Patient specific instruments and methods for joint prosthesis

Information

  • Patent Grant
  • 11065016
  • Patent Number
    11,065,016
  • Date Filed
    Thursday, June 14, 2018
    6 years ago
  • Date Issued
    Tuesday, July 20, 2021
    3 years ago
Abstract
A system for preparing an ankle bone to receive an ankle prosthesis is provided. The system includes a patient specific cutting guide that has an anterior surface, a posterior surface, and at least one cutting feature extending through the guide from the anterior surface. The posterior surface comprising a first protrusion or other member that extends from a first end fixed to the posterior surface to a second end disposed away from the first end of the first protrusion. The posterior surface has a second protrusion or other member that extends from a first end fixed to the posterior surface to a second end disposed away from the first end of the second protrusion. The first and second protrusions are spaced apart and have a length such that when the patient specific cutting guide is coupled with first and second bone references, which can include bushings implantable in bones, a clearance gap is provided between the posterior surface and the ankle bone.
Description
INCORPORATION BY REFERENCE TO ANY PRIORITY APPLICATIONS

Any and all applications for which a foreign or domestic priority claim is identified in the Application Data Sheet as filed with the present application are hereby incorporated by reference under 37 C.F.R. § 1.57.


BACKGROUND OF THE INVENTION
Field of the Invention

This application is directed to methods and apparatuses used to install a joint prosthesis using patient specific instruments.


Description of the Related Art

Patient specific instruments (PSI) refer to specially manufactured instruments that incorporate the patient's own bone geometry data. The instruments can be accurately positioned because they are formed with reference to the patient's bone data and when formed in this manner have features that engage selected landmarks on the bone to assure proper positioning. An imaging technology, such as computerized tomography (CT) scanning, is used to acquire the bone data prior to surgery. Three dimensional (3D) models of bone are used to align a 3D model of a prosthesis. These models are provided to a system that constructs the patient specific instruments such that when applied to the bone the patient specific instruments produce the bone cuts needed for installing the prosthesis accurately.


One advantage of patient specific instruments is that they may include planning software that allows a surgeon or technician to manipulate the 3D models of the bones. Here the surgeon or technician can correct deformities in the relationship of the bones, e.g., the relationship of the talus to the tibia. These deformities can include one or more of varus/valgus alignment, anterior/posterior or medial/lateral subluxation, subsidence and/or distractions. Once the bones are aligned properly, the surgeon may select the appropriate size prosthesis and align it to and place it in its desired position. The position of the bones to the prosthesis in the absence of deformity is an input to the design of the patient specific instruments in order to make accurate cuts in the bone.


Thus, deformities can be corrected with the help of the patient specific instruments in surgery.


SUMMARY OF THE INVENTION

While patient specific instruments can be formed with reference to bony landmarks as discussed above, this approach is in need of improvement. Bony landmarks are disposed under soft tissue and vary from patient to patient in location and size. This variation introduces complexity in exposing and consistently locating a landmark to be used as a registration point. While landmarks can be exposed by dissecting the soft tissue, dissection is time consuming, not always effective, and is invasive. It would be faster and less invasive to place an instrument that includes a patient specific component, without dissecting away the soft tissue. Further, patient specific guides placed against soft tissue may compress the soft tissue and the location of the guide can vary when placed against soft tissue. Therefore, it would be an advance to provide methods and structures that can provide a consistent, easy to access registration structure across a wide range of patients.


Methods herein to form a patient specific instrument can include three parts or phases: (1) installing reference bushing(s) and gathering 3D spatial location information including the location of the bushings; (b) designing and manufacturing patient specific cutting guides based on the spatial location information (e.g., based on the 3D data) of reference bushing, bone geometry and desired implant location; and (c) performing surgery using reference bushing(s) and patient specific cutting guides.


In an example method, one or more reference bushings are advanced into a tibia adjacent to an ankle joint of a patient. One or more reference bushings are advanced into a talus adjacent to the ankle joint. After the reference bushings are advanced into the tibia and talus, information of the spatial location of the reference bushings and a portion of the tibia and talus around the reference bushings is obtained. The spatial location information can include imaging and/or three-dimensional spatial location information. From the information (e.g., the 3D data), cutting guides are designed taking into account the specific location of the reference bushings, the specific bone geometries, and the proposed location of joint replacement implant. Patient specific cutting guides are manufactured in preparation for joint replacement surgery. Thereafter, in surgery, a patient specific cutting guide is connected to the reference bushings. First, second, and/or more reference bushings are located on, and can be connected to, the patient specific cutting guide based upon the spatial location information. When the patient specific cutting guide is coupled to the patient, a gap is provided between the patient specific guide and at least one of the tibia and the talus.


In one embodiment, a surgical method is provided. A first reference bushing is advanced into a tibia adjacent to an ankle joint of a patient. A second reference bushing is advanced into a talus adjacent to the ankle joint. Three dimensional spatial location information is obtained after the first reference bushing is advanced into the tibia and after the second reference bushing into the talus. The three dimensional spatial location information is of the first reference bushings and a portion of the first reference bushing around the tibia and is of the second reference bushing and a portion of the talus around the second reference bushing. A patient specific cutting guide is connected to the first reference bushings and to the second reference bushing in surgery. The first and second reference bushings are connected to the patient specific cutting guide at locations of the patient specific cutting guide based upon the three dimensional spatial location information. When the patient specific cutting guide is coupled to the patient, a gap is provided between the patient specific guide and at least one of the tibia and the talus.


In another surgical method according to this application, a first bone reference is provided on or in a first bone surface adjacent to a joint of a patient. A second bone reference is provided on or in a second bone surface adjacent to the joint of the patient. A first reference feature of a patient specific cutting guide is coupled with the first bone reference after providing the first bone reference. A second reference feature of the patient specific cutting guide is coupled with the second bone reference after providing the second bone reference. The steps of coupling can be performed without disrupting soft tissue or bone adjacent to the joint.


Examples are provided herein of using this method for ankle surgery. An advantage for ankle surgery is that these methods reduce or eliminate the need for dissections and other soft or hard tissue disruption in connection with an ankle surgery. These advantages are also applicable to other joints. For instance, a joint surgery involving placement of an implant on each side of a joint can benefit from reducing the need to clear soft tissues from the adjacent bone portions. Such advantages can be directly applied to a wrist, an elbow or a knee. For instance a bone reference, such as a reference bushing can be placed in one or more of a distal radius, a distal ulna, a proximal portion of a scaphoid, lunate, triquetrum and/or other bone of the hand. A bone reference, such as a reference bushing can be placed in one or more of a distal portion of a humerus, a proximal portion of a radius, and/or a proximal portion of an ulna. A bone reference, such as a reference bushing can be placed in one or more of a distal portion of a femur, a proximal portion of a tibia, and/or a proximal portion of a fibula. Once so placed, a patient specific guide can be formed based on positional information and surgery on these joints can be completed without disruption or with reduced disruption of soft and hard tissues.


In another embodiment, a method of manufacturing a patient specific guide is provided. Spatial location information is received. The spatial location information includes a position of at least two reference bushings disposed in at least two bone locations. The spatial location information includes the location and/or the form of the at least two bone locations. Based upon the spatial location information, a patient specific guide is manufactured. The patient specific guide is configured to position at least one cutting feature relative to at least one of the bone locations. In the method, a first reference member is formed to mate with the first reference bushing. A second reference member is formed to mate with the second reference bushing. The first and second reference members have a length sufficient to create clearance from the bone when the first and second reference members are so mated.


In another embodiment, a joint prosthesis bone preparation system is provided. The joint prosthesis bone preparation system can be for an ankle procedure in some embodiments. The system includes a first reference bushing, a second reference bushing and a patient specific cutting guide. The first reference bushing has a distal portion configured to be advanced into a first portion of an anatomical joint. The second reference bushing has a distal portion configured to be advanced into a second portion of the anatomical joint. The patient specific cutting guide has an anterior surface, a posterior surface and at least one cutting feature. The cutting feature extends from the anterior surface to the posterior surface. The posterior surface has a first reference feature configured to contact the first reference bushing. The posterior surface has a second reference feature configured to contact the second reference bushing. The system is configured such that when the patient specific cutting guide is coupled with the first and second reference bushings a clearance gap is provided between the posterior surface and the first portion of the anatomical joint and/or between the posterior surface and the second portion of the anatomical joint.


In another embodiment a joint prosthesis bone preparation system is provided that includes a first reference bushing, a second reference bushing and a patient specific cutting guide. The joint prosthesis bone preparation system can be for an ankle procedure in some embodiments. The first reference bushing has a distal portion configured to be advanced into a first portion of a joint. The second reference bushing has a distal portion configured to be advanced into a second portion of a joint. The patient specific cutting guide has an anterior surface, a posterior surface, and at least one cutting feature extending from the anterior surface to the posterior surface. The posterior surface has a first reference feature configured to contact the first reference bushing. The first reference bushing includes a surface configured to limit movement of the patient specific cutting guide. The posterior surface has a second reference feature configured to contact the second reference bushing. The second reference bushing includes a surface configured to limit movement of the patient specific cutting guide. The first and second reference features are disposed at spaced apart locations. The posterior surface is disposed at a location such that when the patient specific cutting guide is coupled with the first and second reference bushings a clearance gap is provided between the posterior surface and the first portion of the joint and/or between the posterior surface and the second portion of the joint.


In another embodiment, a system for preparing an ankle bone to receive an ankle prosthesis is provided. The system includes a patient specific cutting guide that has an anterior surface, a posterior surface, and at least one cutting feature extending through the guide from the anterior surface. The posterior surface comprising a first protrusion or other member that extends from a first end fixed to the posterior surface to a second end disposed away from the first end of the first protrusion. The posterior surface has a second protrusion or other member that extends from a first end fixed to the posterior surface to a second end disposed away from the first end of the second protrusion. The first and second protrusions are spaced apart and have a length such that when the patient specific cutting guide is coupled with first and second bone references a clearance gap is provided between the posterior surface and the ankle bone.


In another embodiment, a patient specific surgery cutting guide is provided. The patient specific surgery cutting guide includes a first surface, a second surface opposite the first surface, and at least one cutting feature extending from the first surface to the second surface. The second surface has a first bone interface portion, e.g., a first bone reference, and a second bone interface portion, e.g., a second bone reference. At least one of the first bone interface portion and the second bone interface portion has a mating reference feature to provide isolated, e.g., discrete, contact with a bone reference. When the patient specific surgery cutting guide is applied to the patient such that the mating reference feature is in contact with the bone reference, a clearance gap is provided between bone and regions of the second surface adjacent to the mating reference feature. Advantageously, the bone reference can be a reference bushing. In various methods, the reference bushing can be applied to only one bone and need not be applied in the vicinity of a joint. Reference bushings can be applied to more than one bone and need not be applied in the vicinity of the joint. Then a cutting or other guide can be located on the reference bushings and a procedure on the bone carried out.


Any of the systems herein can include a device for determining three dimensional location information of bones or other dense objects, such as CT scanners. Any of the systems herein can include rapid production devices, such as 3D printers to form patient specific components.


In various methods, one or more reference bushing is inserted prior to CT scanning or other imaging technique and surgery. The method can happen in two phases. First the bushings can be placed, in some embodiments percutaneously. Later, e.g., an hour or several hours, a day or several days to several weeks later, the location information can be obtained. Subsequently, e.g., an hour or several hours, a day or several days to several weeks later, a surgery can be performed using the reference bushings. In the surgery, the bushing(s) are accurate registration points for attaching the cutting guide in the methods described herein. This alleviates the need to designate and find bone surface landmarks, which are often covered with soft tissues, and are difficult to expose. Therefore reference bushing(s) are more accurate than traditional bony landmarks.





