The present disclosure relates to surgical devices, systems, instruments, and methods. More specifically, the present disclosure relates to patient-specific cutting guides and implants, and methods of designing and using the same.
Various bone conditions may be corrected through the use of an osteotomy, in which one or more bones are cut, replaced, and/or reoriented. Cutting guides are often used to help the surgeon properly locate the cut. Unfortunately, many known cutting guides are not patient-specific, and can be difficult to properly position to perform the osteotomy on a specific patient. Even if properly positioned, many known cutting guides are difficult to secure at the desired position, without moving away from the desired position prior to performance of the osteotomy. As a result, many known osteotomy procedures carry risk of an improper cut that fails to correct the underlying condition, or even endangers surrounding tissues.
The various systems and methods of the present disclosure have been developed in response to the present state of the art, and in particular, in response to the problems and needs in the art that have not yet been fully solved by currently available osteotomy systems and methods.
In some embodiments, a method may be used to correct a condition present in a patient. The method may include obtaining a first bone model of a first bone of one or more bones of the patient's foot, and using at least the first bone model to generate a cutting guide model. The cutting guide model may define a first bone engagement surface shaped to match a first contour on the first bone, and a first guide feature that, with the first bone engagement surface overlying the first contour, is positioned to guide resection of the one or more bones as part of a surgical osteotomy for correcting the condition. The surgical procedure may be selected from a first group consisting of a bunion correction osteotomy, an Evans calcaneal osteotomy, and a medializing calcaneal osteotomy. The first bone may be selected from a second group consisting a metatarsus, a cuneiform, and a calcaneus.
The one or more bones may include the cuneiform and the metatarsus. The surgical osteotomy may be the bunion correction osteotomy. The condition may be a bunion, and the first guide feature may be positioned to guide resection of one of the cuneiform and the metatarsus.
The first bone may be the cuneiform. The first guide feature may be positioned to guide resection of the cuneiform. The cutting guide model may further define a second bone engagement surface shaped to match a second contour of the metatarsus, and a second guide feature that, with the second bone engagement surface overlying the second contour, is positioned to guide resection of the metatarsus.
The method may further include obtaining a second bone model of the metatarsus, and virtually repositioning the second bone model relative to the first bone model to simulate reorientation of the metatarsus relative to the cuneiform to correct the bunion.
The cutting guide model may further include a first end having the first bone engagement surface, a second end having the second bone engagement surface, a first bone attachment feature positioned to secure the first end to the cuneiform, and a second bone attachment feature positioned to secure the second end to the metatarsus.
The method may further include using the cutting guide model to fabricate a cutting guide having the first bone engagement surface, the second bone engagement surface, the first bone attachment feature, the second bone attachment feature, the first guide feature, and the second guide feature.
The method may further include placing the cutting guide such that the first bone engagement surface overlies the first contour and the second bone engagement surface overlies the second contour, securing the first bone attachment feature to the cuneiform, securing the second bone attachment feature to the metatarsus, using the first guide feature to guide motion of a cutter to resect the cuneiform, and using the second guide feature to guide motion of a cutter to resect the metatarsus.
The method may further include reorienting the metatarsus relative to the cuneiform and, after reorienting the metatarsus relative to the cuneiform, promoting fusion between the cuneiform and the metatarsus.
Obtaining the first bone model may include obtaining CT scan data of the first bone. Using the first bone model to generate the cutting guide model may include converting the CT scan data to a CAD models, using the CAD model to obtain the first contour, and using the first contour to generate the first bone engagement surface of the cutting guide model.
The surgical osteotomy may be the Evans calcaneal osteotomy. The first bone may be the calcaneus. The cutting guide model may further have a second bone engagement surface shaped to match a second contour of the calcaneus such that, with the first bone engagement surface overlying the first contour and the second bone engagement surface overlying the second contour, the first guide feature is positioned to guide a cutter to resect the calcaneus to perform the Evans calcaneal osteotomy.
The surgical osteotomy may be the medializing calcaneal osteotomy. The first bone may be the calcaneus. The cutting guide model may further include a second bone engagement surface shaped to match a second contour of the calcaneus such that, with the first bone engagement surface overlying the first contour and the second bone engagement surface overlying the second contour, the first guide feature is positioned to guide a cutter to resect the calcaneus to perform the medializing calcaneal osteotomy.
The method may further include using at least the first bone model to generate an implant model defining a first bone-facing surface with a first shape that matches a first profile of a first resected surface of the first bone after resection of the first bone with a cutting guide fabricated using the cutting guide model.
The implant model may further have a second bone-facing surface with a second shape that matches a second profile of a second resected surface of the first bone or a second bone of the one or more bones after resection of the first bone or a second bone with the cutting guide.
The method may further include using the cutting guide model to fabricate a cutting guide having the first bone engagement surface and first guide feature, using the implant model to fabricate an implant having the first bone-facing surface and the second bone-facing surface, placing the cutting guide such that the first bone engagement surface overlies the first contour, using at least the first guide feature to guide motion of a cutter to resect the one or more bones to define the first resected surface and the second resected surface, and placing the implant between the first resected surface and the second resected surface such that the first shape is aligned with the first profile and the second shape is aligned with the second profile.
According to one embodiment, a system may be provided for correcting a condition present in one or more bones of a patient's foot. The system may have a cutting guide with a first bone engagement surface shaped to match a first contour on a first bone of the one or more bones, and a first guide feature that, with the first bone engagement surface overlying the first contour, is positioned to guide resection of the one or more bones as part of a surgical osteotomy for correcting the condition. The surgical osteotomy may be selected from a first group consisting of a bunion correction osteotomy, an Evans calcaneal osteotomy, and a medializing calcaneal osteotomy. The first bone may be selected from a second group consisting of a metatarsus, a cuneiform, and a calcaneus.
The first bone may be the cuneiform. The surgical osteotomy may be the bunion correction osteotomy. The condition may be a bunion. The first guide feature may be positioned to guide resection of the cuneiform. The cutting guide may further have a second bone engagement surface shaped to match a second contour of the metatarsus, and a second guide feature that, with the second bone engagement surface overlying the second contour, is positioned to guide resection of the metatarsus.
The cutting guide may further have a first end having the first bone engagement surface, a second end having the second bone engagement surface, a first bone attachment feature positioned to secure the first end to the cuneiform, and a second bone attachment feature positioned to secure the second end to the metatarsus.
The surgical osteotomy may be the Evans calcaneal osteotomy or the medializing calcaneal osteotomy. The first bone may be the calcaneus. The cutting guide may further have a second bone engagement surface shaped to match a second contour of the calcaneus such that, with the first bone engagement surface overlying the first contour and the second bone engagement surface overlying the second contour, the first guide feature is positioned to guide a cutter to resect the calcaneus to perform the Evans calcaneal osteotomy or the medializing calcaneal osteotomy.
The system may further have an implant with a first bone-facing surface with a first shape that matches a first profile of a first resected surface of the first bone after resection of the first bone with the cutting guide, and a second bone-facing surface comprising a second shape that matches a second profile of a second resected surface of the first bone or a second bone of the one or more bones after resection of the first bone or a second bone with the cutting guide.
According to some embodiments, a cutting guide may be provided for correcting a bunion present a patient's foot. The cutting guide may have a first bone engagement surface shaped to match a first contour on cuneiform of the patient's foot, and a second bone engagement surface shaped to match a second contour on a metatarsus of the patient's foot. The cutting guide may further have a first slot that, with the first bone engagement surface overlying the first contour and the second bone engagement surface overlying the second contour, is positioned to guide resection of the cuneiform to define a first resected surface on the cuneiform. Further, the cutting guide may have a second slot that, with the first bone engagement surface overlying the first contour and the second bone engagement surface overlying the second contour, is positioned to guide resection of the metatarsus to define a second resected surface on the metatarsus. The first slot and the second slot may be positioned and oriented relative to each other such that, upon fusion of the cuneiform and the metatarsus between the first resected surface and the second resected surface, the bunion is at least partially corrected.
The advantages, nature, and additional features of exemplary embodiments of the disclosure will become more fully apparent from the following description and appended claims, taken in conjunction with the accompanying drawings. Understanding that these drawings depict only exemplary embodiments and are, therefore, not to be considered limiting of the disclosure's scope, the exemplary embodiments of the disclosure will be described with additional specificity and detail through use of the accompanying drawings in which:
Exemplary embodiments of the disclosure will be best understood by reference to the drawings, wherein like parts are designated by like numerals throughout. It will be readily understood that the components, as generally described and illustrated in the Figures herein, could be arranged and designed in a wide variety of different configurations. Thus, the following more detailed description of the embodiments of the apparatus, system, and method, as represented in
The phrases “connected to,” “coupled to” and “in communication with” refer to any form of interaction between two or more entities, including mechanical, electrical, magnetic, electromagnetic, fluid, and thermal interaction. Two components may be functionally coupled to each other even though they are not in direct contact with each other. The term “abutting” refers to items that are in direct physical contact with each other, although the items may not necessarily be attached together. The phrase “fluid communication” refers to two features that are connected such that a fluid within one feature is able to pass into the other feature.
The word “exemplary” is used herein to mean “serving as an example, instance, or co illustration.” Any embodiment described herein as “exemplary” is not necessarily to be construed as preferred or advantageous over other embodiments. While the various aspects of the embodiments are presented in drawings, the drawings are not necessarily drawn to scale unless specifically indicated.
The present disclosure discloses surgical systems and methods by which a bone condition, such as a deformity, may be corrected through the use of patient-specific instrumentation. Known methods of correcting bone conditions are often limited to a finite range of discretely sized instruments. A patient with an unusual condition, or anatomy that falls between instrument sizes, may not be readily treated with such systems. One example is correction of a bunion, in particular, via adjustment of the angulation between a cuneiform and a metatarsus.
As shown, the method 100 may begin with a step 102 in which a CT scan (or another three-dimensional image) of the patient's anatomy is obtained. The step 102 may entail capturing a scan of only the particular bone(s) to be treated, or may entail capture of additional anatomic information, such as the surrounding tissues. Additionally or alternatively, the step 102 may entail receiving a previously captured image, for example, at a design and/or fabrication facility. Performance of the step 102 may result in possession of a three-dimensional model of the patient's anatomy, or three-dimensional surface points that can be used to construct such a three-dimensional model.
After the step 102 has been carried out, the method 100 may proceed to a step 104 in which a CAD model of the patient's anatomy is generated. The CAD model may be of any known format, including but not limited to SolidWorks, Catia, AutoCAD, or DXF. In some embodiments, customized software may be used to generate the CAD model from the CT scan. The CAD model may only include the bone(s) to be treated or may include surrounding tissues. In alternative embodiments, the step 104 may be omitted, as the CT scan may capture data that can directly be used in future steps without the need for conversion.
In a step 106, the CAD model and/or CT scan data may be used to model patient-specific instrumentation that can be used to correct the condition, as it exists in the patient's anatomy. In some embodiments, any known CAD program may be used to view and/or manipulate the CAD model and/or CT scan, and generate one or more instruments that are matched specifically to the size and/or shape of the patient's bone(s). In some embodiments, such instrumentation may include a cutting guide that is attachable to one or more bones, with one or more guide features that facilitate resection of the one or more bones pursuant to a procedure such as arthroplasty or arthrodesis. In some embodiments, performance of the step 106 may include modelling an instrument with a bone apposition surface that is shaped to match the contour of a surface of the bone, such that the bone apposition surface can lie directly on the corresponding contour.
In a step 108, the model(s) may be used to manufacture patient-specific instrumentation and/or implants. This may be done via any known manufacturing method, including casting, forging, milling, additive manufacturing, and/or the like. Additive manufacturing may provide unique benefits, as the model may be directly used to manufacture the necessary instrumentation and/or implants (without the need to generate molds, tool paths, and/or the like beforehand). Such instrumentation may optionally include a cutting guide with the bone apposition surface and one or more guide features as described above.
In addition to or in the alternative to the step 108, the model(s) may be used to select from available sizes of implants and/or instruments and advise the surgeon accordingly. For example, where a range of cutting guides are available for a given procedure, analysis of the CAD data may facilitate pre-operative selection of the optimal cutting guide and/or optimal placement of the cutting guide on the bone. Similarly, if a range of implants may be used for a given procedure, analysis of the CAD data may facilitate pre-operative selection of the optimal implant(s). More particularly, properly-sized spacers, screws, bone plates, and/or other hardware may be pre-operatively selected.
Thus, the result of the step 108 may be provision, to the surgeon, of one or more of the following: (1) one or more patient-specific instruments; (2) one or more patient-specific implants; (3) an instrument, selected from one or more available instrument sizes and/or configurations; (4) an implant, selected from one or more available implant sizes and/or configurations; (5) instructions for which instrument(s) to select from available instrument sizes and/or configurations; (6) instructions for which implant(s) to select from available implant sizes and/or configurations; (7) instructions for proper positioning or anchorage of one or more instruments to be used in the procedure; and (8) instructions for proper positioning or anchorage of one or more implants to be used in the procedure. These items may be provided to the surgeon directly, or to a medical device company or representative, for subsequent delivery to the surgeon.
In a step 110, the manufactured instrumentation may be used in surgery to facilitate treatment of the condition. In some embodiments, this may entail placing the modelled bone apposition surface against the corresponding contour of the bone used to obtain its shape, and then using the guide feature(s) to guide resection of one or more bones. Then the bone(s) may be further treated, for example, by attaching one or more joint replacement implants (in the case of joint arthroplasty), or by attaching bone segments together (in the case of arthrodesis or fracture repair). Prior to completion of the step 110, the instrumentation may be removed from the patient, and the surgical wound may be closed.
As mentioned previously, the method 100 may be used to correct a wide variety of bone conditions. One particular example of the method 100 will be shown and described in connection with
As shown, the method 120 may begin with a step 122 in which a CT scan (or another three-dimensional image) of the patient's foot is obtained. The step 122 may entail capturing a scan of only the first cuneiform and first metatarsus, or may entail capture of additional anatomic information, such as the entire foot. Additionally or alternatively, the step 122 may entail receipt of previously captured image data. Capture of the entire foot in the step 122 may facilitate proper alignment of the first metatarsus with the rest of the foot (for example, with the second metatarsus). Performance of the step 122 may result in generation of a three-dimensional model of the patient's foot, or three-dimensional surface points that can be used to construct such a three-dimensional model.
After the step 122 has been carried out, the method 120 may proceed to a step 124 in which a CAD model of the relevant portion of the patient's anatomy is generated. The CAD model may optionally include the bones of the entire foot, like the CT scan obtained in the step 122. In alternative embodiments, the step 124 may be omitted in favor of direct utilization of the CT scan data, as described in connection with the step 104.
In a step 126, the CAD model and/or CT scan data may be used to model patient-specific instrumentation that can be used to correct the bunion deformity. Such instrumentation may include a cutting guide that is attachable to the first cuneiform and the first metatarsus, with two guide features that facilitate resection of the cuneiform and the metatarsus in preparation for arthrodesis. In some embodiments, performance of the step 126 may include modelling the cutting guide with a bone apposition surface that is shaped to match contours of the surfaces of the cuneiform and the metatarsus, such that the bone apposition surface can lie directly on the corresponding contours of the first cuneiform and the first metatarsus.
