The present invention pertains generally to pre-filled syringes. More particularly, the present invention pertains to a fluid transfer apparatus and to methods that maintain the integrity of a pre-filled syringe prior to its use. The present invention is particularly, but not exclusively useful, as a fluid transfer apparatus for an inverted syringe that incorporates a pre-filled fluid container (vial).
Recent research from the Centers for Disease Control and Prevention (CDC) shows that approximately 384,000 needle sticks or similar injuries occur among health care workers in U.S. hospitals each year. Unfortunately, each accidental needle stick has the potential to expose a health care worker to a life-threatening virus such as hepatitis or HIV. In addition to the needle sticks that occur in hospitals, accidental needle sticks can also occur in other health care settings. For example, needle stick injuries can occur at clinics or during home health care. In fact, some studies have estimated that over 600,000 needle sticks occur in the U.S. each year, and approximately 1,000 of these accidental needle sticks result in a life-threatening infection.
For each accidental needle stick, health care providers are obligated to test and counsel the exposed worker. Further, follow-up testing for HIV must be conducted approximately six months after the exposure. It is to be appreciated that the costs associated with the testing, lab work, the worker's lost time, and the associated tracking and administrative costs, can be considerable.
Accidental needle sticks can occur in several ways. For example, sudden movement by the patient can cause a health care worker to lose control of a syringe, resulting in injury. Attempts to manually recap a needle following an injection can also result in injury. Moreover, injuries often result when contaminated, unprotected needles are left unattended or disposed of improperly. In addition to accidental needle sticks, unnecessary exposure to bloodborne pathogens can result when a health care worker mistakenly reuses a contaminated needle on a patient.
One particular type of syringe that is prone to needle stick injuries is the fillable injection syringe. In overview, these fillable injection syringes are designed to be filled with a medicament from a medicament vial by the same user that administers an injection. Heretofore, a typical procedure has involved removing a cap that covers the sharp needle tip of the fillable injection syringe. With the needle exposed, the needle tip is inserted into a vial containing medicament. This step generally occurs just prior to an injection. Next, the plunger is depressed to void the syringe chamber of air. With the syringe voided, the plunger is retracted to draw a specified quantity of medicament into the syringe chamber. Once the medicament has been loaded into the syringe, the needle is then inserted into a patient and the plunger is depressed to inject the medicament into the patient. After the injection, the needle is removed from the patient and often must be manually recapped to protect the contaminated needle. After recapping, it is often difficult to distinguish between used and unused syringes.
Fillable injection syringes and needles are often obtained separately. Typically, the syringes are available for use with different sized needles. This allows doctors to obtain and store fewer syringes. Then, when an injection is needed, a desired needle is simply mounted on a syringe.
As is well known, pre-filled syringes are useful and, indeed, are sometimes preferred for certain applications. When a pre-filled syringe is to be used, however, it is always important that the fluid medicament be somehow properly maintained until it is to be actually injected. One way to do this is to confine the fluid in a fluid-tight chamber. Such chambers, however, must eventually be accessible for fluid transfer. Thus, pre-filled fluid chambers typically include a bung or stopper that covers an opening through the chamber wall and keeps fluid in the chamber until it is to be used. Fluid communication with the chamber can then be established by penetrating the bung or stopper with a hollow needle. For many well-known reasons, it is essential that the user be somehow protected from the needle as it is being manipulated to penetrate the stopper. Due to the unique physical features of a so-called “inverted syringe,” the establishment of fluid communication with a pre-filled fluid compartment may be particularly problematic.
In light of the above, it is an object of the present invention to provide a device that passively covers and protects a needle after first filling the device with medicament and then injecting the medicament into a patient. It is another object of the present invention to provide a device which guards the needle prior to an injection procedure and uses the same guard to passively guard the needle after an injection procedure. It is still another object of the present invention to provide a device in which the position of the needle guard is controlled and regulated by plunger movements that are required in a typical fill and inject procedure. It is yet another object of the present invention to provide a device having an integral mechanism that prevents reuse of the syringe (after use and contamination) by disabling the plunger at the completion of an injection procedure. Still another object of the present invention is to provide such a device for use with commercially available needles. Still another object of the invention is to provide a device with a needle guard that is movable to allow mounting of a needle on the device before use. An object of the present invention is to provide a safe and efficient fluid transfer apparatus for use with the pre-filled fluid compartment of an inverted syringe. Another object is to provide a fluid transfer apparatus that can effectively establish fluid communication with a fluid chamber when an access port to the chamber is in an effectively inaccessible location. Yet another object of the present invention is to provide a protective device for a medical syringe that is easy to use, relatively simple to implement, and comparatively cost effective.