BRIEF DESCRIPTION OF THE DRAWINGS

These and other features, aspects and advantages are described below with reference to the drawings, which are intended to illustrate but not to limit the inventions. In the drawings, like reference characters denote corresponding features consistently throughout similar embodiments. The following is a brief description of each of the drawings.



FIG. 1A is a schematic diagram showing an example of ankle deformity that can be corrected using patient specific instrumentation described and claimed herein;



FIG. 1B is a schematic diagram showing a reduction or elimination of the deformity of FIG. 1A, which can be accomplished using the instruments disclosed herein;



FIG. 2 shows an ankle prosthesis bone preparation system that includes a plurality of bone reference bushings and a patient specific cutting guide for an ankle procedure;



FIG. 3 is a perspective view of a reference bushing, which can be used as a bone reference in various methods disclosed and claimed herein;



FIG. 3A shows a cross-sectional view of the reference bushing of FIG. 3, taken along section plane 3A-3A;



FIG. 4 is a perspective view of an anterior portion of a cutting guide that has patient specific attributes;



FIG. 5 is a perspective view of a posterior portion of the cutting guide of FIG. 4;



FIG. 6 illustrates a portion of a method showing the location of the reference bushings in the tibia and in the talus of a patient;



FIG. 7 illustrates another portion of a method in which spatial location information in three-dimensions is acquired for a specific patient;



FIG. 8 illustrates a portion of a method in which a cutting guide has been secured to a talus, the talus placed in plantar flexion;



FIG. 9 illustrates a portion of a method in which a cutting guide is preparing to contact the tibia and thereby correcting desired deformities;



FIG. 10 illustrates a portion of a method in which a cutting guide is secured to the tibia and to the talus in a position to guide bone cuts to enable an implant to be properly placed, including in some embodiments automatically correcting deformity;



FIG. 11 illustrates a portion of a method in which the bone is being prepared to receive an ankle prosthesis;



FIG. 12 shows a modified embodiment of an ankle prosthesis bone preparation system and a method of using the system;



FIG. 13 shows a method of using the system of FIG. 12 to automatically correct deformities in an ankle joint;



FIG. 14 illustrates another embodiments of a patient specific guide in which the guide comprises two separable portions;



FIG. 15 shows an anterior view of an ankle prosthesis coupled with the tibia and the talus;



FIG. 16 shows a lateral view of the ankle prosthesis coupled with the tibia.



FIG. 17 is an exploded view of a shoulder preparation system.



FIG. 18 shows a glenoid surface into which reference bushings have been placed.



FIG. 19 shows a later step of coupling a patient specific guide with a plurality of reference bushings in a shoulder method.



FIG. 20 is a bone preparation system with a snap-fit configuration.



FIG. 21 is a cross-sectional view of a bone preparation system.



FIG. 22-22A show views of a deflectable extender facilitating a snap-fit configuration.



FIG. 23-23A show a variation of a reference bushing configured to receive and couple with a bone preparation guide by way of a snap fit configuration.





DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT

This application is directed to patient specific instruments, such as cutting guides, tools, and methods that can be used in joint procedures. The tools can be used to place an ankle prosthesis, a shoulder or other prosthesis and, in some cases, correct deformity in a joint. As discussed in greater detail below the apparatuses and methods herein enable the bones around a joint to be prepared with minimal incisions and relatively little to no soft tissue scraping. While small incisions may be formed for cutting bones and introducing prosthesis components, the apparatuses and methods herein allow a surgeon to avoid excessive incisions and excessive tissue removal around the bone. For instance these apparatuses and methods can enable a surgeon to not disturb or minimally disturb the periosteum, which is a dense connective tissue attached to the bone which in prior art methods is required to be mostly or completely scraped off the bone.



FIG. 1A shows an ankle joint 10 in a state of deformity and FIG. 1B shows a state in which the deformity is reduced or is not present. The ankle joint 10 is formed between a tibia 14, a fibula 18, and a talus 20. The state of deformity illustrated is known as varus/valgus misalignment, which a plane tangential to the superior surfaced of the talus 20 is at an angle α to a horizontal plane. Other forms of deformity include one or more of medial/lateral subluxation, anterior/posterior subluxation, subsidence and distraction. The misalignment of any deformity creates discomfort and degradation of the joint. While the joint could be replaced without correcting the deformity such a replacement joint would not function properly, potentially causing pain and premature failure of the replacement joint. For this patient correcting the deformity at the same time as replacing the ankle joint will make for a more effective treatment.



FIG. 2 shows a bone preparation system 100, which is adapted for preparing an ankle to receive an ankle prosthesis. The bone preparation system 100 includes a first reference bushing 104, a second reference bushing 106, and a cutting guide 108. The first reference bushing 104 and the second reference bushing 106 are examples of bone references. As discussed further below, other bone references can include naturally present bony prominences, channels or openings formed in the bone or other landmarks. The bone preparation system 100 also can include a third reference bushing 110 and a fourth reference bushing 112. The first and third reference bushings 104, 110 can be placed in a first bone portion to a joint, e.g., in the tibia as shown in FIG. 7. The second and fourth reference bushings 106, 112 can be placed in a second bone portion adjacent to the joint, e.g., in the talus as shown in FIG. 7. In one method using the ankle surgery system 100, the first reference bushing 104 can be placed in a medial, distal and anterior aspect of the tibia 14 and the third reference bushing 110 can be placed on a lateral, distal, and anterior aspect of the tibia 14. The second reference bushing 106 can be placed in a medial portion of the neck of the talus 20 and the fourth reference bushing 112 can be placed in a lateral portion of the neck of the talus 20.



FIG. 3 shows one embodiment of the reference bushing 104. The reference bushing 104 has a distal portion 120 and a proximal portion 122. The distal portion 120 extends proximally from a distal end 124 of the bushing 104. The proximal portion 122 extends distally from a proximal end 126 of the bushing 104. The distal portion 120 is adapted to be advanced into bone. The distal portion 120 can have threads 128 to allow the bushing 104 to be threaded into the bone. In other embodiments, the distal portion 120 is configured to be advanced into the bone and to engage the bone by interference fit. These and other means for engaging an implant with bone can be used in any of the reference bushings described herein. The distal portion 120 can include milling features 130, including sharp edges, barbs or flutes to ease insertion of the reference bushing 104 into the bone. In another embodiment, the distal portion 120 is not threaded. The distal portion 120 can have a flat, tapered, or other configuration suitable for direct axial advancement into the bone rather than rotation as with the reference bushing 104.



FIGS. 3 and 3A show a tool interface 138 at the proximal end 126 of the reference bushing 104. The tool interface 138 enables the bushing 104 to be advanced into the bone, e.g., following the threads 128. In the illustrated embodiment, the threads 128 extend from the proximal end 126 to the distal end 124 of the first bushing 104. By providing the threads 128 over the entire length of the bushing 104, the bushing can be advanced entirely into the bone surface to be flush with the bone when so advanced.



FIGS. 3 and 3A show that the reference bushing 104 can be cannulated, having a lumen 140 that extends from a proximal end 144 to a distal end 148 of the bushing 104. The lumen 140 can be configured to allow the reference bushing 104 to be advanced over a wire into the bone or to receive a fixation pin. FIG. 2 shows that the bone preparation system 100 can include a fixation pin 160 to be advanced through the lumen 140. To provide secure fixation in a desired orientation relative to the talus 20 or other bone portion two or more fixation pins 160 can be provided for securing the cutting guide 108 to the talus 20. To provide secure fixation in a desired orientation relative to the tibia 14 or other bone portion two or more fixation pins 160 can be provided for securing the cutting guide 108 to the tibia 14, e.g., through the first and third reference bushings 104, 110. In other embodiments, any of the reference bushings 104, 106, 110, 112 may have an internal thread rather than the smooth lumen, for attachment to a patient specific cutting guide using a mating screw rather than a pin. The screw can be a separate component in some embodiments. In other embodiments, an external surface of one or more of the reference features discussed below can be threaded and the reference features can be rotatable relative to the body of the cutting guide 108 such that the reference features can serve both a locating and a securing function. In some systems, some of the references bushings 104, 106, 110, 112 have lumens that are at least partially threaded and other of the references bushings 104, 106, 110, 112 can have smooth lumens without threads.


The first reference bushing 104 includes a motion limiting portion 172 configured for holding the patient specific cutting guide 108 at a selected position and/or orientation relative to the tibia 14 (or other first bone portion). The motion limiting portion 172 can include a concave surface 176. The concave surface 176 is configured to receive a portion of the cutting guide 108 to hold the cutting guide relative to the ankle (or other) joint. The concave surface 176 can be rounded, e.g., spherical, to facilitate rotating or otherwise positioning the cutting guide 108 to align apertures therein with the lumen 140 of the bushing 104.


In the illustrated embodiment, each of the first reference bushing 104, the second reference bushing 106, the third reference bushing 110, and the fourth reference bushing 112 can have a concave surface 176 to receive a portion of and limit the motion of the cutting guide 108.



FIGS. 4 and 5 illustrate one embodiment of the cutting guide 108 that is suited for preparing bones around the ankle joint 10 to receive an ankle prosthesis. The cutting guide 108 is merely illustrative. Other cutting guides may be configured to engage reference bushings. Accordingly, cutting guides usable in the systems and methods claimed herein are not limited to those shown and described herein. The cutting guide 108 can be custom made for a specific patient, as discussed further below.


The cutting guide 108 includes a first side 200 that includes a first surface 202 and a second side 204 opposite the first side 200. The second side 204 includes a second surface 208. The first side 200 of the cutting guide 108 is an anterior surface of the cutting guide when the cutting guide is used for preparing an ankle joint. The second side 204 is a posterior surface of the cutting guide 108 in an ankle joint application.


The cutting guide 112 includes at least one cutting feature 216 that extends therethrough from the first surface 200 to the second surface 204. The cutting feature 216 includes a planar medial-lateral surface in the illustrated embodiment. A surface 203 at the bottom of the cutting guide 108 as illustrated in FIG. 4 is a distal surface. A surface 205 at a top of the cutting guide 108 as illustrated in FIG. 4 is a proximal surface. The cutting guide 108 can include two cutting features 216 with parallel planar medial-lateral cutting surfaces. Where two cutting features 216 are provided, a first surface 216 can be disposed closer to the surface 205 than to the surface 203 while a second cutting surface 216 can be positioned between first cutting surface and the surface 203. The cutting guide also can include distal-proximal cutting features 218. The cutting features 218 are illustrated as an array of spaced apart openings, but could include slots or other features providing guided access to a cutting device through the cutting block 108. In alternate embodiments, cutting features need not be parallel to one another and can be disposed at various angles with respect to one another and be disposed at various locations within the cutting block, depending on the type of implant used.


The second side 204 has a first reference feature 232 and a second reference feature 236. The first reference feature 232 is configured to contact the first reference bushing 104. In certain embodiments as discussed further below, the contact between the reference feature 232 and the bushing 104 can include or be augmented by placing a pin through lumens in the reference feature 232 and the bushing 104. In other embodiments, the contact between the reference feature 232 and the bushing 104 can include or be augmented by a snap-fit connection between the reference feature 232 and the bushing 104. For example, the proximal portion 122 could be configured to expand slightly to permit a portion of the reference feature 232 that is larger than the unexpanded size of the proximal portion 122 to be inserted into the proximal portion 122. In other embodiments, the proximal portion 122 of can be configured to be received in the reference feature 232 and when so received to cause expansion of the reference feature such that a snap-fit connection is formed. Further aspects of snap-fit connections are discussed below in connection with FIGS. 20-23A. In other embodiments, a screw connection is provided between one or more reference feature and bushing. The second reference feature 236 is configured to contact the second reference bushing 108. When the first and second reference features 232, 236 contact the first and second reference bushings 104, 108 the reference bushings limit the movement of the cutting guide 108 relative to the bone or bones or the joint. FIG. 5 shows that the first and second reference features 232, 236 can be disposed at spaced apart locations on the second side 204 of the cutting guide 108.


