Patient-modified implant and associated method

Information

  • Patent Grant
  • 7967868
  • Patent Number
    7,967,868
  • Date Filed
    Wednesday, April 16, 2008
    17 years ago
  • Date Issued
    Tuesday, June 28, 2011
    14 years ago
Abstract
An orthopedic implant. The implant has a first portion including at least one patient-adjustable feature, and a second portion including at least one standard feature.
Description
INTRODUCTION

Various custom made, patient-specific orthopedic implants and associated templates and guides are known in the art. Such implants and guides can be developed using commercially available software. Custom guides are used to accurately place pins, guide bone cuts, and insert implants during orthopedic procedures. The guides are made from a pre-operative plan formed from an MRI or CT scan of the patient and rely on matching an anatomic feature for correct positioning.


The present teachings provide semi-custom implants that can reduce inventory and allow more accurate placement and additional flexibility in addressing diverse patient-specific requirements.


SUMMARY

The present teachings provide an orthopedic implant. The implant has a first portion including at least one patient-adjustable feature, and a second portion including at least one standard feature.


The present teachings also provide an orthopedic implant manufacturing method. The method includes preparing a three-dimensional image of a patient's joint, selecting a standard size implant closely matching the joint, and modifying at least one feature of the implant to be patient-specific.


In another aspect, the implant is a femoral implant, and the method includes modifying a plurality of features of the femoral implant to be patient-specific.


Further areas of applicability of the present teachings will become apparent from the description provided hereinafter. It should be understood that the description and specific examples are intended for purposes of illustration only and are not intended to limit the scope of the teachings.





BRIEF DESCRIPTION OF THE DRAWINGS

The present teachings will become more fully understood from the detailed description and the accompanying drawings, wherein:



FIG. 1 is a plan view of an exemplary femoral implant according to the present teachings;



FIG. 2 is a posterior elevated view of the femoral implant of FIG. 1;



FIG. 3 is an anterior-posterior sectional view of the femoral implant of FIG. 1;



FIG. 4 is an environmental view illustrating an exemplary femoral alignment guide according to the present teachings;



FIG. 5 is an environmental view illustrating an exemplary distal cutting block according to the present teachings;



FIG. 6 is an environmental view illustrating an exemplary four-in-one cutting block according to the present teachings;



FIG. 7 is a flowchart of an exemplary method according to the present teachings;



FIG. 8 is an anterior elevated view of a femoral implant according to the present teachings;



FIG. 9 is an anterior-posterior sectional view of the femoral implant of FIG. 8; and



FIG. 10 is a perspective view of a tibial component according to the present teachings.





DESCRIPTION OF VARIOUS ASPECTS

The following description is merely exemplary in nature and is in no way intended to limit the teachings, its application, or uses. For example, although the present teachings are illustrated for specific implants and alignment guides in hip or knee surgery, the present teachings can be used with other implants and guides, templates, jigs, drills, rasps or other instruments used in various orthopedic procedures.


The present teachings generally provide a surgery system for use in orthopedic surgery for the knee, hip, or shoulder, for example. The surgery system can include various implant components 100, patient-specific alignment guides or templates 600, and cutting blocks or other conventional instruments 610, 620 that can be used in the specific orthopedic procedure. At least one implant component 100 can be semi-custom made. The semi-custom implant components are standard size components that have at least one feature modified to match a specific patient, as discussed below.


The alignment guides 600 can be used either with conventional (standard size) or patient-specific femoral and tibial prosthesis components prepared with computer-assisted image methods. The implant components 100 can be patient-specific (custom made) or semi-custom. Computer modeling for obtaining three dimensional images of the patient's anatomy using MRI or CT scans of the patient's anatomy, the semi-custom and/or custom made implant components 100, and the patient-specific alignment guides 600 can be provided by various CAD programs and/or software available, for example, by Materialise USA, Ann Arbor, Mich.


The alignment guides 600 can be generally formed using computer modeling for matching a three-dimensional image of the patient's bone surface (with or without the cartilage) by known methods. Further details of patient-specific alignment guides and associated methods are disclosed in U.S. application Ser. No. 11/756,057, filed on May 31, 2007, the disclosure of which is incorporated herein by reference.