A device for expelling a fluid, such as a medicament, through a hypodermic needle mounted on a hub includes an extended luer member that has a proximal portion, a distal portion and a fluid conduit extending along an axis therebetween. The distal portion of the extended luer member is dimensioned to engage the needle hub to provide fluid communication between the fluid conduit and the needle. When engaged, the needle extends away from the distal portion of the luer member to a sharp needle tip at its own distal end. Additionally, the device includes an adapter for anchoring the proximal portion of the luer member. The adapter includes a substantially cylindrical-shaped wall surrounding a cavity bounded by an open distal end and a proximal end substantially covered by a base. Slidingly mounted on the adapter is a cylindrical-shaped inverted plunger that is movable thereon between an advanced position and a withdrawn position. When the plunger is in the withdrawn position, a fluid chamber is created between the plunger and the adapter base. Specifically, the chamber is formed by a seal engaging the proximal portion of the luer member which is slidingly received by the plunger to form a fluid tight boundary for the fluid chamber. For the present invention, a tube-shaped needle guard having a lumen is biased by a biasing member such as a spring to extend distally from the distal portion of the luer member when the plunger is in the advanced position. The guard is selectively engageable with the plunger to be retracted into the adapter cavity and over the elongated luer member to expose the distal portion of the luer member for fluid engagement with the needle hub when the plunger is moved to the withdrawn position.
In greater structural detail, the luer member includes a head section that engages the adapter. The head section is connected to a shaft section which extends distally from the head section along the axis to a shaft end that is spaced from the head section by a shaft length that is at least as long as the length of the adapter. Therefore, the luer member extends through the cavity and the open distal end of the adapter. As the extremity of the distal portion of the luer member, the shaft end is dimensioned for engagement with the needle hub. Engagement between the needle hub and shaft end may be achieved through a number of known methods. For instance, the needle hub may include a circumferential protrusion that fits into a corresponding circular groove on the shaft end. Alternatively, the needle hub may include male or female threadings to allow the hub to be screwed into reciprocal threadings on the shaft end. Or, more simply, the needle hub may be slipped snugly onto the shaft end.
As described in greater detail below, a mechanism provides selective engagement between the plunger and guard during the course of an injection procedure. More specifically, the plunger movements that are required to expose the distal portion of the extended luer member for mounting a needle thereon, to fill the fluid chamber, and to dispense a fluid from the fluid chamber also function to control the position of the guard. In functional overview, prior to an injection procedure, the guard is locked in an extended position distal of the luer member and can only be unlocked by a movement of the plunger. Once unlocked, the guard can be retracted to expose the distal portion of the luer member. This allows the needle hub to be mounted on the distal portion of the luer member, and in addition, allows the needle to be inserted into a medicament vial to fill the fluid chamber and to be inserted into a patient for an injection. When the plunger is withdrawn proximally relative to the adapter to create the fluid chamber, the plunger and guard engage one another, and the guard moves proximally to expose the distal portion of the luer member and a needle mounted thereon. On the other hand, when the plunger is advanced (i.e. moved distally), the plunger releases the guard. Once released, the guard is free to move distally under the influence of the spring. As a consequence of this interaction, after the plunger is depressed to complete an injection, the guard is released and allowed to move distally to its extended position to cover and protect the needle.
In operation, the plunger is initially located in an advanced position relative to the adapter. Next, the plunger is withdrawn proximally which causes the plunger to engage the guard and to move the guard proximally with the plunger to a retracted position. With the guard retracted, the next step is to mount the needle hub onto the exposed shaft end of the luer member. Then the distal tip of the needle may be inserted into a medicament vial. At this point, the plunger can be depressed to expel air into the vial and void the fluid chamber. During plunger advancement, the plunger operatively disengages the guard. Thus, distal movement of the guard is only prevented by the contact between the guard and the vial. Next, the plunger can be withdrawn to fill the fluid chamber with medicament. During this plunger withdrawal, the plunger again engages and retracts the guard. Thus, when the needle is removed from the vial, the distal tip of the needle remains unguarded and exposed. The syringe is now ready for an injection.
