This application claims priority under 35 U.S.C. §119 to Japanese Patent Application No. 2013-253660, filed on Dec. 6, 2013, the entire content of which being hereby incorporated herein by reference.
The present disclosure relates to an environment evaluating technology, and, in particular, relates to a particle detecting device and particle detecting method.
In clean rooms, such as bio clean rooms, airborne microorganism particles and non-microorganism particles are detected and recorded using particle detecting devices. See, for example, Japanese Unexamined Patent Application Publication No. 2011-83214, Published Japanese Translation of a PCT Application Originally filed in English 2008-530583, and N. Hasegawa, et al., Instantaneous Bioaerosol Detection Technology and Its Application, azbil Technical Review, 2-7, Yamatake Corporation, December 2009. The state of wear of the air-conditioning equipment of the clean room can be ascertained from the result of the particle detection. Moreover, a record of particle detection within the clean room may be added as reference documentation to the products manufactured within the clean room. Optical particle detecting devices draw in air from a clean room, for example, and illuminate the drawn-in air with light. When there is a microorganism particle or non-microorganism fluorescent particle included within the air, a particle that is illuminated with light emits fluorescence, so detecting, using a photodetecting element, the fluorescence emitted from the particle enables detection of the numbers, sizes, and the like, of microorganism particles or non-microorganism fluorescent particles included in the air. Moreover, there is the need for technologies for accurately detecting particles in a fluid outside of clean rooms as well. See, for example, Japanese Unexamined Patent Application Publication H8-29331.
For example, if the particle detecting device includes a photoelectron multiplier tube as the photodetecting element, then when the cumulative illuminated luminous flux into the photomultiplier tube is increased through the structure and the coating status of the anode, there will be a change in the sensitivity of the photoelectron multiplier tube. When the cumulative illuminated luminous flux is increased, then the sensitivity of the photoelectron multiplier tube may increase temporarily, for example, but as time passes, there will be a tendency for it to decrease. Moreover, the sensitivity of the photoelectron multiplier tube will decrease depending on the temperature at the time of storage and on the temperature at the time of use as well. When, in response, an attempt is made to increase the fluorescent intensity by increasing the strength of the excitation beam that illuminates the fluorescent particles after there has been a breakdown in the sensitivity of the photoelectron multiplier tube, then the number of photons that enter into the photoelectron multiplier tube will be increased, increasing the load on the cathode electrode, which may promote further breakdown of the photoelectron multiplier tube. Moreover, the breakdown of the photodetecting element in the particle detecting device is not limited to just the photoelectron multiplier tube. When the optical intensity measuring instrument of the particle detecting device breaks down, the particle detecting device may no longer be able to measure the fluorescent particles accurately. Given this, an aspect of the present invention is to provide a particle detecting device and particle detecting method able to detect accurately the fluorescent particles that are the subjects of detection.
An example of the present disclosure provides:
(a) a light source that illuminates a fluid with an excitation beam;
(b) a fluorescent intensity measuring instrument that measures the optical intensity of the fluorescent band, generated in a region that is illuminated by an excitation beam, at two or more wavelengths;
(c) the reference value storing device that stores, as a reference value for a particle, a value based on an intensity of light emitted from a specific particle illuminated by an excitation beam, measured at two or more wavelengths;
(d) a correcting portion that corrects a reference value or a measured value for an intensity of light in accordance with the status of at least one of the light source and the fluorescent intensity measuring instrument; and
(e) an evaluating portion that compares the measured value and the reference value, of which at least one has been corrected, for the intensity of light, and evaluates whether or not the fluid includes the fluorescent particle that is a subject for detection,
(f) the above (a)-(e) being in a structure of a particle detecting device. Note that “fluorescent light” includes autofluorescent light. Note that a “fluid” includes “gases” and “liquids.”
Moreover, another example of the present disclosure provides:
(a) illumination of a fluid with an excitation beam;
(b) measurement, at two or more wavelengths, of the optical intensity of fluorescent bands that are produced in a region that is illuminated by the excitation beam;
(c) provision of a value, as a reference value for a particle, based on an intensity of light emitted from a specific particle illuminated by an excitation beam, measured at two or more wavelengths;
(d) correction of a measured value or a reference value for an intensity of light in accordance with the status of the fluorescent intensity measuring instrument measuring the optical intensity of the fluorescent bands at the two or more wavelengths; and
(e) comparison of the measured value and the reference value, of which at least one has been corrected, for the intensity of light, and evaluation whether or not the fluid includes the fluorescent particle that is a subject for detection,
(f) the above (a)-(e) being in a particle detecting method.
The present disclosure enables the provision of a particle detecting device and particle detecting method wherein fluorescent particles, which are the particles that are subject to detection, can be detected accurately.
Examples of the present disclosure will be described below. In the descriptions of the drawings below, identical or similar components are indicated by identical or similar codes. Note that the diagrams are schematic. Consequently, specific measurements should be evaluated in light of the descriptions below. Furthermore, even within these drawings there may, of course, be portions having differing dimensional relationships and proportions.