Similarly, the implant components can be selected and modified to include patient-specific features by using computer modeling of the joint, as described above. A set of conventional femoral knee implants can be modeled and overlaid over the CAD image data to first determine the closest fit based on standard sizes. These standard sized overlays or templates can be based on commercially available implant systems, such as, for example, the Vanguard Knee System, commercially available from Biomet, Inc, of Warsaw, Ind., in size increments of 2.5 mm. Using standard sized implants as a base for semi-custom implant components can allow standard instrument sets to be used depending on the specific size selected. After the overlay is positioned on the digital representation of the femur, various adjustments can be made to this femoral implant.


Referring to FIGS. 1-3, various views of an exemplary semi-custom implant component 100 in the form of a femoral component for a knee replacement surgery system are illustrated. The semi-custom implant component 100 can include certain portions that are custom-made to match a particular patient using imaging techniques, and other portions that are provided in a series of standardized size increments to ensure a good fit. For example, the outside geometry of the femoral component 100 can be patient-specific or patient-matched. As an illustration, the width W and height H, and/or optionally the shape and dimensions of the entire articulating or outer surface 102, or portions thereof, can match/conform with that of the patient's corresponding joint surface. The inside geometry of the femoral component 100, such as the bone-engaging inner surface 104, can be selected from a standardized series of sizes, thereby allowing the use of standard instruments, such as cutting guides and resection instruments, to be used with the semi-custom implant components 100, and avoiding the need for specialized instruments and associated manufacturing and training costs.


With continued reference to FIGS. 1-3, to obtain a good match, the difference between consecutive sizes in the inner anterior-posterior distance D can be 3 mm or less to allow for as good a fit between the implant component 100 and the joint surface without the need to match or conform the inner surface 104 to the patient. In other words, the semi-custom implant component 100 is an implant component that can include certain portions, including shapes, dimensions, and/or sizes that are custom-made for a particular patient, while other portions including shapes and/or dimensions of the component are provided in a series of standardized sizes in increments that can provide a good fit without being fully custom-made to a particular patient.


In another aspect, and referring to the exemplary illustrations of FIGS. 8 and 9, five adjustments can be made to a standard size femoral component to obtain a semi-custom femoral implant component 100. These five adjustments can include the medial/lateral width W, the angle θ of the patella track 106, the depth D1 of the patella track, the shape of the anterior flange 108, such as right or left-sided and a height of the anterior flange, such as the height H1 shown in FIG. 9, or overall height H, shown in FIG. 2. These five features or parameters can be adjusted to more closely match the knee of the patient without requiring changes in the standard cuts for the selected standard knee implant, because the bone engaging inner surface 104 does not substantially change allowing standard cutting guides and resections instruments corresponding to standard sizes to be used. This modified or patient matched digital model of the semi-custom implant can then be provided to the surgeon along with the image data for review. The surgeon can confirm whether the proposed design is acceptable, and the specific patient matched implant can be manufactured from the digital model.


The surgery system can include patient-specific and/or conventional (standard size) implants for the remaining components of the knee replacement system, such as the tibial component, bearing component and patella component. For example, and referring to FIG. 10, a tibial component 300 can be designed with a profile 302 that matches and conforms to the patient's anatomy based on the 3-D image data of the patient's bone. The resulting tibial component 300 can still have standard features, including a standard locking mechanism for bearings, such as, for example, slots 304 for coupling with a standard bearing component 310. The standard locking mechanism allows existing inventory of bearings to be used. In another aspect, the bearing components 310 can be similarly customized.


In another aspect, the tibial component 300 can also be designed in closely packed tibial sizes that very in increments of less that 2 mm in width and are available for manufacture on as-needed basis. When used with patient-specific alignment guides made from digital images of the joint, the closely packed sizes need not be stocked in inventory, but manufactured only in the size determined from the digital image from planned molds or other just-in-time manufacturing methods.


In another aspect, disease-specific off-the shelf implants can be provided and included in a surgery kit. Each disease-specific implant can be designed to address a specific deformity, by making angle or size adjustment related to the deformity, such as different lengths or thickness or angles of certain portions of the implant component, such as the size and shape of femoral condyles, the patella track angle, etc. Each disease-specific implant can be used for multiple patients with the same deformity/disease, such as valgus, varus or flexion deformities. In this regard, for each patient with the same deformity, one or more off-the-shelf disease-specific implants can be selected to address the patient's needs without using patient-specific implants.


