This application is directed to guides for assisting in the preparation of end portions of long bones as part of a joint replacement or repair procedures, particularly for preparing a proximal (or superior) portion of a humerus for implanting a humeral component of an artificial joint.
Arthroplasty is the standard of care for the treatment of shoulder joint arthritis. A typical humeral head replacement is implanted following exposure of the head of the humerus, resection of the head and various procedures to create space in the humerus for sub-surface stems or anchors to which an artificial head can be coupled. The humeral head replacement might articulate with the native bone or an opposing glenoid resurfacing device, which may be manufactured from UHMWPE or any other acceptable material.
For more severe cases of shoulder arthritis, the standard treatment is a reverse reconstruction, which includes reversing the kinematics of the shoulder joint. This is performed by securing a semi-spherical device to the glenoid, referred to as a glenoid sphere, and implanting a humeral stem with a modular cavity capable of receiving the glenoid sphere. The humeral stem is usually offered in one fixed inclination angle between 135 degrees and 155 degrees, with 155 degrees being the angle currently preferred by a majority of surgeons.
An initial step to preparing the humerus involves resecting the humeral head. Following resection, an awl may be used to create a space distal the resection plane in which the stem or other anchor can be disposed. The movement of the saw in resection and the awl in preparing the resected humerus are typically done either free hand or on guides that are placed by gross alignment techniques such as eyeballing the exposed humerus. While these approaches provide a minimum level of care they are not highly accurate or likely to comply with any pre-operative surgical plan.
It would be desirable to provide improved apparatuses and methods for preparing a human humerus to be coupled with a shoulder joint prosthesis component. An improvement over the prior art would to implement such improved apparatuses and methods using pre-operative image data from a patient preparing to undergo shoulder arthroplasty and also using patient specific guides formed with reference to the pre-operative image data. It would further be advantageous to provide the embodiments and the advantages thereof as discussed below.
A method can be provided for surgically adapting a humerus having a humeral head and an anatomical neck. The method can include positioning a first member of a humeral guide on a portion of a proximal humerus. As used in this context, a portion of a proximal humerus refers to a portion of the humerus that is adjacent to the scapula and forms part of the shoulder joint. A proximal portion of the humerus is sometimes referred to herein as a superior portion humerus. The first member rests in a complementary manner on the portion of the proximal humerus. A second member and a third member of the humeral guide are positioned on first and second lateral portions of the humerus distal to a location intended for resection, e.g., distal to an anatomical neck of the humerus. As used in this context, a location that is distal to another location refers to being closer to an interior or elbow adjacent end of the humerus. A distal portion of the humerus is sometimes referred to herein as an inferior portion of the humerus. The second and third members rest in a complementary manner on the first and second lateral portions of the humerus. The humeral guide is secured to the humerus. A portion of the humeral head is resected at the location intended for resection, e.g., proximal of the anatomical neck, to create a resected portion and an exposed cancellous surface while the first member of the humeral guide remains in place on the proximal humerus. The resected portion of the humeral head is removed from the exposed surface. A guide pin is positioned through a guide pin aperture disposed at or adjacent to the first member of the humeral guide into the exposed cancellous surface after removing the resected portion from the exposed surface. The humeral guide is removed after removing the resected portion of the humerus. The exposed cancellous surface is modified with reference to the guide pin.
In another embodiment a humeral patient specific lateral cutting guide is provided that includes a first portion, a second portion and a third portion. The first portion is configured to be complementary to a first portion of a humerus of a specific patient. The second portion is configured to be complementary to a first lateral portion of the humerus distal to a location intended for resection, e.g., distal to an anatomical neck of the humerus, of the specific patient. The third portion is configured to be complementary to a second lateral portion of the humerus distal to the location intended for resection, e.g., the anatomical neck of the humerus of the specific patient, spaced apart from the first lateral portion. The guide also can optionally include a plurality of mounting pin apertures disposed non-parallel to each other. The guide also includes a resection plane configured to be disposed between the non-parallel mounting pin apertures and a superior end of the humerus. The first portion of the cutting guide is configured to be placed distal to both of the first lateral portion of the cutting guide and the second lateral portion of the cutting guide when the cutting guide is applied to the humerus.
In another embodiment a humeral patient specific lateral cutting guide system is provided that includes a guide body and a cutting guide. The guide body includes a concave member, a side member, and a projection. The concave member is configured to receive in a complementary fashion a portion of a humeral head of a humerus of a specific patient. The side member is coupled to the concave member. The side member is configured to engage in a complementary fashion a portion of the humerus of the specific patient distal to an anatomical neck of the humerus. The projection has a first end coupled with the concave member and a second end. The cutting guide includes a cutting plane and a coupler comprising an aperture configured to receive the projection of the guide body. The engagement of the coupler with the projection defines a proximal-distal location of the cutting plane. The proximal-distal location of the cutting plane is configured to define a lateral cut of the humeral head at a pre-defined patient specific proximal-distal location.
In another embodiment, a humeral patient specific cutting guide is provided. The cutting guide includes a first portion, a second portion, a third portion and a medial surface. The first portion is configured to be complementary to a first portion of a humerus of a specific patient. The second portion configured to be complementary to a first lateral portion of the humerus of the specific patient. The first lateral portion of the humerus can comprise a bicipital groove of the humerus. The third portion can be configured to be complementary to a second lateral portion of the humerus of the specific patient spaced apart from the first lateral portion. The second lateral portion of the humerus can comprise a greater tuberosity of the humerus. The medial surface can be disposed between the first portion and at least one of the second portion and the third portion. The medial surface can define a gap between the medial surface and a muscular insertion site of the humerus when the first portion, the second portion and the third portion are in contact with the humerus.
In one variation, the first portion of the cutting guide can comprise a protrusion. The protrusion can be configured to couple to a tube. The tube can comprise an aperture. The tube can be separable from the cutting guide.
In another embodiment, a humeral patient specific lateral cutting guide is provided that includes a first portion, a second portion, a third portion, a resection plane, and a medial surface. The first portion is configured to be complementary to an articular surface of a humerus of a specific patient. The second portion is configured to be complementary to a bicipital groove of the humerus. The third portion is configured to be complementary to a lateral portion of the humerus distal to an anatomical neck of the humerus of the specific patient. The lateral portion is spaced apart from the bicipital groove. The resection plane is configured to be disposed adjacent to a superior end of the humerus. The medial surface is disposed between the first portion and at least one of the second portion and the third portion. The medial surface defines a gap between the medial surface and a muscular insertion site of the humerus when the lateral cutting guide is applied to the humerus.
Another embodiment includes a humeral cutting guide with a resection surface, a support portion, and a releasable positioning jig. The support portion can include at least one area configured for contact with a humeral bone surface. The support portion can include a plurality of mounting pin holes. The mounting pin holes can have non-parallel longitudinal axes. The releasable positioning jig can have at least one area configured to contact the humeral head.
In another embodiment, a patient specific cutting guide is provided that includes a first portion, a second portion, and a third portion. The first portion is configured to be complementary to an articular surface of a humerus of a specific patient. The second portion is configured to be complementary to a bicipital groove of the humerus. The third portion is configured to be complementary to a portion of the humerus distal to an anatomical neck of the humerus of the specific patient, where the third portion is spaced apart from the bicipital groove. The patient specific cutting guide also has a resection plane configured to be disposed adjacent to a superior end of the humerus.
A method of resecting a humerus is provided. A multi-part guide is positioned on the humerus. The multi-part guide has a support portion and a positioning jig. At least two mounting pins are advanced through the support portion along diverging paths. The positioning jig is removed. The humerus is resected with reference to a cutting surface of the support portion.
In another embodiment, a humeral guide is provided that includes a jig having a patient matched surface and a hole for a stabilization pin. An orientation of the hole is patient matched. The humeral guide includes a stabilization pin adapted to be advanced through the hole.
In one embodiment, the orientation of the hole is patient matched in respect to a length of the pin and/or bone density along the orientation of the hole.
In another embodiment, the patient matched jig provides a minimum length of pin that traverses bone when the jig is placed in a preoperatively planned position and the stabilization pin is advanced through the hole and into the bone.
In another embodiment, the patient matched jig provides a minimum cortical bone traverse when the jig is placed in a preoperatively planned position and the stabilization pin is advanced through the hole and into the bone.
In another embodiment, the patient matched jig avoids traversing a sub-cortical cyst when the jig is placed in a preoperatively planned position and the stabilization pin is advanced through the hole and into the bone.
In another embodiment, the patient matched jig provides a minimum clearance distance from a sub-cortical cyst to the stabilization pin when the jig is placed in a preoperatively planned position and the stabilization pin is advanced through the hole.
In another embodiment, a method of planning surgery is provided. In the method, imaging information for a bone of a specific patient is obtained. A resection of the bone is planned. A cut guide is placed according to the planned resection. The bone strength is detected from the imaging information to confirm an appropriate support pin pathway to temporarily attach the cut guide to the bone.
These and other features, aspects and advantages are described below with reference to the drawings, which are intended for illustrative purposes and should in no way be interpreted as limiting the scope of the embodiments. Furthermore, various features of different disclosed embodiments can be combined to form additional embodiments, which are part of this disclosure. In the drawings, like reference characters denote corresponding features consistently throughout similar embodiments. The following is a brief description of each of the drawings.
This application is directed to novel apparatuses and methods related to preparing a proximal humerus to receive components of a shoulder prosthesis. These novel apparatuses and methods improve preparation of the proximal humerus. In the following description, SECTION I is directed to an overview of shoulder anatomy. SECTION II is directed to a system and methods for planning aspects of apparatuses and methods herein. SECTION III is directed to various advantageous embodiments of humeral guides that facilitate preparation of the proximal humerus of the patient. SECTION IV is directed to apparatuses and methods of preparing the cancellous bone of the humerus following resection, with reference to the humeral cutting guides disclosed herein. SECTION V is directed to patient specific techniques for configuring cutting guides to enhance their stability on the humerus during the process of preparing the humerus for the implantation of a humeral shoulder component.
The patient input information 66 can include the patients name, the shoulder being treated, other past and future therapies and other information relevant to the procedure.
The planning system 54 can include a number of modules that can process the inputs 50. The planning system 54 can include a function for selecting among reverse implant configurations 68 and anatomic implant configurations 70. The planning system 54 can include the ability to prescribe or select a stem size 72 of a humeral stem to be implanted in the humerus 12. The planning system 54 can determine an insert offset 74 which can correspond to a distance from a center of the resected surface 32 to a center of a location of an implanted stem. Each of these and other features can be determined and prescribed by the planning system 54 and can be incorporated into the outputs 58 of the planning system 54.
The outputs 58 can include a humeral guide 76, an implant identification 78, and patient procedural information 80. The humeral guide 76 that can be output by the planning system 54 can be a plan for forming a guide or can be an actual guide if the planning system 54 is configured with or coupled with a manufacturing facility or manufacturing process 75. In some applications, the process 75 that is used to form the humeral guide 76 includes additive manufacturing such as three dimensional printing. Examples of three dimensional printing include direct metal laser sintering (DMLS), fused deposition modeling (FDM), fused filament fabrication (FFF), and electron beam melting (EBM). Any one or a combination of these or other additive manufacturing processes can be used in the manufacturing process 75. In these processes a three dimensional object is formed by sequentially forming individual layers of the object on top of previously formed individual layers. These processes can closely control the gross dimensions of the object and also can form complex features and shapes such as contours. As discussed further below, these processes can be used to form complementary surface that can mate with specific anatomy of a specific patient, e.g., concave surfaces that can nest on top of corresponding convex surfaces.
With reference to
The planning system 54 can also provide implant identification 78 that corresponds to the humeral guide 76. For example, the planning system 54 can provide a type of implant that the humeral guide 76 is suitable to prepare the humerus 12 to receive. For example, the implant identification 78 identifies an anatomic implant 70 with a convex articular surface to be coupled with the humerus 12. The implant identification 78 can identify a reverse implant 68 to be coupled with the humerus 12 following resection using the humeral guide 76. Furthermore, the implant identification 78 can include the stem size 72 and the insert offset 74 as appropriate. Finally, the outputs 58 can include the patient output information 80 which can include not only the name of the patient but also the shoulder to be treated and other specifics of the guide such as which anatomical landmarks with reference to which the humeral guide 76 is made.
This application discloses a number of advantageous patient matched humeral resection guides. These guides can be prepared using the planning system 54 or a similar system. SECTION III(A) discusses guides that can combine patient matched contact points or contact surfaces on a single monolithic body. SECTION III(B) describes a number of embodiments in which the patient matched contact points or surfaces can be disposed on two separate components that can be assembled together during a procedure.
A. Humeral Guides Capable of Monolithic Construction
The humeral cutting guide 100 also includes a first side 106 and a second side 107. The first side 106 of the humeral cutting guide 100 includes the first portion 104. The second side 107 of the humeral cutting guide 100 includes the second portion 112 and the third portion 132. The second side 107 is configured to be placed inferiorly of the first side 106.