The first and second reference features 232, 236 are configured such that when the patient specific cutting guide is coupled with the first and second reference bushings 104, 106 a clearance gap G (see FIG. 2) is provided between the second surface 208 and the bone or the joint beneath the cutting guide 108. The gap G can space a portion or all of the second surface 208, which is on the second side 204 of the cutting guide 108 facing the bone or bones, from the bone or bones around the joint being prepared for a prosthesis. For example, a posterior surface of the cutting guide 108 that extends from the first reference feature 232 to the second reference feature 236 does not contact the tibia or the talus 20 between the first reference bushing 104 and the second reference bushing 106, as shown in FIG. 2. In one embodiment, the cutting guide 108 is configured such that when the cutting guide 108 contacts the first and second reference bushings 104, 106 the cutting guide 108 is spaced apart from and does not contact the tibia 14. In one embodiment, the cutting guide 108 is configured such that when the cutting guide 108 contacts the first and second reference bushings 104, 106 the cutting guide 108 is spaced apart from and does not contact the talus 20. In one embodiment, the cutting guide 108 is configured such that when the cutting guide contacts the first and second reference bushings 104, 106 the cutting guide 108 only contacts a plurality of reference bushings, e.g., any combination of two or more of the reference bushings 104, 106, 110, 112 and does not contact the tibia or the talus. The gap G provides sufficient clearance to allow irregular prominences of the bone and/or underlying soft tissues to be accommodated in the space under the cutting guide 108 without requiring the surgeon to remove these structures, which provide for a much less invasive procedure.



FIG. 5 shows that the cutting guide 108 can be configured with a third reference feature 260 and a fourth reference feature 264. The third reference feature 260 is disposed on the second side 204 of the cutting guide. The third reference feature 260 is disposed on a portion of the second side 204 that would be disposed over the tibia 14 when the cutting guide 108 is applied to the patient. The third reference feature 260 is disposed opposite the first reference feature 232. The first and third reference features 232, 260 can be disposed on medial and lateral sides, respectively, of the cutting guide 108. As discussed in more detail elsewhere herein, the reference features 232, 236, 260, 264 are each configured to engage corresponding reference bushings. The engagement is such that the engagement limits motion or locks or fixes in space the location of the cutting guide relative to the specific patient's bone. This has the benefit of providing custom preparation of the bone to enable greater certainty in the position in which prosthetic components will be disposed.


The third reference feature 260 comprises a protrusion 270 that protrudes from the second surface 208. The third reference feature 260 includes a first end 272 fixed to the surface 208 and a second end 276 disposed away from the first end 272 of the protrusion 270. The fourth reference feature 264 comprises a protrusion 280 that extends from the second surface 208. The fourth reference feature 264 includes a first end 284 fixed to the surface 208 and a second end 288 disposed away from the first end 284 of the protrusion 280. The protrusions 270, 280 are spaced apart and have a length such that when the cutting guide 108 is coupled with the third and fourth reference bushings 110, 112 the clearance gap G is provided between the second (e.g., posterior) surface 208 and the joint (e.g., ankle) bone. The protrusion 270, 280 can be provided at isolated positions to provide isolated contact with corresponding reference bushings 110, 112 or with bone references. The protrusions 270, 280 can be provided at discrete positions to provide spaced apart contact with corresponding reference bushings or bone references.


The third and fourth reference features 260, 264 are described as having projections or feet. The first and second reference features 232, 236 also have these structures though in the illustrated embodiment these reference features are shorter. Nevertheless as shown in FIG. 2 the clearance gap G is provided between the second (posterior) side 208 of the reference guide 108 and the bones around the ankle including in the area around the first and second reference features 232, 236.



FIG. 5 shows that the first and third reference features 232, 260 can be disposed on medial and lateral sides of the cutting guide 108. The first and third reference features 232, 260 can be disposed at an angle to each other. The angle can be defined between lumens disposed in the reference features 232, 260. For example the first reference feature 232 can have a first opening 290 located on the first side 202 of the guide 108 and a second opening 294 on the second side 208 of the cutting guide 108. A lumen extends from the first opening 290 to the second opening 294 along an axis. The third reference feature 260 can have a first opening 298 located on the first side 202 of the guide 108 and a second opening 302 on the second side 208 of the cutting guide 108. A lumen extends from the first opening 298 to the second opening 302 along an axis. As discussed further below the lumens in the first and third reference features 232, 260 can receive the fixation pins 160 to secure the cutting guide 108 to the bone portions adjacent to the joint. The lumens in the first and third reference features 232, 260 can be angled to each other to help secure the orientation of the cutting guide 108 relative to the bone portions. In other embodiments these lumen may guide screws rather than pins to securely attach to reference bushing that have mating internal threads.



FIG. 5 shows that the cutting guide 108 can have four reference features. The second reference feature 236 can have a first opening 310 located on the first side 202 of the guide 108 and a second opening 314 on the second side 208 of the cutting guide 108. A lumen extends from the first opening 310 to the second opening 214 along an axis. The fourth reference feature 280 can have a first opening 322 located on the first side 202 of the guide 108 and a second opening 326 on the second side 208 of the cutting guide 108. A lumen extends from the first opening 322 to the second opening 326 along an axis. The second and fourth reference features 236, 260 can be disposed on medial and lateral sides respectively of the cutting guide 108. The lumen of the second reference feature 236 can be disposed at an angle to the lumen of the fourth reference feature 260. The angle between the lumens of the second and fourth reference features 236, 260 can help to immobilize the cutting block relative to the bone portions around the ankle joint. In other embodiments these lumen may guide screws rather than pins to securely attach to reference bushing that have mating internal threads.


The cutting guide 108 can be made for a specific patient based on spatial location information gathered from the patient, as discussed further below. Although patient specific cutting guides are known, such devices generally require complex surface contours to allow the cutting guide to be placed directly on the bone to immobilize the cutting guides in the proper position on the bone. In contrast, the cutting guide 108 is made to provide a clearance gap G (see FIG. 10) between the bone and soft tissue over the ankle joint and the second side 204, e.g., between bone and soft tissue and the second surface 208. The clearance gap takes into account the patient's soft tissue and bony structure of the joint. Because the cutting guide 108 is configured to be spaced from the bony structure the contour or shape of the second surface 208 can be relatively simple, e.g., two planar portions as discussed below. In many patients some minimal interaction with the tissue may not impact the accuracy of placement of the cutting guide as soft tissue is normally at least somewhat compressible or displaceable. In some embodiments, the gap G is sufficient to completely prevent interactions with soft tissue as well. The guide 108 could be configured with a more complex second surface 208 to match that of the tissue surface to aid in minimizing or avoiding any tissue contact. Also, it in envisioned that in alternate embodiments, the reference bushings 104, 106, 110, and 112 can be compatible with other patient specific cutting guides or blocks, in one non-limiting example, reference bushings can be provided to matingly engage with the Prophecy® Infinity® Alignment Guide (manufactured by Wright Medical Technology, Inc, Memphis Tenn.)


In various embodiments, the cutting guide 108 offers a simple overall construction. For example, the second surface 208 comprises a first portion 340 configured to be disposed in close proximity to but not in contact with a neck of a talus and a second portion 344 configured to be disposed in close proximity to but not in contact with an anterior face of a tibia. The first and second portions 340, 344 can have a form that is entirely independent of the shape of the tibia and talus. The first and second portions 340, 344 can have a relatively simple form, for example being generally planar as shown in FIG. 2. The first portion 340 can be disposed in a first plane and the second portion 344 can be disposed in a second plane. The second plane can be disposed at an angle relative to the first plane, as showing in FIG. 2. The patient specific interaction of the cutting guide 108 is provided by the first and second reference features 232, 236 and by the third and fourth reference features 260, 264. The first reference feature 232 and the third reference feature 260 are disposed on the first portion 340 of the second surface 208. The second reference feature 236 and the fourth reference feature 264 are disposed on the second portion 344 of the second surface 208. The length of the reference features, e.g., the protrusions, enable the cutting guide 108 to mate with the reference bushings 104, 106, 110, 112 in a prescribed manner. The prescribed manner results in the cutting feature 216 (and other cutting features of the cutting guide 108) being disposed at a prescribed distal-proximal location as well as at a prescribed varus-valgus angle. These and other prescribed features can be used to prepare the bones of a patient or without deformity or with deformity as discussed below.


Methods



FIGS. 6-11 illustrate various embodiments of joint surgery methods made possible by the bone preparation system 100. In FIG. 6, a portion of each of the bones of the ankle joint is exposed. The bone portions are exposed by forming one or more stab incisions in the skin. In the illustrated method, a first incision 24 is made above a first bone portion, such as a distal anterior aspect of the tibia 14. A second incision 28 is made across a second bone portion, such as a neck of the talus 20. A path is cleared from the first incision 24 to the distal anterior aspect of the tibia 14. A path is cleared from the second incision 28 to the distal anterior aspect of the talus 20. In another method a single incision exposes both the tibia 14 and the talus 20.


After access is provided to the tibia 14, the first bushing 104 is advanced into the tibia adjacent to the ankle joint 10. After access is provided to the tibia 14, the second bushing 106 is advanced into the talus 20 adjacent to the ankle joint 10. The first and second bushings 104, 106 can be advanced through a single incision that spans from a portion of the tibia 14 to a portion of the talus 20. In some embodiments, a cannula (not shown) is inserted through each of the incisions. The cannula can be an elongate hollow tubular body with sufficient wall strength to remain open while holding the soft tissues between the skin and the bone out of the lumen of the cannula. The cannula can be disposed along the axes A, B shown in FIG. 6. More specifically, a first cannula can be placed along the axis A through the first incision 24 such that a distal end of the first cannula is adjacent to the anterior surface of the tibia 14 and a proximal end of the first cannula is outside of the skin of the patient. A second cannula can be placed along the axis B through the second incision 28 such that a distal end of the second cannula is adjacent to the neck of the talus 20 and a proximal end of the second cannula is outside of the skin of the patient. The reference bushing 104 is advanced through the first cannula 24. The second reference bushing 106 is advanced through the second cannula 28.



FIG. 6 shows a method in which the third reference bushing 110 and the fourth reference bushing 112 have also been placed in the tibia 10 and talus 20 respectively. After the four bushings 104, 106, 110, 112 are placed the cannula or cannulae (if used) can be removed.



FIG. 7 shows that after the bushings have been positioned in the tibia 14 and the talus 20, spatial location information is obtained. The spatial location information can include the location and orientation of the first reference bushing 104 and a portion of the tibia 14 around the first reference bushing 104. The spatial location information can include the location and orientation of the second reference bushing 106 and a portion of the talus 20 around the second reference bushing 106. Spatial location information is obtained from the third reference bushing 110 if present and the tibia 14. Spatial location information is obtained from the fourth reference bushing 112 if present and the talus 20. The spatial information can be obtained by any of a variety of methods. For example, spatial location information can be obtained from a CT scan after one or a plurality of reference bushings are placed in the tibia 14 and the talus 20. Spatial location information can be obtained by any three dimensional imaging or profiling technology. Spatial location information could be obtained by mechanically tracing a surface of the bone and or probing the bushings.