In a step 128, the model(s) may be used to manufacture patient-specific instrumentation and/or instruments. This may include manufacturing the cutting guide with the bone apposition surface and the guide features as described above. As in the step 108, the step 128 may additionally or alternatively involve provision of one or more instruments and/or implants from among a plurality of predetermined configurations or sizes. Further, the step 128 may additionally or alternatively involve provision of instructions for placement and/or anchorage of one or more instruments and/or instruments to carry out the procedure.
In a step 130, the manufactured cutting guide may be used in surgery to facilitate treatment of the condition. Specifically, the bone apposition surface of the cutting guide may be placed against the corresponding contours of the first cuneiform and the first metatarsus. The guide features (for example, slots) may then be positioned on either side of the joint between the first cuneiform and the first metatarsus to guide resection of the first metatarsus and the first cuneiform to remove the intervening joint. The cutting guide may then be removed, and the remaining portions of the first cuneiform and the first metatarsus may be placed to abut each other. The cutting guide may have been shaped such that the cuts made to the first cuneiform and the first metatarsus are properly oriented to bring the first metatarsus back into its proper orientation relative to the rest of the foot. The first cuneiform and the first metatarsus may be secured together through the use of a bone plate or the like. The surgical wound may be closed to allow the foot to heal, and to allow the first cuneiform and the first metatarsus to fuse together.
The method 100 and the method 120 are merely exemplary. Those of skill in the art will recognize that various steps of the method 100 and the method 120 may be reordered, omitted, and/or supplemented with additional steps not specifically shown or described herein.
As mentioned previously, the method 120 is only one species of the method 100; the present disclosure encompasses many different procedures, performed with respect to many different bones and/or joints of the body. Exemplary steps and instrumentation for the method 120 will further be shown and described in connection with
The first metatarsus 230 may be excessively angled in a medial direction 270 (i.e., toward the lower left-hand corner of the page), causing a painful protrusion at a distal end 250 of the first metatarsus 230, and further causing the phalanges (not shown) attached to the distal end 250 to be angled excessively in a lateral direction 260 (i.e., pointing toward the other phalanges of the foot, rather than pointing directly forward). The excessive medial angulation of the first metatarsus 230 may also result in an excessive gap between the first metatarsus 230 and the second metatarsus 240.
The first metatarsus 230 may further be offset in a plantar direction 280 or in a dorsal direction 290, relative to the remainder of the foot 200. Accordingly, the orientation of the first metatarsus 230 may need to be adjusted to move the distal end 250 in the lateral direction 260 and in the plantar direction 280 and/or in the dorsal direction 290.
Every deformity is different; accordingly, the degree of angular adjustment needed in each direction may be different for every patient. Use of a patient-specific cutting guide may help the surgeon obtain the optimal realignment in the lateral direction 260 and in the plantar direction 280 or the dorsal direction 290. Conversely, use of one of a number of differently-sized cutting guides may provide only approximate correction, as the surgeon may not have a guide that precisely matches the correction needed for the foot 200, and must thus choose the cutting guide that most closely provides the desired correction. Such differently sized cutting guides would not be contoured to fit the first cuneiform 210 or the first metatarsus 230, thus introducing additional potential for error as the surgeon must properly align the selected cutting guide.
Thus, providing a patient-specific cutting guide may provide unique benefits. Specifically, the patient-specific cutting guide may provide precise correction of the deformity present in the foot 200 and may also reduce the likelihood of improper correction due to misalignment of the cutting guide on the foot 200. The optimal cut provided by such a cutting guide may further reduce the likelihood that additional procedures, such as attachment of the first metatarsus 230 to the second metatarsus 240 to each other with screws or the like, will be needed to provide the desired correction. Any such additional procedure carries its own added surgical burden and risk of failure. Thus, the use of patient-specific instrumentation may shorten surgery, accelerate recovery, and reduce the risk of complications.
As shown, the cutting guide 300 may have a body 310 with a monolithic construction and the general shape of a rectangular prism. The cutting guide 300 may further have a joint alignment feature that helps align the body 310 with the metatarsocuneiform joint between the first cuneiform 210 and the first metatarsus 230. The joint alignment feature may consist of a joint probe 320 that extends from the body 310 and has a blade-like shape. The body 310 may reside on the dorsal surfaces of the first cuneiform 210 and the first metatarsus 230, while the joint probe 320 may protrude into the metatarsocuneiform joint between the first cuneiform 210 and the first metatarsus 230 to provide proper alignment of the body 310 with the metatarsocuneiform joint.
The body 310 may have a bone apposition side 330 that, upon attachment of the body 310 to the first cuneiform 210 and the first metatarsus 230, is to face toward the first cuneiform 210 and the first metatarsus 230. The body 310 may also have an outward-facing side 332 that, upon attachment of the body 310 to the first cuneiform 210 and the first metatarsus 230, faces outward, away from the first cuneiform 210 and the first metatarsus 230. Further, the body 310 may have one or more bone attachment features that facilitate attachment of the body 310 to the first cuneiform 210 and/or the first metatarsus 230. Such bone attachment features may comprise any of a wide variety of holes, spikes, fastening devices, and/or the like. As embodied in
The bone apposition side 330 may be custom contoured to match the shapes of the first cuneiform 210 and/or the first metatarsus 230. As embodied in
Generation of the contours of the cuneiform apposition portion 342 and the metatarsus apposition portion 344 may be performed relative easily in various CAD programs. In some embodiments, the shapes of the corresponding dorsal surfaces of the first cuneiform 210 and the first metatarsus 230 may be obtained directly from the CAD models and/or CT scan data, and simply copied onto the model for the body 310 of the cutting guide 300. Various operations may be used to copy surfaces from one object to another. Additionally or alternatively, various Boolean operations, such as a Boolean subtraction operation, may be used to remove material from a model for the body 310 with a shape that matches the dorsal surfaces of the first cuneiform 210 and the first metatarsus 230.
The body 310 may further have guide features that guide a cutter to resect the first cuneiform 210 and the first metatarsus 230 in the manner needed to make the desired correction. For example, the guide features may be used to guide a planar cutting blade, an arcuate cutting blade, a drill or mill, a burr, and/or the like.
In the embodiment of
In alternative embodiments, a guide feature may be designed to guide a different type cutter, such as a drill, mill, or side-cutting burr. In such embodiments, the guide feature may not be a slot, but may instead be a translatable or rotatable cutter retainer that guides translation and/or rotation of the cutter relative to the bone.
Returning to
Notably, the joint probe 320 (not visible) may reside between the first cuneiform 210 and the first metatarsus 230 (i.e., distal to the first cuneiform 210 and proximal to the first metatarsus 230). The surgeon may need to cut the metatarsocuneiform joint between the first cuneiform 210 and the first metatarsus 230 to form a space between the first cuneiform 210 and the first metatarsus 230 to receive the joint probe 320. Positioning the joint probe 320 in this space may further help to ensure that the cutting guide 300 is properly aligned relative to the first cuneiform 210 and the first metatarsus 230.
As shown, the body 310 may have two holes 340 positioned over the first cuneiform 210, and two holes 340 positioned over the first metatarsus 230. This is merely exemplary; in some embodiments, a cutting guide may be secured to only one of the first cuneiform 210 and the first metatarsus 230, or may be secured to either of the first cuneiform 210 and the first metatarsus 230 with only one pin 500, or with more than two pins 500. Further, in some alternative embodiments, different fasteners may be used, such as screws, clamps, clips, and/or the like.
Once the cutting guide 300 has been secured relative to the first cuneiform 210 and the first metatarsus 230, the first cuneiform 210 and the first metatarsus 230 may be resected. In some embodiments, a reciprocating blade may be inserted into the first slot 350 and moved medially and laterally, between opposite ends of the first slot 350, to make a planar cut that removes the distal end of the first cuneiform 210. Similarly, the reciprocating blade (or a different reciprocating blade) may be inserted into the second slot 352 and moved medially and laterally, between opposite ends of the second slot 352, to make a planar cut that removes the proximal end of the first metatarsus 230. The cuts in the first cuneiform 210 and the first metatarsus 230 may be made in either order. In either case, once both cuts are made, the metatarsocuneiform joint between the first cuneiform 210 and the first metatarsus 230 may be removed, resulting in exposure of “bleeding” bone at the distal end of the first cuneiform 210 and the proximal end of the first metatarsus 230. The cutting guide 300 may be removed, along with some or all of the pins 500. If desired, at least two of the pins 500 may remain in place and used to attach a distractor (not shown) to the first cuneiform 210 and the first metatarsus 230, such that the distractor can temporarily widen the space between the first cuneiform 210 and the first metatarsus 230 to allow for fenestration and/or other preparation of the cut surfaces of the first cuneiform 210 and the first metatarsus 230. Once such preparation has been carried out, the remaining pins 500 may also be removed.
The resulting bleeding and/or prepared bone may readily grow together and fuse, upon abutment of the distal end of the first cuneiform 210 to the proximal end of the first metatarsus 230, particularly with application of some compression across the juncture of the two bones. Since the positions and orientations of the first slot 350 and the second slot 352 were carefully selected to provide the proper correction, the first metatarsus 230 may be positioned to abut the first cuneiform 210, resulting in reorientation of the first metatarsus 230 to a desired orientation, relative to the lateral direction 260 and the plantar direction 280 and/or the dorsal direction 290. Further, the surgeon may optionally rotate the first metatarsus 230, relative to the first cuneiform 210, about an axis perpendicular to the cutting planes, if desired.
The first metatarsus 230 may be secured to the first cuneiform 210, at least until proper bone in-growth has occurred between the first cuneiform 210 and the first metatarsus 230. In some embodiments, a bone plate (not shown) or other fastener (not shown) may be used to secure the first cuneiform 210 and the first metatarsus 230 together. Additional hardware (not shown) may be used to stabilize the position and/or orientation of the first proximal phalanx 600 relative to the first metatarsus 230, if desired. The surgical wound may be closed, and the foot 200 may be allowed to heal with the bunion deformity corrected.
In some embodiments, the implant 610 may be patient-specific. For example, the implant 610 may have a cuneiform-facing side 620 that is shaped and/or sized to be secured to the adjoining, resected surface of the first cuneiform 210, and a metatarsus-facing side 630 that is shaped and/or sized to be secured to the adjoining, resected surface of the first metatarsus 230. As the resections made to the first metatarsus 230 and the first cuneiform 210 may both planar, the cuneiform-facing side 620 and/or the metatarsus-facing side 630 may also be planar. However, the cuneiform-facing side 620 and/or the metatarsus-facing side 630 may advantageously each be shaped to match the profile of the resected surface of the first cuneiform 210 and the first metatarsus 230, respectively.
This shaping may be accomplished by custom-designing the implant 610 for the patient, using the same models (for example, from CT scans) of the first metatarsus 230 and the first cuneiform 210 that were used to generate the cutting guide 300. Thus, the implant 610 may have a shape that provides secure attachment and/or fusion between the first metatarsus 230 and the first cuneiform 210 while avoiding proud edges or other protruding features that could otherwise interfere with surrounding tissues.
As indicated previously, the cutting guide 300 is only one of many patient-specific instruments that may be used in connection with the method 100 and/or the method 120. An alternative cutting guide suitable for use with the method 120 will be shown and described in connection with
As shown, the cutting guide 700 may have a body 710 with a monolithic construction and the general shape of a rectangular prism. The cutting guide 700 may further have a joint alignment feature that helps align the body 710 with the metatarsocuneiform joint between the first cuneiform 210 and the first metatarsus 230. The joint alignment feature may consist of a joint probe 720 that extends from the body 710 and has a blade-like shape. The body 710 may reside on the dorsal surfaces of the first cuneiform 210 and the first metatarsus 230, while the joint probe 720 may protrude into the metatarsocuneiform joint between the first cuneiform 210 and the first metatarsus 230 to provide proper alignment of the body 710 with the metatarsocuneiform joint. Notably, the joint probe 720 may have surfaces that are not simply planar, but rather have some contouring by which the shape of the joint probe 720 is matched to the adjoining surfaces of the first cuneiform 210 and/or the first metatarsus 230. Such contouring of the joint probe 720 may enable more precise alignment of the body 710 with the metatarsocuneiform joint.
The body 710 may have a bone apposition side 730 that, upon attachment of the body 710 to the first cuneiform 210 and the first metatarsus 230, is to face toward the first cuneiform 210 and the first metatarsus 230. The body 710 may also have an outward-facing side 732 that, upon attachment of the body 710 to the first cuneiform 210 and the first metatarsus 230, faces outward, away from the first cuneiform 210 and the first metatarsus 230. Further, the body 710 may have one or more bone attachment features that facilitate attachment of the body 710 to the first cuneiform 210 and/or the first metatarsus 230. Such bone attachment features may comprise any of a wide variety of holes, spikes, fastening devices, and/or the like. As embodied in
The bone apposition side 730 may be custom contoured to match the shapes of the first cuneiform 210 and/or the first metatarsus 230. As embodied in
Like the cuneiform apposition portion 342 and the metatarsus apposition portion 344 of the cutting guide 300, generation of the contours of the cuneiform apposition portion 742 and the metatarsus apposition portion 744 may be performed relative easily in various CAD programs through surface copy operations, Boolean operations, and/or the like.
The body 710 may further have guide features that guide a cutter to resect the first cuneiform 210 and the first metatarsus 230 in the manner needed to make the desired correction. For example, the guide features may be used to guide a planar cutting blade, an arcuate cutting blade, a drill or mill, and/or the like.
In the embodiment of
In operation, the cutting guide 700 may be used in a manner similar to that of the cutting guide 300. However, the cutting guide 700 may only be secured to each of the first cuneiform 210 and the first metatarsus 230 with a single pin or K-wire (not shown), as mentioned previously. Further, the cutting guide 700 is smaller than the cutting guide 300. Thus, the cutting guide 700 may be placed through a smaller, less invasive incision. One advantage to patient-specific instrumentation may be that instruments may be made smaller, since they are not limited to certain sizes. Many known instruments come in discrete sizes, each of which is designed to accommodate a range of patient anatomic dimensions. Thus, for given patient anatomy, the instrument must be large enough to treat the anatomy at either end of its range. This typically requires the instrument to be oversized for many anatomic dimensions it is designed to treat. Notably, the cutting guide 700 is merely one compact example; other cutting guides may be made even smaller; in some embodiments, cutting guides may be made that have a smaller width between holes (e.g., holes 740 on the cutting guide 700). As long as the holes are sufficiently far apart to avoid interference of the pins 500 with the operation of the cutting blade, the cutting guide may function appropriately. Thus, Lapidus and other procedures may be accomplished through a very narrow incision through the use of patient-specific instrumentation.
Those of skill in the art will recognize that a wide variety of differently configured cutting guides may be used in conjunction with the method 120 set forth above. Further, a wide variety of patient-specific instruments may be used in connection with the method 100, including but not limited to cutting guides, gages, implant positioning guides, joint distractors, joint compressors, soft tissue retractors, and the like.
Furthermore, patient-specific cutting guides may be used for various other procedures on the foot, or on other bones of the musculoskeletal system. Patient-specific cutting guides may be used for various procedures involving osteotomy, including but not limited to arthroplasty, fusion, and deformity correction procedures. According to one example, patient-specific cutting guides similar to the cutting guide 300 and the cutting guide 700 may be used for the metatarsophalangeal (“MTP”) joint. A method similar to the method 100 may be employed.
