The present application claims priority from Japanese Patent Application No. 2016-104816 filed on May 26, 2016, the content of which is hereby incorporated by reference into this application.
The present invention relates to a pattern drawing apparatus that draws a wiring pattern or the like by irradiating a photosensitive material on a substrate serving as a workpiece mounted on a worktable with the laser beam from optical heads, and a pattern drawing method.
In the pattern drawing apparatus of this type, by taking it into consideration that a positional relationship among components becomes different from designed values at an actual drawing stage, normally, corresponding positional shifts are preliminarily detected, so that the drawing positions are corrected.
For example, Japanese Patent Application Laid-Open Publication No. 2008-65034 (Patent Document 1) has disclosed a pattern drawing apparatus designed such that, by respectively detecting a positional shift between a camera for reading an alignment mark (hereinafter, referred to simply as “AM”) which is formed on a substrate and serves as a reference for adjusting a position and a calibration pattern for positional shift detection, and a positional shift between a pulse light beam of the optical head and the calibration pattern, a positional shift between the AM camera and the optical head relative to designed values can be detected.
The positional shift detecting operations are desirably carried out in a state close to an actual drawing operation; if not so, even a difference in detection timing would cause a positional shift. More specifically, a time lag between an operation of relatively moving the worktable with respect to the optical head and irradiation timing in the laser irradiation system causes a positional shift. In a case in which a pattern drawing process with higher accuracy is required, this positional shift cannot be ignored; however, the positional shift detection system according to Patent Document 1 completely fails to take this problem into consideration.
Accordingly, in a pattern drawing system for controlling a relative amount of movement between a table on which a workpiece is mounted and an optical head based on a reading position of the alignment mark serving as a reference of drawing positions formed on the workpiece, an object of the present invention is to detect positional shifts relative to designed values with high accuracy.
Of the inventions disclosed in the present application, one of the representative pattern drawing apparatus which includes an optical head, controls a relative amount of movement between a table on which a workpiece is mounted and the optical head based on a reading position of an alignment mark serving as a reference of drawing positions formed on the workpiece, and allows the optical head to draw a pattern on the workpiece, further including: a first image-pickup unit for reading the alignment mark and reading an image of a first pattern for detecting a positional shift; a second image-pickup unit for reading the image of the first pattern and reading an image of a second pattern for detecting a positional shift drawn by an irradiation light beam from the optical head while carrying out a relative movement between the table and the optical head; and a positional shift detection unit for obtaining a first coordinate difference between a center of a visual field of the first image-pickup unit and a center of the first pattern based on a read image by the first image-pickup unit and obtaining a second coordinate difference between the center of the first pattern and a specific position of the second pattern based on a read image by the second image-pickup unit.
Also, of the inventions disclosed in the present application, one of the representative pattern drawing method including the steps of controlling a relative amount of movement between a table on which a workpiece is mounted and an optical head based on a reading position of an alignment mark serving as a reference of drawing positions formed on the workpiece, and allowing the optical head to draw a pattern on the workpiece, further including: a first step of obtaining a first coordinate difference between a center of a visual field of a first image-pickup unit and a center of a first pattern by reading an image of the first pattern for detecting a positional shift by using the first image-pickup unit for reading the alignment mark; a second step of drawing a second pattern for detecting a positional shift by using an irradiation light beam from the optical head while carrying out a relative movement between the table and the optical head; and a third step of obtaining a second coordinate difference between the center of the first pattern and a specific position of the second pattern based on the first pattern and a read image by a second image-pickup unit for reading an image of the second pattern.
In accordance with the present invention, in the pattern drawing system for controlling a relative amount of movement between a table on which the workpiece is mounted and the optical head based on a reading position of the alignment mark serving as a reference of drawing positions formed on the workpiece, it becomes possible to detect positional shifts relative to designed values with high accuracy.
[Embodiment]
In the following, an embodiment of the present invention will be described with reference to
On the front side of the gate 7, an optical head unit 8 including a plurality of optical heads is attached and is designed to carry out a drawing process of a desired pattern by irradiating the substrate 1 that relatively moves with respect to the optical head unit 8 with the laser light beam. To this optical head unit 8, an AM camera 10 of a coaxial illumination type for reading the AM 9 formed on the substrate 1 is attached through an attaching member 11.
Each of the optical heads of the optical head unit 8 is formed by using a digital micromirror device (DMD) in which movable micromirrors are arranged in a matrix form, and the tilt of each of the movable micromirrors is controlled by an on/off signal from control means. The optical head of this type has been known by, for example, Japanese Patent Application Laid-Open Publication No. 2009-80324.
Note that, although the size of the transmission section 23 is relatively considerably small to the light shielding section 24, it is illustrated with a larger size so as to make it easy to see in
The entire control unit 45 includes a drawing control unit 46 which stores image information of patterns to be drawn in storage means, and controls the worktable driving control unit 43 and the optical head control unit 44 so as to draw a desired pattern on the substrate 1 and a positional shift detection unit 47 for detecting a positional shift in accordance with the present invention.