After the spatial location information is collected by the CT scan or other imaging or probing apparatus, the cutting guide 108 is formed or created based on the spatial location information. In the method, spatial location information generated by a CT scan includes a position of at least two reference bushings, e.g., two, three, or four of the bushings 104, 106, 110, 112. The spatial location information is received by a system that is adapted to create or form the patient specific cutting guide 108. The information can include spatial information about the location of at least two bone portions. For example, the bone locations can include distal and anterior surfaces of the tibia 14, the fibula 16, and/or the neck of the talus 20. The cutting guide 108 can be formed based upon the spatial location information that is received. When the cutting guide 108 is formed in this manner, the location of the cutting features 216, 218 relative to at least one of the bone portions is established and incorporated into the structure of the cutting guide 108. When the cutting guide 108 is mated with the reference bushings 104, 106, 110, 112 the cutting features 216, 218 are properly located to make appropriate cuts to properly position an ankle implant component.


Because the preparation of the cutting guide 108 can take a few hours to a few days or weeks, the ankle prosthesis procedure can have multiple stages. A first stage involves placing the bushings 104, 106, 110, 112. A second stage, which can be combined with the first stage in some cases, involves obtaining the spatial location information. A third stage involves creating the cutting guide 108, which may be customized to the patient in view of the spatial location information.


In one method, forming the cutting guide 108 includes forming the first reference member 232 to mate with the first reference bushing 104 and forming the second reference member 236 to mate with the second reference bushing 106. Forming the cutting guide 108 includes forming the third reference member 260 to mate with the third reference bushing 110 and forming the fourth reference member 264 to mate with the fourth reference bushing 112. The reference members 232, 236, 260, 264 are formed to have a length sufficient to create clearance from the bone, as discussed above, when the reference members are so mated. The references bushings 104, 106, 110, 112 will generally already be placed in the patient's bones when the fabrication of the cutting guide 108 is taking place.


When the cutting guide 108 has been formed the cutting guide 108 can be used on the patient in a fourth stage of a method to modify the bones around the joint to prepare the bones to be mated with a prosthesis. The cutting guide 108 can be used on the patient for whom it was made to perform a precise prosthesis implantation procedure. In one technique, the reference bushing 104 is previously placed on a medial side of the patient's distal, anterior tibia 14. The reference bushing 106 is previously placed in a medial side of the neck of the talus 20. The reference bushing 110 is previously placed in a lateral side of the distal, anterior tibia 14. The reference bushing 112 is previously placed in a lateral side of the neck of the talus 20.


Thereafter, in one technique the second reference feature 236 of the cutting guide 108 is connected to the reference bushing 106. The connection initially is that a distal aspect of the second reference feature 236 is inserted into the motion limiting portion 172 of the reference bushing 106. A convex surface at the free end of the second reference feature 236 can be mated with the concave surface 176. As discussed above, the mating between the reference feature 236 and the concave surface 176 can include or be substituted for other sorts of contact or mating. A snap-fit mating, as described above and further below, could be provided between the reference feature 236 and the concave surface 176. Also, although the surface 176 is described as being concave and receiving the reference feature 236, bushing 106 could have a convex proximal end that receives a concave distal end portion of the reference feature 236. More generally, any of the reference bushings can be modified to have a convex proximal portion that is received within a concave distal portion of a corresponding reference feature. In alternate embodiments, any of the reference bushings can be modified to have a male taper (e.g., a Morse taper) proximal portion. The male taper proximal portion can be received within a distal portion of a corresponding reference feature (e.g., within a tapered recess, concave area, or female component). Also, the mating subsequently can be augmented by placing a pin or screw into and/or through axially aligned lumens through the reference feature 236 and the bushing 106. Thereafter, a similar connection is provided between a convex surface of the third reference feature 260 and the motion limiting portion 172 of the reference bushing 112. The mating can subsequently be augmented by placing a pin or screw into and/or through axially aligned lumens through the reference feature 260 and the bushing 112. The locations of the reference features 236, 260 relative to the talus 20 are pre-defined by the patient specific nature of the cutting guide 108. Preferably the second side 208 of the cutting guide 108 is spaced apart from the talus 20 at locations spaced away from the reference features 236, 260, for example along a path extending medially and laterally between the reference bushings 106, 112. The spacing allows the placement of the cutting guide 108 such that the soft tissues and bone need not be removed or disrupted but yet the location of the cutting feature 216 and other aspects of the cutting guide 108 relative to the talus 20 are as expected based on the spatial location information that was used to form the cutting guide 108.



FIG. 8 shows that the connection between the cutting guide 108 and the talus 20 can be made more secure by advancing a fixation pin 160 into the opening 310 through the cutting block 108 and the reference bushing 106 and into the medial side of the neck of the talus 20. The connection can be further more secure by advancing a fixation pin 160 into the opening 322, through the cutting guide 108 and reference bushing 112 and into the lateral side of the neck of the talus 20. A screw could be used in place of one or both of the pins 160. In embodiments with a snap-fit connection, the pins 160 may not be needed. Snap-fit connections and the pins 160 could be used together to provide a lesser initial connection followed by a more secure connection for later phases of the procedure where greater security is needed, e.g., when a saw is disposed through the guide 108 and acting on the bone. In some cases further connection is provided by other devices such as screws 340. In the illustrated embodiment opening 342 adjacent to the distal cutting feature 216 provide access for the screw 340 to be advanced through the cutting guide 108 and into the talus 20.



FIG. 8 shows that in one technique the ankle 10 is placed plantar flexion to facilitate connecting the cutting guide 108 to the talus 20. Positioning the ankle 10 in plantar flexion exposes a greater area of the neck of the talus 20 such that the cutting guide 108 can be secured to the bone. While the ankle joint is in plantar flexion, the patient specific cutting guide 108 is rigidly connected to the talus 20 with the fixation pins 160 and/or screws 340, as discussed above.



FIG. 9 shows that after the cutting guide 108 is rigidly connected to the talus 20, motion of the talus relative to the tibia 14 and/or the fibula 16 can be provided. Such corrective motion can be provided in a varus/valgus direction as indicated by the arrow R. Such motion can be provided in a proximal distal direction as indicated by an arrow labeled P-D. Such motion can be provided in an anterior-posterior direction as indicated by an arrow labeled A-P. Such motion can be provided in a medial/lateral direction as indicated by an arrow M-L. These motions can be combined in complex ways and can be prescribed by the form of the cutting guide 108 to alleviate one or more forms of deformity.


Whether the motion out of plantar flexion is by rotation or other motion, the motion of the cutting guide 108 causes the first reference feature 232 to contact and to be engaged with the first reference bushing 104. Such motion can continue until the third reference feature 260 contacts and is engaged with the third reference bushing 110. FIG. 10 shows that a rigid connection between the cutting guide 108 and the tibia 14 can be provided in a suitable manner, such as by advancing fixation pins 160 into the openings 290, 298, through the reference bushings 104, 110 and into the tibia 14.



FIG. 11 shows that thereafter pins 300, reamers 304, and saw blades 308 can be advanced through the cutting guide 108 to prepare the tibia 14 or other bone portion.


The bushings 104, 106, 110, 112 can be configured to be left in place or removed. In some embodiments, the methods involve removing the bushings from the bone(s) around the joint after the bones have been prepared to receive a prosthesis. In some embodiment, the bushings 104, 106, 110, 112 are small and their placement is away from the joint and sensitive soft tissue such that they may be left in place after the procedure without any impact on the patient. In other embodiments, the bushings 104, 106, 110, 112 may be configured to be bioabsorbed into the patient and thus can be left in place but will not remain permanently in the patient.


In certain embodiments, the reference features 232, 236, 260, 264 are configured to mate with bone references, in the form of passages that are formed in, e.g., drilled into, the bone(s) around the joint. As such, there is no need to remove bushings or to confirm the efficacy of permanent retention thereof in the bone. Such drilled holes can simply heal over time and thus have no permanent impact on the patient.



FIG. 12 shows an alternative embodiment in which a cutting guide 508 can be provided that includes a distal portion 512 to be mated with a neck of the talus 20. The distal portion can be mated by advancing a screw 340 therethrough. The screw 340 can be advanced along a lumen of the cutting guide 508 defined by spatial location information of the talus 20, e.g., of a bone reference 516 of the talus. The bone reference 516 can be an opening formed in the talus 20. The bone reference 516 can be a bony prominence or a natural landmark. In some embodiments the distal portion 512 has a bone engaging surface that is formed to match that of the neck of the talus 20. A proximal portion 520 of the cutting guide 508 can include a reference protrusion 528. The reference protrusion 528 can be configured to mate with a bone reference, e.g., an opening formed in the tibia 14, a bony prominence or a natural landmark of the tibia 14. A fixation pin 160 can be advanced through the reference protrusion 528 to secure the cutting block 508. The reference protrusion 528 enables the cutting guide 508 to mate with the tibia while maintaining a clearance gap G at least in the region of the tibia. By providing the gap G, many of the advantages described herein are attained, at least as to the tibia 14.



FIG. 13 illustrates using the cutting guide 508 to correct the deformity illustrated in FIG. 1A. The deformity is corrected by first coupling the distal portion 512 with the neck of the talus 20. Thereafter a rotation described by the arrow 530 is provided. The rotation takes the cutting guide 508 from the dashed line position to the solid line position of FIG. 13. This causes the deformity illustrated in FIG. 1A to be corrected by raising and aligning (as in FIG. 1B) the talus 20 with the tibia 14 of the ankle joint 10.



FIG. 14 shows a cutting guide system 608 having two separable guides, in which the proximal guide attaches individually to the proximal bone, and the distal guide attaches individually to the distal bone. These guides can be formed at least partially according to the methods described herein. Specifically, a plurality of bone references, e.g., a combination of one or more of a plurality of references bushings and a plurality of natural or surgeon formed landmarks, such as bony prominences, divots, or holes formed in the bone is provided and/or identified. FIG. 14 shows the reference bushings 104, 106, 110, 112 in dashed lines. Three dimensional spatial location information is gathered, e.g., using CT scans, traces, or other similar technologies. A multi piece cutting guide 608 is designed and manufactured that preferably is patient specific. The cutting guide 608 includes a first block 612 configured to couple with the tibia 14. In one embodiment, the first block 612 is coupled with the tibia 14 by first contacting the reference bushings 104, 110. Thereafter any securement method described herein can be used to rigidly connect the first block 612 to the tibia 14. The cutting guide 608 includes a second block 616 configured to couple with the talus 20. In one embodiment, the second block 616 is coupled with the talus 20 by first contacting the reference bushings 106, 112. Thereafter any securement method described herein can be used to rigidly connect the second block 616 to the talus 20.


The first block 612 has a first interface portion 620 disposed on a distal portion 624 thereof. The distal portion 624 can be on a distal face or can be on an anterior face, e.g., extending proximally from a distal face of the first block 612. The first interface portion 620 can also include one or a plurality of apertures 628 formed in the distal portion 624. The second block 616 can have a second interface portion 632 disposed on a proximal portion 636. The proximal portion 636 can be on a proximal face or can be on an anterior face, e.g., extending distally from a proximal distal face of the second block 616. The second interface portion 632 can also include one or a plurality of apertures 640 formed in the proximal portion 636.


The first and second interface portions 620, 632 are configured to mate to provide a spatial position of the tibia 14 and the talus 20. For example the first and second blocks 612, 616 can be configured such that when the interface portions 620, 632 are mated cutting features, which are similar to any of the described above and which are formed on and through the cutting guide 608, are properly positioned and oriented. In one embodiment, the first interface portion 620 comprises a concave recess that is open on a distal face of the first block 612. The recess extends only partly through the thickness of the first block 612 from the anterior face thereof. The second interface portion 632 includes a proximally extending protrusion on the second block 616 that is configured to be received in the concave recess of the first block 612. The first and second blocks 612, 616 can be secured together by any suitable means, such as by advancing pins through the apertures 640 and into the apertures 628.