In some embodiments, one or more articulating surfaces of a joint may be replaced and/or resurfaced. For example, for the MTP joint, a patient-specific cutting guide may be used to determine the angles of cuts on the distal metatarsus or the proximal phalanx in preparation for replacement or resurfacing of the metatarsal head and/or the proximal phalangeal base. Implants for either the metatarsus or the phalanx may be customized to match the patient's original anatomy, such as the curvature of the MTP joint. In other embodiments, an MTP joint may be fused through the use of patient-specific cutting guides. Patient-specific cutting guides may be used to treat (for example, via fusion, resurfacing, and/or arthroplasty) any joint in the body, using methods similar to the method 100.
According to other examples, patient-specific cutting guides may be used to carry out an Evans calcaneal osteotomy and/or a medializing calcaneal osteotomy. Patient-specific instruments will be shown and described in connection with
The cut between the first bone segment 1040 and the second bone segment 1042 may be carried out virtually (for example, in CAD) on a model of the calcaneus 1000 obtained from a CT scan or other imaging of the patient's foot. Thus, the optimal realignment of the posterior end of the calcaneus 1000 can be obtained. If desired, a patient-specific cutting guide, or cutting guide 1043, may be generated in order to facilitate resection of the calcaneus 1000.
As shown, the cutting guide 1043 may have a first end 1044 and a second end 1045, each of which has a bone attachment feature 1046. The bone attachment features 1046 may be used to secure the first end 1044 and the second end 1045 to the first bone segment 1040 and the second bone segment 1042, respectively. The first end 1044 may have a first bone engagement surface 1047 that is shaped to match a corresponding contour on the first bone segment 1040, and the second end 1045 may have a second bone engagement surface 1048 that is shaped to match a corresponding contour on the second bone segment 1042. Thus, the cutting guide 1043 may naturally lie flush with the surface of the calcaneus 1000, in the optimal position on the calcaneus 1000 to facilitate resection of the calcaneus 1000 to divide the first bone segment 1040 from the second bone segment 1042. The cutting guide 1043 may have a guide feature 1049, such as a slot, that can be used to guide a cutter to form a single cut between the first bone segment 1040 and the second bone segment 1042.
After the cut has been made to split the calcaneus 1000 into the first bone segment 1040 and the second bone segment 1042, the surgeon may angle the second bone segment 1042 relative to the first bone segment 1040 in the predetermined (previously modeled) relative orientation. This reorientation between the first bone segment 1040 and the second bone segment 1042 may leave a wedge-shaped gap between the first bone segment 1040 and the second bone segment 1042. In order to maintain the desired relative orientation, an implant 1060 with a wedge shape may be inserted into the gap and secured to the first bone segment 1040 and the second bone segment 1042. The implant 1060 may be fabricated specifically for the patient, since the precise angulation and position of the realignment may also be patient specific. As shown, the implant 1060 may have exterior surfaces that are contoured to match the contours of the adjoining portions of the first bone segment 1040 and the second bone segment 1042. Thus, the implant 1060 may provide secure fixation, while not protrude beyond the adjoining surfaces of the first bone segment 1040 and the second bone segment 1042. Thus, the implant 1060 may be devoid of proud edges or other protrusions that could otherwise interfere with motion between the calcaneus 1000 and the talus 1010, or with surrounding soft tissues, thus interfering with the patient's post-operative gait.
The implant 1060 may be made of any biocompatible material, including but not limited to Titanium and alloys thereof, stainless steel, PEEK, and/or the like. The implant 1060 may be formed by any method known in the art, including but not limited to forging, casting, milling, additive manufacturing, and/or the like. In some embodiments, the implant 1060 may have an interior void that can be filled with bone graft or other material designed to promote boney in-growth between the cut surfaces of the first bone segment 1040 and the second bone segment 1042. In alternative embodiments, the implant 1060 may have a mesh and/or lattice structure that facilitates such boney in-growth, which structure may be formed via additive manufacturing.
As mentioned previously, a medializing calcaneal osteotomy may optionally be performed in addition to or in place of the Evans calcaneal osteotomy. As shown, the heel 1050 may be cut from the remainder of the second bone segment 1042 and may be displaced medially. This displacement may also help to restore normal gait and tendon function in the foot 200, particularly when coupled with the Evans calcaneal osteotomy. The proper displacement of the heel 1050 relative to the remainder of the second bone segment 1042 may be determined based on analysis of the CAD models from scans of the foot 200. If desired, the model of the calcaneus 1000 may be divided and manipulated in CAD to simulate the repositioning of the heel 1050 pursuant to the medializing calcaneal osteotomy. Thus, the alignment of the heel 1050 relative to the remainder of the foot 200 can easily be assessed and optimized prior to surgery.
Such preoperative alignment and planning may be particularly useful where multiple procedures, such as the Evans calcaneal osteotomy and the medializing calcaneal osteotomy, are combined for a single patient. Without such planning, it may be difficult to properly assess the effect of the combined procedures on the patient's anatomy. For example, the effect of the Evans calcaneal osteotomy, and that of the medializing calcaneal osteotomy, is to shift the heel 1050 medially. The combined shift may be difficult to assess in the operating room but may be much more easily and accurately gauged via manipulation of the modeled anatomy.
In some embodiments, one or more additional procedures may be carried out, in addition to or in the alternative to those of
As in the case of the Evans calcaneal osteotomy, a custom cutting guide, or cutting guide 1053, may be generated to help the surgeon obtain the correction that was previously modeled and/or planned using the computer models of the foot 200. The cutting guide may 1053 have a structure and function similar to that of the cutting guide 1043 used for the Evans calcaneal osteotomy. Such a cutting guide may have contoured surfaces that match the contours of the adjoining boney surfaces of the remainder of the second bone segment 1042 and/or the heel 1050.
More specifically, the cutting guide 1053 may have a first end 1054 and a second end 1055, each of which has a bone attachment feature 1056. The bone attachment features 1056 may be used to secure the first end 1054 and the second end 1055 to the second bone segment 1042 and the heel 1050, respectively. The first end 1054 may have a first bone engagement surface 1057 that is shaped to match a corresponding contour on the second bone segment 1042, and the second end 1055 may have a second bone engagement surface 1058 that is shaped to match a corresponding contour on the heel 1050. Thus, the cutting guide 1053 may naturally lie flush with the surface of the calcaneus 1000, in the optimal position on the calcaneus 1000 to facilitate resection of the calcaneus 1000 to divide the second bone segment 1042 from the heel 1050. The cutting guide 1053 may have a guide feature 1059, such as a slot, that can be used to guide a cutter to form a single cut between the second bone segment 1042 and the heel 1050.
In order to maintain the heel 1050 in the proper position relative to the remainder of the second bone segment 1042, a bone plate 1070 may be secured to the heel 1050 and to the remainder of the second bone segment 1042. The bone plate 1070 may include a first end 1080 secured to the remainder of the second bone segment 1042, a second end 1082 secured to the heel 1050, and an intermediate portion 1084 that extends from the first end 1080 to the second end 1082, and provides the desired medial shift between the first end 1080 and the second end 1082. The first end 1080 and the second end 1082 may be secured to the remainder of the second bone segment 1042 and to the heel 1050, respectively, through the use of screws 1090.
Like the implant 1060, the bone plate 1070 may be made of any known biocompatible material, through the use of any manufacturing process known in the art. In some embodiments, the bone plate 1070 may also be fabricated specifically for the foot 200, enabling the bone plate 1070 to maintain precisely the desired level of correction. When made specifically for the foot 200 in combination with each other, the implant 1060 and the bone plate 1070 may provide a highly predictable, precise, and customizable level of correction of the flat foot deformity.
The edges of the first bone-facing surface 1100 and the second bone-facing surface 1110 may be shaped to line up with the edges of the cut surfaces of the first bone segment 1040 and the second bone segment 1042, respectively. The implant 1060 may also have a contoured surface 1120 that extends between the edges of the first bone-facing surface 1100 and the second bone-facing surface 1110. The contoured surface 1120 may also be contoured to match the contours of the adjoining portions of the first bone segment 1040 and the second bone segment 1042. Thus, the contoured surface 1120 may provide a continuous surface, devoid of protrusions, that extends between the adjoining surfaces of the first bone segment 1040 and the second bone segment 1042.
A threaded hole 1130 may optionally be provided in the contoured surface 1120. The threaded hole 1130 may be used to secure the implant 1060 to an insertion instrument, a positioning instrument, and/or a removal instrument. The threaded hole 1130 may be formed in a recess 1140 in the contoured surface 1120 so that the threaded hole 1130 can have the desired orientation, without affecting the shape of the contoured surface 1120 more than necessary. Of course, many other features may be used to secure an instrument to the implant 1060, including various clips, clamps, fasteners, and interfacing features, as known in the art.
The present disclosure is not limited to cutting guides or extremity procedures. In some embodiments, patient-specific instrumentation may be used to correct a wide variety of bone conditions. Such conditions include, but are not limited to, any angular deformities from within one bone segment in either the lower or upper extremities (for example, tibial deformities, calcaneal deformities, femoral deformities, and radial deformities). The present disclosure may also be used to treat an interface between two bone segments (for example, the ankle joint, metatarsal cuneiform joint, lisfranc's joint, complex charcot deformity, wrist joint, knee joint, etc.). As one example, an angular deformity or segmental malalignment in the forefoot may be treated, such as is found at the metatarsal cuneiform level, the midfoot level such as the navicular cuneiform junction, hindfoot at the calcaneal cubiod or subtalar joint or at the ankle between the tibia and talar junction. Additionally, patient-specific instruments could be used in the proximal leg between two bone segments or in the upper extremity such as found at the wrist or metacarpal levels.
Any methods disclosed herein comprise one or more steps or actions for performing the described method. The method steps and/or actions may be interchanged with one another. In other words, unless a specific order of steps or actions is required for proper operation of the embodiment, the order and/or use of specific steps and/or actions may be modified.
Reference throughout this specification to “an embodiment” or “the embodiment” means that a particular feature, structure or characteristic described in connection with that embodiment is included in at least one embodiment. Thus, the quoted phrases, or variations thereof, as recited throughout this specification are not necessarily all referring to the same embodiment.
Similarly, it should be appreciated that in the above description of embodiments, various features are sometimes grouped together in a single embodiment, Figure, or description thereof for the purpose of streamlining the disclosure. This method of disclosure, however, is not to be interpreted as reflecting an intention that any claim require more features than those expressly recited in that claim. Rather, as the following claims reflect, inventive aspects lie in a combination of fewer than all features of any single foregoing disclosed embodiment. Thus, the claims following this Detailed Description are hereby expressly incorporated into this Detailed Description, with each claim standing on its own as a separate embodiment. This disclosure includes all permutations of the independent claims with their dependent claims.
Recitation in the claims of the term “first” with respect to a feature or element does not necessarily imply the existence of a second or additional such feature or element. Elements recited in means-plus-function format are intended to be construed in accordance with 35 U.S.C. § 112 Para. 6. It will be apparent to those having skill in the art that changes may be made to the details of the above-described embodiments without departing from the underlying principles set forth herein.
While specific embodiments and applications of the present disclosure have been illustrated and described, it is to be understood that the scope of this disclosure is not limited to the precise configuration and components disclosed herein. Various modifications, changes, and variations which will be apparent to those skilled in the art may be made in the arrangement, operation, and details of the methods and systems of the present disclosure set forth herein without departing from it spirit and scope.
