1. Field of the Invention
The present invention relates generally to patient support apparatus and more particularly but not by way of limitation, to a pediatric support surface system that provides convenient accessibility during operative procedures.
2. Description of the Related Art
Developing technology has made surgical procedures more complex. Miniaturization of operating tools, magnetic resonance, microscopic efficiency, and other advances enable doctors to fix problems today using procedures that were inconceivable 20 years ago. The advances in tools utilized by doctors now require certain formerly inaccessible areas of patients to be accessible.
An example of one procedure that has undergone tremendous changes is the separation of conjoined twins. Operations on conjoined twins can now be performed in what was once considered as impossible. Conjoined twins history has been recorded, and oftentimes the history involves death when separation is attempted.
One of the earliest recorded examples of conjoined twins was a set of identical twins in 945 A.D. in Constantinople connected from the waist to the abdomen. An attempted surgical separation of the twins caused the death of one, with the survivor dying three days later.
Perhaps the best-known set of twins was Chang and Eng, who were born on a houseboat in the village of Mekong, in what was formerly known as Siam on May 11, 1811. Chang and Eng were the first given the name “Siamese Twins”. These twins lived a relatively long life, and together fathered 21 children with their respective wife. They were never surgically separated.
Craniopagus-conjoined twins—those joined at the head—are rare. Despite the rarity, surgical separation of these twins has been attempted, both successfully and unsuccessfully. Recently, 29-year-old craniopagus-conjoined twins Ladan and Laleh Bijani of Iran died from blood losses in the brain shortly after doctors apparently successfully separated their two skulls. Their chances of survival entering the operation were perceived to be no better than 50-50. It is believed that the Bijani Twins were only the second set of adult conjoined twins to be separated in recorded history. The first were the Godino brothers, but they were only separated after one died. The other died a few days later of infection. The Godino brothers were 28 at the time of their separation.
More recently, craniopagus-conjoined twin boys Ahmed and Mohammed Ibrahim Mohammed were born Jun. 2, 2001 in the southern Egyptian town of Qus connected at the skull and brain. The boys were flown to Dallas, Tex. for separation surgery in what made headlines throughout the United States, and world. After several delays, the successful 34-hour surgery took place on Oct. 12-13, 2003.
One of the problems of such surgeries is the support surface, or operating table, utilized by doctors must be accessible in a large arcuate range, so that the many complex tools required can be accessible by the doctors during such procedures. Unfortunately, due to the rarity of such surgeries, support surface technology has not caught up with operation technology, and oftentimes special devices must be designed to meet the needs. And because the conjoined twins are often separated at pediatric stages, such support surface technology must be so modified.
Accordingly, there is a need to provide a support surface system for pediatric surgical procedures, particularly for separating craniopagus-conjoined twins, capable to be used as an operating table providing sufficient access to doctors during the surgical procedure, and that minimizes doctor-movement requirements and provides access to the patient.
The present invention fulfills these and other needs through the development of a patient support surface system adapted to perform under surgical operating procedures. A first support surface, adapted to be connected in series with a second support surface, is provided. The first and second support surfaces are preferably symmetrical, and are rotatably coupled to a respective support frame. The support surfaces are adapted to rotate in relation to one another on a common axis, and may be fixed in relation to one another. One or more adjustable spacers are provided to couple the support frames. The spacers may be adjusted to provide more or less area between the support frames when patients are resting on a respective support surface.
Support wheels are coupled to the frames and adapted to support the frames in a fixed or mobile position. The height of the frames and support surfaces may be adjusted hydraulically, manually or other suitable means by extending or retracting legs coupled to the frame body. In this manner, the legs may be adjusted to create a Trendelenburg/reverse-Trendelenburg position, or to raise or lower the frames and support surfaces.
Accordingly, the present invention provides sufficient area between conjoined patients to allow doctors to operate, and provides sufficient rotational capabilities and Trendelenburg capabilities to adjust the angle and or height of one patient with respect to another.
A more complete understanding of the method and apparatus of the present invention may be obtained by reference to the following Detailed Description of the Invention, with like reference numerals denoting like elements, when taken in conjunction with the accompanying Drawings wherein:
The present invention provides a mobile and conveniently accessible operating surface for the separation of conjoined twins using a heretofore-unavailable operating surface.
Referring first to
A removable cage 110 is connected to an upper portion of the frame 102, and extends longitudinally outward from the frame 102 and above the U-shaped frame 108. The removable cage 110 includes at least one longitudinal support 112, and a plurality of semicircular arcs 114 depending therefrom and equally spaced along the length of the longitudinal support 112, which provide a support surface for surgical drapes or the like during operative procedures. Additional longitudinal supports 112 may be included and spaced along the arcs 114 as needed.
