PDE5 DERIVED REGULATORY CONSTRUCTS AND METHODS OF USE IN IMMUNOTHERAPY

Abstract
The present disclosure relates to tunable biocircuit systems for the development of controlled and/or regulated therapeutic systems. In particular, regulatable biocircuits containing destabilizing domains (DD) derived from mutant human cGMP-specific phosphodiesterase type 5 (PDE5) are disclosed. Especially, the present disclosure provides an effector module. Such effector module may include (a) a stimulus response element (SRE), wherein the SRE is a DD, said DD comprising at least one mutation relative to cGMP-specific 3′,5′-cyclic phosphodiesterase (hPDE5; SEQ ID NO: 1) and (b) at least one payload, which is attached, appended or associated with said SRE. The SRE may be responsive to one or more stimuli.
Description
REFERENCE TO THE SEQUENCE LISTING

The present application is being filed along with a Sequence Listing in electronic format. The Sequence Listing is provided as a file entitled 2095_1008 PCT_SL.txt, created on Jun. 11, 2019, which is 20,431,626 bytes in size. The information in the electronic format of the sequence listing is incorporated herein by reference in its entirety.


FIELD

The present disclosure relates to tunable biocircuit systems for the development of controlled and/or regulated therapeutic systems. In particular, regulatable biocircuits containing destabilizing domains (DD) derived from mutant human cGMP-specific phosphodiesterase type 5 (PDE5) are disclosed. The present disclosure also relates to compositions and methods for immunotherapy.


Provided in the present disclosure include polypeptides of biocircuit systems, effector modules, stimulus response elements (SREs) and immunotherapeutic agents, polynucleotides encoding the same, vectors and cells containing the polypeptides and/or polynucleotides for use in cancer immunotherapy. In one embodiment, the compositions comprise destabilizing domains (DDs) which tune protein stability.


BACKGROUND

Safe and effective gene therapy requires tightly regulated expression of a therapeutic transgenic product (e.g., the protein product). Similarly, the analysis of gene function in development, cell differentiation and other physiological activities requires the controllable expression of a protein under investigation. However, current technologies do not allow titration of levels of target protein induced or kinetics of induction. Inadequate exogenous and/or endogenous gene control is a critical issue in numerous settings including ex vivo and in vivo gene therapy. This lack of tunability also makes it difficult to safely express proteins with narrow or uncertain therapeutic windows or those requiring more titrated, controlled or transient expression.


One approach to regulated protein expression or function is the use of Destabilizing Domains (DDs). Destabilizing domains are small protein domains that can be appended to a payload such as a protein of interest (POI). DDs render the attached protein of interest (POI) unstable in the absence of a DD binding ligand such that the protein is rapidly degraded by the ubiquitin-proteasome system of the cell (Stankunas, K., et al., (2003). Mol. Cell 12, 1615-1624; Banaszynski, L. A., et al., (2006) Cell; 126(5): 995-1004; reviewed in Banaszynski, L. A., and Wandless, T. J. (2006) Chem. Biol. 13, 11-21; Iwamoto, M., et al. (2010). Chem Biol. 17(9):981-8; Egeler, E. L. et al. (2011). J Biol Chem. 286(36):31328-36; and Rakhit R, Navarro R, Wandless T J (2014) Chem Biol. September 18; 21(9):1238-52; Navarro, R. et al. (2016) ACS Chem Biol. 11(8): 2101-2104). In some cases, the protein of interest is not completely processed and may not be secreted or presented on the membrane in the absence of DD-binding ligand (Sellmeyer et al., (2012), doi.org/10.1371/journal.pone.0043297; the contents of which are incorporated by reference in their entirety). However, when a specific small molecule ligand binds its intended DD as a ligand binding partner, the instability is reversed and protein function is restored or, in some cases, processing is restored and the protein of interest is presented on the membrane or secreted. Such a system is herein referred to as a biocircuit, with the canonical DD-containing biocircuit described above being the prototypical model biocircuit


It is believed that improvements of biocircuits, including those containing DDs can form the basis of a new class of cell and gene therapies that employ tunable and temporal control of gene expression and function. Such novel moieties are described by the present inventors as stimulus response elements (SREs) which act in the context of an effector module to complete a biocircuit arising from a stimulus and ultimately producing a signal or outcome. When properly formatted with a polypeptide payload, and when activated by a particular stimulus, e.g., a small molecule, biocircuit systems can be used to regulate transgene and/or protein levels either up or down by perpetuating a stabilizing signal or destabilizing signal. This approach has many advantages over existing methods of regulating protein function and/or expression, which are currently focused on top level transcriptional regulation via inducible promoters.


The present disclosure provides novel protein domains, in particular, destabilizing domains (DDs) derived from mutant human cGMP-specific phosphodiesterase type 5 (PDE5), particularly the catalytic domain of human PDE5, that display small molecule dependent stability, and the biocircuit systems and effector modules comprising such DDs. Methods for tuning transgene functions using the same are also provided.


Cancer immunotherapy aims to eradicate cancer cells by rejuvenating the tumoricidal functions of tumor-reactive immune cells, predominantly T cells. Strategies of cancer immunotherapy including the recent development of checkpoint blockade, adoptive cell transfer (ACT) and cancer vaccines which can increase the anti-tumor immune effector cells have produced remarkable results in several tumors.


