The present invention relates to a substrate cutting apparatus and a substrate cutting method used for cutting brittle material substrates such as glass substrates, ceramics, semiconductor wafers and the like used for flat panel displays (hereinafter, referred to as FPDs).
The present specification describes cutting mother glass substrates for FPDs such as display panels of liquid crystal display apparatuses, which are classified as glass substrates, a type of brittle material glass substrate, as an example.
Liquid crystal display apparatuses include display panels with liquid crystal injected between pairs of glass substrates bonded to each other. Recently, such display panels are produced by cutting large-sized mother glass substrates bonded to each other into pieces having a predetermined size.
In the first scribing apparatus 2001, the mother bonded substrate 2008 is carried in a horizontal manner. Scribing lines are formed on a mother glass substrate of the upper side by, for example, a cutter wheel. Then, the mother bonded substrate 2008 is reversed upside down (an upper surface and a lower surface are switched) by a reverse apparatus (not shown), and transferred to the first breaking apparatus 2002. The first breaking apparatus 2002 applies pressure by breaking bars on a surface of the mother glass substrate on which scribing lines are not formed at the positions opposing the scribing lines. Thus, the mother glass substrate with the scribing lines formed thereon is cut along the scribing lines.
Then, the mother bonded substrate is carried to the second scribing apparatus 2001A as it is. The second scribing apparatus 2001A and the second breaking apparatus 2002A have similar structures as those of the first scribing apparatus 2001 and the first breaking apparatus 2002. In the second scribing apparatus 2001A, scribing lines are formed on the mother glass substrate which has not been cut by, for example, a cutter wheel. The mother bonded substrate 2008 is reversed upside down by a reverse apparatus (not shown), and carried to the second breaking apparatus 2002A. The second breaking apparatus 2002A cuts the mother glass substrate along the scribing lines formed by the second scribing apparatus 2001A.
In the scribing apparatus 2100 having such a structure, when the mother bonded substrate 2008 is secured on the table 2051 by the securing body 2052, the pair of cutter heads 2053 and 2054 scribe an upper surface and a lower surface of the mother bonded substrate 2008 at the same time.
In the substrate cutting system 2000 shown in
In the scribing apparatus 2100 of
It is an object of the present invention to provide a substrate cutting system which has a compact structure and can cut the substrates efficiently by an apparatus which performs both the scribing steps and the breaking steps, thereby solving the above-described problem.
A system for cutting a substrate of the bonded substrate according to the present invention is a substrate cutting system for cutting a bonded substrate formed by bonding a first substrate and a second substrate into a plurality of cut substrates, comprising: a first cutting device located so as to face the first substrate; a second cutting device located so as to face the second substrate; and a cutting apparatus comprising the first cutting device and the second cutting device, wherein the first cutting device comprises a scribing portion for forming a scribing line on the first substrate, the second cutting device comprises a scribing portion for forming a scribing line on the second substrate, the first cutting device further comprises a back up portion for supporting a surface of the first substrate when scribing means of the scribing portion of the second cutting device scribes the second substrate, in correspondence with the portion to be scribed, and the second cutting device further comprises a back up portion for supporting a surface of the second substrate when scribing means of the scribing portion of the first cutting device scribes the first substrate, in correspondence with the portion to be scribed.
Further, the first cutting device further comprises a breaking portion for cutting the first substrate along the scribing line formed on the first substrate; and the second cutting device further comprises a breaking portion for cutting the second substrate along the scribing line formed on the second substrate.
Further, the first cutting device locates the back up portion so as to support a surface of the first substrate when breaking means of the breaking portion of the second cutting device cuts the second substrate, in correspondence with the portion to be cut; and the second cutting device locates the back up portion so as to support a surface of the second substrate when breaking means of the breaking portion of the first cutting device cuts the first substrate, in correspondence with the portion to be cut.
Moreover, a substrate carrying apparatus which sequentially positions lines to be cut of the bonded substrate with respect to the cutting apparatus is further included.
Further, the substrate carrying apparatus comprises a plurality of tables.
Further, the tables are independently movable.
Moreover, the tables respectively comprise adsorption holes for adsorbing the bonded substrate.
Moreover, the breaking means provided in each of the breaking portions of the first cutting device and the second cutting device press both sides of the scribing line.
Further, the breaking means are rollers each having a concave portion formed thereon.
Moreover, supporting rollers included in the second cutting device and a belt wound to the supporting rollers are further included, and a portion of the bonded substrate which has been cut is supported as the second cutting device performing a cutting process moves.
Moreover, a plurality of cutting devices are included and the cutting devices are integrally movable in a scribing line direction.
Moreover, a pair of the cutting apparatuses are provided and the substrate carrying apparatus is provided for each of the cutting apparatuses, and a cut substrate which has been cut by a cutting device of one of the cutting apparatuses is carried by one of the substrate carrying apparatuses, which corresponds to the cutting apparatus, to the other substrate carrying apparatus to be cut by another cutting device provided in correspondence with the other cutting apparatus.
Further, the substrate carrying apparatuses are provided such that carrying directions for the bonded substrate and the cut substrate by the substrate carrying apparatuses are perpendicular to each other.
Further, the substrate carrying apparatuses carry the bonded substrate with a surface of the bonded substrate being in parallel with the vertical direction; and the first cutting device and the second cutting device of the cutting apparatus cuts the carried bonded substrate along the vertical direction.
Further, a pair of the cutting apparatuses are included and a rotation carrying apparatus for rotating a cut substrate which has been cut by one of the cutting apparatuses in a direction perpendicular to the vertical direction is further included, and the cut substrate rotated by the rotation carrying apparatus is cut by the other cutting apparatus along the vertical direction.
Further, a scribing apparatus for forming a terminal portion in the cut substrate which has been cut by the other cutting apparatus is further included.
Moreover, a cutting apparatus for forming a terminal portion in the cut substrate which has been cut by the other cutting apparatus is further included.
A method for cutting a substrate of the bonded substrate according to the present invention is a substrate cutting method for cutting a bonded substrate formed by bonding a first substrate and a second substrate into a plurality of cut substrates, comprising: a first cutting device located so as to face the first substrate; a second cutting device located so as to face the second substrate; and a cutting apparatus comprising the first cutting device and the second cutting device, wherein the first cutting device supports a surface of the first substrate when the second substrate is scribed by the second cutting device, in correspondence with the portion to be scribed, and the second cutting device supports a surface of the second substrate when the first substrate is scribed by the first cutting device, in correspondence with the portion to be scribed.
Further, the first cutting device supports a surface of the first substrate when the second substrate is cut by breaking means of the breaking portion of the second cutting device, in correspondence with the portion to be cut; and the second cutting device supports a surface of the second substrate when the first substrate is cut by breaking means of the breaking portion of the first cutting device, in correspondence with the portion to be cut.
Moreover, lines to be cut of the bonded substrate held by a substrate carrying apparatus are sequentially positioned to predetermined positions with respect to the cutting apparatus, and the bonded substrate is sequentially cut along the lines to be cut.
Further, the substrate carrying apparatus comprises a plurality of tables; and, before the cutting, the number of tables moved is selected in accordance with a cutting pattern of the bonded substrate, spaces between the tables are set such that the second cutting device is moved along a line to be cut of the bonded substrate, and the bonded substrate is held on the selected tables.
Further, the tables holding cut substrates sequentially move to a material removing position for the cut substrates after the cutting.
Moreover, the breaking means included in each of the first cutting device and the second cutting device press both sides of the scribing line.
Moreover, a supporting roller included in the second cutting device and a belt wound to the supporting roller are further included, and a portion of the bonded substrate which has been cut is supported as the second cutting device performing a cutting process moves.
Moreover, a plurality of cutting devices are provided, and the cutting devices integrally move and cut the bonded substrate along a plurality of lines to be cut of the bonded substrate.
Moreover, a pair of the cutting apparatuses are provided and the substrate carrying apparatus is provided for each of the cutting apparatuses, and a cut substrate which has been cut by a cutting device of one of the cutting apparatuses is carried by one of the substrate carrying apparatuses, which corresponds to the cutting apparatus, to the other substrate carrying apparatus to be cut by another cutting device provided in correspondence with the other cutting apparatus.
