, thin film nylon dosimeters were used to measure the penetration capability of electrons. The parameters for this experiment include: a constant operating voltage of 90 kVolts, a dose of 5 Mrads, and a thin titanium foil. Three specimens were tested to study three different titanium foil thicknesses of 12.5, 8, and 5 micrometers, one for each foil thickness.
The three specimens were made of thirty dosimeters, each having a surface area of approximately 2×2 cm2. These dosimeters were divided into three stacks, each stack containing an arrangement of ten dosimeters one on top of the other. One edge of each stack of dosimeters was taped to a polyester carrier having a thickness of 125 micrometer. The three polyester carriers were then taped to a paper substrate and fed through processing device 100 to receive radiation treatment. The first stack was treated in processing device 100 with 12.5 micrometer titanium foil; the second stack with 8 micrometers, and the third stack with 5 micrometers. Following the radiation treatment, the three stacks were annealed in an oven at 60° C. for 5 minutes. The dosimeters were then separated, individually measured on the densitometer, and converted to dose in terms of Mrads. For each stack, the dose values obtained were normalized to the first dosimeter.
The result of a second experiment, shown in
In the second experiment, similar to the first experiment, thin film nylon dosimeters were used to measure the machine yield K of a processing device having a width of 1.5 feet at various operating voltages measured in kVolts. Four measurements were run to study four different titanium foils having thicknesses of 12.5, 10, 8, and 5 micrometers.
The value of machine yield K was obtained by calculating the average of nine individual dosimeter chips. Each dosimeter of 2×2 cm2 was taped on one edge to a polyester carrier. Each polyester carrier contained nine dosimeters. The polyester carrier was taped to the paper substrate and fed through processing device 100 to receive radiation treatment. After irradiation the dosimeters were annealed at 60° C. for 5 minutes. Thereafter, the optical density and the dose value were measured. For each measurement, processing device 100 was set to deliver 4 Mrads to the dosimeters. Processing device 100 included several gauges (not shown) to indicate the feed rate of the substrate in feet/minute and the current of the particle beam in mAmp. The average dose was determined and used to calculate the K value according to the following equation:
The same procedure was repeated for all voltages.
K≧20/L
for a 10 micrometer titanium foil operating at a voltage of 80–110 kvolts;
for an 8 micrometer titanium foil operating at a voltage of 70–110 kvolts;
for a 5 micrometer titanium foil operating at a voltage of 60–110 kVolts;
wherein L is the width of the processing device measured in feet, in this case 1.5 feet.
The result of a third experiment, as shown in
In the third experiment, depth dose profiles for processing device 100 at various operating voltages were measured according to the procedure described earlier with respect to the first experiment. A typical application of flexible food packaging is the packaging for processed meat and cheese which commonly include three layers top film, adhesive, and sealant. For example, Table 1 below provides a typical packaging layers and their normalized thicknesses, measured in grams/m2:
Electron beam has generally been used to cure the adhesive in between the top film and the sealant.
As illustrated in
Processing device 100 consistent with the principles of this embodiment of the present invention overcomes the problems of prior processing device by operating at a voltage range of 110 kVolts or less, preferably 90–100 kVolts, at a commercially viable substrate feed rate. As shown in
The result of a fourth experiment, as shown in
Because the processing device according to this embodiment can operate at an operating voltage of 110 kVolts or less, not only that the size of power supply to generate the operating voltage can be reduced, but also the size of evacuated vessel to contain the particle beam generating assembly can be substantially reduced. Furthermore, the thickness of protective lining can be reduced because less severe radiation is emitted by the electrons exiting the evacuated vessel at a slower rate when the operating voltage is 110 kVolts or less.
In application, a particle beam processing device may be used in a manufacturing process, such as electron beam (EB) processing, to treat a substrate or a coating exposed to the device. The treatment may include a chemical reaction, such as polymerization, crosslinking, or sterilization. When the substrate or coating is exposed to highly accelerated electrons, a reaction occurs in which the chemical bonds in the substrate or coating are broken and a new, modified molecular structure is formed. This application applies broadly to any particle beam, but for exemplary purposes, the electron beam is particularly described. The following will describe possible chemical reactions that could occur during EB processing.
Crosslinking is a chemical reaction that alters and enhances the physical characteristics of the material being treated. In a crosslinking process, an interconnected network of chemical bonds or links develops between large polymer chains to form a stronger molecular structure. Application of EB processing by crosslinking reaction includes, for example, when a plastic like substrate or rubber substrate is treated with electrons, the large polymers in these products develop many linking bonds. These bonds increase the product's performance and its resistance to weakening at elevated temperatures.
Like crosslinking, polymerization is a process in which several individual groups of molecules combine together to form one large group called a polymer. This causes significant physical changes in the product being treated and results in many desirable physical characteristics such as high gloss and abrasion resistance. For example, when exposed to accelerated electrons during EB processing, furniture coatings and adhesives are transformed almost instantaneously from a liquid (uncured) state into a non-tacky (cured) solid state.
