Passive crowd-sourced map updates and alternate route recommendations

Information

  • Patent Grant
  • 9410814
  • Patent Number
    9,410,814
  • Date Filed
    Friday, September 11, 2015
    9 years ago
  • Date Issued
    Tuesday, August 9, 2016
    8 years ago
Abstract
The claimed subject matter is directed to systems and methods for providing passive crowd-sourced alternate route recommendations. In one embodiment, locations of users of a number of mobile location-aware devices are tracked over time. Upon receiving a request, users of mobile location-aware devices that have traveled from a desired start location to a desired stop location are identified. At least one of the different routes taken by one or more users from the desired start location to the desired stop location is provided to the requestor as at least one recommended alternate route. The different routes taken by the one or more users from the desired start location to the desired stop location include routes taken that begin before the desired start location and go through the start location and routes taken that stop beyond the desired stop location and go through the desired stop location.
Description
FIELD OF THE DISCLOSURE

The present disclosure relates to crowd-sourced map updates and crowd-sourced alternate route recommendations.


BACKGROUND

Personal Navigation Devices (PNDs) often have maps that are out-of-date. Traditional mechanisms for updating the maps of PNDs are cumbersome and inconvenient. More specifically, traditionally companies such as NAVTEQ collect information regarding roads by driving every road using specially equipped cars. These companies then provide the collected information to PND providers for use in their maps. Recently, TomTom has introduced a service referred to as Map Share that enables users of TomTom® PNDs to manually make corrections to their maps and then share their corrections with other users of the TomTom® Map Share service. However, even though the TomTom® Map Share service provides some advantages, it is still cumbersome and burdensome on the users in that they must manually make corrections to their maps. As such, there is a need for a system and method for updating the maps of PNDs that places little, if any, burden on users of the PNDs. In addition, an improved system and method for providing alternate route recommendations to users is needed.


SUMMARY

Systems and methods for providing passive crowd-sourced alternate route recommendations are disclosed. In one embodiment, locations of users of a number of mobile location-aware devices are tracked over time. Upon receiving a request for alternate routes from a requestor, users of mobile location-aware devices that have traveled from or through a start location identified by the request to or through a stop location identified by the request are identified. Location histories for the identified users are analyzed to determine one or more routes taken by the users from the start location to the stop location. The one or more routes, or a select subset of the one or more routes, are then returned to the requestor as recommended alternate routes. In addition, one or more characteristics of the recommended alternate routes may be determined and returned to the requestor. For each recommended alternate route, the one or more characteristics may include, for example, an average travel time for the recommended alternate route, an average travel time for the recommended alternate route for a desired time window, a number of users that have previously traveled the recommended alternate route, or the like.


Those skilled in the art will appreciate the scope of the present invention and realize additional aspects thereof after reading the following detailed description of the preferred embodiments in association with the accompanying drawing figures.





BRIEF DESCRIPTION OF THE DRAWING FIGURES

The accompanying drawing figures incorporated in and forming a part of this specification illustrate several aspects of the invention, and together with the description serve to explain the principles of the invention.



FIG. 1 illustrates a system for providing crowd-sourced map updates and crowd-sourced alternate route recommendations according to one embodiment of the present disclosure;



FIG. 2 illustrates the operation of the system of FIG. 1 to track the locations of users of the mobile location-aware devices according to one embodiment of the present disclosure;



FIG. 3 is a flow chart illustrating a process for providing crowd-sourced map updates according to one embodiment of the present disclosure;



FIG. 4 is a more detailed flow chart illustrating a process for providing crowd-sourced map updates according to one embodiment of the present disclosure;



FIG. 5 is a flow chart illustrating a process for detecting a pattern indicative of a new road according to one embodiment of the present disclosure;



FIG. 6 illustrates an exemplary bounding region utilized during the pattern detection process of FIG. 5 according to one embodiment of the present disclosure;



FIG. 7 illustrates an exemplary Graphical User Interface (GUI) for presenting a new road and a degree of confidence for the new road to a user according to one embodiment of the present disclosure;



FIG. 8 illustrates the operation of the system of FIG. 1 to provide crowd-sourced alternate route recommendations according to one embodiment of the present disclosure;



FIG. 9 is a flow chart illustrating a process for generating crowd-sourced alternate route recommendations according to one embodiment of the present disclosure;



FIG. 10 is a block diagram of the server of FIG. 1 according to one embodiment of the present disclosure;



FIG. 11 is a block diagram of one of the mobile location-aware devices of FIG. 1 according to one embodiment of the present disclosure; and



FIG. 12 is a block diagram of a computing device hosting the third-party map function of FIG. 1 according to one embodiment of the present disclosure.





DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

The embodiments set forth below represent the necessary information to enable those skilled in the art to practice the invention and illustrate the best mode of practicing the invention. Upon reading the following description in light of the accompanying drawing figures, those skilled in the art will understand the concepts of the invention and will recognize applications of these concepts not particularly addressed herein. It should be understood that these concepts and applications fall within the scope of the disclosure and the accompanying claims.



FIG. 1 illustrates a system 10 for providing passive crowd-sourced map updates, passive crowd-sourced alternate route recommendations, or both according to one embodiment of the present disclosure. As illustrated, the system 10 includes a server 12 and a number of mobile location-aware devices 14-1 through 14-N having associated users 16-1 through 16-N. The server 12 and the mobile location-aware devices 14-1 through 14-N are connected via a network 18. The network 18 is preferably a publicly accessible distributed network such as the Internet. In addition, in this embodiment, the system 10 may also include a third-party map function 20.


The server 12 is a physical server. Note, however, that while only a single server 12 is illustrated for clarity and ease of discussion, the system 10 may include multiple servers 12 that operate in a collaborative manner for purposes of load-sharing and/or redundancy. The server 12 includes a location tracking function 22, a map updating function 24, and an alternate route recommendation function 26, each of which is preferably implemented in software but is not limited thereto. In addition, the server 12 includes a map data model 28 and a location tracking repository 30. The location tracking function 22 generally operates to receive location updates from the mobile location-aware devices 14-1 through 14-N defining locations of the users 16-1 through 16-N over time and to store corresponding data in the location tracking repository 30. Note that while the description herein refers to the tracking of the locations of the users 16-1 through 16-N, as used herein, the locations of the users 16-1 through 16-N is synonymous with the locations of the mobile location-aware devices 14-1 through 14-N. The data stored in the location tracking repository 30 may include a location history for each of the users 16-1 through 16-N or anonymized location histories that anonymously record the locations of the users 16-1 through 16-N. Using the user 16-1 of the mobile location-aware device 14-1 as an example, for each location update received from the mobile location-aware device 14-1 for the user 16-1, the location history for the user 16-1 includes the data from the location update (i.e., location and, optionally, a time-stamp, direction of travel, and/or speed of travel). Alternatively, the location history for the user 16-1 may include a number of vectors in the form of <start, stop, time-stamp, direction, speed> derived from the location updates received from the mobile location-aware device 14-1 for the user 16-1.


In another embodiment, anonymized location histories are stored in the location tracking repository 30. More specifically, again using the user 16-1 of the mobile location-aware device 14-1 as an example, the location history of the user 16-1 may be periodically persisted in the location tracking repository 30 as an anonymous location history. The anonymous location history is preferably a location history record or data object that has a new or unique identifier that is not tied back to the user 16-1 or the mobile location-aware device 14-1. For example, at a desired periodic time interval (e.g., hourly, daily, weekly, or the like), the location history of the user 16-1 may be persisted as an anonymous location history that is not tied back to the user 16-1. At the end of each periodic time interval, the location history of the user 16-1 is persisted as a new anonymous location history. Further, each time the location history of the user 16-1 is persisted as an anonymous location history, all of the location data (i.e., previous locations and, if any, time-stamps, directions of travel, and/or speed of travel) may be removed from the location history of the user 16-1.


The map updating function 24 generally operates to analyze the data in the location tracking repository 30 that reflects the locations of the users 16-1 through 16-N of the mobile location-aware devices 14-1 through 14-N over time in order to detect patterns that are indicative of updates that should be made to a map defined by the map data model 28. The map data model 28 is generally data that defines a map of a geographic area (e.g., North America, the United States of America, North Carolina, or the like). For instance, the map data model 28 may be Geographic Information Systems (GIS) data that defines a map for a geographic area. As discussed below in detail, in the preferred embodiment, the map updating function 24 operates to detect patterns of movement of the users 16-1 through 16-N of the mobile location-aware devices 14-1 through 14-N that are indicative of new roads that should be added to the map defined by the map data model 28. However, in a similar manner, the map updating function 24 may additionally or alternatively detect other changes that should be made to the map such as, for example, temporary or permanent road closures. For instance, the absence of movement of the users 16-1 through 16-N of the mobile location-aware devices 14-1 through 14-N over a particular road in the map for at least a threshold amount of time may be used as a detection that the road is closed.


The alternate route recommendation function 26 generally operates to recommend alternate routes to the users 16-1 through 16-N of the mobile location-aware devices 14-1 and 14-N and the third-party map function 20 based on the data in the location tracking repository 30. More specifically, as discussed below, the alternate route recommendation function 26 receives a request for alternate routes from a requestor, where the requestor may be one of the mobile location-aware devices 14-1 through 14-N or the third-party map function 20. The request identifies a desired start location and a desired stop location. The alternate route recommendation function 26 then uses the data in the location tracking repository 30 to identify a number of different routes previously taken by the users 16-1 through 16-N of the mobile location-aware devices 14-1 through 14-N from the desired start location to the desired stop location. One or more of the identified routes are then returned to the requestor as recommended alternate routes.


The mobile location-aware devices 14-1 through 14-N are generally any type of user devices that are enabled to determine the locations of the users 16-1 through 16-N and provide location updates for the users 16-1 through 16-N to the server 12 via the network 18. For example, each of the mobile location-aware devices 14-1 through 14-N may be a personal navigation device permanently installed in an automobile, a portable personal navigation device similar to those manufactured and sold by Garmin or TomTom, a mobile smart phone providing personal navigation device functionality such as an Apple® iPhone having a software application providing personal navigation device functionality, or the like. As illustrated, the mobile location-aware devices 14-1 through 14-N include personal navigation functions 32-1 through 32-N, location reporting functions 34-1 through 34-N, and Global Positioning System (GPS) receivers 36-1 through 36-N. In addition, in this embodiment, the mobile location-aware devices 14-1 through 14-N include map data models 38-1 through 38-N. Each of the map data models 38-1 through 38-N is a copy of the map data model 28 of the server 12 or a subset of the map data model 28 defining a portion of the map for a relevant geographic area. However, the present disclosure is not limited thereto. In an alternative embodiment, the mobile location-aware devices 14-1 through 14-N obtain map data from the server 12 as needed.


Using the mobile location-aware device 14-1 as an example, the personal navigation function 32-1 may be implemented in software, hardware, or a combination thereof. The personal navigation function 32-1 generally operates in a manner similar to a traditional personal navigation device. More specifically, the personal navigation function 32-1 provides turn-by-turn directions to the user 16-1 in order to navigate the user 16-1 from a desired start location to a desired stop location. The personal navigation function 32-1 may also provide additional features such as Point-of-Interest (POI) lookup, current traffic conditions, or the like. The location reporting function 34-1 generally operates to provide location updates for the user 16-1 to the server 12.


The third-party map function 20 may be implemented in hardware, software, or a combination thereof. For example, the third-party map function 20 may be a software application hosted by a physical server or farm of physical servers, a user device such as a personal computer, or the like. In general, the third-party map function 20 provides map-based services to users or entities. For example, the third-party map function 20 may be a web-based map service such as, or similar to, the Google® Maps service, the Bing® Maps service, the MapQuest® service, or the like. The third-party map function 20 may interact with the server 12 to obtain map updates and/or alternate routes.