Further, the substrate carrying apparatuses are provided such that carrying directions for the bonded substrate and the cut substrate by the substrate carrying apparatuses are perpendicular to each other.
Moreover, the substrate carrying apparatuses carry the bonded substrate with a surface of the bonded substrate being in parallel with the vertical direction; and the first cutting device and the second cutting device of the cutting apparatus cuts the carried bonded substrate along the vertical direction.
Further, a pair of the cutting apparatuses are included and a rotation carrying apparatus for rotating a cut substrate which has been cut by one of the cutting apparatuses in a direction perpendicular to the vertical direction is further included, and the cut substrate rotated by the rotation carrying apparatus is cut by the other cutting apparatus along the vertical direction.
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
<Embodiment 1>
The substrate cutting system 100 shown in
As shown in
On the end of the table 331 in the longitudinal direction, moving parts 340 of the linear motor are provided. Each of the moving parts 340 includes: guide portions 352 slidably fitted to the guide rail 322; connecting members 354 for joining the tables 331 with the guide portions 352; and actuators 350 integrally formed with the guide portions 352. The actuators 350 are formed of electromagnets, and a part of each of them is inserted into the stator 324.
As shown in
The rail portions 310 include a linear sensor 380 for detecting the positions of the tables 331. The controller 386 controls the movements of the tables 331 based on the positions of the tables 331 detected by the linear sensor 380.
Further, in order to prevent the tables from being twisted while the tables are moving, and to enhance the table positioning precision, it is preferable, for example, to drive the linear motor at one end with position control by using the first drivers 384, and then, based on the result of detecting the torque output, drive the linear motor at the other end with torque control by using the second drivers 382.
As shown in
As shown in
On an upper surface of each of the tables 331, a number of suction holes 370 for sucking the substrate when the mother bonded substrate 200 is placed are provided. The suction holes 370 provided on the table 331 are connected to a suction control section 345 (see
As shown in
The cutting apparatus 400 further includes supporting posts 470 attached to an upper surface of the mount 700 respectively on the sides of the two rail portions 310 of the substrate carrying apparatus 300. Above the rail portions 310, an upper guide portion 460 is provided so as to bridge the upper ends of the supporting posts 470. Similarly, a lower guide portion 490 is provided below the rail portions 310 so as to bridge the lower ends of the supporting posts 470. The upper guide portion 480 and the lower guide portion 490 are provided along the Y direction perpendicular to the rail portions 310 of the substrate carrying apparatus 300.
The first cutting device 410 for cutting the upper mother glass substrate of the mother bonded substrate 200 carried to the predetermined position in a horizontal manner by the substrate carrying apparatus 300 is attached to the upper guide portion 480. The first cutting device 410 is formed such that it can move along the Y direction perpendicular to the carrying direction of the mother bonded substrate 200 by a driving mechanism such as a linear motor provided in the upper guide portion 480. The second cutting device 430 for cutting the lower mother glass substrate of the mother bonded substrate 200 carried to the predetermined position in a horizontal manner by the substrate carrying apparatus 300 is attached to the lower guide portion 490. The second cutting device 430 is formed such that it can move along the Y direction perpendicular to the carrying direction of the mother bonded substrate 200 by a driving mechanism such as a linear motor provided in the lower guide portion 490.
The cutting units 411 are attached such that they can move upward/downward by an ascending/descending mechanism 440 attached to the upper guide portion 480 and the lower guide portion 490. A cutting unit 411 is formed of a scribing portion 1412, a back up portion 1414, and a breaking portion 1416.
In the description below, the case where: the scribing portion 1412 of the cutting unit 411 includes a cutter wheel 412 as a scribing means which is pressed and rolled on a surface of the mother bonded substrate 200 carried to the predetermined position by the substrate carrying apparatus 300 to form scribing lines; the breaking portion 1416 adjacent to the scribing portion 1412 in the Y axis direction perpendicular to the carrying direction for the mother bonded substrate 200 includes a breaking roller 416 which presses a surface of the mother bonded substrate 200 as a breaking means; and the back up portion 1414 adjacent to the scribing portion 1412 in the Y axis direction perpendicular to the carrying direction for the mother bonded substrate 200 at the opposite side to the breaking portion 1416 includes a back up roller 414 as a substrate support means for the mother bonded substrate 200, is explained as an example.
The cutter wheel 412 may be a cutter wheel disclosed in Japanese Patent No. 3074143. The cutter wheel 412 is pressed to the surface of the mother bonded substrate 200 and rolled. Thus, scribing lines, which are lines of vertical cracks, run across substantially the entire lengths in the thickness direction of the mother glass substrates forming the mother bonded substrate 200. The cutter wheel 412 is located such that a rotation axis extends along the X axis direction, which is the carrying direction for the mother bonded substrate 200. When the cutting unit 411 moves along the Y axis direction, the cutter wheel 412 is pressed and rolled on the surface of the mother bonded substrate 200 to form scribing lines, which are lines of vertical cracks, on the two mother glass substrates forming the mother bonded substrate 200. The cutter wheel 412 moves in a vertical direction by the rotation of a servo motor 422. Thus, the cutter wheel 412 can press the surface of the mother bonded substrate 200 with a predetermined pressure. A scribing head which transmits driving torque of the servo motor 422 as a scribing pressure of the cutter wheel 412 drives the servo motor 422 with position control to move the cutter wheel 412 upward/downward. The scribing head also controls the driving torque of the servo motor 422 which tries to return the cutter wheel 412 to the previously-set position when it is shifted to transmit the driving torque to the cutter wheel 412 as the scribing pressure. The previously-set position of the cutter wheel 412 is lower (higher) than the upper (lower) surface of the mother bonded substrate 200. At approximately the same time as when the scribing started, the position is set to be a predetermined position which is further below (above).
The breaking roller 416 included in the first cutting device 410 is located on the side opposite to the direction in which the cutter wheel 412 presses and rolls on the upper surface of the mother bonded substrate 200 with respect to the cutter wheel 412 (the side opposite to the Y direction shown by an arrow in
The breaking roller 416 is formed of an elastic body such as rubber and the like. Since the breaking roller 416 is formed of an elastic body such as rubber and the like, the breaking roller 416 is deformed when it is pressed on the surface of the substrate. Accompanying such deformation, forces are applied in directions to push out the substrates on the both sides of the scribing line. Thus, it is ensured that the substrate is broken.
The back up roller 414 of the cutting unit 411 provided in the first cutting device 410 is provided on the opposite side of the breaking roller 416 with the cutter wheel 412 between them. The back up roller 414 can move upward/downward by, for example, a back up roller ascending/descending portion 424 formed of an air cylinder, and presses the surface of the mother bonded substrate 200 with an appropriate pressure. A roller position adjustment portion 428 can vertically adjust the position where the back up roller 414 is in contact with the mother bonded substrate 200. As shown in
As shown in
The cutting unit 411 of the second cutting device 430 located on the lower side has a structure which is reversed in both the vertical direction and the direction perpendicular to the carrying direction of the substrate from that of the cutting unit 411 of the first cutting device 410.
As shown in
The first camera 435 and the second camera 436 move from the predetermined standby positions and respectively image different alignment marks previously provided on the mother bonded substrate 200 carried (to the imaging positions for the alignment marks) by the substrate carrying apparatus 300. Then, the relative positions of the mother bonded substrate 200 and the cutting apparatus 400 are calculated based on the image data of the imaged alignment marks.
More specifically, the center positions of the alignment marks when the first camera 435 and the second camera 436 capture the alignment marks of the mother bonded substrate 200 are previously set as reference positions. When the mother bonded substrate 200 is actually carried to the alignment imaging position, amounts of gaps between the center positions of the alignment marks respectively captured by the first camera 435 and the second camera 436 and the above-described reference positions in the X axis and Y axis directions are calculated by using an image processing apparatus which is not shown. Based on the result of the calculation, a shift of the mother bonded substrate 200 in the Y direction and the scribing start position and the scribing end position which are end surfaces of the mother bonded substrate 200 are calculated.