As illustrated in
Manufacturing lines 81 and 82 are arranged inside of the clean room 70. The manufacturing lines 81 and 82 are manufacturing lines, for, for example, precision instruments, electronic components, or semiconductor devices. Conversely, the manufacturing lines 81 and 82 may be manufacturing lines for foodstuffs, beverages, or pharmaceuticals. For example, in the manufacturing lines 81 and 82, an infusion liquid may be filled into an intravenous infusion device or a hypodermic. Conversely, the manufacturing lines 81 and 82 may manufacture oral medications or Chinese herb medications. On the other hand, the manufacturing lines 81 and 82 may fill containers with a vitamin drink or beer.
The manufacturing lines 81 and 82 normally are controlled so that microorganism particles and non-microorganism particles, and the like, are not dispersed into the air within the clean room 70. However, manufacturing lines 81 and 82, for some reason, are sources that produce microorganism particles and non-microorganism particles that become airborne in the clean room 70. Moreover, factors other than the manufacturing lines 81 and 82 also disperse microorganism particles and non-microorganism particles into the air of the clean room 70.
Examples of microorganism particles that may become airborne in the clean room 70 include microbes. Examples of such microbes include Gram-negative bacteria, Gram-positive bacteria, and fungi such as mold spores. Escherichia coli, for example, can be listed as an example of a Gram-negative bacterium. Staphylococcus epidermidis, Bacillus atrophaeus, Micrococcus lylae, and Corynebacterium afermentans can be listed as examples of Gram-positive bacteria. Aspergillus niger can be listed as an example of a fungus such as a mold spore. However, the microorganism particles that may become airborne in the clean room 70 are not limited to these specific examples. Examples of non-microorganism particles that may become airborne in the clean room 70 include splashed chemical substances, pharmaceuticals, or foodstuffs, along with dust, dirt, grime, and the like.
If a microorganism particle is illuminated with light, the nicotinamide adenine dinucleotide (NADH) and the flavins, and the like, that are included in microorganism particle produce fluorescent light. However, fluorescent particles that fall off of a gown, made from polyester, for example, that has been cleaned will emit fluorescence when illuminated with light. Moreover, polystyrene particles also emit fluorescence, and then fade. Consequently, conventionally, particle detecting devices have identified the existence of fluorescent particles that are subjects to be detected within the air by illuminating the air with an excitation beam and detecting the fluorescence. Note that “fluorescent light” includes autofluorescent light.
Here the present inventor discovered that even if there are no fluorescent particles that produce fluorescence, as described above, in the air, when a decontaminating gas, or the like, for a decontaminating contamination such as nitrogen oxides (NOX), including nitrogen dioxide (NO2), sulfur oxides (SOX), ozone gas (O3), aluminum oxide gases, aluminum alloys, glass powder, and Escherichia coli, mold, and the like, is included in the air, substances included in the air that are smaller than the particles that produce Mie scattering will absorb the excitation beam and emit light in the fluorescent band, causing conventional particle detecting devices to produce a “false detection” as if there were fluorescent particles that were subjects to be detected. Note that “light of the fluorescent band” is not limited to fluorescence, but rather this wavelength band includes also scattered light that overlaps with the fluorescence.
For example, when nitrogen dioxide absorbs gas, light that has shifted in the red direction is emitted, to return to the ground state. The absorption spectrum of nitrogen dioxide has a peak in the vicinity of 440 nm, and has a wide band of between 100 and 200 nm. Because of this, when, in the presence of nitrogen dioxide, an NADH-derived or flavin-derived fluorescence, which has a wavelength of 405 nm, is stimulated, then fluorescence will be stimulated in the nitrogen dioxide as well, which overlaps the absorption spectrum of the excitation beam for the NADH and the flavin. Moreover, nitrogen dioxide is produced by a reaction between nitrogen and oxygen in the air when a material is combusted. Because of this, even if there is no nitrogen dioxide included in the air that was originally to be tested, when the particle detecting device illuminates the light with a laser beam with a high beam density, or a strong electromagnetic emission line, as the excitation beam, substances within the air may combust to produce nitrogen dioxide, where this nitrogen dioxide will emit fluorescence. Moreover, carbon monoxide and ozone may react to produce nitrogen dioxide, which also emits fluorescence.
In regards to nitrogen dioxide, see Japanese Unexamined Patent Application Publication 2003-139707, Joel A. Thornton, et al., “Atmospheric NO2: In Situ Laser-Induced Fluorescence Detection at Parts-per-Trillion Mixing Ratios,” Analytical Chemistry, Vol. 72, No. 3, Feb. 1, 2000, Pages 528-539, and S. A. Nizkorodov, et al., “Time-Resolved Fluorescence of NO2 in a Magnetic Field,” Vol. 215, No. 6, Chemical Physics Letters, 17 Dec. 1993, Pages 662-667. For sulfur dioxide, see Japanese Unexamined Patent Application Publication 2012-86105.