The first block 612 can have reference features similar to the reference features 232, 260. The second block 616 can have reference features similar to the reference features 236, 264. The first block 612 is shown with fixation pins 160 extending into openings similar to the openings 290, 298. The second block 616 is shown with fasteners 350 securing the second block 616 to the talus. Accordingly, the second block 616 can be configured to be positioned on the talus 20 in a variety of ways. The fasteners 350 can be advanced through reference bushings or similar features to secure the second block 616 in a predefined position relative to the talus 20 and/or the ankle 10. The second block 616 could have openings similar to the openings 310, 322 for advancement of fixation pins 160 through the second block 616 and through a bone reference, such as the reference bushings 106, 112. In some methods, it is sufficient to provide a patient specific interface to one of the blocks 612, 612 (e.g., to the first block 612) and to permit the other block (e.g., the second block 616) to be placed by a less precise method.


After the first and second blocks 612, 616 are secured to the tibia 14 and talus 20 respectively, relative motion is provided between the talus 20 or foot and the tibia 14 or lower leg. Such movement continues until the second interface portion 632 is engaged with, e.g., is received in, the first interface portion 620. Thereafter, the portions 620, 632 are secured together. For example, a pin can be advanced through the openings 640 and into the opening 628. When the first and second blocks 612, 616 are so engaged, the talus 20 will be properly positioned relative to the tibia 14. The proper positioning of the first and second blocks 612, 616 can result in a correction of any deformity in the ankle. For example, when so engaged, the varus/valgus deformity of FIG. 1A will be reduced or eliminated as shown in FIG. 1B.



FIGS. 15 and 16 show that after using any of the cutting guides herein to prepare an ankle joint, a prosthesis 550 can be placed in the joint space. The prosthesis 550 can include a proximal portion 554 coupled with the talus 20 and a distal portion 558 coupled with the tibia 14. The proximal and distal portions 554, 558 articulate over each other to restore normal and pain free function to the ankle joint 10.


Additional Embodiments and Methods

The foregoing discussion has disclosed apparatuses and methods related to performing ankle surgery. The concepts also can be applied to a shoulder procedure, for example a total shoulder joint replacement. FIGS. 17-19 show an example. In the example a system 1000 is provided that includes the reference bushings 104, 106, 110, 112, a guide 1008, and a central pin 1012. The guide 1008 is configured to guide the placement of the central pin 1012 in a central region of the glenoid G. The guide 1008 has a plurality of arms 1016, e.g., four arms, that extend from a central hub 1020. The hub 1020 has a lumen 1024 extending therethrough to guide the central pin 1012 along an axis defined through the hub 1020 in the center of the lumen 1024. The arms 1016 and other parts of the guide 1008 are formed based on information gathered from the patient, e.g., using an imaging device as discussed above. The arms 1016 each can have a pin guide 1032 disposed at a location away from the central hub 1020. The pin guides 1032 can be hubs or cylindrical bodies. The pin guides 1032 can each have a lumen 1036 therethrough for guiding one of the pins 160 into the glenoid G as discussed below. Each of the guides 1032 can be formed to mate with the proximal portion 122 of one of the reference bushing 104, 106, 110, 112. For example each of the pin guides 1032 can have a convex end portion that can be received in the proximal portion 122 and interface with the concave surface 176.


In a step of a shoulder method, the reference bushings 104, 106, 110, 112 are placed in the scapula. FIG. 18 shows the reference bushings placed in the articular surface of the glenoid G. In many procedures, this surface is subsequently reamed and may be covered by a low frication artificial articular surface. However, the procedure could be modified to place the bushings 104, 106, 110, 112 in the scapula outside the articular area of the glenoid G. FIG. 19 shows the guide 1008 being advanced medially up against the bushings 104, 106, 110, 112. Once the pin guides 1032 come to rest on the bushings 104, 106, 110, 112 the pins 160 can be advanced into the lumens 1036 to secure the guide 1008 in place. Once the guide 1008 is secure, the central pin 1012 can be advanced into the glenoid G and into a central glenoid channel GC. The formation of the glenoid channel GC can be performed through the lumen 1024. Because the guide 1008 is formed with reference to the specific anatomy of the patient the location and the orientation of the glenoid channel GC can be specified by the form of the guide 1008 and the placement of the bushing 104, 106, 110, 112. This can help to more precisely guide other aspects of the procedure such as the trajectory of a reamer, the formation of peripheral holes for anchoring a glenoid component.


In a shoulder replacement procedure, the humerus will generally also be modified. For example, the proximal humerus can be resected and a ball portion can be secured to the humerus to form an anatomic configuration. Or the proximal portion can be resected and a concave member can be supported in the resected humerus by a humeral anchor. The foregoing discussion also discloses how these procedures could be performed using the patient specific techniques disclosed herein. For instance, one or more of the reference bushings 104, 106, 110, 112 can be placed in a side portion of the humerus near the proximal end thereof. The bushings 104, 106, 110, 112 can be used to support a cutting block for resecting the humerus at a position and angle that is specific to the patient and is dictated by the placement of the bushings 104, 106, 110, 112 and the configuration of the cutting block. Also, later aspects of the humeral procedure could also be guided in the methods discussed above. The bushings 104, 106, 110, 112 could be embedded in the resected face of the humerus. Thereafter, a guide similar to the guide 1008 could be used to place a central pin similar to the pin 1012 that could guide further reaming or cutting of the proximal humerus. The central pin could also or alternatively be used to advance a humeral anchor into the proximal humus.



FIGS. 20-23A illustrate a bone system 400 that employs a snap-fit connection between components thereof. The system 400 is similar to the system 100 except as described differently below. The system 400 includes a cutting guide 408, a plurality of deflectable extenders 420 and one or more reference bushings 404. Although one reference bushing 404 is illustrated, the system 400 can have four reference bushings as in the system 100. FIG. 20 shows the cutting guide 408 and one of each of the deflectable extenders 420 and the reference bushings 404 in an exploded configuration. The exploded configuration is provided to better illustrate the components but also shows that in certain embodiments, these components are separate or can be separated in use. The separable configuration allows the user to assemble at least some of the parts at the operating table or in pre-operative activities. The separability of the components also allows at least some of the components to be reused.



FIG. 21 shows components of the system 400 in cross-section illustrating more features of the system 400. A portion of the cutting guide 408 is shown in cross-section. In the section shown, the cutting guide 408 has a lumen 434 that extends through the body of the cutting guide. A portion of the lumen 434 that is closest to the patient when applied to the patient opens into a patient-facing aperture 438. A threaded portion 442 of the lumen 434 is provided from the aperture 438 in a direction away from the aperture into the body of the cutting guide 408. In the illustrated embodiment, the cutting guide 408 also includes a protrusion 446 that extends away from a patient-facing side of the cutting guide 408. The protrusion 446 helps to create clearance, e.g., the gap G discussed above and shown in connection with the system 100 in FIG. 10, between the guide 408 and the tissues of the patient when applied. The protrusion 446 could be smaller or eliminated in some embodiments, for example if the deflectable extenders 420 were elongated sufficiently to provide the gap G.


The threaded portion 442 can be disposed primarily or even exclusively in the protrusion 446. In the illustrated embodiment, the threaded portion 442 also extends into the body of the cutting guide 408.



FIGS. 21 and 23-23A show the deflectable extender 420 in greater detail. The deflectable extender 420 can have a proximal portion 450 and a distal portion 454. The proximal portion 450 has threads 458. The threads 458 are configured to engage the threaded portion 442 of the lumen 434. Although the threads 458 and the threaded portion 442 provide an intuitive, secure connection between the extenders 420 and the cutting guide 408 other structures for such connection could be provided. For example, a bayonet connection or detents could be provided.


The distal portion 454 of the deflectable extender 420 includes a deflectable portion 466. The deflectable portion 466 enables the distal portion 454 to be received in the reference bushing 404 as discussed further below. The distal portion 454 of the deflectable extender 420 has a tapered outer profile 470. The tapered profile 470 can have a generally oval cross-section. In one embodiment, the tapered profile includes two curved surfaces. One curved surface is disposed on a first projection 474 and another curved surfaced is disposed on a second projection 478. The first and second projections 474, 478 can be separated by a gap 482. The gap 482 permits some movement of the projections 474, 478 toward and away from a longitudinal axis 486 of the deflectable extender 420. As discussed further below, the movement of the projections 474, 478 into the gap 482 permits the distal portion 454 to be inserted into and thereafter firmly engage the reference bushing 404 as discussed further below.


While the gap 482 provides for insertion of the deflectable extender 420 into the reference bushing 404 other structures could provide this function as well. For example, the extender 420 could have a detent arrangement or could be compressible such that the extender 420 can be inserted into the reference bushing 404.


The deflectable extender 420 includes a shoulder 480 between the threads 458 and the projections 474, 478. The shoulder 480 provides clearly demarked stop position for the deflectable extender relative to the cutting guide 408. The shoulder 480 allows the surgeon to quickly and accurately advance the deflectable extender 420 to precisely the correct position. This is important in that it helps to maintain the extent of the gap G, which preferably is large enough to allow the tissue beneath the guides to not be disturbed as discussed elsewhere herein.



FIGS. 21-22A show details of the reference bushing 404. The reference bushing 404 can be similar to the reference bushing 104 except as described differently below. The reference bushing 404 includes a proximal portion 490 that is configured to receive and retain the distal portion 454 of the deflectable extender 420. The interior surface of the proximal portion 490 can have a surface 494 with an oval curvature, or any curvature that matches the outer tapered profile of the projections 474, 478. In one embodiment, the reference bushing 404 has a constriction 502 between a proximal end of the reference bushing 404 and a distal end of the surface 494. A flared surface 506 extends from the constriction 502 to the proximal end of the reference bushing 404. The constriction 502 can be positioned to be received in a reduced diameter section of the deflectable extender 420 (see FIGS. 23 and 23A). More broadly, the reference bushing 404 and the deflectable extender 420 are configured to have the same shape in cross-section so that a close fit is provided when these components are joined together.


The use of the system 400 is similar to the use of the system 100, except as described differently below. The guide 408 is prepared using patient specific data that can be gathered by any modality, including imaging or mechanical tracing. The reference bushing 404 and any additional reference bushings are implanted as described above in prescribed locations. The deflectable extenders 420 are coupled with the guide 408. In some embodiments, the deflectable extenders are integrated into the guide 408, e.g., pre-assembled or formed as a monolithic structure or of continuous material. Thereafter, the guide 408 and the deflectable extenders 420 are placed on the reference bushings. A distal portion of the profile 474 is placed into the flared surface 506 and rested there. Thereafter, further advancement of the deflectable extenders 420 against the surface 506 moves the projections 474, 478 into the gap 482. This reduces the profile 474 of the distal portion 454 of the extender 420 which allows it to move past the constriction 502. Further advancement disposes the surfaces of the projections 474, 478 against the surface 494. FIG. 21 shows that there is no lumen through the extenders 420 in some embodiments. This is because the snap connection provided between the extenders 420 and the reference bushings 404 (and the other bushings that may be present) is strong enough that the guide 408 need not be secured with separate pins. In other embodiments, the extenders 420 and the guide 408 each have lumens that facilitate placing pins through the cutting guide 408, the extenders 20 and the bushing 404 (and the other bushings that may be present).