FIG. 2 illustrates the operation of the system 10 of FIG. 1 to track the locations of the users 16-1 through 16-N according to one embodiment of the present disclosure. In this embodiment, tracking is performed passively by obtaining location updates for the users 16-1 through 16-N and storing corresponding data at the server 12. While this discussion uses the mobile location-aware device 14-1 and the user 16-1 as an example, this discussion is equally applicable to the other mobile location-aware devices 14-2 through 14-N and the other users 16-2 through 16-N. As illustrated, the mobile location-aware device 14-1, and more specifically the location reporting function 34-1, first gets a current location of the mobile location-aware device 14-1 (step 1000). In addition to the current location, the location reporting function 34-1 may get a time-stamp that defines the current time, a direction of travel of the mobile location-aware device 14-1, and/or a speed of travel of the mobile location-aware device 14. In the preferred embodiment, the location reporting function 34-1 gets the current location and, optionally, the current time, the direction of travel, and/or the speed of travel from the GPS receiver 36-1. However, the GPS receiver 36-1 is exemplary. Any suitable technology for determining or otherwise obtaining the current location of the mobile location-aware device 14-1 may be used. Next, the location reporting function 34-1 of the mobile location-aware device 14-1 sends a location update to the server 12 (step 1002). The location update includes the current location of the user 16-1, which is the current location of the mobile location-aware device 14-1 obtained from the GPS receiver 36-1. In addition, the location update may obtain a time-stamp defining the time at which the current location was obtained (i.e., the current time), the direction of travel of the mobile location-aware device 14-1 as the direction of travel of the user 16-1, and/or the speed of travel of the mobile location-aware device 14-1 as the speed of travel of the user 16-1.


Upon receiving the location update, the location tracking function 22 stores data in the location tracking repository 30 corresponding to the location update (step 1004). In one embodiment, the location tracking repository 30 includes a location history for each of the users 16-1 through 16-N. As such, in this embodiment, the location update, or more specifically the data included in the location update, is stored in a location history of the user 16-1 maintained in the location tracking repository 30. Alternatively, the location update may be processed to provide a vector from the last location of the user 16-1 to the current location of the user 16-1, where the vector may be <start location, stop location, time-stamp, direction, speed>. In another embodiment, as discussed above, the location tracking function 22 stores anonymized location histories. More specifically, the location tracking function 22 stores location histories for each of the users 16-1 through 16-N. However, periodically (e.g., hourly, daily, weekly, or the like), the location tracking function 22 persists the location histories of the users 16-1 through 16-N as anonymous location histories that are not tied back to the users 16-1 through 16-N and removes the location data (i.e., the previous locations and/or corresponding time-stamps, speeds of travel, and/or directions of travel, or previous vectors) from the location histories of the users 16-1 through 16-N. Anonymization may be performed as a background process. Alternatively, anonymization may be triggered by receipt of location updates. Thus, upon receiving the location update from the mobile location-aware device 14-1, the location tracking function 22 may store the location update in the location history of the user 16-1 and then determine if it is time to anonymize the location history of the user 16-1. If so, the location tracking function 22 removes the location updates from the location history of the user 16-1 and stores the location updates as an anonymous location history that is not tied back to the user 16-1 or the mobile location-aware device 14-1. Note that the most recent location update, most recent vector, or current location of the user 16-1 may be retained in the location history of the user 16-1 after anonymization is performed.


In the same manner, the other mobile location-aware devices 14-2 through 14-N get their current locations and send corresponding location updates to the server 12 (steps 1006 and 1008). In response, the location tracking function 22 stores corresponding data in the location tracking repository 30 for the users 16-2 through 16-N (step 1010). As illustrated, this process continues such that the mobile location-aware devices 14-1 through 14-N continue to send location updates for the users 16-1 through 16-N to the server 12 over time and corresponding data is stored in the location tracking repository 30 (steps 1012 through 1022).



FIG. 3 illustrates the operation of the map updating function 24 of the server 12 according to one embodiment of the present disclosure. First, the map updating function 24 detects a travel pattern that is indicative of a new road that is not included on the map defined by the map data model 28 (step 2000). More specifically, the map updating function 24 analyzes the data in the location tracking repository 30 as compared to the map data model 28 to detect a pattern of movement of the users 16-1 through 16-N that is indicative of a new road that is not included on the map defined by the map data model 28. In general, a pattern indicative of a new road is a pattern of consistent and frequent travel of the users 16-1 through 16-N, or more specifically at least a subset of the users 16-1 through 16-N, in a manner that is consistent with travel along a road. In addition, the map updating function 24 may compute a degree of confidence for the new road. The degree of confidence is preferably a function of frequency of use and how recently the new road has been used.


Once the new road is detected, the map updating function 24 updates the map to include the new road (step 2002). More specifically, the map updating function 24 adds data defining the new road to the map data model 28. In addition, the map updating function 24 may add the degree of confidence for the new road to the map data model 28. At this point, in one embodiment, the map updating function 24 sends an update to the map data model 28 for the new road and the degree of confidence for the new road, if any, to one or more of the mobile location-aware devices 14-1 through 14-N. Those mobile location-aware devices 14-1 through 14-N that receive the update then add the update to their map data models 38-1 through 38-N. In addition, the map updating function 24 may send the update for the map data model 28 to the third-party map function 20. In an alternative embodiment, rather than immediately updating the map data model 28, the map updating function 24 may flag the update or otherwise send an alert regarding the update to an owner or editor of the map represented by the map data model 28 for verification before the map is officially updated.



FIG. 4 is a more detailed flow chart illustrating the operation of the server 12 to update the map according to one embodiment of the present disclosure. In this embodiment, the location tracking function 22 receives a location update (step 3000). For this discussion, the location update is received from the mobile location-aware device 14-1 for the user 16-1. In response, the location tracking function 22 generates and stores a vector from a previous location of the user 16-1 to a current location of the user 16-1 identified in the location update (step 3002). The previous location of the user 16-1 is the location of the user 16-1 identified in the immediately preceding location update received from the mobile location-aware device 14-1. Again, the vector is preferably in the form of <start location, stop location, time-stamp, direction, speed> but is not limited thereto. “Start location” is the previous location of the user 16-1 identified by the immediately preceding location update for the user 16-1, “stop location” is the current location of the user 16-1 identified in the location update, time-stamp is the timestamp from the corresponding location update, direction is the direction of travel from the location update, and speed is the speed of travel from the location update.


Next, the map updating function 24 determines whether the user 16-1 is currently on a crowd-sourced road (step 3004). As used herein, a crowd-sourced road is a road previously added to the map by the map updating function 24 based on detected patterns of travel, or movement, of the users 16-1 through 16-N. Note, however, that a crowd-sourced road may be promoted to a permanent road in the map data model 28 when, for example, the crowd-sourced road is verified by an operator of the server 12 (i.e., a person) or the degree of confidence of the crowd-sourced road reaches a predefined threshold (e.g., 90% or 100%). The map updating function 24 determines whether the user 16-1 is currently on a crowd-sourced road by comparing the current location of the user 16-1 to the map data model 28. If the user 16-1 is on a crowd-sourced road, the map updating function 24 updates the degree of confidence of the crowd-sourced road (step 3006). Again, the degree of confidence is preferably a function of frequency of use of the crowd-sourced road and how recently the crowd-sourced road has been used. The more frequently and recently the crowd-sourced road has been used by the users 16-1 through 16-N, the higher the degree of confidence for the crowd-sourced road. At this point, the process returns to step 3000 and is repeated for the next received location update.


If the user 16-1 is not on a crowd-sourced road, the map updating function 24 determines whether the user 16-1 is currently on a permanent road (step 3008). As used herein, a permanent road is a road that was originally in the map or a crowd-sourced road added by the map updating function 24 that has been verified or that has a degree of confidence equal to or greater than a predefined threshold degree of confidence. If the user 16-1 is currently on a permanent road, the process returns to step 3000 and is repeated for the next received location update. If the user 16-1 is neither on a crowd-sourced road nor a permanent road, the map updating function 24 determines whether a predefined number (M) of location updates have been received for the user 16-1 since the user 16-1 was last determined to be on a road (i.e., a permanent road or a crowd-sourced road) (step 3010). The number M may be any integer greater than or equal to one (1). If less than M location updates have been received for the user 16-1 since the user 16-1 was last on a road, the process returns to step 3000 and is repeated for the next received location update.


If M location updates have been received for the user 16-1 since the user 16-1 was last on a road, the map updating function 24 performs a pattern detection process for the last M vectors in the location history of the user 16-1 (step 3012). Note that if vectors are not used, the pattern detection process is performed for the last M entries in the location history of the user 16-1. In general, the map updating function 24 obtains the last M vectors from the location history of the user 16-1. In addition, the map updating function 24 obtains other vectors from the location histories stored in the location tracking repository 30 that have start and stop locations in the same vicinity as the start and stop locations of one or more of the last M vectors for the user 16-1. These vectors are then analyzed to determine whether there is a pattern of travel or movement that is indicative of a new road. If so, the map updating function 24 updates the map data model 28 with data defining the new road. In addition, map updates may be sent to one or more of the mobile location-aware devices 14-1 through 14-N and/or the third-party map function 20. At this point, the process returns to step 3000 and is repeated for the next received location update.



FIG. 5 is a flow chart illustrating step 3012 of FIG. 4 in more detail according to one embodiment of the present disclosure. First, the map updating function 24 gets the last M vectors from the location history of the user 16-1 stored in the location tracking repository 30 (step 4000). The map updating function 24 then establishes a bounding region for the last M vectors (step 4002). The bounding region is generally a geographic region that encompasses the start and stop locations for the last M vectors for the user 16-1. Preferably, the bounding region is established such that the bounding region is, or is approximately, a geographic region defined by a maximum distance (D) from the last M vectors of the user 16-1, as illustrated in FIG. 6.


Returning to FIG. 5, the map updating function 24 then gets all known vectors from the location tracking repository 30 having start locations and stop locations located within the bounding region for the last M vectors of the user 16-1 (step 4004). Alternatively, the map updating function 24 may get a subset of all known vectors from the location tracking repository 30 having start locations and stop locations located within the bounding region for the last M vectors of the user 16-1, such as all known vectors from the location tracking repository 30 having start locations and stop locations within the bounding region for the last M vectors of the user 16-1 that have time-stamps within a defined time window. The defined time window may be a relative time window such as, for example, the last month.


The map updating function 24 then analyzes the known vectors obtained in step 4004 and, optionally, the last M vectors for the user 16-1 to determine whether there is a pattern of travel or movement that is indicative of a new road (step 4006). For example, the known vectors may be filtered to remove those vectors having directions and, optionally, speeds that are inconsistent with the directions and speeds of the last M vectors for the user 16-1. More specifically, for each known vector, the map updating function 24 may determine to filter the known vector if the direction and optionally speed of the known vector are more than a predefined amount of deviation from the direction and optionally speed of a nearest one of the last M vectors for the user 16-1 (i.e., the one of the last M vectors having a start location and/or stop location that is closest to the start location and/or stop location, respectively, of the known vector). If the direction and, if used, the speed of the known vector are within the predefined amount of deviation from the direction and, if used, the speed of the nearest one of the last M vectors for the user 16-1, then the known vector is not filtered. Once filtering is complete, the remaining known vectors, which are referred to herein as the filtered vectors, are counted. If the number of filtered vectors is greater than a predefined threshold number of vectors, then a pattern is detected. Note that this process for detecting a pattern is exemplary and is not intended to limit the scope of the present disclosure. Any suitable pattern recognition technique may be used.


Once the analysis is complete, the map updating function 24 determines whether a pattern that is indicative of a new road has been detected (step 4008). If not, the process ends. If so, the map updating function 24 computes a path for the new road that corresponds to the detected pattern and, optionally, a confidence factor for the new road (step 4010). In one embodiment, the bounding region for the last M vectors for the user 16-1 is divided into a series of sub-regions. For example, each sub-region may include one of the last M vectors for the user 16-1. Then, for each sub-region, the map updating function 24 may identify vectors from the filtered vectors that have start locations within that sub-region and then combine (e.g., average) the start locations for the identified vectors to provide a combined point for the sub-region. Once complete, the combined points for the sub-regions define the path for the new road. Again, the degree of confidence for the new road may be computed as a function of frequency of use by the users 16-1 through 16-N and how recently the new road has been used by the users 16-1 through 16-N.