Sterilization is a process of destroying contaminating microorganisms by rendering them sterile or unable to reproduce. EB sterilization occurs when electrons are directed into the microorganisms whereby breaking the DNA chains which control reproduction. Once a product has been sterilized, no microbial decomposition can take place. Since electrons act as a physical sterilizing agent rather than a chemical one, they do not change the chemistry of the target product or leave any residual chemicals. EB sterilization offers a number of advantages over chemical sterilization techniques, such as those that use hydrogen peroxide and ethylene oxide. For example, EB sterilization may be used to sterilize medical supplies and sensitive food products as well as their respective packaging, whereas chemical sterilization could not be used.
In recent years, application of an EB processing has received wide acceptance in many different industries. For example, in the packaging industry, flexible packaging has experienced a tremendous successful growth compared to its counterpart rigid and semi-rigid packaging, such as cans and bottles packaging. One reason for this success over the rigid and semi-rigid packaging alternatives is that flexible packaging offers cost and source reduction. The particle beam processing device according to this embodiment, generally referred to in the industry as an EB machine, may be used to satisfy requirements of this industry, including to provide a flexible packaging material that is less expensive and meets the health and safety standards set forth by government agencies, such as the Food and Drug Administration. Cost reduction may be accomplished by using less raw material and employing an improved manufacturing technique. As an additional benefit, reducing the raw material also appreciably appeals to this industry as environmentally friendly.
As described above in Example 3 and exemplified in Table 1, a typical flexible packaging material currently available in the market comes in a laminate form, which means it has a minimum of two main layers: a top polymer film and a bottom polymer film, with an adhesive sandwiched or laminated between the top and bottom films. Each of the top and bottom films usually comes in the form of continuous sheet rolled around a cylindrical core or spool. The adhesive may be applied, for example, by squeezing it out of a nozzle into a nip area between a pair of rollers, one for guiding the top film, and another for the bottom film. Generally, also laminated and protected between the top and bottom films is a printing of the product label. The print is commonly a reversed image of the actual label itself.
Also currently known in the industry is an application of the particle beam processing device made according to the teaching of this application in the pet food packaging industry. For example, it is well known to use the EB machine of this illustrative embodiment to cure or polymerize a lacquer coating on the pet food packaging material such as multi-wall bag. Pet food packaging material is usually constructed of a layer of high strength paper and a lacquer coating to protect the label printed on the paper. It has been known to cure the lacquer coating on the paper by feeding the paper into a particle beam processing device of the present embodiment normally operating at a voltage of 110 kVolts to cure the lacquer coating, transforming the lacquer coating from a liquid phase to solid almost instantaneously. The lacquer coating is EB cured and designed to provide gloss, abrasion resistant and desired coefficient of friction (COF). After the EB lacquer is applied, the paper is further processed where other layers of paper and plastic film are glued onto the paper containing EB lacquer making the multi-wall bug substrate. After filling the contents, the paper packaging is then generally sealed by sewing the top and bottom edges of the packaging. The pet food packaging material does not include a bottom polymer film, which is normally made of polyethylene for heat sealing the packages when the EB lacquer is applied and cured with EB.
It is known that if the radiation from the particle beam processing device deposits significant dose to the bottom polymer film, thereby altering the sealing characteristics of the bottom polymer film, and causing the film to emit undesirable odors and raising the seal initiation temperatures thus making it difficult to heat seal the packages.
The present illustrative embodiment is directed to an application of the particle beam processing device to a treatable material, such as for a flexible food packaging, whereby the treatable material includes a substrate, a particle beam treatable lacquer coating, and a radiation labile layer, such as a sealing layer, whereby the particle beam causes the lacquer coating to chemically react without effecting the radiation labile layer.
Application of the particle beam processing device made according to this embodiment can be found in many industries including, for example, packaging, insulation films, reflective coatings and reflective materials, solar films, etc. Other fields, such as outer space suits and aircrafts, may also find this embodiment useful. For exemplary purposes, an embodiment of the present invention is discussed with respect to an application of the particle beam processing device in the flexible food packaging field.
Consistent with the principles of one illustrative embodiment of the present invention, in order to reduce material resources and production costs of current packaging material, this application provides a particle beam treatable material including a substrate and a lacquer coating applied on the substrate, the lacquer coating being formulated for exposure to highly accelerated particles, such as those generated by the particle beam processing device of this embodiment, to cause a chemical reaction to the lacquer coating. The particle beam processing device operates at a voltage in a range of 110 kVolts or below.