The entire control unit 45 may be realized by, for example, a processing device controlled by a program, and among functional elements provided outside the entire control unit 45, one portion or the entire portions thereof except for the optical head camera 3 and the AM camera 10 may be executed inside the entire control unit 45.
Note that, in
In this pattern drawing apparatus, in a case in which a desired pattern is actually drawn on the substrate 1, the following operations are carried out under control of the entire control unit 45.
In
Moreover, in a case in which a positional shift detecting operation is executed, the following operations are carried out under control of the entire control unit 45.
In
Based on the read image of the AM camera 10, the positional shift detection unit 47 in
Note that, the above-mentioned positional information A is positional information used when alignment is made in such a way that the center 55 of the visual field 54 of the AM camera 10 is mutually coincident with the center 56 of the transmission section 52 serving as the center of the calibration pattern 51 based on the designed values.
Next, the calibration pattern 21 is read by the optical head camera 3 with the alignment made based on the above-mentioned positional information A (step 84).
Based on the read image of the optical head camera 3, the positional shift detection unit 47 in
Next, by using a method to be described later, while a circular pattern 31 (hereinafter, referred to as a positional shift detection drawing pattern) as shown in
Based on the read image of the optical head camera 3, the positional shift detection unit 47 in
Note that the drawing process of the positional shift detection drawing pattern 31 shown in
Based on the designed values, in the same manner as in a normal drawing operation, while the worktable 2 is being moved within the visual field of the optical head camera 3, the drawing process is carried out by operating movable micromirrors selected in the DMD in an optical head which has been designed so as to form a reference of the drawing position among the plural optical heads included in the optical head unit 8, for example, an optical head located at the end when the optical head unit 8 is seen in the Y direction (hereinafter, referred to as a reference optical head). In this case, the drawing process is carried out so as to make the center of the positional shift detection drawing pattern 31 coincident with the center of the visual field of the optical head camera 3.
In this case, for example, the center of image information of the positional shift detection drawing pattern 31 is preliminarily determined as a specific position, and then, the information is written in the storage means in the drawing control unit 46. The drawing control unit 46 develops the image information in the storage means from the coordinate system in the storage means to the coordinate system in the worktable 2 in the same manner as in the case of a normal drawing operation, so as to make its center coincident with the center of the visual field 62 of the optical head camera 3.
Note that, in this case, even when there is a large positional shift relative to the designed value, in order to prevent the positional shift detection drawing pattern 65 from being out of the visual field of the optical head camera 3 in
Lastly, the positional shift detection unit 47 in
In a case in which a desired pattern is actually drawn on the substrate 1 by supplying drawing information including positional information, the AM detection position detected by the AM camera 10 is used as a reference; however,
Now, returning to a case in which the desired pattern is actually drawn on the substrate 1, based on the detection position of the AM 9, the drawing control unit 46 of the entire control unit 45 in
In accordance with the above-mentioned embodiment, at the time of the positional shift detecting operation, the optical head is allowed to draw a positional shift detection drawing pattern in an actual drawing mode, and the positional shift is detected by using the read image of this positional shift detection drawing pattern; thus, shifts including a positional shift derived from a time lag between a relative moving operation of the worktable 2 with respect to the optical head and irradiation timing in the laser irradiation system can be detected, so that it is possible to improve detection accuracy of the positional shift with respect to the designed value.
Moreover, since the size (diameter) of the positional shift detection drawing pattern 31 shown in
The above description has been given of the present invention mainly based on one embodiment; however, the embodiment is merely an example so as to make the present invention easily understood, and various modifications may be made therein by replacing various components or the like in the embodiment or by adding different elements thereto, and the present invention is not intended to be limited by the embodiment.
For example, in the above-mentioned embodiment, the calibration pattern 21 is first read by the AM camera 10, and the calibration pattern 21 and the positional shift detection drawing pattern are next read by the optical head camera 3; however, these processes may be carried out in the reversed manner.
Moreover, in the above-mentioned embodiment, the positional shift detection unit 47 obtains the coordinate differences (ΔXA, ΔYA) serving as the summed values of three coordinate differences to store as correction values; however, the positional shift detection unit 47 may obtain the respective coordinate differences (ΔX1, ΔY1), (ΔX2, ΔY2), and (ΔX3, ΔY3) and may only store them respectively, and the drawing control unit 46 may be designed to obtain the summed values at the time of correction.