The humeral cutting guide 100 can be manufactured to be patient specific by utilizing the planning system 54 or another patient planning system. The humeral cutting guide 100 can thus have one, two or more than two surfaces, e.g., three surfaces, configured to correspond to specific anatomic features of the humerus 12. As discussed above in connection with
The second portion 112 can be configured to be complementary to a first lateral portion 124 of the humerus 12. The second portion 112 can have a substantial negative surface 110 that can conform to a portion of the humerus 12 distal to the anatomical neck 22 for example. Alternatively, the second portion 112 can include any suitable anatomical landmark of the proximal portion of the humerus 12 that is distal to the head 10 of the humerus 12. The third portion 132 can be configured to be complementary to a second lateral portion 136 of the humerus 12. The third portion 132 can have a substantial negative surface 110 that can conform to a portion of the humerus 12 distal to the anatomical neck 22 for example. Alternatively, the third portion 132 can include a surface complimentary to any suitable anatomic landmark of the proximal portion of the humerus 12 that is distal to the head 10 of the humerus 12. The second portion 112 and the third portion 132 can be complimentary to lateral portions of the humerus 12 distal to the head 10, e.g., on the anatomical neck 22. The second portion 112 and the third portion 132 can be complimentary to lateral portions of the humerus 12 distal to the head 10, e.g., distal of the anatomical neck 22. The second portion 112 and the third portion 132 can be complimentary to the lesser tubercle Tl and the greater tubercle Tg of the humerus 12 respectively. The second portion 112 and the third portion 132 can be complimentary to the bicipital groove BG and the greater tubercle of the humerus 12 respectively.
Preferably the humeral cutting guide 100 includes a monolithic member 138. The monolithic member 138 is configured as a unitary body that includes at least the first portion 104, the second portion 112, and the third portion 132. The humeral cutting guide 100 can includes a continuous structure that extends from the first portion 104 to the second portion 112 and/or to the third portion 132. The humeral cutting guide 100 includes a cutting plane 114 that is disposed through the humeral cutting guide 100 from the lateral side 102L to the medial side 102M. The cutting plane 114 provides access for the saw blade 26 (or other cutting device) through the humeral cutting guide 100 to the humerus 12. The movement of the saw blade 26 through the cutting plane 114 extend into the humerus 12 just distal the head 10 creates a resection plane 144 in the humerus 12 as will be discussed in greater detail below.
The humeral cutting guide 100 also includes one or a plurality of mounting pin apertures 140. A mounting pin aperture 140 is provided through each of the second portion 112 and third portion 132, respectively. The apertures 140 through the second portion 112 and the third portion 132 can extend from the lateral side 102L to the medial side 102M. The mounting pin aperture 140 through the second portion 112 and the mounting pin aperture 140 through the third portion 132 can be oriented at non-parallel orientations to each other. The mounting pin apertures 140 through the second portion 112 and through the third portion 132 can be oriented at parallel orientations to each other.
In one embodiment, the humeral cutting guide 100 is configure to enable facilitate placement of a guide pin 162 into a proximal portion of the humerus, e.g., into the resected surface 32 of the humerus 12. The first portion 104 can include a guide pin aperture 160 that is disposed therethrough. The guide pin aperture 160 can have an end on the first side 106 of the first portion 104. The guide pin aperture 160 can have a second end on the second side 107 of the first portion 104. The guide pin aperture 160 can have a lumen that is sized to allow the guide pin 162 to slide therethrough into the proximal portion of the humerus 12, e.g., into the resected surface 32.
The cutting plane 114 has the advantage of being enclosed on two opposing sides. More particularly, a portion of the monolithic member 138 on a superior side 106 of the humeral cutting guide 100 is disposed superiorly of the cutting plane 114, which is disposed through the humeral cutting guide 100 from the lateral side 102L to the medial side 102M. A portion of the monolithic member 138 on an inferior side 107 of the humeral cutting guide 100 is disposed inferiorly of the cutting plane 114. By enclosing the cutting plane 114 on the superior side 106 and on the inferior side 107 the humeral cutting guide 100 can reduce a source of error in the movement of the saw blade 26. Specifically, the upper enclosure of the cutting plane 114 on the humeral cutting guide 100 can limit the unintended lifting of the saw blade 26 off of the lower surface bounding the cutting plane 114 on the inferior side 107 thereof.
The humeral cutting guide 100 can be placed on an exposed lateral side of the humerus 12. The medial side 102M can be placed in contact with the humerus 12. The substantial negative surface 110 at the first portion 104 can be placed on top of the head 10 of the humerus 12. The substantial negative surface 110 of the second portion 112 can be placed over the first lateral portion 124 of the humerus 12. The substantial negative surface 110 of the second portion 112 can have, for example, a concave configuration to follow a convex profile of an anatomical landmark at the first lateral portion 124 of the humerus 12. The substantial negative surface 110 of the third portion 132 can be placed over the second lateral portion 136. The substantial negative surface 110 of the third portion 132 can have, for example, a concave configuration to follow a convex profile of an anatomical landmark at the second lateral portion 136 of the humerus 12. The humeral cutting guide 100 can be manipulated until the substantial negative surfaces 110 are nested over the portions of the humerus 12 to which these surfaces were configured to mate.
When so placed, the mounting pins 142 can be placed through the mounting pin aperture 140 disposed through the second portion 112 and the third portion 132. The mounting pin 142 placed through the second portion 112 can be oriented non-perpendicular to the lateral side 102L. The mounting pin 142 placed through the third portion 132 can be oriented non-perpendicular to the lateral side 102L. The mounting pins 142 can be placed through the humeral cutting guide 100 such that they are non-parallel to each other. The ends of the mounting pins 142 disposed in the bone can be disposed closer to each other than are the ends of the mounting pins 142 that are projecting out of (e.g., lateral of) the humerus 12.
After the humeral cutting guide 100 has been removed from the free end of the guide pin 162 the process of preparing the resected surface 32 can proceed.
The extension member 184 extends from the cutting surface 188 to a first member 192. A distal side of the first member 192 is configured to conform to the proximal portion of the humerus 12. The first member 192 can have a patient specific, e.g., a complementary surface similar to the first portion 104 of the guide 100. The extension member 184 can form a bight together with the cutting surface 188 with a top portion of the extension member 184 extending over generally parallel to the cutting surface 188.
The humeral cutting guide 180 includes a second member 194 and a third member 196. The second member 194 and the third member 196 can be analogous to the second portion 112 and the third portion 132 of the humeral cutting guide 100, providing similar function. Each of the second member 194 and the third member 196 has a medial side configured to conform to specific portions of the humerus distal the resection plane 144, e.g., adjacent to but distal the anatomical neck 22 of the humerus and conforming to an anatomical landmark in some implementations. The second and third members 194, 196 can each have a patient specific, e.g., a complementary surface similar to the second and third portions 112, 132 of the guide 100. As in the guide 100, medial ends and/or medial surfaces of the portions 192, 194, 196 are configured to be patient specific. As above-described, pre-operative scans can be utilized to configure patient specific surfaces to be complementary, e.g., negative, surfaces of the bone to which they are to mate such that the implant is seated according to the optimized fit as determined by the surgeon.
The second member 194 and the third member 196 can each have a mounting pin aperture 140 disposed therethrough. The mounting pins 142 can be advanced through the mounting pin apertures 140 and the rest of the methods described above can follow. A point of difference is that the saw blade 26 can be placed in the large area between the top portion of the extension member 184 and the cutting surface 188. This area is much larger than the width of the saw blade 26. The cutting plane 114 of the guide 100 is able to provide more control because the top and bottom surfaces of the blade 26 are both guided in a narrow slot defining the cutting plane 114. This guidance helps to reduce or eliminate diving or lifting of the saw blade 26. Reducing or eliminating diving and/or lifting results in a more consistently precise resection of the humerus in the use of the guide 100. The enhanced consistency may mean that the guide 100 can facilitate a shorter procedure if all other variables are equal because less time and effort would be needed to assure that the saw blade 26 follows the intended trajectory rather than diving or lifting. Shortening the process for preparing the humerus 12 is valuable because a shoulder replacement procedure has many other steps and any configuration that shortens procedure time is of value. On the other hand, the guide 180 is simpler to manufacture. Also, the relatively large flat cutting surface 188 can provide better visibility to the surface of the humerus and thus provides the surgeon with more information from direct visualization during the procedure.
The cutting guide 180 also can be configured with the pin apertures 140 directly below the cutting surface 188. By placing the pin apertures 140 directly below the cutting plane, elongate pins can be placed through the apertures 140 and can be used to guide the lower side of the blade 26 to reduce or eliminate diving or lifting. The bottom side of the blade 26 can move across top portions of the pins disposed through the apertures 140 as the blade moves from medial to lateral (or lateral to medial) along the cutting surface 188. The top portions of the pins thus prevent excessive diving of the distal or working end of the blade 26. Free ends of the pins disposed through the apertures 140 could also or alternatively be used to guide the blade 26 indirectly. For example the saw to which the blade 26 is coupled could be guided by an exposed length of the pins disposed through the apertures 140 to reduce or eliminate lifting of the working end of the blade 26.
B. Patient Specific Humeral Guides with Patient Independent Cutting Guides
The guide body 506 includes a concave member 514 and a side member 516. The concave member 514 is connected to the side member 516 by an extension member 517. The extension member 517 extends from an edge of the side member 516 to an edge of the concave member 514. The side member 516 is located at a distal end of the guide body 506. The extension member 517 extends away from the edges of the side member 516 and the concave member 514 by a sufficient amount to avoid contact with the proximal portion of the humerus 12. One or both of the concave member 514 and the side member 516 is configured to conform to a specific portion of a specific humerus of a specific patient. The side member 516 can be configured to engage a side portion, e.g., a lateral side portion of the humerus at a convenient location such as at an anatomical neck 22 or another anatomical landmark adjacent to the anatomical neck 22. The side member 516 can be a neck member. That is the side member 516 can be configured to engage the humerus at or adjacent to, e.g., just distal to the anatomic neck 22 in a patient specific manner, e.g., having a complementary surface that can be formed as a substantial negative of the humerus at or adjacent to, e.g., just distal to the anatomic neck 22. The concave member 514 and the side member 516 can each have a patient specific, e.g., a complementary, surface similar to the first portion 104 and one or both of the second and third portions 112, 132 of the guide 100. As in the guide 100, bone facing ends or surfaces of the portions 514, 516 are configured to be patient specific. These ends or surfaces can be concave to mate with convex bone profiles of the proximal portion of the humerus 12. As above-described, pre-operative scans can be utilized to configure patient specific surfaces to be complementary, e.g., negative, surfaces of the bone to which they are to mate such that the implant is seated according to the optimized fit as determined by the surgeon.
A projection 518 of the guide body 506 is disposed away from the bone contacting side of the concave member 514. The projection 518 has a first end 520 and a second end 522. The projection 518 has an elongate body between the first end 520 and the second end 522. A first portion 524 extends from the second end 522 of the proximal projection 518. A second portion 525 extends from an end of the first portion 524 to the first end 520. The first portion 524 is longer than the second portion 525 in one embodiment. In one embodiment the first portion 524 is two, three, or four times longer than the second portion 525. A shoulder 544 can be provided between the first portion 524 and the second portion 525. The shoulder 544 provides a locator or position control device for the cutting guide 508.
In one embodiment, the guide body 506 includes a guide pin aperture 534 disposed therethrough. A bone facing end of the aperture 534 is located on a patient specific surface of the concave member 514. The guide pin aperture 534 can be centered on the patient specific surface of the concave member 514. The guide pin aperture 534 can extend from the patient specific surface to the proximal projection 518 to the second end 522 of the projection 518. The guide pin aperture 534 can extend through the proximal projection 518. The aperture 534 can be sized to slideably receive the first mounting pin aperture 164 discussed above. The guide pin aperture 534 can be considered to extend to the proximal end of the proximal projection 518 providing access for a flat edge guide pin 536 as discussed further below.
The cutting guide 508 can include a cutting plane 526 formed on a cutting plane body 527. The cutting plane body 527 can be coupled with a coupler 528. In one embodiment, the coupler 528 is releasably coupled with the cutting plane body 527 at a joint 529. The joint 529 allows the proximal/distal position of the cutting plane 526 to be adjusted. For example, the cutting plane body 527 can include a first portion 527a having the cutting plane 526 formed therein. The cutting plane body 527 can include a second portion 527b configured to be disposed at the same proximal distal location as the coupler 528. The cutting plane body 527 can have an axial body 527c disposed along a proximal-distal axis or direction connecting the first and second portions of the cutting plane body 527 to each other. The cutting plane body 527 can form a bight between the second portion 527b, the axial body 527c, and the first portion 527a thereof. In the illustrated embodiment, the first portion 527a of the cutting plane body 527 is configured to be disposed on both sides of the cutting plane 526 such that when the saw blade 26 is inserted into the cutting plane 526 the cutting plane body 527 is disposed directly over both opposing sides of the saw blade 26. The cutting plane body 527 could be configured such that a structure is disposed on only a distal side or a proximal side of the cutting plane 526. For example, the axial body 527c of the distal body 527 can be directly coupled with a distal portion of the cutting plane body 527 that extends below (e.g., distal of when applied to the humerus) the cutting plane 526. In such embodiment, the distal portion is only distal of and is not proximal of the cutting plane 526 at least in the portion of the cutting plane 526 along which the resection of the humerus 12 is made.
In one embodiment the first portion 527a of the cutting plane body 527 comprises one or a plurality of, e.g., four, mounting pin apertures 540. Each of the mounting pin apertures 540 is configured to receive a corresponding mounting pin 542. The mounting pins 542 when disposed through the mounting pin apertures 540 can also be disposed into the lateral faces of the humerus 12 as shown in
The coupler 528 can include an aperture 530 as noted above. In one embodiment, the coupler 528 is configured to slide over the projection 518 of the guide body 506 to couple the cutting guide 508 with the guide body 506. The coupling between the coupler 528 and the projection 518 can be one that resists relative rotation between the cutting guide 508 and the guide body 506. In one embodiment, one or more flats of the aperture 530 can mate with one or more flats of the projection 518.