The U-shaped frame 108, which is adapted to support a support surface structure 115 there between, is connected to the support surface structure 115 via a plurality of support surface straps 116. The U-shaped frame 108 further includes a support member 117 perpendicular to the U-shaped frame 108 coupled to the swing circle 106 on the perimeter of the swing circle 106. The U-shaped frame 108 is adapted to be gripped by a user and rotated a predetermined angle to adjust the support surface structure 115 as needed. The U-shaped frame 108 and swing circle 106 are adapted to be fixed in a position relative to the frame 102 by a locking pin 118, which extends through the frame 102 and into a hole 109 on the swing circle 106.
Each leg 104 is adapted to connect to a support wheel 120 for movement of the frame 102 relative to a surface. The wheels 120 are adapted to extend or retract relative to the leg 104, and may be hydraulically controlled through hydraulic adjustment of wheel shafts 122 positioned within a respective leg 104. The wheels 120 are further adapted to lock in a static position to prevent undesirable movement of the patient support system 100. A suitable wheel 120 would be a caster or the like. A hydraulic cylinder (not shown) may be included within the frame 102 for controlling the extension or retraction of the wheel shafts 122. As such, the frame 102 may be positioned to place the patient in a Trendelenburg/reverse-Trendelenburg position or to otherwise shift positions relative to the surface during operative procedures on a patient.
Referring now to
Both support systems 200a, 200b are adapted to rotate with respect to another through a common rotation shaft 203 interconnecting the support systems 200a, 200b. As such, rotation of one system will automatically rotate the other system the same degree of rotation through manipulation of a respective swing circle 206a, 206b. The rotation shaft 203 may be housed within a suitable housing (not shown) to minimize the effects of any torsional or other entanglement of medical equipment during use of the systems 200a, 200b.
More specifically and with reference to support system 200a, an adjustable head support 210 may be provided to support the head of patient P during surgical procedures. The adjustable head support 210 is connected to the respective support surface structure, such as in this example support surface structure 215a, via conventional means, and may be raised or lowered depending on the requirements of the user. In addition, recent technology has allowed surgeons to map out the separation area between patients. Such advances require at least one navigation device 220 to be viewing the patient P in a line of sight to transmit the image of the patient and the relative position of the surgeon in/on a patient to a remote viewing device (not shown). The line-of-sight requirements for such devices necessitate a suitable mounting mechanism, such as the one shown in
Still referring to
It is to be appreciated that additional mounting equipment for devices adapted to support the patient's body, such as a halo-type device for fixing the patient's head relative the support surface structure 215a, may be connected to the support surface structure 215a. Such mounting equipment includes the likes of extendable arms, pivot arms, fixed arms, and other common support devices and are contemplated to be within the scope of the present invention.
Referring now to
It is also desirable to have any tubes, lines or other devices utilized during the surgery to remain orientated away from the separation area. As such, the upper and lower portions 404, 406 may define a second opening (not shown) opposite the opening 400 to allow any surgical lines (such as, for example, those used for anesthesia) to be directed away from the operating area. The second opening may also provide room for the patient to extend therethrough.
It is further desirable to configure the interior of the upper and lower portions 404, 406 with padding (
Additionally, referring to
Referring now to
Configuration of the wheel shafts 122 may be controlled manually or through the use of a hydraulic cylinder (not shown) in the frame (
In use, the patients are secured to a respective patient support apparatus in a predetermined position. If necessary, the patient support surfaces are tilted at a predetermined angle through rotation of the swing circle, which is then fixed in position through the locking pin. The patient support systems are adjusted for placement of the patient in a Trendelenburg/reverse-Trendelenburg orientation, or other alignment, and the patients are further prepared for surgery. During surgery of conjoined patients, for example, the angles of the patients relative to one another stay exactly the same due to the relative joining of the patients, but can be adjusted through rotation and fixation of the respective swing circle after separation. Upon separation, the support systems may be separated and rolled away via the wheels to an open configuration to allow surgeons to finish the surgery.
While particularly suited for craniopagus-conjoined twin separation, it is to be appreciated that the patient support system may also be used on single patients. The rotatable operating surface provided by the present invention and its resulting benefits are attractive, easily maneuverable and readily adjustable. In addition, patients conjoined in other positions may appreciate the benefits of this invention.
The previous description is of preferred embodiments for implementing the invention, and the scope of the invention should not necessarily be limited by this description. The scope of the present invention is instead defined by the following claims.