The surgery system can also include patient-specific alignment guides 600, as illustrated in FIG. 4 for a joint surface 82 of the distal femur 80. The patient specific alignment guide 600 can define openings 606 for guide elements 604 that pass through corresponding holes 606a drilled in the femur, and openings 602 for drilling holes 602a on the femur 80, as shown in FIGS. 4, and 6. The surgery system can also include a set of cutting blocks for the femoral joint surface 82, such as the distal cutting block 610 illustrated in FIG. 5 and mounted on the femur 80 with various guide or fixation elements 604, 605, and the four-in-one cutting block 620 illustrated in FIG. 6. The four-in-one cutting block 620 can be supported on the femur with pins 622 received in openings 602a. Other cutting blocks, drill guides or other instruments can also be used. The joint surface 82 can be a bone surface with or without soft tissue, such as articular cartilage for the knee or other joint soft tissue. It will be appreciated that other instruments, such as drill guides, guide pins, attachment pins or pegs or others can be included in the surgery system.


The surgery system can be used for surgical pre-planning as illustrated in FIG. 7. The patient's knee, or other joint, can be scanned using an imaging technique, such as MRI or CT, at 400. A three-dimensional (3D) model of the joint surfaces can be reconstructed at 410 using known computer imaging methods. The implant components 100 can be designed, sized and positioned using the 3D reconstruction, at 420. As discussed above, the implant components 100 can include conventional, custom made, or semi-custom implant components 100. The semi-custom implant components can include some portions that are of standard sizes, such as the bone-engaging inner surface 104, and other portions that are customized for the patient, including portions of the articulating surface or other outer dimensions and orientations of the articulating surface 102 of the implant 100. Customized alignment guides 600 for the joint surfaces, such as femoral and tibial alignment guides 600 for a total knee replacement, can be designed and prepared based on the 3D reconstruction and the implants 100, at 430. A surgery system or kit can be assembled for the surgeon at the time of surgery, at 450. The surgery system can include at least one semi-custom implant component 100, at least one patient specific alignment guide 600, and at least one cutting block 610.


It will be appreciated that surgery kits as described above can be constructed for various joints, including the knee, the hip, the shoulder, etc. The present teachings provide the ability to customize implant and alignment guide components and their position using patient-specific data. Further, the amount of inventory required in the operating room can be reduced because the sizes of the various semi-custom implant components 100 are known prior to surgery and only the required size is sent to the surgeon for the surgical procedure. In another aspect, when close-packed sizes are planned, the small difference between individual sizes of the implant components 100, such as 3 mm or 2.5 mm or less, can allow optimal anterior-posterior fit to the joint surface 80 without adverse impact on inventory requirements, because only the required size can be manufactured and shipped for a specific patient based on the patient's image data. Additionally, the use of semi-custom implant components based on anterior-posterior sizing, as contrasted to fully patient-specific components, allows use and re-use of standard cutting blocks. Disposable cutting blocks can also be mass produced in high volumes at less cost because of the standardization.


The foregoing discussion discloses and describes merely exemplary arrangements of the present teachings. One skilled in the art will readily recognize from such discussion, and from the accompanying drawings that various changes, modifications and variations can be made therein without departing from the spirit and scope of the teachings as described herein.