As shown in
Lacquer coating 240, such as an over-print varnish (OPV), is formulated for exposure to highly accelerated particles schematically illustrated and referred to as arrows 242. Particles 242 may be electron beams such as those electrons generated by particle beam generating assembly 110. When exposed to electron beams 242, lacquer coating 240 is treated by going through a chemical reaction, i.e., a polymerization process in which it is physically transformed from a liquid state to a solid state (illustrated in
Lacquer coating 240 serves several purposes, including protecting the ink of a label print 250 from smearing and scratching, providing traction to enable the web to run through the EB machine, and for aesthetic reasons, presenting a high gloss finish to the packaged product. Lacquer coating 240 may be made of a functional group, such as acrylate ester including multifunctional acrylates for free radical polymerization, vinyl ethers, cycloaliphatic diepoxide and polyol systems, for cationic polymerization. The lacquer coating may also include wetting agents and other additives to control coefficient of friction (COF) and import desired functional properties, such as gas and aroma barrier properties.
For example, the following are possible candidates for the multifunctional acrylate:
acrylated polyols with molecular weights from 150 to 600;
polyester acrylates with molecular weights from 1000 to 2000;
polyether acrylates with molecular weights from 200 to 1500;
polyester urethane acrylates with molecular weights from 400 to 2000;
polyurea acrylates with molecular weights from 400 to 2000;
epoxy acrylates with molecular weights from 300 to 1000; and
mixtures of multifunctional acrylates.
More particularly, the multifunctional acrylate may include pentaerythritol tetraacrylate, ditrimethylolpropane tetraacrylate, trimethylolpropane triacrylate, glycerol triacrylate, triacrylate ester of tris-t2hydroxy-ethyll isocyanurate, hexanediol diacrylate, and dipentaerythritol hexacrylate, and ethoxylated and propoxylated derivatives thereof.
Lacquer coating 240 may have a normalized thickness (expressed in terms of its mass density) in a range of 0.5–20 grams/m2. In one embodiment, lacquer coating 240 preferably has a thickness in a range of 1–10 grams/m2, and more preferably 2–5 grams/m2.
Also consistent with the principles of one embodiment of the present invention, lacquer coating 240 is preferably treated using the EB machine having a power supply and operating at a voltage of 110 kVolts or below. For one application, the operating voltage of the EB machine may be in a range of 60–110 kVolts, or preferably between 70–110 kVolts, and more preferably between 90–110 kVolts.
Furthermore, lacquer coating 240 may be treated using the EB machine which generates electrons emitting energy in a range of 0.5–10 Mrads to cure lacquer coating 240. In one example, the emitted electron energy is preferably in a range of 1–7 Mrads, or preferably in a range of 2–5 Mrads.
Also consistent with the principles of another embodiment of the present invention, substrate 10 may be made of a material such as polyolefins, including oriented polypropylene (OPP), cast polypropylene, polyethylene and polyethylene copolymer; polystyrene; polyesters, including polyethylene terephthalate (PET), or polyethylene naphthalate (PEN); polyolefin copolymers, including ethylene vinyl acetate, ethylene acrylic acid and ethylene vinyl alcohol (EVOH), polyvinylalcohol and copolymers thereof; polyamides, including nylon, and MXD6; polyimides; polyacrylonitrile; polyvinylchloride; polyvinyl dichloride; polyvinylidene chloride; polyacrylates; ionomers; polysaccharides, including regenerated cellulose; silicone, including rubbers or sealants; natural or synthetic rubbers; glassine or clay coated paper; paper board; craft paper; and metallized films and vapor deposited metal oxide coated polymer films, including AlOx, SiOx, or TiOx.
To provide desired strength to the packaging and to maintain quality of the contents of a packaged product, substrate 10 may have a thickness in a range of 10–200 grams/m2, preferably 30–90 grams/m2, or more preferably 50–70 grams/m2.
Further consistent with the principles of this embodiment of the present invention, substrate 10 may have a barrier layer 260 applied on top side 212 of substrate 10 to maintain a prerequisite condition of the contents of a packaged product. If the contents of the packaged product are foods, such as potato chips, for example, the prerequisite condition may include flavor, freshness, taste, crispness, color, etc.
Barrier layer 260 may be applied by a technique commonly known as vacuum deposition process whereby a layer of, for example, vaporized aluminum, aluminum oxides (AlOx), silicone oxides (SiOx), or other suitable materials is deposited onto substrate 10 to maintain the prerequisite condition of the contents of a packaged product. In a vacuum deposition process using an aluminum oxide, the process also known as a metallization, whereby aluminum is heated to above melting temperature under a vacuum condition in a chamber. A continuous web is run through the vacuum chamber filled with molten aluminum via a series of rollers. Under a controlled condition, the molten aluminum is deposited on either one or both of its surfaces creating a precise thickness of aluminum metallization on the web. This metallization can be seen, for example, as the shiny silver-colored coating on the inner side of a bag of potato chips. In one embodiment, barrier layer 260 may have a thickness in a range of 100–1000 Angstroms.