In addition, the map updating function 24 may suggest a name for the new road. The map updating function 24 may suggest a name of the road based on detected patterns in the movement of users that have travelled the new road, surrounding roads in the map data model 28, or a combination thereof. The detected patterns in movement may be, for example, an average speed of the users that have travelled the road, start and stop patterns, patterns indicating that the new road extends from an existing road, patterns indicating that the new road merges into an existing road, patterns indicating that the new road extends from and merges back into an existing road, or the like. For example, the average speed at which users have travelled the new road may be used to determine whether the new road is likely to be an Interstate Highway, a city street, or the like. Similarly, start and stop patterns may be used to determine that the new road is a city street. In addition or alternatively, the path of the new road may be analyzed with respect to surrounding roads to determine whether the new road is an extension of an existing road, an alternate version of an existing road (e.g., Alternate I-40 as an alternate for I-40).


Lastly, the map updating function 24 updates the map data model 28 to include data defining the new road (step 4012). In addition, a corresponding update may be provided to one or more of the mobile location-aware devices 14-1 through 14-N and/or the third-party map function 20. At this point, the process ends. Again, in an alternative embodiment, rather than immediately updating the map data model 28, the map updating function 24 may flag the update or otherwise send an alert regarding the update to an owner or editor of the map represented by the map data model 28 for verification before the map is officially updated.



FIG. 7 illustrates an exemplary Graphical User Interface (GUI) 40 for presenting a map including a crowd-sourced map update provided by the map updating function 24 of the server 12 according to one embodiment of the present disclosure. As illustrated, the GUI 40 generally presents a map, which is preferably a portion of the map defined by the map data model 28 of the server 12. A new road 42 detected by the map updating function 24 of the server 12 based on a detected travel pattern of the users 16-1 through 16-N is shown in the GUI 40. In one embodiment, an opacity of the new road 42 in the GUI 40 corresponds to a degree of confidence for the new road 42 computed by the map updating function 24. In addition or alternatively, the GUI 40 may include a window providing information for the new road 42 such as, for example, the degree of confidence for the new road 42 and a likely, or suggested name, of the new road 42.


In this example, since the new road 42 diverges from I-40 and rejoins I-40, the map updating function 24 determines that the new road 42 is likely an Alternate I-40. More specifically, based on the map data model 28, the map updating function 24 knows that I-40 is an interstate and that characteristic speeds on I-40 are 55 to 80 mph. The map updating function 24 detects a large number of users diverging from I-40 onto the newly detected road at speeds that are characteristic of merging onto another highway. Then, ten miles later, the map updating function 24 detects a large number of users diverging from this newly detected road back onto I-40 at a speed that is characteristic of merging onto another highway. From these characteristic and passively detected inputs, the map updating function 24 is enabled to determine that the newly detected route is likely to be an “Alternate” or “Business Bypass” of I-40 and therefore suggest “Alternate I-40” as a name for the newly detected road.



FIG. 8 illustrates the operation of the system 10 to recommend alternate routes according to one embodiment of the present disclosure. As illustrated, first, the mobile location-aware device 14-1 sends an alternate route request to the server 12 (step 5000). Note that while the mobile location-aware device 14-1 is the requestor in this discussion, the requestor may alternatively be one of the other mobile location-aware devices 14-2 through 14-N or the third-party map function 20. The alternate route request identifies a desired start location and a desired stop location. More specifically, in one embodiment, the personal navigation function 32-1 sends the alternate route request to the server 12 either automatically in response to a request from the user 16-1 to be navigated from the desired start location to the desired stop location or in response to an explicit request for alternate routes from the user 16-1.


In response to receiving the alternate route request, the alternate route recommendation function 26 of the server 12 generates one or more alternate routes from the desired start location to the desired stop location (step 5002). In general, the alternate route recommendation function 26 utilizes data in the location tracking repository 30 to identify routes previously taken by the users 16-1 through 16-N from the desired start location to the desired stop location. The alternate route recommendation function 26 then selects one or more of the identified routes as alternate routes to recommend, and then returns the alternate routes to the mobile location-aware device 14-1 (step 5004). The personal navigation function 32-1 of the mobile location-aware device 14-1 then utilizes the alternate routes (step 5006). For example, the personal navigation function 32-1 may display the alternate routes to the user 16-1 and enable the user 16-1 to select one of the alternate routes to use. Note that, in an alternative embodiment, rather than immediately sending the alternate routes to the mobile location-aware device 14-1, the recommended routes may be verified, such as by an owner or editor of the map represented by the map data model 28, before the recommended routes are sent to the mobile location-aware device 14-1.



FIG. 9 is a flow chart illustrating the operation of the alternate route recommendation function 26 of the server 12 in more detail according to one embodiment of the present disclosure. First, the alternate route recommendation function 26 receives an alternate route request that identifies a desired start location and a desired stop location (step 6000). In response, the alternate route recommendation function 26 identifies users from the users 16-1 through 16-N that have traveled from the desired start location to the desired stop location (step 6002). Note that the users that have traveled from the desired start location to the desired stop location preferably include users that have started at the desired start location and ended at the desired stop location as well as users that have travelled from or through the desired start location to or through the desired stop location. Optionally, the identified users may be only those users that have traveled from the desired start location to the desired stop location during a desired time window. The desired time window may be a reoccurring time window corresponding to a current time of day (e.g., 10 AM to Noon), a current day of the week (Monday, Weekday, or Weekend), a combination of a current or defined time of day and day of week (e.g., Monday from 10 AM to Noon or Weekdays from 10 AM to Noon), or the like.


The alternate route recommendation function 26 then determines one or more different routes taken by the identified users from the desired start location to the desired stop location (step 6004). More specifically, for each of the identified users, the alternate route recommendation function 26 determines a route taken by the identified user from the desired start location to the desired stop location. The routes taken by the identified users are compared to one another to determine a number of different routes taken by the identified users from the desired start location to the desired stop location.


Next, the alternate route recommendation function 26 determines one or more characteristics for each of the different route(s) (step 6006). For each of the different routes, the one or more characteristics for that route may include, for example, a number of the identified users that took that route, an average travel time for that route, an average travel time for that route for desired time window, or the like. The average travel time for a route is determined based on actual travel times for that route for corresponding users determined based on the location histories of those users. Similarly, the average travel time for a route for the desired time window is determined based on actual travel times for that route for corresponding users that travelled that route during the desired time window. The desired time window may be a reoccurring time window corresponding to a current time of day (e.g., 10 AM to Noon), a current day of the week (Monday, Weekday, or Weekend), a combination of a current or defined time of day and day of week (e.g., Monday from 10 AM to Noon or Weekdays from 10 AM to Noon), or the like. The alternate route recommendation function 26 then returns the one or more different routes and the characteristics of the one or more different routes to the requestor as alternate route recommendations (step 6008). Note that either prior to step 6006 or before returning the recommendations in step 6008, the different routes identified in step 6004 may be filtered or otherwise processed to remove unwanted routes. For example, filtering may be performed to remove a particular route that has already been provided to the user 16-1 (e.g., an optimal route that has already been generated by the personal navigation function 32-1 using a traditional route generation technique).



FIG. 10 is a block diagram of the server 12 according to one embodiment of the present disclosure. As illustrated, the server 12 includes a controller 46 connected to memory 48, one or more secondary storage devices 50, and a communication interface 52 by a bus 54 or similar mechanism. The controller 46 is a microprocessor, digital Application Specific Integrated Circuit (ASIC), Field Programmable Gate Array (FPGA), or the like. In this embodiment, the controller 46 is a microprocessor, and the location tracking function 22, the map updating function 24, and the alternate route recommendation function 26 are implemented in software and stored in the memory 48 for execution by the controller 46. Further, the map data model 28 and the location tracking repository 30 may be stored in the one or more secondary storage devices 50. The secondary storage devices 50 are digital data storage devices such as, for example, one or more hard disk drives. The communication interface 52 is a wired or wireless communication interface that communicatively couples the server 12 to the network 18 (FIG. 1). For example, the communication interface 52 may be an Ethernet interface, local wireless interface such as a wireless interface operating according to one of the suite of IEEE 802.11 standards, or the like.



FIG. 11 is a block diagram of the mobile location-aware device 14-1 according to one embodiment of the present disclosure. This discussion is equally applicable to the other mobile location-aware devices 14-2 through 14-N. As illustrated, the mobile location-aware device 14-1 includes a controller 56 connected to memory 58, a communication interface 60, one or more user interface components 62, and the GPS receiver 36-1 by a bus 64 or similar mechanism. The controller 56 is a microprocessor, digital ASIC, FPGA, or the like. In this embodiment, the controller 56 is a microprocessor and the location reporting function 34-1 and, in some implementations, the personal navigation function 32-1 are implemented in software and stored in the memory 58 for execution by the controller 56. In this embodiment, the GPS receiver 36-1 is a hardware component. The communication interface 60 is a wireless communication interface that communicatively couples the mobile location-aware device 14-1 to the network 18 (FIG. 1). For example, the communication interface 60 may be a local wireless interface such as a wireless interface operating according to one of the suite of IEEE 802.11 standards, a mobile communications interface such as a cellular telecommunications interface, or the like. The one or more user interface components 62 include, for example, a touchscreen, a display, one or more user input components (e.g., a keypad), a speaker, or the like, or any combination thereof.



FIG. 12 is a block diagram of a computing device 66 that hosts the third-party map function 20 according to one embodiment of the present disclosure. As illustrated, the computing device 66 includes a controller 68 connected to memory 70, one or more secondary storage devices 72, a communication interface 74, and one or more user interface components 76 by a bus 78 or similar mechanism. The controller 68 is a microprocessor, digital ASIC, FPGA, or the like. In this embodiment, the controller 68 is a microprocessor, and the third-party map function 20 is implemented in software and stored in the memory 70 for execution by the controller 68. The one or more secondary storage devices 72 are digital storage devices such as, for example, one or more hard disk drives. The communication interface 74 is a wired or wireless communication interface that communicatively couples the computing device 66 to the network 18 (FIG. 1). For example, the communication interface 74 may be an Ethernet interface, local wireless interface such as a wireless interface operating according to one of the suite of IEEE 802.11 standards, a mobile communications interface such as a cellular telecommunications interface, or the like. The one or more user interface components 76 include, for example, a touchscreen, a display, one or more user input components (e.g., a keypad), a speaker, or the like, or any combination thereof.


Those skilled in the art will recognize improvements and modifications to the preferred embodiments of the present invention. All such improvements and modifications are considered within the scope of the concepts disclosed herein and the claims that follow.