The combination of the guide body 506 and the cutting guide 508 enable the cutting guide system 500 to provide a patient specific resection 36 of the humerus 12. For example, the concave member 514 and the distal member 516 can be configured to mate with the humerus 12 in only one position on the humerus. When so positioned, the guide pin aperture 534 can be centered on a patient specific proximal-distal axis that provides guidance to post resection preparation of the humerus 12 at the resected surface 32. Also, the proximal distal location of the shoulder 544 and the configuration of the axial member 527c cause the cutting plane 526 to be at a pre-defined patient specific proximal distal location. These are some of the examples of how the cutting guide system 500 can provide patient specific preparation of the humerus 12. The concave member 514 can conform to, e.g. be a negative of, the convex shape of the head 10 of the humerus 12. The distal member 516 can be configured to mate with any predefined anatomical landmark, including any of those discussed above.
A method of using the cutting guide system 500 can be as follows. The humerus 12 is exposed in the manner discussed above, e.g., by forming an incision and separating the head 10 of the humerus 12 from the scapula 14. The guide body 506 can then be placed over the head 10 of the humerus 12. The side member 516 can then be aligned with and mated to an anatomical landmark on a portion of the humerus 12 distal the head 10, e.g., on a lateral portion or side of the humerus 12 distal the anatomical neck 22. The coupler 528 can be placed at the free end of the projection 518 and the flat edges 538, 539 can be rotationally aligned. Thereafter, the aperture 530 can be advanced over the proximal projection 518 until the distal side of the coupler 528 is contacting the shoulder 544. Thereafter one or more mounting pins 542 can be advanced through one or more mounting pin apertures 540 into an adjacent portion of the humerus 12. Thereafter, the guide pin 536 can be advanced through the guide pin aperture 534 into the head 10 of the humerus 12. The guide pin 536 is preferably not advanced to or distal to the cutting plane 526 to avoid interference with the saw blade 26 as the resected surface 32 is being formed. After the resected surface 32 is formed, the guide pin 536 can be advanced into the resected surface 32 to aid in subsequent preparation of the humerus 12 at the resected surface 32. In one variation, the guide pin 536 is inserted distal of the cutting plane 526 and then retracted, e.g., entirely out of the proximal projection 518. The resected surface 32 is then formed. A channel formed by the guide pin 536 will be accessible once the head 10 is removed from the resected surface 32. The instrument 300 can then be used at the channel. Or the guide pin 536 or the guide pin 320 can then be advanced into the channel formed by the guide pin 536 prior to resection after the cutting guide system 500 has been removed from the humerus 12.
Further methods including those discussed above can be carried out to further prepare the resected surface 32 of the humerus 12 to receive a humeral implant.
C. Patient Specific Humeral Guides with Distal Contact Points
The second portion 612 of the humeral cutting guide 600 can be configured to be complementary to a first lateral portion 624 of the humerus 12. The third portion 632 of the humeral cutting guide 600 can be configured to be complementary to a second lateral portion 636 of the humerus 12. The first lateral portion 624 and the second lateral portion 636 can be any of the landmarks discussed above and/or can include one or more osteophytes. The first lateral portion 624 of the humerus 12 and the second lateral portion 636 of the humerus 12 can be anatomical structures disposed distally of the anatomical neck 22.
The humeral cutting guide 600 includes a plurality of mounting pin apertures 640. The mounting pin apertures 640 preferably are formed through two or more of the first portion 604, the second portion 612, and the third portion 632 of the humeral cutting guide 600. The mounting pin apertures 640 are each preferably configured to slideably receive a corresponding plurality of mounting pins 642. A mounting pin 642 can be advanced through each mounting pin aperture 640 and further advanced into the lateral face of the humerus 12. The mounting pin apertures 640 and the mounting pins 642 can be disposed along non-parallel directions to help secure the humeral cutting guide 600 to the humerus 12.
In one embodiment, at least one of, e.g., all of, the first portion 604, second portion 612, and third portion 632 comprise a projection 648 that extends from a plate member 646 of the humeral cutting guide 600.
The humeral cutting guide 600 also includes a cutting plane 644 disposed along one surface thereof.
In one modified embodiment, the contact pattern of the first portion 604, second portion 612, and third portion 632 of the humeral cutting guide 600 is combined with a pin guide structure as in the humeral cutting guide 100 and the cutting guide system 500. The pin guide structure in the modified embodiment can be on a projection that is spaced apart from and does not make patient specific contact with the head 10. The pin guide structure can include a pin guide aperture that is located and/or oriented to form a channel in the head 10 or in the resected surface 32 that is at a pre-defined patient specific location to aid in preparation of the resected surface 32. The pin guide structure can extend from an end of the cutting plane 644 to a position proximal thereof, with a structure similar to the extension member 184 or the axial member 527c discussed above.
The humeral cutting guide 700 preferably includes a monolithic member. In other words, the first portion 704, second portion 712, and the third portion 732 can all be formed as one unitary part that can be fitted over the proximal portion of the humerus 12. The humeral cutting guide 700 can comprise a plate member 746. The plate member 746 can be non-patient specific on one side, e.g., planar on one side and can be patient specific on the other side. The patient specific side can extend continuously in a patient specific manner from at least one of the first portion 704, second portion 712, and third portion 732 to at least one other of the first portion 704, second portion 712, and third portion 732. Thus the humeral cutting guide 700 can include a continuous bone contacting surface 738, which can comprise at least a portion of the medial side of the humeral cutting guide 700. Said another way, a patient specific contour can extend over and between the portions 704, 712, 732, which contour can be a complementary surface, similar to but much larger than that of the second surfaces 110 of the portion 104, 112, 132 of the guide 100. As in the guide 100, the patient contacting surface of the guide 700 is configured to be patient specific. As above-described, pre-operative scans can be utilized to configure patient specific surfaces to be complementary, e.g., negative, surfaces of the bone to which they are to mate such that the implant is seated according to the optimized fit as determined by the surgeon.
The humeral cutting guide 700 can include mounting pin apertures 740. The mounting pin apertures 740 can be disposed through the first portion 704, the second portion 712, and the third portion 732. The mounting pin apertures 740 can include three mounting pin apertures 740. Two mounting pin apertures 740 can be configured to be disposed adjacent to, e.g., just distal to the anatomical neck 22. One of the mounting pin apertures 740 can be configured to be disposed adjacent to the surgical neck or another anatomical landmark distal to the anatomical neck 22.
Preferably the humeral cutting guide 700 includes a cutting plane 744. The cutting plane 744 can be exposed along one edge of the humeral cutting guide 700. For example, the cutting plane 744 can be disposed on a proximal edge of the humeral cutting guide 700. The cutting plane 744 provides at least the same advantages as the cutting plane 744 discussed above, for example being exposed to allow the saw blade 26 to move thereover into the humerus 12 without binding to close edges as discussed above.
In one modified embodiment, the contact pattern of the humeral cutting guide 700 is combined with a pin guide structure as in the humeral cutting guide 100 and the cutting guide system 500. The pin guide structure in the modified embodiment can be on a projection that is spaced apart from and does not make patient specific contact with the head 10. The pin guide structure can include a pin guide aperture that is located and/or oriented to form a channel in the head 10 or in the resected surface 32 that is at a pre-defined patient specific location to aid in preparation of the resected surface 32. The pin guide structure can extend form an end of the cutting plane 744 to a position over the resected surface 32, with a structure similar to the extension member 184 or the axial member 527c discussed above.
Methods of using the humeral cutting guide 600 and the humeral cutting guide 700 can include placing the medial side of the humeral cutting guide 600 or the humeral cutting guide 700 again an exposed surface of the humerus 12. The placement of the humeral cutting guide 600 and the humeral cutting guide 700 can be patient specific. For example, the patient specific medial ends or surfaces of the guides 600, 700 can be moved into the surgical field. The medial ends can be placed onto exposed bone surface on a lateral side of the bone. The lateral portion of the humerus 12 to which the guides 600, 700 contact can have landmarks or contours which are noted and accounted for in the process discussed above in connection with
After the resected surface 32 is fully prepared a humeral stem or other anchor can be placed into or embedded in the cancellous bone beneath the resected surface 32. After the stem or stemless anchor is placed an anatomic or reverse style articular body can be attached thereto.
D. Patient Specific Humeral Guides Spanning Muscular Insertion Sites
The foregoing embodiments describe humeral guides with patient specific contact points and surfaces.
The first portion 804 is disposed on a portion of the humeral guide 800 that is configured to be placed over the head 10 of the humerus 12. The first portion 804 includes a first patient specific surface 806 that is configured to be complimentary, e.g., a substantial negative, of a region of the head 10, e.g., of an articular portion AP. The first portion 804 can include an arm that spaces the first patient specific surface 806 away from a more lateral portion of the humeral guide 800 which arms can span across soft tissues located at and extending from the muscular insertion sites MI. The first patient specific surface 806 can be located on a first side of the first portion 804 while a protrusion 820 can be located on a second side opposite the first side. The first side with the first patient specific surface 806 can be an inferior side. The second side with the protrusion 820 can be a superior side of the first portion 804. As used in this context inferior and superior (or distal and proximal) refer to the relative position on the bone based on the location and orientation of the corresponding bone portions in the patient when upright. That is the head 10 is generally superior (or proximal) to the shaft of the head 10, which is considered inferior (or distal).
In one embodiment, the gap 818 is sized to provide space to accommodate the attachment of the supraspinatus muscle. The gap 818 can be sized to provide space to accommodate the attachment of the Subscapularis muscle. In one embodiment, the gap 818 is sized to provide space to accommodate the attachment of the Infraspinatus muscle. In one embodiment, the gap 818 is sized to provide space to accommodate the attachment of the Teres Minor muscle. The gap 818 can be sized to provide space to accommodate the attachment of one or more of the foregoing muscles or other soft tissues including any other muscular insertion sites MI in the area.
The humeral guide 800 can have other helpful features including a plurality of mounting pin apertures 824. The humeral guide 800 also includes a cutting plane 832 as discussed above. The cutting plane 832 can be an exposed surface on the superior or proximal side of the humeral guide 800. The cutting plane 832 can be located on the humeral guide 800 between the first portion 804 and the second portion 808. The cutting plane 832 can be located on the humeral guide 800 between the first portion 804 and the mounting pin apertures 824. As discussed in the foregoing embodiments, the mounting pin apertures 824 can be used to hold the humeral guide 800 onto the lateral side of the humerus 12. The mounting pin apertures 824 can be disposed along longitudinal axes that are parallel to each other. The mounting pin apertures 824 can be disposed along longitudinal axes that are non-parallel to each other, e.g., converging toward ends disposed deeper within the humerus 12.
The humeral guide 800 can be used in a method to prepare the head 10 of the humerus 12 to receive a humeral implant. The cutting plane 832 can be used to guide a bone saw to cut off the articular portion AP of the head 10. Thereafter a resected surface is formed on the humerus 12. The humeral guide 800 can advantageously be combined with the guide tube 802 after the resected surface is formed. The guide tube 802 can include a first end to be disposed adjacent to a central portion 844 of the resected surface or resected area 840 and a second end opposite the first end. The guide tube 802 can have a mounting projection 860 coupled with and extending from the second end of the guide tube 802. The mounting projection 860 can be releasably coupled with the humeral guide 800 at the protrusion 820. The mounting projection 860 can have a mounting aperture 864. The mounting aperture 864 can include a plurality of flats 868 that can help rotationally orient the guide tube 802 relative to the protrusion 820. The flats 868 can assure that the only one coupling position is provided to place the guide tube 802 directly over the resected area 840. More particularly, the guide tube 802 includes a cylindrical body 846 that has a guide pin aperture 848 at the second end and a central lumen 852 disposed through the cylindrical body 846 toward the central portion 844 of the resected surface.
The humeral guide 800 and the guide tube 802 can be configured to be mated in a patient specific manner to align the central lumen 852 in a pre-defined orientation to the central portion 844 of the resected surface of the humerus 12. For example, in one embodiment, the orientation of the resected surface is defined by the shape of the humeral guide 800. Thereafter the guide tube 802 can be coupled to the humeral guide 800 and when so coupled places the longitudinal axis 856 at a pre-defined orientation to the central portion 844, e.g., at an angle 858. The angle 858 can be 90 degrees in one embodiment. In other embodiments, the angle 858 can be within about 10 degrees of 90 degrees, e.g., between about 80 degrees and 110 degrees in a medial-lateral plane including the longitudinal axis of the humerus 12 or between about 80 and 110 degrees in a plane perpendicular to the resected surface of the 12.