The present application claims the benefit of U.S. Provisional Patent Application Ser. No. 62/900,294, entitled PATIENT-SPECIFIC SURGICAL METHODS AND INSTRUMENTATION, which was filed on Sep. 13, 2019. The above-referenced application is incorporated by reference herein as though set forth in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
3664022 | Small | May 1972 | A |
4069824 | Weinstock | Jan 1978 | A |
4159716 | Borchers | Jul 1979 | A |
4187840 | Watanabe | Feb 1980 | A |
4335715 | Kirkley | Jun 1982 | A |
4338927 | Volkov et al. | Jul 1982 | A |
4349018 | Chambers | Sep 1982 | A |
4409973 | Neufeld | Oct 1983 | A |
4436684 | White | Mar 1984 | A |
4440168 | Warren | Apr 1984 | A |
4501268 | Comparetto | Feb 1985 | A |
4502474 | Comparetto | Mar 1985 | A |
4509511 | Neufeld | Apr 1985 | A |
4565191 | Slocum | Jan 1986 | A |
4570624 | Wu | Feb 1986 | A |
4627425 | Reese | Dec 1986 | A |
4628919 | Clyburn | Dec 1986 | A |
4632102 | Comparetto | Dec 1986 | A |
4664102 | Comparetto | May 1987 | A |
4708133 | Comparetto | Nov 1987 | A |
4736737 | Fargie et al. | Apr 1988 | A |
4750481 | Reese | Jun 1988 | A |
4754746 | Cox | Jul 1988 | A |
4757810 | Reese | Jul 1988 | A |
4839822 | Dormond et al. | Jun 1989 | A |
4895141 | Koeneman et al. | Jan 1990 | A |
4952214 | Comparetto | Aug 1990 | A |
4959066 | Dunn et al. | Sep 1990 | A |
4978347 | Ilizarov | Dec 1990 | A |
4988349 | Pennig | Jan 1991 | A |
4995875 | Coes | Feb 1991 | A |
5021056 | Hofmann et al. | Jun 1991 | A |
5035698 | Comparetto | Jul 1991 | A |
5042983 | Rayhack | Aug 1991 | A |
5049149 | Schmidt | Sep 1991 | A |
5053039 | Hofmann et al. | Oct 1991 | A |
5078719 | Schreiber | Jan 1992 | A |
5112334 | Alchermes et al. | May 1992 | A |
5147364 | Comparetto | Sep 1992 | A |
5176685 | Rayhack | Jan 1993 | A |
5207676 | Canadell et al. | May 1993 | A |
5246444 | Schreiber | Sep 1993 | A |
5254119 | Schreiber | Oct 1993 | A |
5312412 | Whipple | May 1994 | A |
5358504 | Paley et al. | Oct 1994 | A |
5364402 | Mumme et al. | Nov 1994 | A |
5374271 | Hwang | Dec 1994 | A |
5413579 | Toit | May 1995 | A |
5417694 | Marik et al. | May 1995 | A |
5449360 | Schreiber | Sep 1995 | A |
5470335 | Du Toit | Nov 1995 | A |
5490854 | Fisher et al. | Feb 1996 | A |
5529075 | Clark | Jun 1996 | A |
5540695 | Levy | Jul 1996 | A |
5578038 | Slocum | Nov 1996 | A |
5586564 | Barrett et al. | Dec 1996 | A |
5601565 | Huebner | Feb 1997 | A |
5613969 | Jenkins, Jr. | Mar 1997 | A |
5620442 | Bailey et al. | Apr 1997 | A |
5620448 | Puddu | Apr 1997 | A |
5643270 | Combs | Jul 1997 | A |
5667510 | Combs | Sep 1997 | A |
H1706 | Mason | Jan 1998 | H |
5722978 | Jenkins | Mar 1998 | A |
5749875 | Puddu | May 1998 | A |
5779709 | Harris et al. | Jul 1998 | A |
5788695 | Richardson | Aug 1998 | A |
5803924 | Oni et al. | Sep 1998 | A |
5810822 | Mortier | Sep 1998 | A |
5839438 | Graettinger et al. | Nov 1998 | A |
5843085 | Graser | Dec 1998 | A |
5893553 | Pinkous | Apr 1999 | A |
5911724 | Wehrli | Jun 1999 | A |
5935128 | Carter et al. | Aug 1999 | A |
5941877 | Viegas et al. | Aug 1999 | A |
5951556 | Faccioli et al. | Sep 1999 | A |
5980526 | Johnson et al. | Nov 1999 | A |
5984931 | Greenfield | Nov 1999 | A |
6007535 | Rayhack et al. | Dec 1999 | A |
6027504 | Mcguire | Feb 2000 | A |
6030391 | Brainard et al. | Feb 2000 | A |
6162223 | Orsak et al. | Dec 2000 | A |
6171309 | Huebner | Jan 2001 | B1 |
6203545 | Stoffella | Mar 2001 | B1 |
6248109 | Stoffella | Jun 2001 | B1 |
6391031 | Toomey | May 2002 | B1 |
6416465 | Brau | Jul 2002 | B2 |
6478799 | Williamson | Nov 2002 | B1 |
6511481 | von Hoffmann et al. | Jan 2003 | B2 |
6547793 | McGuire | Apr 2003 | B1 |
6676662 | Bagga et al. | Jan 2004 | B1 |
6719773 | Boucher et al. | Apr 2004 | B1 |
6743233 | Baldwin et al. | Jun 2004 | B1 |
6755838 | Trnka | Jun 2004 | B2 |
6796986 | Duffner | Sep 2004 | B2 |
6859661 | Tuke | Feb 2005 | B2 |
6944518 | Roose | Sep 2005 | B2 |
6964645 | Smits | Nov 2005 | B1 |
7018383 | McGuire | Mar 2006 | B2 |
7033361 | Collazo | Apr 2006 | B2 |
7097647 | Segler et al. | Aug 2006 | B2 |
7112204 | Justin et al. | Sep 2006 | B2 |
7153310 | Ralph et al. | Dec 2006 | B2 |
7182766 | Mogul | Feb 2007 | B1 |
7241298 | Nemec et al. | Jul 2007 | B2 |
7282054 | Steffensmeier et al. | Oct 2007 | B2 |
7351203 | Jelliffe et al. | Apr 2008 | B2 |
7377924 | Raistrick et al. | May 2008 | B2 |
7465303 | Riccione et al. | Dec 2008 | B2 |
7540874 | Trumble et al. | Jun 2009 | B2 |
7572258 | Stiernborg | Aug 2009 | B2 |
7618451 | Berez et al. | Nov 2009 | B2 |
7641660 | Lakin et al. | Jan 2010 | B2 |
D610257 | Horton | Feb 2010 | S |
7686811 | Byrd et al. | Mar 2010 | B2 |
7691108 | Lavallee | Apr 2010 | B2 |
7763026 | Egger et al. | Jul 2010 | B2 |
D629900 | Fisher | Dec 2010 | S |
7967823 | Ammann et al. | Jun 2011 | B2 |
7972338 | O'Brien | Jul 2011 | B2 |
D646389 | Claypool et al. | Oct 2011 | S |
8057478 | Kuczynski et al. | Nov 2011 | B2 |
8062301 | Ammann et al. | Nov 2011 | B2 |
D651315 | Bertoni et al. | Dec 2011 | S |
D651316 | May et al. | Dec 2011 | S |
8080010 | Schulz et al. | Dec 2011 | B2 |
8080045 | Wotton, III | Dec 2011 | B2 |
8083745 | Lang et al. | Dec 2011 | B2 |
8083746 | Novak | Dec 2011 | B2 |
8105330 | Fitz et al. | Jan 2012 | B2 |
8123753 | Poncet | Feb 2012 | B2 |
8137406 | Novak et al. | Mar 2012 | B2 |
8147530 | Strnad et al. | Apr 2012 | B2 |
8160345 | Pavlovskaia et al. | Apr 2012 | B2 |
8167918 | Strnad et al. | May 2012 | B2 |
8172848 | Tomko et al. | May 2012 | B2 |
8192441 | Collazo | Jun 2012 | B2 |
8197487 | Poncet et al. | Jun 2012 | B2 |
8231623 | Jordan | Jul 2012 | B1 |
8231663 | Kay et al. | Jul 2012 | B2 |
8236000 | Ammann et al. | Aug 2012 | B2 |
8246561 | Agee et al. | Aug 2012 | B1 |
8246680 | Betz et al. | Aug 2012 | B2 |
D666721 | Wright et al. | Sep 2012 | S |
8262664 | Justin et al. | Sep 2012 | B2 |
8277459 | Sand et al. | Oct 2012 | B2 |
8282644 | Edwards | Oct 2012 | B2 |
8282645 | Lawrence et al. | Oct 2012 | B2 |
8292966 | Morton | Oct 2012 | B2 |
8298237 | Schoenefeld et al. | Oct 2012 | B2 |
8303596 | Plassky et al. | Nov 2012 | B2 |
8313492 | Wong et al. | Nov 2012 | B2 |
8323288 | Zajac | Dec 2012 | B2 |
8323289 | Re | Dec 2012 | B2 |
8337501 | Fitz et al. | Dec 2012 | B2 |
8337503 | Lian | Dec 2012 | B2 |
8343159 | Bennett | Jan 2013 | B2 |
8366771 | Burdulis, Jr. et al. | Feb 2013 | B2 |
8377105 | Buescher | Feb 2013 | B2 |
D679395 | Wright et al. | Apr 2013 | S |
8409209 | Ammann et al. | Apr 2013 | B2 |
8435246 | Fisher et al. | May 2013 | B2 |
8475462 | Thomas et al. | Jul 2013 | B2 |
8475463 | Lian | Jul 2013 | B2 |
8484001 | Glozman et al. | Jul 2013 | B2 |
8496662 | Novak et al. | Jul 2013 | B2 |
8518045 | Szanto | Aug 2013 | B2 |
8523870 | Green et al. | Sep 2013 | B2 |
8529571 | Horan et al. | Sep 2013 | B2 |
8540777 | Ammann et al. | Sep 2013 | B2 |
8545508 | Collazo | Oct 2013 | B2 |
8551102 | Fitz et al. | Oct 2013 | B2 |
8556906 | Fitz et al. | Oct 2013 | B2 |
8561278 | Fitz et al. | Oct 2013 | B2 |
8585708 | Fitz et al. | Nov 2013 | B2 |
D694884 | Mooradian et al. | Dec 2013 | S |
D695402 | Dacosta et al. | Dec 2013 | S |
8634617 | Tsougarakis et al. | Jan 2014 | B2 |
8652142 | Geissler | Feb 2014 | B2 |
8657820 | Kubiak et al. | Feb 2014 | B2 |
8657827 | Fitz et al. | Feb 2014 | B2 |
D701303 | Cook | Mar 2014 | S |
8672945 | Lavallee et al. | Mar 2014 | B2 |
8682052 | Fitz et al. | Mar 2014 | B2 |
8696716 | Kartalian et al. | Apr 2014 | B2 |
8702686 | Geebelen et al. | Apr 2014 | B2 |
8702715 | Ammann et al. | Apr 2014 | B2 |
D705929 | Frey | May 2014 | S |
8715363 | Ratron et al. | May 2014 | B2 |
8728084 | Berelsman et al. | May 2014 | B2 |
8758354 | Habegger et al. | Jun 2014 | B2 |
8764760 | Metzger et al. | Jul 2014 | B2 |
8764763 | Wong et al. | Jul 2014 | B2 |
8768028 | Lang et al. | Jul 2014 | B2 |
8771279 | Philippon et al. | Jul 2014 | B2 |
8777948 | Bernsteiner | Jul 2014 | B2 |
8784427 | Fallin et al. | Jul 2014 | B2 |
8784457 | Graham | Jul 2014 | B2 |
8795286 | Sand et al. | Aug 2014 | B2 |
8801719 | Park et al. | Aug 2014 | B2 |
8801727 | Chan et al. | Aug 2014 | B2 |
8808301 | Nofsinger | Aug 2014 | B1 |
8808303 | Stemniski et al. | Aug 2014 | B2 |
8821499 | Iannotti et al. | Sep 2014 | B2 |
8828012 | May et al. | Sep 2014 | B2 |
8828063 | Blitz et al. | Sep 2014 | B2 |
8838263 | Sivak et al. | Sep 2014 | B2 |
8858602 | Weiner et al. | Oct 2014 | B2 |
8882778 | Ranft | Nov 2014 | B2 |
8882816 | Kartalian et al. | Nov 2014 | B2 |
8888785 | Ammann et al. | Nov 2014 | B2 |
D720456 | Dacosta et al. | Dec 2014 | S |
8900247 | Tseng et al. | Dec 2014 | B2 |
8906026 | Ammann et al. | Dec 2014 | B2 |
8945132 | Plassy et al. | Feb 2015 | B2 |
8965088 | Tsougarakis et al. | Feb 2015 | B2 |
8983813 | Miles et al. | Mar 2015 | B2 |
8998903 | Price et al. | Apr 2015 | B2 |
8998904 | Zeetser et al. | Apr 2015 | B2 |
9011452 | Iannotti et al. | Apr 2015 | B2 |
9014835 | Azernikov et al. | Apr 2015 | B2 |
9017336 | Park et al. | Apr 2015 | B2 |
9023052 | Lietz et al. | May 2015 | B2 |
9044250 | Olsen et al. | Jun 2015 | B2 |
9055953 | Lang et al. | Jun 2015 | B2 |
9060822 | Lewis et al. | Jun 2015 | B2 |
9066727 | Catanzarite et al. | Jun 2015 | B2 |
9089376 | Medoff et al. | Jul 2015 | B2 |
9095353 | Burdulis et al. | Aug 2015 | B2 |
9101421 | Blacklidge | Aug 2015 | B2 |
9107715 | Blitz et al. | Aug 2015 | B2 |
9113920 | Ammann et al. | Aug 2015 | B2 |
9131945 | Aram et al. | Sep 2015 | B2 |
D740424 | Dacosta et al. | Oct 2015 | S |
9186154 | Li | Nov 2015 | B2 |
9198678 | Frey et al. | Dec 2015 | B2 |
9216025 | Fitz et al. | Dec 2015 | B2 |
9220509 | Boyer et al. | Dec 2015 | B2 |
9289221 | Gelaude et al. | Mar 2016 | B2 |
9351744 | Kunz et al. | May 2016 | B2 |
9358019 | Gibson et al. | Jun 2016 | B2 |
9361410 | Davison et al. | Jun 2016 | B2 |
9402636 | Collazo | Aug 2016 | B2 |
9402640 | Reynolds et al. | Aug 2016 | B2 |
9411939 | Furrer et al. | Aug 2016 | B2 |
9414847 | Kurtz | Aug 2016 | B2 |
D765844 | DaCosta | Sep 2016 | S |
D766434 | DaCosta | Sep 2016 | S |
D766437 | DaCosta | Sep 2016 | S |
D766438 | DaCosta | Sep 2016 | S |
D766439 | DaCosta | Sep 2016 | S |
9433452 | Weiner et al. | Sep 2016 | B2 |
9439767 | Bojarski et al. | Sep 2016 | B2 |
9452050 | Miles et al. | Sep 2016 | B2 |
9452057 | Dacosta et al. | Sep 2016 | B2 |
9456902 | Hacking et al. | Oct 2016 | B2 |
9492182 | Keefer | Nov 2016 | B2 |
9498234 | Goldstein et al. | Nov 2016 | B2 |
9522023 | Haddad et al. | Nov 2016 | B2 |
9579110 | Aram et al. | Feb 2017 | B2 |
9579112 | Catanzarite et al. | Feb 2017 | B2 |
9592084 | Grant | Mar 2017 | B2 |
9615834 | Agnihotri et al. | Apr 2017 | B2 |
9622805 | Santrock et al. | Apr 2017 | B2 |
9622820 | Baloch et al. | Apr 2017 | B2 |
9662127 | Meridew et al. | May 2017 | B2 |
9668747 | Metzger et al. | Jun 2017 | B2 |
9687250 | Dayton et al. | Jun 2017 | B2 |
9707044 | Davison et al. | Jul 2017 | B2 |
9717508 | Iannotti et al. | Aug 2017 | B2 |
9737367 | Steines et al. | Aug 2017 | B2 |
9743935 | Smith et al. | Aug 2017 | B2 |
9750538 | Soffiatti et al. | Sep 2017 | B2 |
9785747 | Geebelen | Oct 2017 | B2 |
9786022 | Park | Oct 2017 | B2 |
9795394 | Bonutti | Oct 2017 | B2 |
9814474 | Montoya et al. | Nov 2017 | B2 |
9872773 | Lang et al. | Jan 2018 | B2 |
9888931 | Bake | Feb 2018 | B2 |
9907561 | Luna et al. | Mar 2018 | B2 |
9918769 | Provencher et al. | Mar 2018 | B2 |
9924950 | Couture et al. | Mar 2018 | B2 |
9980760 | Dacosta et al. | May 2018 | B2 |
9993256 | Lipman et al. | Jun 2018 | B2 |
10002227 | Netravali et al. | Jun 2018 | B2 |
10010431 | Eraly et al. | Jul 2018 | B2 |
10022170 | Leemrijse et al. | Jul 2018 | B2 |
10028750 | Rose | Jul 2018 | B2 |
10045807 | Santrock et al. | Aug 2018 | B2 |
10052114 | Keppler et al. | Aug 2018 | B2 |
10055536 | Maes et al. | Aug 2018 | B2 |
10064631 | Dacosta et al. | Sep 2018 | B2 |
10089413 | Wirx-Speetjens et al. | Oct 2018 | B2 |
10123807 | Geebelen | Nov 2018 | B2 |
10149722 | Aram et al. | Dec 2018 | B2 |
10159499 | Dacosta et al. | Dec 2018 | B2 |
10182832 | Saltzman et al. | Jan 2019 | B1 |
10201357 | Aram et al. | Feb 2019 | B2 |
10206692 | Sanders | Feb 2019 | B2 |