The embodiments provided herein provide the additional advantage of allowing for less disruption of the soft tissue and bone around the joint. In particular, the soft tissues do not have to be completely cleared away from the bone surface to mate a patient specific surface with the exposed bone. For example a minimal skin incision may be made to only accommodate the insertion of cutting tools and implant, and the periosteum does not need to be scrapped from the bone. Rather, the reference features can be advanced into contact with discrete, isolated bone references (e.g., reference bushings) while allowing the clearance gap G to be dispose therebetween. The gap G can accommodate soft tissue or can just allow the cutting block not to impinge on the soft tissue or bone therebeneath.


Although these inventions have been disclosed in the context of certain preferred embodiments and examples, it will be understood by those skilled in the art that the present inventions extend beyond the specifically disclosed embodiments to other alternative embodiments and/or uses of the inventions and obvious modifications and equivalents thereof. In addition, while several variations of the inventions have been shown and described in detail, other modifications, which are within the scope of these inventions, will be readily apparent to those of skill in the art based upon this disclosure. It is also contemplated that various combination or sub-combinations of the specific features and aspects of the embodiments may be made and still fall within the scope of the inventions. It should be understood that various features and aspects of the disclosed embodiments can be combined with or substituted for one another in order to form varying modes of the disclosed inventions. Thus, it is intended that the scope of at least some of the present inventions herein disclosed should not be limited by the particular disclosed embodiments described above.