Claims
  • 1. An orthopedic implant manufacturing method comprising: preparing a three-dimensional digital image of a patient's joint using computer modeling;creating a digital image of a non patient-specific femoral implant selected to closely match a size of the patient's joint, the implant having an inner bone engaging surface including a plurality of planar surfaces for engagement with corresponding standard size non-patient specific bone cuts;overlaying the digital image of the implant on the image of the patient's joint;modifying a shape of an anterior flange of the digital image of the femoral implant to be patient-matched and closely match a corresponding feature of the three-dimensional image of the patient's joint without modifying the planar surfaces of the inner bone engaging surface; andmanufacturing a patient-matched implant from the digital image of the femoral implant as modified.
  • 2. An orthopedic implant manufacturing method comprising: preparing a three-dimensional digital image of a patient's joint using computer modeling;creating a digital image of a non patient-specific femoral implant selected to closely match a size of the patient's joint, the implant having an inner bone engaging surface including a plurality of planar surfaces for engagement with corresponding standard size non-patient specific bone cuts;overlaying the digital image of the implant on the image of the patient's joint;modifying an orientation of a patella track of the digital image of the femoral implant to be patient-matched and closely match a corresponding feature of the three-dimensional image of the patient's joint without modifying the planar surfaces of the inner bone engaging surface; andmanufacturing a patient-matched femoral implant from the digital image of the femoral implant as modified.
  • 3. An orthopedic implant manufacturing method comprising: preparing a three-dimensional digital image of a patient's joint using computer modeling;creating a digital image of a non patient-specific femoral implant selected to closely match a size of the patient's joint, the femoral implant having an inner bone engaging surface including a plurality of planar surfaces for engagement with corresponding standard size non-patient specific bone cuts;overlaying the digital image of the implant on the image of the patient's joint;modifying a depth of a patella track of the digital image of the femoral implant to be patient-matched and closely match a corresponding feature of the three-dimensional image of the patient's joint without modifying the planar surfaces of the inner bone engaging surface; andmanufacturing a patient-matched femoral implant from the digital image of the femoral implant as modified.
  • 4. The method of claim 3, further comprising manufacturing a patient-specific alignment guide for the joint based on the three-dimensional image of the patient's joint.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application claims the benefit of U.S. Provisional Application No. 60/912,178, filed on Apr. 17, 2007. This application is related to U.S. application Ser. No. 11/756,057, filed on May 31, 2007, which claims the benefit of U.S. Provisional Application No. 60/812,694, filed on Jun. 9, 2006. The disclosures of the above applications are incorporated herein by reference.