The impact of host anti-tumor immunity and cancer immunotherapy is impeded by three major hurdles: 1) low number of tumor antigen-specific T cells due to clonal deletion; 2) poor activation of innate immune cells and accumulation of tolerogenic antigen-presenting cells in the tumor microenvironment; and 3) formation of an immunosuppressive tumor microenvironment. Particularly, in solid tumors the therapeutic efficacy of immunotherapeutic regimens remains unsatisfactory due to lack of an effective an anti-tumor response in the immunosuppressive tumor microenvironment. Tumor cells often induce immune tolerance or suppression and such tolerance is acquired because even truly foreign tumor antigens will become tolerated. Such tolerance is also active and dominant because cancer vaccines and adoptive transfer of pre-activated immune effector cells (e.g., T cells), are subject to suppression by inhibitory factors in the tumor microenvironment (TME).


In addition, administration of engineered T cells could result in on/off target toxicities as well as a cytokine release syndrome (reviewed by Tey Clin. Tranl. Immunol., 2014, 3: e1710.1038).


Development of a tunable switch that can turn on or off the transgenic immunotherapeutic agent expression is needed in case of adverse events. For example, adoptive cell therapies may have a very long and an indefinite half-life. Since toxicity can be progressive, a safety switch is desired to eliminate the infused cells. Systems and methods that can tune the transgenic protein level and expression window with high flexibility can enhance therapeutic benefit, and reduce potential side effects.


In an effort to develop regulatable therapeutic agents for disease therapy, in particular cancer immunotherapy, the present disclosure provides biocircuit systems to control the expression of immunotherapeutic agents. The biocircuit system comprises a stimulus and at least one effector module that responds to the stimulus. The effector module may include a stimulus response element (SRE) that binds and is responsive to a stimulus and an immunotherapeutic agent operably linked to the SRE. In one example, a SRE is a destabilizing domain (DD) which is destabilized in the absence of its specific ligand and can be stabilized by binding to its specific ligand.


SUMMARY

The present disclosure provides compositions and methods for immunotherapy. The compositions relate to tunable systems and agents that induce anti-cancer immune responses in a cell or in a subject. The tunable system and agent may be a biocircuit system comprising at least one effector module that is responsive to at least one stimulus. The biocircuit system may be, but is not limited to, a destabilizing domain (DD) biocircuit system, a dimerization biocircuit system, a receptor biocircuit system, and a cell biocircuit system. These systems are further taught in co-owned U.S. Provisional Patent Application No. 62/320,864 filed Apr. 11, 2016, 62/466,596 filed Mar. 3, 2017 and the International Publication WO2017/180587 (the contents of each of which are herein incorporated by reference in their entirety).


The present disclosure provides an effector module. Such effector module may include (a) a stimulus response element (SRE), wherein the SRE is a DD, said DD comprising at least one mutation relative to cGMP-specific 3′,5′-cyclic phosphodiesterase (hPDE5; SEQ ID NO:1) and (b) at least one payload, which is attached, appended or associated with said SRE. The SRE may be responsive to one or more stimuli. The effector module of the may include at least one mutation which may include but is not limited to T537A, E539G, V548E, D558G, F559S, E565G, C574N, R577Q, R577W, N583S, Q586R, Q589L, K591R, K591R, L595P, C596R, W615R, F619S, Q623R, K633I, Q635R, N636S, T639S, D640N, E642G, I643T, L646S, A649V, A650T, S652G, H653A, D654G, V660A, V660A, L672P, A673T, C677Y, M681T, E682G, H685R, F686S, Q688R, M691T, S695G, G697D, S702I, I706T, E707K, Y709H, Y709C, I715V, I720V, A722V, D724G, Y728C, K730E, R732L, L738I, I739M, K741N, K741R, F744L, D748N, K752E, K752E, K752E, E753K, L756V, M758T, M760T, A762V, C763R, D764N, D764N, I774V, L781F, L781P, E785K, R794G, M805T, R807G, K812R, I813T, I813T, M816R, Q817R, V818A, F820S, I821V, C825R, Y829C, E830K, L832P, S836L, C846Y, C846S, L856P, L856P, A857T, or E8586.


In some embodiments, the SRE may include two mutations. The mutation pairs may be selected from but not limited to E536K, I739W; H678F, S702F; E669G, I700T; G632S, I648T; T639S, M816R; Q586R, D724G; E539G, L738I; L672P, S836L; M691T, D764N; I720V, F820S; E682G, D748N; S652G, Q688R; Y728C, Q817R; H653, R732L; and L595P, K741R.


In some embodiments, the SRE may include three mutations. The three mutation may be selected from but not limited to Q623R, D654G, K741N; A673T, L756V, C846Y; E642G, G697D, I813T; C677Y, H685R, A722V; Q635R, E753K, I813T; Y709H, K812R, L832P; N583S, K752E, C846S; K591R, I643T, L856P; F619S, V818A, Y829C; and F559S, Y709C, M760T.


In some embodiments, the SRE may include four mutations. The four mutations may be selected from but not limited to S695G, E707K, I739M, C763R; A649V, A650T, K730E, E830K; and R577W, W615R, M805T, I821V.


In some embodiments, the SRE may include five mutations. The five mutations may be selected from but not limited to V660A, L781F, R794G, C825R, E858G; and T537A, D558G, I706T, F744L, D764N.