Claims
  • 1. A method comprising: tracking locations of a plurality of users of a plurality of mobile location-aware devices over time;receiving an alternate route request from a requestor, the alternate route request identifying a desired start location and a desired stop location;determining, by a processor, at least one of one or more different routes taken by one or more users of the plurality of users from the desired start location to the desired stop location to provide to the requestor as at least one recommended alternate route, wherein the one or more users includes users other than the requestor and the different routes taken by the one or more users from the desired start location to the desired stop location include routes taken that begin before the desired start location and go through the start location and routes taken that stop beyond the desired stop location and go through the desired stop location; andenabling the at least one recommended alternate route to be provided to the requestor.
  • 2. The method of claim 1 comprising: identifying the one or more users of the plurality of users that have traveled from the desired start location to the desired stop location based on the tracked locations of the plurality of users of the plurality of mobile location-aware devices; anddetermining, by the processor, the one or more different routes taken by the one or more users from the desired start location to the desired stop location based on the locations of the one or more users.
  • 3. The method of claim 2 wherein identifying the one or more users of the plurality of users that have traveled from the desired start location to the desired stop location comprises identifying one or more users of the plurality of users that have traveled from the desired start location to the desired stop location during a desired time window.
  • 4. The method of claim 3 wherein the desired time window is a reoccurring time window corresponding to at least one of a group consisting of: a current time of day and a current day of the week.
  • 5. The method of claim 1 further comprising: determining, for each different route of the at least one of the one or more different routes, a characteristic of the different route; andproviding the characteristic of each different route to the requestor.
  • 6. The method of claim 5 wherein the characteristic of the different route is at least one of: a number of users of the plurality of users that have traveled the different route, an average travel time for the different route determined based on actual travel times of users of the plurality of users that have traveled the different route, and an average travel time for the different route determined based on actual travel times of users of the plurality of users that have traveled the different route during a desired time window.
  • 7. The method of claim 6 wherein the desired time window is a reoccurring time window corresponding to at least one of a group consisting of: a current time of day and a current day of the week.
  • 8. The method of claim 1 wherein the determining of the at least one of one or more different routes request for alternate routes is provided automatically in response to a subsequent request from the requestor for navigation from a desired start location to a desired stop location.
  • 9. The method of claim 1 wherein the request for alternate routes is provided automatically based on a request of a third party map service.
  • 10. At least one server comprising: a communication interface communicatively coupling the server to a plurality of mobile location-aware devices via a network; anda controller associated with the communication interface and adapted to: track locations of a plurality of users of the plurality of mobile location-aware devices over time;receive an alternate route request from a requestor, the alternate route request identifying a desired start location and a desired stop location;determine at least one of one or more different routes taken by one or more users of the plurality of users from the desired start location to the desired stop location to provide to the requestor as at least one recommended alternate route, wherein the one or more users includes users other than the requestor and the different routes taken by the one or more users from the desired start location to the desired stop location include routes taken that begin before the desired start location and go through the start location and routes taken that stop beyond the desired stop location and go through the desired stop location; andenable the at least one recommended alternate route to be provided to the requestor.
  • 11. The at least one server of claim 10, wherein the controller is further adapted to: identify one or more users of the plurality of users that have traveled from the desired start location to the desired stop location based on the locations of the plurality of users of the plurality of mobile location-aware devices; anddetermine the one or more different routes taken by the one or more users from the desired start location to the desired stop location based on the locations of the one or more users.
  • 12. The at least one server of claim 11 wherein in order to identify one or more users of the plurality of users that have traveled from the desired start location to the desired stop location, the controller is further adapted to identify one or more users of the plurality of users that have traveled from the desired start location to the desired stop location during a desired time window.
  • 13. The at least one server of claim 12 wherein the desired time window is a reoccurring time window corresponding to at least one of a group consisting of: a current time of day and a current day of the week.
  • 14. The at least one server of claim 10 wherein the controller is further adapted to: determine, for each different route of the at least one of the one or more different routes, a characteristic of the different route; andprovide the characteristic of each different route to the requestor.
  • 15. The at least one server of claim 14 wherein the characteristic of the different route is at least one of: a number of users of the plurality of users that have traveled the different route, an average travel time for the different route determined based on actual travel times of users of the plurality of users that have traveled the different route, and an average travel time for the different route determined based on actual travel times of users of the plurality of users that have traveled the different route during a desired time window.
  • 16. The at least one server of claim 15 wherein the desired time window is a reoccurring time window corresponding to at least one of a group consisting of: a current time of day and a current day of the week.
  • 17. The at least one server of claim 10 wherein the determining of the at least one of one or more different routes request for alternate routes is provided automatically in response to a subsequent request from the requestor for navigation from a desired start location to a desired stop location.
  • 18. The at least one server of claim 10 wherein the request for alternate routes is provided automatically based on a request of a third party map service.
  • 19. A non-transitory computer-readable medium storing software for instructing at least one controller of at least one server to: track locations of a plurality of users of a plurality of mobile location-aware devices over time;receive an alternate route request from a requestor, the alternate route request identifying a desired start location and a desired stop location;determine at least one of one or more different routes taken by one or more users of the plurality of users from the desired start location to the desired stop location to provide to the requestor as at least one recommended alternate route, wherein the one or more users includes users other than the requestor and the different routes taken by the one or more users from the desired start location to the desired stop location include routes taken that begin before the desired start location and go through the start location and routes taken that stop beyond the desired stop location and go through the desired stop location; andenable the at least one recommended alternate route to be provided to the requestor.
  • 20. The non-transitory computer-readable medium of claim 19 wherein the software further instructs the at least one controller of at least one server to: identify the one or more users of the plurality of users that have traveled from the desired start location to the desired stop location based on the locations of the plurality of users of the plurality of mobile location-aware devices; anddetermine the one or more different routes taken by the one or more users from the desired start location to the desired stop location based on the locations of the one or more users.
  • 21. The non-transitory computer-readable medium of claim 20 wherein in order to identify one or more users of the plurality of users that have traveled from the desired start location to the desired stop location, the software further instructs the controller to identify one or more users of the plurality of users that have traveled from the desired start location to the desired stop location during a desired time window.
  • 22. The non-transitory computer-readable medium of claim 21 wherein the desired time window is a reoccurring time window corresponding to at least one of a group consisting of: a current time of day and a current day of the week.
  • 23. The non-transitory computer-readable medium of claim 19 wherein the software further instructs the controller to: determine, for each different route of the at least one of the one or more different routes, a characteristic of the different route; andprovide the characteristic of each different route to the requestor.
  • 24. The non-transitory computer-readable medium of claim 23 wherein the characteristic of the different route is at least one of a number of users of the plurality of users that have traveled the different route, an average travel time for the different route determined based on actual travel times of users of the plurality of users that have traveled the different route, and an average travel time for the different route determined based on actual travel times of users of the plurality of users that have traveled the different route during a desired time window.
  • 25. The non-transitory computer-readable medium of claim 24 wherein the desired time window is a reoccurring time window corresponding to at least one of a group consisting of: a current time of day and a current day of the week.
  • 26. The non-transitory computer-readable medium of claim 19 wherein the determining of the at least one of one or more different routes request for alternate routes is provided automatically in response to a subsequent request from the requestor for navigation from a desired start location to a desired stop location.
  • 27. The non-transitory computer-readable medium of claim 19 wherein the request for alternate routes is provided automatically based on a request of a third party map service.
RELATED APPLICATIONS

This application is a continuation of U.S. Pat. No. 9,140,566, titled “Passive Crowd-Sourced Map Updates and Alternate Route Recommendations,” filed on Dec. 20, 2013, which is a continuation of U.S. Pat. No. 8,620,532, titled “Passive Crowd-Sourced Map Updates and Alternate Route Recommendations,” filed on Mar. 25, 2010, which claims the benefit of provisional patent application Ser. No. 61/163,091, filed Mar. 25, 2009, the disclosure of each of which is hereby incorporated herein by reference in its entirety.