The movement of the first cutting device 410 and the second cutting device 430 in the Y direction and the movement of the table portion 330 of the substrate carrying apparatus 300 in the X direction are respectively controlled and linearly interpolated. In this way, even when the mother bonded substrate 200 is not carried in a predetermined position to the table portion 330 (the substrate is shifted to some degree), the mother bonded substrate 200 can be cut along the planned cutting lines.
The supporting section 1475 includes: a first roller 1471; a second roller 1472; a third roller 1473; and a belt 1474 passing through the first roller 1471, the second roller 1472, and the third roller 1473. The belt 1474 is preferably made of steel.
When the surface of the mother bonded substrate 200 is scribed and broken by using the first cutting device 410 and the second cutting device 430, cullet powder is generated. The cutting apparatus 400 further includes an air section 1490 for blowing compressed air to the cullet powder generated during scribing and breaking and piled up on the belt 1474 for cleaning.
A belt 1474A between the second roller 1472 and the third roller 1473 is located so as to be in contact with the lower mother glass substrate 210. In this way, the belt 1474A supports the mother bonded substrate 200. Thus, when the mother bonded substrate 200 is cut, a part of the mother bonded substrate 200 can be prevented from falling, or unnecessary cracks generated in an uncontrollable direction from portions where the scribing lines to be used for cutting are formed can be prevented. Therefore, the cutting apparatus 400 can cut the upper mother glass substrate 210 and the lower mother glass substrate 210 stably along the scribing lines.
When the first cutting device 410 and the second cutting device 430 of the cutting apparatus 400 are moved along the Y axis direction, the third roller 1473 is secured while the first roller 1471 and the second roller 1472 moves along the Y axis direction with the second cutting device 430. In other words, the first roller 1471 and the second roller 1472 are integrally provided with the second cutting device 430.
Next, an operation of the substrate cutting system having such a structure will be described.
The tables 331 of the table portion 330 are arranged such that they are close to each other. In such a state, a substrate transfer apparatus (not shown) formed of, for example, an arm-type robot places the mother bonded substrate 200 on the tables 331 close to each other.
The substrate transfer apparatus transfers the mother bonded substrate 200 with the lower surface of the mother bonded substrate 200 in a horizontal position supported by a pair of arms, for example. In such a case, the substrate support pins 360 provided on the tables 331 of the table portion 330 are raised. The substrate transfer apparatus carries the mother bonded substrate 200 to the position above the tables 331 close to each other, and moves the mother bonded substrate 200 downward. Thus, the mother bonded substrate 200 is supported by the substrate support pins 360 of the five tables 331. In such a state, arms of the substrate transfer apparatus are pulled out from the gaps between the mother bonded substrate 200 and upper surfaces of the tables 331. Then, the substrate support pins 360 are moved down, and the mother bonded substrate 200 is placed on the upper surfaces of the tables 331.
Thereafter, the suction control section 345 sucks from the suction holes 370 provided on all of the upper surfaces of the tables 331 at a negative pressure state. Thus, the mother bonded substrate 200 is adsorbed onto the upper surfaces of all of the tables 331.
In such a state, the five tables 331 are moved in parallel to the cutting apparatus 400 at speeds equal to each other, being controlled by the controller 386. The five tables 331 move together in parallel along the rail portions 310. In this case, the mother bonded substrate 200 on the five tables 331 are adsorbed to the upper surface of the tables 331, and is carried to the alignment mark imaging position on the cutting apparatus 400 side together with the five tables 331 which are integrally moving.
When the mother bonded substrate 200 is carried to the alignment mark imaging position, the first camera 435 and the second camera 436 respectively image the different alignment marks previously provided on the mother bonded substrate 200. The relative positional relationship of the mother bonded substrate 200 and the cutting apparatus 400 is calculated.
Then, based on cutting pattern data of the mother bonded substrate 200, the table portion 330 is controlled such that a line to be scribed on the mother bonded substrate 200 is located between the table 331 which is positioned on a downstream side of the carrying direction of the mother bonded substrate 200 (+X direction), and the table 331 adjacent to the above table 331. In such a state, the cutting units 411 of the first cutting device 410 and the second cutting device 430 in the cutting apparatus 400 are located between the two tables 331. As shown in
In such a state, the first cutting device 410 and the second cutting device 430 are together moved in the Y direction. Further, the table portion 330 of the substrate carrying apparatus 300 is moved in the X direction, and the cutter wheels 412 are moved along the lines to be scribed on the mother bonded substrate 200. On the mother glass substrates 210 of the mother bonded substrate 200, scribing lines are formed along the Y direction. In this case, the cutter wheels 412 forms vertical cracks which extend approximately the entire length in the thickness direction in the mother glass substrates 210.
When the vertical cracks are formed in the mother glass substrates 210 in such a way, the cutter wheels 412 are respectively moved upward or downward to retraction positions. Then, the break rollers 416 and the back up rollers 414 are pressed to the respective mother glass substrates 210 with predetermined pressures in a manner that the break roller 416 of the first cutting device 410 opposes the back up roller 414 of the second cutting device 430 and the break roller 416 of the second cutting device 430 opposes the back up roller 414 of the first cutting device 410. Then, the first device 410 or the second device 430 is moved in the Y direction.
In such a state, the first cutting device 410 and the second cutting device 430 are moved together in the direction (−Y direction) opposite to the moving direction of the cutter wheels 412 (Y direction). Also, the table portion 330 of the substrate carrying apparatus 300 is moved in the direction opposite to the moving direction when scribing is performed by the cutter wheels 412, and the break rollers 416 and the back up rollers 414 are moved along the scribing lines formed on the mother glass substrates 210. The break rollers 416 press the surface portions of the mother glass substrates 210 on sides of the scribing lines which has been already formed with the scribing lines being located between the portions to be pressed, and pushes the substrates toward the outside. Thus, the vertical cracks extend in the thickness direction of the mother glass substrates 210 and the mother glass substrates 210 are cut along the scribing lines. In this way, the mother bonded substrate 200 formed of two mother glass substrates 210 is cut. In this case, a surface facing the surface portions of the mother bonded substrate 200 to which the break rollers 414 are pressed by the back up rollers 414. Thus, it is possible to ensure that the break rollers 416 cut the mother bonded substrate 200 along the vertical cracks formed in the mother glass substrates 210.
When the mother bonded substrate 200 is cut in this way, the cut bonded substrate which has been cut is placed on one of the tables 331 which locates downstream in the carrying direction. Then, only the table 331 on which the cut bonded substrate is placed is moved in the X direction.
Thereafter, four tables 331 on which the portion of the mother bonded substrate 200 other than the cut bonded substrate are moved together, and carried such that the next line to be cut on the mother bonded substrate 200 is set at the cutting apparatus 400.
When the mother bonded substrate 200 is carried such that the next line to be cut in the portion of the mother bonded substrate 200 is set at the cutting apparatus 400, the table portion 330 is controlled such that the next line to be cut in the portion of the mother bonded substrate 200 (line to be scribed) is located between the table 331 which located downstream in the carrying direction and the table 331 adjacent to the above table 331. Then the cutting apparatus 400 cuts using linear interpolation as described above. Thereafter, the cut bonded substrate which has been cut is placed on one table 331 which is located downstream in the carrying direction, and only the table 331 on which the cut bonded substrate is placed is carried in the X direction.
By repeating such an operation, the cut bonded substrates are respectively placed on each table 331.
As described above, the lines to be cut on the mother bonded substrate 200 held by the substrate carrying apparatus 300 are sequentially positioned with respect to the cutting apparatus 400, the mother bonded substrate 200 is sequentially cut along the lines to be cut on the mother bonded substrate 200.
Further, the substrate carrying apparatus 300 includes a plurality of tables 331 which are independently movable. Before the mother bonded substrate 200 is cut, the number of tables 331 to be moved is selected in accordance with the cutting pattern of the mother bonded substrate 200, and the intervals of the tables are adjusted and set such that the second cutting device 430 can move along the lines to be cut of the mother bonded substrate 200. The mother bonded substrate 200 is held on the selected tables.