Typically, the intensity of fluorescence derived from the substances included in the air, such as nitrogen dioxide, is weaker than the intensity of fluorescence derived from microorganism particles. However, the lifetime of the fluorescence derived from nitrogen dioxide, although dependent on the ambient pressure, is in the order of microseconds, which is longer than the lifetime of the fluorescence derived from microorganism particles, such as Escherichia coli and Bacillus subtilis, and the like, which is in the order of nanoseconds. The response frequency of the photodetecting element, such as a photoelectron multiplier tube or a photodiode that operates in the Geiger mode, or the like, and of the detecting circuit that is provided with an integrator, or the like, in the particle detecting device is about 1 MHz, where the time constant is in the order of microseconds. Because of this, the current that is outputted by the detector circuit that calculates the number of photons will be greater when detecting the fluorescence derived from nitrogen dioxide, which, although weak, has a long lifetime, than when detecting fluorescence derived from microorganism particles which, although strong, has a short lifetime.
Moreover, the fluorescent spectrum derived from nitrogen dioxide has a wide bandwidth, overlapping the fluorescent spectrum derived from flavin. Because of this, when, for example, evaluating whether or not microorganism particles are present by detecting only whether or not there is light from the fluorescent band that derives from flavin, there may be cases wherein there are false evaluations that microorganism particles exist, despite the fact that it is fluorescence derived from nitrogen dioxide that is detected. It is possible that this problem cannot be solved even if the time constant of the detecting circuit is shortened.
Here, at the conclusion of diligent research, the present inventor discovered that when the optical intensities of fluorescent bands produced by substances are measured at a plurality of wavelengths, the correlation between the optical intensity at a given wavelength and the optical intensity at another wavelength will vary from substance to substance. For example,
As illustrated in
Here the “relative values of light intensities measured at two or more wavelengths” refers to a ratio of an optical intensity at a first wavelength and an optical intensity at a second wavelength that is not the first wavelength, a ratio of the difference between the optical intensity at the first wavelength and the optical intensity at the second wavelength to the sum of the optical intensity at the first wavelength and the optical intensity at the second wavelength, or a difference between the optical intensity at the first wavelength and the optical intensity at the second wavelength.
The light source 10 and the fluorescent intensity measuring instrument 2 are provided in a frame 30. A light source driving power supply 11, for supplying electric power to the light source 10, is connected to the light source 10. A power supply controlling device 12, for controlling the electric power that is supplied to the light source 10, is connected to the light source driving power supply 11. The particle detecting device 1 further includes a first suction device for drawing the air, into the frame 30 that is illustrated in
The light source 10 emits an excitation beam of a wide wavelength band towards the gas flow of the air that is expelled from the tip end of the nozzle 40 and drawn into the second suction device. A light-emitting diode (LED) or a laser may be used for the light source 10. The wavelength of the excitation beam is, for example, between 250 and 550 nm. The excitation beam may be of visible light, or of ultraviolet light. If the excitation beam is of visible light, then the wavelength of the excitation beam is within a range of, for example, 400 to 550 nm, for example, 405 nm. If the excitation beam is ultraviolet radiation, then the wavelength of the excitation beam is in a range of, for example, between 300 and 380 nm, for example, 340 nm. However, the wavelength of the excitation beam is not limited to these.
If a microorganism particle, such as a bacterium, or the like, is included in the gas flow that is expelled from the nozzle 40, the microorganism particle, illuminated by the excitation beam, emits fluorescence. Moreover, even in a case wherein a non-microorganism particle, such as a polyester particle, is included in the gas flow that is expelled from the nozzle 40, the non-microorganism particle that is illuminated by the excitation beam will emit fluorescence. Moreover, if nitrogen oxides (NOX), including nitrogen dioxide (NO2), sulfur oxides (SOX), ozone gas (O3), gases of aluminum oxides, aluminum alloys, glass powders, and decontaminating gases for decontaminating contamination such as Escherichia coli, molds, and the like, are included in the gas flow that is emitted from the nozzle 40, then these substances, illuminated by the excitation beam, will emit light in the fluorescent band.
The fluorescent strength measuring instrument 2 detects the light in the fluorescent band emitted by the microorganism particles that are subjects to be detected, and from the non-microorganism particles. The fluorescent strength measuring instrument 2 includes: a first photodetecting element 20A for detecting light in the fluorescent band at a first wavelength, and a second photodetecting element 20B for detecting light of a fluorescent band at a second wavelength that is different from the first wavelength. Note that the “first wavelength” may have a band. The same is true for the second wavelength. A photodiode, a photoelectron tube, or the like may be used for the first photodetecting element 20A and the second photodetecting element 20B, to convert the photonic energy into electric energy when the light is detected.
An amplifier 21A for amplifying the current that is produced by the first photodetecting element 20A is connected to the first photodetecting element 20A. An amplifier power supply 22A, for supplying electric power to the amplifier 21A, is connected to the amplifier 21A. Moreover, an optical intensity calculating device 23A, for calculating the intensity of the light detected by the first photodetecting element 20A, by detecting the current that has been amplified by the amplifier 21A, is connected to the amplifier 21A. An optical intensity storing device 24A, for storing the optical intensity calculated by the optical intensity calculating device 23A, is connected to the optical intensity calculating device 23A.