The guide tube 802 can be used to guide the guide pin 162 into the resected area 840, e.g., in the central portion 844. The guide pin can be directed at the angle 858 by advancing the guide pin 162 into the guide pin aperture 848. Further advancement can position a first end of the guide pin 162 within the bone below the resected area 840. A second end of the guide pin 162 can be accessible outside the humerus 12. Once the guide pin is in place the guide tube 802 can be removed from the protrusion 820. Thereafter, the humeral guide 800 can be removed from the lateral side of the humerus 12 leaving the guide pin 162 in place. Thereafter, a humeral anchor can be advanced along the guide pin 162. For example, the stemless anchor 884 can include a helical structure 885 to be advanced over the guide pin 162 as shown in
Once the stemless anchor 884 and the locking device 888 are secured to the resected area 840 of the humerus 12 an articular body 892 can be secured to the stemless anchor 884. The articular body 892 is illustrated as a reverse shoulder prosthesis insert, having a concave articular surface. However, a convex articular head for an anatomical configuration can be used as well. Further details of stemless anchors that can be implanted in the humerus 12 are discussed in US 2016/0324648, US2017/0273800, WO 2018/022227, U.S. 62/562,966, and U.S. 62/597,283, each of which is incorporated by reference herein in their entireties.
E. Humeral Guides Capable of Having Contact Portions on Separable Components
1. Multiple Component Humeral Guide with Edge Clip Configurations
A jig retention zone 1011 that can be disposed on the support portion 1006. The jig retention zone 1011 can be configured as slots that are disposed on a side of the support portion 1006 extending between the first side 1008 and the second side 1010. The slots can be configured to receive a locking device or connector or other portion of the releasable positioning jig 1012 to retain the releasable positioning jig 1012 on the support portion 1006.
The support portion 1006 has a contact area 1020 configured to receive a specific portion of a humerus of a specific patient. The contact area 1020 can comprise a substantial negative of a corresponding bone portion of the specific patient. When the contact area 1020 is disposed against the humerus 12, the support portion 1006 can be held in place with one or a plurality of stabilization pins 1018.
The diverging paths 1040 can be defined by a plurality of, e.g., two mounting pin holes 1036. The holes 1036 or apertures can be formed in or on the second side 1010 of the support portion 1006. The mounting pin holes 1036 can be formed in a projection 1034 that extends from the second side 1010 to a free end of the projection. The projection 1034 can be disposed along diverging paths. The mounting pin holes 1036 can extend through a generally central portion of the support portion 1006 to the side of the support portion 1006 having the contact area 1020 from a side of the support portion 1006 opposite the side with the contact area 1020. The configuration of the projection 1034 and the mounting pin holes 1036 disposed therethrough can be generic or can be patient specific, as is discussed further below in connection with
In the illustrated embodiment the contact area 1020 extends generally entirely across the bone facing edge of the support portion 1006 between the first side 1008 and the second side 1010. The contact area 1020 can include sub-regions configured to engage specific portions of the humerus 12. For instance, there can be a first portion 1024 configured to be complementary to at least a portion of a lesser tuberosity of the humerus 12. The support portion 1006 can include a second portion 1028 that extends between the first side 1008 and the second side 1010. The second portion 1028 can be disposed at an opposite end of the bone facing side of the support portion 1006 from the first portion 1024. The second portion 1028 can be configured to be complementary to at least a portion of the medial calcar of the humerus 12 or can be complimentary to bone disposed at or at least partially or entirely between the medial calcar and the lesser tuberosity.
The humeral cutting guide 1000 can be formed by coupling the releasable positioning jig 1012 to the support portion 1006. In other embodiments similar to
The releasable positioning jig 1012 can also include an aperture 1072 formed in a boss 1096 configured to rest on top of the head 10 of the humerus 12. The aperture 1072 can extend along and define an axis 1076. The axis 1076 is used to direct an instrument 1016, such as a guide pin, in to the resected humerus as discussed below.
The releasable positioning jig 1012 includes a base 1080 that has a first side 1082 and a second side 1084. A base contact area 1086 is disposed on an edge of the base 1080 that extends between the first side 1082 and the second side 1084. The base contact area 1086 can be at discrete spaced apart regions of the edge of the base 1080 that extends between the first side 1082 and the second side 1084 or can extend entirely between opposite ends of that edge. In one embodiment one end of the edge of the base 1080 that extends between the first side 1082 and the second side 1084 is configured to mate with a superior portion of a lesser tuberosity and a second end of the edge is configured to mate with a superior portion of the bone at or near the medial calcar or to a bone in a region between the medial calcar and the lesser tuberosity.
The releasable positioning jig 1012 has a generally vaulted configuration with the aperture defining boss 1096 disposed at an elevation above the base 1080. The boss 1096 is held in a predefined position and orientation by one or a plurality of, e.g., by two arms 1088. The arms 1088 can be disposed at opposite ends of the base 1080. The arms 1088 can extend from a first end coupled with the second side 1084 of the base 1080 to a second end coupled with a first portion 1104 of the boss 1096. One of the arms 1088 can be coupled with a portion of the releasable positioning jig 1012 configured to be disposed adjacent to the lesser tuberosity when the support portion 1006 is coupled to the humerus 12 and the releasable positioning jig 1012 is coupled to the support portion 1006. A bone facing side of the arms 1088 can be configured to be patient matched, e.g., to have a contact area 1068 patient matched to a portion of the head 10 of the humerus 12 superior to the lesser tuberosity. One of the arms 1088 can be coupled with a portion of the releasable positioning jig 1012 configured to be disposed adjacent to the medial calcar when the support portion 1006 is coupled to the humerus 12 and the releasable positioning jig 1012 is coupled to the support portion 1006. A bone facing side of the arms 1088 can be configured to be patient matched, e.g., to have a contact area 1068 patient matched to a portion of the head 10 of the humerus 12 superior to the medial calcar or to a region of bone disposed at or between the medial calcar and the lesser tuberosity.
The arms 1088 can have any suitable configuration. In one embodiment, the arms 1088 are tapered such that the first end coupled with the base 1080 is wider than is a second end coupled with the boss 1096. The wider dimension can be in a direction transverse to the longitudinal axis of the arms 1088.
The releasable positioning jig 1012 is connectable with the support portion 1006 in any of a number of connection mechanisms. In the illustrated embodiment, the releasable positioning jig 1012 includes one or a plurality of prongs 1090. The prongs 1090 facilitate quick and secure connection of the releasable positioning jig 1012 to the support portion 1006 and also quick disengagement to enable a surgeon using the humeral cutting guide 1000 to quickly attach or remove the releasable positioning jig 1012 from the support portion 1006. The prongs 1090 can include a projection 1091 that extends away from the first side 1082 toward the support portion 1006 when the releasable positioning jig 1012 is disposed adjacent to but not connected to the support portion 1006. The projection 1091 preferably has a length that extends greater than the thickness of the support portion 1006 between the first side 1008 and second side 1010. This configuration enables a catch mechanism 1092 of the prongs 1090 disposed at a free end of the projection 1091 to engage the support portion 1006.
In one embodiment, the support portion 1006 includes a jig retention zone 1011, as discussed above. The jig retention zone 1011 can include a groove or slot on one or both ends of the resection surface 1004. The jig retention zone 1011 can receive at least a portion of the thickness of the projection 1091 to prevent the releasable positioning jig 1012 from shifting laterally off of the support portion 1006. The catch mechanism 1092 can extend around to the second side 1010 of the support portion 1006 to resist upward or superior movement, e.g., away from the first side 1008 of the support portion 1006.
The prongs 1090 can be quickly disengaged from the support portion 1006. The prongs 1090 can have a release member 1094 at a side opposite the catch mechanism 1092. The release member 1094 can be gripped by a surgeon finger to deflect projection 1091 from the side of the projection 1091 upon which the release member 1094 is located to cause the catch mechanism 1092 to move out from under the second side 1010 of the support portion 1006. Such movement causes the catch mechanism 1092 to move outward of the second side 1010 of the support portion 1006. Outward movement of the catch mechanism 1092 allows the releasable positioning jig 1012 to disengage or to be released from the support portion 1006. Other coupling mechanisms to secure a releasable positioning jig to the support portion 1006 can be utilized, as discussed below. Also, in some techniques, the releasable positioning jig 1012 is not required and the head 10 can be resected using the support portion 1006 without requiring the releasable positioning jig 1012.
The releasable positioning jig 1012 can facilitate placement of an instrument, such as a guide pin 1016 in the humerus. For example, the boss 1096 can have an aperture 1072, as discussed above. The aperture 1072 can extend from a first end of a first portion 1104 to a second end of a second portion 1108. The first portion 1104 can extend from the first end to a second end where the first portion 1104 is coupled with the second portion 1108. The second portion 1108 can extend from a first end at the first portion 1104 to the second end where the aperture 1072 opens above the boss 1096. When the releasable positioning jig 1012 is mounted to the support portion 1006 the aperture 1072 allows a pin or other instrument 1016 to be delivered into the humerus 12 as discussed further below.
The boss 1096 can include an orientation feature 1100 that allows for a confirmation of orientation during surgery. For example, although the support portion 1006 is patient matched by having a surface or having surfaces configured to engage specific portions of the humerus 12, the correct positioning of the humeral cutting guide 1000 can be confirmed by visually confirming alignment of the orientation feature 1100 with an anatomical feature or orientation of the humerus 12. The orientation feature 1100 also could be used to confirm orientation of a surgical instrument relative to the releasable positioning jig 1012. The orientation feature 1100 can mate with a corresponding surface having a recess or recesses with the same shape as the orientation feature 1100 to allow for only one or two or a limited number of confirmed orientations relative to the releasable positioning jig 1012.
The support portion 1006A can include a second contact portion, such as a second contact level 1030. The second contact level 1030 can be disposed distally relative to the contact area 1020. The second contact level 1030 can be configured to mate with any specific patient bone, such as a portion of the humerus 12 disposed at or adjacent to the junction between the metaphyseal and diaphyseal portions of the humerus 12. In some cases, the humerus 12 has a depression or groove in the portion thereof where the diaphysis and the metaphysis come together. This depression or groove can be disposed generally transverse to the longitudinal axis of humerus 12 on an anterior side surface of the humerus 12. The support portion 1006A thus provides a plurality of contact zones spaced apart in a proximal-distal direction of the humerus 12. The support portion 1006A also provides contact at a plurality of spaced apart anatomies at one or more of such contact zones. As discussed above, the contact area 1020 can contact a continuous area at and between the lesser tuberosity and the medial calcar and/or can contact these anatomies while leaving a portion therebetween out of contact with the support portion 1006A.
When the support portion 1006A is combined with the releasable positioning jig 1012 into a variation of the humeral cutting guide 1000 there is contact with the head 10. Thus the humeral cutting guide 1000 including the support portion 1006A can provide contact with the humerus 12 at three areas including the humerus, the area at one or both of or entirely between the lesser tuberosity and the medial calcar and at the metaphyseal-diaphyseal junction.
In some variations there is a gap between the first side 1008 and the first side 1082, similar to the gap forming the cutting plane 114 in the humeral cutting guide 100, such that a saw can be inserted therebetween.
With the releasable positioning jig 1012 removed a continuous zone of contact can be seen at the contact area 1020 between the support portion 1006 and the humerus 12. The contact area 1020 can extend between jig retention zones 1011 on each end of the support portion 1006.
The releasable positioning jig 1160 can provide the same function as the releasable positioning jig 1012, but can provide more accurate placement of the guide pin 1016 because the releasable positioning jig 1160 may be supported by the resected surface of the humerus 12. Also, the projection 1164 can have a shorter extent than the arms 1088 of the releasable positioning jig 1012.
The humeral cutting guide 1000 provides several advantages, including enabling one or more removable positioning jigs to be coupled with the support portion 1006 to facilitate the placement of the stem 1140. Also, the support portion 1006 has divergent stabilization pins 1018, which divergent paths can be patient specifically determined, as discussed in connection with
2. Multiple Component Humeral Guide with Post Locking Configuration
a. Guides with Enhanced Access Configurations and Capable of Lateral or Posterior Approaches
As discussed further below, the humeral cutting guide 1200 is configured for a lateral and posterior approach to the humerus. For example, the guide 1200 can be configured for patient specific or patient matched contact with anatomy accessible from a lateral or a posterior approach. The guide humeral cutting guide 1200 could be configured for an anterior or another approach. The guide 1200 can have a plurality of contact areas. The guide 1200 can have a contact area configured to contact the bicipital groove. The guide 1200 can have a contact area configured to contact a greater tuberosity. In one form the guide 1200 has a support portion 1206 and a positioning jig 1212 are used, the guide 1200 can also be configured for patient specific contact with the head 10 of the humerus 12.
The connection mechanism 1214 includes a projection 1218 disposed on the support portion 1206 that is adapted to extend into an aperture 1308 of the positioning jig 1212.
The support portion 1206 has a second projection 1248 disposed on the second side 1210 of the support portion 1206. The projection 1248 extends from the second side 1210 in a direction away from the first side 1208. The projection 1248 have a first support member 1250 and a second support member 1252. One or both of the first support member 1250 and the second support member 1252 can be elongate members. The second elongate member 1252 extends down to be disposed at, adjacent to or over a bicipital groove of the patient in use. The first elongate member 1250 extends down to be disposed at adjacent to, or over a portion disposed laterally of the bicipital groove, e.g., at, adjacent to or over the greater tuberosity when the humeral cutting guide 1200 is applied to the humerus 12. The support portion 1206 can also include a third support member 1254 disposed adjacent to the second member 1252. The third support member 1254 can be an elongate member in some embodiments. The third elongate member 1254 can be configured to enhance the structural integrity of the support portion 1206.