Label print 250 may be applied directly on top side 212 of substrate 10, usually, but not necessarily, on top of the barrier layer 260. When substrate 10 includes barrier layer 260, label print 250 may be applied after application of barrier layer 260 onto substrate 10. Label print 250 according to this embodiment may be applied as a surface print, as oppose to the reverse printing. Surface printing may be performed using the currently available techniques, such as flexography printing, rotor gravuare printing, offset lithography printing, spray printing, etc. Generally, in a printing zone of the EB machine, continuous sheet of substrate 10 is run through a series of rollers (not shown) to receive the surface printing on its top side 212 by one of those printing techniques. Preferably, in the flexible packaging industry, printing is done by a flexography method. Label print 250 may be any types of well known flexography inks, including solvent based, water based, and electron beam curable ink, such as Unicure™ available from Sun Chemicals Ink of Northlake, Ill. This embodiment further anticipates that lacquer coating 240 and label print 250 on substrate 10 may be simultaneously treated when they pass through the particle beam processing device 100.
Yet further consistent with the principles of this embodiment of the present invention, substrate 10 may have a radiation labile layer defined as a layer of material susceptible to radiation damage. Radiation labile layer may be a sealing layer 270, applied on bottom side 214 of substrate 10. Sealing layer 270 is provided to facilitate sealing of the packaging material and to give structure to the packaging without being chemically altered by the radiation from the particle beam processing device 100. To give structure to the packaging, sealing layer 270 may be provided with a thickness in a range of 5–50 grams/m2, preferably 8–35 grams/m2, more preferably 12–25 grams/m2, or most preferably 15–20 grams/m2. Sealing layer 270 may be applied to bottom side 214 of flexible substrate 210 by any conventional means, such as an extrusion method.
In a consumer food producing company, after lacquer coating 240 has been treated, substrate 10, commonly in a form of a continuous web, goes through a cutting process whereby the continuous sheet is first folded to become a continuous tube, then cut to size to make individual bags, arranged in an assembly line to be sealed on one end of the bags. In the cutting process, continuous sheet of substrate 10 may be run through various rollers to make a continuous U-shaped sheet so that sealing layers 270 are on two inner legs of the U-shaped sheet facing each other. The tips of the legs of the U-shaped sheet may then be sealed to make the continuous tube ready for cutting to individual bag sizes. Then, the assembly line of individual bags goes through a filling process whereby contents of the packaging are filled into the individual bags, and each of the individual bags is sealed on the other end to close the packaging. It is also possible to provide substrate 10 in a form of individual sheets, either already cut to size or ready to be cut to size.
Sealing layer 270 may be made of a material suitable for sealing a packaged product, such as by heat sealing, cold sealing, or other equivalent sealing processes. When sealing layer 270 is provided for heat seal layer, sealing layer 270 may be made of polymers preferably having a melting point at a temperature range of 100–150 degrees Celcius. Examples of such polymers are polyethylene, polyvinylacetate, ethylene propylene copolymer, terpolymer ethylene acrylic acid, metallocene, ionomer, and combination thereof. For bagging snack foods, like potato chips, for example, sealing layer 270 may be made of polyethylene or polyethylene/polypropylene copolymer terploymer having a melting temperature range of 110–140 degrees Celcius.
Alternatively, sealing layer 270 may be provided for cold seal layer to cold seal the packaging. In one embodiment, a cold seal adhesive may be applied to the substrate. For cold seal coating, sealing layer 270 may be made of natural rubber, polyamides, and combination thereof.
The following comparative examples present several applications of the web packaging material according to the present embodiment in the current market, including stand-up pouch packaging, confectionary packaging, and snack food packaging. As can be seen from the following examples, the web packaging material of the present illustrative embodiment improves the currently available packaging material by offering cost savings, better quality product, and environmental consciousness. The present illustrative embodiment accomplishes these improvements by using less raw material and using a low voltage EB machine to cure the packaging material. For exemplary purposes, Examples 8–10 discuss the polymers in terms of their normalized thickness measured in grams/m2.
Stand-up pouch packaging is used to package, for example, cookies, nuts, dried fruits, etc. In today's market, packaging for stand-up pouches is made in a laminate form, i.e., at least two layers of polymers being laminated to sandwich an adhesive layer. The following is an example of stand-up pouch packaging in the current market:
A packaging material made consistent with the principles of this embodiment of the present invention may have the following construction for a stand-up pouch packaging:
In the exemplified embodiment, over-print varnish of lacquer coating 240 is about 3–5 grams/m2 thick and is curable with an EB machine at least 2.0 Mrads and operating at a range of 80–110 kVolts. It can be seen that the web packaging made according with the principles of this embodiment of the present invention uses less raw material than the conventional stand-up pouch packaging by about 10 grams/m2, which is a raw material saving of almost 15–20%. In addition, the web packaging made according with the principles of the present embodiment offers energy and cost savings related to reducing several operating or processing steps.