In one embodiment, the SRE may include six mutations. The six mutations may be R577Q, C596R, V660A, I715V, E785K, and L856P. In one embodiment, the SRE may include eight mutations. The eight mutations include V548E, Q589L, K633I, M681T, S702I, K752E, L781P, and A857T.


In some embodiments, the SRE may include two mutations. The mutation pairs may be selected from but not limited to R732D, F736S; R732E, F736D; R732V, F736G; R732W, F736G; R732W, F736V; R732L, F736W; R732P, F736Q; R732A, F736A; R732S, F736G; R732T, F736P; R732M, F736H; R732Y, F736M; R732P, F736D; R732P, F736G; R732W, F736L; R732L, F736S; R732D, F736T; R732L, F736V; R732G, F736V; and R732W, F736A.


The payload of the effector module may be a chimeric antigen receptor (CAR). The CAR may include (a) an extracellular target moiety; (b) a hinge and transmembrane domain; (c) an intracellular signaling domain; and (d) optionally, one or more co-stimulatory domains The CAR may comprise the mutation H653A or R732L or H653A and R732L.


In some embodiments the CAR is a CD19 CAR. The CAR can comprises the amino acid sequence of OT-001455, SEQ ID NO: 8282. In some embodiments, the CAR comprises the amino acid sequence of OT-001456, SEQ ID NO: 8283.


The one or more stimuli of the effector modules as described herein can be responsive to a small molecule. In some embodiments, the small molecule is selected from Tadalafil, Vardenafil, Sildenafil, Avanafil, Lodenafil, Mirodenafil, Udenafil, Benzamidenafil, Dasantafil, and Beminafil


Also provided herein are pharmaceutical compositions which include effector modules, polynucleotides and vectors.





BRIEF DESCRIPTION OF THE DRAWINGS

The foregoing and other objects, features and advantages will be apparent from the following description of particular embodiments of the disclosure, as illustrated in the accompanying drawings. The drawings are not necessarily to scale; emphasis instead being placed upon illustrating the principles of various embodiments of the disclosure.



FIG. 1 shows an overview diagram of a biocircuit system of the disclosure. The biocircuit comprises a stimulus and at least one effector module responsive to a stimulus, where the response to the stimulus produces a signal or outcome. The effector module comprises at least one stimulus response element (SRE) and one payload.



FIG. 2 shows representative effector modules carrying one payload. The signal sequence (SS), SRE and payload may be located or positioned in various arrangements without (A to F) or with (G to Z, and AA to DD) a cleavage site. An optional linker may be inserted between each component of the effector module.



FIG. 3 shows representative effector modules carrying two payloads without a cleavage site. The two payloads may be either directly linked to each other or separated.



FIG. 4 shows representative effector modules carrying two payloads with a cleavage site. In one embodiment, an SS is positioned at the N-terminus of the construct, while other components: SRE, two payloads and the cleavage site may be located at different positions (A to L). In another embodiment, the cleavage site is positioned at the N-terminus of the construct (M to X). An optional linker may be inserted between each component of the effector module.



FIG. 5 shows effector modules of the disclosure carrying two payloads, where an SRE is positioned at the N-terminus of the construct (A to L), while SS, two payloads and the cleavage site can be in any configuration. An optional linker may be inserted between each component of the effector module.



FIG. 6 shows effector modules of the disclosure carrying two payloads, where either the two payloads (A to F) or one of the two payloads (G to X) is positioned at the N-terminus of the construct (A to L), while SS, SRE and the cleavage site can be in any configuration. An optional linker may be inserted between each component of the effector module.



FIG. 7A shows the percent of CAR positive cells obtained with cells transduced with different volumes of virus related to the CAR constructs. FIG. 7B shows the percentage of CAR positive cells with vardenafil treatment. FIG. 7C shows the expression of the CAR with CD3/CD28 bead restimulation. FIG. 7D shows the percentage of CAR positive cells with different concentrations of virus and in the presence or absence of CD3/CD28 bead restimulation. FIG. 7E shows the dose response of CD19 CAR constructs to sildenafil, vardenafil and tadalafil. FIG. 7F shows the response of CD19 CAR constructs to different ligands and with varying the duration of ligand treatment. FIG. 7G shows IL2 and IFNγ levels obtained from the supernatants of cocultures of effector and target cells in the presence of vardenafil. FIG. 7H shows the percentage of CAR positive T cells obtained with Tadalafil treatment. FIG. 7I shows the IL2 and IFNγ levels obtained from the supernatants of cocultures of effector and target cells in the presence of tadalafil. FIG. 7J shows the target cell killing by CAR expressing T cells in the presence of vardenafil. FIG. 7K shows the proliferation of target cells cocultured with CAR expressing T cells in the presence of vardenafil.



FIG. 8A shows the total flux of Nalm6 luc cells in mice, in the presence of tadalafil. FIG. 8B and FIG. 8C show the pharmacokinetics of vardenafil and tadalafil in plasma of mice after injections of ligand at indicated doses.



FIG. 9A shows antitumor efficacy of Vardenafil. FIG. 9B shows that increased Tadalafil dose density significantly increases DD regulated CAR-Ts antitumor efficacy.



FIG. 10 shows the total flux of Nalm6 luc cells in mice with initial high dose of tadalafil compared to lower dose. A high initial dose of tadalafil with later shift to maintenance dosing does not improve efficacy of PDE5-regulated CD19 CAR-mediated cytotoxicity.