After the bonded mother glass substrate is cut, the tables 331 holding the cut bonded substrates sequentially move to material removing positions for the cut bonded substrates.
Since the cut bonded substrates which have been cut are respectively placed on the tables 331, the cutting operation of the remaining portion of the mother bonded substrate 200 can be performed while the cut bonded substrate is carried by the table 331. This significantly improves the operating efficiency for cutting the mother bonded substrate.
The first camera 435 and the second camera 436 are moved from the predetermined standby positions and image the different alignment marks previously provided on the mother bonded substrate 200 carried to the alignment position by the substrate carrying apparatus 300. In the example presented in the above description, the process of previously setting the center positions of the alignment marks when the first camera 435 and the second camera 436 capture the alignment marks as reference positions; calculating amounts of gaps in the X axis and Y axis directions between the center positions of the alignment marks captured by the first camera 435 and the second camera 436 when the mother bonded substrate 200 is actually carried; and the above-described reference positions by the image processing apparatus which is not shown; and calculating the shift of the mother bonded substrate 200 with respect to the moving direction of the first cutting device 410 and the second cutting device 430 (Y direction) and the scribing start position and the scribing end position which are end surfaces of the substrate based on the calculated result, is first performed only once when the mother bonded substrate 200 is carried to the alignment mark imaging position in the direction toward the cutting apparatus 400 in view of processing tact time for the substrate and the like. However, when the precision in dimension of the panel substrates as the final products is required, such a process is performed for a plurality of times every time the lines to be cut on the mother bonded substrate 200 is moved to the positions to be set at the cutting apparatus.
The cut bonded substrates carried by the tables 331 may be, for example, rotated by 90° in the horizontal direction, placed on the table portion 330 again, and carried to the cutting apparatus 400 so as to enable to be cut into three equal pieces. In this way, panel substrates having a predetermined size can be produced.
The mother bonded substrate 200 is not limited to the structure to be cut into five cut bonded substrates. It may be cut in accordance with the size of the panel substrates to be produced.
The mother bonded substrate 200 shown in
As shown in
As shown in
Furthermore, as shown in
Such a mother bonded substrate 200 can also be cut by the substrate cutting system according to the present invention. A cutting method in such a case will be described with reference to
As shown in
On the mother bonded substrate 200 positioned by the cutting apparatus 400, the cutter wheels 412 of the cutting units 411 of the first cutting device 410 and the second cutting device 430 respectively form scribing lines for cutting unnecessary parts P1 and Q1 of the mother TFT substrate 220 and the mother CF substrate 230 on the +X direction side (downstream side in the carrying direction of the mother glass substrate 200). Then, the mother bonded substrate 200 is cut by the break rollers 416 along the scribing lines. In this way, unnecessary parts P1 and Q1 in the side peripheral portions of the mother TFT substrate 220 and the mother CF substrate 230 are fallen and removed.
Next, as shown in
In such a state, the cutter wheels 412 of the cutting units 411 of the first cutting device 410 and the second cutting device 430 form scribing lines on the mother TFT substrate 220 and the mother CF substrate 230 along predetermined lines to be scribed. Then, the mother TFT substrate 220 and the mother CF substrate 230 are cut by the break rollers 416 along the scribing lines.
In this way, the cut substrate 200a which has been cut is placed on the table 331 which is located on the +X direction side (downstream side in the carrying direction of the mother bonded substrate 200) with the terminal portion 21a on the mother TFT substrate 220 being exposed.
Then, as shown in
By repeating similar operations thereafter, the mother bonded substrate 200 is cut into the cut substrates 200a with the terminal portions 21a on the side edges being exposed. The cut substrates 200a which has been cut are respectively placed on one table 331.
For removing unnecessary parts P3 and Q3 on the side edges of the −X direction side (upstream side in the carrying direction) of the mother bonded substrate 200, the table portion 330 is moved such that the lines to be cut for cutting the unnecessary parts P3 and Q3 of the mother bonded substrate 200 from which the cut substrate 200a has been cut is located at the positions corresponding to the first cutting device 410 and the second cutting device 430 as shown in
In such a state, the cutter wheels 412 of the cutting units 411 of the first cutting device 410 and the second cutting device 430 form scribing lines on the mother TFT substrate 220 and the mother CF substrate 230 along the predetermined lines to be scribed. Then the mother TFT substrate 220 and the mother CF substrate 230 are cut by the break rollers 416 along the scribing lines.
In this way, the unnecessary parts P3 and Q3 are removed by a free fall. As shown in
For comparison, a substrate cutting method when the mother bonded substrate 200 is cut by the conventional substrate cutting system shown in
As shown in
In
In
In
In this way, two cut substrates 2015 are produced. In this case, unnecessary portions R1 through R3 are formed in the side edge portions and central portion of the mother bonded substrate 200. The unnecessary portions R2 and R3 are formed to have uneven surfaces so as to expose the terminal portions of the mother TFT substrate 220. The portions having larger areas are located on the upper side.
In this case, as shown in
Then, as shown in
Alternatively, the unnecessary parts R2 and R3 have to be removed by using an apparatus in
In the substrate cutting system according to the present invention, the mother bonded substrate 200 is sequentially cut from the edge in the carrying direction of the mother bonded substrate 200, the cut substrate 200a is placed on the table 331 after cutting and the table 331 moves so as to separate the cut substrate 200a from the mother bonded substrate 200. Thus, the generation of a small chip in the terminal portions of the cut substrate due to cutting unnecessary parts can be eliminated.
The first cutting device 410 and the second cutting device 430 are arranged so as to oppose each other in the vertical direction. However, the first cutting device 410 and the second cutting device 430 are not limited to such a structure.
For example, the first cutting device 410 and the second cutting device 430 respectively includes moving means such that the cutting units 411 thereof are arranged with being shifted in the X direction. As described above, such an example can be preferably used when the cutting positions of the mother TFT substrate 220 and the mother CF substrate 230 are shifted. Further, the first cutting device 410 and the second cutting device 430 may be movable in the X direction with respect to each other.
The display panels are not limited to liquid crystal display panels, but may be flat panel displays such as plasma display panels, organic EL display panels, and the like.
The supporting section 1475 includes: a first roller 1471; a second roller 1472; a third roller 1473; and a belt 1474 passing through the first roller 1471, the second roller 1472, and the third roller 1473. The belt 1474 is preferably made of steel.
When the surface of the mother bonded substrate 200 is scribed and broken by using the first cutting device 410 and the second cutting device 430, cullet powder is generated. The cutting apparatus 400 further includes an air section 1490 for blowing compressed air to the cullet powder generated during scribing and breaking and piled up on the belt 1474 for cleaning.
A belt 1474A between the second roller 1472 and the third roller 1473 is located so as to be in contact with the lower mother glass substrate 210. In this way, the belt 1474A supports the mother bonded substrate 200. Thus, when the mother bonded substrate 200 is cut, a part of the mother bonded substrate 200 can be prevented from falling, or unnecessary cracks generated in an uncontrollable direction from portions where the scribing lines to be used for cutting are formed can be prevented. Therefore, the cutting apparatus 400 can cut the upper mother glass substrate 210 and the lower mother glass substrate 210 stably along the scribing lines.
When the first cutting device 410 and the second cutting device 430 of the cutting apparatus 400 are moved along the Y axis direction, the third roller 1473 is secured while the first roller 1471 and the second roller 1472 moves along the Y axis direction with the second cutting device 430. In other words, the first roller 1471 and the second roller 1472 are integrally provided with the second cutting device 430.
By operating (driving) the ascending/descending mechanism 440, the cutting units 411 moves so as to come closer to or move away from the lower mother glass substrate 210.
By operating (driving) the servo motor 422 of the scribing portion 1412, the cutter wheel 412 which is a scribing means moves so as to come closer to or move away from the lower mother glass substrate 210.
Further, by adjusting the roller position adjustment portion 428 of the back up portion 1414, it is possible to move the position where the back up roller 414, which is a back up means, and the lower mother glass substrate 210 to be in contact with each other.