US Referenced Citations (261)
Number Name Date Kind
4436684 White Mar 1984 A
4506393 Murphy Mar 1985 A
4621630 Kenna Nov 1986 A
4632111 Roche Dec 1986 A
4663720 Duret et al. May 1987 A
4695283 Aldinger Sep 1987 A
4703751 Pohl Nov 1987 A
4704686 Aldinger Nov 1987 A
4721104 Kaufman et al. Jan 1988 A
4800874 David et al. Jan 1989 A
4821213 Cline et al. Apr 1989 A
4822365 Walker et al. Apr 1989 A
4841975 Woolson Jun 1989 A
4846161 Roger Jul 1989 A
4871975 Nawata et al. Oct 1989 A
4893619 Dale et al. Jan 1990 A
4896663 Vandewalls Jan 1990 A
4927422 Engelhardt May 1990 A
4936862 Walker et al. Jun 1990 A
4959066 Dunn et al. Sep 1990 A
4976737 Leake Dec 1990 A
4979949 Matsen, III et al. Dec 1990 A
4985037 Petersen Jan 1991 A
5007936 Woolson Apr 1991 A
5030221 Buechel et al. Jul 1991 A
5041117 Engelhardt Aug 1991 A
5053039 Hofmann et al. Oct 1991 A
5086401 Glassman et al. Feb 1992 A
5098383 Hemmy et al. Mar 1992 A
5129908 Petersen Jul 1992 A
5133760 Petersen et al. Jul 1992 A
5150304 Berchem et al. Sep 1992 A
5176684 Ferrante et al. Jan 1993 A
5274565 Reuben Dec 1993 A
5299288 Glassman et al. Mar 1994 A
5300077 Howell Apr 1994 A
5320625 Bertin Jun 1994 A
5342366 Whiteside et al. Aug 1994 A
5344423 Dietz et al. Sep 1994 A
5360446 Kennedy Nov 1994 A
5408409 Glassman et al. Apr 1995 A
5440496 Andersson et al. Aug 1995 A
5448489 Reuben Sep 1995 A
5452407 Crook Sep 1995 A
5454816 Ashby Oct 1995 A
5496324 Barnes Mar 1996 A
5514519 Neckers May 1996 A
5527317 Ashby et al. Jun 1996 A
5539649 Walsh et al. Jul 1996 A
5554190 Draenert Sep 1996 A
5560096 Stephens Oct 1996 A
5571110 Matsen, III et al. Nov 1996 A
5607431 Dudasik et al. Mar 1997 A
5620448 Puddu Apr 1997 A
5634927 Houston et al. Jun 1997 A
5677107 Neckers Oct 1997 A
5681354 Eckhoff Oct 1997 A
5682886 Delp et al. Nov 1997 A
5690635 Matsen, III et al. Nov 1997 A
5702460 Carls et al. Dec 1997 A
5725376 Poirier Mar 1998 A
5725593 Caracciolo Mar 1998 A
5748767 Raab May 1998 A
5768134 Swaelens et al. Jun 1998 A
5792143 Samuelson et al. Aug 1998 A
5799055 Peshkin et al. Aug 1998 A
5871018 Delp et al. Feb 1999 A
5879402 Lawes et al. Mar 1999 A
5885297 Matsen, III Mar 1999 A
5885298 Herrington et al. Mar 1999 A
5901060 Schall et al. May 1999 A
5942370 Neckers Aug 1999 A
5967777 Klein et al. Oct 1999 A
5976149 Masini Nov 1999 A
6033415 Mittelstadt et al. Mar 2000 A
6126690 Ateshian et al. Oct 2000 A
6156069 Amstutz Dec 2000 A
6161080 Aouni-Ateshian et al. Dec 2000 A
6187010 Masini Feb 2001 B1
6206927 Fell et al. Mar 2001 B1
6254604 Howell Jul 2001 B1
6258097 Cook et al. Jul 2001 B1
6264698 Lawes et al. Jul 2001 B1
6273891 Masini Aug 2001 B1
6343987 Hayama et al. Feb 2002 B2
6383228 Schmotzer May 2002 B1
6395005 Lovell May 2002 B1
6427698 Yoon Aug 2002 B1
6459948 Ateshian et al. Oct 2002 B1
6463351 Clynch Oct 2002 B1
6510334 Schuster et al. Jan 2003 B1
6514259 Picard et al. Feb 2003 B2
6558391 Axelson, Jr. et al. May 2003 B2
6567681 Lindequist May 2003 B1
6575980 Robie et al. Jun 2003 B1
6591581 Schmieding Jul 2003 B2
6696073 Boyce et al. Feb 2004 B2
6701174 Krause et al. Mar 2004 B1
6711431 Sarin et al. Mar 2004 B2
6711432 Krause et al. Mar 2004 B1
6712856 Carignan et al. Mar 2004 B1
6716249 Hyde Apr 2004 B2
6738657 Franklin et al. May 2004 B1
6740092 Lombardo et al. May 2004 B2
6750653 Zou et al. Jun 2004 B1
6772026 Bradbury et al. Aug 2004 B2
6786930 Biscup Sep 2004 B2
6905514 Carignan et al. Jun 2005 B2
6923817 Carson et al. Aug 2005 B2
6923831 Fell et al. Aug 2005 B2
6932842 Litschko et al. Aug 2005 B1
6942475 Ensign et al. Sep 2005 B2