Claims
  • 1. A joint prosthesis bone preparation system, comprising: a first reference bushing having a distal portion configured to be advanced into a first portion of an anatomical joint;a second reference bushing having a distal portion configured to be advanced into a second portion of the anatomical joint; anda patient specific guide, comprising: a first surface, a second surface opposite the first surface, and at least one cutting or guiding feature extending from the first surface to the second surface, the second surface having a first bone interface portion and a second bone interface portion, at least one of the first bone interface portion and the second bone interface portion comprising a mating reference feature to provide isolated contact with a bone reference,wherein the first surface is an anterior surface and the second surface is a posterior surface, the at least one cutting or guiding feature extends from the anterior surface to the posterior surface, the posterior surface has a first reference feature configured to contact the first reference bushing, and the posterior surface has a second reference feature configured to contact the second reference bushing;wherein when the patient specific guide is coupled with the first and second reference bushings a clearance gap is provided between the posterior surface and at least one of the first portion of the anatomical joint and the second portion of the anatomical joint.
  • 2. The joint prosthesis bone preparation system of claim 1, wherein at least a portion of the posterior surface of the patient specific guide is disposed between the first and second bone interface portions and is located sufficiently anterior of a posterior end of the first and second bone interface portions such that the portion of the posterior surface is out of contact with at least one of the first and the second portions of the anatomical joint in the use of the joint prosthesis bone preparation system.
  • 3. A prosthesis bone preparation system, comprising: a first reference bushing having a distal portion configured to be advanced into a first portion of a joint; a second reference bushing having a distal portion configured to be advanced into a second portion of a joint; anda patient specific guide, comprising: a first surface, a second surface opposite the first surface, and at least one cutting or guiding feature extending from the first surface to the second surface, the second surface having a first bone interface portion and a second bone interface portion, at least one of the first bone interface portion and the second bone interface portion comprising a mating reference feature to provide isolated contact with a bone reference,wherein the first surface is an anterior surface, the second surface is a posterior surface, the at least one cutting or guiding feature extends from the anterior surface to the posterior surface, the posterior surface has the first bone interface portion, the first bone interface portion configured to contact the first reference bushing wherein the first reference bushing includes a surface configured to limit movement of the patient specific guide, the posterior surface has the second bone interface portion, the second bone interface portion configured to contact the second reference bushing wherein the second reference bushing includes a surface configured to limit movement of the patient specific guide;wherein the first and second bone interface portions are disposed at spaced apart locations and the posterior surface is disposed at a location such that when the patient specific guide is coupled with the first and second reference bushings a clearance gap is provided between the posterior surface and at least one of the first portion of the joint the second portion of the joint.
  • 4. The prosthesis bone preparation system of claim 3, wherein the locations of the first and second bone interface portions are configured to be positioned based on patient anatomy and a desired correction of deformity.
  • 5. The prosthesis bone preparation system of claim 3, wherein the patient specific guide comprises a first block configured to couple with a tibia and having, the first block having the first bone interface portion disposed on a distal surface, the patient specific cutting block comprises a second block configured to couple with a talus and having the second bone interface portion disposed on a proximal surface, the first and second bone interface portions configured to mate to provide a spatial position of the tibia and the talus that results in correction of deformity.
  • 6. The patient specific guide of claim 3, wherein: the posterior surface comprises a first protrusion extending from a first end fixed to the posterior surface to a second end disposed away from the first end of the first protrusion and a second protrusion extending from a first end fixed to the posterior surface to a second end disposed away from the first end of the second protrusion;wherein the first and second protrusion are spaced apart and have a length such that when the patient specific guide is coupled with first and second bone references the clearance gap is provided.
  • 7. A surgical method, comprising: advancing a first reference bushing into a tibia adjacent to an ankle joint of a patient or into a scapula;advancing a second reference bushing into a talus adjacent to the ankle joint or into the scapula;after advancing the first reference bushing into the tibia or into the scapula and the second reference bushing into the talus or the scapula, obtaining three dimensional spatial location information of the first reference bushings and a portion of the tibia around the first reference bushings and of the second reference bushing and a portion of the talus around the second reference bushing or obtaining three dimensional spatial location information of the first reference bushings and a portion of the scapula around the first and second reference bushings; andin surgery connecting a patient specific guide to the first reference bushings and to the second reference bushing;wherein the first and second reference bushing are connected to the patient specific guide at locations of the patient specific guide based upon the spatial location information; andwherein when the patient specific guide is coupled to the patient, a gap is provided between the patient specific guide and at least one of the tibia and the talus or a gap is provided between the patient specific guide and the scapula.
  • 8. The surgical method of claim 7, further comprising advancing a third reference bushing into the tibia or into the scapula and advancing a fourth reference bushing into the talus or the scapula.
  • 9. The surgical method of claim 7 wherein obtaining spatial location information comprises performing a CT scan after the bushings are advanced into the tibia and into the talus.
  • 10. The surgical method of claim 7, further comprising: placing a first cannula through a first incision such that a distal end of the first cannula is adjacent to the anterior surface of the tibia or lateral of the scapula and a proximal end of the first cannula is outside of the skin of the patient;placing a second cannula through a second incision such that a distal end of the second cannula is adjacent to the neck of the talus or lateral of the scapula and a proximal end of the second cannula is outside of the skin of the patient; andwherein advancing the first reference bushing comprises advancing the first reference bushing through the first cannula and advancing the second reference bushing comprises advancing the second reference bushing through the second cannula.
  • 11. The surgical method of claim 7, wherein prior to connecting the second reference feature with the second reference bushing, the ankle joint is placed in plantar flexion and while the ankle joint is in plantar flexion, the patient specific guide is rigidly connected to the talus.
US Referenced Citations (375)
Number Name Date Kind
4919670 Dale et al. Apr 1990 A
5030219 Matsen, III et al. Jul 1991 A
5329846 Bonutti Jul 1994 A
5383938 Rohr et al. Jan 1995 A
5458637 Hayes Oct 1995 A
5531793 Kelman et al. Jul 1996 A
5610966 Martell et al. Mar 1997 A
5725586 Sommerich Mar 1998 A
5768134 Swaelens et al. Jun 1998 A
5769856 Dong et al. Jun 1998 A
5779710 Matsen, III Jul 1998 A
5807437 Sachs et al. Sep 1998 A
5824078 Nelson et al. Oct 1998 A
5824085 Sahay et al. Oct 1998 A
6002859 DiGioia, III et al. Dec 1999 A
6129764 Servidio Oct 2000 A
6172856 Jang Jan 2001 B1
6183519 Bonnin et al. Feb 2001 B1
6364910 Shultz et al. Apr 2002 B1
6385475 Cinquin et al. May 2002 B1
6432142 Kamiya et al. Aug 2002 B1
6459948 Ateshian et al. Oct 2002 B1
6648894 Abdelgany et al. Nov 2003 B2
6772026 Bradbury et al. Aug 2004 B2
6797006 Hodorek Sep 2004 B2
6849223 Dean et al. Feb 2005 B2
6915150 Cinquin et al. Jul 2005 B2
6944518 Roose Sep 2005 B2
7175665 German et al. Feb 2007 B2
7468075 Lang et al. Dec 2008 B2
7469474 Farrar Dec 2008 B2
7534263 Burdulis, Jr. et al. May 2009 B2
7599539 Kunz et al. Oct 2009 B2
7618451 Berez et al. Nov 2009 B2
7634119 Tsougarakis et al. Dec 2009 B2
7648530 Habermeyer et al. Jan 2010 B2
7702380 Dean Apr 2010 B1
7717956 Lang May 2010 B2
7747305 Dean et al. Jun 2010 B2
7796791 Tsougarakis et al. Sep 2010 B2
7799077 Lang et al. Sep 2010 B2
7802503 Couvillion et al. Sep 2010 B2
7822588 Mueller et al. Oct 2010 B2
7831079 Kunz et al. Nov 2010 B2
7892287 Deffenbaugh Feb 2011 B2
7927338 Laffargue et al. Apr 2011 B2
7981158 Fitz et al. Jul 2011 B2
7983777 Melton et al. Jul 2011 B2
7993408 Meridew et al. Aug 2011 B2
8007448 Barrera Aug 2011 B2
8014984 Iannotti et al. Sep 2011 B2
8055487 James Nov 2011 B2
8062302 Lang et al. Nov 2011 B2
8066708 Lang et al. Nov 2011 B2
8077950 Tsougarakis et al. Dec 2011 B2
8083745 Lang et al. Dec 2011 B2
8094900 Steines et al. Jan 2012 B2
8105330 Fitz et al. Jan 2012 B2
8122582 Burdulis, Jr. et al. Feb 2012 B2
8234097 Steines et al. Jul 2012 B2
8337501 Fitz et al. Dec 2012 B2
8337503 Lian Dec 2012 B2
8337507 Lang et al. Dec 2012 B2
8343218 Lang et al. Jan 2013 B2
8350186 Jones et al. Jan 2013 B2
8366771 Burdulis, Jr. et al. Feb 2013 B2
8377073 Wasielewski Feb 2013 B2
8377129 Fitz et al. Feb 2013 B2
8439926 Bojarski et al. May 2013 B2
8457930 Schroeder Jun 2013 B2
8460304 Fitz et al. Jun 2013 B2
8475463 Lian Jul 2013 B2
8480754 Bojarski et al. Jul 2013 B2
8500740 Bojarski et al. Aug 2013 B2
8529568 Bouadi Sep 2013 B2
8529630 Bojarski et al. Sep 2013 B2
8532806 Masson Sep 2013 B1
8535319 Ball Sep 2013 B2
8545509 Park et al. Oct 2013 B2
8545569 Fitz et al. Oct 2013 B2
8551099 Lang et al. Oct 2013 B2
8551102 Fitz et al. Oct 2013 B2
8551103 Fitz et al. Oct 2013 B2
8551169 Fitz et al. Oct 2013 B2
8556906 Fitz et al. Oct 2013 B2
8556907 Fitz et al. Oct 2013 B2
8556971 Lang Oct 2013 B2
8556983 Bojarski et al. Oct 2013 B2
8561278 Fitz et al. Oct 2013 B2
8562611 Fitz et al. Oct 2013 B2
8562618 Fitz et al. Oct 2013 B2
8568479 Fitz et al. Oct 2013 B2
8568480 Fitz et al. Oct 2013 B2
8585708 Fitz et al. Nov 2013 B2
8617172 Fitz et al. Dec 2013 B2
8617242 Philipp Dec 2013 B2
8623026 Wong et al. Jan 2014 B2
8634617 Tsougarakis et al. Jan 2014 B2
8638998 Steines et al. Jan 2014 B2
8641716 Fitz et al. Feb 2014 B2
8657827 Fitz et al. Feb 2014 B2
8682052 Fitz et al. Mar 2014 B2
8690945 Fitz et al. Apr 2014 B2
8709089 Lang et al. Apr 2014 B2
8731885 Iannotti et al. May 2014 B2
8735773 Lang May 2014 B2
8744148 Nord et al. Jun 2014 B2
8768028 Lang et al. Jul 2014 B2
8771365 Bojarski et al. Jul 2014 B2
8774900 Buly et al. Jul 2014 B2
8775133 Schroeder Jul 2014 B2
8781557 Dean et al. Jul 2014 B2
8814942 Anthony et al. Aug 2014 B2
8843229 Vanasse et al. Sep 2014 B2
8864769 Stone et al. Oct 2014 B2
8882847 Burdulis, Jr. et al. Nov 2014 B2
8884618 Mahfouz Nov 2014 B2
8888855 Roche et al. Nov 2014 B2
8898043 Ashby et al. Nov 2014 B2
8906107 Bojarski et al. Dec 2014 B2
8926706 Bojarski et al. Jan 2015 B2
8932361 Tornier et al. Jan 2015 B2
8932363 Tsougarakis et al. Jan 2015 B2
8934961 Lakin et al. Jan 2015 B2
8945230 Lang et al. Feb 2015 B2
8951259 Fitz et al. Feb 2015 B2
8951260 Lang et al. Feb 2015 B2
8965088 Tsougarakis et al. Feb 2015 B2
8971606 Chaoui Mar 2015 B2
8974539 Bojarski et al. Mar 2015 B2
8984731 Broeck et al. Mar 2015 B2
8989460 Mahfouz Mar 2015 B2
8992538 Keefer Mar 2015 B2
8998915 Fitz et al. Apr 2015 B2
9020788 Lang Apr 2015 B2
9023050 Lang et al. May 2015 B2
9055953 Lang et al. Jun 2015 B2
9060788 Bollinger Jun 2015 B2
9066728 Burdulis, Jr. et al. Jun 2015 B2
9072531 Fitz et al. Jul 2015 B2
9084617 Lang et al. Jul 2015 B2
9095353 Burdulis, Jr. et al. Aug 2015 B2
9107679 Lang et al. Aug 2015 B2
9107680 Fitz et al. Aug 2015 B2
9113921 Lang et al. Aug 2015 B2
9125672 Fitz et al. Sep 2015 B2
9126673 Green et al. Sep 2015 B1
9180015 Fitz et al. Nov 2015 B2
9186154 Li Nov 2015 B2
9186161 Lang et al. Nov 2015 B2
9186254 Fitz et al. Nov 2015 B2
9208558 Dean et al. Dec 2015 B2
9211199 Ratron Dec 2015 B2
9216025 Fitz et al. Dec 2015 B2
9220516 Lang et al. Dec 2015 B2
9220517 Lang et al. Dec 2015 B2
9232955 Bonin, Jr. et al. Jan 2016 B2
9237950 Hensley et al. Jan 2016 B2
9241724 Lang et al. Jan 2016 B2
9241725 Lang et al. Jan 2016 B2
9275191 Dean et al. Mar 2016 B2
9278413 Sperling Mar 2016 B2
9292920 Dean et al. Mar 2016 B2
9295481 Fitz et al. Mar 2016 B2
9295482 Fitz et al. Mar 2016 B2
9301768 Buza et al. Apr 2016 B2
9308005 Fitz et al. Apr 2016 B2
9308053 Bojarski et al. Apr 2016 B2
9308091 Lang Apr 2016 B2
9314256 Fitz et al. Apr 2016 B2
9320608 Sperling Apr 2016 B2
9320620 Bojarski et al. Apr 2016 B2
9326780 Wong et al. May 2016 B2
9330206 Dean et al. May 2016 B2
9333085 Fitz et al. May 2016 B2
9351743 Kehres et al. May 2016 B2
9358018 Fitz et al. Jun 2016 B2
9381025 Fitz et al. Jul 2016 B2
9381026 Trouilloud et al. Jul 2016 B2