10231745 | Geebelen et al. | Mar 2019 | B2 |
10262084 | Lavallee et al. | Apr 2019 | B2 |
10265080 | Hughes et al. | Apr 2019 | B2 |
10282488 | Eash | May 2019 | B2 |
10292713 | Fallin et al. | May 2019 | B2 |
10327785 | Bake et al. | Jun 2019 | B2 |
10327829 | Dacosta et al. | Jun 2019 | B2 |
10342590 | Barry et al. | Jul 2019 | B2 |
10357261 | Kugler et al. | Jul 2019 | B2 |
10363052 | Park et al. | Jul 2019 | B2 |
10376268 | Fallin et al. | Aug 2019 | B2 |
10398510 | Goto | Sep 2019 | B2 |
10467356 | Davison et al. | Nov 2019 | B2 |
10470779 | Fallin et al. | Nov 2019 | B2 |
10512470 | Bays et al. | Dec 2019 | B1 |
10524808 | Hissong et al. | Jan 2020 | B1 |
10548668 | Furrer et al. | Feb 2020 | B2 |
10561426 | Dayton | Feb 2020 | B1 |
10575862 | Bays et al. | Mar 2020 | B2 |
10603046 | Dayton et al. | Mar 2020 | B2 |
10610241 | Wagner et al. | Apr 2020 | B2 |
10675063 | Pavlovskaia et al. | Jun 2020 | B2 |
10779867 | Penzimer et al. | Sep 2020 | B2 |
10779890 | Weir | Sep 2020 | B2 |
10786291 | Weiner et al. | Sep 2020 | B2 |
10828046 | Rose et al. | Nov 2020 | B2 |
10849631 | Hatch et al. | Dec 2020 | B2 |
10849665 | Singh et al. | Dec 2020 | B2 |
10849670 | Santrock | Dec 2020 | B2 |
10856886 | Dacosta et al. | Dec 2020 | B2 |
10856925 | Pontell | Dec 2020 | B1 |
10881416 | Couture et al. | Jan 2021 | B2 |
10881417 | Mahfouz | Jan 2021 | B2 |
10888335 | Dayton | Jan 2021 | B2 |
10888340 | Awtrey et al. | Jan 2021 | B2 |
10898211 | Fallin et al. | Jan 2021 | B2 |
10912571 | Pavlovskaia et al. | Feb 2021 | B2 |
10939922 | Dhillon | Mar 2021 | B2 |
10939939 | Gil et al. | Mar 2021 | B1 |
10973529 | Lavallee et al. | Apr 2021 | B2 |
10987176 | Poltaretskyi et al. | Apr 2021 | B2 |
11000327 | Schlotterback et al. | May 2021 | B2 |
11033333 | Singh et al. | Jun 2021 | B2 |
11058546 | Hollis et al. | Jul 2021 | B2 |
11065011 | Bake et al. | Jul 2021 | B2 |
11074688 | Chabin et al. | Jul 2021 | B2 |
11090069 | Park | Aug 2021 | B2 |
11116518 | Hafez et al. | Sep 2021 | B2 |
11123115 | Verstreken et al. | Sep 2021 | B2 |
11129678 | Haslam et al. | Sep 2021 | B2 |
11147568 | Fitz et al. | Oct 2021 | B2 |
11154362 | Kim et al. | Oct 2021 | B2 |
11172945 | Lian | Nov 2021 | B1 |
11213305 | Iannotti et al. | Jan 2022 | B2 |
11213406 | Rodriguez et al. | Jan 2022 | B2 |
11219526 | Mahfouz | Jan 2022 | B2 |
11259817 | Fallin et al. | Mar 2022 | B2 |
11278337 | Bays et al. | Mar 2022 | B2 |
11278413 | Lang | Mar 2022 | B1 |
11304705 | Fallin et al. | Apr 2022 | B2 |
11426184 | Rivet-Sabourin | Aug 2022 | B2 |
11497557 | Bojarski et al. | Nov 2022 | B2 |
11633197 | Denham et al. | Apr 2023 | B2 |
20020099381 | Maroney | Jul 2002 | A1 |
20020107519 | Dixon et al. | Aug 2002 | A1 |
20020165552 | Duffner | Nov 2002 | A1 |
20020198531 | Millard et al. | Dec 2002 | A1 |
20040010259 | Keller et al. | Jan 2004 | A1 |
20040039394 | Conti et al. | Feb 2004 | A1 |
20040097946 | Dietzel et al. | May 2004 | A1 |
20040138669 | Horn | Jul 2004 | A1 |
20050004676 | Schon et al. | Jan 2005 | A1 |
20050059978 | Sherry et al. | Mar 2005 | A1 |
20050070909 | Egger et al. | Mar 2005 | A1 |
20050075641 | Singhatat et al. | Apr 2005 | A1 |
20050101961 | Huebner et al. | May 2005 | A1 |
20050149042 | Metzger | Jul 2005 | A1 |
20050228389 | Stiernborg | Oct 2005 | A1 |
20050251147 | Novak | Nov 2005 | A1 |
20050267482 | Hyde | Dec 2005 | A1 |
20050273112 | McNamara | Dec 2005 | A1 |
20060129163 | McGuire | Jun 2006 | A1 |
20060206044 | Simon | Sep 2006 | A1 |
20060217733 | Plassky et al. | Sep 2006 | A1 |
20060229621 | Cadmus | Oct 2006 | A1 |
20060241607 | Myerson et al. | Oct 2006 | A1 |
20060241608 | Myerson et al. | Oct 2006 | A1 |
20060264961 | Murray-Brown | Nov 2006 | A1 |
20070010818 | Stone et al. | Jan 2007 | A1 |
20070123857 | Deffenbaugh et al. | May 2007 | A1 |
20070233138 | Figueroa et al. | Oct 2007 | A1 |
20070265634 | Weinstein | Nov 2007 | A1 |
20070276383 | Rayhack | Nov 2007 | A1 |
20080009863 | Bond et al. | Jan 2008 | A1 |
20080015603 | Collazo | Jan 2008 | A1 |
20080039850 | Rowley et al. | Feb 2008 | A1 |
20080091197 | Coughlin | Apr 2008 | A1 |
20080140081 | Heavener et al. | Jun 2008 | A1 |
20080147073 | Ammann et al. | Jun 2008 | A1 |
20080172054 | Claypool et al. | Jul 2008 | A1 |
20080195215 | Morton | Aug 2008 | A1 |
20080208252 | Holmes | Aug 2008 | A1 |
20080262500 | Collazo | Oct 2008 | A1 |
20080269908 | Warburton | Oct 2008 | A1 |
20080288004 | Schendel | Nov 2008 | A1 |
20090036893 | Kartalian et al. | Feb 2009 | A1 |
20090036931 | Pech et al. | Feb 2009 | A1 |
20090054899 | Ammann et al. | Feb 2009 | A1 |
20090087276 | Rose | Apr 2009 | A1 |
20090088755 | Aker et al. | Apr 2009 | A1 |
20090093849 | Grabowski | Apr 2009 | A1 |
20090105767 | Reiley | Apr 2009 | A1 |
20090118733 | Orsak et al. | May 2009 | A1 |
20090198244 | Leibel | Aug 2009 | A1 |
20090198279 | Zhang et al. | Aug 2009 | A1 |
20090210010 | Strnad et al. | Aug 2009 | A1 |
20090216089 | Davidson | Aug 2009 | A1 |
20090222047 | Graham | Sep 2009 | A1 |
20090254092 | Albiol Llorach | Oct 2009 | A1 |
20090254126 | Orbay et al. | Oct 2009 | A1 |
20090287309 | Walch et al. | Nov 2009 | A1 |
20100069910 | Hasselman | Mar 2010 | A1 |
20100121334 | Couture et al. | May 2010 | A1 |
20100130981 | Richards | May 2010 | A1 |
20100152782 | Stone et al. | Jun 2010 | A1 |
20100168799 | Schumer | Jul 2010 | A1 |
20100185245 | Paul et al. | Jul 2010 | A1 |
20100217270 | Polinski et al. | Aug 2010 | A1 |
20100249779 | Hotchkiss et al. | Sep 2010 | A1 |
20100256687 | Neufeld et al. | Oct 2010 | A1 |
20100318088 | Warne et al. | Dec 2010 | A1 |
20100324556 | Tyber et al. | Dec 2010 | A1 |
20110009865 | Orfaly | Jan 2011 | A1 |
20110093084 | Morton | Apr 2011 | A1 |
20110118739 | Tyber et al. | May 2011 | A1 |
20110178524 | Lawrence et al. | Jul 2011 | A1 |
20110213376 | Maxson et al. | Sep 2011 | A1 |
20110245835 | Dodds et al. | Oct 2011 | A1 |
20110288550 | Orbay et al. | Nov 2011 | A1 |
20110301648 | Lofthouse et al. | Dec 2011 | A1 |
20120016426 | Robinson | Jan 2012 | A1 |
20120065689 | Prasad et al. | Mar 2012 | A1 |
20120078258 | Lo et al. | Mar 2012 | A1 |
20120109135 | Bailey | May 2012 | A1 |
20120123420 | Honiball | May 2012 | A1 |
20120123484 | Lietz et al. | May 2012 | A1 |
20120130376 | Loring et al. | May 2012 | A1 |
20120130382 | Iannotti et al. | May 2012 | A1 |
20120130383 | Budoff | May 2012 | A1 |
20120130434 | Stemniski | May 2012 | A1 |
20120184961 | Johannaber | Jul 2012 | A1 |
20120185056 | Warburton | Jul 2012 | A1 |
20120191199 | Raemisch | Jul 2012 | A1 |
20120239045 | Li | Sep 2012 | A1 |
20120253350 | Anthony et al. | Oct 2012 | A1 |
20120265301 | Demers et al. | Oct 2012 | A1 |
20120277745 | Lizee | Nov 2012 | A1 |
20120303033 | Weiner et al. | Nov 2012 | A1 |
20120330135 | Millahn et al. | Dec 2012 | A1 |
20130012949 | Fallin et al. | Jan 2013 | A1 |
20130035694 | Grimm et al. | Feb 2013 | A1 |
20130085499 | Lian | Apr 2013 | A1 |
20130085502 | Harrold | Apr 2013 | A1 |
20130096563 | Meade et al. | Apr 2013 | A1 |
20130119579 | Iannotti et al. | May 2013 | A1 |
20130131821 | Cachia | May 2013 | A1 |
20130150900 | Haddad et al. | Jun 2013 | A1 |
20130150903 | Vincent | Jun 2013 | A1 |
20130158556 | Jones et al. | Jun 2013 | A1 |
20130165936 | Myers | Jun 2013 | A1 |
20130165938 | Chow et al. | Jun 2013 | A1 |
20130172942 | Lewis et al. | Jul 2013 | A1 |
20130184714 | Kaneyama et al. | Jul 2013 | A1 |
20130190765 | Harris et al. | Jul 2013 | A1 |
20130190766 | Harris et al. | Jul 2013 | A1 |
20130204259 | Zajac | Aug 2013 | A1 |
20130226248 | Hatch et al. | Aug 2013 | A1 |
20130226252 | Mayer | Aug 2013 | A1 |
20130231668 | Olsen et al. | Sep 2013 | A1 |
20130236874 | Iannotti et al. | Sep 2013 | A1 |
20130237987 | Graham | Sep 2013 | A1 |
20130237989 | Bonutti | Sep 2013 | A1 |
20130267956 | Terrill et al. | Oct 2013 | A1 |
20130292870 | Roger | Nov 2013 | A1 |
20130296865 | Aram et al. | Nov 2013 | A1 |
20130310836 | Raub et al. | Nov 2013 | A1 |
20130325019 | Thomas et al. | Dec 2013 | A1 |
20130325076 | Palmer et al. | Dec 2013 | A1 |
20130331845 | Horan et al. | Dec 2013 | A1 |
20130338785 | Wong | Dec 2013 | A1 |
20140005672 | Edwards et al. | Jan 2014 | A1 |
20140025127 | Richter | Jan 2014 | A1 |
20140039501 | Schickendantz et al. | Feb 2014 | A1 |
20140039561 | Weiner et al. | Feb 2014 | A1 |
20140046387 | Waizenegger | Feb 2014 | A1 |
20140074099 | Vigneron et al. | Mar 2014 | A1 |
20140074101 | Collazo | Mar 2014 | A1 |
20140094861 | Fallin | Apr 2014 | A1 |
20140094924 | Hacking et al. | Apr 2014 | A1 |
20140135775 | Maxson et al. | May 2014 | A1 |
20140142710 | Lang | May 2014 | A1 |
20140163563 | Reynolds et al. | Jun 2014 | A1 |
20140163570 | Reynolds et al. | Jun 2014 | A1 |
20140171953 | Gonzalvez et al. | Jun 2014 | A1 |
20140180342 | Lowery et al. | Jun 2014 | A1 |
20140188139 | Fallin et al. | Jul 2014 | A1 |
20140194884 | Martin et al. | Jul 2014 | A1 |
20140194999 | Orbay et al. | Jul 2014 | A1 |
20140207144 | Lee et al. | Jul 2014 | A1 |
20140228860 | Steines et al. | Aug 2014 | A1 |
20140249537 | Wong et al. | Sep 2014 | A1 |
20140257308 | Johannaber | Sep 2014 | A1 |
20140257509 | Dacosta et al. | Sep 2014 | A1 |
20140276815 | Riccione | Sep 2014 | A1 |
20140276853 | Long et al. | Sep 2014 | A1 |
20140277176 | Buchanan et al. | Sep 2014 | A1 |
20140277214 | Helenbolt et al. | Sep 2014 | A1 |
20140288562 | Von Zabern et al. | Sep 2014 | A1 |
20140296995 | Reiley et al. | Oct 2014 | A1 |
20140303621 | Gerold et al. | Oct 2014 | A1 |
20140336658 | Luna et al. | Nov 2014 | A1 |
20140343555 | Russi et al. | Nov 2014 | A1 |
20140350561 | Dacosta et al. | Nov 2014 | A1 |
20140371897 | Lin et al. | Dec 2014 | A1 |
20150032168 | Orsak et al. | Jan 2015 | A1 |
20150032217 | Bojarski et al. | Jan 2015 | A1 |
20150045801 | Axelson, Jr. et al. | Feb 2015 | A1 |
20150045839 | Dacosta et al. | Feb 2015 | A1 |
20150051650 | Verstreken et al. | Feb 2015 | A1 |
20150057667 | Ammann et al. | Feb 2015 | A1 |
20150066094 | Prandi et al. | Mar 2015 | A1 |
20150112446 | Melamed et al. | Apr 2015 | A1 |
20150119944 | Geldwert | Apr 2015 | A1 |
20150142000 | Seedhom et al. | May 2015 | A1 |
20150142064 | Perez et al. | May 2015 | A1 |
20150150608 | Sammarco | Jun 2015 | A1 |
20150182273 | Stemniski et al. | Jul 2015 | A1 |
20150223851 | Hill et al. | Aug 2015 | A1 |
20150230843 | Palmer et al. | Aug 2015 | A1 |
20150245858 | Weiner et al. | Sep 2015 | A1 |
20150305752 | Eash | Oct 2015 | A1 |
20150342756 | Bays et al. | Dec 2015 | A1 |
20150351916 | Kosarek et al. | Dec 2015 | A1 |
20160015426 | Dayton | Jan 2016 | A1 |
20160022315 | Soffiatti et al. | Jan 2016 | A1 |
20160135858 | Dacosta et al. | May 2016 | A1 |
20160151165 | Fallin et al. | Jun 2016 | A1 |
20160175089 | Fallin et al. | Jun 2016 | A1 |
20160192949 | Robichaud et al. | Jul 2016 | A1 |
20160192950 | Dayton et al. | Jul 2016 | A1 |
20160192951 | Gelaude et al. | Jul 2016 | A1 |
20160199076 | Fallin et al. | Jul 2016 | A1 |
20160206331 | Fitz et al. | Jul 2016 | A1 |
20160206379 | Flett et al. | Jul 2016 | A1 |
20160213384 | Fallin et al. | Jul 2016 | A1 |
20160235414 | Hatch et al. | Aug 2016 | A1 |
20160242791 | Fallin et al. | Aug 2016 | A1 |
20160256204 | Patel et al. | Sep 2016 | A1 |
20160270855 | Kunz et al. | Sep 2016 | A1 |
20160324532 | Montoya et al. | Nov 2016 | A1 |
20160324555 | Brumfield et al. | Nov 2016 | A1 |
20160331467 | Slamin et al. | Nov 2016 | A1 |
20160354127 | Undquist et al. | Dec 2016 | A1 |
20160361071 | Mahfouz | Dec 2016 | A1 |
20170000498 | Grant et al. | Jan 2017 | A1 |
20170007408 | Fitz et al. | Jan 2017 | A1 |
20170014143 | Dayton et al. | Jan 2017 | A1 |
20170014173 | Smith et al. | Jan 2017 | A1 |
20170020537 | Tuten | Jan 2017 | A1 |
20170027593 | Bojarski et al. | Feb 2017 | A1 |
20170042598 | Santrock | Feb 2017 | A1 |
20170042599 | Bays et al. | Feb 2017 | A1 |
20170056183 | Steines et al. | Mar 2017 | A1 |
20170065347 | Bojarski et al. | Mar 2017 | A1 |
20170079669 | Bays et al. | Mar 2017 | A1 |
20170143511 | Cachia | May 2017 | A1 |
20170164989 | Weiner et al. | Jun 2017 | A1 |
20170164990 | Weiner et al. | Jun 2017 | A1 |
20170231645 | Metzger et al. | Aug 2017 | A1 |