6944518 Roose Sep 2005 B2
6945976 Ball et al. Sep 2005 B2
6953480 Mears et al. Oct 2005 B2
6990220 Ellis et al. Jan 2006 B2
7042222 Zheng et al. May 2006 B2
7048741 Swanson May 2006 B2
7050877 Iseki et al. May 2006 B2
7060074 Rosa et al. Jun 2006 B2
7104997 Lionberger et al. Sep 2006 B2
7141053 Rosa et al. Nov 2006 B2
7198628 Ondrla et al. Apr 2007 B2
7239908 Alexander et al. Jul 2007 B1
7255702 Serra et al. Aug 2007 B2
7282054 Steffensmeier et al. Oct 2007 B2
7388972 Kitson Jun 2008 B2
7468075 Lang et al. Dec 2008 B2
7527631 Maroney et al. May 2009 B2
7534263 Burdulis, Jr. et al. May 2009 B2
7618451 Berez et al. Nov 2009 B2
20010005797 Barlow et al. Jun 2001 A1
20020007294 Bradbury et al. Jan 2002 A1
20020059049 Bradbury et al. May 2002 A1
20020082741 Mazumder et al. Jun 2002 A1
20020087274 Alexander et al. Jul 2002 A1
20030039676 Boyce et al. Feb 2003 A1
20030055502 Lang et al. Mar 2003 A1
20030109784 Loh et al. Jun 2003 A1
20030171757 Coon et al. Sep 2003 A1
20030216669 Lang et al. Nov 2003 A1
20040018144 Briscoe Jan 2004 A1
20040068187 Krause et al. Apr 2004 A1
20040092932 Aubin et al. May 2004 A1
20040102866 Harris et al. May 2004 A1
20040106926 Leitner et al. Jun 2004 A1
20040122439 Dwyer et al. Jun 2004 A1
20040133276 Lang et al. Jul 2004 A1
20040138754 Lang et al. Jul 2004 A1
20040147927 Tsougarakis et al. Jul 2004 A1
20040153079 Tsougarakis et al. Aug 2004 A1
20040158254 Eisermann Aug 2004 A1
20040171924 Mire et al. Sep 2004 A1
20040181144 Cinquin et al. Sep 2004 A1
20040204644 Tsougarakis et al. Oct 2004 A1
20040204760 Fitz et al. Oct 2004 A1
20040236424 Berez et al. Nov 2004 A1
20040243481 Bradbury et al. Dec 2004 A1
20040254584 Sarin et al. Dec 2004 A1
20050008887 Haymann et al. Jan 2005 A1
20050049524 Lefevre et al. Mar 2005 A1
20050059873 Glozman et al. Mar 2005 A1
20050065628 Roose Mar 2005 A1
20050096535 de la Barrera May 2005 A1
20050113841 Sheldon et al. May 2005 A1
20050113846 Carson May 2005 A1
20050148843 Roose Jul 2005 A1
20050171545 Walsh et al. Aug 2005 A1
20050203536 Laffargue et al. Sep 2005 A1
20050234461 Burdulis et al. Oct 2005 A1
20050244239 Shimp Nov 2005 A1
20050245934 Tuke et al. Nov 2005 A1
20050245936 Tuke et al. Nov 2005 A1
20050267584 Burdulis et al. Dec 2005 A1
20060004284 Grunschlager et al. Jan 2006 A1
20060030853 Haines Feb 2006 A1
20060052725 Santilli Mar 2006 A1
20060058803 Cuckler et al. Mar 2006 A1
20060058884 Aram et al. Mar 2006 A1
20060089621 Fard Apr 2006 A1
20060094951 Dean et al. May 2006 A1
20060111722 Bouadi May 2006 A1
20060122616 Bennett et al. Jun 2006 A1
20060136058 Pietrzak Jun 2006 A1
20060161167 Myers et al. Jul 2006 A1
20060172263 Quadling et al. Aug 2006 A1
20060190086 Clemow et al. Aug 2006 A1
20060204932 Haymann et al. Sep 2006 A1
20060271058 Ashton et al. Nov 2006 A1
20060276796 Creger et al. Dec 2006 A1
20060287733 Bonutti Dec 2006 A1
20070015995 Lang et al. Jan 2007 A1
20070016209 Ammann et al. Jan 2007 A1
20070066917 Hodorek et al. Mar 2007 A1
20070073137 Schoenefeld Mar 2007 A1
20070083214 Duncan et al. Apr 2007 A1
20070083266 Lang Apr 2007 A1
20070100462 Lang et al. May 2007 A1
20070118055 McCombs May 2007 A1
20070118243 Schroeder et al. May 2007 A1
20070156171 Lang et al. Jul 2007 A1
20070185498 Lavallee Aug 2007 A2
20070198022 Lang et al. Aug 2007 A1
20070203605 Melton et al. Aug 2007 A1
20070219639 Otto et al. Sep 2007 A1
20070226986 Park et al. Oct 2007 A1
20070233136 Wozencroft Oct 2007 A1
20070233140 Metzger et al. Oct 2007 A1
20070233141 Park et al. Oct 2007 A1
20070233269 Steines et al. Oct 2007 A1