Since the portions which has been cut by the first cutting device 410 and the second cutting device 430 of the cutting apparatus 400 is supported by the supporting section 1475, it is possible to ensure that the cutting apparatus 400 cut the mother bonded substrate 200 without being affected by the substrate which has already been cut.
Thereafter, the first cutting device 410 retracts the back up roller 414 of the first back up portion 1414 and the break roller 416 of the first breaking portion 1416 from the upper mother glass substrate 210. The second cutting device 430 retracts the back up roller 414 of the second back up portion 1414 and the break roller 416 of the second breaking portion 1416 from the lower mother glass substrate 210. The first cutting device 410 and the second cutting device 430 of the cutting apparatus 400 return to the standby positions. While the cutting apparatus 400 returns to the standby position, the unnecessary parts cut from the mother bonded substrate 200 fall into a cullet box provided below the cutting apparatus 400.
In the above description, the scribing portions 1412 of the first cutting device 410 and the second cutting device 430 are formed to have the cutter wheels 412 as scribing means. However, the scribing portions 1412 may be formed by using other scribing means which can scribe the mother bonded substrate 200.
For example, scribing portions 1412 may be formed to have scribing means which irradiate the mother bonded substrate 200 with laser light and generates strains in the two mother glass substrates 210 forming the mother bonded substrate 200 due to heat stress for scribing. In the scribing method utilizing heat strains generated in the mother glass substrates 210, it is preferable that the scribing portions 1412 further include cooling means for cooling the portions near the laser spot formed in the mother glass substrates 210 by the laser light.
In the above description, the breaking portions 1416 of the first cutting device 410 and the second cutting device 430 include the break rollers 416 as breaking means. However, the breaking portions 1416 may include other breaking means as long as the mother glass substrates 210 can be broken (cut) along the scribing lines after the scribing lines have been already formed in the mother bonded substrate 200 by the scribing means.
For example, the breaking portion 1416 may include breaking means for irradiating the mother glass substrate 210 with laser light along the scribing lines formed on the mother glass substrate 210 by the scribing mean and extending vertical cracks immediately below the scribing lines in the thickness direction of the mother glass substrate to cut the mother glass substrate 210. Alternatively, the breaking portion 1416 may include breaking means which blows a heated fluid such as steam or hot water (for example, 60° C. or higher) along scribing lines which have been already formed in the mother glass substrates and causes cubical expansion of the surfaces of the mother glass substrates 210 to extend vertical cracks and cut the mother glass substrates 210.
In the above description, the back up portions 1414 of the first cutting device 410 and the second cutting device 430 include the back up rollers 414 as substrate supporting means. However, the back up portion 1414 may be formed using other substrate supporting means which can support the mother bonded substrate 200.
For example, the back up portion 1414 may include means for supporting the mother bonded substrate by blowing compressed air from nozzles to the mother bonded substrate 200.
Further, the first cutting device 410 and the second cutting device 430 may not include the breaking portions 1416.
For example, the cutter wheels 412 may be included in the scribing portions as scribing means and two scribing lines may be formed in parallel with about 0.5 to 2 mm intervals on each of the two mother glass substrates 210 forming the mother bonded substrate 200. Thus, cutting can be performed along the scribing lines formed first among the two scribing lines. This cutting method utilizes the fact that internal stress is applied near the surface of the scribing lines first formed in the mother glass substrates 210 when the second scribing line is formed. In this way, the mother glass substrates 210 can be cut by only scribing the cutter wheels 412 which are scribing means of the scribing portions 1412. Thus, the breaking portions can be omitted.
<Embodiment 2>
The substrate carrying apparatus 1550 used in the substrate cutting system 1500 includes, for example, a table portion 1530 formed of four tables 1531. The tables 1531 have similar structures to each other and are joined to supporting posts 1522 and held by respective moving bodies 1521 of a guide 1520.
The moving bodies 1521 are individually movable in the Y direction using, for example, a linear motor.
On an upper surface of each of the tables 1531, a number of suction holes 370 for sucking the substrate when the mother bonded substrate 200 is placed are provided similarly to Embodiment 1. The suction holes provided on the table 1531 are connected to a suction control section (not shown) collectively for every table 1531. The suction control section is formed such that it can suck all the suction holes 370 provided on one table 1531 to a negative-pressure state for every table. Similarly to Embodiment 1, on the table 1531, the mother bonded substrate 200 supported by the substrate support pins (not shown) is brought in contact with an upper surface of the table 1531 by moving the substrate support pins downward. In such a state, by collectively putting all the suction holes to the negative-pressure state by the suction control section, the mother bonded substrate 200 is adsorbed to the table 1531.
The cutting apparatus 1700 includes a first camera 1535 for imaging an alignment mark previously provided on the mother bonded substrate 200 placed on the tables 1531 of the substrate carrying apparatus 1530 and the second camera 1536 for imaging an alignment mark different from the alignment mark imaged by the first camera 1535 are provided so as to be movable in the Y direction.
The first cutting device 1712, the second cutting device 1714, the third cutting device 1722, the fourth cutting device 1724, the fifth cutting device 1732, and the sixth cutting device 1734 have the same structure to each other, and, for example, is same as those of the first cutting device and the second cutting device of Embodiment 1.
However, the scribing portion, the back up portion, and the breaking portion are arranged in line along the X direction in each of the first cutting device 1712, the second cutting device 1714, the third cutting device 1722, the fourth cutting device 1724, the fifth cutting device 1732, and the sixth cutting device 1734.
Each of the first cutting device 1712, the second cutting device 1714, the third cutting device 1722, the fourth cutting device 1724, the fifth cutting device 1732, and the sixth cutting device 1734 is individually movable along the Y direction.
The cutting apparatus 1700 includes a rectangular parallelepiped-shape securing table 1740 which is hollow inside. The securing table 1740 includes a first rail 1742 and a second rail 1744 provided in parallel to each other. The first cutting device 1712, the third cutting device 1722, and the fifth cutting device 1732 are attached to the securing table 1740 such that they have flexibility in spaces therebetween and are individually movable.
Further, the securing table 1740 includes a third rail 1746 and the fourth rail 1748 provided in parallel to each other. The second cutting device 1714, the fourth cutting device 1724, and the sixth cutting device 1734 are attached to the securing table 1740 such that they have flexibility in the spaces therebetween and are individually movable.
The cutting apparatus is movable along a pair of rails 1570 in the X direction which is perpendicular and horizontal to the first rail 1742, the second rail 1744, the third rail 1746, the fourth rail 1748 and the guide 1520.
Next, an operation of the substrate cutting system having such a structure will be described below. The tables 1531 of the table portion 1530 are arranged such that they are separate from each other. In such a state, a substrate transfer apparatus (not shown) formed of, for example, an arm-type robot places the mother bonded substrate 200 on the tables 331 close to each other.
The substrate transfer apparatus transfers the mother bonded substrate 200 with the lower surface of the mother bonded substrate 200 in a horizontal position supported by a pair of arms, for example. In such a case, the substrate support pins (not shown) provided on the tables 1531 of the table portion 1530 are raised. The substrate transfer apparatus carries the mother bonded substrate 200 to the position above the tables 1531 close to each other, and moves the mother bonded substrate 200 downward. Thus, the mother bonded substrate 200 is supported by the substrate support pins of the four tables 1531. In such a state, arms of the substrate transfer apparatus are pulled out from the gaps between the mother bonded substrate 200 and upper surfaces of the tables 1531. Then, the substrate support pins of the tables 1531 are moved down, and the mother bonded substrate 200 is placed on the upper surfaces of the tables 1531.
Thereafter, the suction control section sucks from the suction holes provided on all of the upper surfaces of the tables 1531 at a negative pressure state. Thus, the mother bonded substrate 200 is adsorbed onto the upper surfaces of all of the tables 1531.
In such a state, the cutting apparatus 1700 moves to the alignment mark imaging position in the −X direction along the pair of the rails 1570 by, for example, a servo motor, and the first camera 1535 and the second camera 1536 image different alignment marks provided on the mother bonded substrate 200.