An amplifier 21B for amplifying the current that is produced by the second photodetecting element 20B is connected to the second photodetecting element 20B. An amplifier power supply 22B, for supplying electric power to the amplifier 21B, is connected to the amplifier 21B. Moreover, an optical intensity calculating device 23B, for calculating the intensity of the light detected by the second photodetecting element 20B, by detecting the current that has been amplified by the amplifier 21B, is connected to the amplifier 21B. An optical intensity storing device 24B, for storing the optical intensity calculated by the optical intensity calculating device 23B, is connected to the optical intensity calculating device 23B.
A flowchart wherein the fluorescent strength measuring instrument 2 calculates the intensity of light in the fluorescent band at the first wavelength, using the first photodetecting element 20A, is illustrated in
In Step S105, the optical intensity calculating device 23A evaluates whether or not the rate of change over time ΔIf/Δt of the intensity of light in the fluorescent band is 0 or less. If, as illustrated in
In Step S107, the optical intensity calculating device 23A stores, into the optical intensity storing device 24A that is included in the fluorescent intensity measuring instrument 2, the intensity IP of the light of the fluorescent band at the peak. In Step S108, the fluorescent intensity measuring instrument 2, as illustrated in
In Step S110, the optical intensity calculating device 23A, after evaluating that the particle or substance has passed, measures, as an offset C, the intensity of the light in the fluorescent band at the first wavelength, detected by the first photodetecting element 20A. In Step S111, the optical intensity calculating device 23A subtracts the offset C from the intensity IP of light in the fluorescent band at the peak that was saved in the optical intensity storing device 24A to calculate a corrected strength IPC of the light in the fluorescent band at the peak, and this is stored in the optical intensity storing device 24A as the intensity of light in the fluorescent band at the first wavelength.
The method by which the fluorescent strength measurement instrument 2, illustrated in
The CPU 300 further includes a monitoring portion 304 for monitoring the fluorescent intensity measuring instrument 2. A monitoring portion 304 monitors the number of times that light of the fluorescent band at the first wavelength is detected by the first photodetecting element 20A, and the number of times that light of the fluorescent band at the second wavelength is detected by the second photodetecting element 20B.
The number of times that light of the fluorescent band at the first wavelength is detected by the first photodetecting element 20A refers to the cumulative number of times that the light of the fluorescent band at the first wavelength is detected by the first photodetecting element 20A, with the point in time at which the particle detecting device 1 is manufactured at the factory and installed in the clean room 70, for example, as the calculation starting point. Conversely, it may be the cumulative number of times that light in the fluorescent band at the first wavelength is detected by the first photodetecting element 20A, using, as the calculation starting point, a time at which the fluorescent intensity measuring instrument 2 is maintained. Or, conversely, it may be the cumulative number of times that light in the fluorescent band at the first wavelength is detected by the first photodetecting element 20A using, as the calculation starting point, the point in time at which a reference value, described below, is obtained. The same is true for the number of times that light in the fluorescent band, at the second wavelength, is detected by the second photodetecting element 20B.
A monitoring result storing device 354 is connected to the CPU 300. The monitoring portion 304 saves, in the monitoring result storing device 354 the number of times that light in the fluorescent band at the first wavelength is detected by the first photodetecting element 20A and the number of times that light in the fluorescent band at the second wavelength is detected by the second photodetecting element 20B.
In Step S201, specific microorganism particles are prepared as fluorescent particles. Here clean air, from which contaminants have been eliminated, is prepared, and the microorganism particle is included therein. In Step S202, the power supply is turned ON for the fluorescent intensity measuring instrument 2, illustrated in
In Step S207, the fluorescent intensity measuring instrument 2 saves, to the optical intensity storing devices 24A and 24B, the fluorescent intensity at the first wavelength and the fluorescent intensity at the second wavelength, derived from the microorganism particles. In Step S208, the relative value calculating portion 301 reads out, from the optical intensity storing devices 24A and 24B, a value for the fluorescent intensity at the first wavelength and a value for the fluorescent intensity at the second wavelength, and, for example, calculates a reference value R, by dividing the fluorescent intensity value I1 at the first wavelength by the fluorescent intensity value I2 at the second wavelength, as in Equation (1), below:
R=I
1
/I
2 (1)
In Step S209, the relative value calculating portion 301 saves, into the reference value storing device 351, the reference value that has been calculated. In Step S210, the relative value calculating portion 301 evaluates whether or not calculation of the reference values should be terminated. For example, if there is a request to acquire the reference values multiple times and to calculate an average, then this relative value calculating portion 301 will evaluate whether or not the reference values have been acquired the number of times that is necessary for calculating the average. If the reference values have not been acquired the number of times that are necessary in order to calculate an average, processing returns to Step S204. When reference values have been acquired the number of times required for calculating the average, then processing advances to Step S211.
