This invention relates to a method of forming structures of small dimensions, for example of nanometer dimensions—commonly known as nanostructures—and also relates to methods involving interaction of small particles, especially nanometer dimensioned particles with material surfaces.
Hitherto, small-scale photonic or electronic devices have been fabricated using photolithographic processing techniques. As sizes are reduced, it becomes difficult to form the individual geometric features of these devices at a sufficient degree of resolution due to the need to employ radiation of ever-shorter wavelengths to expose the photoresist.
A process that presses a mould into a thin thermoplastic polymer film on a substrate to create vias and trenches with a minimum size of 25 nm is disclosed in “Imprint of sub-25 nm vias and trenches in polymers” Chu et al, Applied Physics Letters 67(21), 20 Nov. 1995, pages 3114–3116.
Nanometer-sized metal and semiconductor particles (nanoparticles) may be regarded as potential components for photonic or quantum electronic devices. Fabrication of these devices requires not only deposition but also positioning of nanoparticles on a substrate. There are many different ways of creating nanometer-scale structures using particles or clusters as building blocks, such as deposition from a suspension using capillary forces, which gives two- and three-dimensional arrays of crystal-like structures of particles.
Nanometer-scale chains of metal clusters have been fabricated with a resolution better than 200 nm. They nucleate at the boundary of the substrate and lines of photoresist during deposition of copper—“Microfabrication of nanoscale cluster chains on a patterned Si surface”, Liu et al, Applied Physics Letters, 5 Oct. 1995, p 2030–2032.
“An arrangement of micrometer-sized powder particles by electron beam drawing”, Fudouzi et al, Advanced Powder Technol., 1997, vol. 8, no. 3, pp 251–262, reports that electrically charged lines on the scale 20 μm may be written in an insulating surface. It is shown that charged silica spheres (5 μm diameter) in a suspension can be controllably directed towards such charged lines.
On the topic of electrically charging surfaces, “Electrostatic writing and imaging using a force microscope” Saurenbach, IEEE Transactions on Industry Applications, Volume 28 No. 1, January 1992, page 256 discloses the use of an electrostatic force microscope having a tungsten microscope tip, arranged to touch a polycarbonate surface with a small voltage to transfer charge to the surface in order to produce “charge spots” of micrometer dimensions.
“Charge storage on thin Sr Tr O3 film by contact electrification” Uchiahashi et al, Japanese Journal of Applied Physics, Volume 33 (1994), pages 5573–5576 discloses charge storage on thin film by contact electrification, by using an atomic force microscope. It was possible to discriminate between charge dots spaced about 60 nm apart. The process is intended for non-volatile semiconductor memories.
It is an object of the present invention to provide an improved method by which devices having very small geometric features may be fabricated.
The concept of the present invention is to induce an electric charge in very small, as small as nanometric-dimensioned areas, on a surface, preferably by contacting a metallic tool in a controlled manner on an insulating substrate. As a second step in the invention, nanometric-dimensioned particles in an aerosol or in liquid phase are then influenced by the regions of electric charge on the substrate in order to be deposited on the substrate or otherwise to interact with the substrate as explained below.
In a first aspect, the invention provides a method comprising the steps of forming one or more electrically-charged regions of predetermined shape on a surface of a first material, by contacting said regions with a tool means for transferring electric charge, and providing particles of a second material, and permitting the particles to flow in the vicinity of said regions, to interact in a predetermined manner with the electric charge of the said regions.
In a second aspect, the invention provides apparatus for carrying out a method comprising tool means for contacting one or more regions of predetermined shape on a surface of a first material in order to transfer electric charge thereto, and means for permitting particles of a second material to flow in the vicinity of said regions, to interact in a predetermined manner with said regions.
In a further aspect, the invention provides a method, comprising the steps of forming one or more electrically-charged regions of predetermined shape on a surface of a material, providing particles of nanometric dimensions, and permitting the particles to flow in the vicinity of said regions to interact in a predetermined manner with said regions.