US Referenced Citations (550)
Number Name Date Kind
5177685 Davis et al. Jan 1993 A
5220507 Kirson Jun 1993 A
5371678 Nomura Dec 1994 A
5452212 Yokoyama Sep 1995 A
5493692 Theimer et al. Feb 1996 A
5528501 Hanson Jun 1996 A
5539232 Nakanishi et al. Jul 1996 A
5659476 LeFebvre et al. Aug 1997 A
5682525 Bouve et al. Oct 1997 A
5729457 Seymour Mar 1998 A
5748148 Heiser et al. May 1998 A
5754939 Herz et al. May 1998 A
5790976 Boll et al. Aug 1998 A
5796727 Harrison et al. Aug 1998 A
5802492 DeLorme et al. Sep 1998 A
5812134 Pooser et al. Sep 1998 A
5848373 DeLorme Dec 1998 A
5903901 Kawakura et al. May 1999 A
5949776 Mahany et al. Sep 1999 A
5987380 Backman et al. Nov 1999 A
6014090 Rosen et al. Jan 2000 A
6023241 Clapper Feb 2000 A
6047235 Hiyokawa et al. Apr 2000 A
6049711 Ben-Yehezkel et al. Apr 2000 A
6067499 Yagyu et al. May 2000 A
6072409 Fushimi et al. Jun 2000 A
6088717 Reed et al. Jul 2000 A
6098015 Nimura et al. Aug 2000 A
6124826 Garthwaite et al. Sep 2000 A
6127945 Mura-Smith Oct 2000 A
6179252 Roop Jan 2001 B1
6199014 Walker et al. Mar 2001 B1
6204844 Fumarolo et al. Mar 2001 B1
6212474 Fowler et al. Apr 2001 B1
6240069 Alperovich et al. May 2001 B1
6249742 Friederich Jun 2001 B1
6278941 Yokoyama Aug 2001 B1
6282492 Gorai et al. Aug 2001 B1
6285950 Tanimoto Sep 2001 B1
6321158 DeLorme et al. Nov 2001 B1
6324467 Machii et al. Nov 2001 B1
6334086 Park et al. Dec 2001 B1
6339746 Sugiyama et al. Jan 2002 B1
6349203 Asaoka et al. Feb 2002 B1
6359896 Baker et al. Mar 2002 B1
6363392 Halstead et al. Mar 2002 B1
6366856 Johnson Apr 2002 B1
6408301 Patton et al. Jun 2002 B1
6415226 Kozak Jul 2002 B1
6424819 Yan Jul 2002 B1
6430498 Maruyama et al. Aug 2002 B1
6434579 Shaffer et al. Aug 2002 B1
6459987 Krull et al. Oct 2002 B1
6466938 Goldberg Oct 2002 B1
6477526 Hayashi et al. Nov 2002 B2
6480783 Myr Nov 2002 B1
6484092 Seibel Nov 2002 B2
6490587 Easty et al. Dec 2002 B2
6502102 Haswell et al. Dec 2002 B1
6505118 Chowanic Jan 2003 B2
6510379 Hasegawa et al. Jan 2003 B1
6523046 Liu et al. Feb 2003 B2
6526349 Bullock et al. Feb 2003 B2
6529136 Cao et al. Mar 2003 B2
6535868 Galeazzi et al. Mar 2003 B1
6539080 Bruce et al. Mar 2003 B1
6539232 Hendrey et al. Mar 2003 B2
6542749 Tanaka et al. Apr 2003 B2
6542750 Hendrey et al. Apr 2003 B2
6546336 Matsuoka et al. Apr 2003 B1
6549768 Fraccaroli Apr 2003 B1
6567743 Mueller et al. May 2003 B1
6577949 Robinson et al. Jun 2003 B1
6580999 Maruyama et al. Jun 2003 B2
6611754 Klein Aug 2003 B2
6618593 Drutman et al. Sep 2003 B1
6629100 Morris et al. Sep 2003 B2
6629104 Parulski et al. Sep 2003 B1
6633812 Martin et al. Oct 2003 B1
6654681 Kiendl et al. Nov 2003 B1
6662105 Tada et al. Dec 2003 B1
6675015 Martini et al. Jan 2004 B1
6675268 DeKoning et al. Jan 2004 B1
6694252 Ukita Feb 2004 B2
6704118 Hull et al. Mar 2004 B1
6708172 Wong et al. Mar 2004 B1
6708186 Claborn et al. Mar 2004 B1
6721650 Fushiki et al. Apr 2004 B2
6721653 Watanabe Apr 2004 B2
6721747 Lipkin Apr 2004 B2
6735583 Bjarnestam May 2004 B1
6748317 Maruyama et al. Jun 2004 B2
6757684 Svendsen et al. Jun 2004 B2
6762696 Hulverscheidt et al. Jul 2004 B2
6765998 Bruce et al. Jul 2004 B2
6766245 Padmanabhan Jul 2004 B2
6778903 Robinson et al. Aug 2004 B2
6810323 Bullock et al. Oct 2004 B1
6813502 Son et al. Nov 2004 B2
6819783 Goldberg et al. Nov 2004 B2
6819919 Tanaka Nov 2004 B1
6820005 Matsuda et al. Nov 2004 B2
6853841 St. Pierre Feb 2005 B1
6876642 Adams et al. Apr 2005 B1
6883019 Sengupta et al. Apr 2005 B1
6895329 Wolfson May 2005 B1
6920455 Weschler Jul 2005 B1
6937860 Jahn Aug 2005 B2
6947571 Rhoads et al. Sep 2005 B1
6954443 Forstadius et al. Oct 2005 B2
6961658 Ohler Nov 2005 B2
6968179 De Vries Nov 2005 B1
6970703 Fuchs et al. Nov 2005 B2
6975266 Abraham et al. Dec 2005 B2
6987885 Gonzalez-Banos et al. Jan 2006 B2
6990497 O'Rourke et al. Jan 2006 B2
7020710 Weber et al. Mar 2006 B2
7035618 Schnurr Apr 2006 B2
7035912 Arteaga Apr 2006 B2
7047315 Srivastava May 2006 B1
7071842 Brady, Jr. Jul 2006 B1
7085571 Kalhan et al. Aug 2006 B2
7096233 Mori et al. Aug 2006 B2
7110592 Kotake et al. Sep 2006 B2
7116985 Wilson et al. Oct 2006 B2
7117254 Lunt et al. Oct 2006 B2
7123189 Lalik et al. Oct 2006 B2
7123918 Goodman Oct 2006 B1
7124164 Chemtob Oct 2006 B1
7130740 Vanegas et al. Oct 2006 B2
7134040 Ayres Nov 2006 B2
7149625 Mathews et al. Dec 2006 B2
7158798 Lee et al. Jan 2007 B2
7158876 Crook Jan 2007 B2
7167910 Farnham et al. Jan 2007 B2
7171018 Rhoads et al. Jan 2007 B2
7200638 Lake Apr 2007 B2
7203753 Yeager et al. Apr 2007 B2
7206568 Sudit Apr 2007 B2
7218611 Mimura et al. May 2007 B2
7231293 Lapstun et al. Jun 2007 B2
7234117 Zaner et al. Jun 2007 B2
7236739 Chang Jun 2007 B2
7236799 Wilson et al. Jun 2007 B2
7239960 Yokota et al. Jul 2007 B2
7240106 Cochran et al. Jul 2007 B2
7243134 Bruner et al. Jul 2007 B2
7247024 Bright et al. Jul 2007 B2
7248841 Agee et al. Jul 2007 B2
7249123 Elder et al. Jul 2007 B2
7249367 Bove, Jr. et al. Jul 2007 B2
7254406 Beros et al. Aug 2007 B2
7260638 Crosbie Aug 2007 B2
7269590 Hull et al. Sep 2007 B2
7269854 Simmons et al. Sep 2007 B2
7271742 Sheha et al. Sep 2007 B2
7272357 Nishiga et al. Sep 2007 B2
7280822 Fraccaroli Oct 2007 B2
7283628 Stein et al. Oct 2007 B2
7319379 Melvin Jan 2008 B1
7333820 Sheha et al. Feb 2008 B2
7333889 Hashizume Feb 2008 B2
7336928 Paalasmaa et al. Feb 2008 B2
7340768 Rosenberger Mar 2008 B2
7343160 Morton Mar 2008 B2
7359724 Torvinen Apr 2008 B2
7359894 Liebman et al. Apr 2008 B1
7373109 Pohja et al. May 2008 B2
7386318 Moon et al. Jun 2008 B2
7392130 Rosen Jun 2008 B1
7398081 Moran Jul 2008 B2
7423580 Markhovsky et al. Sep 2008 B2
7424363 Cheng et al. Sep 2008 B2
7444237 Dale Oct 2008 B2
7444655 Sardera Oct 2008 B2
7509093 Persson et al. Mar 2009 B2
7509131 Krumm et al. Mar 2009 B2
7512702 Srivastava et al. Mar 2009 B1
7516212 Nguyen et al. Apr 2009 B2
7538691 Horstemeyer May 2009 B2
7558404 Ma et al. Jul 2009 B2
7590486 Okude et al. Sep 2009 B2
7593809 Rosen Sep 2009 B2
7617542 Vataja Nov 2009 B2
7620404 Chesnais et al. Nov 2009 B2
7624024 Levis et al. Nov 2009 B2
7630986 Herz et al. Dec 2009 B1
7680959 Svendsen Mar 2010 B2
7684815 Counts et al. Mar 2010 B2
7694156 Gammel et al. Apr 2010 B2
7698061 Singh Apr 2010 B2
7702456 Singh Apr 2010 B2
7706280 Raciborski et al. Apr 2010 B2
7729947 Philbin et al. Jun 2010 B1
7787886 Markhovsky et al. Aug 2010 B2
7809500 Couckuyt et al. Oct 2010 B2
7840224 Vengroff et al. Nov 2010 B2
7874521 Shuster Jan 2011 B2
7881945 Schmitt Feb 2011 B2
7890871 Etkin Feb 2011 B2
7912642 Zhao et al. Mar 2011 B2
7917154 Fortescue et al. Mar 2011 B2
7991548 Singh Aug 2011 B2
8000726 Altman et al. Aug 2011 B2
8010601 Jennings et al. Aug 2011 B2
8073140 Shirai et al. Dec 2011 B2
8208943 Petersen et al. Jun 2012 B2
8224353 Wright et al. Jul 2012 B2
8249807 Barbeau et al. Aug 2012 B1
8321509 Jennings et al. Nov 2012 B2
8401771 Krumm et al. Mar 2013 B2
8417266 Kim et al. Apr 2013 B2
8473729 Tretheway et al. Jun 2013 B2
8495065 Petersen et al. Jul 2013 B2
8589330 Petersen et al. Nov 2013 B2
8620532 Curtis Dec 2013 B2
8620566 Ueno Dec 2013 B2
8825074 Petersen et al. Sep 2014 B2
20010013009 Greening et al. Aug 2001 A1
20010019309 Saeki et al. Sep 2001 A1
20010029182 McCann et al. Oct 2001 A1
20010029425 Myr Oct 2001 A1
20010039659 Simmons et al. Nov 2001 A1
20010044310 Lincke Nov 2001 A1
20010047241 Khavakh et al. Nov 2001 A1
20010048449 Baker Dec 2001 A1
20010056325 Pu et al. Dec 2001 A1
20020049690 Takano Apr 2002 A1
20020062368 Holtzman et al. May 2002 A1
20020069192 Aegerter Jun 2002 A1
20020070862 Francis et al. Jun 2002 A1
20020086659 Lauper Jul 2002 A1
20020086676 Hendrey et al. Jul 2002 A1
20020087335 Meyers et al. Jul 2002 A1
20020099737 Porter et al. Jul 2002 A1
20020111813 Capps Aug 2002 A1
20020120396 Boies et al. Aug 2002 A1
20020128773 Chowanic et al. Sep 2002 A1
20020152020 Seibel Oct 2002 A1
20020156572 Bullock et al. Oct 2002 A1
20020165662 Maruyama et al. Nov 2002 A1
20030006911 Smith et al. Jan 2003 A1
20030014397 Chau et al. Jan 2003 A1
20030018607 Lennon et al. Jan 2003 A1
20030020623 Cao et al. Jan 2003 A1
20030022675 Mergler Jan 2003 A1
20030044021 Wilkinson et al. Mar 2003 A1
20030050062 Chen et al. Mar 2003 A1
20030055558 Watanabe et al. Mar 2003 A1
20030055614 Pelikan et al. Mar 2003 A1
20030065663 Chu Apr 2003 A1
20030065721 Roskind Apr 2003 A1
20030078840 Strunk et al. Apr 2003 A1
20030080868 Nelson May 2003 A1
20030105585 Ukita Jun 2003 A1
20030109985 Kotzin Jun 2003 A1
20030126100 Chithambaram Jul 2003 A1
20030126212 Morris Jul 2003 A1
20030144794 Schuessler Jul 2003 A1
20030158855 Farnham et al. Aug 2003 A1
20030163333 Podgurny et al. Aug 2003 A1
20030182052 DeLorme et al. Sep 2003 A1
20030191584 Robinson et al. Oct 2003 A1
20030195695 Maruyama et al. Oct 2003 A1
20030229549 Wolinsky et al. Dec 2003 A1
20040009750 Beros et al. Jan 2004 A1
20040025185 Goci et al. Feb 2004 A1
20040054428 Sheha et al. Mar 2004 A1
20040106415 Maeda et al. Jun 2004 A1
20040107219 Rosenberger Jun 2004 A1
20040117110 Sasajima Jun 2004 A1
20040148393 Breiter et al. Jul 2004 A1
20040158393 Oonishi et al. Aug 2004 A1
20040160307 Saikkonen et al. Aug 2004 A1
20040172191 Vitikainen Sep 2004 A1
20040181668 Blew et al. Sep 2004 A1
20040186661 Barton Sep 2004 A1
20040192331 Gorday et al. Sep 2004 A1
20040192339 Wilson et al. Sep 2004 A1
20040196163 Takenaga et al. Oct 2004 A1
20040203902 Wilson et al. Oct 2004 A1
20040203903 Wilson et al. Oct 2004 A1
20040224702 Chaskar Nov 2004 A1
20040225436 Yoshihashi Nov 2004 A1
20040225519 Martin Nov 2004 A1
20050015197 Ohtsuji et al. Jan 2005 A1
20050015432 Cohen Jan 2005 A1
20050015800 Holcomb Jan 2005 A1
20050021369 Cohen et al. Jan 2005 A1
20050027442 Kelley et al. Feb 2005 A1
20050033780 Simelius et al. Feb 2005 A1
20050038876 Chaudhuri Feb 2005 A1
20050043881 Brulle-Drews et al. Feb 2005 A1
20050050027 Yeh et al. Mar 2005 A1
20050059379 Sovio et al. Mar 2005 A1
20050060088 Helal et al. Mar 2005 A1
20050060350 Baum et al. Mar 2005 A1
20050064864 Horton et al. Mar 2005 A1
20050070298 Caspi et al. Mar 2005 A1
20050071221 Selby Mar 2005 A1
20050080556 Toelle Apr 2005 A1
20050096840 Simske May 2005 A1
20050102098 Montealegre et al. May 2005 A1
20050102101 Beesley et al. May 2005 A1
20050130634 Godfrey Jun 2005 A1
20050131628 Peeters Jun 2005 A1
20050143097 Wilson et al. Jun 2005 A1
20050160270 Goldberg et al. Jul 2005 A1