The center positions of the alignment marks when the first camera 1535 and the second camera 1536 capture the alignment marks are previously set as reference positions. After the mother bonded substrate 200 is actually placed on the tables 1531 of the table portion 1530, the cutting apparatus 1700 moves to the alignment mark imaging position to calculate amounts of gaps between the center positions of the alignment marks respectively captured by the first camera 1535 and the second camera 1536 and the above-described reference positions in the X axis and Y axis directions by using an image processing apparatus, which is not shown. Based on the result of the calculation, tilt of the mother bonded substrate 200 in the Y direction with respect to the moving direction of the first cutting device 1712 through the sixth cutting device 1734 (X direction) and the scribing start position and the scribing end position which are end surfaces of the mother bonded substrate 200 are calculated.
With the movement of the first cutting device 1712 through the sixth cutting device 1734 in the Y direction and the movement of the cutting apparatus 1700 in the X direction respectively being controlled and linearly interpolated, the second cutting device 1714, the fourth cutting device 1724, and the sixth cutting device 1734 are moved through the gaps between the tables. Thus, the mother bonded substrate 200 can be cut along the lines to be cut even when the mother bonded substrate 200 is not carried in the predetermined position on the table portion 1530 (i.e., the substrate is tilted to a certain degree).
<Embodiment 3>
A substrate cutting system 1800 includes: a first substrate cutting system 1810 for cutting the mother bonded substrate 200 into first cut substrates 500 and carrying the mother bonded substrate 200 and the first cut substrate 500 in the Y axis direction; and a second substrate cutting system 1820 for cutting each of the first cut substrates 500 into second cut substrates 550 and carrying the first cut substrates 500 and the second cut substrates 550 in the X axis direction which is perpendicular to the Y axis; a carrying apparatus 1830 for carrying the first cut substrates 500 to the second mother substrate cutting system 1820; and a measuring apparatus 1840 for checking the second cut substrates.
The first substrate cutting system 1810 includes a cutting apparatus 1814 for cutting the mother bonded substrate 200 into the first cut substrates 500 and a substrate carrying apparatus 1812 for carrying the mother bonded substrate 200 and the first cut substrates 500 in the Y axis direction.
The second substrate cutting system 1820 includes a cutting apparatus for cutting the first cut substrates 500 into the second cut substrates 550 and a substrate carrying apparatus 1822 for carrying the first cut substrates 500 and the second cut substrates 550 in the X axis direction.
The carrying apparatus 1830 carries the first cut substrates 500 carried by the substrate carrying apparatus 1812 of the first substrate cutting system 1810 to the substrate carrying apparatus 1822 of the second substrate cutting system 1820 such that the longitudinal directions of the first cut substrates 500 are not changed. The carrying apparatus 1830 preferably carries the first cut substrates 500 while supporting the lower surfaces thereof, for example.
The measuring apparatus 1840 measures the dimension of the external diameter of the second cut substrates 550. If the dimension of the external diameter of a second cut substrate 550 measured by the measuring apparatus 1840 is different from a predetermined reference value, the second cut substrate 550 is judged as defective and the second cut substrate 550 is removed from the present substrate cutting system.
In the conventional substrate cutting system shown in
Furthermore, in the conventional substrate cutting system shown in
Moreover, in the conventional substrate cutting system shown in
In the substrate cutting system 1800 shown in
<Embodiment 4>
In the above description of the substrate cutting system, examples in which the mother bonded substrate is placed on the table portion which is horizontally provided for supporting the weight of the substrate and the substrate is carried by the table portion have been described. With such a structure, the weight of the entire substrate can be dispersed, and thus, the mother bonded substrate can be carried stably.
However, substrate cutting systems for cutting substrates which have such a structure need a large floor space for installation, which results in the increased cost of panel display production. Recently, it has been desired to decrease a floor space for installing the substrate cutting system.
Regarding the present embodiment, a substrate cutting system for cutting and carrying the mother bonded substrates in a position vertical or slightly tilted from the vertical in order to decrease the floor space for the substrate cutting system for cutting the mother bonded substrates will be described.
Herein, a substrate in a position vertical or slightly tilted from the vertical means a substrate in a position tilted by 5° to 10° from the vertical, i.e., tilted by 80° to 85° from the horizontal.
The first cutting apparatus 401 and the second cutting apparatus 402 have a similar structure with that of the cutting apparatus 400 used in the substrate cutting system shown in
The first carrying mechanism 61 includes carrying belts 61a which rotate along the horizontal direction. The carrying belts 61a are arranged in equal pitches in the vertical direction. The first cutting apparatus 401 is located within the area for rotational movement of the carrying belts 61a.
The carrying belts 61a are rotated by driving motors 61c. The mother bonded substrate 200 in the vertical position is carried by the rotating carrying belts 61a in the horizontal direction while keeping the vertical position. When the driving motors 61c are stopped, the rotational movement of the carrying belts 61a is stopped, and the bonded substrate 200 is also stopped to be carried. The stopped carrying belts 61a are prevented from sliding by clamp mechanisms 61d to become surely secured.
As shown in
The mother bonded substrate 200 carried by the carrying belts 61a in the horizontal direction is guided by the guide rollers 61f of the supporting members 61e. When the mother bonded substrate 200 reaches the predetermined position, it is secured by the securing portions 61g.
The mother bonded substrate 200 secured by the securing portions 61g of the supporting members 61e is secured by a plurality of securing portions 61g provided with appropriate spaces there between in the vertical direction at a side edge on the upstream side in the carrying direction.
As described above, the first carrying mechanism 61 carries the mother bonded substrate 200 in the vertical position to the predetermined position by the carrying belts 61a and secures it. The mother bonded substrate 200 secured by the first carrying mechanism 61 is cut by the first cutting apparatus 401 along the vertical direction. The first cut substrates 201 cut by the first cutting apparatus 401 are rotated by 90° by the first rotation mechanism 71 while keeping the vertical position.
The first rotation mechanism 71 includes a supporting beam 71a bridging between upper and lower guide rails 91, and an absorbing apparatus 71b. The supporting beam 71a can move in parallel along the upper and lower guide rails 91 in the horizontal direction. The absorbing apparatus 71b can move along the supporting beam 71a.
To the other end of the rotating shaft 71g, a central portion of an absorption pad attachment plate 71j is integrally attached. On a surface of the absorption pad attachment plate 71j, a number of absorption pads 71k which adsorbs the first cut substrate 201 are provided.
In the first rotation mechanism 71 having such a structure, when the adsorption pads 71k attached to the absorption pad attachment plate 71l adsorbs the first cut substrate 201 secured in the vertical position, the servo motor 71c is driven and the driving shaft 71d is rotated by 90° in a direction opposite to the clockwise direction when viewed from the substrate side. When the driving shaft 71d is rotated by 90°, the arm 71f rotates around the driving shaft 71d by 90° in a direction opposite to the clockwise direction when viewed from the substrate side. Thus, the absorption pad attachment plate 71j attached to the tip portion of the arm 71f integrally rotates with the arm 71f around the driving shaft 71d by 90° in a direction opposite to the clockwise direction when viewed from the substrate side. In this case, the rotating shaft 71g attached to the absorption pad attachment plate 71j also rotates around the driving shaft 71d.
At this time, the first gear 71e attached to the driving shaft 71d also rotates in a direction opposite to the clockwise direction when viewed from the substrate side. The second gear 71h to which the rotation is transferred by the first gear 71e rotates by 180° in the clockwise direction when viewed from the substrate side. Thus, the absorption pad attachment plate 71j autorotates around the rotating shaft 71g by 180° in the clockwise direction when viewed from the substrate side while rotating around the driving shaft 71d by 90° in a direction opposite to the clockwise direction when viewed from the substrate side. As a result, as shown in
In the above description of the absorbing apparatus 71b, an example where the absorbing apparatus 71b is located on a central portion of the supporting beam 71a is described. However, the absorbing apparatus 71b is movable along the supporting beam 71a in the vertical direction.