For the purposes of the present specification, “particles of nanometric dimensions” is intended to means particles having a diameter of 300 nanometers or less. As preferred for most applications, the particle diameter is 50 nanometers or less, and as further preferred, in some applications, for example optoelectronics, the particle diameter is 10 nanometers or less.
The tool means may be a press or stamp having a contoured surface of dimensions as large as millimeters or as small as nanometers, which is arranged to contact the surface of the substrate, and has a configuration conforming to the desired pattern or configuration of electric charge to be deposited on the substrate. The press or stamp may be of a rigid material, or a resilient material, e.g. a metal coated rubber material.
A significant advantage of employing a stamp is that a complex configuration of electrically charged regions of predetermined shape, extending over a wide area, may be formed in a single operation. The process of the invention is therefore very much faster to carry out than other methods, such as electron beam drawing or writing.
Alternatively the tool may take the form of a needle, rod or other elongate object which is drawn across the surface in a desired path to create the desired pattern of electric charge. The tool may be the tip of a scanning probe microscope. The tool will usually be of metal but can be of any other suitable rigid material having a work function which is such in relation to the work function of the first material to permit charge flow to the surface of the first material. The first material is commonly an insulating material, but may be semiconducting or of any material which is such as to hold the applied electric charge for a sufficient length of time to permit the method of the invention to take place.
In addition to the locally charged regions, deposition of the second material may be assisted by application of an electrostatic precipitation field.
Preferably, the particles of the second material have a second electrical charge of opposite sign to the first. Alternatively, the particles of the second material may be of the same sign as that of the first electric charge, and the pattern of the deposited second material is determined by the repulsion from the one or more electrically charged regions.
The requirement that the particles be charged may in some cases be relaxed—particles may become polarised in an electric field and will be attracted towards electrostatically charged objects due to an electric field gradient.
In another application, electrically neutral nanometric particles may be projected against a surface, each to absorb one or more charge carriers, and to rebound from the substrate in an electrically charged condition.
As well as contact charging, other mechanisms may be employed for the creation of locally-charged regions, including inducing a charge pattern by irradiation with photons, e.g. by synchrotron light using a mask, or inducing a charge pattern by laser interference on a polar semiconductor surface.
The particles of a second material may be formed by any suitable process. A preferred process of producing the particles in aerosol form is described below. Alternatively other processes such as laser ablation may be employed.
Preferred embodiments of the invention will be now be described merely by way of example with reference to the accompanying drawings, in which:
a to 2c is a sequence illustrating the application of electrical charge to receptor regions of an insulating surface in accordance with the invention;
a–c to 9 are scanning electron micrographs of surfaces of materials having particulate deposits thereon, formed in accordance with the invention; and
Referring now to the
One method of applying the local charge to the surface is illustrated in
The basis of this method is that charges cross the interface of an insulator and a metal brought into contact. After the metal is removed, a charge is retained on the insulator. The sign and amount of charge transferred depends approximately linearly on the work function or Free Energy of the metal in relation to the work function or Free Energy of the insulating substrate. The amount of charge may be increased by providing a potential difference between the metal and the insulator. It is estimated that, with the method of this preferred embodiment, 105 charges per square micrometer or less are transferred.
The substrate, which now has a pattern of charge on its surface 1, is placed in a deposition chamber or precipitator for an aerosol nanoparticle generator as shown in
Further processing steps may then be undertaken to fix the particles permanently to the surface.
Referring to
In use, particles 23 entering the chamber through opening 22 flow towards sample 1. The electric charge on the sample as shown in
In this case, the particle deposition may take place (a) by attracting particles of a different polarity to the charged regions and (b) by deflecting particles from the charged regions. In the first case particles are deposited at the charged regions but are also deposited on areas in between the regions with lower density and randomly. This is dependent on the distances between the fields, the strength of the macroscopic electric field applied, the particle size, and the particle speed in the gas flow. In the second case particles would only be deposited in between the charged regions.
Furthermore, this embodiment may be adapted so as to use instead of particles in an aerosol, colloidal particles from the liquid phase, which will also be attracted by the charge patterns.