FIG. 11 shows the total flux of Nalm6 luc cells in mice with pre-infusion tadalafil exposure. Ligand pre-treatment prior to freezing CAR T cells increases basal CAR activity in vehicle treated animals but does not improve efficacy of ligand-regulated CAR-mediated cytotoxicity.



FIG. 12 shows the total flux of Nalm6 luc cells in mice with variable cell dosing. Increased cell dose fractionated over 3 days led to increased anti-tumor efficacy as compared to a single cell infusion.



FIG. 13 shows the total flux of Nalm6 luc cells in mice comparing efficacy of OT-001455 and OT-001456 constructs. OT-001455 showed higher increased efficacy but higher basal activity compared to OT-001456.



FIG. 14A shows a timecourse of CD19 CAR expression upon exposure to saturating dose of tadalafil. PDE5-regulated CD19 CAR expression responded similarly to constitutively expressed CD19 CAR, with low and high tadalafil concentrations achieving similar timecourse.



FIG. 14B shows a timecourse of CD19 CAR expression upon exposure to saturating dose of vardenafil. PDE5-regulated CD19 CAR expression responded similarly to constitutively expressed CD19 CAR, with low and high vardenafil concentrations achieving similar timecourse.



FIG. 15 shows CD19 CAR expression upon washout of tadalafil or vardenafil. PDE5-regulated CD19 CAR expression on the surface of T cells drops rapidly following removal of ligand.



FIG. 16 shows that OT-001456 allows reversibility of CAR expression based on ligand exposure time course, along with the ability to perform multiple rounds of pulsed ligand dosing while maintaining equal expression levels.





DETAILED DESCRIPTION

The details of one or more embodiments of the disclosure are set forth in the accompanying description below. Although any materials and methods similar or equivalent to those described herein can be used in the practice or testing of the present disclosure, the preferred materials and methods are now described. Other features, objects and advantages of the disclosure will be apparent from the description. In the description, the singular forms also include the plural unless the context clearly dictates otherwise. Unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinal), skill in the art to which this disclosure belongs. In the case of conflict, the present description will control.


I. Introduction
Protein Regulation

The ability to conditionally control protein levels is a powerful tool in gene and cell therapy. Techniques to control protein expression on a genetic level have been widely studied. The Cre-Lox technology provides a useful approach to activate or inactivate genes. Tissue or cell specific promoters can be used to control spatial and temporal expression of genes of interest. However, this system is limited in application due to the irreversible nature of the perturbation. The transcription of the gene of interest can be conditionally regulated using tools such as Doxycycline (Dox)-inducible system. Alternatively, the stability of mRNA can be regulated using RNA interference techniques. However, methods targeting DNA or RNA are slow acting, irreversible and have low efficiency.


Direct manipulation of activities at the protein level provides significant advantages in flexibility, reversibility and speed. Strategies which directly trigger a cell's natural degradation system have been developed. Szostak and colleagues showed that a small peptide sequence could be fused to the N-terminus of a protein of interest to modulate protein stability (Park, E-C., et al., Proc. Natl. Acad. Sci. U.S.A. 1992, 89:1249-1252). Varshaysky and coworkers isolated a temperature-sensitive peptide sequence that greatly reduced the half-life of dihydrofolate reductase (DHFR) at the non-permissive temperatures (Dohmen et al. Science 1994, 263:1273-1276). These mutants have been widely used to study protein functions in yeast (Labib et al. Science 2000, 288:1643-1646; and Kanemaki et al. Nature 2003, 423:720-724).


Subsequently, reversible systems employing a rapamycin derivative for the regulation of GSK-3β kinase fused to an unstable triple-mutant of the FRB domain (FRB*) were developed. The rapamycin derivative induces dimerization of the FRB*-GSK-3β and endogenous FKBP12 and stabilizes the FRB* fusion thus restoring the function of the fused kinase. (Stankunas et al., Mol Cell. 2003; 12:1615-1624 and Liu et al., Nature. 2007; 446:79-82).


Building on the FRB* domain system, Banaszynski, et al., developed a cell-permeable ligand system using mutants of FKBP12 protein which were engineered to be unstable in the absence of a high-affinity ligand, Shield-1. (Banaszynski et al., Cell. 2006; 126:995-1004). They termed these unstable domains, destabilizing domains (DDs).


The FKBP/shield-1 tuning system has been successfully used in several studies to control target proteins. For example, Dettwier et al., fused FKBP to tune the express of NADPH P450 oxidoreductase (POR) (Dettwier et al., PLoS One, 2014, 9(11): e113540).


The FKBP DD-shield system has been used in cell lines, transgenic mice, protozoan Entamoeba histolytica, the flatworm Caenorhabditis elegans, the medaka, and transgenic xenografts to investigate the activity of a protein of interest (Maynard-Smith et al., J Biol Chem. 2007, 282(34): 24866-24872; Liu et al., Int J Parasitol. 2014, 44(10):729-735; Cho et al., PLoS One. 2013, 8(8): e72393); Banaszynski et al. Nat Med. 2008, 14(10):1123-1127; Rodriguez and Wolfgang, Chem Biol. 2011, 19(3):391-398; and Froschauer et al., PLoS One, 2015, 10(7): e0131252), for iPSC reprogramming (Sui et al., Stem cell Reports., 2014, 2(5): 721-733).