Confectionary packaging is used to package, for example, candies and candied products. The following is an example of confectionary packaging in the current market:
A packaging material made consistent with the principles of this embodiment of the present invention may have the following construction for a confectionary packaging:
In this example, over-print varnish of lacquer coating 240 is curable with an EB machine at least 2.0 Mrads and operating at a range of 80–110 kVolts. It can be seen that the web packaging made according with the principles of the present embodiment uses less raw material than the conventional packaging, a material cost saving of about 8 grams/m2 or 10–15%. In addition, the web packaging made according with the principles of the present embodiment offers energy and cost savings related to reducing several operating or processing steps.
Snack food packaging is used to package, for example, potato chips, corn chips, and pretzels. The following is an example of snack food packaging in the current market:
A packaging material made consistent with the principles of the present embodiment may have the following construction for a snack food packaging:
In this example, over-print varnish of lacquer coating 240 is also curable with an EB machine at 2.0 Mrads and operating at a range of 80–110 kVolts. It can be seen that the web packaging made according with the principles of this embodiment of the present invention uses less raw material than the conventional packaging, a cost saving of about 10 grams/m2 or 15%. In addition, the web packaging cured with the EB machine according with the principles of the foregoing embodiment of the present invention offers substantial energy savings as compared with the conventional oven operation used in the current market.
The process described above offers several advantages, such as, the particle beam processing happens virtually instantaneously, commonly operates at room temperature and produces no emissions or air pollution since particle beam coating materials are 100% solids. In addition, the coatings do not contain harmful solvents or volatile organic compounds. In addition, energy costs to operate EB is substantially lower than operating ovens used today.
It has been shown (for example, with reference to
As mentioned above, one application for low voltage EB equipment is instantaneous curing of laminating adhesives (see above Examples 3 and 8–10). Using an EB particle beam processing device 100 to instantly cure a laminating adhesive removes the 12 hour to 7 day WIP (work in process) inventory required when using time-cured solvent, water, or 100% solids adhesives, translating into cost savings to the manufacturer. Using EB curing also avoids the use of potentially toxic isocyanate chemistry associated with some of the incumbent chemistry. In addition, instantaneous curing provides other extra benefits such as real time quality control and less waste. Accordingly, using an EB device to instantaneously cure an adhesive that joins two similar or dissimilar substrates (such as plastic films or a plastic film with an inorganic layer like aluminum foil) is an important EB application.
It has been shown that operating at 110 kV works quite well for joining “duplex” structures in which an adhesive joins two films or a film to an inorganic layer like aluminum foil. There are certain duplex and other structures involving thicker materials, however, where a higher operating voltage is may be required to adequately cure an adhesive layer, or layers, beneath one or more material layers. A triplex structure, where two separate adhesive layers are used to join three material layers, is an example of a structure that may require a higher operating voltage to cure both adhesives. Certain stand-up pouch applications that require thicker packaging utilize a triplex structure, such as packaging for liquid drinks, snacks, etc., as well as non-food applications like motor oil, fertilizer, etc. The following is an example of a triplex construction:
PET\Print\Adhesive\Aluminum\Adhesive\LDPE
Without the use of EB curing, the following method can be used to make the above-mentioned structure:
Step 1: Reverse print the PET (Polyester) film.
Step 2: Laminate the printed film to aluminum foil using a time-cured adhesive.
Step 3: Wait 24 hours for adhesive to cure.
Step 4: Laminate the PET\Aluminum laminate to LDPE (low density polyethylene) with time cured adhesives.
Step 5: Wait 24 hours in non-food applications, or wait up to 7 (or more) days for food applications.
Using an EB device 100 to instantaneously cure the laminating adhesives, one could complete the foregoing triplex structure in the following steps:
Step 1: Reverse print the PET film.
Step 2: Laminate the triplex PET\Aluminum\LDPE structure using EB laminating adhesives.
Step 3: EB cure the entire triplex structure in-line. The structure can be used without delay since EB cures the adhesive instantly.
It can be seen that in making a triplex structure, for example, EB curing simplifies the manufacturing process by reducing the operating steps and enables the structure to be used or shipped the same day resulting in significant cost savings. Due to the greater thickness of the triplex structure, however, higher operating voltages may be needed to adequately cure the second adhesive layer. More generally, when a material layer to be treated, such as adhesive, is a layer within a structure (duplex, triplex, or other) in the thickness range of about 30 to 50 grams/m2, an operating voltage of 110 kV may not adequately treat the layer. The following example shows that a higher operating voltage (125 kV versus 110 kV) provides better results for a “triplex” structure.
The following triplex structure was made using EB laminating adhesives:
PET\Print\Adhesive\Aluminum\Adhesive\LDPE
The structure was made using both a 110 kV operating voltage and a 125 kV operating voltage. The following table shows the results:
The EB laminating adhesives 1 and 2 used were an acrylate ester from Northwest coatings (Product # NWC19140). Adhesive 1 was applied on a reverse printed Polyester (PET) film by flexo method. This was then laminated to 8 micrometer aluminum foil. Adhesive 2 was applied to a side of the polyethylene (LDPE) film, which side was then laminated to the exposed side of the aluminum foil to form the triplex structure.