To inject a medicament into a patient, the distal tip of the needle is inserted into the patient and the plunger depressed. This distal advancement of the plunger releases the guard. Once released, the guard is free to move distally under the influence of the spring. Thus, as the needle is withdrawn from the patient, the needle retracts proximally into the guard, which remains in contact with the patient's skin. Once the syringe has been removed from the patient, the plunger and adapter can be advanced distally relative to the syringe body to lock the guard in place.
In accordance with another aspect of the present invention, a fluid transfer apparatus essentially includes a plunger assembly that is combined with a needle assembly. In combination, these assemblies interact with a pre-filled fluid chamber to transfer fluid from the container. Structurally, the container (vial) is basically a hollow, cylindrical-shaped tubular body that has two open ends. One end of the container (vial) is formed with an orifice that is covered by a fluid-tight stopper, while the other end is formed with an orifice for receiving the plunger assembly. Thus, a fluid chamber can be established between the stopper and the plunger assembly. As envisioned for the present invention, the fluid chamber of the container (vial) will be pre-filled, preferably with a fluid medicament. The plunger assembly can then be advanced into the chamber to expel fluid from the chamber.
In detail, the needle assembly of the fluid transfer apparatus includes a straight, doubled-ended, elongated hollow needle that has a sharpened first end, and a sharpened second end. It also includes a hub that is affixed to the needle at a distance “I” from its first end by a means well known in the pertinent art. Importantly, the hub is preferably formed with a pair of diametrically opposed flanges, each of which extends outwardly, in a radial direction from the needle. More flanges can be used, however, if desired. The needle assembly also includes a hollow tubular sleeve that has a lumen for receiving the needle. When joined with the needle, the sleeve covers the second end of the needle and extends from this second end, into contact with the hub. As discussed in greater detail below, prior to an operation of the fluid transfer apparatus of the present invention, the sleeve is used to activate the fluid transfer apparatus, and it is then removed from the needle.
Insofar as the plunger assembly is concerned, it includes a housing that is a generally hollow, cylindrical-shaped, tubular body having an inner wall that defines an interior. The plunger assembly also includes at least one detent that is formed on the inner wall of the housing, and is oriented to project into its interior. The detent(s) interacts with corresponding flanges on the hub and, accordingly, for a two flange hub, there are two diametrically opposed detents. Additionally, a bung is positioned at one end of the housing. Preferably, this bung is made of an elastomeric material so it can be penetrated by a needle. With this structure, when the plunger assembly and its bung are inserted into the open end of the container, the fluid chamber is established in the container between the stopper of the container and the bung of the plunger assembly.
As indicated above, the needle assembly of the fluid transfer apparatus interacts with both the container (vial) and the plunger assembly. For its interaction with the plunger assembly, the needle assembly is mounted in the interior of the housing for movement from a first position to a second position. More specifically, when the needle assembly is in the first position, the first end of the needle is against the bung at the end of the housing. Thus, the hub is positioned at the distance “I” from the bung. Also, while in this first position, the detents on the inner wall of the housing are intermediate the bung and the flange on the hub. As indicated above, the movement of the needle assembly in the housing, from its first position to its second position, is accomplished by pushing on the sleeve in a proximal direction along the longitudinal axis of the needle. This activates the fluid transfer apparatus.
During activation of the fluid transfer apparatus, flanges on the hub are initially in an unstressed condition and they each extend a radial distance “r1” from the needle. This places the flanges in contact with the inner wall of the housing. As the needle assembly is moved axially through the distance “I”, and into the second position, each flange on the hub rides up and over a respective detent. As they do so, each flange withdraws to within a radial distance “r2” from the needle, and is in a substantially stressed condition. After passing the detents, each flange again extends to the radial distance “r1”, and the hub becomes fixedly held between the bung and the detents. In their relation to each other, “r2” is less than “r1”. When the needle assembly and hub is in the second position, however, (i.e. after the needle assembly has been advanced toward the bung) the first end of the needle penetrates the bung. This establishes fluid communication between the needle and fluid in the chamber for the transfer of fluid from the chamber. Further, and importantly, in the second position, the flange is in contact with the detent to fixedly hold the needle assembly in the second position.