As discussed above, the positioning jig 1212 has an aperture 1308 that can receive the projection 1218 of the support portion 1206. The aperture 1308 can extend upward from a second end 1316 of the base 1292 opposite a first side 1296. The first side 1296 is configured to engage the first side 1208 of the support portion 1206 when the positioning jig 1212 is coupled with the support portion 1206. The aperture 1308 can extend between a first end 1312 at the first side 1296 to a second end 1316 disposed above the second side 1300. The aperture 1308 can have a flat side 1320 formed therein configured to mate with the flat side 1230 of the projection 1218 discussed above. In one embodiment, the projection 1218 comprises a square cross-section parallelepiped extending away from the first side 1208. The aperture 1308 is a square cross-section lumen extending away from the second side 1300 of the base 1292. The projection 1218 and the aperture 1308 can be configured for a slip fit such that the surgeon can advance the aperture 1308 over the projection 1218 after the support portion 1206 is secured to the humerus 12 without requiring any tool or any significant force. This configuration also enables quick release of the positioning jig 1212 from the support portion 1206 by slip fit.
The positioning jig 1212 has a boss 1324 that is suspended from the base 1292 at a position over the head 10 of the humerus 12 when the humeral cutting guide 1200 is assembled over and on the humerus 12. The boss 1324 can have a first portion 1332 and a second portion 1336. The first portion 1332 can be coupled with a projection 1340 that extends from a first end 1344 coupled with the second end 1316 of the base 1292 to a second end 1348. The first portion 1332 can be coupled with the second end 1348 of the projection 1340. The second portion 1336 can be disposed above the first portion 1332. An annular ledge can be disposed between the first portion 1332 and the second portion 1336. The second portion 1336 can extend from the first portion 1332 to a free end of the boss 1324. The aperture 1286 can be disposed through the boss 1324 from the free end of the second portion 1336 of the boss 1324 to an opposite end of the first portion 1332.
A surface of the boss 1324 opposite the opening aperture 1286 can be patient matched, e.g., a substantial negative of a portion of the head 10 to which the positioning jig 1212 will contact when assembled to the support portion 1206 on the humerus 12. The contact area 1282 engaged with the head 10 of the humerus 12 can be disposed at or around an aperture 1286. In various embodiments, the humeral cutting guide 1200 provides patient specific contact at three spaced apparat locations, e.g., at the bicipital groove, the greater tuberosity, and the head 10 of the humerus 12. This contact is advantageously provided while at the same time that the gap 1272 can accommodate soft tissues that may be disposed between the medial surface 1270 and the humerus 12.
The second end 1348 of the projection 1340 can be coupled with a side surface of the boss 1324. In one embodiment, the distal-proximal thickness or dimension of second end 1348 of the projection 1340 can be the same as the distal-proximal thickness or dimension of first portion 1332 of the boss 1324 providing a rigid connection therebetween. The first end 1344 of the projection 1340 is wider in a direction corresponding to the longitudinal axis of the base 1292 than the second end 1348. The enhanced width near the base 1292 enables the projection 1340 to form a rigid construction with the base 1292 such that unwanted deflection or deformation of the positioning jig 1212 can be reduced, minimized or eliminated.
In one method, after the support portion 1206 is fixed to the humerus 12 the positioning jig 1212 can be coupled with the support portion 1206. The positioning jig 1212 can be coupled by rotationally aligning the boss 1324 over the head 10 of the humerus 12 and further rotationally aligning the flat side 1320 of the aperture 1308 with the flat side 1230 of the projection 1218. Upon such alignment, the positioning jig 1212 can be advanced according to the arrow A4 toward the support portion 1206 until the first side 1296 of the base 1292 comes to rest on the first side 1208 of the support portion 1206. When in such position the base gap area 1304 also can accommodate any soft tissue attachment that may be in the vicinity of the base 1292. The steps can be performed in other orders. For example, the motion according to the arrow A4 can come before the placement of the stabilization pins 1018 according to the arrow A2 and arrow A3.
The aperture 1378 disposed at a free end of a projection 1390 of the releasable positioning jig 1362. The projection 1390 has a first end 1394 disposed adjacent to the base 1366 and a second end 1398 spaced away from the base 1366. The aperture 1378 is located adjacent to the second end 1398. The projection 1390 has an inner surface 1402 that faces toward the resected humerus 12 when the releasable positioning jig 1362 is mounted to the support portion 1206 following resection. The inner surface 1402 forms a reamer clearance 1406 that is sized to enable a reamer head 1128 to be rotated beneath the projection 1390 without contact therebetween.
It will be appreciated that the humeral cutting guide 1000 and the humeral cutting guide 1200 described above provides excellent initial connection to the bone, or feel. Also, the releasable positioning jig 1012 and the positioning jig 1212 enable the surgeon to benefit from the function of the aperture 1072 or the aperture 1286 for positioning a guide pin 1016 or other instrument without requiring the releasable positioning jigs to be present for other parts of the procedure. The monolithic member mounting pin holes 1036 and mounting pin holes 1262 allow excellent stability on the side surface of the humerus 12. Providing a contact area 1020 in multiple areas disposed about the humerus 12 at one proximal-distal position reduces, minimizes or eliminates rocking about a longitudinal axis prior to placement of the stabilization pins 1018. Similarly the first portion 1258 and second portion 1260 provide proximally-distally aligned contact with anatomical locations that enhance the initial connection. Providing contact areas in multiple areas spaced apart along the proximal-distal position (as in
b. Guides with Enhanced Access Configurations and with Lateral or Anterior Approach
A surgical cue 1509 is also formed on the support portion 1506, e.g., on the first side 1508. The surgical cue 1509 can be used to assist the surgeon in further aspects of a method of preparing the humerus 12 as discussed further below.
The humeral cutting guides humeral cutting guide 12001500 allows for quick connection of the several different releasable positioning jigs. For example after the guide pin 1016 is placed, the releasable positioning jig 1362 can be coupled to the support portion 1206 to guide the shaft 1124 as the shaft 1124 rotates the reamer head 1128. The aperture 1378 is much larger than the aperture 1286 and thus can accept the larger shaft 1124 which can be cannulated to operate over the guide pin 1016. Although the first projection 1518 and the second projection 1520 take up some of the space on the resection surface 1504, they provide for enhanced stability of the releasable positioning jig 1512 and other releasable jigs of the humeral cutting guide 1500.
A method following the step shown in
After the pre-operative shoulder images 62 are obtained and provided to the planning system 54, the system and the module 67 analyze the condition of the bone. Based on the condition of the bone the planning system 54 and the module 67 determine where to position and how to orient the mounting pin holes 1036. The planning system 54 and the module 67 determine where the longitudinal axis 1044 should be directed in the bone from the mounting pin holes 1036 when the support portion 1006 is properly placed.
More particularly, the planning system 54 can be used to plan a resection of a bone, such as the humerus 12. The planning system 54 can be used to plan a resection of the humerus 12 from an anterior approach or other bone, e.g., using the support portion 1006. One of several contact areas 1020 can be identified as available in the anterior approach. The bone distal to the resection surface 1004 can be evaluated to determine the condition thereof for receiving the stabilization pins 1018. For example, a virtual model of the humerus 12 can be constructed from the pre-operative shoulder images 62. The model can have sufficient detail to evaluate the condition of the bone.
The pathways can be defined by entry and exit points. For example the second support pin pathway 1836 can have a patient specific entry point 1840 and a patient specific trajectory 1844. A total pin path length disposed within the bone can be calculated in the planning system 54 as the distance from the pin entry on the anterior side of the humerus 12 (left hand side of the figure) to a pin exit on the posterior side (right hand side of the figure) of the humerus 12. In one strategy for patient matching the pin trajectory, the patient matched jig provides at least and in some cases more than a minimum length of pin that traverses bone (between the entry and exit) when the jig is placed in a preoperatively planned position and the stabilization pin is advanced through the hole and into the bone
In a method, a virtual representation of the support portion 1006 is placed according to the planned resection. The representation can be on a user interface of a display. Outer and inner contours of the cortical bone 1806 can be displayed as well. The first support pin pathway 1828, the second support pin pathway 1832, and the third support pin pathway 1836 can be displayed, e.g., overlaid on the display similar to the schematic representation of
The planning system 54 can automatically select the best path among the paths first support pin pathway 1828, the second support pin pathway 1832, and the third support pin pathway 1836. Or, the user can be presented with an interface that suggests pathways that satisfy minimum requirements, allowing the user to select among such pathway.
For example, the first support pin pathway 1828 extends through what is illustrated as the thickest layer of cortical bone 1806 on the anterior side of the bone. The first support pin pathway 1828 however also extends through thin bone matter 1808 on the posterior side. The second support pin pathway 1832 extends through thin bone matter 1808 on the anterior side of the humerus 12 and extends through relatively thicker cortical bone 1806 on the posterior side of the humerus 12. The third support pin pathway 1836 may provide a preferred pathway in that the pin pathway 1836 extends through relatively thick cortical bone 1806 on both sides of the cancellous bone 1804 of the humerus 12.
One variation of these methods can involve first selecting a patient specific entry point 1840. The patient specific entry point 1840 can be selected based on the absence of fragile osteophytes at that location or on other bases. Once patient specific entry point 1840 is selected the trajectory of the support pin pathway can be determined by avoiding thin cortical wall sections at the same side of the humerus 12 as the entry point, by avoiding thin cortical wall sections on the opposite side of the humerus 12 as the entry point, or by avoiding thin cortical wall sections on the same and on the opposite side of the humerus 12 as the entry point.
Another approach can start with a preferred patient independent pathway. For example, it may be desired to allow the support portion 1006 to remain in place on the humerus 12 when the bone preparation beneath the resection is being performed or until after the final bone anchor is placed. The diverging paths 1040 defined through the mounting pin holes 1036 can therefore be pre-set to provide trajectories that would keep the stabilization pins 1018 outside of the portion of the humerus 12 to be prepared and/or to receive the implant anchor. One or more patient independent entry point and trajectories can thus be selected based on this or other criteria. The path defined by the patient independent entry point and trajectory can be compared with location information for non-supportive bone matter, as discussed above. The method can further involve excluding pathways that are too close to the non-supportive matter.
The map of
A comparison on non-excluded pathways can be objectively conducted. For example the non-excluded pathways can be evaluated by determining a length of the pathways not excluded. An overall length from entry to exit point of the pathways could be compared and the longer pathway selected. A length of each of multiple pathways through cortical bone could be determined and compared and the pathway with a greater amount of cortical traverse could be selected. Other combined objected metrics could be used. In one variation the planning system 54 is configured to generate and output, e.g., to a visual display overlying a representation of the humerus 12, a plurality of non-excluded pathways that are provide sufficient support. The planning system 54 can allow the user to select among these non-excluded pathways.
Terminology
Although certain embodiments have been described herein, the implants and methods described herein can interchangeably use any articular component, as the context may dictate.
As used herein, the relative terms “proximal” and “distal” shall be defined from the perspective of the humerus. Thus, proximal refers to the direction of the end of the humerus adjacent to the scapula and forming part of the shoulder joint, which may be referred to herein as the superior direction, end or portion, and distal refers to the direction away from proximal, which can be the end of the humerus forming part of the elbow joint and which may be referred to herein as the inferior direction, end or portion of the humerus.
Conditional language, such as “can,” “could,” “might,” or “may,” unless specifically stated otherwise, or otherwise understood within the context as used, is generally intended to convey that certain embodiments include, while other embodiments do not include, certain features, elements, and/or steps. Thus, such conditional language is not generally intended to imply that features, elements, and/or steps are in any way required for one or more embodiments.
The terms “comprising,” “including,” “having,” and the like are synonymous and are used inclusively, in an open-ended fashion, and do not exclude additional elements, features, acts, operations, and so forth. Also, the term “or” is used in its inclusive sense (and not in its exclusive sense) so that when used, for example, to connect a list of elements, the term “or” means one, some, or all of the elements in the list. In addition, the articles “a,” “an,” and “the” as used in this application and the appended claims are to be construed to mean “one or more” or “at least one” unless specified otherwise.
The ranges disclosed herein also encompass any and all overlap, sub-ranges, and combinations thereof. Language such as “up to,” “at least,” “greater than,” “less than,” “between,” and the like includes the number recited. Numbers preceded by a term such as “about” or “approximately” include the recited numbers and should be interpreted based on the circumstances (e.g., as accurate as reasonably possible under the circumstances, for example ±5%, ±10%, ±15%, etc.). For example, “about 1” includes “1.” Phrases preceded by a term such as “substantially,” “generally,” and the like include the recited phrase and should be interpreted based on the circumstances (e.g., as much as reasonably possible under the circumstances). For example, “substantially spherical” includes “spherical.” Unless stated otherwise, all measurements are at standard conditions including temperature and pressure.
As used herein, a phrase referring to “at least one of” a list of items refers to any combination of those items, including single members. As an example, “at least one of: A, B, or C” is intended to cover: A, B, C, A and B, A and C, B and C, and A, B, and C. Conjunctive language such as the phrase “at least one of X, Y and Z,” unless specifically stated otherwise, is otherwise understood with the context as used in general to convey that an item, term, etc. may be at least one of X, Y or Z. Thus, such conjunctive language is not generally intended to imply that certain embodiments require at least one of X, at least one of Y and at least one of Z to each be present.
Although certain embodiments and examples have been described herein, it should be emphasized that many variations and modifications may be made to the humeral head assembly shown and described in the present disclosure, the elements of which are to be understood as being differently combined and/or modified to form still further embodiments or acceptable examples. All such modifications and variations are intended to be included herein within the scope of this disclosure. A wide variety of designs and approaches are possible. No feature, structure, or step disclosed herein is essential or indispensable.
