The present invention pertains generally to syringes for medical use. More particularly, the present invention pertains to protective devices for injection syringes that are filled by the user prior to the administration of an injection. The present invention is particularly, but not exclusively, useful for passively covering and protecting the needle of an injection syringe after its use.
Recent research from the Centers for Disease Control and Prevention (CDC) shows that approximately 384,000 needle sticks or similar injuries occur among health care workers in U.S. hospitals each year. Unfortunately, each accidental needle stick has the potential to expose a health care worker to a life-threatening virus such as hepatitis or HIV. In addition to the needle sticks that occur in hospitals, accidental needle sticks can also occur in other health care settings. For example, needle stick injuries can occur at clinics or during home health care. In fact, some studies have estimated that over 600,000 needle sticks occur in the U.S. each year, and approximately 1,000 of these accidental needle sticks result in a life-threatening infection.
For each accidental needle stick, health care providers are obligated to test and counsel the exposed worker. Further, follow-up testing for HIV must be conducted approximately six months after the exposure. It is to be appreciated that the costs associated with the testing, lab work, the worker's lost time, and the associated tracking and administrative costs, can be considerable.
Accidental needle sticks can occur in several ways. For example, sudden movement by the patient can cause a health care worker to lose control of a syringe, resulting in injury. Attempts to manually recap a needle following an injection can also result in injury. Moreover, injuries often result when contaminated, unprotected needles are left unattended or disposed of improperly. In addition to accidental needle sticks, unnecessary exposure to bloodborne pathogens can result when a health care worker mistakenly reuses a contaminated needle on a patient.
One particular type of syringe that is prone to needle stick injuries is the fillable injection syringe. In overview, these fillable injection syringes are designed to be filled with a medicament from a medicament vial by the same user that administers an injection. Heretofore, a typical procedure has involved removing a cap that covers the sharp needle tip of the fillable injection syringe. With the needle exposed, the needle tip is inserted into a vial containing medicament. This step generally occurs just prior to an injection. Next, the plunger is depressed to void the syringe chamber of air. With the syringe voided, the plunger is retracted to draw a specified quantity of medicament into the syringe chamber. Once the medicament has been loaded into the syringe, the needle is then inserted into a patient and the plunger is depressed to inject the medicament into the patient. After the injection, the needle is removed from the patient and often must be manually recapped to protect the contaminated needle. After recapping, it is often difficult to distinguish between used and unused syringes.
In light of the above, it is an object of the present invention to provide a fillable medical syringe that passively covers and protects the needle of the syringe after first filling the syringe with medicament and then injecting the medicament into a patient. It is another object of the present invention to provide a fillable syringe which guards the needle prior to an injection procedure and uses the same guard to passively guard the needle after an injection procedure. It is still another object of the present invention to provide a passively guarded, fillable injection syringe in which the position of the needle guard is controlled and regulated by plunger movements that are required in a typical fill and inject procedure.
It is yet another object of the present invention to provide a fillable injection syringe having an integral mechanism that prevents reuse of the syringe (after use and contamination) by disabling the plunger at the completion of an injection procedure. Yet another object of the present invention is to provide a protective device for a medical syringe that is easy to use, relatively simple to implement, and comparatively cost effective.
A passively guarded, fillable injection syringe includes an elongated hollow needle that defines an axis and has a sharp, distal needle tip. The syringe also includes an adapter for holding the proximal end of the needle. With this cooperation of structure, the needle extends in a distal direction from the adapter. In addition, an inverted plunger is slidingly mounted on the adapter to establish a medicament chamber that is in fluid communication with the needle. For the present invention, a substantially cylindrical needle guard is positioned on the needle for reciprocal axial movement relative to the needle. Also, a spring is positioned between the guard and the adapter to bias the guard along the axis in a distal direction away from the adapter.
As described in greater detail below, a mechanism is provided to selectively engage and disengage the plunger and guard during the course of an injection procedure. More specifically, the plunger movements that are required to fill the syringe and dispense a medicament from the syringe also function to control the position of the guard relative to the needle. In functional overview, prior to an injection procedure, the guard is locked in a distal position covering the tip of the needle and can only be unlocked by a movement of the plunger. Once unlocked, the guard can be retracted to expose the needle tip. This allows the needle tip to be inserted into a medicament vial to fill the syringe, and in addition, allows the exposed needle to be inserted into a patient for an injection. When the plunger is withdrawn proximally relative to the adapter, the plunger and guard engage and the guard moves proximally to expose the needle. On the other hand, when the plunger is depressed (i.e. moved distally), the plunger releases the guard. Once released, the guard is free to move distally under the influence of the spring. As a consequence of this interaction, after the plunger is depressed to complete an injection, the guard is released and allowed to translate distally, relative to the needle, to cover and protect the needle tip.