9387083 Al Hares et al. Jul 2016 B2
9402726 Linderman et al. Aug 2016 B2
9408615 Fitz et al. Aug 2016 B2
9408616 Kehres et al. Aug 2016 B2
9408686 Miller et al. Aug 2016 B1
9414928 Sperling Aug 2016 B2
9439767 Bojarski et al. Sep 2016 B2
9486226 Chao Nov 2016 B2
9495483 Steines et al. Nov 2016 B2
9517134 Lang Dec 2016 B2
9539013 Katrana et al. Jan 2017 B2
9554910 Vanasse et al. Jan 2017 B2
9575931 Ratron Feb 2017 B2
9579106 Lo et al. Feb 2017 B2
9579110 Bojarski et al. Feb 2017 B2
9603711 Bojarski et al. Mar 2017 B2
9626756 Dean et al. Apr 2017 B2
9636229 Lang et al. May 2017 B2
9646113 Park et al. May 2017 B2
9662214 Li et al. May 2017 B2
9668873 Winslow et al. Jun 2017 B2
9672302 Dean et al. Jun 2017 B2
9672617 Dean et al. Jun 2017 B2
9675471 Bojarski et al. Jun 2017 B2
9681956 Al Hares et al. Jun 2017 B2
9687945 Steines et al. Jun 2017 B2
9700420 Fitz et al. Jul 2017 B2
9700971 Lang Jul 2017 B2
9713533 Taylor et al. Jul 2017 B2
9715563 Schroeder Jul 2017 B1
9717508 Iannotti et al. Aug 2017 B2
9737367 Steines et al. Aug 2017 B2
9741263 Iannotti et al. Aug 2017 B2
9770335 Sperling Sep 2017 B2
9775680 Bojarski et al. Oct 2017 B2
9849019 Miller et al. Dec 2017 B2
9872773 Lang et al. Jan 2018 B2
9877790 Bojarski et al. Jan 2018 B2
9895230 Mahfouz Feb 2018 B2
9913723 Fitz et al. Mar 2018 B2
9937046 Mahfouz Apr 2018 B2
9943370 Asseln et al. Apr 2018 B2
9956047 Bojarski et al. May 2018 B2
9956048 Bojarski et al. May 2018 B2
9993341 Vanasse et al. Jun 2018 B2
10068671 Dean et al. Sep 2018 B2
10085839 Wong et al. Oct 2018 B2
10405993 Deransart et al. Sep 2019 B2
10716676 Tornier et al. Jul 2020 B2
20010047210 Wolf Nov 2001 A1
20020007294 Bradbury et al. Jan 2002 A1
20020025358 Nelson et al. Feb 2002 A1
20020082741 Mazumder et al. Jun 2002 A1
20030139818 Rogers et al. Jul 2003 A1
20040064189 Maroney et al. Apr 2004 A1
20040102866 Harris et al. May 2004 A1
20040133276 Lang et al. Jul 2004 A1
20040171924 Mire et al. Sep 2004 A1
20040181144 Cinquin et al. Sep 2004 A1
20040243481 Bradbury et al. Dec 2004 A1
20050049709 Tornier Mar 2005 A1
20050065617 Barrera et al. Mar 2005 A1
20050065628 Roose Mar 2005 A1
20050112397 Rolfe et al. May 2005 A1
20050197814 Aram Sep 2005 A1
20050216305 Funderud Sep 2005 A1
20060100714 Ensign May 2006 A1
20060136058 Pietrzak Jun 2006 A1
20070089518 Ericson et al. Apr 2007 A1
20070118055 McCombs May 2007 A1
20070118243 Schroeder et al. May 2007 A1
20070191741 Tsai et al. Aug 2007 A1
20070244563 Roche et al. Oct 2007 A1
20070249967 Buly et al. Oct 2007 A1
20080014082 Kunz et al. Jan 2008 A1
20080183297 Boileau et al. Jul 2008 A1
20080228269 McLeod et al. Sep 2008 A1
20080243127 Lang et al. Oct 2008 A1
20090204225 Meridew et al. Aug 2009 A1
20090226068 Fitz et al. Sep 2009 A1
20090264894 Wasielewski Oct 2009 A1
20090292464 Fuchs et al. Nov 2009 A1
20100087927 Roche et al. Apr 2010 A1
20100161066 Iannotti et al. Jun 2010 A1
20100191100 Anderson et al. Jul 2010 A1
20100217270 Polinski et al. Aug 2010 A1
20100303313 Lang et al. Dec 2010 A1
20110029088 Raucher et al. Feb 2011 A1
20110040334 Kaes et al. Feb 2011 A1
20110046735 Metzger et al. Feb 2011 A1
20110054478 Vanasse et al. Mar 2011 A1
20110119884 Ratron May 2011 A1
20110144760 Wong et al. Jun 2011 A1
20110282403 Anthony et al. Nov 2011 A1
20120078258 Lo et al. Mar 2012 A1
20120116203 Vancraen et al. May 2012 A1
20120130434 Stemniski May 2012 A1
20120141034 Iannotti et al. Jun 2012 A1
20120143267 Iannotti et al. Jun 2012 A1
20120221112 Lappin Aug 2012 A1
20120232670 Bojarski et al. Sep 2012 A1
20120253350 Anthony et al. Oct 2012 A1
20120276509 Iannotti et al. Nov 2012 A1
20120279933 Hensler et al. Nov 2012 A1
20130053968 Nardini et al. Feb 2013 A1
20130110116 Kehres et al. May 2013 A1
20130110470 Vanasse et al. May 2013 A1
20130110471 Lang et al. May 2013 A1
20130114873 Chaoui May 2013 A1
20130150975 Iannotti et al. Jun 2013 A1
20130172898 Iannotti et al. Jul 2013 A1
20130190882 Humphrey Jul 2013 A1
20130211531 Steines et al. Aug 2013 A1
20130261629 Anthony et al. Oct 2013 A1
20130274752 Trouilloud et al. Oct 2013 A1
20130338673 Keppler Dec 2013 A1
20140039633 Roche et al. Feb 2014 A1
20140257499 Winslow et al. Sep 2014 A1
20140276867 Kelley et al. Sep 2014 A1
20140371863 Vanasse et al. Dec 2014 A1
20150045903 Neal Feb 2015 A1
20150054195 Greyf Feb 2015 A1
20150093283 Miller et al. Apr 2015 A1
20150105787 Tornier et al. Apr 2015 A1
20150142000 Seedhom May 2015 A1
20150150688 Vanasse et al. Jun 2015 A1
20150202045 Early et al. Jul 2015 A1
20150223941 Lang Aug 2015 A1
20150250552 Radermacher et al. Sep 2015 A1
20150250597 Lang et al. Sep 2015 A1
20150320430 Kehres et al. Nov 2015 A1
20150328004 Mafhouz Nov 2015 A1
20160015466 Park et al. Jan 2016 A1
20160051367 Gervasi et al. Feb 2016 A1
20160067049 Flaherty et al. Mar 2016 A1
20160074052 Keppler et al. Mar 2016 A1
20160100907 Gomes Apr 2016 A1
20160120555 Bonin, Jr. et al. May 2016 A1
20160143744 Bojarski et al. May 2016 A1
20160143749 Holovacs et al. May 2016 A1
20160157937 Kehres et al. Jun 2016 A1
20160166392 Vanasse et al. Jun 2016 A1
20160184104 Sperling Jun 2016 A1
20160193051 Budhabhatti et al. Jul 2016 A1
20160213385 Iannotti et al. Jul 2016 A1
20160242933 Deransart et al. Aug 2016 A1
20160256222 Walch Sep 2016 A1
20160270854 Chaoui et al. Sep 2016 A1
20160296285 Chaoui et al. Oct 2016 A1
20160296290 Furrer et al. Oct 2016 A1
20160324648 Hodorek et al. Nov 2016 A1
20160331467 Slamin et al. Nov 2016 A1
20160345987 Guilloux et al. Dec 2016 A1
20160361071 Mahfouz Dec 2016 A1
20160374697 Kehres et al. Dec 2016 A1
20170000614 Mahfouz Jan 2017 A1
20170000615 Mahfouz Jan 2017 A1
20170027587 Fraone et al. Feb 2017 A1
20170027593 Bojarski et al. Feb 2017 A1
20170056024 Chao Mar 2017 A1
20170079803 Lang Mar 2017 A1
20170105841 Vanasse et al. Apr 2017 A1
20170105843 Britton et al. Apr 2017 A1
20170112626 Miller et al. Apr 2017 A1
20170119531 Bojarski et al. May 2017 A1
20170151058 Sperling Jun 2017 A1
20170216038 Lang et al. Aug 2017 A1
20170231783 Lang et al. Aug 2017 A1
20170249440 Lang et al. Aug 2017 A1
20170258598 Radermacher et al. Sep 2017 A1
20170273795 Neichel et al. Sep 2017 A1
20170273800 Emerick et al. Sep 2017 A1
20170273801 Hodorek Sep 2017 A1
20170281357 Taylor et al. Oct 2017 A1
20170296347 Chua et al. Oct 2017 A1
20170304063 Hatzidakis et al. Oct 2017 A1
20170360567 Fitz et al. Dec 2017 A1
20170367766 Mahfouz Dec 2017 A1
20170367828 Steines et al. Dec 2017 A1
20170367834 Fitz et al. Dec 2017 A1
20180028325 Bojarski et al. Feb 2018 A1
20180161176 Vivanz et al. Jun 2018 A1
20180228614 Lang et al. Aug 2018 A1
20180235706 Asseln et al. Aug 2018 A1
20180235762 Radermacher et al. Aug 2018 A1
20180263782 Lang et al. Sep 2018 A1
20190015113 Morvan Jan 2019 A1
20190015116 Neichel et al. Jan 2019 A1
20190015117 Neichel et al. Jan 2019 A1
20190015118 Neichel et al. Jan 2019 A1
20190015119 Athwal et al. Jan 2019 A1
20190015221 Neichel et al. Jan 2019 A1
20190038360 Chaoui Feb 2019 A1
20190343658 Deransart et al. Nov 2019 A1
20200188121 Boux de Casson et al. Jun 2020 A1
20200214845 Knox et al. Jul 2020 A1
Foreign Referenced Citations (73)
Number Date Country
2927086 Apr 2015 CA
2927811 Apr 2015 CA
2938709 May 2015 CA
10 2006 047663 Apr 2008 DE
1 249 213 Oct 2002 EP
1 265 555 Dec 2002 EP
1 563 810 Aug 2005 EP
1 862 151 Dec 2007 EP
1 902 689 Mar 2008 EP
1 952 788 Aug 2008 EP
2 135 576 Dec 2009 EP
1 917 051 Jun 2010 EP
2 243 445 Oct 2010 EP
2 324 801 May 2011 EP
2 335 655 Jun 2011 EP
2173260 Jan 2012 EP
2 501 313 Sep 2012 EP
2 544 601 Jan 2013 EP
2583242 Apr 2013 EP
2 653 136 Oct 2013 EP
2829238 Jan 2015 EP
2 845 547 Mar 2015 EP
2 965 720 Jan 2016 EP
3057518 Aug 2016 EP
3057524 Aug 2016 EP
3065671 Sep 2016 EP
3068317 Sep 2016 EP
2 874 570 Jan 2017 EP
3 117 801 Jan 2017 EP
2 579 454 Oct 1986 FR
2 859 099 Mar 2005 FR
2962573 Jan 2012 FR
2982694 Nov 2016 FR
2982979 Nov 2016 FR
2982693 Dec 2016 FR
2 501 494 Oct 2013 GB
WO 93025157 Dec 1993 WO
WO 0035346 Jun 2000 WO
WO 0059411 Oct 2000 WO
WO 02061688 Aug 2002 WO
WO 2010120346 Oct 2010 WO
WO 2011110374 Sep 2011 WO
WO 2011154891 Dec 2011 WO
WO 2011157961 Dec 2011 WO
WO 2012021241 Feb 2012 WO
WO 2012058349 May 2012 WO
WO 2012125319 Sep 2012 WO
WO 2013060851 May 2013 WO
WO 2013062848 May 2013 WO
WO 2013062851 May 2013 WO
WO 2013142998 Oct 2013 WO
2013169475 Nov 2013 WO
WO 2014020561 Feb 2014 WO
WO 2014035991 Mar 2014 WO
WO 2014180972 Nov 2014 WO
WO 2015052586 Apr 2015 WO
WO 2015056097 Apr 2015 WO
WO 2015068035 May 2015 WO
WO 2015071757 May 2015 WO
WO 2015175397 Nov 2015 WO
WO 2015185219 Dec 2015 WO
WO 2017005514 Jan 2017 WO
WO 2017007565 Jan 2017 WO
WO 2017091657 Jun 2017 WO
WO 2017105815 Jun 2017 WO
WO 2017106294 Jun 2017 WO
WO 2017184792 Oct 2017 WO
WO 2017214537 Dec 2017 WO
WO 2018022227 Feb 2018 WO
WO 2019014278 Jan 2019 WO
WO 2019014281 Jan 2019 WO
WO 2019033037 Feb 2019 WO
WO 2019060780 Mar 2019 WO
Non-Patent Literature Citations (27)
Entry
US 9,451,972 B2, 09/2016, Lang et al. (withdrawn)
Boileau, et al., “The three-dimensional geometry of the proximal humerus: implications for surgical technique and prosthetic design.” The Journal of bone and joint surgery. British vol. 79.5 (1997): 857-865.
Dougherty, “Digital Image Processing for Medical Applications,” May 11, 2009 (May 11, 2009), Cambridge University Press, XP002615721.
Favre, et al., “Influence of component positioning on impingement in conventional total shoulder arthroplasty,” Clinical Biomechanics, Butterworth Scientifics, Nov. 5, 2007, pp. 174-183, vol. 23, No. 2, Guilford, GB.
Gregory, et al.,“Accuracy of Glenoid Component Placement in Total Shoulder Arthroplasty and Its Effect on Clinical and Radiological Outcome in a Retrospective, Longitudinal, Monocentric Open Study,” PLOS One, p. e75791, Aug. 1, 2013, vol. 8, No. 10.
Habets, et al., Computer assistance in orthopaedic surgery. Technische Universiteit Eindhoven, 2002.
Hempfing, et al. “Surgical landmarks to determine humeral head retrotorsion for hemiarthroplasty in fractures.” Journal of shoulder and elbow surgery 10.5 (2001): 460-463.
Hernigou, et al., “Determining humeral retroversion with computed tomography.” Journal of bone and joint surgery. Oct. 2002;84-A(10):1753-62.
Iannotti et al., “Prosthetic positioning in total shoulder arthroplasty,” Journal of Shoulder and Elbow Surgery, Jan. 1, 2005, vol. 14, No. 1S, pp. S111-S121.
Kobashi et al., “Knowledge-Based Organ Identification from CT Images,” Pattern Recognition, Elsevier, GB, vol. 28, No. 4, Apr. 1, 1995 (Apr. 1, 1995), pp. 475-491, XP004013165.
Lee, C.C. et al., “Identifying multiple abdominal organs from CT image series using a multimodule contextual neural network and spatial fuzzy rules”, IEEE Transactions on Information Technology in Biomedicine, IEEE Services Center, Los Alamitos, CA, US, vol. 7, No. 3, Sep. 1, 2003 (Sep. 1, 2003) pp. 208-217, XP011100536.
Lee, C.C. et al., “Recognizing Abdominal Organs in CT Images Using Contextual Neural Network and Fuzzy Rules”, Engineering in Medicine and Biology Society, 2000. Proceedings of the 22nd Annual International Conference of the IEEE Jul. 23-28, 2000, Piscataway, NJ, USA, IEEE, vol. 3, Jul. 23, 2000 (Jul. 23, 2000), pp. 1745-1748, XP010530837.
Ma, et al., “Robust registration for computer-integrated orthopedic surgery: laboratory validation and clinical experience.” Medical image analysis 7.3 (2003): 237-250.
“Olympia Total Shoulder System Surgical Technique”, Wright Medical Technology, 2001, in 19 pages.
Nguyen, et al., “A New Segmentation Method for MRI Images of the Shoulder Joint”, Computer and Robot Vision, 2007. CRV '07. Fourth Canadian Conference on, IEEE, PI, May 1, 2007 (May 1, 2007), pp. 329-338, XP031175821.
Radermacher, K., et al., “Computer Assisted Orthopaedic Surgery with Image Based Individual Templates,” Clinical Orthopaedics and Related Research, No. 354, Sep. 1998, pp. 28-38.
Radermacher, K., et al., “Image Guided Orthopedic Surgery Using Individual Templates: Experimental Results and Aspects of the Development of a Demonstrator for Pelvis Surgery”, Health Care Sector, Telematics Applications Program, 1997, pp. 606-615.
Tamez-Pena et al., “The Integration of Automatic Segmentation and Motion Tracking for 4D Reconstruction and Visualization of Musculoskeletal Structures,” Biomedical Image Analysis, 1998. Proceedings. Workshop on Santa Barbara, CA US, Jun. 26-27, 1998, Los Alamitos, CA, USA, IEEE Comput. Soc. US, Jun. 26, 1998 (Jun. 26, 1998), pp. 154-163, XP010291418.
Valstar, et al. “Towards computer-assisted surgery in shoulder joint replacement.” ISPRS journal of photogrammetry and remote sensing 56.5-6 (2002): 326-337.
Valstar, et al. “The use of Roentgen stereophotogrammetry to study micromotion of orthopaedic implants.” ISPRS journal of photogrammetry and remote sensing 56.5-6 (2002): 376-389.
Welsh, et al., “CT-based preoperative analysis of scapula morphology and glenohumeral joint geometry.” Computer Aided Surgery 8.5 (2003): 264-268.
Wu, et al. “An interface for the data exchange between CAS and CAD/CAM systems.” International Congress Series. vol. 1256. Elsevier, 2003.
Zimmer, “Zimmer ® PSI Shoulder Trabecular MetalTM Reverse Glenoid Base Plate Surgical Technique”, Dec. 30, 2013.
“Zimmer® PSI Shoulder Planning”, Zimmer Biomet TV, posted Jul. 11, 2014, retrieved from internet on Jan. 9, 2020, https://zimmerbiomet.tv/videos/1025?a=surgeon&version=1190>.
International Search Report and Written Opinion issued in PCT Application No. PCT/US2016/063883, dated Apr. 19, 2017 in 19 pages.
Tornier, “Salto Talaris, Total Ankle Prosthesis”, 2009.
Communication issued in connection with corresponding European Patent Application No. 16820387.5, 7 pages, Aug. 21, 2020.
Related Publications (1)
Number Date Country
20180289380 A1 Oct 2018 US
Provisional Applications (1)
Number Date Country
62268045 Dec 2015 US
Continuations (1)
Number Date Country
Parent PCT/US2016/063883 Nov 2016 US
Child 16008471 US