20070233272 Boyce et al. Oct 2007 A1
20070250169 Lang Oct 2007 A1
20070276224 Lang et al. Nov 2007 A1
20070276400 Moore et al. Nov 2007 A1
20070288030 Metzger et al. Dec 2007 A1
20080009952 Hodge Jan 2008 A1
20080015605 Collazo Jan 2008 A1
20080021299 Meulink Jan 2008 A1
20080021567 Meulink et al. Jan 2008 A1
20080051910 Kammerzell et al. Feb 2008 A1
20080114370 Schoenefeld May 2008 A1
20080146969 Kurtz Jun 2008 A1
20080147072 Park et al. Jun 2008 A1
20080161815 Schoenefeld et al. Jul 2008 A1
20080195107 Cuckler et al. Aug 2008 A1
20080195216 Philipp Aug 2008 A1
20080243127 Lang et al. Oct 2008 A1
20080257363 Schoenefeld et al. Oct 2008 A1
20080275452 Lang et al. Nov 2008 A1
20080281328 Lang et al. Nov 2008 A1
20080281329 Fitz et al. Nov 2008 A1
20080281426 Fitz et al. Nov 2008 A1
20080287954 Kunz et al. Nov 2008 A1
20080306558 Hakki Dec 2008 A1
20080312659 Metzger et al. Dec 2008 A1
20080319448 Lavallee et al. Dec 2008 A1
20090018546 Daley Jan 2009 A1
20090024131 Metzger et al. Jan 2009 A1
20090076512 Ammann et al. Mar 2009 A1
20090089034 Penney et al. Apr 2009 A1
20090099567 Zajac Apr 2009 A1
20090105837 Lafosse et al. Apr 2009 A1
20090118736 Kreuzer May 2009 A1
20090131941 Park et al. May 2009 A1
20090138020 Park et al. May 2009 A1
20090149965 Quaid Jun 2009 A1
20090149977 Schendel Jun 2009 A1
20090151736 Belcher et al. Jun 2009 A1
20090163922 Meridew et al. Jun 2009 A1
20090163923 Flett et al. Jun 2009 A1
20090164024 Rudan et al. Jun 2009 A1
20090187193 Maroney et al. Jul 2009 A1
20090222014 Bojarski et al. Sep 2009 A1
20090222015 Park et al. Sep 2009 A1
20090222016 Park et al. Sep 2009 A1
20090228016 Alvarez et al. Sep 2009 A1
20090248044 Amiot et al. Oct 2009 A1
20090254093 White et al. Oct 2009 A1
20090254367 Belcher et al. Oct 2009 A1
20100016986 Trabish Jan 2010 A1
20100030231 Revie et al. Feb 2010 A1
Foreign Referenced Citations (68)
Number Date Country
2447694 Dec 2002 CA
2501041 Apr 2004 CA
2505371 May 2004 CA
2505419 Jun 2004 CA
2506849 Jun 2004 CA
2546958 Jun 2005 CA
2546965 Jun 2005 CA
2588907 Jun 2006 CA
2590534 Jun 2006 CA
1630495 Jun 2005 CN
1728976 Feb 2006 CN
1729483 Feb 2006 CN
1729484 Feb 2006 CN
1913844 Feb 2007 CN
101111197 Jan 2008 CN
3447365 Jul 1986 DE
04219939 Dec 1993 DE
4421153 Dec 1995 DE
0114505 Aug 1984 EP
0326768 Aug 1989 EP
1321107 Jun 2003 EP
1437102 Jul 2004 EP
01486900 Dec 2004 EP
2659226 Sep 1991 FR
2094590 Sep 1982 GB
2197790 Jun 1988 GB
2442441 Apr 2008 GB
59157715 Sep 1984 JP
60231208 Nov 1985 JP
20050072500 Jul 2005 KR
20050084024 Aug 2005 KR
2083179 Jul 1997 RU
2113182 Jun 1998 RU
2125835 Feb 1999 RU
2138223 Sep 1999 RU
2175534 Nov 2001 RU
2187975 Aug 2002 RU
231755 May 2005 TW
WO-8807840 Oct 1988 WO
WO-9107139 May 1991 WO
WO-9325157 Dec 1993 WO
WO-9528688 Oct 1995 WO
WO-9959106 Nov 1999 WO
WO-0170142 Sep 2001 WO
WO-0184479 Nov 2001 WO
WO-0236024 May 2002 WO
WO-02096268 Dec 2002 WO
WO-03051210 Jun 2003 WO
WO-03051211 Jun 2003 WO
WO-2004032806 Apr 2004 WO
WO-2004049981 Jun 2004 WO
WO-2004051301 Jun 2004 WO
WO-2005051239 Jun 2005 WO
WO-2005051240 Jun 2005 WO
WO-2006058057 Jun 2006 WO
WO-2006060795 Jun 2006 WO
WO-2006127486 Nov 2006 WO
WO-2006134345 Dec 2006 WO
WO-2007041375 Apr 2007 WO
WO-2007053572 May 2007 WO
WO-2007062079 May 2007 WO
WO-2007092841 Aug 2007 WO
WO-2007145937 Dec 2007 WO
WO-2008021494 Feb 2008 WO
WO-2008040961 Apr 2008 WO
WO-2008044055 Apr 2008 WO
WO-2008101090 Aug 2008 WO
WO-2008112996 Sep 2008 WO
Related Publications (1)
Number Date Country
20080262624 A1 Oct 2008 US
Provisional Applications (1)
Number Date Country
60912178 Apr 2007 US