Some embodiments have been described in connection with the accompanying drawings. However, it should be understood that the figures are not drawn to scale. Distances, angles, etc. are merely illustrative and do not necessarily bear an exact relationship to actual dimensions and layout of the devices illustrated. Components can be added, removed, and/or rearranged. Further, the disclosure herein of any particular feature, aspect, method, property, characteristic, quality, attribute, element, or the like in connection with various embodiments can be used in all other embodiments set forth herein. Additionally, it will be recognized that any methods described herein may be practiced using any device suitable for performing the recited steps.
For purposes of this disclosure, certain aspects, advantages, and novel features are described herein. It is to be understood that not necessarily all such advantages may be achieved in accordance with any particular embodiment. Thus, for example, those skilled in the art will recognize that the disclosure may be embodied or carried out in a manner that achieves one advantage or a group of advantages as taught herein without necessarily achieving other advantages as may be taught or suggested herein.
Moreover, while illustrative embodiments have been described herein, it will be understood by those skilled in the art that the scope of the inventions extends beyond the specifically disclosed embodiments to any and all embodiments having equivalent elements, modifications, omissions, combinations or sub-combinations of the specific features and aspects of the embodiments (e.g., of aspects across various embodiments), adaptations and/or alterations, and uses of the inventions as would be appreciated by those in the art based on the present disclosure. The limitations in the claims are to be interpreted broadly based on the language employed in the claims and not limited to the examples described in the present specification or during the prosecution of the application, which examples are to be construed as non-exclusive. Further, the actions of the disclosed processes and methods may be modified in any manner, including by reordering actions and/or inserting additional actions and/or deleting actions. It is intended, therefore, that the specification and examples be considered as illustrative only, with a true scope and spirit being indicated by the claims and their full scope of equivalents.
Any methods disclosed herein need not be performed in the order recited. The methods disclosed herein include certain actions taken by a practitioner; however, they can also include any third-party instruction of those actions, either expressly or by implication. For example, actions such as “inserting a humeral stem into a humerus” include “instructing insertion of a humeral head into a humerus.”
This application is a continuation of U.S. patent application Ser. No. 16/032,005, filed Jul. 10, 2018, which claims priority to U.S. Provisional application No. 62/530,984, filed on Jul. 11, 2017, and U.S. Provisional application No. 62/656,100, filed on Apr. 11, 2018, the disclosures of which are incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
4919670 | Dale et al. | Apr 1990 | A |
5030219 | Matsen, III et al. | Jul 1991 | A |
5329846 | Bonutti | Jul 1994 | A |
5383938 | Rohr et al. | Jan 1995 | A |
5458637 | Hayes | Oct 1995 | A |
5531793 | Kelman et al. | Jul 1996 | A |
5610966 | Martell et al. | Mar 1997 | A |
5725586 | Sommerich | Mar 1998 | A |
5768134 | Swaelens et al. | Jun 1998 | A |
5769856 | Dong et al. | Jun 1998 | A |
5779710 | Matsen, III | Jul 1998 | A |
5807437 | Sachs et al. | Sep 1998 | A |
5824078 | Nelson et al. | Oct 1998 | A |
5824085 | Sahay et al. | Oct 1998 | A |
6002859 | DiGioia, III et al. | Dec 1999 | A |
6129764 | Servidio | Oct 2000 | A |
6172856 | Jang | Jan 2001 | B1 |
6183519 | Bonnin et al. | Feb 2001 | B1 |
6364910 | Shultz et al. | Apr 2002 | B1 |
6385475 | Cinquin et al. | May 2002 | B1 |
6432142 | Kamiya et al. | Aug 2002 | B1 |
6459948 | Ateshian et al. | Oct 2002 | B1 |
6648894 | Abdelgany et al. | Nov 2003 | B2 |
6719799 | Kropf | Apr 2004 | B1 |
6772026 | Bradbury et al. | Aug 2004 | B2 |
6797006 | Hodorek | Sep 2004 | B2 |
6849223 | Dean et al. | Feb 2005 | B2 |
6915150 | Cinquin et al. | Jul 2005 | B2 |
6944518 | Roose | Sep 2005 | B2 |
7175665 | German et al. | Feb 2007 | B2 |
7468075 | Lang et al. | Dec 2008 | B2 |
7469474 | Farrar | Dec 2008 | B2 |
7534263 | Burdulis, Jr. et al. | May 2009 | B2 |
7599539 | Kunz et al. | Oct 2009 | B2 |
7618451 | Berez et al. | Nov 2009 | B2 |
7634119 | Tsougarakis et al. | Dec 2009 | B2 |
7648530 | Habermeyer et al. | Jan 2010 | B2 |
7678150 | Tornier et al. | Mar 2010 | B2 |
7702380 | Dean | Apr 2010 | B1 |
7717956 | Lang | May 2010 | B2 |
7747305 | Dean et al. | Jun 2010 | B2 |
7796791 | Tsougarakis et al. | Sep 2010 | B2 |
7799077 | Lang et al. | Sep 2010 | B2 |
7802503 | Couvillion et al. | Sep 2010 | B2 |
7822588 | Mueller et al. | Oct 2010 | B2 |
7831079 | Kunz et al. | Nov 2010 | B2 |
7892287 | Deffenbaugh | Feb 2011 | B2 |
7927338 | Laffargue et al. | Apr 2011 | B2 |
7981158 | Fitz et al. | Jul 2011 | B2 |
7983777 | Melton et al. | Jul 2011 | B2 |
7993408 | Meridew et al. | Aug 2011 | B2 |
8007448 | Barrera | Aug 2011 | B2 |
8014984 | Lannotti et al. | Sep 2011 | B2 |
8055487 | James | Nov 2011 | B2 |
8062302 | Lang et al. | Nov 2011 | B2 |
8066708 | Lang et al. | Nov 2011 | B2 |
8077950 | Tsougarakis et al. | Dec 2011 | B2 |
8083745 | Lang et al. | Dec 2011 | B2 |
8094900 | Steines et al. | Jan 2012 | B2 |
8105330 | Fitz et al. | Jan 2012 | B2 |
8122582 | Burdulis, Jr. et al. | Feb 2012 | B2 |
8234097 | Steines et al. | Jul 2012 | B2 |
8337501 | Fitz et al. | Dec 2012 | B2 |
8337503 | Lian | Dec 2012 | B2 |
8337507 | Lang et al. | Dec 2012 | B2 |
8343218 | Lang et al. | Jan 2013 | B2 |
8350186 | Jones et al. | Jan 2013 | B2 |
8366771 | Burdulis, Jr. et al. | Feb 2013 | B2 |
8377073 | Wasielewski | Feb 2013 | B2 |
8377129 | Fitz et al. | Feb 2013 | B2 |
8439926 | Bojarski et al. | May 2013 | B2 |
8457930 | Schroeder | Jun 2013 | B2 |
8460304 | Fitz et al. | Jun 2013 | B2 |
8475463 | Lian | Jul 2013 | B2 |
8480754 | Bojarski et al. | Jul 2013 | B2 |
8500740 | Bojarski et al. | Aug 2013 | B2 |
8529568 | Bouadi | Sep 2013 | B2 |
8529630 | Bojarski et al. | Sep 2013 | B2 |
8532806 | Masson | Sep 2013 | B1 |
8535319 | Ball | Sep 2013 | B2 |
8545509 | Park et al. | Oct 2013 | B2 |
8545569 | Fitz et al. | Oct 2013 | B2 |
8551099 | Lang et al. | Oct 2013 | B2 |
8551102 | Fitz et al. | Oct 2013 | B2 |
8551103 | Fitz et al. | Oct 2013 | B2 |
8551169 | Fitz et al. | Oct 2013 | B2 |
8556906 | Fitz et al. | Oct 2013 | B2 |
8556907 | Fitz et al. | Oct 2013 | B2 |
8556971 | Lang | Oct 2013 | B2 |
8556983 | Bojarski et al. | Oct 2013 | B2 |
8561278 | Fitz et al. | Oct 2013 | B2 |
8562611 | Fitz et al. | Oct 2013 | B2 |
8562618 | Fitz et al. | Oct 2013 | B2 |
8568479 | Fitz et al. | Oct 2013 | B2 |
8568480 | Fitz et al. | Oct 2013 | B2 |
8585708 | Fitz et al. | Nov 2013 | B2 |
8608749 | Meridew et al. | Dec 2013 | B2 |
8617172 | Fitz et al. | Dec 2013 | B2 |
8617242 | Philipp | Dec 2013 | B2 |
8623026 | Wong et al. | Jan 2014 | B2 |
8634617 | Tsougarakis et al. | Jan 2014 | B2 |
8638998 | Steines et al. | Jan 2014 | B2 |
8641716 | Fitz et al. | Feb 2014 | B2 |
8657827 | Fitz et al. | Feb 2014 | B2 |
8663333 | Metcalfe et al. | Mar 2014 | B2 |
8682052 | Fitz et al. | Mar 2014 | B2 |
8690945 | Fitz et al. | Apr 2014 | B2 |
8709089 | Lang et al. | Apr 2014 | B2 |
8731885 | Iannotti et al. | May 2014 | B2 |
8735773 | Lang | May 2014 | B2 |
8744148 | Nord et al. | Jun 2014 | B2 |
8768028 | Lang et al. | Jul 2014 | B2 |
8771365 | Bojarski et al. | Jul 2014 | B2 |
8774900 | Buly et al. | Jul 2014 | B2 |
8775133 | Schroeder | Jul 2014 | B2 |
8781557 | Dean et al. | Jul 2014 | B2 |
8814942 | Anthony et al. | Aug 2014 | B2 |
8843229 | Vanasse et al. | Sep 2014 | B2 |
8864769 | Stone et al. | Oct 2014 | B2 |
8882847 | Burdulis, Jr. et al. | Nov 2014 | B2 |
8884618 | Mahfouz | Nov 2014 | B2 |
8888855 | Roche et al. | Nov 2014 | B2 |
8898043 | Ashby et al. | Nov 2014 | B2 |
8906107 | Bojarski et al. | Dec 2014 | B2 |
8926706 | Bojarski et al. | Jan 2015 | B2 |
8932361 | Tornier et al. | Jan 2015 | B2 |
8932363 | Tsougarakis et al. | Jan 2015 | B2 |
8934961 | Lakin et al. | Jan 2015 | B2 |
8945230 | Lang et al. | Feb 2015 | B2 |
8951259 | Fitz et al. | Feb 2015 | B2 |
8951260 | Lang et al. | Feb 2015 | B2 |
8965088 | Tsougarakis et al. | Feb 2015 | B2 |
8971606 | Chaoui | Mar 2015 | B2 |
8974539 | Bojarski et al. | Mar 2015 | B2 |
8984731 | Broeck et al. | Mar 2015 | B2 |
8989460 | Mahfouz | Mar 2015 | B2 |
8992538 | Keefer | Mar 2015 | B2 |
8998915 | Fitz et al. | Apr 2015 | B2 |
9020788 | Lang | Apr 2015 | B2 |
9023050 | Lang et al. | May 2015 | B2 |
9055953 | Lang et al. | Jun 2015 | B2 |
9060788 | Bollinger | Jun 2015 | B2 |
9066728 | Burdulis, Jr. et al. | Jun 2015 | B2 |
9072531 | Fitz et al. | Jul 2015 | B2 |
9084617 | Lang et al. | Jul 2015 | B2 |
9095353 | Burdulis, Jr. et al. | Aug 2015 | B2 |
9107679 | Lang et al. | Aug 2015 | B2 |
9107680 | Fitz et al. | Aug 2015 | B2 |
9113921 | Lang et al. | Aug 2015 | B2 |
9125672 | Fitz et al. | Sep 2015 | B2 |
9126673 | Green et al. | Sep 2015 | B1 |
9180015 | Fitz et al. | Nov 2015 | B2 |
9186161 | Lang et al. | Nov 2015 | B2 |
9186254 | Fitz et al. | Nov 2015 | B2 |
9208558 | Dean et al. | Dec 2015 | B2 |
9211199 | Ratron | Dec 2015 | B2 |
9216025 | Fitz et al. | Dec 2015 | B2 |
9220516 | Lang et al. | Dec 2015 | B2 |
9220517 | Lang et al. | Dec 2015 | B2 |
9232955 | Bonin, Jr. et al. | Jan 2016 | B2 |
9237950 | Hensley et al. | Jan 2016 | B2 |
9241724 | Lang et al. | Jan 2016 | B2 |
9241725 | Lang et al. | Jan 2016 | B2 |
9275191 | Dean et al. | Mar 2016 | B2 |
9278413 | Sperling | Mar 2016 | B2 |
9292920 | Dean et al. | Mar 2016 | B2 |