In greater structural detail, the adapter includes a substantially cylindrical portion that is centered on the needle axis and has a proximal end and an open distal end. In addition, a standoff is formed at the proximal end of the adapter to attach the proximal end of the needle to the adapter. From the standoff, the needle passes distally through the cylindrical adapter and extends beyond the adapter's distal end to a distal needle tip. Also, the adapter is sized to allow the cylindrical guard to move axially along the needle and within the cylindrical portion of the adapter.
In a typical embodiment of the present invention, the syringe includes an inverted plunger that has a substantially cylindrical portion which extends from a closed proximal end to an open distal end. Structurally, the cylindrical portion surrounds a medicament chamber and is slidingly mounted on the proximal end of the adapter. A seal is interposed between the proximal end of the adapter and the cylindrical portion of the plunger to establish fluid communication between the medicament chamber and the lumen of the needle. With this arrangement, the plunger can be retracted to draw fluid through the needle and into the chamber and the plunger can be depressed to expel fluid from the chamber and out of the needle's distal tip.
As indicated above, a mechanism is provided to selectively engage and disengage the plunger and guard during the course of an injection procedure. Structurally, this mechanism includes a tang that is formed on the cylindrical portion of the plunger and an axially aligned slot that is formed in the guard. Specifically, the tang extends distally and inwardly toward the needle axis from the cylindrical portion of the plunger. An axially aligned slit formed in the adapter allows the tang to pass through the adapter and interact with the slot in the guard. In greater structural detail, the guard slot has a proximal end that is formed as an abutment and a distal end that is formed as a ramp. With this arrangement, the tang engages the abutment during a proximal movement of the plunger to engage the plunger with the guard. On the other hand, during a distal movement of the plunger, the ramp directs the tang out of the slot and disengages the guard and plunger.
In another aspect of the invention, the syringe includes a mechanism to lock the guard in a distal position covering the tip of the needle prior to an injection procedure. Specifically, once locked by the mechanism, the guard can only be unlocked by a movement of the plunger. For this purpose, the cylindrical adapter is formed with a cam lever having a distal lever end and a cam surface. For the syringe, the cam lever is deflectable by the cylindrical portion of the plunger from a relaxed position to a biased position. In the relaxed position, the cam surface extends radially outward from the remaining cylindrical section of the adapter. On the other hand, in the biased position, the lever end extends radially inward from the remaining cylindrical section of the adapter. When the plunger is in a distal position, the cylindrical portion of the plunger contacts the cam surface and deflects the cam lever into the biased position. Functionally when the cam lever is in the biased position, the lever end engages the guard and prevents a proximal movement of the guard. When the plunger is retracted, the cam lever relaxes and unlocks the guard.
In one particular embodiment of the invention, the syringe includes a substantially cylindrical shaped syringe body that is formed with open distal and proximal ends. A flange is formed at the distal end of the syringe body and extends radially inward relative to the cylindrical portion of the syringe body. At the proximal end, the syringe body is formed with a finger grip that extends radially outward form the cylindrical portion. For the syringe, the body is slidingly mounted on the adapter. Specifically, the syringe body is capable of an axial movement relative to the adapter from an operational position to a locking position. In the operational position, the syringe body does not interfere with relative movement between the guard and adapter. In the locking position, however, the flange at the distal end of the syringe body deflects the cam lever and holds the cam lever in the biased position (i.e. the position where the guard is locked). After an injection, the syringe body can be moved proximally relative to both the plunger and adapter and into the locking position. This then locks the guard into a needle tip covering position and prevents inadvertent reuse of the syringe.
Another safety feature that can be incorporated into the syringe includes a recess that is formed in the syringe body at the body's proximal end. Specifically, this recess is sized and positioned to receive a grip flange that is formed at the proximal end of the plunger. After an injection, the plunger can be advanced until the grip flange is positioned in the recess. With the grip flange positioned in the recess, subsequent movement of the plunger relative to the syringe body is effectively prevented.
In operation, the plunger is initially located in a distal position relative to the adapter with the tang extending into the slot. In this configuration, the cylindrical portion of the plunger holds the cam lever deflected inward into the biased position in which the guard is locked. Next, the plunger is withdrawn proximally. The effect of this proximal movement is threefold. First, initial proximal movement of the plunger allows the cam lever to relax and unlock the guard. Second, additional proximal movement engages the tang of the plunger with the proximal abutment in the slot, causing the guard to move proximally with the plunger. Third, proximal movement of the plunger draws air through the needle and into the medicament chamber.
