Nanomechanical resonators with their extremely small mass and high surface/volume ratio present a unique opportunity for mass sensing. However, functionalization of nanomechanical resonators with selective vapor adsorptive functional groups has been an impediment to the realization of nanomechanical systems for mass sensing.
Functional groups that adsorb analytes of interest should be patterned only on the nanoresonator itself, and should not be located on structural elements or micro-channel walls, which greatly limits the minimum detectable limit of the overall device. Also, traditional spin cast polymer films present the problem of being many times thicker than the nanomechanical resonator, essentially burying the resonator in the adsorptive polymer and completely damping the resonator.
To address these shortcomings, the present disclosure describes using a generic monolayer functionalization scheme based on a UV-mediated reaction between terminal alkenes and a hydrogen terminated silicon or diamond surface.
Specifically, disclosed herein is the selective surface functionalization with a vapor adsorptive monolayer of hexafluoro-dimethylcarbinol on diamond and silicon nanomechanical resonators.
Thick films incorporating the hexafluoro-dimethylcarbinol group have already been shown in SAW devices to be an effective sorbent polymer for dimethyl methylphosphonate (DMMP), a surrogate of the nerve agent Sarin.
In addition, disclosed herein is the use of in-plane vibratory modes, coupled with sub-wavelength gaps, of diamond and silicon nanomechanical resonators for enhanced sensitivity and use in air.
The device is based on the fusion of a deep UV functionalization technique, a knowledge of polymer adsorption, and a specifically designed nanomechanical resonator for mass sensing.
Various methods to gain detection specificity with nanomechanical resonators include spin-casting, ink-jet printing, and dip-pen nanolithography. Spin cast films can be used on SAW devices and thick microelectromechanical systems (MEMS), but due to the extremely small device layers in nanomechanical resonators (NEMS), spin cast films typically destroy a released resonator. Ink-jet printing and dip-pen nanolithography give high spatial resolution, but the thickness of the film is difficult to control, and these techniques are also too slow.
By combining deep-UV functionalization with a knowledge of polymer/monomer adsorption, a molecule can be produced that can be directly attached to a NEMS resonator using an optical mask. Optical printing of the attached molecule can be performed over large wafers, with the entire wafer being exposed at the same time, thus multiple parallel devices can be functionalized at once.
Another benefit of this technique over spin casting is that the molecule is only attached to the surface where it was exposed to the deep UV radiation, thus adding the simplicity of optical patterning without additional steps.
Still another benefit to this UV mediated photochemistry is that the molecule is actually covalently bonded to the resonator, which means that a strong bond has been formed, which is robust and resistant to degradation due to repeated cycling, which is not the case in these other methods.
Research shows that in-plane vibrations are less sensitive to air damping than out-of-plane modes, which is why the geometry to in-plane resonators is specified, e.g. tuning fork.
Further studies have shown that sub-wavelength gaps increase the responsivity, and thus the minimum detectable motion, by almost ten times.
The high sensitivity of NEMS resonators allows for high sensitivity while the polymer choice and deposition technique allows for chemical selectivity.
This disclosure provides a method to construct an inexpensive and extremely sensitive mass sensor with chemical specificity. Specific adsorbates include, but are not limited to, explosives and chemical weapons.
One embodiment disclosed herein involves a method of functionalizing a nanomechanical resonator comprising providing a wafer with a thin film layer on a sacrificial layer, suspending freely a resonator on the wafer, coating the resonator with a liquid containing a terminal allyl group, placing a quartz-mask on the wafer, trapping the liquid between the mask and the wafer, initiating a reaction of the terminal allyl with photo-induced electrons, rinsing the wafer, and drying the wafer. The method can further include incorporating narrow gaps of from about 50 to about 300 nm in the resonator.
A SEM micrograph of the proposed device is shown in
The device can be constructed from nanocrystalline diamond films grown on a sacrificial layer (such as silicon dioxide), or other materials as well such as silicon, single crystal diamond, polycrystalline diamond, polycrystalline silicon, silicon nitride, silicon oxide, and silicon carbide. Standard lithography techniques are implemented to form a free-standing resonator, for example a tuning fork, dome, cantilever, doubly clamped beam, or plate. Incorporation of a narrow, sub-wavelength gap is an important element to the design of an ultra-high sensitivity chemical sensor.