20170245906 | Kugler et al. | Aug 2017 | A1 |
20170245935 | Kugler et al. | Aug 2017 | A1 |
20170249440 | Lang et al. | Aug 2017 | A1 |
20170290614 | Weiner et al. | Oct 2017 | A1 |
20170360578 | Shin et al. | Dec 2017 | A1 |
20180021145 | Seavey et al. | Jan 2018 | A1 |
20180033338 | Iannotti et al. | Feb 2018 | A1 |
20180036019 | Iannotti et al. | Feb 2018 | A1 |
20180049758 | Amis et al. | Feb 2018 | A1 |
20180085133 | Lavallee et al. | Mar 2018 | A1 |
20180110530 | Wagner et al. | Apr 2018 | A1 |
20180116804 | Hafez et al. | May 2018 | A1 |
20180125504 | Dayton et al. | May 2018 | A1 |
20180132868 | Dacosta et al. | May 2018 | A1 |
20180146970 | Luna et al. | May 2018 | A1 |
20180185097 | Langhorn et al. | Jul 2018 | A1 |
20180235641 | McAuliffe et al. | Aug 2018 | A1 |
20180235765 | Welker et al. | Aug 2018 | A1 |
20180271569 | Verkstreken et al. | Sep 2018 | A1 |
20180289380 | Mauldin et al. | Oct 2018 | A1 |
20180317986 | Jackman et al. | Nov 2018 | A1 |
20180317992 | Antrock et al. | Nov 2018 | A1 |
20180344326 | Chan et al. | Dec 2018 | A1 |
20180344334 | Kim et al. | Dec 2018 | A1 |
20180344409 | Bonny et al. | Dec 2018 | A1 |
20190000629 | Winslow | Jan 2019 | A1 |
20190008532 | Fitz et al. | Jan 2019 | A1 |
20190015113 | Morvan | Jan 2019 | A1 |
20190059913 | Saltzman et al. | Feb 2019 | A1 |
20190099189 | Fallin et al. | Apr 2019 | A1 |
20190117286 | Tyber et al. | Apr 2019 | A1 |
20190146458 | Roh et al. | May 2019 | A1 |
20190175237 | Treace et al. | Jun 2019 | A1 |
20190254681 | Couture et al. | Aug 2019 | A1 |
20190274745 | Smith et al. | Sep 2019 | A1 |
20190282302 | Park | Sep 2019 | A1 |
20190307495 | Geldwert | Oct 2019 | A1 |
20190328435 | Bays et al. | Oct 2019 | A1 |
20190328436 | Bays et al. | Oct 2019 | A1 |
20190336140 | Dacosta et al. | Nov 2019 | A1 |
20190350602 | Stemniski et al. | Nov 2019 | A1 |
20190357919 | Fallin et al. | Nov 2019 | A1 |
20190365419 | Rhodes et al. | Dec 2019 | A1 |
20190374237 | Metzger et al. | Dec 2019 | A1 |
20190388240 | Courtis et al. | Dec 2019 | A1 |
20200015856 | Treace et al. | Jan 2020 | A1 |
20200015874 | Hartson et al. | Jan 2020 | A1 |
20200046374 | Luttrell et al. | Feb 2020 | A1 |
20200054351 | Meridew et al. | Feb 2020 | A1 |
20200060739 | Nachtrab et al. | Feb 2020 | A1 |
20200085452 | Siegler | Mar 2020 | A1 |
20200085588 | Mauldin et al. | Mar 2020 | A1 |
20200129213 | Singh et al. | Apr 2020 | A1 |
20200155176 | Bays et al. | May 2020 | A1 |
20200188134 | Mullen et al. | Jun 2020 | A1 |
20200237386 | Stemniski et al. | Jul 2020 | A1 |
20200246027 | Robichaud et al. | Aug 2020 | A1 |
20200253641 | Treace et al. | Aug 2020 | A1 |
20200253740 | Puncreobutr et al. | Aug 2020 | A1 |
20200258227 | Liao et al. | Aug 2020 | A1 |
20200297495 | Gemon et al. | Sep 2020 | A1 |
20200315708 | Mosnier et al. | Oct 2020 | A1 |
20200334871 | Su et al. | Oct 2020 | A1 |
20200349699 | Shah | Nov 2020 | A1 |
20200352580 | Saltzman et al. | Nov 2020 | A1 |
20200352582 | Larche et al. | Nov 2020 | A1 |
20200390452 | Bojarski et al. | Dec 2020 | A1 |
20210015527 | Singh et al. | Jan 2021 | A1 |
20210038212 | May et al. | Feb 2021 | A1 |
20210042458 | Dayal et al. | Feb 2021 | A1 |
20210059691 | Zille | Mar 2021 | A1 |
20210068846 | Langhorn et al. | Mar 2021 | A1 |
20210077131 | Denham et al. | Mar 2021 | A1 |
20210077192 | Perler et al. | Mar 2021 | A1 |
20210090248 | Choi et al. | Mar 2021 | A1 |
20210093328 | Dayton et al. | Apr 2021 | A1 |
20210093365 | Dayton et al. | Apr 2021 | A1 |
20210106372 | Tyber et al. | Apr 2021 | A1 |
20210113222 | Khatibi et al. | Apr 2021 | A1 |
20210121297 | Cavanagh et al. | Apr 2021 | A1 |
20210137613 | Chi | May 2021 | A1 |
20210145456 | Dhillon | May 2021 | A1 |
20210145461 | McGinley et al. | May 2021 | A1 |
20210145518 | Mosnier et al. | May 2021 | A1 |
20210153948 | Stifter et al. | May 2021 | A1 |
20210161543 | McAuliffe et al. | Jun 2021 | A1 |
20210186704 | Fitz et al. | Jun 2021 | A1 |
20210196290 | Annotti et al. | Jul 2021 | A1 |
20210205099 | Parr | Jul 2021 | A1 |
20210210189 | Casey et al. | Jul 2021 | A1 |
20210212705 | Reynolds et al. | Jul 2021 | A1 |
20210244477 | Singh et al. | Aug 2021 | A1 |
20210251670 | Sayger et al. | Aug 2021 | A1 |
20210259713 | Trabish et al. | Aug 2021 | A1 |
20210267730 | Azernikov et al. | Sep 2021 | A1 |
20210272134 | Indani et al. | Sep 2021 | A1 |
20210275196 | Wodajo | Sep 2021 | A1 |
20210282790 | Sellman et al. | Sep 2021 | A1 |
20210290319 | Poltaretskyi et al. | Sep 2021 | A1 |
20210307796 | Marien et al. | Oct 2021 | A1 |
20210307833 | Farley et al. | Oct 2021 | A1 |
20210315593 | Mauldin et al. | Oct 2021 | A1 |
20210322034 | Athwal et al. | Oct 2021 | A1 |
20210330311 | Denham et al. | Oct 2021 | A1 |
20210330336 | Courtis et al. | Oct 2021 | A1 |
20210330339 | Robichaud | Oct 2021 | A1 |
20210330468 | Mimnaugh et al. | Oct 2021 | A1 |
20210338450 | Hollis et al. | Nov 2021 | A1 |
20210346091 | Haslam et al. | Nov 2021 | A1 |
20210353304 | Robichaud | Nov 2021 | A1 |
20210353312 | Robichaud | Nov 2021 | A1 |
20210361297 | Luna et al. | Nov 2021 | A1 |
20210361300 | McGinley et al. | Nov 2021 | A1 |
20210361330 | McAleer et al. | Nov 2021 | A1 |
20210361437 | Lang et al. | Nov 2021 | A1 |
20210369289 | Lee | Dec 2021 | A1 |
20210369305 | Rhodes et al. | Dec 2021 | A1 |
20210378687 | McGinley et al. | Dec 2021 | A1 |
20210378752 | Paul et al. | Dec 2021 | A1 |
20210391058 | Kostrzewski et al. | Dec 2021 | A1 |
20210393304 | Geldwert | Dec 2021 | A1 |
20220000556 | Casey et al. | Jan 2022 | A1 |
20220008085 | Carroll et al. | Jan 2022 | A1 |
20220015861 | Basta | Jan 2022 | A1 |
20220022894 | Allard et al. | Jan 2022 | A1 |
20220031396 | Ryan et al. | Feb 2022 | A1 |
20220031475 | Deransart et al. | Feb 2022 | A1 |
20220079645 | Smith et al. | Mar 2022 | A1 |
20220079678 | Mckinnon et al. | Mar 2022 | A1 |
20220084651 | Farley et al. | Mar 2022 | A1 |
20220087822 | Radermacher et al. | Mar 2022 | A1 |
20220087827 | Bojarski et al. | Mar 2022 | A1 |
20220160430 | Landon et al. | May 2022 | A1 |
Number | Date | Country |
---|---|---|
2009222469 | Feb 2015 | AU |
2015203808 | Sep 2017 | AU |
2020220169 | Sep 2021 | AU |
2021286392 | Jan 2022 | AU |
105105853 | Dec 2015 | CN |
106236185 | Dec 2016 | CN |
205924106 | Feb 2017 | CN |
206151532 | May 2017 | CN |
108030532 | May 2018 | CN |
207721902 | Aug 2018 | CN |
112914724 | Jun 2021 | CN |
2910627 | Sep 1980 | DE |
0097001 | Dec 1983 | EP |
2844162 | Mar 2015 | EP |
2856951 | Apr 2015 | EP |
2685914 | Sep 2015 | EP |
3000443 | Jul 2016 | EP |
2400900 | Dec 2016 | EP |
2713921 | Oct 2017 | EP |
2083758 | Nov 2017 | EP |
3384865 | Oct 2018 | EP |
3013256 | Nov 2018 | EP |
3171795 | Nov 2018 | EP |
3672535 | Jul 2020 | EP |
3307182 | Nov 2020 | EP |
3740141 | Nov 2020 | EP |
2558010 | May 2021 | EP |
3948895 | Feb 2022 | EP |
202014536 | Oct 2020 | GB |
101952368 | Feb 2019 | KR |
182499 | Aug 2018 | RU |
2009045960 | Apr 2009 | WO |
2009105196 | Aug 2009 | WO |
WO2012024317 | Feb 2012 | WO |
WO 2012088036 | Jun 2012 | WO |
WO2012176077 | Dec 2012 | WO |
WO2013041618 | Mar 2013 | WO |
WO2013156816 | Oct 2013 | WO |
2014154266 | Oct 2014 | WO |
WO2015003284 | Jan 2015 | WO |
2015003284 | Apr 2015 | WO |
WO2016012731 | Jan 2016 | WO |
WO2016102025 | Jun 2016 | WO |
WO 2017031000 | Feb 2017 | WO |
WO2018167369 | Sep 2018 | WO |
WO2019052622 | Mar 2019 | WO |
WO2019060780 | Mar 2019 | WO |
2019091537 | May 2019 | WO |
WO2020239909 | Feb 2021 | WO |
WO2021028636 | Apr 2021 | WO |
WO2021118733 | Jun 2021 | WO |
WO2021236838 | Nov 2021 | WO |
WO2021240290 | Dec 2021 | WO |
WO2022033648 | Feb 2022 | WO |
201003003 | Dec 1899 | ZA |
Entry |
---|
International Search Report and Written Opinion dated Dec. 17, 2020 for corresponding International Application No. PCT/US2020/050764. |
Dubovik et al., “Talonavicular joint arthrodesis and medial displacement calcaneal osteotomy for treatment of patients with planovalgus deformity”, Traumatology and Orthopedics of Russia, 2012:3(65), 83-88 (English Abstract Only). |
Additive Orthopaedics, “The First and Only FDA Approved Patient Specific Talus Spacer”, 2021, 11 pgs https://totaltalusreplacement.com/. |
Treace Medical Concepts, Inc. “Adductoplasty Midfoot Correction System” 2022, 9 pgs. https://www.lapiplasty.com/surgeons/other-products/adductoplasty-system/. |
Nyska, Synergy 3D Med “Anatomical Model: Calcaneus”, 2022. |
Total Ankle Institute, “Prophecy: Preoperative Navigation Guides”, 2019, 6 pgs https://www.totalankleinstitute.com/infinity-products/prophecy-preoperative-navigation-guides/. |
Arthrex, Distal Tibia Allograft Workstation for Glenoid Bone Loss, Surgical Technique, 2018, 8 pgs. |
De Carvalho et al., “Automated three-dimensional distance and coverage mapping of hallux valgus: a case-control study”, J Foot Ankle. 2022;16(1):41-45 https://jfootankle.com/JournalFootAnkle/article/view/1629/1821 retrieved May 26, 2022. |
Wright Med, “How Blueprint Works—from CT to 3D [CAW-9389]”, 2021 https://www.wrightmeded.com/videos/how-blueprint-works-from-ct-to-3d-caw-9389 (submit video?)—video teaches auto segmentation. Video at top of this page at time mark 00:32 seconds to time mark 00:48. |
Tomier Technology, “Tomier Blueprint 3D Planning + PSI”, Feb. 2017, 12 pgs. https://www.wrightemedia.com/ProductFiles/Files/PDFs/CAW-8609_EN_HR_LE.pdf. |
Synopsys, Simpleware Automated Solution Modules, “Medical Image Segmentation with Machine Learning” 2022, 12 pgs https://www.synopsys.com/simpleware/software/auto-segmenter-modules.html#simpleware-as-ortho. |
Virzì, et al. “Comprehensive Review of 3D Segmentation Software Tools for MRI Usable for Pelvic Surgery Planning.” Journal of digital imaging vol. 33,1 (2020): 99-110. doi:10.1007/s10278-019-00239-7. |
Disior, “Bonelogic foot & ankle module”, 2022, 6pgs. https://www.disior.com/foot--ankle.html. |
KLS Martin Group, IPS Implants, 2022, 8 pgs. https://www.klsmartin.com/en-na/products/individual-patient-solutions/ips-implants/. |
Aiyer et al., “Prevalence of Metatarsus Adductus in Patients Undergoing Hallux Valgus Surgery,” Foot & Ankle International, vol. 35, No. 12, 2014, pp. 1292-1297. |
Bennett et al., “Intraosseous Sliding Plate Fixation Used in Double Osteotomy Bunionectomy,” Foot & Ankle International, vol. 40, No. 1, 2019, pp. 85-88. |
Buda et al., “Effect of Fixation Type and Bone Graft on Tarsometatarsal Fusion,” Foot & Ankle International, vol. 39, No. 12, 2018, pp. 1394-1402. |
Chomej et al., “Lateralising Dmmo (Mis) for simultaneous correction of a pes adductus during surgical treatment of a hallux valgus,” The Foot, vol. 45, Dec. 2020, 33 pages. |
Cichero et al., “Different fixation constructs and the risk of non-union following first metatarsophalangeal joint arthrodesis,” Foot and Ankle Surgery, vol. 27, 2021, pp. 789-792. |
Curran et al., “Functional Capabilities After First Metatarsal Phalangeal Joint Arthrodesis Using a Locking Plate and Compression Screw Construct,” The Journal of Foot & Ankle Surgery, vol. 61, No. 1, Jan./Feb. 2022, pp. 79-83. |
Dalat et al., “Does arthrodesis of the first metatarsophalangeal joint correct the intermetatarsal M1M2 angle? Analysis of a continuous series of 208 arthrodeses fixed with plates,” Orthopaedics & Traumatology: Surgery & Research, vol. 101, 2015, pp. 709-714. |
Deheer et al., “Procedure-Specific Hardware Removal After Evans Osteotomy,” Journal of the American Podiatric Medical Association, vol. 110, No. 2, Mar./Apr. 2020, 7 pages. |
Fazal et al., “First metatarsophalangeal joint arthrodesis with two orthogonal two hole plates,” Acta Orthopaedica et Traumatologica Turcica, vol. 52, 2018, pp. 363-366. |
Ferreyra et al., “Can we correct first metatarsal rotation and sesamoid position with the 3D Lapidus procedure?,” Foot and Ankle Surgery, vol. 28, No. 3, Apr. 2022, pp. 313-318. |
Flavin et al., “Arthrodesis of the First Metatarsophalangeal Joint Using a Dorsal Titanium Contoured Plate,” Foot & Ankle International, vol. 25, No. 11, Nov. 2004, pp. 783-787. |
Fraissler et al., “Treatment of hallux valgus deformity,” Efort Open Reviews, vol. 1, Aug. 2016, pp. 295-302. |