In more detail, when the needle assembly is in its second position, the needle will penetrate a distance “d” through the bung. Thus, in order to establish fluid communication between the needle and fluid in the container (vial), “d” must be less than “I”. Moreover, it is preferable that the distance “I”-“d” be as small as possible. Furthermore, as stated above it is preferable for the bung to be made of an elastomeric material that can be easily penetrated by the needle, and it is preferable that the needle be made from a stainless steel hypotube. Regardless, with the needle assembly in its second position, the plunger assembly can be advanced into the fluid chamber of the container to expel fluid from the chamber, through the needle.
The novel features of this invention, as well as the invention itself, both as to its structure and its operation, will be best understood from the accompanying drawings, taken in conjunction with the accompanying description, in which similar reference characters refer to similar parts, and in which:
Referring initially to
Referring to
As shown in
As best seen in
Also in
It can be seen in
As further shown in
Turning to
As shown in
As further shown in
By cross-referencing FIGS. 3A-D and 4A-D, it can be seen that the device 10 includes a mechanism to lock the guard 20 in an extended position 49 covering the needle tip 28 prior to an injection procedure. Once locked, the guard 20 can only be unlocked by movement of the plunger 22. As previously discussed, the adapter 18 is formed with cam levers 74 having distal lever ends 80. Comparing
As an additional locking mechanism, the syringe body 12 may be moved relative to the adapter 18 to deflect the cam levers 74 of the adapter 18 with its flanges 90. As shown in
Initially, the device 10 is provided without a needle 26. To mount a needle 26 on the device 10, the needle guard 20 is first moved to the retracted position 53 by withdrawing the plunger 22. Then the needle hub 30 is frictionally engaged with the shaft end 38 of the luer member 32 as can be understood from
From
Once the guard 20 has been retracted as shown in
As illustrated by
Once the device 10 has been removed from the patient, the plunger 22 and the adapter 18 can be advanced distally relative to the syringe body 12 to lock the guard 20 in place (
Turning now to
In
Still referring to
The needle assembly 106 of the apparatus 100 will be best appreciated by cross-referencing
In the operation of the apparatus 100 of the present invention, a user (not shown) pushes against an abutment 140 that is formed at the distal end of the actuator sleeve 138. This causes the actuator sleeve 138 to urge against the hub 134, and to move the entire needle assembly 106 in a proximal direction along the axis 122. The consequence of this is that the needle assembly 106 moves through the distance “I” from a first position (see
Engagement of the needle assembly 106 with the plunger assembly 104 occurs due to the interaction of the flanges 136 on hub 134 with the detent 120 on housing 114. Specifically, as the hub 134 is advanced with the needle assembly 106 from its first position, and into its second position, the flanges 136 ride up over the detent 120. As they do so, the flanges 136 go from an unstressed condition wherein they extend a radial distance “r1” from the axis 122 (see
Once the needle assembly 106 has been fixedly engaged with the plunger assembly 104, the actuator sleeve 138 is removed from the needle 128. This exposes the end 132 of the needle 128. The apparatus 100 is now ready to expel fluid from the chamber 112, for such purposes as an injection of fluid medicament into a patient (not shown). Specifically, this task is accomplished by advancing the combination needle assembly 106 and plunger assembly 104 into the chamber 112. The result of this advancement is to expel fluid from the fluid chamber 112 through the needle 128, and to continue doing so, until the apparatus 100 is in the configuration shown in
While the particular devices and methods as herein shown and disclosed in detail are fully capable of obtaining the objects and providing the advantages herein before stated, it is to be understood that they are merely illustrative of the presently preferred embodiments of the invention and that no limitations are intended to the details of construction or design herein shown other than as described in the appended claims.
This application is a continuation-in-part of application Ser. No. 11/055,415, filed Feb. 10, 2005, which is currently pending, and which is a continuation-in-part of application Ser. No. 10/983,108, filed Nov. 5, 2004, which is currently pending. The contents of application Ser. No. 11/055,415 and application Ser. No. 10/983,108 are incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
Parent | 11055415 | Feb 2005 | US |
Child | 11140583 | May 2005 | US |
Parent | 10983108 | Nov 2004 | US |
Child | 11055415 | Feb 2005 | US |