9295481 | Fitz et al. | Mar 2016 | B2 |
9295482 | Fitz et al. | Mar 2016 | B2 |
9301768 | Buza et al. | Apr 2016 | B2 |
9308005 | Fitz et al. | Apr 2016 | B2 |
9308053 | Bojarski et al. | Apr 2016 | B2 |
9308091 | Lang | Apr 2016 | B2 |
9314256 | Fitz et al. | Apr 2016 | B2 |
9320608 | Sperling | Apr 2016 | B2 |
9320620 | Bojarski et al. | Apr 2016 | B2 |
9326780 | Wong et al. | May 2016 | B2 |
9326862 | Smith et al. | May 2016 | B2 |
9330206 | Dean et al. | May 2016 | B2 |
9333085 | Fitz et al. | May 2016 | B2 |
9351743 | Kehres et al. | May 2016 | B2 |
9358018 | Fitz et al. | Jun 2016 | B2 |
9381025 | Fitz et al. | Jul 2016 | B2 |
9381026 | Trouilloud et al. | Jul 2016 | B2 |
9387083 | Al Hares et al. | Jul 2016 | B2 |
9402726 | Linderman et al. | Aug 2016 | B2 |
9408615 | Fitz et al. | Aug 2016 | B2 |
9408616 | Kehres et al. | Aug 2016 | B2 |
9408686 | Miller et al. | Aug 2016 | B1 |
9414928 | Sperling | Aug 2016 | B2 |
9439767 | Bojarski et al. | Sep 2016 | B2 |
9486226 | Chao | Nov 2016 | B2 |
9495483 | Steines et al. | Nov 2016 | B2 |
9498344 | Hodorek et al. | Nov 2016 | B2 |
9517134 | Lang | Dec 2016 | B2 |
9539013 | Katrana et al. | Jan 2017 | B2 |
9554910 | Vanasse et al. | Jan 2017 | B2 |
9575931 | Ratron | Feb 2017 | B2 |
9579106 | Lo et al. | Feb 2017 | B2 |
9579110 | Bojarski et al. | Feb 2017 | B2 |
9603711 | Bojarski et al. | Mar 2017 | B2 |
9615839 | Olson | Apr 2017 | B2 |
9626756 | Dean et al. | Apr 2017 | B2 |
9636229 | Lang et al. | May 2017 | B2 |
9646113 | Park et al. | May 2017 | B2 |
9662214 | Li et al. | May 2017 | B2 |
9668873 | Winslow et al. | Jun 2017 | B2 |
9672302 | Dean et al. | Jun 2017 | B2 |
9672617 | Dean et al. | Jun 2017 | B2 |
9675471 | Bojarski et al. | Jun 2017 | B2 |
9681956 | Al Hares et al. | Jun 2017 | B2 |
9687945 | Steines et al. | Jun 2017 | B2 |
9700420 | Fitz et al. | Jul 2017 | B2 |
9700971 | Lang | Jul 2017 | B2 |
9713533 | Taylor et al. | Jul 2017 | B2 |
9715563 | Schroeder | Jul 2017 | B1 |
9717508 | Iannotti et al. | Aug 2017 | B2 |
9737367 | Steines et al. | Aug 2017 | B2 |
9741263 | Iannotti et al. | Aug 2017 | B2 |
9770335 | Sperling | Sep 2017 | B2 |
9775680 | Bojarski et al. | Oct 2017 | B2 |
9849019 | Miller et al. | Dec 2017 | B2 |
9872773 | Lang et al. | Jan 2018 | B2 |
9877790 | Bojarski et al. | Jan 2018 | B2 |
9895230 | Mahfouz | Feb 2018 | B2 |
9913723 | Fitz et al. | Mar 2018 | B2 |
9937046 | Mahfouz | Apr 2018 | B2 |
9943370 | Asseln et al. | Apr 2018 | B2 |
9956047 | Bojarski et al. | May 2018 | B2 |
9956048 | Bojarski et al. | May 2018 | B2 |
9993341 | Vanasse et al. | Jun 2018 | B2 |
10068671 | Dean et al. | Sep 2018 | B2 |
10085839 | Wong et al. | Oct 2018 | B2 |
10405993 | Deransart et al. | Sep 2019 | B2 |
10433969 | Humphrey | Oct 2019 | B2 |
10537390 | Varadarajan et al. | Jan 2020 | B2 |
10548737 | Hodorek et al. | Feb 2020 | B2 |
10716676 | Tornier et al. | Jul 2020 | B2 |
11364127 | Deransart et al. | Jun 2022 | B2 |
20010047210 | Wolf | Nov 2001 | A1 |
20020007294 | Bradbury et al. | Jan 2002 | A1 |
20020025358 | Nelson et al. | Feb 2002 | A1 |
20020082741 | Mazumder et al. | Jun 2002 | A1 |
20030028253 | Stone et al. | Feb 2003 | A1 |
20030074080 | Murray | Apr 2003 | A1 |
20030139818 | Rogers et al. | Jul 2003 | A1 |
20040045934 | Harvey et al. | Mar 2004 | A1 |
20040064189 | Maroney et al. | Apr 2004 | A1 |
20040102866 | Harris et al. | May 2004 | A1 |
20040133276 | Lang et al. | Jul 2004 | A1 |
20040171924 | Mire et al. | Sep 2004 | A1 |
20040181144 | Cinquin et al. | Sep 2004 | A1 |
20040199258 | Macara | Oct 2004 | A1 |
20040243481 | Bradbury et al. | Dec 2004 | A1 |
20050049709 | Tornier | Mar 2005 | A1 |
20050065617 | Barrera et al. | Mar 2005 | A1 |
20050065628 | Roose | Mar 2005 | A1 |
20050112397 | Rolfe et al. | May 2005 | A1 |
20050197814 | Aram | Sep 2005 | A1 |
20050216305 | Funderud | Sep 2005 | A1 |
20060100714 | Ensign | May 2006 | A1 |
20060136058 | Pietrzak | Jun 2006 | A1 |
20060161167 | Myers et al. | Jul 2006 | A1 |
20070089518 | Ericson et al. | Apr 2007 | A1 |
20070118055 | McCombs | May 2007 | A1 |
20070118243 | Schroeder et al. | May 2007 | A1 |
20070173945 | Wiley et al. | Jul 2007 | A1 |
20070191741 | Tsai et al. | Aug 2007 | A1 |
20070198094 | Berelsman et al. | Aug 2007 | A1 |
20070244563 | Roche et al. | Oct 2007 | A1 |
20070249967 | Buly et al. | Oct 2007 | A1 |
20080014082 | Kunz et al. | Jan 2008 | A1 |
20080010900 | Maroney et al. | May 2008 | A1 |
20080109000 | Maroney et al. | May 2008 | A1 |
20080140209 | Iannotti et al. | Jun 2008 | A1 |
20080183297 | Boileau et al. | Jul 2008 | A1 |
20080228269 | McLeod et al. | Sep 2008 | A1 |
20080243127 | Lang et al. | Oct 2008 | A1 |
20090099662 | Splieth et al. | Apr 2009 | A1 |
20090204225 | Meridew et al. | Aug 2009 | A1 |
20090226068 | Fitz et al. | Sep 2009 | A1 |
20090254091 | Long et al. | Oct 2009 | A1 |
20090264894 | Wasielewski | Oct 2009 | A1 |
20090292464 | Fuchs et al. | Nov 2009 | A1 |
20100082035 | Keefer | Apr 2010 | A1 |
20100087927 | Roche et al. | Apr 2010 | A1 |
20100114326 | Winslow et al. | May 2010 | A1 |
20100161066 | Iannotti et al. | Jun 2010 | A1 |
20100191100 | Anderson et al. | Jul 2010 | A1 |
20100217270 | Polinski et al. | Aug 2010 | A1 |
20100303313 | Lang et al. | Dec 2010 | A1 |
20110029088 | Raucher et al. | Feb 2011 | A1 |
20110040334 | Kaes et al. | Feb 2011 | A1 |
20110046735 | Metzger et al. | Feb 2011 | A1 |
20110054478 | Vanasse et al. | Mar 2011 | A1 |
20110118846 | Katrana et al. | May 2011 | A1 |
20110119884 | Ratron | May 2011 | A1 |
20110137434 | Lappin et al. | Jun 2011 | A1 |
20110144760 | Wong et al. | Jun 2011 | A1 |
20110282403 | Anthony et al. | Nov 2011 | A1 |
20120078258 | Lo et al. | Mar 2012 | A1 |
20120116203 | Vancraen et al. | May 2012 | A1 |
20120130434 | Stemniski | May 2012 | A1 |
20120141034 | Iannotti et al. | Jun 2012 | A1 |
20120143267 | Iannotti et al. | Jun 2012 | A1 |
20120221112 | Lappin | Aug 2012 | A1 |
20120232670 | Bojarski et al. | Sep 2012 | A1 |
20120253350 | Anthony et al. | Oct 2012 | A1 |
20120253467 | Frankle | Oct 2012 | A1 |
20120276509 | Iannotti et al. | Nov 2012 | A1 |
20120279933 | Hensler et al. | Nov 2012 | A1 |
20120296339 | Iannotti | Nov 2012 | A1 |
20130018378 | Hananouchi et al. | Jan 2013 | A1 |
20130053968 | Nardini et al. | Feb 2013 | A1 |
20130110116 | Kehres et al. | May 2013 | A1 |
20130110470 | Vanasse et al. | May 2013 | A1 |
20130110471 | Lang et al. | May 2013 | A1 |
20130114873 | Chaoui | May 2013 | A1 |
20130150975 | Iannotti et al. | Jun 2013 | A1 |
20130172898 | Iannotti et al. | Jul 2013 | A1 |
20130190882 | Humphrey | Jul 2013 | A1 |
20130204375 | Winslow et al. | Aug 2013 | A1 |
20130211531 | Steines et al. | Aug 2013 | A1 |
20130245631 | Bettenga | Sep 2013 | A1 |
20130261629 | Anthony et al. | Oct 2013 | A1 |
20130274752 | Trouilloud et al. | Oct 2013 | A1 |
20130325134 | Viscardi et al. | Dec 2013 | A1 |
20130338673 | Keppler | Dec 2013 | A1 |
20140039633 | Roche et al. | Feb 2014 | A1 |
20140074246 | Huebner et al. | Mar 2014 | A1 |
20140142578 | Hananouchi et al. | May 2014 | A1 |
20140236304 | Hodorek et al. | Aug 2014 | A1 |
20140257304 | Eash | Sep 2014 | A1 |
20140257499 | Winslow et al. | Sep 2014 | A1 |
20140276867 | Kelley et al. | Sep 2014 | A1 |
20140371863 | Vanasse et al. | Dec 2014 | A1 |
20150045903 | Neal | Feb 2015 | A1 |
20150054195 | Greyf | Feb 2015 | A1 |
20150093283 | Miller et al. | Apr 2015 | A1 |
20150150688 | Vanasse et al. | Jun 2015 | A1 |
20150190151 | Budhabbatti et al. | Jul 2015 | A1 |
20150202045 | Early et al. | Jul 2015 | A1 |
20150223941 | Lang | Aug 2015 | A1 |
20150250552 | Radermacher et al. | Sep 2015 | A1 |
20150250597 | Lang et al. | Sep 2015 | A1 |
20150250601 | Humphrey | Sep 2015 | A1 |
20150265411 | Deransart et al. | Sep 2015 | A1 |
20150320430 | Kehres et al. | Nov 2015 | A1 |
20150328004 | Mafhouz | Nov 2015 | A1 |
20160015466 | Park et al. | Jan 2016 | A1 |
20160030196 | Eraly et al. | Feb 2016 | A1 |
20160051367 | Gervasi et al. | Feb 2016 | A1 |
20160067049 | Flaherty et al. | Mar 2016 | A1 |
20160074052 | Keppler et al. | Mar 2016 | A1 |
20160100907 | Gomes | Apr 2016 | A1 |
20160120555 | Bonin, Jr. et al. | May 2016 | A1 |
20160143744 | Bojarski et al. | May 2016 | A1 |
20160143749 | Holovacs et al. | May 2016 | A1 |
20160157937 | Kehres et al. | Jun 2016 | A1 |
20160166392 | Vanasse et al. | Jun 2016 | A1 |
20160184104 | Sperling | Jun 2016 | A1 |
20160193051 | Budhabhatti et al. | Jul 2016 | A1 |
20160213385 | Iannotti et al. | Jul 2016 | A1 |
20160242933 | Deransart et al. | Aug 2016 | A1 |
20160256222 | Walch | Sep 2016 | A1 |
20160270854 | Chaoui et al. | Sep 2016 | A1 |
20160296285 | Chaoui et al. | Oct 2016 | A1 |
20160296290 | Furrer et al. | Oct 2016 | A1 |
20160324648 | Hodorek et al. | Nov 2016 | A1 |
20160331467 | Slamin et al. | Nov 2016 | A1 |
20160345987 | Guilloux et al. | Dec 2016 | A1 |
20160374697 | Kehres et al. | Dec 2016 | A1 |
20170000614 | Mahfouz | Jan 2017 | A1 |
20170000615 | Mahfouz | Jan 2017 | A1 |
20170007330 | Britton et al. | Jan 2017 | A1 |
20170027587 | Fraone et al. | Feb 2017 | A1 |
20170027593 | Bojarski et al. | Feb 2017 | A1 |
20170027702 | Goldstein et al. | Feb 2017 | A1 |
20170056024 | Chao | Mar 2017 | A1 |
20170056187 | Humphrey et al. | Mar 2017 | A1 |
20170071748 | Humphrey | Mar 2017 | A1 |
20170079803 | Lang | Mar 2017 | A1 |
20170105841 | Vanasse et al. | Apr 2017 | A1 |
20170105843 | Britton et al. | Apr 2017 | A1 |
20170112626 | Miller et al. | Apr 2017 | A1 |
20170119531 | Bojarski et al. | May 2017 | A1 |
20170150978 | Iannotti et al. | Jun 2017 | A1 |
20170151058 | Sperling | Jun 2017 | A1 |
20170216038 | Lang et al. | Aug 2017 | A1 |
20170231783 | Lang et al. | Aug 2017 | A1 |
20170249440 | Lang et al. | Aug 2017 | A1 |
20170258598 | Radermacher et al. | Sep 2017 | A1 |
20170273795 | Neichel et al. | Sep 2017 | A1 |
20170273800 | Emerick et al. | Sep 2017 | A1 |
20170273801 | Hodorek | Sep 2017 | A1 |