The entire triplex laminated structure was then EB cured using a particle beam processing device 100 (
The triplex structure was exposed to the electron beam such that the PET layer was facing the electron beam and the electrons traveled through the PET layer (and the aluminum layer for adhesive 2) to cure adhesives 1 and 2. One sample of the structure was cured using an operating voltage of 110 kV with a surface dose of 3.0 Mrad, while a second sample was cured at an operating voltage of 125 kV with a surface dose of 3.0 Mrad.
It was found that at both operating voltages, adhesives 1 and 2 appeared cured, and the LDPE layer had no detrimental effects on heat sealability or any other physical property. However, it was found that adhesive 2 cured at 110 kV had a slightly higher odor than adhesive 2 cured at 125 kV. The increased odor in the laminate cured at 110 kV is due to the EB dose received by the adhesive layer, which is illustrated in the above table and in
From the above table one can observe that at an operating voltage of 110 kV and a surface dose of 3.0 Mrads, adhesive 1 receives a dose of 2.65 Mrads, while adhesive 2 receives a dose of only 1.8 Mrads causing the material to be slightly under-cured, thereby creating an odor. Further, this dose is lower than the required 2.4–2.5 Mrads recommended by the adhesive supplier for the packaging to comply with food law. At 125 kV adhesives 1 and 2 receive a does of 2.95 and 2.4 Mrads, respectively, both high enough to adequately cure adhesives 1 and 2 (thereby reducing off-odor to a non-detectable level) and to comply with FDA requirements.
It will be apparent to those skilled in the art that various modifications and variations can be made in the particle generating assembly, foil support, processing zone, and process control system, as well as the materials chosen for the web packaging material, and the materials chosen for the thin foil, the filaments or particle generating components, and in construction of the particle beam processing system as well as other aspects of the invention without departing from the scope or spirit of the invention. For example, although an example of curing a triplex structure has been shown, the invention is not limited to curing any particular structure, and is also applicable to, for example, single layer, duplex, four layer, five layer, structures, etc.
Other embodiments of the invention will be apparent to those skilled in the art from consideration of the specification and practice of the invention disclosed herein. It is intended that the specification and examples be considered as exemplary only, with a true scope and spirit of the invention being indicated by the following claims and their equivalents.
This application is a continuation of PCT Application No. PCT/US03/23731 filed Jul. 30, 2003, and a continuation-in-part of U.S. application Ser. No. 10/153,622, filed on May 24, 2002, which is a continuation-in-part of U.S. application Ser. No. 09/434,380, filed on Nov. 5, 1999, now U.S. Pat. No. 6,426,507, all of which are herein incorporated by reference.
Number | Name | Date | Kind |
---|---|---|---|
1272004 | Campbell | Jul 1918 | A |
1275904 | Grotta | Aug 1918 | A |
2008361 | Lindsey | Jul 1935 | A |
2079328 | McBean | May 1937 | A |
2140748 | Johanson | Dec 1938 | A |
2301997 | Basilone et al. | Nov 1942 | A |
3106333 | Bulovic | Oct 1963 | A |
3237843 | Reed et al. | Mar 1966 | A |
3440466 | Colvin et al. | Apr 1969 | A |
3832827 | Lemelson | Sep 1974 | A |
3865664 | Neumann | Feb 1975 | A |
3925670 | Farrell | Dec 1975 | A |
4070262 | Guarino et al. | Jan 1978 | A |
4071425 | Guarino et al. | Jan 1978 | A |