Gould et al., “A Prospective Evaluation of First Metatarsophalangeal Fusion Using an Innovative Dorsal Compression Plating System,” The Journal of Foot & Ankle Surgery, vol. 60, 2021, pp. 891-896. |
Gutteck et al., “Comparative study of Lapidus bunionectomy using different osteosynthesis methods,” Foot and Ankle Surgery, vol. 19, 2013, pp. 218-221. |
Gutteck et al., “Is it feasible to rely on intraoperative X ray in correcting hallux valgus?,” Archives of Orthopaedic and Trauma Surgery, vol. 133, 2013, pp. 753-755. |
Ho et al., “Hallux rigidus,” Efort Open Reviews, vol. 2, Jan. 2017, pp. 13-20. |
Hunt et al., “Locked Versus Nonlocked Plate Fixation For Hallux MTP Arthrodesis,” Foot and Ankle International, vol. 32, No. 7, Jul. 2011, pp. 704-709. |
Jackson III et al., “The Surgical Learning Curve for Modified Lapidus Procedure for Hallux Valgus Deformity,” Foot & Ankle Specialist, Jul. 2021, 5 pages. |
Jeuken et al., “Long-term Follow-up of a Randomized Controlled Trial Comparing Scarf to Chevron Osteotomy in Hallux Valgus Correction,” Foot & Ankle International, vol. 37, No. 7, 2016, pp. 687-695. |
Klos et al., “Modified Lapidus arthrodesis with plantar plate and compression screw for treatment of hallux valgus with hypermobility of the first ray: A preliminary report,” Foot and Ankle Surgery, vol. 19, 2013, pp. 239-244. |
Kurup et al., “Midfoot arthritis- current concepts review,” Journal of Clinical Orthopaedics and Trauma, vol. 11, 2020, pp. 399-405. |
La Reaux et al., “Metatarsus adductus and hallux abducto valgus: their correlation,” The Journal of Foot Surgery, vol. 26, No. 4, Jul. 1987, pp. 304-308, Abstract Only. |
Latif et al., “First metatarsophalangeal fusion using joint specific dorsal plate with interfragmentary screw augmentation: Clinical and radiological outcomes,” Foot and Ankle Surgery, vol. 25, 2019, pp. 132-136. |
Little, “Joint Arthrodesis For Hallux Valgus,” Clinics in Podiatric Medicine and Surgery, Hallux Abducto Valgus Surgery, updated Apr. 19, 2014, retrieved online from < https://www.footankleinstitute.com/first-metatarsophalangeal-joint-arthrodesis-in-the-treatment-of-hallux-valgus>, 7 pages. |
Machacek Jr et al., “Salvage of a Failed Keller Resection Arthroplasty,” The Journal of Bone and Joint Surgery, vol. 36A, No. 6, Jun. 2004, pp. 1131-1138. |
Marshall et al., “The identification and appraisal of assessment tools used to evaluate metatarsus adductus: a systematic review of their measurement properties,” Journal of Foot and Ankle Research, vol. 11, No. 25, 2018, 10 pages. |
McAleer et al., “Radiographic Outcomes Following Triplanar Correction of Combined Hallux Valgus and Metatarsus Adductus Deformities,” ACFAS Scientific Conference, Poster, Feb. 2022, 1 page. |
McCabe et al., “Anatomical reconstruction of first ray instability hallux valgus with a medial anatomical TMTJ1 plate,” Foot and Ankle Surgery, vol. 27, No. 8, Dec. 2021, pp. 869-873. |
Mehtar et al., “Outcomes of bilateral simultaneous hallux MTPJ fusion,” Foot and Ankle Surgery, vol. 27, 2021, pp. 213-216. |
Miller et al., “Variable Angle Locking Compression Plate as Alternative Fixation for Jones Fractures: A Case Series,” Kansas Journal of Medicine, vol. 12, No. 2, May 2019, pp. 28-32. |
Nix et al., “Prevalence of hallux valgus in the general population: a systematic review and meta-analysis,” Journal of Foot and Ankle Research, vol. 3, No. 21, 2010, 9 pages. |
Park et al., “Comparative analysis of clinical outcomes of fixed-angle versus variable-angle locking compression plate for the treatment of Lisfranc injuries,” Foot and Ankle Surgery, vol. 26, 2020, pp. 338-342. |
Pentikainen et al., “Preoperative Radiological Factors Correlated to Long-Term Recurrence of Hallux Valgus Following Distal Chevron Osteotomy,” Foot & Ankle International, vol. 35, No. 12, 2014, pp. 1262-1267. |
Shima et al., “Operative Treatment for Hallux Valgus With Moderate to Severe Metatarsus Adductus,” Foot & Ankle International, vol. 40, No. 6, 2019, pp. 641-647. |
Simons et al., “Short-Term Clinical Outcome of Hemiarthroplasty Versus Arthrodesis for End-Stage Hallux Rigidus,” The Journal of Foot & Ankle Surgery, vol. 54, 2015, pp. 848-851. |
Weigelt et al., “Risk Factors for Nonunion After First Metatarsophalangeal Joint Arthrodesis With a Dorsal Locking Plate and Compression Screw Construct: Correction of Hallux Valgus Is Key,” The Journal of Foot & Ankle Surgery, vol. 60, No. 6, Nov./Dec. 2021, pp. 1179-1183. |
Williams et al., “Metatarsus adductus: Development of a non-surgical treatment pathway,” Journal of Paediatrics and Child Health, vol. 49, 2013, pp. E428-433. |
Hatch et al., “Analysis of Shortening and Elevation of the First Ray With Instrumented Triplane First Tarsometatarsal Arthrodesis,” Foot & Ankle Orthopaedics, vol. 5, No. 4, 2020, pp. 1-8. |
Ray et al., “Hallux Valgus,” Foot & Ankle Orthopaedics, vol. 4, No. 2, 2019, pp. 1-12. |
Santrock et al., “Hallux Valgus Deformity and Treatment: A Three-Dimensional Approach: Lapiplasty,” Foot & Ankle Clinics, vol. 23, No. 2, 2018, pp. 281-295. |
International Patent Application No. PCT/US2021/033256, International Search Report and Written Opinion dated Sep. 7, 2021, 9 pages. |
Smith et al., “Intraoperative Multiplanar Alignment System to Guide Triplanar Correction of Hallux Valgus Deformity,” Techniques in Foot & Ankle Surgery, 2017, 8 pages. |
Smith et al., “Understanding Frontal Plane Correction in Hallux Valgus Repair,” Clinics in Podiatric Medicine and Surgery, vol. 35, 2018, pp. 27-36. |
DiNapoli et al., “Metatarsal Osteotomy for the Correction of Metatarsus Adductus,” Reconstructive Surgery of the Foot and Leg, 1989, pp. 242-250. |
McAleer et al., “A systematic approach to the surgical correction of combined hallux valgus and metatarsus adductus deformities,” The Journal of Foot & Ankle Surgery, May 21, 2021, 6 pages. |
Dayton et al., “Dorsal Suspension Stitch: An Alternative Stabilization After Flexor Tenotomy for Flexible Hammer Digit Syndrome,” The Journal of Foot and Ankle Surgery, vol. 48, No. 5, Sep./Oct. 2009, pp. 602-605. |
Dayton et al., “The Extended Knee Hemilithotomy Position for Gastrocnemius Recession,” The Journal of Foot and Ankle Surgery, vol. 49, 2010, pp. 214-216. |
Wienke et al., “Bone Stimulation For Nonunions: What the Evidence Reveals,” Podiatry Today, vol. 24, No. 9, Sep. 2011, pp. 52-57. |
Dayton et al., “Hallux Varus as Complication of Foot Compartment Syndrome,” The Journal of Foot and Ankle Surgery, vol. 50, 2011, pp. 504-506. |
Dayton et al., “Measurement of Mid-Calcaneal Length on Plain Radiographs: Reliability of a New Method,” Foot and Ankle Specialist, vol. 4, No. 5, Oct. 2011, pp. 280-283. |
Dayton et al., “A User-Friendly Method of Pin Site Management for External Fixators,” Foot and Ankle Specialist, Sep. 16, 2011, 4 pages. |
Dayton et al., “Effectiveness of a Locking Plate in Preserving Midcalcaneal Length and Positional Outcome after Evans Calcaneal Osteotomy: A Retrospective Pilot Study,” The Journal of Foot and Ankle Surgery, vol. 52, 2013, pp. 710-713. |
Dayton et al., “Does Postoperative Showering or Bathing of a Surgical Site Increase the Incidence of Infection? A Systematic Review of the Literature,” The Journal of Foot and Ankle Surgery, vol. 52, 2013, pp. 612-614. |
Dayton et al., “Technique for Minimally Invasive Reduction of Calcaneal Fractures Using Small Bilateral External Fixation,” The Journal of Foot and Ankle Surgery, Article in Press, 2014, 7 pages. |
Dayton et al., “Clarification of the Anatomic Definition of the Bunion Deformity,” The Journal of Foot and Ankle Surgery, vol. 53, 2014, pp. 160-163. |
Dayton et al., “Observed Changes in Radiographic Measurements of the First Ray after Frontal Plane Rotation of the First Metatarsal in a Cadaveric Foot Model,” The Journal of Foot and Ankle Surgery, Article in Press, 2014, 5 pages. |
Dayton et al., “Observed Changes in First Metatarsal and Medial Cuneiform Positions after First Metatarsophalangeal Joint Arthrodesis,” The Journal of Foot and Ankle Surgery, vol. 53, 2014, pp. 32-35. |
Dayton et al., “Reduction of the Intermetatarsal Angle after First Metatarsal Phalangeal Joint Arthrodesis: A Systematic Review,” The Journal of Foot and Ankle Surgery, Article in Press, 2014, 4 pages. |
Feilmeier et al., “Reduction of Intermetatarsal Angle after First Metatarsophalangeal Joint Arthrodesis in Patients with Hallux Valgus,” The Journal of Foot and Ankle Surgery, vol. 53, 2014, pp. 29-31. |
Dayton et al., “Principles of Management of Growth Plate Fractures in the Foot and Ankle,” Clinics in Podiatric Medicine and Surgery, Pediatric Foot Deformities, Oct. 2013, 17 pages. |
Dayton et al., “Observed Changes in Radiographic Measurements of the First Ray after Frontal and Transverse Plane Rotation of the Hallux: Does the Hallux Drive the Metatarsal in a Bunion Deformity?,” The Journal of Foot and Ankle Surgery, Article in Press, 2014, 4 pages. |
Rodriguez et al., “Ilizarov method of fixation for the management of pilon and distal tibial fractures in the compromised diabetic patient: A technique guide,” The Foot and Ankle Journal Online, vol. 7, No. 2, 2014, 9 pages. |
Feilmeier et al., “Incidence of Surgical Site Infection in the Foot and Ankle with Early Exposure and Showering of Surgical Sites: A Prospective Observation,” The Journal of Foot and Ankle Surgery, vol. 53, 2014, pp. 173-175. |
Catanese et al., “Measuring Sesamoid Position in Hallux Valgus: When Is the Sesamoid Axial View Necessary,” Foot and Ankle Specialist, 2014, 3 pages. |
Dayton et al., “Comparison of Complications for Internal and External Fixation for Charcot Reconstruction: A Systematic Review,” The Journal of Foot and Ankle Surgery, Article in Press, 2015, 4 pages. |
Dayton et al., “A new triplanar paradigm for bunion management,” Lower Extremity Review, Apr. 2015, 9 pages. |
Dayton et al., “American College of Foot and Ankle Surgeons' Clinical Consensus Statement: Perioperative Prophylactic Antibiotic Use in Clean Elective Foot Surgery,” The Journal of Foot and Ankle Surgery, Article in Press, 2015, 7 pages. |
Dayton et al., “Complications of Metatarsal Suture Techniques for Bunion Correction: A Systematic Review of the Literature,” The Journal of Foot and Ankle Surgery, Article in Press, 2015, 3 pages. |
DeCarbo et al., “The Weil Osteotomy: A Refresher,” Techniques in Foot and Ankle Surgery, vol. 13, No. 4, Dec. 2014, pp. 191-198. |
DeCarbo et al., “Resurfacing Interpositional Arthroplasty for Degenerative Joint Diseas of the First Metatarsalphalangeal Joint,” Podiatry Management, Jan. 2013, pp. 137-142. |
DeCarbo et al., “Locking Plates: Do They Prevent Complications?,” Podiatry Today, Apr. 2014, 7 pages. |
Easley et al., “Current Concepts Review: Hallux Valgus Part II: Operative Treatment,” Foot and Ankle International, vol. 28, No. 6, Jun. 2007, pp. 748-758. |
Kim et al., “A Multicenter Retrospective Review of Outcomes for Arthrodesis, Hemi-Metallic Joint Implant, and Resectional Arthroplasty in the Surgical Treatment of End-Stage Hallux Rigidus,” The Journal of Foot and Ankle Surgery, vol. 51, 2012, pp. 50-56. |
Easley et al., “Current Concepts Review: Hallux Valgus Part I: Pathomechanics, Clinical Assessment, and Nonoperative Management,” Foot and Ankle International, vol. 28, No. 5, May 2007, pp. 654-659. |
Sandhu et al., “Digital Arthrodesis With a One-Piece Memory Nitinol Intramedullary Fixation Device: A Retrospective Review,” Foot and Ankle Specialist, vol. 6, No. 5, Oct. 2013, pp. 364-366. |
Weber et al., “Use of the First Ray Splay Test to Assess Transverse Plane Instability Before First Metatarsocuneiform Fusion,” The Journal of Foot and Ankle Surgery, vol. 45, No. 4, Jul./Aug. 2006, pp. 278-282. |
Smith et al., “Opening Wedge Osteotomies for Correction of Hallux Valgus: A Review of Wedge Plate Fixation,” Foot and Ankle Specialist, vol. 2, No. 6, Dec. 2009, pp. 277-282. |
Easley et al., “What is the Best Treatment for Hallux Valgus?,” Evidence-Based Orthopaedics—The Best Answers to Clinical Questions, Chapter 73, 2009, pp. 479-491. |
Shurnas et al., “Proximal Metatarsal Opening Wedge Osteotomy,” Operative Techniques in Foot and Ankle Surgery, Section I, Chapter 13, 2011, pp. 73-78. |