In addition, the destabilizing domain has been used for the conditional knock-down or knock-out of the target gene fused with the destabilizing domain. Park et al achieved this genomic engineering by CRISPR/Cas9-mediated homologous recombination and a donor template coding for a resistance cassette and the DD-tagged TCOF1 sequence (Park et al., PLoS One. 2014, 9(4): e95101).


More recently protein switches useful as biosensors as well as new chimeric antigen receptors and other small molecule stabilization frameworks have been disclosed (An W, et al. PLoS ONE, 2015, 10(12): e0145783. doi: 10.1371/journal.pone.0145783; Nicholes, et al., Protein Engineering, Design & Selection, 2016, vol. 29 no. 2, pp. 77-85; Nath, et al., Biochemical and Biophysical Research Communications, 2016, 470: 411e416); Stevers, et al., PNAS, 2016, vol. 119, no. 9, pp. E112-1161; Juillerat, A. et al., Sci. Rep. 2016, 6: 18950; Roybal, Cell, 2016, vol. 164, pp. 1-10; and Morsut, Cell, 2016, vol. 164, pp. 1-12).


One drawback of the FKBP/Shield-1 is that Shield-1 is a novel drug whose biodistribution is not fully characterized and it is not known to what extent Shield-1 crosses the blood-brain barrier.


Other DD ligand pairs include estrogen receptor domains which can be regulated by several estrogen receptor antagonists (Miyazaki et al., J Am Chem. Soc., 2012, 134(9): 3942-3945), and fluorescent destabilizing domain (FDD) derived from bilirubin-inducible fluorescent protein, UnaG. A FDD and its cognate ligand bilirubin (BR) can induce degradation of a protein fused to the FDD (Navarro et al., ACS Chem Biol., 2016, Jun. 6, Epub). Other known DDs and their applications in protein stability include those described in U.S. Pat. Nos. 8,173,792 and 8,530,636, the contents of which are each incorporated herein by reference in their entirety.


In an orthogonal approach, the destabilizing domains of the bacterial dihydrofolate reductase (ecDHFR) were explored. (Iwamoto et al., Chem Biol. 2010, 17(9):981-988; and Tai et al., PLoS One. 2012, 7(9): e46269). Numerous inhibitors of DHFR have been developed as drugs and one such inhibitor Trimethoprim (TMP), inhibits ecDHFR much more potently than mammalian DHFR providing specificity to the interaction. Additionally, TMP is commercially available and has desirable pharmacological properties making this protein-ligand pair ideal for development for use as a biocircuit (Iwamoto, et al., Chem Biol. (2010) Sep. 24; 17(9): 981-988).


The present disclosure provides novel protein domains displaying small molecule dependent stability. Such protein domains are called destabilizing domains (DDs). In the absence of its binding ligand, the DD is destabilizing and causes degradation of a payload fused to the DD (e.g., a protein of interest (POI), while in the presence of its binding ligand, the fused DD and payload can be stabilized and its stability is dose dependent. Methods for tuning the expression level and activity of a protein of interest using the DDs, effector modules, biocircuit systems and compositions of the disclosure are also provided. In some embodiments, the SRE may be a destabilizing domain (DD). In some examples, the DD may be a portion or region of human protein PDE5. In this context, the biocircuit system is a DD biocircuit system.


The present disclosure expands upon the technology of tuning protein stability using novel destabilizing domains derived from human PDE5 protein. The destabilization and stabilization of a protein of interest, e.g., a transgene for gene therapy, can be controlled by PDE5 mutant DDs having destabilizing or stabilizing properties and their ligands, e.g. Sildenafil and Vardenafil specifically binding to such protein domains The presence and/or absence of a small molecule ligand can tune the activity of a payload (e.g., a protein of interest) that is operably linked to the destabilizing domain.


Immunotherapy

Cancer immunotherapy aims' at the induction or restoration of the reactivity of the immune system towards cancer. Significant advances in immunotherapy research have led to the development of various strategies which may broadly be classified into active immunotherapy and passive immunotherapy. In general, these strategies may be utilized to directly kill cancer cells or to counter the immunosuppressive tumor microenvironment. Active immunotherapy aims at induction of an endogenous, long-lasting tumor-antigen specific immune response. The response can further be enhanced by non-specific stimulation of immune response modifiers such as cytokines. In contrast, passive immunotherapy includes approaches where immune effector molecules such as tumor-antigen specific cytotoxic T cells or antibodies are administered to the host. This approach is short lived and requires multiple applications.


Despite significant advances, the efficacy of current immunotherapy strategies is limited by associated toxicities. These are often related to the narrow therapeutic window associated with immunotherapy, which in part, emerges from the need to push therapy dose to the edge of potentially fatal toxicity to get a clinically meaningful treatment effect. Further, dose expands in vivo since adoptively transferred immune cells continue to proliferate within the patient, often unpredictably.


A major risk involved in immunotherapy is the on-target but off tumor side effects resulting from T-cell activation in response to normal tissue expression of the tumor associated antigen (TAA). Clinical trials utilizing T cells expressing T-cell receptor against specific TAA reported skin rash, colitis and hearing loss in response to immunotherapy.