In Step S211, the relative value calculating portion 301 reads out the plurality of reference values from the reference value storing device 351, to calculate the average of the reference values. In Step S212, the relative value calculating portion 301 calculates the standard deviation σ of the reference values. Moreover, in Step S212, the relative value calculating portion 301 calculates a value Wσ wherein the standard deviation σ of the reference values is multiplied by a prescribed constant. The relative value calculating portion 301, in Step S214, defines as an equivalent range for reference values, the range from the reference value−Wσ/2 to the reference value+Wσ/2, and stores it in the reference value storing device 351. For example, using the method described above, the reference value for the specific microorganism particles, and the equivalent range for the reference value, are saved in the reference value storing device 351. Note that reference values acquired using another particle detecting device instead may be stored into the reference value storing device 351 illustrated in
When the particle detecting device 1, illustrated in
Here, as illustrated in
Moreover, even if the number of times that light in the fluorescent band at the first wavelength has been detected by the first photodetecting element 20A and the number of times that light in the fluorescent band at the second wavelength has been detected by the second photodetecting element 20B were the same, still a state may be produced, due to structural differences between the first photodetecting element 20A and the second photodetecting element 20B, wherein the degree of breakdown of the sensitivity of the first photodetecting element 20A and the degree of breakdown of the sensitivity of the second photodetecting element 20B may not match each other.
For example, in
Consequently, when compared to the time at which the reference value, saved in the reference value storing device 351, was obtained, it may become impossible, at the time of acquiring the measured relative value for the air that is to be tested, to correctly evaluate whether or not a fluorescent particle that is a subject to be detected is included in the air, even when comparing with the reference value, because the measured relative value has not been corrected in accordance with the breakdown if there has been breakdown in the first photodetecting element 20A and/or the second photodetecting element 20B.
In this regard, the correcting portion 303 corrects the measured relative value, which is stored in the cumulative measured value storing device 352 or the reference value that is stored in the reference value storing device 351, in accordance with the states of the light source 10 and the fluorescent intensity measuring instrument 2. In the Example, an explanation will be given for an example wherein the correcting portion 303 corrects the reference value that is stored in the reference value storing device 351, in accordance with the number of times that light in the fluorescent band at the first wavelength has been detected by the first photodetecting element 20A and the number of times wherein light in the fluorescent band at the second wavelength has been detected by the second photodetecting element 20B.
The relationship between the number of times that light has been detected by the first photodetecting element 20A and the second photodetecting element 20B, respectively, and the breakdowns of sensitivity therein can be acquired by performing inspections in advance. Additionally, as illustrated in
Prior to the evaluating portion 302 comparing the measured relative value and the reference value, the correcting portion 303 reads out, from the monitoring result storing device 354, the number of times that light in the fluorescent band at the first wavelength has been detected by the first photodetecting element 20A and the number of times that light in the fluorescent band at the second wavelength has been detected by the second photodetecting element 20B. Additionally, the correcting portion 303 reads out the first function and the second function from the breakdown degree storing device 355. Next the correcting portion 303 substitutes the number of times that light has been detected by the first photodetecting element 20A into the independent variable of the first function, to calculate the breakdown coefficient F1 for the first photodetecting element 20A. Additionally, the correcting portion 303 substitutes the number of times that light has been detected by the second photodetecting element 20B into the independent variable for the second function to calculate the breakdown coefficient F2 of the second photodetecting element 20B.
The correcting portion 303 reads out the reference value R from the reference value storing device 351, and calculates a corrected reference value RC by, for example, multiplying the reference value R by a value wherein F1 is divided by F2, as in Equation (2), below. The correcting portion 303 stores the calculated corrected reference value in the reference value storing device 351.
R
C=(I1/I2)×(F1/F2) (2)
When, in Step S1103, the first photodetecting element 20A detects one pulse of light in the fluorescent band at the first wavelength, then, in Step S1104, the monitoring portion 304 adds 1 to the number of times that the first photodetecting element 20A has, to that point, detected light in the fluorescent band at the first wavelength. Moreover when, in Step S1103, the second photodetecting element 20B detects one pulse of light in the fluorescent band at the second wavelength, then, in Step S1104, the monitoring portion 304 adds 1 to the number of times that the second photodetecting element 20B has, to that point, detected light in the fluorescent band at the second wavelength.
The monitoring portion 304 in Step S1105 evaluates whether or not the measurements for the light in the fluorescent band have been completed. If the measurements for the light in the fluorescent band have not been completed, then processing returns to Step S1103. If the measurements for the light in the fluorescent band have been completed, then processing advances to Step S1106. In Step S1106, the monitoring portion 304 updates the number of times that the light in the fluorescent band at the first wavelength has been detected by the first photodetecting element 20A and the number of times that light in the fluorescent band of the second wavelength has been detected by the second photodetecting element 20B, saved in the monitoring result storing device 354. As a result, the cumulative number of times that light in the fluorescent band of the first wavelength has been detected by the first photodetecting element 20A and the cumulative number of times that light in the fluorescent band at the second wavelength has been detected by the second photodetecting element 20B are saved in the monitoring result storing device 354.
In Step S1107, the correcting portion 303 reads out, from the monitoring result storing device 354, the number of times that light in the fluorescent band of the first wavelength has been detected by the first photodetecting element 20A and the number of times that light in the fluorescent band of the second wavelength has been detected by the second photodetecting element 20B. Additionally, the correcting portion 303 reads out the first function and the second function from the breakdown degree storing device 355. In Step S1108, the correcting portion 303 substitutes the number of times that light has been detected by the first photodetecting element 20A into the independent variable in the first function, to calculate the breakdown coefficient for the first photodetecting element 20A. Additionally, the correcting portion 303 substitutes the number of times that light has been detected by the second photodetecting element 20B into the independent variable for the second function to calculate the breakdown coefficient of the second photodetecting element 20B. Moreover, the correcting portion 303 reads out the reference value from the reference value storing device 351, and, based on the calculated breakdown coefficient, corrects the reference value and stores it in the reference value storing device 351.