20050174975 Mgrdechian et al. Aug 2005 A1
20050192742 Okochi Sep 2005 A1
20050197846 Pezaris et al. Sep 2005 A1
20050198305 Pezaris et al. Sep 2005 A1
20050209773 Hara Sep 2005 A1
20050210387 Alagappan et al. Sep 2005 A1
20050231425 Coleman et al. Oct 2005 A1
20050245233 Anderson Nov 2005 A1
20050246095 Banet et al. Nov 2005 A1
20050251453 Lu Nov 2005 A1
20050251565 Weel Nov 2005 A1
20050251807 Weel Nov 2005 A1
20050256635 Gardner et al. Nov 2005 A1
20050256813 Bahbouh et al. Nov 2005 A1
20050272413 Bourne Dec 2005 A1
20050278371 Funk et al. Dec 2005 A1
20050288859 Golding Dec 2005 A1
20060004512 Herbst et al. Jan 2006 A1
20060004713 Korte et al. Jan 2006 A1
20060009907 Kuroda et al. Jan 2006 A1
20060015249 Gieseke Jan 2006 A1
20060031007 Agnew et al. Feb 2006 A1
20060036363 Crook Feb 2006 A1
20060036457 McNamara Feb 2006 A1
20060046740 Johnson Mar 2006 A1
20060046743 Mirho Mar 2006 A1
20060047568 Eisenberg et al. Mar 2006 A1
20060048059 Etkin Mar 2006 A1
20060069500 Hashizume Mar 2006 A1
20060069503 Suomela et al. Mar 2006 A1
20060080029 Kodani et al. Apr 2006 A1
20060080034 Hayashi Apr 2006 A1
20060082472 Adachi et al. Apr 2006 A1
20060085419 Rosen Apr 2006 A1
20060085821 Simmons et al. Apr 2006 A9
20060112067 Morris May 2006 A1
20060112141 Morris May 2006 A1
20060129308 Kates Jun 2006 A1
20060149461 Rowley et al. Jul 2006 A1
20060149628 Chefalas et al. Jul 2006 A1
20060149631 Brazell et al. Jul 2006 A1
20060161599 Rosen Jul 2006 A1
20060166679 Karaoguz et al. Jul 2006 A1
20060168264 Baba et al. Jul 2006 A1
20060184313 Butler Aug 2006 A1
20060203804 Whitmore et al. Sep 2006 A1
20060217879 Ikeuchi et al. Sep 2006 A1
20060218225 Hee Voon et al. Sep 2006 A1
20060223518 Haney Oct 2006 A1
20060227047 Rosenberg Oct 2006 A1
20060229058 Rosenberg Oct 2006 A1
20060229802 Vertelney et al. Oct 2006 A1
20060229939 Bhakta et al. Oct 2006 A1
20060238409 Yoshioka et al. Oct 2006 A1
20060240856 Counts et al. Oct 2006 A1
20060247849 Mohsini et al. Nov 2006 A1
20060247852 Kortge et al. Nov 2006 A1
20060256959 Hymes Nov 2006 A1
20060265119 McMahan et al. Nov 2006 A1
20060265121 Kuo et al. Nov 2006 A1
20060266830 Horozov et al. Nov 2006 A1
20060270419 Crowley et al. Nov 2006 A1
20060287815 Gluck Dec 2006 A1
20070005419 Horvitz et al. Jan 2007 A1
20070008129 Soliman Jan 2007 A1
20070015518 Winter et al. Jan 2007 A1
20070030824 Ribaudo et al. Feb 2007 A1
20070032242 Goodman Feb 2007 A1
20070032942 Thota Feb 2007 A1
20070037574 Libov et al. Feb 2007 A1
20070050129 Salmre Mar 2007 A1
20070073937 Feinberg et al. Mar 2007 A1
20070075898 Markhovsky et al. Apr 2007 A1
20070078596 Grace Apr 2007 A1
20070083428 Goldstein Apr 2007 A1
20070093955 Hughes Apr 2007 A1
20070118278 Finn et al. May 2007 A1
20070121843 Atazky et al. May 2007 A1
20070124157 Laumeyer et al. May 2007 A1
20070135138 Brown et al. Jun 2007 A1
20070136132 Weiser et al. Jun 2007 A1
20070142065 Richey et al. Jun 2007 A1
20070149214 Walsh et al. Jun 2007 A1
20070150444 Chesnais et al. Jun 2007 A1
20070155416 Donnellan Jul 2007 A1
20070159299 Tsai Jul 2007 A1
20070167174 Halcrow et al. Jul 2007 A1
20070168208 Aikas et al. Jul 2007 A1
20070168254 Steelberg et al. Jul 2007 A1
20070168888 Jawerth Jul 2007 A1
20070174243 Fritz Jul 2007 A1
20070186007 Field et al. Aug 2007 A1
20070202844 Wilson et al. Aug 2007 A1
20070203644 Thota et al. Aug 2007 A1
20070205276 Sodan et al. Sep 2007 A1
20070218867 Mononen et al. Sep 2007 A1
20070218900 Abhyanker Sep 2007 A1
20070237096 Vengroff et al. Oct 2007 A1
20070244633 Phillips et al. Oct 2007 A1
20070250476 Krasnik Oct 2007 A1
20070255785 Hayashi et al. Nov 2007 A1
20070255831 Hayashi et al. Nov 2007 A1
20070260393 Abernethy et al. Nov 2007 A1
20070271136 Strauss et al. Nov 2007 A1
20070282621 Altman et al. Dec 2007 A1
20080004043 Wilson et al. Jan 2008 A1
20080016018 Malik Jan 2008 A1
20080016205 Svendsen Jan 2008 A1
20080027643 Basir et al. Jan 2008 A1
20080030376 Tunnell et al. Feb 2008 A1
20080033809 Black et al. Feb 2008 A1
20080039121 Muller et al. Feb 2008 A1
20080048856 Culpepper et al. Feb 2008 A1
20080076418 Beyer, Jr. Mar 2008 A1
20080077595 Leebow Mar 2008 A1
20080086741 Feldman et al. Apr 2008 A1
20080097999 Horan Apr 2008 A1
20080106599 Liu et al. May 2008 A1
20080113674 Baig May 2008 A1
20080118106 Kilambi et al. May 2008 A1
20080126476 Nicholas et al. May 2008 A1
20080132252 Altman et al. Jun 2008 A1
20080134088 Tse et al. Jun 2008 A1
20080140650 Stackpole Jun 2008 A1
20080146157 Aaron Jun 2008 A1
20080155080 Marlow et al. Jun 2008 A1
20080177469 Geelen et al. Jul 2008 A1
20080182563 Wugofski et al. Jul 2008 A1
20080182591 Krikorian Jul 2008 A1
20080183814 Sanghavi Jul 2008 A1
20080188246 Sheha et al. Aug 2008 A1
20080188261 Arnone Aug 2008 A1
20080195428 O'Sullivan Aug 2008 A1
20080201225 Maharajh et al. Aug 2008 A1
20080208652 Srivastava Aug 2008 A1
20080222295 Robinson et al. Sep 2008 A1
20080227473 Haney Sep 2008 A1
20080242271 Schmidt et al. Oct 2008 A1
20080248815 Busch Oct 2008 A1
20080249983 Meisels et al. Oct 2008 A1
20080250312 Curtis Oct 2008 A1
20080262717 Ettinger Oct 2008 A1
20080280626 Choi et al. Nov 2008 A1
20080280635 Lei et al. Nov 2008 A1
20080288355 Rosen Nov 2008 A1
20080288375 Uhrig et al. Nov 2008 A1
20080294556 Anderson Nov 2008 A1
20080306826 Kramer et al. Dec 2008 A1
20080318597 Berns et al. Dec 2008 A1
20080319808 Wofford et al. Dec 2008 A1
20090005965 Forstall et al. Jan 2009 A1
20090005968 Vengroff et al. Jan 2009 A1
20090005987 Vengroff et al. Jan 2009 A1
20090012955 Chu et al. Jan 2009 A1
20090023410 Ghosh Jan 2009 A1
20090024315 Scheibe Jan 2009 A1
20090030778 Zapata et al. Jan 2009 A1
20090030999 Gatzke et al. Jan 2009 A1
20090047972 Neeraj Feb 2009 A1
20090055229 Lidgren et al. Feb 2009 A1
20090063205 Shibasaki Mar 2009 A1
20090076894 Bates et al. Mar 2009 A1
20090082038 McKiou et al. Mar 2009 A1
20090085724 Naressi et al. Apr 2009 A1
20090094527 Parupudi et al. Apr 2009 A1
20090103722 Anderson et al. Apr 2009 A1
20090104920 Moon et al. Apr 2009 A1
20090106314 Song et al. Apr 2009 A1
20090110177 Sivakumar Apr 2009 A1
20090111438 Chan Apr 2009 A1
20090112467 Jiang et al. Apr 2009 A1
20090115570 Cusack, Jr. May 2009 A1
20090115617 Sano et al. May 2009 A1
20090125230 Sullivan May 2009 A1
20090132365 Gruenhagen et al. May 2009 A1
20090132652 Athale et al. May 2009 A1
20090138346 Kalaboukis et al. May 2009 A1
20090143984 Baudisch et al. Jun 2009 A1
20090144211 O'Sullivan et al. Jun 2009 A1
20090150501 Davis et al. Jun 2009 A1
20090156160 Evans et al. Jun 2009 A1
20090157312 Black et al. Jun 2009 A1
20090157693 Palahnuk Jun 2009 A1
20090164431 Zivkovic et al. Jun 2009 A1
20090164459 Jennings et al. Jun 2009 A1
20090164503 Jung et al. Jun 2009 A1
20090164574 Hoffman Jun 2009 A1
20090164919 Bates et al. Jun 2009 A1
20090182492 Alten Jul 2009 A1
20090201896 Davis et al. Aug 2009 A1
20090210480 Sivasubramaniam et al. Aug 2009 A1
20090222388 Hua et al. Sep 2009 A1
20090224970 Tsau Sep 2009 A1
20090234711 Ramer et al. Sep 2009 A1
20090239552 Churchill et al. Sep 2009 A1
20090286550 Weinroth Nov 2009 A1
20090287783 Beare et al. Nov 2009 A1
20090312033 Shen et al. Dec 2009 A1
20090315670 Naressi et al. Dec 2009 A1
20090319178 Khosravy et al. Dec 2009 A1
20100004857 Pereira et al. Jan 2010 A1
20100004997 Mehta et al. Jan 2010 A1
20100020776 Youssef et al. Jan 2010 A1
20100027527 Higgins et al. Feb 2010 A1
20100030459 Geelen et al. Feb 2010 A1
20100030578 Siddique et al. Feb 2010 A1
20100030740 Higgins et al. Feb 2010 A1
20100042364 Nakamura et al. Feb 2010 A1
20100042511 Sundaresan et al. Feb 2010 A1
20100064007 Randall Mar 2010 A1
20100069035 Johnson Mar 2010 A1
20100082301 Skibiski et al. Apr 2010 A1
20100088148 Presswala Apr 2010 A1
20100103277 Leebow Apr 2010 A1
20100130226 Arrasvuori et al. May 2010 A1
20100130233 Parker May 2010 A1
20100169131 Robertson Jul 2010 A1
20100197318 Petersen et al. Aug 2010 A1
20100197319 Petersen et al. Aug 2010 A1
20100198814 Petersen et al. Aug 2010 A1
20100198826 Petersen et al. Aug 2010 A1
20100198862 Jennings et al. Aug 2010 A1
20100198870 Petersen et al. Aug 2010 A1
20100198917 Petersen et al. Aug 2010 A1
20100203953 Alderucci et al. Aug 2010 A1
20100217525 King et al. Aug 2010 A1
20100250727 King et al. Sep 2010 A1
20110136506 Stewart Jun 2011 A1
20120003998 McGary Jan 2012 A1
20120041672 Curtis Feb 2012 A1
20120041983 Jennings Feb 2012 A1
20120042046 Petersen et al. Feb 2012 A1
20120042258 Etkin Feb 2012 A1
20120046860 Curtis et al. Feb 2012 A1
20120047087 Amidon et al. Feb 2012 A1
20120047102 Petersen et al. Feb 2012 A1
20120052883 Austin Mar 2012 A1
20120072495 Jennings et al. Mar 2012 A1
20130035114 Holden et al. Feb 2013 A1
20140087752 Zhu Mar 2014 A1
20140201276 Lymberopoulos Jul 2014 A1
20150142822 Xue May 2015 A1
Foreign Referenced Citations (11)
Number Date Country
1776684 May 2006 CN
101118162 Feb 2008 CN
1338966 Aug 2003 EP
1463354 Dec 2005 EP
09-287970 Apr 1997 JP
2003132158 May 2003 JP
2004045054 Feb 2004 JP
WO 0146781 Jun 2001 WO
WO 03081391 Oct 2003 WO
WO 2007103886 Sep 2007 WO
WO 2008000046 Jan 2008 WO
Non-Patent Literature Citations (122)
Entry
MacArthur, Amanda, “21 iPhone Food Apps to Eat Your Heart Out,” at <http://mashable.com/2008/08/13/iphone-food-apps/>, Aug. 13, 2008, 11 pages.
Borah, B., et al., “A Clustering Technique Using Density Difference,” IEEE—ICSCN 2007, MIT Campus, Anna University, Chennai, India, Feb. 22-24, 2007, pp. 585-588.
Vigueras, G. et al., “A comparative study of partitioning methods for crowd simulations,” Applied Soft Computing, vol. 10, Issue 1, Jan. 2010, available online Jul. 22, 2009, pp. 225-235, 12 pages.
Bettini, C. et al., “A Distributed Architecture for Management and Retrieval of Extended Points of Interest,” In Proceedings of the 25th IEEE International Conference on Distributed Computing Systems—Workshops (ICDCS 2005 Workshops), Jun. 6-10, 2005, Columbus, Ohio, IEEE Computer Society, 2005, pp. 266-272, 7 pages.
“About Google Map Maker,” at <http://sites.google.com/site/mapmakeruserhelp/home>, printed May 21, 2009, 1 page.
“AirSage's WiSE Technology,” at <http://www.airsage.com/site/index.cfm?id—art=46598&actMenuItemID=22134&vsprache/EN/AIRSAGE—WiSE—TECHNOLOGY—L.cfm>, viewed as early as Mar. 22, 2010, company founded in May 2000, 1 page.
Iannella, R., “An Idiot's Guide to the Resource Description Framework,” The New Review of Information Networking, vol. 4, Sep. 3, 1998, pp. 1-10.