The first cut substrate 201 rotated by 90° by the first rotation mechanism 71 is carried in the horizontal direction, and placed on the guide rails of the supporting members 62e of the second carrying mechanism 62 without giving a shock to the first cut substrate 201. As shown in
The first cut substrates 201 carried by the second carrying mechanism 62 are cut by the second cutting apparatus 402. The second cut substrates 202 cut by the second cutting apparatus 402 are rotated by 90° by the second rotation mechanism 72 while keeping the vertical position. The second rotation mechanism 72 has a structure similar to the rotation of the first rotation mechanism 71, and includes a supporting beam 72a and an absorbing apparatus 72b. The absorbing apparatus 72b can move in the vertical direction along the supporting beam 72a.
The second cut substrates 202 rotated by the second rotation mechanism 72 are held in the vertical position by a vertical table 65 in the vertical position. Unnecessary portions of the lower side edges of one of the substrates and unnecessary portions in the side edge on the upstream side in the carrying direction are cut by the scribing apparatus 81. The vertical table 65 adsorbs the second cut substrates 202 in the vertical direction to keep them in the vertical position.
The scribing apparatus 81 includes a scribing unit 81b shown in
The scribing unit 81b includes a slider 81c sliding along the guide beam 81a. A toothed pulley 81d is rotatably attached to the slider 81c. A holder 81e is integrally attached to the toothed pulley 81d. A cutter wheel 81i is rotatably supported by the holder 81e. The cutter wheel 81i has a similar structure as the cutter wheels used in the above-described cutting apparatus 400 and the like. In the slider 81c, energizing means (not shown) for applying load to the cutter wheel 81i during scribing steps is provided.
A servo motor 81f is provided in the slider 81c. A toothed pulley 81g is integrally attached to the driving axis of the servo motor 81f. A toothed belt 81h is wound around the toothed pulley 81g and the toothed pulley 81d attached to the slider 81c.
When the servo motor 81f is driven to rotate, the rotation is transferred to the holder 81e via the toothed pulley 81g, toothed belt 81h, and the toothed pulley 81d. The holder 81e is rotated by 90°. Thus, the cutter wheel 81i can scribe along two directions perpendicular to each other.
The second cut substrate 202 held in the vertical position by the vertical table 65 is cut by the scribing unit 81b of the scribing apparatus 81 respectively at the lower side edge of one of the substrates facing the scribing unit 81b and the side edge in the X axis (+) direction.
For cutting the lower side edge of one of the substrates in the second cut substrate 202, the servo motor 81f is driven such that the cutter wheel 81i of the scribing unit 81b in the scribing apparatus 81 is in the horizontal position along its lower side edge. The cutter wheel 81i in the horizontal position is located along the lower side edge to be cut of the second cut substrate 202 held in the vertical position, and the supporting beam 81a is moved in the horizontal direction along the side edge. In this way, a scribing line is formed along the lower side edge to be cut.
For cutting the side edge of the second cut substrate 202 along the vertical direction, the servo motor 81f is driven such that the cutter wheel 81i of the scribing unit 81b in the scribing apparatus 81 can scribe in the vertical direction along the side edge. The cutter wheel 81i which is allowed for scribing in the vertical direction is located along the side edge to be cut of the second cut substrate 202 held in the vertical position, and the scribing unit 81b is moved in the vertical direction along the guide beam 81a so as to run along the side edge. In this way, a scribing line is formed along the side edge in the vertical direction to be cut.
Near the lower side edge of the vertical table 65 for supporting the second cut substrate 202 in the vertical position, a first unnecessary portion removing mechanism 83 for removing unnecessary portions at the lower side edges in the horizontal position of the second cut substrate 202 held by the vertical table 65 is provided. Near the side edge of the vertical table 65 on the upstream side in the carrying direction, a second unnecessary portion removing mechanism 84 for removing unnecessary portions at the side edge in the vertical position on the X axis (−) direction side of the second cut substrate 202 held by the vertical table 65 is provided.
The first unnecessary portion removing mechanism 83 is formed by arranging a plurality of removing roller portions 83a respectively having a pair of opposing rollers 83b as shown in
The second unnecessary portion removing mechanism 84 has a similar structure, and is formed by arranging a plurality of removing roller portions 84a respectively including a pair of opposing rollers with a predetermined pitch in the vertical direction.
Once the scribing line is formed on the lower side edge of the second cut substrate 202 held by the vertical table 65 which is the unnecessary portion, the first unnecessary portion removing mechanism 83 is approached relatively to the lower side edge of the second cut substrate 202, and the side edge is inserted between the pair of opposing rollers 83b. In this case, the rollers 83b are pressed to the side edge of the second cut substrate 202 with being rotated in a direction in which the second cut substrate 202 is to be inserted. In this way, only the side edge which is the unnecessary portion in the second cut substrate 202 with the scribing lines formed thereon is cut with the pressure of the rollers 83b. Only the side edge which is the unnecessary portion is separated when the second cut substrate is pulled out from the rollers.
The second unnecessary portion removing mechanism 84 similarly cuts only the side edge along the vertical direction which is the unnecessary portion in the second cut substrate 202 with the scribing line formed thereon.
Further, the substrate cutting system according to the present embodiment is effectively applied for producing panel substrates by cutting the second cut substrates when a one drop fill method is employed. The scribing apparatus 81 is used for forming terminal portions of the panel substrates from the second cut substrates which have been cut into the size approximately equal to the size of the liquid crystal panel substrates. The mother bonded substrate 200 is formed into panel substrates having a predetermined shape.
The substrate cutting system 1000 according to the present embodiment may be formed without the scribing apparatus 81 when the first cut substrates 201 are cut by the second cutting apparatus to produce predetermined panel substrates (second cut substrates 202).
<Embodiment 5>
In the substrate cutting system 1900 shown in
The mother bonded substrate 200 is located in the position vertical or slightly tilted from the vertical. Herein, the position slightly tilted from the vertical means a position tilted by 5° to 10° from the vertical, i.e., tilted by 80° to 85° from the horizontal.
The first cutting system 1910 includes a first substrate carrying apparatus 1912 for carrying the mother bonded substrate 200 and a first cutting apparatus 1914 for cutting the mother bonded substrate 200. The first cutting apparatus 1914 includes a first vertical cutting unit 1915 for cutting the mother bonded substrate 200 in the position vertical or slightly tilted from the vertical (hereinafter, the term “vertical position” includes the tilted position), and a first bridge portion 1916 on which the first vertical cutting unit 1915 is attached movably in the vertical direction. Roller portions 1911 help in carrying the mother bonded substrate 200 and the first cut substrates 510 in the first cutting system 1910. The first vertical cutting unit 1915 moves in the vertical direction along the first bridge portion 1916 and cuts the mother bonded substrate 200 into the first cut substrates 510.
The first vertical cutting unit 1915 includes a first cutting device 410 and the second cutting device 430 in Embodiment 1. The first cutting apparatus 1914 has a similar structure as the first cutting apparatus 401 described in Embodiment 4. Thus, detailed descriptions are omitted.
The first substrate carrying apparatus 1912 may carry the mother bonded substrate 200 and the first cut substrates 510 by using a belt as shown in
The first cut substrates 510 cut by the first cutting system 1910 is rotated by 90° by the first rotation carrying apparatus 1920 while keeping the vertical position, and is placed on roller portions 1931 which assist in carrying the substrates included in a second substrate carrying apparatus 1932 of the second substrate cutting system 1920 without giving a shock.
The first rotation carrying apparatus 1920 has a similar structure as the first rotation mechanism 71 described in Embodiment 4. Thus, a detailed description is omitted.
The second cutting system 1930 includes the second substrate carrying apparatus 1932 for carrying the first cut substrates 510 and a second cutting apparatus 1934 for cutting the first cut substrates 510 along the vertical direction. The second cutting apparatus 1934 includes a second vertical cutting unit 1935 for cutting the first cut substrates 510 and a second bridge portion 1936 on which the second vertical cutting unit 1935 is attached movably in the vertical direction. The roller portions 1931 help in carrying the first cut substrates 510 and the second cut substrates 560 in the second cutting system 1930. The second vertical cutting unit 1935 moves in the vertical direction along the second bridge portion 1936.