Other methods of bringing the particles close to the surface, which do not rely on an macroscopic electric field, may be used, e.g., inertial impaction or thermophoresis.
Whilst the creation of charge patterns can easily be demonstrated for insulating surfaces, the method may also be used for semiconductor and metal surfaces, although the amount of charges and the time duration of charges might be smaller as compared with insulating surfaces.
An additional feature is that the substrate itself or the active surface layer can be very thin—just a few nanometers, for example 50 nm. This facilitates the creation of a charge pattern on one side while the particles are deposited on the other side of a substrate. This may enable the stamping apparatus shown in
In order to generate electrically charged particles for depositing on the substrate surface in the apparatus as shown in
The carrier gas is ultra pure nitrogen at ambient pressure and room temperature. Due to the generation process, the particles carry either one positive or one negative charge. For deposition, the aerosol flows into the apparatus shown in
As an alternative to using a stamp, contact charging of the substrate surfaces may be carried out with a stainless steel needle that is slid over the substrate surface without applying pressure, both needle and substrate being earthed
For sample evaluation, scanning electron microscopy (SEM) was used to obtain the particle arrangement on the substrate surfaces.
When negatively charged particles are deposited at 150 kV/m on a substrate, which has previously been patterned with lines of negative surface charges, as shown in
In the case of deposition of positively charged particles with a homogeneous electric field of ˜150 kV/m on a negative charged substrate, particles are deposited as shown in
For the fabrication of microelectronic components, it is often desirable to cover certain areas of a substrate selectively with a single material, such as gold, while the rest has to remain clean. This means that it is preferable to avoid the uncontrolled coverage of the substrate caused by the electric field of the electrostatic precipitator. Depositing positively charged particles on a charged substrate with the electrostatic precipitator turned off, i.e. no electric field applied, the surprising result is that the amount of charges on the substrate is sufficient to attract the particles from the gas flow. This means that the deposition becomes very selective and only the parts of the sample that are charged will be covered with particles. Line width of approximately 10 μm can be achieved. When the same process was carried out with negatively charged particles no particles at all were deposited.
When handling the substrate under ambient conditions the surface will have a contamination layer consisting mainly of water. During the contact electrification, charges are trapped in the silicon oxide surface as well as in the contamination layer. The latter are mobile and can move within the contamination layer. This leads to a broadening of the charge patterns on the surface. Using surfaces without this contamination layer improves the sharpness of the boundary between charged and non-charged regions. As preferred therefore, measures and means are employed to remove or prevent the formation of the water contamination zone, such as heating the substrate in a water-free atmosphere.
In one specific embodiment, silicon with a 1 μm layer of oxide was pressed against a Compact Disc (CD) master. A CD master is a metal plate with protrusions corresponding to where the depressions in the CD will be. These protrusions are on the scale of 1 μm. The result after aerosol particle deposition is shown in scanning electron micrographs (
In accordance with a specific embodiment of the invention, as shown in
It is possible to cover a surface with nanometer resolution with substances that can be electrically charged and dispersed in a carrier gas. The size range of the building blocks ranges from several hundreds of nanometers down to individual molecules. The flexibility of this process permits the creation of structures with resolutions from the millimeter size range (e.g. sensors) down to the 100 nm or even lower size range (e.g. quantum devices). This makes the connection between the macroscopic and the nanoscale world possible in one process step. Another result that could be observed is that it is possible to arrange particle chains of different particle densities closely beside one another.
For the fabrication of electronic nanostructures, it is desirable that the charging process should neither destroy nor contaminate the substrate surface. Provided that one chooses the correct material combination, e.g., a sufficiently hard material is pressed against a softer surface, then the surface will elastically deform without permanent deformation, provided the contact pressure is sufficiently low. A hard material will not damage the substrate since the harmless contact is just sufficient to create the charge pattern and no forces will be applied. Actually, creating surface defects, e.g. scratches, will ruin the effect of contact charging. With a softer material, i.e. where the bonds between the surface and the bulk atoms are not strong, it is possible that material might remain on the surface after the contact.