Furthermore, in the above-mentioned embodiment, the calibration pattern 21 to be formed on the calibration pattern formation plate 22 is constituted by the quadrangular light shielding section 24 with the circular transmission section 23 remaining in the center; however, other shapes may be used as long as the center coordinates are obtained by processing the read images of the calibration patterns by the optical head camera 3 and the AM camera 10. For example, as shown in
Furthermore, in the above-mentioned embodiment, in
However, the drawing process may be carried out in such a way that the center 66 of the positional shift detection drawing pattern 65 is located at a position shifted from the center of the visual field 62 of the optical head camera 3, for example, by (ΔXp, ΔYp) based on the designed value.
In this case, since the coordinate differences (ΔXA, ΔYA) detected by the above-mentioned method include portions corresponding to the above-mentioned shifts (ΔXp, ΔYp), the positional shift detection unit 47 calculates (ΔX1, ΔY1)+(ΔX2, ΔY2)+(ΔX3, ΔY3)−(ΔXp, ΔYp) and stores the resulting coordinate differences (ΔXB, ΔYB) as correction values, or the drawing control unit 46 may carry out the above-mentioned calculations at the time of correction.
Moreover, in the above-mentioned embodiment, the positional shift detection drawing pattern is drawn by operating movable micromirrors selected in the DMD in the reference optical head. However, since the positions of the movable micromirrors in the optical heads other than the reference optical head can be recognized based on the position of the reference optical head as a reference, the positional shift detection drawing pattern may be drawn by using selected movable micromirrors in the optical head other than the reference optical head.
Furthermore, in the above-mentioned embodiment, the positional shift detection drawing pattern to be drawn by the reference optical head is formed into a circular shape. However, it is not necessarily formed into a circular shape, and another shape may be used as long as the specific position of the positional shift detection drawing pattern can be obtained by processing the read image. For example, the shape may be formed into a quadrangular shape, and the corner portion located on the lower left side of the four corner portions may be set to the specific position.
Also, in the above-mentioned embodiment, based on the read image of the optical head camera 3, the coordinate differences (ΔX2, ΔY2) between the center 63 of the visual field 62 of the optical head camera 3 and the center 56 of the transmission section 52 and the coordinate differences (ΔX3, ΔY3) between the center 63 of the visual field 62 of the optical head camera 3 and the center 66 of the positional shift detection drawing pattern 65 are individually obtained.
However, in a case in which the summed values of the coordinate differences (ΔX2, ΔY2) and (ΔX3, ΔY3), that is, coordinate differences (ΔX4, ΔY4), can be detected at one time as shown in
The coordinate differences (ΔX4, ΔY4) can be obtained at one time, for example, in the following manner. As the positional shift detection drawing pattern 32 for use therein, a ring-shaped pattern is used as shown in
Note that, in this case, it is necessary to set the inner diameter and the outer diameter of the ring of the positional shift detection drawing pattern 67 and the size of the transmission section so as to provide sufficient margins, in order to prevent the inside portion 68 of the ring of the positional shift detection drawing pattern 67 from protruding from the transmission section 52, and the transmission section 52 from protruding into the outside portion of the ring of the positional shift detection drawing pattern 67, even in a case in which there is a large positional shift with respect to the designed value.
In a case in which the positional shift detection drawing pattern 32 of
Also in this case, the positional shift detection unit 47 in
Moreover, in the above-mentioned embodiment, each of the optical heads of the optical head unit 8 uses a DMD in which a large number of movable micromirrors are arranged in a matrix form; however, an optical head using, for example, a grating light valve (GLV: registered trademark) which is a spatial light modulation element similar to the DMD may be adopted.
Furthermore, in the above description, only the single AM 9 formed on the substrate 1 has been described; however, actually, a plurality of AMs are formed on the substrate 1. For example, in
Number | Date | Country | Kind |
---|---|---|---|
2016-104816 | May 2016 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
5805866 | Magome | Sep 1998 | A |
7170603 | Katayama | Jan 2007 | B2 |
7256869 | Nishi | Aug 2007 | B2 |
7298482 | Yamamoto | Nov 2007 | B2 |
8274642 | Matsuura | Sep 2012 | B2 |
8442270 | Yanai | May 2013 | B2 |
8886350 | Yamada | Nov 2014 | B2 |
9057873 | Miyamoto | Jun 2015 | B2 |
9136089 | Wang | Sep 2015 | B2 |
9904179 | Koizumi | Feb 2018 | B2 |
9910361 | Shibazaki | Mar 2018 | B2 |
9915878 | Shibazaki | Mar 2018 | B2 |
20040189995 | Tanaka | Sep 2004 | A1 |
20080013089 | Ishii | Jan 2008 | A1 |
20140049759 | Shibazaki | Feb 2014 | A1 |
20170261317 | Lee | Sep 2017 | A1 |
20180054932 | Amano | Feb 2018 | A1 |
Number | Date | Country |
---|---|---|
2008-65034 | Mar 2008 | JP |
2008-65034 | Mar 2008 | JP |
Number | Date | Country | |
---|---|---|---|
20170343907 A1 | Nov 2017 | US |