Immunotherapy may also produce on target, on-tumor toxicities that emerge when tumor cells are killed in response to the immunotherapy. The adverse effects include tumor lysis syndrome, cytokine release syndrome and the related macrophage activation syndrome. Importantly, these adverse effects may occur during the destruction of tumors, and thus even a successful on-tumor immunotherapy might result in toxicity. Approaches to regulatably control immunotherapy are thus highly desirable since they have the potential to reduce toxicity and maximize efficacy.


The present disclosure provides systems, compositions, immunotherapeutic agents and methods for cancer immunotherapy. These compositions provide tunable regulation of gene expression and function in immunotherapy. The present disclosure also provides biocircuit systems, effector modules, stimulus response elements (SREs) and payloads, as well as polynucleotides encoding any of the foregoing. In one aspect, the systems, compositions, immunotherapeutic agents and other components of the disclosure can be controlled by a separately added stimulus, which provides a significant flexibility to regulate cancer immunotherapy. Further, the systems, compositions and the methods of the present disclosure may also be combined with therapeutic agents such as chemotherapeutic agents, small molecules, gene therapy, and antibodies.


The tunable nature of the systems and compositions of the disclosure has the potential to improve the potency and duration of the efficacy of immunotherapies. Reversibly silencing the biological activity of adoptively transferred cells using compositions of the present disclosure allows maximizing the potential of cell therapy without irretrievably killing and terminating the therapy.


In particular, present disclosure provides methods for fine tuning of immunotherapy after administration to patients. This in turn improves the safety and efficacy of immunotherapy and increases the subject population that may benefit from immunotherapy.


II. Compositions of the Disclosure

A variety of strategies that can directly control protein, e.g., a transgene, expression and function are available. The present disclosure provides novel protein domains displaying small molecule dependent stability. Such protein domains are called destabilizing domains (DDs). In the absence of its binding ligand, the DD causes degradation of a payload such as a protein of interest (POI) that is operably linked to the DD, while in the presence of its binding ligand, the fused DD and payload can be stabilized and its stability is dose dependent.


According to the present disclosure, novel destabilizing domains derived from human hPDE5 (cGMP-specific phosphodiesterase type 5; also referred to as cGMP-specific 3′,5′-cyclic phosphodiesterase) protein are provided. The destabilizing domain (DD) mutants are derived from the human PDE5 protein, comprising the amino acid sequence of SEQ ID NO: 1 (encoded by the nucleic acid sequence of SEQ ID NO: 2). The hPDE5 DD mutant may also comprise more than one mutation in the catalytic domain of human PDE5 (SEQ ID NO: 3), encoded by nucleic acid sequence of SEQ ID NO:339, e.g., two, three, four, five or more mutations. These hPDE5 DDs can bind to Sildenafil and/or Vardenafil and be stabilized. In some embodiments, the hPDE5 DD may include a methionine appended to the N terminus of catalytic domain (SEQ ID NO: 237), encoded by SEQ ID NO: 4.


According to the present disclosure, biocircuit systems are provided which comprise, at their core, at least one effector module system. Such effector module systems comprise at least one effector module having associated, or integral therewith, one or more stimulus response elements (SREs). The overall architecture of a biocircuit system of the disclosure is illustrated in FIG. 1. In general, a stimulus response element (SRE) may be operably linked to a payload construct which could be any protein of interest (POI) (e.g., an immunotherapeutic agent), to form an effector module. The SRE, when activated by a particular stimulus, e.g., a small molecule, can produce a signal or outcome, to regulate transcription and/or protein levels of the linked payload either up or down by perpetuating a stabilizing signal or destabilizing signal, or any other types of regulation. A much-detailed description of a biocircuit system can be found in co-owned U.S. Provisional Patent Application No. 62/320,864 filed Apr. 11, 2016, 62/466,596 filed Mar. 3, 2017 and the International Publication WO2017/180587 (the contents of each of which are herein incorporated by reference in their entirety). In accordance with the present disclosure, biocircuit systems, effector modules, SREs and components that tune expression levels and activities of any agents used for immunotherapy are provided. In particular, biocircuit systems and effector modules comprising the novel hPDE5 destabilizing domains discussed herein are provided.


As used herein, a “biocircuit” or “biocircuit system” is defined as a circuit within or useful in biologic systems comprising a stimulus and at least one effector module responsive to a stimulus, where the response to the stimulus produces at least one signal or outcome within, between, as an indicator of, or on a biologic system. Biologic systems are generally understood to be any cell, tissue, organ, organ system or organism, whether animal, plant, fungi, bacterial, or viral. It is also understood that biocircuits may be artificial circuits which employ the stimuli or effector modules taught by the present disclosure and effect signals or outcomes in acellular environments such as with diagnostic, reporter systems, devices, assays or kits. The artificial circuits may be associated with one or more electronic, magnetic, or radioactive components or parts.


In accordance with the present disclosure, a biocircuit system may be a destabilizing domain (DD) biocircuit system, a dimerization biocircuit system, a receptor biocircuit system, and a cell biocircuit system. Any of these systems may act as a signal to any other of these biocircuit systems. In some embodiments, the present disclosure provides biocircuit systems, effector modules and compositions comprising the DDs of the present disclosure. In one aspect, the biocircuit system is a DD biocircuit system.