4072592 | Due et al. | Feb 1978 | A |
4082594 | Stonehouse | Apr 1978 | A |
4143468 | Novotny et al. | Mar 1979 | A |
4210813 | Romanovsky et al. | Jul 1980 | A |
4246297 | Nablo et al. | Jan 1981 | A |
4246315 | Kopp et al. | Jan 1981 | A |
4248665 | Thode | Feb 1981 | A |
4288479 | Brack | Sep 1981 | A |
4323780 | Tombaugh et al. | Apr 1982 | A |
4323858 | Gerstley | Apr 1982 | A |
4324980 | Symmons | Apr 1982 | A |
4330590 | Vesley | May 1982 | A |
4381322 | Bahr et al. | Apr 1983 | A |
4384026 | Moore et al. | May 1983 | A |
4446374 | Ivanov et al. | May 1984 | A |
4490409 | Nablo | Dec 1984 | A |
4501797 | Super et al. | Feb 1985 | A |
4507614 | Prono et al. | Mar 1985 | A |
4522887 | Koebisu | Jun 1985 | A |
4537811 | Nablo | Aug 1985 | A |
4577205 | Shibata et al. | Mar 1986 | A |
4589145 | Van Erden et al. | May 1986 | A |
4594262 | Kreil et al. | Jun 1986 | A |
4654379 | Lapin | Mar 1987 | A |
4658963 | Jud | Apr 1987 | A |
4714655 | Bordoloi et al. | Dec 1987 | A |
4720416 | Duncan | Jan 1988 | A |
4777077 | Miyazawa et al. | Oct 1988 | A |
4786552 | Sasaki et al. | Nov 1988 | A |
4810745 | Pike et al. | Mar 1989 | A |
4814215 | Lautenschlaeger et al. | Mar 1989 | A |
4833122 | Doll et al. | May 1989 | A |
4844764 | Nablo et al. | Jul 1989 | A |
4845370 | Thompson et al. | Jul 1989 | A |
4851459 | Ramalingam | Jul 1989 | A |
4859521 | Pike et al. | Aug 1989 | A |
4889884 | Dust et al. | Dec 1989 | A |
4898787 | Min et al. | Feb 1990 | A |
4902370 | Dust et al. | Feb 1990 | A |
4908274 | Jachmann et al. | Mar 1990 | A |
4948604 | Kuehne et al. | Aug 1990 | A |
4952814 | Huntzinger | Aug 1990 | A |
5001002 | Gribbin et al. | Mar 1991 | A |
5028480 | Dean | Jul 1991 | A |
5030302 | Jud et al. | Jul 1991 | A |
5048260 | Raymond et al. | Sep 1991 | A |
5051600 | Schuetz et al. | Sep 1991 | A |
5071686 | Genske et al. | Dec 1991 | A |
5084317 | Epple | Jan 1992 | A |
5085906 | Ast et al. | Feb 1992 | A |
5085939 | Wenz et al. | Feb 1992 | A |
5175436 | Puumalainen | Dec 1992 | A |
5200463 | Flakus | Apr 1993 | A |
5227240 | Tilley et al. | Jul 1993 | A |
5258225 | Katsamberis | Nov 1993 | A |
5266400 | Yarusso et al. | Nov 1993 | A |
5268230 | Edwards | Dec 1993 | A |
5271968 | Coyle et al. | Dec 1993 | A |
5333439 | Bozich et al. | Aug 1994 | A |
5376388 | Meyers | Dec 1994 | A |
5392592 | Bozich et al. | Feb 1995 | A |
5416440 | Lyons et al. | May 1995 | A |
5426131 | Katsamberis | Jun 1995 | A |
5431763 | Bradshaw | Jul 1995 | A |
5434010 | Smith et al. | Jul 1995 | A |
5436073 | Williams et al. | Jul 1995 | A |
5445867 | Ogawa et al. | Aug 1995 | A |
5455105 | Coyle et al. | Oct 1995 | A |
5468542 | Crouch | Nov 1995 | A |
5482780 | Wilkie et al. | Jan 1996 | A |
5486426 | McGee et al. | Jan 1996 | A |
5489783 | Kristiansson | Feb 1996 | A |
5527578 | Mazurek et al. | Jun 1996 | A |
5530255 | Lyons et al. | Jun 1996 | A |
5540916 | Parks et al. | Jul 1996 | A |
5548005 | Kurth et al. | Aug 1996 | A |
5561298 | Cirlin et al. | Oct 1996 | A |
5562985 | Sano et al. | Oct 1996 | A |
5562994 | Abba et al. | Oct 1996 | A |
5567773 | McGee et al. | Oct 1996 | A |
5582342 | Jud | Dec 1996 | A |
5603972 | McFarland | Feb 1997 | A |
5604041 | Choi | Feb 1997 | A |
5614297 | Velazquez | Mar 1997 | A |
5616400 | Zhang | Apr 1997 | A |
5626966 | Külper et al. | May 1997 | A |
5650453 | Eckberg et al. | Jul 1997 | A |
5671882 | Cerwinski et al. | Sep 1997 | A |
5674626 | Khatib et al. | Oct 1997 | A |
5676785 | Samonides | Oct 1997 | A |
5691022 | Knauf | Nov 1997 | A |
5691052 | Jones | Nov 1997 | A |
5693385 | Parks | Dec 1997 | A |
5725909 | Shaw et al. | Mar 1998 | A |