“Anthem—Overview,” at <http://www.intercastingcorp.com/platform/anthem>, copyright 2004-2007, Intercasting Corp., printed Jan. 16, 2008, 2 pages.
“Apple—iPod classic,” at <http://www.apple.com/ipodclassic/>, printed Oct. 26, 2007, 1 page.
Penrod, Sam, “Automobile Navigator,” Magellan's Roadmate 360, Dec. 18, 2005, <http://www.gpsinformation.org/penrod/rm360/rm360.html>17 pages.
“Bluetooth.com—Learn,” http://www.bluetooth.com/Bluetooth/Learn/, copyright 2007 Bluetooth SIG, Inc., printed Oct. 26, 2007, 1 page.
Oh, Sejin et al., “CAMAR: Context-aware Mobile Augmented Reality in Smart Space,” In Proceedings of International Workshop on Ubiquitous Virtual Reality 2009, Bruce Thomas et al. (Eds.), Jan. 15-18, 2009, University of South Australia, Adelaide, Australia, pp. 48-51, 4 pages.
Dogru, Muzaffer, “Car Pooling With GIS Map Server and Web Services,” Department of Information Technology, University of Zurich, Switzerland, Aug. 6, 2004, pp. 1-83.
“CitySense—Powered by Sense Networks,” at <http://www.citysense.com/moreinfo.php>, copyright 2008, Sense Networks, printed Sep. 8, 2009, 2 pages.
“Club TomTom,” at <http://www.clubtomtom.com/general/get-to-know-tomtom-mapshare%E2%84%A2/>, Jul. 31, 2007, copyright TomTom, printed Mar. 12, 2010, 9 pages.
“ConnectingCadence.com—Mapping the social world.,” at <http://www.connectingcadence.com/>, found on the Internet Archive, copyright 2008, ConnectingCadence, printed Apr. 28, 2011, 1 page.
“Creating Custom Properties for Files and Folders,” [online] May 1999 [retrieved on Mar. 4, 2007] Retrieved from the Internet: <URL: http://www.bc.edu/offices/help/meta-elements/doc/articles/html/MYF-customprops.shtml> 5 pages.
Wu et al., “Crowd Flow Segmentation Using a Novel Region Growing Scheme,” In Proceedings PCM 2009, 10th Pacific Rim Conference on Multimedia, Bangkok, Thailand, Dec. 15-18, 2009, pp. 898-907, 10 pages.
Benford, S. et al., “Crowded Collaborative Virtual Environments,” Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, Atlanta, Georgia, Mar. 22-27, 1997, 7 pages.
Zahradnik, Fred, “Dash Express is Innovative, but There's Room for Improvement,” at <http://gps.about.com/od/incarportablegp1/fr/dash—review.htm>, from the Internet Archive, dated Nov. 8, 2009, printed Apr. 20, 2012, 3 pages.
Jain, A. K., “Data Clustering: 50 Years Beyond K-Means,” 19th International Conference on Pattern Recognization (ICPR), Tampa, FL, Dec. 8, 2008, 33 pages.
Anciaux, N. et al., “Data Degradation: Making Private Data Less Sensitive Over Time,” CIKM 2008, Oct. 26-30, 2008, Napa Valley, California, 2 pages.
“Dating Service—Singles, Personals and Love, Match.com,” http://www.match.com/, copyright 2008 Match.com, printed Jan. 16, 2008, 2 pages.
Agostini, A. et al., “Demo: Ontology-based Context-aware Delivery of Extended Points of Interest,” 6th International Conference on Mobile Data Management (MDM'05), Ayia Napa, Cyprus, May 9-13, 2005, copyright 2005, ACM, 2 pages.
Marshall, M., “Destination Known,” The Mercury News [online] (Sep. 27, 2004) [retrieved on Aug. 2, 2005] Retrieved from the Internet: <URL: http://www.mercurynews.com/mid/mercury-news/business/9770733.htm?1c> 2 pages.
Millonig, A. and Schechtner, K., “Developing Landmark-based Pedestrian Navigation Systems,” Proceedings of the 8th International IEEE Conference on Intelligent Transportation Systems, Vienna, Austria, Sep. 13-16, 2005, copyright 2005, IEEE, 6 pages.
Harney, John, Digital prospecting—social networks in sales, Jun. 1, 2004, KMWorld.com, available at <http://www.kmworld.com/Articles/ReadArticle.aspx?ArticleID=9558>, printed Dec. 21, 2011, 3 pages.
Davies, J. J. et al., “Distributed, vehicular computation for map generation,” presentation slides, 2007 Annual Meeting of the Association of American Geographers, Apr. 2007, found at <http://www.cl.cam.ac.uk/research/dtg/www/files/publications/public/027/davies-aag07.pdf>, 21 pages.♂.
“dodgeball.com :: mobile social software,” at <http://www.dodgeball.com/>, copyright 2008, Google Inc., printed Jan. 16, 2008, 1 page.
Ngai, Wang Kay et al., “Efficient Clustering of Uncertain Data,” Proceedings of the Sixth International Conference on Data Mining (ICDM'06), Dec. 18-22, 2006, pp. 436-445, copyright 2006, IEEE, 10 pages.
“eHarmony,” http://eharmony.com/, copyright 2000-2008 eHarmony.com, printed Jan. 16, 2008, 1 page.
Abstract, Ekpenyong, F., Palmer-Brown, D., and Brimicombe, A., “Extracting road information from recorded GPS data using snap-drift neural network,” Neurocomputing, vol. 73, Issues 1-3, Dec. 2009, pp. 24-36, 6 pages.
Ertoz, L. et al., “Finding Clusters of Different Sizes, Shapes, and Densities in Noisy, High Dimensional Data,” Proceedings of the 2003 SIAM International Conference on Data Mining (SDM 2003), Jan. 24, 2003, pp. 47-58, San Francisco, CA, 12 pages.
“Fire Eagle,” at <http://fireeagle.yahoo.net>, copyright 2007-2011, Yahoo! Inc., printed Apr. 28, 2011, 2 pages.
“Fire Eagle : What is Fire Eagle?”, found at <http://fireeagle.yahoo.net/help> on the Internet Archive, dated Jul. 9, 2011, copyright 2007-2011, Yahoo! Inc., printed Nov. 10, 2011, 4 pages.
“Flickr,” http://www.flickr.com/, copyright 2008 Yahoo! Inc., printed Jan. 16, 2008, 1 page.
“Flickr Shapefiles Public Dataset 1.0,” posted by aaron on May 21, 2009, found at <http://code.flickr.com/blog/2009/05/21/flickr-shapefiles-public-dataset-10/>, Yahoo! Inc., printed Jul. 13, 2011, 5 pages.
“Friend of a Friend (FOAF) project,” at <http://www.foaf-project.org/>, from the Internet Archive dated May 26, 2008, printed Aug. 10, 2012, 2 pages.
“Friendster—Home,” http://www.friendster.com/, copyright 2002-2007 Friendster, Inc., printed Jan. 16, 2008, 1 page.
“Garmin: MapSource POI Sources,” at <http://www8.garmin.com/products/poiloader/POISource/>, earliest date available for this webpage on Internet Archive is Oct. 24, 2005, copyright 1996-2012, Garmin Ltd., printed Apr. 3, 2012, 4 pages.
“Google AdWords: Regional and Local Targeting,” https://adwords.google.com/select/targeting.html, copyright 2008 Google, printed Jul. 17, 2008, 1 page.
Shankland, Stephen, “Google crowdsources maps directions, too,” Mar. 11, 2009, at <http://news.cnet.com/8301-17939—109-10193481-2.html>, printed May 21, 2009, 3 pages.
“Google Maps,” at <http://maps.google.com>, printed May 3, 2011, 1 page.
“Google Talk,” http://www.google.com/talk/, copyright 2008 Google, printed Jan. 16, 2008, 1 page.
“Goombah” Preview, at <http://www.goombah.com/preview.html>, printed Jan. 8, 2008, 5 pages.
“GPS Mapping Software” [online] Des Newman's OziExplorer [retrieved on Aug. 2, 2005] Retrieved from the Internet <URL: http://www.ozieplorer.com> 2 pages.
“GPS software for cell phones, update Nov. 2008,” Nov. 2008, at <http://www.gps-practice-and-fun.com/gps-software-for-cell-phones-update.html>, copyright GPS-practice-and-fun.com, printed Apr. 22, 2009, 6 pages.
“Harnessing Dynamic Personal Social Network Applications,” posted Jan. 13, 2009, peterpixel, at <http://www.peterpixel.nl/writings/harnessing-dynamic-personal-social-network-applications/>, printed Jun. 12, 2009, 4 pages.
Tan, Thai, “Honda GPS with Weather Info and Social Networking,” Oct. 16, 2006, laptoplogic.com, at <http://laptoplogic.com/news/detail.php?id=1557>, copyright 2007-2009, LaptopLogic, printed Apr. 22, 2009, 3 pages.
Arrington, M., “I Saw the Future of Social Networking the Other Day,” TechCrunch, Apr. 9, 2008, at <http://www.techcrunch.com/2008/04/09/i-saw-the-future-of-social-networking-the-other-day/>, printed May 27, 2009, 28 pages.
“iChat. Not being there is half the fun,” http://www.apple.com/macosx/features/ichat.html, printed Jan. 16, 2008, 1 page.
“icq,” http://www.icq.com/, copyright 1998-2008 ICQ Inc., printed Jan. 16, 2008, 2 pages.
Bruntrup, R. et al., “Incremental Map Generation with GPS Traces,” Presentation Slides, University of Dortmund, Germany, 2005, found at <http://www.google.com/url?sa=t&rct=j&q=bruntrup%20incremental%20map%20generation&source=web&cd=2&ved=0CCoQFjAB&url=http%3A%2F%2Fmapgeneration.berlios.de%2Ftiki%2Ftiki-download—wiki—attachment.php%3FattId%3D1&ei=ZruVT—O8J9L16AGV-LGKBA&usg=AFQjCNF4B61uAHpAjtDc46FyNLqw4bgl1A>, 16 pages.
Bruntrup, R., et al., “Incremental Map Generation with GPS Traces,” in Proc. of the IEEE Conference on Intelligent Transportation Systems, Sep. 13-16, 2005, Vienna, Austria, pp. 574-579, copyright 2005, IEEE, 7 pages.
“Instant Messenger—AIM—Instant Message Your Online Buddies for Free—AIM,” http://dashboard.aim.com/aim, copyright 2007 AOL LLC, printed Nov. 8, 2007, 6 pages.
“Intel and ARM collaborate on device security,” Oct. 15, 2007, at <http://www.windowsfordevices.com/news/NS5120676853.html>, copyright 1996-2010, Ziff Davis Enterprise Holdings, Inc., printed Apr. 20, 2012, 5 pages.
“Internet Relay Chat—Wikipedia, the free encyclopedia,” http://en.wikipedia.org/wiki/IRC, printed Nov. 16, 2007, 11 pages.
“IP Multimedia Subsystem,” http://en.wikipedia.org/wiki/IP—Multimedia—Subsystem, printed Jul. 8, 2009, 11 pages.
Estrin, M., “Is the MySpace crowd lying to marketers?”, Oct. 16, 2007, posted at iMedia Connection, at <http://www.imediaconnection.com/content/16993.asp>, copyrighted by iMedia Communications, Inc., printed Apr. 28, 2011, 2 pages.
“Jabber SoftwareFoundation,” http://www.jabber.org/, copyright 1999-2005 the Jabber Software Foundation, printed Jan. 16, 2008, 3 pages.
Acroterion, “Knowledge Base Social Network Applications,” available at <http://www.acroterion.ca/Knowledge—Base—Social—Network—Applications.html>, copyright 2001-2005, printed Dec. 21, 2011, 2 pages.
Ardagna, C.A. et al., “Location Privacy Protection Through Obfuscation-based Techniques,” Lecture Notes in Computer Science, 2007, vol. 4602, pp. 47-60, Data and Applications Security XXI, Jul. 8-11, 2007, Redondo Beach, California, 16 pages.
“About Loopt,” at <http://about.loopt.com/>, printed May 3, 2011, 4 pages.
“Loopt—About Us,” at <https://loopt.com/loopt/aboutUs.aspx>, from the Internet Archive, dated Jun. 29, 2007, copyright 2007, Loopt, Inc., 1 page.
Jones, M., “Matt's Wikimapia Blog,” Sep. 15, 2006, at <http://wikimapia.mattjonesblog.com/2006/09/15/how-to-1-adding-a-new-place/>, printed May 21, 2009, 24 pages.
Microsoft Outlook 2000 SP-3, email example, printed Oct. 23, 2007, copyright 1995-1999, Microsoft Corp., 3 pages.