The second vertical cutting unit 1935 includes a first cutting device 410 and the second cutting device 430 in Embodiment 1. The second cutting apparatus 1934 has a similar structure as the first cutting apparatus 401 described in Embodiment 4. Thus, detailed descriptions are omitted.
The third cutting system 1950 includes a carrying robot for holding and carrying the second cut substrates 560 and a third cutting apparatus 1954 for cutting the second cut substrates 560 along the vertical direction. The third cutting apparatus 1954 includes a third vertical cutting unit 1935 for cutting the second cut substrates 560 and a third bridge portion 1956 on which the third vertical cutting unit 1955 is attached movably in the vertical direction. The third vertical cutting unit 1955 moves in the vertical direction along the third bridge portion 1956.
The third vertical cutting unit 1955 includes a first cutting device 410 and the second cutting device 430 in Embodiment 1. The third cutting apparatus 1954 has a similar structure as the first cutting apparatus 401 described in Embodiment 4. Thus, detailed descriptions are omitted.
The second substrate carrying apparatus 1932 may carry the first cut substrates 510 and the second cut substrates 560 with a form of a belt as shown
The carrying robot holds the second cut substrates 560 and carries them to the predetermined processing position of the third cutting system 1950.
The third cutting unit 1955 moves in the vertical direction along the second bridge portion 1956. Thus, the predetermined end portions of the second cut substrates 560 held by the carrying robot form the terminal portions of the panel displays. Further, the third vertical cutting unit 1955 may also be applied to the case where only the upper substrate or the lower substrate of the second cut substrates 560 is cut to form terminal portions of the panel substrates.
The second cut substrates 560 with terminal portions formed on one end of the second cut substrates 560 are rotated in the vertical position by the carrying robot and again carried to the predetermined processing position of the third cutting system 1950.
When the third vertical cutting unit 1955 is moved in the vertical direction along the second bridge portion 1956, another end of the second cut substrates 560 carried by the carrying robot are cut and the terminal portions of the panel substrates are formed. At this time, only the upper substrate or the lower substrate of the second cut substrates 560 may be cut to form terminal portions of the panel substrates.
The second cut substrates 560 may be rotated and moved by the carrying robot and cut by the third vertical cutting unit 1955 for the number of the times in accordance with the terminal portions formed by breaking steps by the third vertical cutting unit 1955 to form terminal portions. The second cut substrates 560 may be removed from the substrate cutting system 1900 by the carrying robot once the cutting of edge surfaces and formation of the terminal portions of the panel substrates are finished.
The third cutting system 1950 is used for further cutting the second cut substrates. For example, it is used for forming terminal portions from the second cut substrates which has been cut in a size substantially equal to the size of the panel substrates. For example, it is effectively applied in the case where the second cut substrates are cut to produce the panel substrates when a one drop fill method is employed, and the second cut substrates are cut.
The one drop fill method is a method where a sealing member is attached to one substrate and liquid crystal is dropped in an area surrounded by the sealing member before two substrates are bonded to each other. Recently, there has been a strong demand for increasing the size of liquid crystal mother glass substrates. In order to respond to such a demand, it is necessary to cut liquid crystal mother glass substrates having a large size. When such large-sized liquid crystal mother glass substrates are produced by using the one drop fill method, it is desirable to reinforce even the portions which will become unnecessary parts to improve the bonding strength of two substrates in order to prevent the liquid crystal inside the liquid crystal mother glass substrate from leaking. When such mother bonded substrates are cut by the substrate cutting system 1900 described in the present embodiment, there may be the case where terminal portions of the liquid crystal panel substrates cannot be formed in the second cut substrates 560 cut by the second cutting apparatus 1930 due to a seal attached for reinforcement. In this case, the third cutting apparatus 1950 cuts the unnecessary parts from the second cut substrates 560, and produces the panel substrates with the terminal portions.
When the first cut substrate 510 is cut into predetermined panel substrates (second cut substrates 560) by the second cutting apparatus 1934, the substrate cutting system 1900 according to the present embodiment may be formed without the third cutting system 1950.
<Embodiment 6>
By providing the substrate cutting systems 100 in a plurality of stages as described above, the tact time can be further improved. Furthermore, even when one of the substrate cutting systems 100 has a breakdown, cutting operations can be continued by other substrate cutting systems 100.
<Embodiment 7>
The number of the substrate cutting systems 100 is not limited to four but a plurality of them may be arranged. The number of the chamfering apparatuses 67 is not limited to two but a plurality of them may be arranged. At least one material supplying cassette 68, material supplying robot 13, carrying robots 23, 23A, and 23B and material removing robot 17 are required in the substrate cutting line system.
By providing the substrate cutting systems 100 in a plurality of stages as described above, the tact time can be further improved. Furthermore, even when one of the substrate cutting systems 100 has a breakdown, cutting operations can be continued by other substrate cutting systems 100.
In
In
In
In
In this way, two cut substrates 1215 are produced. In this example, unnecessary portions R4, R5 and R6 are formed in the side edge portions and central portion of the mother bonded substrate 200. The unnecessary portions R5 and R6 are formed to have uneven surfaces so as to expose the terminal portions of the mother TFT substrate 220.
Then, as shown in
As a comparative example, an example which the mother CF substrate 230 is cut before the mother TFT substrate 220 is cut will be described with reference to
In
In
In
In
In this way, two cut substrates 1215 are produced. In this example, unnecessary portions R7, R8 and R9 are formed in the side edge portions and central portion of the mother bonded substrate 200. The unnecessary portions R8 and R9 are formed to have uneven surfaces so as to expose the terminal portions of the mother TFT substrate 220. The portions having larger areas are located on the upper side.
In this case, as shown in
Then, as shown in
Alternatively, the unnecessary parts R8 and R9 have to be removed by using an apparatus in
In the steps of cutting the mother TFT substrate 220 before cutting the mother CF substrate 230 shown in
Furthermore, the unnecessary parts R4, R5, and R6 are dropped by a free fall without rubbing the terminal portions. This also reduces a risk of generating a small chip in the terminal portions.
In the substrate cutting system according to the present invention, as described in Embodiment 1, the mother bonded substrate is sequentially cut from the edge. Thus, the unnecessary parts which have already been cut are not pressed, nor do the unnecessary parts remain on the tables as described above.
Regarding the embodiments of the present invention, the substrate cutting systems (including substrate cutting line systems) for the mother bonded substrate to be cut into the display panel substrates of the liquid crystal display apparatuses, which is an example of a bonded brittle material substrates, has been mainly described. However, the present invention is not limited to this. The substrate cutting system according to the present invention can be effectively applied in cutting mother bonded substrates of brittle material substrates, such as plasma display panels which is a type of flat display panels, organic EL panels, inorganic El panels, transmissive projector substrates, reflective projector substrates, and the like.
The substrate cutting system according to the present invention can also be used for cutting a single plate of brittle material substrates, such as, glass substrates, quartz substrates, sapphire substrates, semiconductor wafers, ceramics, and the like.
A substrate cutting system according to the present invention includes a substrate carrying apparatus 300 including a plurality of tables 331 which are independently movable, and a cutting apparatus 400 for cutting upper and lower substrates in a mother bonded substrate in one direction at the same time by a cutting apparatus including a first cutting device and a second cutting device. The substrate cutting system sequentially cuts the mother bonded substrate on the substrate carrying apparatus 300 and carries a bonded substrate which has been cut to the material removing position. Thus, it is not necessary to lift the substrate under the process and carry to the apparatus for the following process. Therefore, it is possible to efficiently cut the substrates without dropping some of the substrates of the bonded substrate while being carried, or damaging the bonded substrate. Further, the structure of the substrate cutting system is compact.
Furthermore, since the substrate cutting system according to the present invention does not require a reverse apparatus and a breaking apparatus in the substrate cutting system, the area for installation can be significantly reduced.
Number | Date | Country | Kind |
---|---|---|---|
2002-194004 | Jul 2002 | JP | national |
2002-218938 | Jul 2002 | JP | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/JP03/08449 | 7/2/2003 | WO | 6/20/2005 |