5725958 | Matsuda et al. | Mar 1998 | A |
5741505 | Beyer et al. | Apr 1998 | A |
5757152 | Yuem et al. | May 1998 | A |
5783266 | Gehrke | Jul 1998 | A |
5792296 | Soltysiak | Aug 1998 | A |
5798174 | Wilkie | Aug 1998 | A |
5801387 | Nablo et al. | Sep 1998 | A |
5804301 | Curatolo | Sep 1998 | A |
5804610 | Hamer et al. | Sep 1998 | A |
5817402 | Miyake et al. | Oct 1998 | A |
5827615 | Touhsaent et al. | Oct 1998 | A |
5843547 | Kulper et al. | Dec 1998 | A |
5851610 | Ristey et al. | Dec 1998 | A |
5859521 | Tajima et al. | Jan 1999 | A |
5874164 | Caldwell | Feb 1999 | A |
5885630 | Zurawski et al. | Mar 1999 | A |
5888649 | Curatolo | Mar 1999 | A |
5898261 | Barker | Apr 1999 | A |
5904973 | Coward et al. | May 1999 | A |
5932298 | Moon | Aug 1999 | A |
5935686 | Daelmans et al. | Aug 1999 | A |
5939205 | Yokoyama et al. | Aug 1999 | A |
5945174 | Shaw et al. | Aug 1999 | A |
5945183 | Johnson | Aug 1999 | A |
5959003 | Lo et al. | Sep 1999 | A |
5959020 | Oliveri et al. | Sep 1999 | A |
5962995 | Avnery | Oct 1999 | A |
5976297 | Oka et al. | Nov 1999 | A |
5981047 | Wilkie | Nov 1999 | A |
5981650 | Zhao et al. | Nov 1999 | A |
5984363 | Dotson et al. | Nov 1999 | A |
5985426 | Wilkie | Nov 1999 | A |
5989377 | Wilheim et al. | Nov 1999 | A |
5990234 | Stahovic et al. | Nov 1999 | A |
5993960 | Nakayama et al. | Nov 1999 | A |
6000726 | Campbell | Dec 1999 | A |
6001397 | Boyd et al. | Dec 1999 | A |
6007666 | Bunch et al. | Dec 1999 | A |
6010724 | Boyd et al. | Jan 2000 | A |
6022612 | Wilkie | Feb 2000 | A |
6025059 | McGee et al. | Feb 2000 | A |
6027793 | Lohwasser et al. | Feb 2000 | A |
6071585 | Roth | Jun 2000 | A |
6099927 | Freedman | Aug 2000 | A |
6100357 | Smith et al. | Aug 2000 | A |
6106761 | Sjöberg et al. | Aug 2000 | A |
6110318 | Goodman | Aug 2000 | A |
6125563 | Girerd | Oct 2000 | A |
6150035 | DeFife et al. | Nov 2000 | A |
6197909 | Smith et al. | Mar 2001 | B1 |
6210517 | Eadara et al. | Apr 2001 | B1 |
6218004 | Shaw et al. | Apr 2001 | B1 |
6228314 | Trueblood et al. | May 2001 | B1 |
6241289 | Külper et al. | Jun 2001 | B1 |
6265032 | Kurose et al. | Jul 2001 | B1 |
6287613 | Childress et al. | Sep 2001 | B1 |
6294249 | Hamer et al. | Sep 2001 | B1 |
6309724 | Külper et al. | Oct 2001 | B1 |
6329465 | Takahashi et al. | Dec 2001 | B1 |
6337113 | Muggli et al. | Jan 2002 | B1 |
6342273 | Handels et al. | Jan 2002 | B1 |
6426507 | Rangwalla et al. | Jul 2002 | B1 |
6436498 | Rangwalla et al. | Aug 2002 | B1 |
6458430 | Bernstein et al. | Oct 2002 | B1 |
6504163 | Takayama et al. | Jan 2003 | B1 |
6528127 | Edlein et al. | Mar 2003 | B1 |
6545398 | Avnery | Apr 2003 | B1 |
6610376 | Rangwalla et al. | Aug 2003 | B1 |
20020009553 | Lutz | Jan 2002 | A1 |
20020100194 | Huffer et al | Aug 2002 | A1 |
20020106465 | Huffer et al. | Aug 2002 | A1 |
20020146525 | Huffer et al. | Oct 2002 | A1 |
20030001108 | Rangwalla et al. | Jan 2003 | A1 |
Number | Date | Country |
---|---|---|
0 339 670 | Nov 1989 | EP |
0 502 330 | Sep 1992 | EP |
0737593 | Oct 1995 | EP |
0726162 | Aug 1996 | EP |
1 219 463 | Jul 2002 | EP |
156 362 | Oct 1985 | GB |
WO 9006265 | Jun 1990 | WO |
WO 9105706 | May 1991 | WO |
9829895 | Jul 1998 | WO |
WO 0035671 | Jun 2000 | WO |
WO 0053429 | Sep 2000 | WO |
WO 0194451 | Dec 2001 | WO |
WO 0194451 | Dec 2001 | WO |
Number | Date | Country | |
---|---|---|---|
20040089820 A1 | May 2004 | US |
Number | Date | Country | |
---|---|---|---|
Parent | PCT/US03/23731 | Jul 2003 | US |
Child | 10631678 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10153622 | May 2002 | US |
Child | PCT/US03/23731 | US | |
Parent | 09434380 | Nov 1999 | US |
Child | 10153622 | US |