“MobiClique,” publication date unknown (copyright 2007-2009), Thomson, originally found at <http://www.thlab.net/˜apietila/mobiclique/>, printed Oct. 23, 2009, 5 pages.
Amin, Saurabh et al., “Mobile Century—Using GPS Mobile Phones as Traffic Sensors: A Field Experiment,” 15th World Conference on Intelligent Transportation Systems, Nov. 16-20, 2008, New York, New York, available from <http://www.ce.berkeley.edu/˜bayen/conferences/its08.pdf>, 4 pages.
“Mobile community, free sms, mobile dating, text flirting and friends networking—playtxt . . . ,” http://web.archive.org/web/20070225125113rn—1/www.playtxt.net/playtxt.do, printed Jan. 16, 2008, 1 page.
Abstract, Ratti, C. et al., “Mobile Landscapes: using location data from cell phones for urban analysis,” Environment and Planning B: Planning and Design, vol. 33, No. 5, 2006, pp. 727-748, 1 page.
Choney, Suzanne, “Mobile services mushroom for locating friends,” Aug. 14, 2008, copyright 2008, MSNBC.com, 1 page.
“MySpace,” at <http://www.myspace.com/>, copyright 2003-2008, MySpace.com, printed Jan. 16, 2008, 2 pages.
Priya Ganapati, “Navigation Companies Crowdsource Maps, Traffic Services,” Feb. 11, 2009, at <http://www.wired.com/gadgetlab/2009/02/user-generated/>, printed May 21, 2009, 4 pages.
“NAVTEQ: The secrets behind Ovi Maps,” at <http://noknok.tv/2009/07/08/navteq-the-secrets-behind-ovi-maps/>, Jul. 8, 2009, copyright 2007-2010, Republic Publishing Ltd, printed Mar. 12, 2010, 6 pages.
Privat, Ludovic, “NAVX: ‘We provide Content to TomTom, Garmin and Mio,’” GPS Business News, Feb. 2, 2009, at <http://www.gpsbusinessnews.com/NAVX-we-provide-content-to-TomTom,-Garmin-and-Mio-—a1305.html>, printed Apr. 20, 2012, 2 pages.
“Neatcall—Products,” found at <http://neatcall.com/index.php?dir=site&page=content&cs=3008> on Internet Archive, dated Mar. 1, 2010, copyright 2010, Neatcall Ltd., printed Oct. 26, 2011, 2 pages.
Ye, Y., et al., “Neighborhood Density Method for Selecting Initial Cluster Centers in K-Means Clustering,” PAKDD 2006, pp. 189-198.
“Off Road Navigation” [online] Thales Navigation, Inc., 2005 [retrieved on Aug. 2, 2005] Retrieved from the Internet: <URL: http://www.magellangps.com/assets/manuals/newprod/manual—offroadnav.pdf> 21 pages.
“Online adult dating service and personals—Lavalife—Where Singles Click,” at <http://lavalife.com/>, copyright 2006, Lavalife Corp., printed Jan. 16, 2008, 1 page.
Hardt, D. et al., “OpenID Attribute Exchange 1.0—Final,” at <http://openid.net/specs/openid-attribute-exchange-1—0.html>, Dec. 5, 2007, 11 pages.
“OpenID Foundation website,” at <http://openid.net>, copyright 2006-2011, OpenID Foundation, printed Apr. 28, 2011, 2 pages.
“OpenLDA Software 2.3 Administrator's Guide: Schema Specification,” [online] Jun. 2003 [retrieved on Mar. 4, 2007] Retrieved from the Internet: <URL: http://www.openldap.org/doc/admin23/schema.html> pp. 2-8.
“OpenStreetMap,” <http://www.openstreetmap.org/>, printed May 21, 2009, 1 page.
PAJ 2003-132158.
Quinn, M. et al., “Parallel Implementation of the Social Forces Model,” Proceedings of the Second International Conference in Pedestrian and Evacuation Dynamics, Greenwich, England, 2003, pp. 63-74, found at <http://web.engr.oregonstate.edu/˜metoyer/docs/parallelPeds.pdf>, 12 pages.
“Picasa,” Wikipedia, at <http://en.wikipedia.org/wiki/Picasa>, from the Internet Archive, dated Feb. 5, 2009, last modified Feb. 4, 2009, printed May 17, 2012, 7 pages.
“Plazes—Right Plaze, Right Time,” at <http://plazes.com>, copyright 2004-2011, Plazes AG, printed May 3, 2011, 2 pages.
Miller, B. N. et al., “PocketLens: Toward a Personal Recommender System,” ACM Transactions on Information Systems, vol. 22, No. 3, Jul. 2004, pp. 437-476, 40 pages.
“Portable Contacts,” at <http://portablecontacts.net>, from the Internet Archive dated Mar. 5, 2009, printed Mar. 27, 2012, 2 pages.
Cox, L.P. et al., “Presence-Exchanges: Toward Sustainable Presence-Sharing,” In Proc. of 7th IEEE Workshop on Mobile Computing Systems and Applications, Apr. 6-7, 2006, Semiahmoo Resort, Washington, pp. 55″60, 6 pages.
“Rabble—Social networking for your phone,” http://www.rabble.com/, copyright 2005-2008 Intercasting Corp., printed Jan. 16, 2008, 1 page.
“Reality Mining,” at <http://reality.media.mit.edu/dyads.php>, copyright 2009, Nathan Eagle, Massachusetts Institute of Technology, with references back to 2000, 3 pages.
“Resource Description Framework (RDF) / W3C Semantic Web Activity,” at <http://www.w3.org/RDF/>, from the Internet Archive dated Jul. 30, 2008, printed Aug. 10, 2012, 6 pages.
“RFID in Japan, Crossing the Chasm, RFID Gets Bendy,” Card Korea & Ubiquitous Biz Show 2005 in Seoul [online] (Mar. 17, 2005), [retrieved on Aug. 2, 2005] Retrieved from the Internet: <URL: http://ubiks.net/local/blog/jmt/archives3/003524.html> 2 pages.
Davies, J. J. et al., “Scalable, Distributed, Real-Time Map Generation,” Pervasive Computing, vol. 5, No. 4, Oct.-Dec. 2006, pp. 47-54, copyright 2006, IEEE, 9 pages.
Abstract, “Self-Organized Pedestrian Crowd Dynamics: Experiments, Simulations, and Design Solutions,” by Helbing, D. et al., Transportation Science, vol. 39, Issue 1, Feb. 2005, obtained from ACM Digital Library at <http://portal.acm.org/citation.cfm?id=1247227>, printed Apr. 28, 2011, 2 pages.
“Sense Networks,” at <http://www.sensenetworks.com/about—us.php>, copyright 2008-2010, Sense Networks, printed Apr. 28, 2011, 1 page.
“Sense Networks—Machine Learning,” at <http://www.sensenetworks.com/machine—learning.php>, copyright 2008-2009, Sense Networks, printed Jan. 12, 2009, 2 pages.
“Sense Networks—Technology,” at <http://www.sensenetworks.com/technology.php>, copyright 2008-2009, Sense Networks, printed Jan. 12, 2009, 2 pages.
“Sense Networks—The Minimum Volume Embedding Algorithm,” at <http://www.sensenetworks.com/mve—algorithm.php>, copyright 2008-2009, Sense Networks, printed Jan. 12, 2009, 2 pages.
Abstract, “Sensor networks for social networks,” by Farry, M.P., Thiesis, Dept. of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Feb. 2006, obtained from Dspace@MIT, at <http://dspace.mit.edu/handle/1721.1/36764>, printed Apr. 28, 2011, 3 pages.
“Six degrees of separation,” at <http://en.wikipedia.org/wiki/Six—degrees—of—separation>, last modified on Apr. 19, 2011,printed Apr. 28, 2011, 11 pages.
“SmallPlanet: Home,” http://web.archive.org/web/20061105030323/http://www.smallplanet.net/, copyright 2005 SmallPlanet.net, printed Jan. 16, 2008, 1 page.
Cox et al., “SmokeScreen: Flexible Privacy Controls for Presence-Sharing,” Proceedings of the 5th International Conference on Mobile Systems, Applications, and Services (2007) (MobiSys '07), Jun. 11-13, 2007, San Juan, Puerto Rico, 13 pages.
“Social Serendipity,” MIT Media Lab: Reality Mining, at <http://reality.media.mit.edu/serendipity.php>, available online as early as Apr. 2005, copyright 2009, Nathan Eagle / Massachusetts Institute of Technology, printed Jun. 12, 2009, 10 pages.
“Statistical inference,” Wikipedia, at <http://en.wikipedia.org/wiki/Inferential—statistics>, from the Internet Archive, dated Feb. 3, 2009, last updated Aug. 25, 2008, printed Apr. 20, 2012, 3 pages.
“Technology—Geo Targeting,” http://www.invidi.com/pages/itc—technology—05.html, copyright 2007, printed Nov. 18, 2008, 1 page.
“Tele Atlas Leverages Community Input to Add New Roads and Location Content,” at <http://www.teleatlas.com/WhyTeleAtlas/Pressroom/PressReleases/TA—CT031226>, Jun. 22, 2009, Gent, Belgium, copyright 2010, Tele Atlas BV, printed Mar. 12, 2010, 2 pages.
“TomTom Map Share technology,” at <http://www.tomtom.com/page/mapshare>, copyright 2009, TomTom International BV, printed Mar. 12, 2010, 3 pages.
Agostini, A. et al., “Towards Highly Adaptive Services for Mobile Computing,” In Proceedings of IFIP TC8 Working Conference on Mobile Information Systems (MOBIS), Sep. 15-17, 2004, Oslo, Norway, Springer, 2004, pp. 121-134, 14 pages.
“TrackItBack—The World's Largest Lost & Found Recovery Service | News,” articles dating from Mar. 29, 2005, to Jun. 27, 2008, found at <http://www.trackitback.com/portal/press.html>, copyright 2003-2011, TrackItBack, printed on Apr. 18, 2011, 4 pages.
Ekpenyong, F. et al., “Updating of Road Network Databases: Spatio-Temporal Trajectory Grouping Using Snap-Drift Neural Network,” In Proceedings of International Conference on Engineering Applications of Neural Networks, EANN 2007, Aug. 29-31, 2007, Thessaloniki, Greece, 10 pages.
Jones, Q. et al., “Urban Enclave Location-Aware Social Computing,” Proceeds of Internet Research 7.0: Internet Convergences, Brisbane, Australia, Sep. 27-30, 2006, found at <http://aoir.org/files/c4d0c2e397e8a5ddb140a40f7fa9.pdf>, 10 pages.
Hofte, Henri ter, “Using groups and social networks in mobile applications,” Freeband Ambient Communication Event, Jul. 4, 2006, Enschede, The Netherlands, 41 pages.
“Welcome to Facebook!—Facebook,” at <http://www.facebook.com/>, copyright 2008, Facebook, printed Jan. 9, 2008, 1 page.
“Welcome to LuckyCal,” at <http://www.luckycal.com>, copyright 2007-2010, LuckyCal, printed Apr. 20, 2012, 1 page.
“What is LinkedIn?,” at <http://www.linkedin.com/static?key=what—is—linkedin&trk=hb—what>, copyright 2011, LinkedIn Corporation, printed Apr. 28, 2011, 1 page.
“WikiMapia,” Wikipedia, at <http://en.wikipedia.org/wiki/WikiMapia>, last modified May 19, 2009, printed May 21, 2009, 4 pages.
“Windows Live Messenger—Overview,” http://get.live.com/messenger/overview, copyright 2007 Microsoft Corp., printed Nov. 28, 2007, 1 page.
“Yahoo! Personals,” http://personals.yahoo.com/us/homepage/splash, copyright 2008 Yahoo! Inc., printed Jan. 16, 2008, 2 pages.
Clarke, Roger and Wigan, Marcus, “You are where you have been,” Third Workshop on the Social Implications of National Security, Australia and the New Technologies: Evidence Based Policy in Public Administration, Jul. 23-24, 2008, Canberra, Australia, article 13, pp. 155-172, Eds. Michael, K. and Michael, M.G., copyright 2008, University of Wollongong and authors, 28 pages.♂.
“Zune,” http://www.zune.net/en-US/, copyright 2008 Microsoft Corporation, printed Jan. 16, 2008, 1 page.
Related Publications (1)
Number Date Country
20160003634 A1 Jan 2016 US
Provisional Applications (1)
Number Date Country
61163091 Mar 2009 US
Continuations (2)
Number Date Country
Parent 14135659 Dec 2013 US
Child 14851341 US
Parent 12731242 Mar 2010 US
Child 14135659 US