The evaluating portion 302 illustrated in
Moreover, if despite the measured relative value being included in the equivalent range for the corrected reference value for the specific microorganism particle, the evaluating portion 302, it is near the upper limit or lower limit of the equivalent range, the evaluating portion 302 may evaluate that the air that is drawn in from the clean room 70 includes the specific microorganism particle, and that the certainty of that evaluation is low. Moreover, if despite the measured relative value not being included in the equivalent range for the corrected reference value for the specific microorganism particle the evaluating portion 302, it is near the upper limit or lower limit of the equivalent range, the evaluating portion 302 may evaluate that the air that is drawn in from the clean room 70 does not include the specific microorganism particle, and that the certainty of that evaluation is low.
The evaluating portion 302 saves the evaluation result in the evaluation result storing device 353, and outputs the evaluation result to an outputting device 401, such as a displaying device or a printer, or the like.
The particle detecting device 1 according to the Example, as explained above, is able to suppress false detection of a substance as a microorganism particle that is a subject to be detected, even when light in the fluorescent band is produced through illumination of the substance with an excitation beam when a substance other than the prescribed microorganism particles that are subjects to be detected is included in the fluid that is subject to inspection. Moreover, even if there is a breakdown in the fluorescent intensity measuring instrument 2 between the acquisition of the reference value and the acquisition of the measured relative value, the reference value is corrected, making it possible to prevent false evaluations. Because of this, the particle detecting device 1 according to the Example is able to detect accurately the microorganism particles that are subjects to be detected.
The method by which the correcting portion 303 corrects the reference value is not limited to that which is illustrated in
In the method illustrated in
Step S2106 and Step S2107 in
The method by which the correcting portion 303 corrects the reference value may instead be, for example, a method as illustrated in
In Step S3103 in
Moreover, in Step S3103 in
Step S3107 through Step S3110 of
The method by which the correcting portion 303 corrects the reference value may instead be, for example, a method as illustrated in
In the method illustrated in
Step S4108 and Step S4109 in
In a fourth modified example according to the Example, the monitoring portion 304, illustrated in
The relationships between the calculated values for the respective pulse amplitudes of the lights that are detected by the first photodetecting element 20A and the second photodetecting element 20B and the breakdowns in sensitivity can be acquired through testing in advance. Because of this, a function having the calculated pulse amplitude for the light that is detected by the first photodetecting element 20A as an independent variable and the breakdown coefficient as the dependent variable may be defined as a first function, and a function having the calculated pulse amplitude for the light that is detected by the second photodetecting element 20B as an independent variable and the breakdown coefficient as the dependent variable may be defined as a second function.
A flowchart for the correction of the reference value by the correcting portion 303 relating to the fourth modified example according to the Example is shown in
In Step S5103, when a pulse of light in the fluorescent band of the first wavelength is detected by the first photodetecting element 20A, then, in Step S5104, the monitoring portion 304 adds, to the calculated amplitude of the pulse of the light in the fluorescent band of the first wavelength that has been detected thus far by the first photodetecting element 20A the amplitude of the pulse of light detected in this cycle. Moreover, in Step S5103, when a pulse of light in the fluorescent band of the second wavelength is detected by the second photodetecting element 20B, then, in Step S5104, the monitoring portion 304 adds, to the calculated amplitude of the pulse of the light in the fluorescent band of the second wavelength that has been detected thus far by the second photodetecting element 20B the amplitude of the pulse of light detected in this cycle.
In Step S5105, the monitoring portion 304 evaluates whether or not the measurements for light in the fluorescent band have been completed. If the measurements for the light in the fluorescent band have not been completed, then processing returns to Step S5103. If the measurements for the light in the fluorescent band have been completed, then processing advances to Step S5106. In Step S5106, the monitoring portion 304 updates the integral value of the magnitudes of the pulses of light in the fluorescent band at the first wavelength has been detected by the first photodetecting element 20A and the integral value of the magnitudes of the pulses of light in the fluorescent band of the second wavelength has been detected by the second photodetecting element 20B, saved in the monitoring result storing device 354.
In Step S5107, the correcting portion 303 reads out the integral value of the magnitudes of the pulses of light in the fluorescent band at the first wavelength has been detected by the first photodetecting element 20A and the integral value of the magnitudes of the pulses of light in the fluorescent band of the second wavelength has been detected by the second photodetecting element 20B, from the monitoring result storing device 354. Additionally, the correcting portion 303 reads out the first function and the second function from the breakdown degree storing device 355. In Step S5108, the correcting portion 303 substitutes the integral value of the pulse magnitudes of the light has been detected by the first photodetecting element 20A into the independent variable in the first function, to calculate the breakdown coefficient for the first photodetecting element 20A. Moreover, the correcting portion 303 substitutes the integral value of the pulse magnitudes of the light has been detected by the second photodetecting element 20B into the independent variable in the second function, to calculate the breakdown coefficient for the second photodetecting element 20B. Moreover, the correcting portion 303 reads out the reference value from the reference value storing device 351, and, based on the calculated breakdown coefficient, corrects the reference value and stores it in the reference value storing device 351.