In one aspect of the present disclosure, the biocircuit system is a DD biocircuit system. The DD is a hPDE5 derived DD. The present disclosure provides isolated polypeptide variants. Such variants may include one to ten mutations relative to SEQ ID NO:3. In some embodiments, the isolated polypeptide variant comprises mutations that may independently selected from, but not limited to L573M, F735L, R658H, S562G, L727P, R847T, Q666H, L781P, A767E, T571S, V585M, T723S, Q743L, Y709H, F787V, N605Y, I715K, F564I, N662Y, H685L, L693P, F736I, A722V, F755L, M760I, V594I, H592R, E858V, T784I, S542L, E708V, W772C, I700F, E7960, D7240, K848N, T712M, M758I, Q859R, I556S, E796D, I680S, H613L, D724Y, F755Y, A611T, N661S, L569M, T833S, I768N, R607W, N620S, L554R, Q589E, M691I, W615R, T723R, A762T, E808G, C574Y, L554R, Q586P, K710N, K730E, H613R, Q586L, S663Y, A762T, E808G, V548M, D803N, L554R, Q589E, A823T, T571I, K604R, I706N, E795R, G659A, T784I, Q666H, H617L, A722V, N609Y, I799L, F561L, G659A, T784I, K795N, K770Q, K848N, N605D, I680S, V548M, F820I, I799L, R607Q, S550F, L554R, P549S, F564I, R658H, A779T, and R847G.


In some embodiments, the isolated polypeptide variant may comprise the mutations, L554R, Q589E and A823T. In one embodiment, the isolated polypeptide variant may be SEQ ID NO: 8423.


In some embodiments, the isolated polypeptide variant may comprise the mutations K770Q, and K848N. In one embodiment, the isolated polypeptide variant may be SEQ ID NO: 8431.


In some embodiments, the isolated polypeptide variant may comprise the mutations L573M, and F735L. In one embodiment, the isolated polypeptide variant may comprise the SEQ ID NO: 8387.


In some embodiments, the isolated polypeptide variant may be a stimulus response element (SRE). In one aspect, the SRE may be responsive to one or more stimuli.


The present disclosure also provides polynucleotides encoding the polypeptides described herein. In some embodiments, the polynucleotide may be codon optimized. In some aspects, the polynucleotide may comprise spatiotemporally selected codons.


Effector Modules and SREs for Immunotherapy

In accordance with the present disclosure, biocircuit systems, effector modules, SREs, and components that tune expression levels and activities of any agents used for immunotherapy are provided. As non-limiting examples, an immunotherapeutic agent may be an antibody and fragments and variants thereof, a cancer specific T cell receptor (TCR) and variants thereof, an anti-tumor specific chimeric antigen receptor (CAR), a chimeric switch receptor, an inhibitor of a co-inhibitory receptor or ligand, an agonist of a co-stimulatory receptor and ligand, a cytokine, chemokine, a cytokine receptor, a chemokine receptor, a soluble growth factor, a metabolic factor, a suicide gene, a homing receptor, or any agent that induces an immune response in a cell and a subject.


As stated, the biocircuits of the disclosure include at least one effector module as a component of an effector module system. As used herein, an “effector module” is a single or multi-component construct or complex comprising at least (a) one or more stimulus response elements (SREs) and (b) one or more payloads (i.e. proteins of interest (POIs)). In the context of the present disclosure, the SRE is a DD derived from human PDE5 protein.


As used herein a “stimulus response element (SRE)” is a component of an effector module which is joined, attached, linked to or associated with one or more payloads of the effector module and in some instances, is responsible for the responsive nature of the effector module to one or more stimuli. As used herein, the “responsive” nature of an SRE to a stimulus may be characterized by a covalent or non-covalent interaction, a direct or indirect association or a structural or chemical reaction to the stimulus. Further, the response of any SRE to a stimulus may be a matter of degree or kind. The response may be a partial response. The response may be a reversible response. The response may ultimately lead to a regulated signal or output. Such output signal may be of a relative nature to the stimulus, e.g., producing a modulatory effect of between 1% and 100% or a factored increase or decrease such as 2-fold, 3-fold, 4-fold, 5-fold, 10-fold or more.


In some embodiments, the biocircuit system of the present disclosure comprising a stimulus and an effector module of the disclosure. The DD of the effector module binds to the stimulus and regulates the stability of the linked payload. The DD may destabilize the protein of interest by a destabilization ratio between 0, and 0.09, wherein the destabilization ratio comprises the ratio of expression, function or level of a protein of interest in the absence of the stimulus specific to the DD to the expression, function or level of the protein of interest that is expressed constitutively, and in the absence of the stimulus specific to the DD. In some embodiments, the DD may stabilize the protein of interest by a stabilization ratio of 1 or more, wherein the stabilization ratio comprises the ratio of expression, function or level of a protein of interest in the presence of the stimulus to the expression, function or level of the protein of interest in the absence of the stimulus.


In some embodiments, the present disclosure provides methods for modulating protein expression, function or level. In some aspects, the modulation of protein expression, function or level refers to modulation of expression, function or level by at least about 20%, such as by at least about 30%, 40%, 50%, 60%, 70%, 80%, 85%, 90%, 95% and 100%, or at least 20-30%, 20-40%, 20-50%, 20-60%, 20-70%, 20-80%, 20-90%, 20-95%, 20-100%, 30-40%, 30-50%, 30-60%, 30-70%, 30-80%, 30-90%, 30-95%, 30-100%, 40-50%, 40-60%, 40-70%, 40-80%, 40-90%, 40-95%, 40-100%, 50-60%, 50-70%, 50-80%, 50-90%, 50-95%, 50-100%, 60-70%, 60-80%, 60-90%, 60-95%, 60-100%, 70-80%, 70-90%, 70-95%, 70-100%, 80-90%, 80-95%, 80-100%, 90-95%, 90-100% or 95-100%.