Coetzee et al., “Revision Hallux Valgus Correction,” Operative Techniques in Foot and Ankle Surgery, Section I, Chapter 15, 2011, pp. 84-96. |
E et al., “Tarsometatarsal Arthrodesis,” Operative Techniques in Foot and Ankle Surgery, Section II, Chapter 40, 2011, pp. 281-285. |
Collan et al., “The biomechanics of the first metatarsal bone in hallux valgus: A preliminary study utilizing a weight bearing extremity CT,” Foot and Ankle Surgery, vol. 19, 2013, pp. 155-161. |
Eustace et al., “Hallux valgus, first metatarsal pronation and collapse of the medial longitudinal arch - a radiological correlation,” Skeletal Radiology, vol. 23, 1994, pp. 191-194. |
Mizuno et al., “Detorsion Osteotomy of the First Metatarsal Bone in Hallux Valgus,” Japanese Orthopaedic Association, Tokyo, 1956; 30:813-819. |
Okuda et al., “The Shape of the Lateral Edge of the First Metatarsal Head as a Risk Factor for Recurrence of Hallux Valgus,” The Journal of Bone and Joint Surgery, vol. 89, 2007, pp. 2163-2172. |
Okuda et al., “Proximal Metatarsal Osteotomy for Hallux Valgus: Comparison of Outcome for Moderate and Severe Deformities,” Foot and Ankle International, vol. 29, No. 7, Jul. 2008, pp. 664-670. |
D'AMICO et al., “Motion of the First Ray: Clarification Through Investigation,” Journal of the American Podiatry Association, vol. 69, No. 1, Jan. 1979, pp. 17-23. |
Groves, “Operative Report,” St. Tammany Parish Hospital, Date of Procedure, Mar. 26, 2014, 2 pages. |
Claim Chart for Groves Public Use (Mar. 26, 2014), Exhibit B4 of Defendant Fusion Orthopedics LLC's Invalidity Contentions, No. CV-22-00490-PHX-SRB, US District Court for the District of Arizona, Aug. 27, 2022, 161 pages. |
Crawford et al., “Metatarsus Adductus: Radiographic and Pathomechanical Analysis,” Chapter 5, 2014, 6 pages. |
Chesser et al., “New Advances With The Tarsometatarsal Arthrodesis,” Podiatry Today, vol. 30, No. 10, Sep. 27, 2017, 15 pages. |
Ferrari et al., “A Radiographic Study of the Relationship Between Metatarsus Adductus and Hallux Valgus,” The Journal of Foot and Ankle Surgery, vol. 42, No. 1, 2003, pp. 9-14. |
Ghali et al., “The Management of Metatarsus Adductus et Supinatus,” The Journal of Bone and Joint Surgery, vol. 66-B, No. 3, May 1984, pp. 376-380. |
“Arthrodesis of the Tarsometatarsal Joint,” Retrieved from https://musculoskeletalkey.com/arthrodesis-of-the-tarsometatarsal-joint/, posted Apr. 18, 2019, 11 pages. |
Dayton, “Tarsal-Metatarsal Joint: Primary & Revision Arthrodesis,” Apr. 2014, 38 pages. |
Defendant Fusion Orthopedics LLC's Invalidity Contentions, No. CV-22-00490-PHX-SRB, U.S. District Court for the District of Arizona, Aug. 27, 2022, 41 pages. |
Prior Art Publications, Exhibit A of Defendant Fusion Orthopedics LLC's Invalidity Contentions, No. CV-22-00490-PHX- SRB, U.S. District Court for the District of Arizona, Aug. 27, 2022, 3 pages. |
Claim Chart for Fishco, “Making the Lapidus Easy,” The Podiatry Institute (Apr. 2014), Exhibit B1 of Defendant Fusion Orthopedics LLC's Invalidity Contentions, No. CV-22-00490-PHX-SRB, US District Court for the District of Arizona, Aug. 27, 2022, 97 pages. |
Claim Chart for Fishco, “A Straightforward Guide to the Lapidus Bunionectomy,” HMP Global (Sep. 6, 2013), Exhibit B2 of Defendant Fusion Orthopedics LLC's Invalidity Contentions, No. CV-22-00490-PHX-SRB, US District Court for the District of Arizona, Aug. 27, 2022, 67 pages. |
Claim Chart for Groves, “Functional Position Joint Sectioning: Pre-Load Method for Lapidus Arthrodesis,” Update 2015: Proceedings of the Annual Meeting of the Podiatry Institute, Chpt. 6, pp. 23-29 (Apr. 2015), Exhibit B3 of Defendant Fusion Orthopedics LLC's Invalidity Contentions, No. CV-22-00490-PHX-SRB, US District Court for the District of Arizona, Aug. 27, 2022, 151 p. |
Claim Chart for Mote, “First Metatarsal-Cuneiform Arthrodesis for the Treatment of First Ray Pathology: A Technical Guide,” The Journal Foot & Ankle Surgery (Sep. 1, 2009), Exhibit B5 of Defendant Fusion Orthopedics LLC's Invalidity Contentions, No. CV-22-00490-PHX-SRB, US District Court for the District of Arizona, Aug. 27, 2022, 21 pages. |
Claim Chart for U.S. Pat. No. 10,376,268 to Fallin et al., entitled “Indexed Tri-Planar Osteotomy Guide and Method,” issued Aug. 13, 2019, Exhibit B6 of Defendant Fusion Orthopedics LLC's Invalidity Contentions, No. CV-22-00490- Phx-Srb, US District Court for the District of Arizona, Aug. 27, 2022, 155 pages. |
Claim Chart for U.S. Pat. No. 8,282,645 to Lawrence et al., entitled “Metatarsal Bone Implant Cutting Guide,” issued Jan. 18, 2010, Exhibit B7 of Defendant Fusion Orthopedics LLC's Invalidity Contentions, No. CV-22-00490-PHX- Srb, US District Court for the District of Arizona, Aug. 27, 2022, 76 pages. |
Claim Chart for U.S. Pat. No. 9,452,057 to Dacosta et al., entitled “Bone Implants and Cutting Apparatuses and Methods,” issued Apr. 8, 2011, Exhibit B8 of Defendant Fusion Orthopedics LLC's Invalidity Contentions, No. CV-22-00490-PHX-SRB, US District Court for the District of Arizona, Aug. 27, 2022, 110 pages. |
Obviousness Chart, Exhibit C of Defendant Fusion Orthopedics LLC's Invalidity Contentions, No. CV-22-00490-PHX- Srb, US District Court for the District of Arizona, Aug. 27, 2022, 153 pages. |
“Foot and Ankle Instrument Set,” Smith & Nephew, 2013, 2 pages. |
“Lapidus Pearls: Gaining Joint Exposure to Decrease Non-Union,” Youtube, Retrieved online from <https://www.youtube.com/watch?v =jqJyE7pj-Y>, dated Nov. 2, 2009, 3 pages. |
“Reconstructive Surgery of the Foot & Ankle,” The Podiatry Institute, Update 2015, Conference Program, May 2015, 28 pages. |
“Speed Continuous Active Compression Implant,” BioMedical Enterprises, Inc., A120-029 Rev. 3, 2013, 4 pages. |
“Visionaire: Patient Matched Cutting Blocks Surgical Procedure,” Smith & Nephew, Inc., 2009, 2 pages. |
Arthrex, “Comprehensive Foot System,” Retrieved online from <https://www.arthrex.com/resources/ animation/8U3iaPvY6kO8bwFAwZF50Q/comprehensive-foot-system?referringTeam=foot_and_ankle>, dated Aug. 27, 2013, 3 pages. |
Baravarian, “Why the Lapidus Procedure is Ideal for Bunions,” Podiatry Today, Retrieved online from <https://www. hmpgloballearhmpgloballe.com/site/podipodi/article/5542>, dated May 2006, 8 pages. |
Bauer et al., “Offset-V Osteotomy of the First Metatarsal Shaft in Hallux Abducto Valgus, ” McGlamry's Comprehensive Textbook of Foot and Ankle Surgery, Fourth Edition, vol. 1, Chapter 29, 2013, 26 pages. |
Cottom, “Fixation of the Lapidus Arthrodesis with a Plantar Interfragmentary Screw and Medial Low Profile Locking Plate,” The Journal of Foot & Ankle Surgery, vol. 51, 2012, pp. 517-522. |
Coughlin, “Fixation of the Lapidus Arthrodesis with a Plantar Interfragmentary Screw and Medial Low Profile Locking Plate, ”Orthopaedics and Traumatology, vol. 7, 1999, pp. 133-143. |
Dayton et al., “Observed Changes in Radiographic Measurements of the First Ray after Frontal Plane Rotation of the First Metatarsal in a Cadaveric Foot Model,” The Journal of Foot & Ankle Surgery, vol. 53, 2014, pp. 274-278. |
Dayton et al., “Relationship of Frontal Plane Rotation of First Metatarsal to Proximal Articular Set Angle and Hallux Alignment in Patients Undergoing Tarsometatarsal Arthrodesis for Hallux Abducto Valgus: A Case Series and Critical Review of the Literature,” The Journal of Foot & Ankle Surgery, 2013, Article in Press, Mar. 1, 2013, 7 pages. |
Didomenico et al., “Lapidus Bunionectomy: First Metatarsal-Cuneiform Arthrodesis,” McGlamry's Comprehensive Textbook of Foot and Ankle Surgery, Fourth Edition, vol. 1, Chapter 31, 2013, 24 pages. |
Fallin et al., US Provisional Application Entitled Indexed Tri-Planar Osteotomy Guide and Method, US Pat. U.S. Appl. No. 62/118,378, filed Feb. 19, 2015, 62 pages. |
Fishco, “A Straightforward Guide To The Lapidus Bunionectomy, ”Podiatry Today, Retrieved online from <https://www.hmpgloballearningnetwork.com/site/podiatry/blogged/straightforward-guide-lapidus-bunionectomy>, dated Sep. 6, 2013, 5 pages. |
Fishco, “Making the Lapidus Easy,” The Podiatry Institute, Update 2014, Chapter 14, 2014, pp. 91-93. |
Fleming et al., “Results of Modified Lapidus Arthrodesis Procedure Using Medial Eminence as an Interpositional Autograft,” The Journal of Foot & Ankle Surgery, vol. 50, 2011, pp. 272-275. |
Fuhrmann, “Arthrodesis of the First Tarsometatarsal Joint for Correction of the Advanced Splayfoot Accompanied by a Hallux Valgus,” Operative Orthopadie und Traumatologie, No. 2, 2005, pp. 195-210. |
Gerard et al., “The Modified Lapidus Procedure,” Orthopedics, vol. 31, No. 3, Mar. 2008, 7 pages. |
Giannoudis et al., “Hallux Valgus Correction,” Practical Procedures in Elective Orthopaedic Surgery, Pelvis and Lower Extremity, Chapter 38, 2012, 22 pages. |
Greiner, “The Jargon of Pedal Movements,” Foot & Ankle International, vol. 28, No. 1, Jan. 2007, pp. 109-125. |
Groves, “Functional Position Joint Sectioning: Pre-Load Method for Lapidus Arthrodesis,” The Podiatry Institute, Update 2015, Chapter 6, 2015, pp. 23-29. |
Hardy et al., “Observations on Hallux Valgus,” The Journal of Bone and Joint Surgery, vol. 33B, No. 3, Aug. 1951, bp. 376-391. |
Holmes, Jr., “Correction of the Intermetatarsal Angle Component of Hallux Valgus Using Fiberwire-Attached Endo- buttons,” Revista Internacional de Ciencias Podologicas, vol. 6, No. 2, 2012, pp. 73-79. |
Integra, “Integra Large Qwix Positioning and Fixation Screw, Surgical Technique,” 2012, 16 pages. |
Kilmartin et al., “Combined rotation scarf and Akin osteotomies for hallux valgus: a patient focused 9 year follow up of 50 patients,” Journal of Foot and Ankle Research, vol. 3, No. 2, 2010, 12 pages. |
Lee et al., “Technique Tip: Lateral Soft-Tissue Release for Correction of Hallux Valgus Through a Medial Incision Using A Dorsal Flap Over the First Metatarsal,” Foot & Ankle International, vol. 28, No. 8, Aug. 2007, pp. 949-951. |
Mote et al., “First Metatarsal-Cuneiform Arthrodesis for the Treatment of First Ray Pathology: A Technical Guide,” JFAS Techniques Guide, vol. 48, No. 5, September/Oct. 2009, pp. 593-601. |
Myerson, “Cuneiform-Metatarsal Arthrodesis,” The Foot and Ankle, Chapter 9, 1997, pp. 107-117. |
Sammarco, “Surgical Strategies: Mau Osteotomy for Correction of Moderate and Severe Hallux Valgus Deformity,” Foot & Ankle International, vol. 28, No. 7, Jul. 2007, pp. 857-864. |
Schon et al., “Cuneiform-Metatarsal Arthrodesis for Hallux Valgus, ”The Foot and Ankle, Second Edition, Chapter 8, 2002, pp. 99-117. |
Sokoloff, “Lapidus Procedure,” Textbook of Bunion Surgery, Chapter 15, 1981, pp. 277-287. |
Stamatis et al., “Mini Locking Plate as ”Medial Buttress“ for Oblique Osteotomy for Hallux Valgus,” Foot & Ankle International, vol. 31, No. 10, Oct. 2010, pp. 920-922. |
Stewart, “Use for BME Speed Nitinol Staple Fixation for the Lapidus Procedure,” date unknown, 1 page. |
Wukich et al., “Hypermobility of the First Tarsometatarsal Joint,” Foot and Ankle Clinics, vol. 10, No. 1, Mar. 2005, pp. 157-166. |
Dayton et al., “Biwinged Excision for Round Pedal Lesions,” The Journal of Foot and Ankle Surgery, vol. 35, No. 3, 1996, pp. 244-249. |
Dayton et al., “Medial Incision Approach to the First Metatarsophalangeal Joint,” The Journal of Foot and Ankle Surgery, vol. 40, No. 6, Nov./Dec. 2001, pp. 414-417. |
Dayton et al., “Reduction of the Intermetatarsal Angle after First Metatarsophalangeal Joint Arthrodesis in Patients with Moderate and Severe Metatarsus Primus Adductus,” The Journal of Foot and Ankle Surgery, vol. 41, No. 5, Sep./Oct. 2002, pp. 316-319. |
Dayton et al., “Use of the Z Osteotomy for Tailor Bunionectomy,” The Journal of Foot and Ankle Surgery, vol. 42, No. 3, May/Jun. 2003, pp. 167-169. |
Dayton et al., “Early Weightbearing After First Metatarsophalangeal Joint Arthrodesis: A Retrospective Observational Case Analysis,” The Journal of Foot and Ankle Surgery, vol. 43, No. 3, May/Jun. 2004, pp. 156-159. |
1 Supplementary European Search Report dated Aug. 27, 2023 for corresponding EP Application No. 20862480. |
Number | Date | Country | |
---|---|---|---|
20210077192 A1 | Mar 2021 | US |
Number | Date | Country | |
---|---|---|---|
62900294 | Sep 2019 | US |