The method by which the correcting portion 303 corrects the reference value may instead be, for example, a method as illustrated in
In the method illustrated in
Step S6106 and Step S6107 in
The method by which the correcting portion 303 corrects the reference value may instead be, for example, a method as illustrated in
In Step S7103 in
Moreover, in Step S7103 in
The method by which the correcting portion 303 corrects the reference value may instead be, for example, a method as illustrated in
In the method illustrated in
Step S8108 and Step S8109 in
The method by which the fluorescent intensity measuring instrument 2 illustrated in
Step S301 through Step S308 of
After the prescribed time has elapsed in Step S309, then, in Step S310, the fluorescent intensity measuring instrument 2 evaluates whether or not the rate of change over time ΔIf/Δt of the intensity of light in the fluorescent band has gone to near zero. If the rate of change over time ΔIf/Δt of the intensity of light in the fluorescent band has not gone to near zero, then, as illustrated in
In Step S312, the optical intensity calculating device 23A, after having evaluated that the passage of the plurality of particles or the substance has been completed, measures, as an offset C, the intensity of light in the fluorescent band at the first wavelength, detected by the first photodetecting element 20A. In Step S313, the optical intensity calculating device 23A subtracts this offset C from the intensity IP1 of light in the fluorescent band at the first peak, saved in the optical intensity storing device 24A, to calculate the corrected intensity IP1C of the light in the fluorescent band at the first peak, and stores this in the optical intensity storing device 24A as the intensity of light in the fluorescent band at the first wavelength.
Moreover, In Step S313, the optical intensity calculating device 23A subtracts this offset C from the intensity IP2 of light in the fluorescent band at the second peak, saved in the optical intensity storing device 24A, to calculate the corrected intensity IP2C of the light in the fluorescent band at the second peak, and stores this in the optical intensity storing device 24A as the intensity of light in the fluorescent band at the first wavelength.
The method described above enables the intensity of light at the respective peaks of a plurality of substances to be measured. Note that the method by which the fluorescent intensity measuring instrument 2 calculates, and saves in the optical intensity storing device 24B, the intensity of light in the fluorescent band at the second wavelength, using the second photodetecting element 20B, is identical to the method described above, so the explanation thereof will be omitted.
The method by which the fluorescent intensity measuring instrument 2, illustrated in
Step S401 through Step S403 of
In Step S405, if, as illustrated in
In Step S409, the optical intensity calculating device 23A, after evaluating that the particle or substance has passed, measures, as an offset C, the intensity of the light in the fluorescent band at the first wavelength, detected by the first photodetecting element 20A. In Step S410, the optical intensity calculating device 23A subtracts, from the integral value for the intensity of light in the fluorescent band, saved in the optical intensity storing device 24A, N times the offset C, where N is the number of data points when performing the integration, to calculate a corrected integral value for the intensity of light in the fluorescent band, and stores this in the optical intensity storing device 24A as the intensity of light in the fluorescent band at the first wavelength.
The method described above enables easy calculation of the relative value for a substance wherein the intensity of light is weak, using the integral value of the intensity of the light. Note that the method by which the fluorescent intensity measuring instrument 2 calculates, and saves in the optical intensity storing device 24B, the intensity of light in the fluorescent band at the second wavelength, using the second photodetecting element 20B, is identical to the method described above, so the explanation thereof will be omitted.
The method by which the fluorescent intensity measuring instrument 2, illustrated in
Step S501 through Step S507 of
In Step S508, the fluorescent intensity measuring device 2 evaluates whether or not the rate of change over time ΔIf/Δt of the intensity of light in the fluorescent band is near to zero. If the rate of change over time ΔIf/Δt of the intensity of light in the fluorescent band has not gone to near zero, then, as illustrated in
In Step S510, the optical intensity calculating device 23A, after, for example, measurement of a first peak, specifies, as an offset C1, an intensity of light in the fluorescent band at the first wavelength, detected by the first photodetecting element 20A, and after, for example, measurement of a second peak, specifies, as an offset C2, an intensity of light in the fluorescent band at the second wavelength, detected by the second photodetecting element 20B. Moreover, the optical intensity calculating device 23A calculates a value that is the offset C1 times the number of data points N1 when integrating the first peak, and calculates a value that is the offset C2 times the number of data points N2 when integrating the second peak.
In Step S511, the optical intensity calculating device 23A subtracts a value that is the offset C1 multiplied by N1 from the integral value of the intensity of light in the fluorescent band at the first peak, saved in the optical intensity storing device 24A, to calculate the corrected integral value of the light in the fluorescent band at the first peak, and stores this in the optical intensity storing device 24A as the intensity of light in the fluorescent band at the first wavelength. Moreover, the optical intensity calculating device 23A subtracts a value that is the offset C2 multiplied by N2 from the integral value of the intensity of light in the fluorescent band at the second peak, saved in the optical intensity storing device 24A, to calculate the corrected integral value of the light in the fluorescent band at the second peak, and stores this in the optical intensity storing device 24A as the intensity of light in the fluorescent band at the second wavelength.