20170281357 | Taylor et al. | Oct 2017 | A1 |
20170296347 | Chua et al. | Oct 2017 | A1 |
20170304063 | Hatzidakis et al. | Oct 2017 | A1 |
20170340449 | Deransart et al. | Nov 2017 | A1 |
20170360567 | Fitz et al. | Dec 2017 | A1 |
20170367766 | Mahfouz | Dec 2017 | A1 |
20170367828 | Steines et al. | Dec 2017 | A1 |
20170367834 | Fitz et al. | Dec 2017 | A1 |
20180028325 | Bojarski et al. | Feb 2018 | A1 |
20180036019 | Iannotti et al. | Feb 2018 | A1 |
20180161176 | Vivanz et al. | Jun 2018 | A1 |
20180228614 | Lang et al. | Aug 2018 | A1 |
20180235706 | Asseln et al. | Aug 2018 | A1 |
20180235762 | Radermacher et al. | Aug 2018 | A1 |
20180263782 | Lang et al. | Sep 2018 | A1 |
20180289380 | Mauldin et al. | Oct 2018 | A1 |
20190015116 | Neichel et al. | Jan 2019 | A1 |
20190015117 | Neichel et al. | Jan 2019 | A1 |
20190015118 | Neichel et al. | Jan 2019 | A1 |
20190015119 | Athwal et al. | Jan 2019 | A1 |
20190015221 | Neichel et al. | Jan 2019 | A1 |
20190038360 | Chaoui | Feb 2019 | A1 |
20190175354 | Knox et al. | Jun 2019 | A1 |
20190343658 | Deransart et al. | Nov 2019 | A1 |
20200188121 | Boux de Casson et al. | Jun 2020 | A1 |
20200214845 | Knox et al. | Jul 2020 | A1 |
20200289276 | Lefebvre et al. | Sep 2020 | A1 |
20210228371 | Deransart et al. | Jul 2021 | A1 |
20210228372 | Knox et al. | Jul 2021 | A1 |
20220287850 | Daudet | Sep 2022 | A1 |
20220354658 | Knox et al. | Nov 2022 | A1 |
Number | Date | Country |
---|---|---|
2927086 | Apr 2015 | CA |
2927811 | Apr 2015 | CA |
2938709 | May 2015 | CA |
10 2006 047663 | Apr 2008 | DE |
1 249 213 | Oct 2002 | EP |
1 265 555 | Dec 2002 | EP |
1 563 810 | Aug 2005 | EP |
1 862 151 | Dec 2007 | EP |
1 902 689 | Mar 2008 | EP |
1 952 788 | Aug 2008 | EP |
2 135 576 | Dec 2009 | EP |
1 917 051 | Jun 2010 | EP |
2 243 445 | Oct 2010 | EP |
2 324 801 | May 2011 | EP |
2 335 655 | Jun 2011 | EP |
2 501 313 | Sep 2012 | EP |
2 544 601 | Jan 2013 | EP |
2583242 | Apr 2013 | EP |
2 653 136 | Oct 2013 | EP |
2 845 547 | Mar 2015 | EP |
2 965 720 | Jan 2016 | EP |
3057518 | Aug 2016 | EP |
3057524 | Aug 2016 | EP |
3065671 | Sep 2016 | EP |
3068317 | Sep 2016 | EP |
2 874 570 | Jan 2017 | EP |
3 117 801 | Jan 2017 | EP |
2 579 454 | Oct 1986 | FR |
2 859 099 | Mar 2005 | FR |
2962573 | Jan 2012 | FR |
2982694 | Nov 2016 | FR |
2982979 | Nov 2016 | FR |
2982693 | Dec 2016 | FR |
2501494 | Oct 2013 | GB |
3179628 | Nov 2012 | JP |
WO 93025157 | Dec 1993 | WO |
WO 0035346 | Jun 2000 | WO |
WO 0059411 | Oct 2000 | WO |
WO 02061688 | Aug 2002 | WO |
2006106419 | Oct 2006 | WO |
WO 2010120346 | Oct 2010 | WO |
WO 2011110374 | Sep 2011 | WO |
WO 2011154891 | Dec 2011 | WO |
WO 2011157961 | Dec 2011 | WO |
WO 2012021241 | Feb 2012 | WO |
WO 2012058349 | May 2012 | WO |
WO 2012125319 | Sep 2012 | WO |
WO 2013060851 | May 2013 | WO |
WO 2013062848 | May 2013 | WO |
WO 2013062851 | May 2013 | WO |
WO 2013142998 | Oct 2013 | WO |
WO 2014020561 | Feb 2014 | WO |
WO 2014035991 | Mar 2014 | WO |
WO 2014180972 | Nov 2014 | WO |
WO 2015052586 | Apr 2015 | WO |
WO 2015056097 | Apr 2015 | WO |
WO 2015068035 | May 2015 | WO |
WO 2015071757 | May 2015 | WO |
WO 2015175397 | Nov 2015 | WO |
WO 2015185219 | Dec 2015 | WO |
WO 2017005514 | Jan 2017 | WO |
WO 2017007565 | Jan 2017 | WO |
WO 2017091657 | Jun 2017 | WO |
WO 2017105815 | Jun 2017 | WO |
WO 2017106294 | Jun 2017 | WO |
WO 2017184792 | Oct 2017 | WO |
WO 2017214537 | Dec 2017 | WO |
WO 2018022227 | Feb 2018 | WO |
WO 2019014278 | Jan 2019 | WO |
WO 2019014281 | Jan 2019 | WO |
WO 2019033037 | Feb 2019 | WO |
WO 2019060780 | Mar 2019 | WO |
Entry |
---|
US 9,451,972 B2, 09/2016, Lang et al. (withdrawn) |
Boileau, et al., “The three-dimensional geometry of the proximal humerus: implications for surgical technique and prosthetic design.” The Journal of bone and joint surgery. British vol. 79.5 (1997): 857-865. |
Dougherty, “Digital Image Processing for Medical Applications,” May 11, 2009 (May 11, 2009), Cambridge University Press, XP002615721. |
Favre, et al., “Influence of component positioning on impingement in conventional total shoulder arthroplasty,” Clinical Biomechanics, Butterworth Scientifics, Nov. 5, 2007, pp. 174-183, vol. 23, No. 2, Guilford, GB. |
Gregory, et al., “Accuracy of Glenoid Component Placement in Total Shoulder Arthroplasty and Its Effect on Clinical and Radiological Outcome in a Retrospective, Longitudinal, Monocentric Open Study,” PLOS One, p. e75791, Aug. 1, 2013, vol. 8, No. 10. |
Habets, et al., Computer assistance in orthopaedic surgery. Technische Universiteit Eindhoven, 2002. |
Hempfing, et al. “Surgical landmarks to determine humeral head retrotorsion for hemiarthroplasty in fractures.” Journal of shoulder and elbow surgery 10.5 (2001): 460-463. |
Hernigou, et al., “Determining humeral retroversion with computed tomography.” Journal of bone and joint surgery. Oct. 2002;84-A(10):1753-62. |
Iannotti et al., “Prosthetic positioning in total shoulder arthroplasty,” Journal of Shoulder and Elbow Surgery, Jan. 1, 2005, vol. 14, No. 1S, pp. S111-S121. |
Kobashi et al., “Knowledge-Based Organ Identification from CT Images,” Pattern Recognition, Elsevier, GB, vol. 28, No. 4, Apr. 1, 1995 (Apr. 1, 1995), pp. 475-491, XP004013165. |
Lee, C.C. et al., “Identifying multiple abdominal organs from CT image series using a multimodule contextual neural network and spatial fuzzy rules”, IEEE Transactions on Information Technology in Biomedicine, IEEE Services Center, Los Alamitos, CA, US, vol. 7, No. 3, Sep. 1, 2003 (Sep. 1, 2003) pp. 208-217, XP011100536. |
Lee, C.C. et al., “Recognizing Abdominal Organs in CT Images Using Contextual Neural Network and Fuzzy Rules”, Engineering in Medicine and Biology Society, 2000. Proceedings of the 22nd Annual International Conference of the IEEE Jul. 23-28, 2000, Piscataway, NJ, USA, IEEE, vol. 3, Jul. 23, 2000 (Jul. 23, 2000), pp. 1745-1748, XP010530837. |
Ma, et al., “Robust registration for computer-integrated orthopedic surgery: laboratory validation and clinical experience.” Medical image analysis 7.3 (2003): 237-250. |
“Olympia Total Shoulder System Surgical Technique”, Wright Medical Technology, 2001, in 19 pages. |
Nguyen, et al., “A New Segmentation Method for MRI Images of the Shoulder Joint”, Computer and Robot Vision, 2007. CRV '07. Fourth Canadian Conference on, IEEE, PI, May 1, 2007 (May 1, 2007), pp. 329-338, XP031175821. |
Radermacher, K., et al., “Computer Assisted Orthopaedic Surgery with Image Based Individual Templates,” Clinical Orthopaedics and Related Research, No. 354, Sep. 1998, pp. 28-38. |
Radermacher, K., et al., “Image Guided Orthopedic Surgery Using Individual Templates: Experimental Results and Aspects of the Development of a Demonstrator for Pelvis Surgery”, Health Care Sector, Telematics Applications Program, 1997, pp. 606-615. |
Tamez-Pena et al., “The Integration of Automatic Segmentation and Motion Tracking for 4D Reconstruction and Visualization of Musculoskeletal Structures,” Biomedical Image Analysis, 1998. Proceedings. Workshop on Santa Barbara, CA US, Jun. 26-27, 1998, Los Alamitos, CA, USA, IEEE Comput. Soc. US, Jun. 26, 1998 (Jun. 26, 1998), pp. 154-163, XP010291418. |
Tornier, “Salto Talaris, Total Ankle Prosthesis”, 2009. |
Valstar, et al. “Towards computer-assisted surgery in shoulder joint replacement.” ISPRS journal of photogrammetry and remote sensing 56.5-6 (2002): 326-337. |
Valstar, et al. “The use of Roentgen stereophotogrammetry to study micromotion of orthopaedic implants.” ISPRS journal of photogrammetry and remote sensing 56.5-6 (2002): 376-389. |
Welsh, et al., “CT-based preoperative analysis of scapula morphology and glenohumeral joint geometry.” Computer Aided Surgery 8.5 (2003): 264-268. |
Wu, et al. “An interface for the data exchange between CAS and CAD/CAM systems.” International Congress Series. vol. 1256. Elsevier, 2003. |
Zimmer, “Zimmer ® PSI Shoulder Trabecular MetalTM Reverse Glenoid Base Plate Surgical Technique”, Dec. 30, 2013. |
“Zimmer® PSI Shoulder Planning”, Zimmer Biomet TV, posted Jul. 11, 2014, retrieved from internet on Jan. 9, 2020, <https://zimmerbiomet.tv/videos/1025?a=surgeon&version=1190>. |
International Search Report and Written Opinion issued in PCT Application No. PCT/US2018/041531, dated Dec. 11, 2018, in 18 pages. |
Final Office Action issued in connection with U.S. Appl. No. 15/426,720, 15 pages, dated Apr. 29, 2021. |
First Office Action issued in corresponding Japanese Patent Application No. 2021-506973, dated Jun. 5, 2023, 5 pages. |
Communication Pursuant to Article 94(3) issued in connection with European Patent Application No. 18746503.4, dated Oct. 17, 2023, 5 pages. |
Non-Final Office Action issued in connection with U.S. Appl. No. 16/904,345, dated Feb. 15, 2022, 35 pages. |
Communication Pursuant to Article 94(3) issued in connection with European Patent Application No. 19759204.1, dated May 9, 2023, 6 pages. |
Non-Final Office Action issued in connection with U.S. Appl. No. 16/910,663, dated Dec. 15, 2022, 9 pages. |
Non-Final Office Action issued in connection with U.S. Appl. No. 17/650,722, dated Nov. 15, 2023, 10 pages. |
Notice of Allowance issued in connection with U.S. Appl. No. 17/645,607, dated Dec. 20, 2023, 11 pages. |
Non-Final Office Action issued in connection with U.S. Appl. No. 17/451,499, dated Feb. 9, 2024, 7 pages. |
Notice of Allowance issued in connection with U.S. Appl. No. 16/648,128, dated Feb. 16, 2024, 9 pages. |
Non-Final Office Action issued in connection with U.S. Appl. No. 16/031,996, dated May 4, 2021, 28 pages. |
Final Office Action issued in connection with U.S. Appl. No. 16/910,663, dated Nov. 16, 2023, 9 pages. |
Number | Date | Country | |
---|---|---|---|
20210322034 A1 | Oct 2021 | US |
Number | Date | Country | |
---|---|---|---|
62530984 | Jul 2017 | US | |
62656100 | Apr 2018 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 16032005 | Jul 2018 | US |
Child | 17359745 | US |