With the guard retracted, the next step is to insert the exposed distal tip of the needle into a medicament vial. At this point, the plunger can be depressed to expel air into the vial and void the medicament chamber. During plunger advancement, the ramp formed at the distal end of the slot directs the tang out of the slot and disengages the guard from the plunger. Thus, distal guard movement is only prevented by the contact between the guard and the vial at this point. Next, the plunger can be withdrawn to fill the chamber with medicament. During this plunger withdrawal, the tang reenters the slot and engages the proximal abutment. The result is that the plunger engages the guard and prevents distal advancement of the guard relative to the needle. Thus, when the needle is removed from the vial, the distal tip of the needle remains unguarded and exposed. The syringe is now ready for an injection.
To inject a medicament into a patient, the distal tip of the needle is inserted into the patient and the plunger depressed. This distal advancement of the plunger releases the guard. Specifically, during plunger advancement, the ramp formed at the distal end of the slot directs the tang out of the slot and disengages the guard from the plunger. Once released, the guard is free to move distally under the influence of the spring. Thus, as the needle is withdrawn from the patient, the needle retracts proximally into the guard which remains in contact with the patient's skin. Once the syringe has been removed from the patient, the plunger and adapter can be advanced distally relative to the syringe body to lock the guard in place. This also places the grip flange of the plunger in the recess formed in the syringe body. Functionally, in this last configuration, the guard completely covers the hollow needle to protect the user from unwanted needle sticks and prevents inadvertent reuse of the syringe.
The novel features of this invention, as well as the invention itself, both as to its structure and its operation, will be best understood from the accompanying drawings, taken in conjunction with the accompanying description, in which similar reference characters refer to similar parts, and in which:
Referring initially to
As best seen in
Cross-referencing
Cross-referencing
The structure of the guard 20 can be best appreciated with initial reference to
By cross-referencing
Cross referencing
The syringe 10 is typically delivered to the end user configured as shown in
Once the guard 20 has been retracted as shown in
As illustrated by
Comparing
While the particular devices and methods as herein shown and disclosed in detail are fully capable of obtaining the objects and providing the advantages herein before stated, it is to be understood that they are merely illustrative of the presently preferred embodiments of the invention and that no limitations are intended to the details of construction or design herein shown other than as described in the appended claims.
Number | Name | Date | Kind |
---|---|---|---|
2679246 | Cohen | May 1954 | A |
4425120 | Sampson et al. | Jan 1984 | A |
4664654 | Strauss | May 1987 | A |
4681567 | Masters et al. | Jul 1987 | A |
4781692 | Jagger et al. | Nov 1988 | A |
4894055 | Sudnak | Jan 1990 | A |
4911693 | Paris | Mar 1990 | A |
5037402 | Bartman | Aug 1991 | A |
5061251 | Juhasz | Oct 1991 | A |
5104384 | Parry | Apr 1992 | A |
5167635 | Haber et al. | Dec 1992 | A |
5167640 | Balding | Dec 1992 | A |
5176656 | Bayless | Jan 1993 | A |
5197953 | Colonna | Mar 1993 | A |
5222945 | Basnight | Jun 1993 | A |
5232457 | Grim | Aug 1993 | A |
5242420 | Martin | Sep 1993 | A |
5267972 | Anderson | Dec 1993 | A |
5267977 | Feeney, Jr. | Dec 1993 | A |
5279566 | Kline, Jr. et al. | Jan 1994 | A |
5292314 | D'Alessio et al. | Mar 1994 | A |
5295975 | Lockwood, Jr. | Mar 1994 | A |
5300040 | Martin | Apr 1994 | A |
5324265 | Murray et al. | Jun 1994 | A |
5346480 | Hess et al. | Sep 1994 | A |
5376080 | Petrussa | Dec 1994 | A |
5389085 | D'Alessio et al. | Feb 1995 | A |
5403286 | Lockwood, Jr. | Apr 1995 | A |
5478316 | Bitdinger et al. | Dec 1995 | A |
5540667 | Tanner, II | Jul 1996 | A |
5582597 | Brimhall et al. | Dec 1996 | A |
5591138 | Vaillancourt | Jan 1997 | A |
5681292 | Tober et al. | Oct 1997 | A |
5695475 | Best, Jr. et al. | Dec 1997 | A |
6162197 | Mohammad | Dec 2000 | A |
6379336 | Asbaghi et al. | Apr 2002 | B1 |
6530905 | Asbaghi | Mar 2003 | B2 |
6626864 | Jansen et al. | Sep 2003 | B2 |
20030212380 | Barrelle | Nov 2003 | A1 |
Number | Date | Country | |
---|---|---|---|
20060111675 A1 | May 2006 | US |