The method described above enables easy calculation of the relative value for a substance wherein the intensity of light is weak, using the integral value of the intensity of the light. This enables the intensity of light at the respective peaks of a plurality of substances to be measured. Note that the method by which the fluorescent intensity measuring instrument 2 calculates, and saves in the optical intensity storing device 24B, the intensity of light in the fluorescent band at the second wavelength, using the second photodetecting element 20B, is identical to the method described above, so the explanation thereof will be omitted.
An example wherein a reference value for a specific microorganism particle is stored in the reference value storing device 351 that is illustrated in
In this case, the evaluating portion 302 evaluates whether or not the measured relative value, calculated by measuring the air that is subject to inspection, is within the equivalent range for the corrected reference values for the specific non-microorganism particles. If the measured relative value is included in the equivalent range for the corrected reference value for the prescribed non-microorganism particles, then the evaluating portion 302 evaluates that the specific non-prescribed microorganism particle is included in the air that has been drawn in. If the measured relative value is not included in the equivalent range for the corrected reference value for the prescribed non-microorganism particles, then the evaluating portion 302 evaluates that the specific non-prescribed microorganism particle is not included in the air that has been drawn in. Moreover, in this case, the evaluating portion 302 may evaluate that the air that is subject to inspection includes fluorescent particles other than the specific non-microorganism particles.
Moreover, if despite the measured relative value being included in the equivalent range for the corrected reference value for the specific non-microorganism particle, the evaluating portion 302, it is near the upper limit or lower limit of the equivalent range, the evaluating portion 302 may evaluate that the air that is to be inspected includes the specific non-microorganism particle, and that the certainty of that evaluation is low. Moreover, if despite the measured relative value not being included in the equivalent range for the corrected reference value for the specific non-microorganism particle, the evaluating portion 302, it is near the upper limit or lower limit of the equivalent range, the evaluating portion 302 may evaluate that the air that is to be inspected does not include the specific non-microorganism particle, and that the certainty of that evaluation is low.
The reference value storing device 351 may store reference values for substances that are included in the air, such as for nitrogen oxides (NOX) including nitrogen dioxide (NO2), sulfur oxides (SOX), ozone gas (O3), aluminum oxide gases, aluminum alloys, glass powders, decontaminating gases for decontaminating contamination such as Escherichia coli and mold, for example, and the like. The reference values for prescribed substances that are included in the air may be obtained through, for example, in Step S201 of
In this case, the evaluating portion 302 evaluates whether or not the measured relative value, calculated based on the air that is subject to inspection, is within the equivalent range for the corrected reference values for the specific airborne substance. If the measured relative value is included in the equivalent range for the corrected reference value for the prescribed airborne substance, then the evaluating portion 302 evaluates that the light of the fluorescent band that was measured derived from the specific airborne substance, and that the air that is subject to testing includes the specific airborne substance. If the measured relative value is not included in the equivalent range for the corrected reference value for the prescribed airborne substance, then the evaluating portion 302 evaluates that the specific airborne substance is not included in the air that has been drawn in. Moreover, in this case, the evaluating portion 302 may evaluate that the air that is subject to inspection includes fluorescent particles other than the specific airborne substance, or fluorescent particles that are subject to detection.
Moreover, if despite the measured relative value being included in the equivalent range for the corrected reference value for the specific airborne substance, the evaluating portion 302, it is near the upper limit or lower limit of the equivalent range, the evaluating portion 302 may evaluate that the air that is to be inspected includes the specific airborne substance, and that the certainty of that evaluation is low. Moreover, if despite the measured relative value not being included in the equivalent range for the corrected reference value for the specific airborne substance, the evaluating portion 302, it is near the upper limit or lower limit of the equivalent range, the evaluating portion 302 may evaluate that the air that is to be inspected does not include the specific airborne substance, and that the certainty of that evaluation is low.
While there are descriptions of examples as set forth above, the descriptions and drawings that form a portion of the disclosure are not to be understood to limit the present disclosure. A variety of alternate examples and exemplary operating technologies should be obvious to those skilled in the art. For example, the location wherein the particle detecting device 1 according to the present example is not limited to being a clean room. Furthermore, while, in the present example, a method was shown wherein the relative value was calculated by measuring the optical intensity at a first wavelength and measuring the optical intensity at a second wavelength, the optical intensities may be measured at three or more wavelengths, and the relative value may be calculated therefrom.
Moreover, while a method for correcting the reference value was explained in this example, the measured relative value may be corrected instead. For example, it is possible to correct the measured relative value by multiplying the measured relative value by the inverse of the breakdown coefficient. Furthermore, the breakdown degree storing device 355 may store a function wherein the operating time of the light source 10 or of the fluorescent intensity measuring instrument 2 is the independent variable and the breakdown coefficient is the dependent variable, or a function wherein the ambient temperature of the fluorescent intensity measuring instrument 2 is the independent variable and the breakdown coefficient is the dependent variable. In this way, the present disclosure should be understood to include a variety of examples, and the like, not set forth herein.
Number | Date | Country | Kind |
---|---|---|---|
2013-253660 | Dec 2013 | JP | national |