Functionalization of the nanomechanical resonator is also an important element, since the functional groups on the surface of the nanomechanical resonator will dictate what molecules the surface will adsorb. The functionalization must also be robust, and covalently bonded to the resonator to allow repeated use and thermal cycling of adsorbed species.
A functionalization scheme to covalently bond sorptive polymers to nanomechanical resonators is shown in
A quartz mask is then placed on top of the wafer of nanomechanical resonators trapping the liquid between the mask and wafer. A deep UV source, for example Hg arc, Xe arc, or DUV laser, is used to initiate reaction of the terminal allyl with electrons that are generated at the surface of the resonator due to the deep UV exposure. The exposure time is ˜12 hours with a Xe lamp.
After exposure, the wafer of resonators is rinsed in Isopropanol and dried using a critical point dryer (CPD), and characterized using X-ray photoelectron spectroscopy (XPS). XPS shows 50% coverage of a monolayer by this method on diamond and silicon surfaces.
The nanomechanical resonator can be actuated thermally by either a micro-fabricated resistor, or using a modulated heat pulse from a laser.
The in-plane modes of vibration show markedly increased quality factors (1000:1) from out-of-plane modes at atmospheric pressure as shown in
A key to this design of this chemical sensor is the use of in-plane vibrations, which give increased sensitivity and low damping for in-air operation (
The ability to pattern using chemical covalent bonds to the resonator gives high quality factors, robustness to the cycling of the device, sensitivity, and selectivity. Each of these ideas has an impact on other fields as well, for example, the narrow gaps can be applied to increase the sensitivity of any optically detected resonator.
Also, the ability to chemically pattern other sensors (e.g. SAW devices, preconcentrators, and chemiresistors) using covalent bonding for attachment to the areas of interest using deep UV light is a much desired technology due to the strong covalent bonding allowing for repeated cycling of the system without degradation.
Combined together these two individually novel ideas create a complete and robust device wherein the sensitivity of the NEMs resonators is increased due to sub-wavelength gaps and wherein the ability exists to chemically functionalize sorbent polymers that are strongly and chemically bound to the NEMS resonator.
A dome-shaped resonator geometry was chosen for this embodiment because of the high surface area available for functionalization which maximizes the ability for analyte detection by adsorption to the resonator's functionalized area. Further, the dome's high rigidity facilitates both functionalization and post-processing.
Nanomechanical dome resonators were fabricated from a 320 nm thick gate polysilicon layer of a standard CMOS fabrication process (1.5 μm AMI available through MOSIS). Post-processing release of the dome resonator (
Mass sensitivity and Quality Factor
The Quality factor (Q) of a nanomechanical resonator is an important parameter for vibrational-based sensors since their sensitivity is typically directly proportional to Q. The Quality Factor is a measure of the damping in the resonator due to both internal losses (clamping losses, internal friction such as thermoelastic dissipation, and surface effects) and external fluidic energy loss to the surrounding fluid, either through free-molecular momentum transfer or viscous effects. Because external losses can be quite high when the resonator is operated in ambient air, it is important to quantify these losses. Plotting these losses as a function of pressure indicates if the viscous losses should be computed by free-molecular or viscous methods. The quality factor as a function of pressure is shown as
Because the quality factor is found to be roughly inversely proportional to pressure, it can be concluded that the damping is in the free-molecular flow regime, even at ambient pressure. For systems at low pressures, or nano-systems with extremely small characteristic lengths, the fluid losses can be determined using free-molecular flow models. If the system is operating in a free-molecular flow regime, the quality factor will be inversely proportional to the pressure. The experimental results confirm this, showing that the damping is free-molecular, even at atmospheric pressure. This is consistent with previous experience with nano-scale resonators.
