The bulk shipment of temperature sensitive goods is extremely difficult when the shipping container itself is not independently temperature controlled; i.e., does not have an independent power source for maintaining interior temperatures within close parameters. Of course, if it is merely desired to maintain an object to be shipped at a nominally cooled temperature a common practice is to pack a shipping container with ice, and hope that the ice will remain in a frozen state during transit so that the object shipped will arrive at its destination still cooled below ambient temperature. This can be an adequate technique for shipping objects where the temperature of the payload need not be maintained with any precision. However, even in this case, the temperatures at different points inside the shipping container can and often do vary widely, with certain areas within the payload retention chamber cooled effectively by the ice, while other areas in the payload retention chamber are warmed significantly by heat transfer into the chamber through the walls of the container.
Certain thermally labile goods, such as medical supplies, blood, and vaccines, are often extremely temperature sensitive and need to be maintained within a tight temperature range to avoid deactivation, decomposition or spoilage. Transport of such thermally labile materials is particularly challenging. Such temperature sensitive goods are shipped to a wide variety of destinations, where the ambient temperature may vary from extreme cold in the frozen tundra of Alaska, to extreme heat in the desert southwest of the United States.
Hence, a need continues to exist for a high quality, passively thermal controlled bulk shipping container.
A first aspect of the invention is a kit capable of being assembled into a passive thermally controlled bulk shipping container. The kit includes (a) an outer shell defining a retention chamber, (b) at least eight separate and distinct identically sized phase change material-containing panels, and (c) at least four separate and distinct identically sized jackets, each configured and arranged to releasably retain a set of the phase change material panels in a planar configuration.
A second aspect of the invention is a passive thermally controlled bulk shipping container. The container includes (i) a shell defining a retention chamber, (ii) a lining of thermal insulation within the retention chamber to define a thermally insulated retention chamber, and (iii) a removable lining of phase change material within the thermally insulated retention chamber to define a thermally controlled payload retention chamber, wherein the lining of phase change material is formed from a plurality of individually repositionable jackets with each jacket releasably retaining a set of phase change material panels in a planar configuration.
A third aspect of the invention is a method of assembling a passive thermally controlled bulk shipping container. The method includes the steps of (A) obtaining a kit in accordance with the first aspect of the invention, (B) thermally conditioning the phase change material-containing panels in a thermal conditioning unit, (C) inserting the thermally conditioned phase change material-containing panels into the jackets to form packed jackets, and (D) lining the retention chamber defined by the outer shell with the packed jackets, with each jacket abutting at least two other jackets to define a thermally controlled payload retention chamber.
As utilized herein, including the claims, the phrase “thermal conditioning unit” means equipment capable of heating and/or cooling a phase change material within a predefined temperature range. Exemplary thermal conditioning units include freezers, refrigerators, coolers, ovens, furnaces, autoclaves, kilns, etc.
Referring generally to
The shipping container 10 may have an outside shell 20 made from any material possessing sufficient structural integrity, such as plastic, corrugated cardboard or the like.
Referring to
Again referring to
Referring to
The PCM panels 50 are filled with a phase change material, such as water or other desired material.
The jackets 60 are preferably uniformly sized and shaped, with uniformly beveled 45° edges, thereby allowing the jackets 60 to be interchangeably fit together within the thermally insulated retention chamber 49. Such uniformity facilitates inventory and assembly as only one size jacket 60 and one size PCM panel 50 need be purchased, conditioned and installed.
The jackets 60 may be constructed from any material providing the necessary structural integrity, including specifically but not exclusively, plastics such as polyethylene, polypropylene and polyurethane; cellulosics such as cardboard and cardstock; and metals such as steel or aluminum. Plastics are generally preferred as the most cost efficient and lightest weight option.
The PCM panels 50 may be conditioned, i.e., heated or cooled in a thermal conditioning unit, by removing them from the jackets 60 or leaving them in the jacket 60 and conditioning the entire PCM charged jacket 70.
Referring to
Referring to
Again referring to
If desired, multiple tiers of end wall and sidewall assemblies (i.e., outer shell 20, foam panels 30, thermal insulation panels 40 and PCM charged jackets 70) may be stacked on top of an assembled base tier by employing appropriate bracing (not shown) to interlock the tiers.
Selectively engagable and releasable strapping (not shown) may be employed around a fully assembled and loaded container 10 as desired to “lock down” the cover (not shown).
The container 10 can be assembled and disassembled by hand without the need for any tools. Panels of foam 30 and thermal insulation 40 are obtained and placed against the floor, end walls and sidewalls of an outer shell 20 as shown in
A pair of PCM charged jackets 70 are placed over the floor of the thermally insulated retention chamber 49 and a spacer bar 80 positioned between the PCM charged floor jackets 70b (
A support beam 90 may need to be placed across the open top of the thermally insulated retention chamber 49 with the ends of the support beam 90 engaging the upper edges of the PCM charged sidewall jackets 70a (
A thermally labile payload (not shown) can be deposited into the payload retention chamber 19 through the open top once the PCM charged sidewall jackets 70a have been positioned within the thermally insulated retention chamber 49.
The cap 12 can then be placed over the PCM charged ceiling jackets 70c, and the fully assembled container 10 secured, such as by tie down straps (not shown) and associated tie down hardware (not shown) exemplified by cam-type fasteners permanently attached to the top of the cap.
Upon delivery of the thermally labile payload (not shown) the empty container 10 can be disassembled with the spent PCM panels 50, either removed from or retained within the associated jacket 60 and placed in an appropriate thermal conditioning unit (not shown) for thermal reconditioning.
An opening 68 is provided through an upper face of each jacket 60 into each PCM retention compartment 69 in the jacket 60 to facilitate removal of spent PCM panels 50 from the PCM retention compartments 69 by allowing an individual to insert a finger into an exposed dimple 59 on the face of each PCM panel 50 and using the inserted digit to initiate sliding of the PCM panel 50 out through the open end 69′ of the PCM retention compartment 69.
This application claims the benefit of U.S. Provisional Application No. 61/322,460, filed Apr. 9, 2010.
Number | Date | Country | |
---|---|---|---|
61322460 | Apr 2010 | US |