The limitations for structural resolution of the method for fabricating distinct structures on a surface are mainly given by the number of charges stored in the surface, the number of particles deposited, and the electrical mobility of the particles. The electrical mobility is a function of the particle size, the number of charges carried by the particle and the medium the particle is suspended in.
This invention finds particular application in circumventing the limits of conventional photolithography. As circuits get ever smaller, the number of layers of metal lines (called vias) used to connect the devices on the chip increases, becoming one of the largest components of the cost of chip manufacture. Each layer of metal requires a separate lithographic step, where photoresist is applied, exposed, and developed, followed by evaporation of metal, and finally lift-off of excess metal. Here, it permits the fabrication of leads with nanometer dimension without any lithography step and without destroying the underlying structure.
Even the subsequent deposition of different material or different material sizes is possible by first creating a charge pattern and deposition of one sort of particles followed by a second charge pattern creation and another particle deposition. Here, a fixation step for the initially deposited particles might be necessary, such as annealing.
The present invention may also be utilised to replace the very fine lithography employed in making chemical or biological sensors. It may also be used for fabricating catalytic structures.
Optical detectors with sub-picosecond response times have been made with (very slow) electron beam lithography and metallisation. In this way, interdigitated Metal-Semiconductor-Metal junctions are formed with lateral metal-metal spacing of below 50 nm. With method of this invention, an entire optoelectronic device may be fabricated very efficiently, such as optoelectronic components based on nanoparticles. For some of these, ordering of the particles on the scale of the wavelength of the light is crucial. Among such components are quantum dot based laser and light emitting diodes.
The method may also be used in photonic bandgap materials—particles placed in arrays ordered on the scale of the wavelength of light which exhibit a band gap for the photons, so that some wavelengths are not permitted to pass. This has applications in optical communication.
The invention also finds application in the fabrication of interference colouring and anti-reflective coatings and for the construction of nanostructured surface, which exhibit unique tribological properties, such as wear resistance.
Further application could be found in the fabrication of magnetic storage devices, flash memory devices, electroluminescence displays. Also for the controlled seeding of the growth of nanotubes and nanowhiskers, the present invention can be applied.
Additionally, projecting neutral particles with a higher speed towards surface regions charged by the method would lead to a charge transfer from the surface to the particles permitting particles scattered by the surface to acquire a charge.
The invention also finds application in the removal of particles from a gas or a liquid.
Referring now to
Referring now to
Referring to
The procedures of
Referring now to
Referring to
Referring to
Referring to
Referring to
Referring now to
In
Referring to
Number | Date | Country | Kind |
---|---|---|---|
0010800 | May 2000 | GB | national |
0026958.9 | Nov 2000 | GB | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/GB01/01972 | 5/4/2001 | WO | 00 | 10/29/2002 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO01/84238 | 11/8/2001 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
3108894 | Stowell | Oct 1963 | A |
3342621 | Guy et al. | Sep 1967 | A |
3436468 | Haberecht | Apr 1969 | A |
3640746 | Haas | Feb 1972 | A |
4124287 | Bean et al. | Nov 1978 | A |
4296370 | Comizzoli et al. | Oct 1981 | A |
5047649 | Hodgson et al. | Sep 1991 | A |
5534309 | Liu | Jul 1996 | A |
20030178316 | Jacobs et al. | Sep 2003 | A1 |
Number | Date | Country |
---|---|---|
0171068 | Feb 1986 | EP |
0260410 | Mar 1988 | EP |
0 431 249 | Jun 1991 | EP |
0431249 | Jun 1991 | EP |
0459700 | Dec 1991 | EP |
0 480 183 | Apr 1992 | EP |
0480183 | Apr 1992 | EP |
0576263 | Dec 1993 | EP |
0865078 | Sep 1998 | EP |
1597890 | Sep 1981 | GB |
2148608 | May 1985 | GB |
2267997 | Dec 1993 | GB |
WO 0203142 | Jan 2002 | WO |
Number | Date | Country | |
---|---|---|---|
20030102444 A1 | Jun 2003 | US |