The fluidic quality factor for nano-scale resonators as a function of pressure can be estimated using free-molecular flow theory and is given by:
Q
f=ρsdω/C (1)
where d is the thickness of the membrane, ρs is the density of the polysilicon resonator material, and C is the drag per unit area of a cross-section of the dome divided by its velocity. C can be estimated using the linear free-molecular flow theory:
where P is the pressure, T the temperature, k the Boltzmann constant, and mg the mass of the gas molecules in the system. The fluidic quality factor is then equal to
The total quality factor of the resonator is then found by combining the fluidic quality factor with the intrinsic quality factor, Qint, measured at ultra-high vacuum:
The measured Qint was 7,800. A theoretical estimate of the quality factor is shown in
The pressure dependence of the quality factor shown in
Resonator Functionalization
A functionalization technique is outlined in
Results
The XPS spectra of the functionalized silicon are shown in
XPS measurements were performed using a commercial system (Thermo VG Scientific Escalab 220i-XL) equipped with a monochromatic Al Kα source, a hemispherical electron energy analyzer (58° angle between monochromator and analyzer), and a magnetic electron lens. The nominal XPS spot size and analyzer field of view were <1 mm2. The binding energies (BEs) are reported with 0.15 eV precision. For the thin organic monolayers in this study, charge compensation was not necessary and was not applied. Data was acquired in normal-emission angle-integrated scans of the C1s,
Si 2p, F 1s, and O 1s regions (15-25 eV windows with 0.15 eV spacing, 30 eV pass energy, 0.36 eV analyzer resolution). Spectra of the various regions were accumulated for 20 scans with a dwell time of 100 msec, to obtain a signal-to-noise ratio adequate for resolving the multiple components. Typically, spectra were acquired from three separate spots on each sample, primarily to test the monolayer uniformity. The corresponding calculated coverage values varied by no more than 10% for each of the samples. The peaks in the elemental core-level spectra were fit using commercial XPS analysis software. Multiple-component fitting in the C 1s region always started from the lowest BE component and its full-core-fwhm's for the higher-BE components. In each case, the minimum number of components that produced unstructured fit residuals was chosen.
The atomic fluorine to carbon ratio was 61% and atomic fluorine to silicon ratio was 45%. XPS being a very surface sensitive technique, these ratios essentially demonstrate that for every silicon atom, there is a carbon atom and fluorine atom present on the surface, which infers that we have greater than 50% of a monolayer coverage on the silicon surface. The C 1s portion of the data also shows chemical shift information which gives concrete evidence for the attachment of hexafluoroisopropanol to the silicon surface. Electronegativity of nearby atoms such as oxygen and fluorine can shift the carbon 1s peak such that the more electronegative the neighboring atom, the further the shift to higher binding energy. The C 1s region was fit using 4 individual peaks for the CF3 group (293.2 eV), C-OH group (286.8 eV), the C—Si group (288.3 eV), and the CH2 groups (285.4 eV). The relative area of each group came to be (2.2:1.7:1:2.7) which matches well to the stoichiometry of the molecule (2:1:1:3).
Spectra were also taken after one day and one week to determine how long the monolayer is stable in air. The results of the in-air study show some growth of adventitious carbon on the silicon, but no growth of silicon oxide, suggesting that the substrate is passivated against oxide growth.
This demonstrates the ability to functionalize very thin films of vapor sorbent molecules onto lithographically defined mechanical resonators. Using a photo-induced functionalization scheme allows one to functionalize only the resonator, and not the surrounding area, which would severely decrease sensitivity. Some advantages of monolayer functionalization are: the molecule is chemically bonded to the resonator, thereby opening the potential for better cycling of the device, and the film is thin in comparison to the thickness of the resonator. Thin films (320 nm) of polysilicon have been fabricated using standard CMOS techniques and are shown to be operable in air. The measured pressure dependence determines the mass sensitivity and fits well to computational results. This work demonstrates the ability to create low-cost CMOS MEMS resonators using relatively inexpensive cost-sharing services that make use of multi-project wafers, such as MOSIS, that significantly decrease the cost of each design.
SAW devices, FBAR devices, chemi-resistors, and fluorescent quenching polymers can all be used to detect explosives and chemical agents. However, the extreme sensitivity (˜10−16 g) that can be achieved with NEMS and the low cost of semiconductor fabrication give this technology a real advantage over these other technologies. The minimum detectable mass is projected to be at least an order of magnitude better than the best commercial detection system, and the footprint is orders of magnitude times smaller. This technology could be used in “smart dust” applications where remote monitoring and stealth are essential.
It is to be understood, however, that even though numerous characteristics and advantages of the present invention have been set forth in the foregoing description, together with details of the structure and function of the invention, the disclosure is illustrative only, and changes may be made in detail, especially in matters of shape, size and arrangement of parts within the principles of the invention to the full extent indicated by the broad general meaning of the terms in which the appended claims are expressed.
Number | Date | Country | |
---|---|---|---|
61102470 | Oct 2008 | US |