According to the present disclosure, biocircuit systems and effector modules of the disclosure can be used to regulate the expression and activity of a payload in response to the presence or absence of a ligand that specifically binds to the DD integrated within the biocircuit system and effector module.


In some aspects, DDs, effector modules and biocircuit systems of the disclosure may be used to regulate the expression, function and activity of a payload in a cell or a subject. The regulation refers to a level of change of its expression, function and activity, by at least about 10%, or at least about 20%, or at least about 30%, or at least about 40%, or at least about 50%, or at least about 60%, or at least about 70%, or at least about 80%, or at least about 85%, or at least about 90%, or at least about 95%, or at least about 100%, or at least 20-30%, 20-40%, 20-50%, 20-60%, 20-70%, 20-80%, 20-90%, 20-95%, 20-100%, 30-40%, 30-50%, 30-60%, 30-70%, 30-80%, 30-90%, 30-95%, 30-100%, 40-50%, 40-60%, 40-70%, 40-80%, 40-90%, 40-95%, 40-100%, 50-60%, 50-70%, 50-80%, 50-90%, 50-95%, 50-100%, 60-70%, 60-80%, 60-90%, 60-95%, 60-100%, 70-80%, 70-90%, 70-95%, 70-100%, 80-90%, 80-95%, 80-100%, 90-95%, 90-100% or 95-100%.


In some embodiments, the mutation co-efficient of the biocircuits of the disclosure may also be measured as a way of evaluating the ability of the DD to modulate protein expression, function or level. As used herein, the “mutation co-efficient” refers to the expression, function or level or a protein of interest, appended to a particular DD mutant, in the absence of the stimulus specific to the SRE; to the protein expression, function or level of the protein of interest, appended to the corresponding wildtype sequence from which the particular DD mutant is derived and in the absence of the stimulus. The mutation co-efficient is indicative of the contribution of the destabilizing mutations towards the basal expression of the protein independent of the whether the corresponding wildtype protein can be destabilized without any mutations. In some aspects, the mutation co-efficient ratio is at least 0, such as by at least 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, or at least, 0-0.1, 0-0.2, 0-0.3, 0-0.4, 0-0.5, 0-0.6, 0-0.7, 0-0.8, 0-0.9, 0.1-0.2, 0.1-0.3, 0.1-0.4, 0.1-0.5, 0.1-0.6, 0.1-0.7, 0.1-0.8, 0.1-0.9, 0.2-0.3, 0.2-0.4, 0.2-0.5, 0.2-0.6, 0.2-0.7, 0.2-0.8, 0.2-0.9, 0.3-0.4, 0.3-0.5, 0.3-0.6, 0.3-0.7, 0.3-0.8, 0.3-0.9, 0.4-0.5, 0.4-0.6, 0.4-0.7, 0.4-0.8, 0.4-0.9, 0.5-0.6, 0.5-0.7, 0.5-0.8, 0.5-0.9, 0.6-0.7, 0.6-0.8, 0.6-0.9, 0.7-0.8, 0.7-0.9 or 0.8-0.9.


In some embodiments, the present disclosure provides methods for modulating protein, expression, function or level by measuring the stabilization ratio, destabilization ratio, and/or destabilizing mutation co-efficient. As used herein, the “stabilization ratio” is the ratio of expression, function or level of a protein of interest in response to the stimulus to the expression, function or level of the protein of interest in the absence of the stimulus specific to the SRE. In some aspects, the stabilization ratio is at least 1, such as by at least 1-10, 1-20, 1-30, 1-40, 1-50, 1-60, 1-70, 1-80, 1-90, 1-100, 20-30, 20-40, 20-50, 20-60, 20-70, 20-80, 20-90, 20-95, 20-100, 30-40, 30-50, 30-60, 30-70, 30-80, 30-90, 30-95, 30-100, 40-50, 40-60, 40-70, 40-80, 40-90, 40-95, 40-100, 50-60, 50-70, 50-80, 50-90, 50-95, 50-100, 60-70, 60-80, 60-90, 60-95, 60-100, 70-80, 70-90, 70-95, 70-100, 80-90, 80-95, 80-100, 90-95, 90-100 or 95-100. As used herein, the “destabilization ratio” is the ratio of expression, function or level of a protein of interest in the absence of the stimulus specific to the effector module to the expression, function or level of the protein of interest, that is expressed constitutively and in the absence of the stimulus specific to the SRE. As used herein “constitutively” refers to the expression, function or level a protein of interest that is not linked to an SRE, and is therefore expressed both in the presence and absence of the stimulus to the SRE. As used herein, the “destabilizing mutation co-efficient” may be defined as the ratio of expression or level of a protein of interest that is appended to a DD, in the absence of the stimulus specific to the effector module to the expression, function or level of the protein that is appended to the wild type protein from which the DD is derived. In some aspects, the destabilization ratio and/or the destabilizing mutation co-efficient is at least 0, such as by at least 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, or at least, 0-0.1, 0-0.2, 0-0.3, 0-0.4, 0-0.5, 0-0.6, 0-0.7, 0-0.8, 0-0.9, 0.1-0.2, 0.1-0.3, 0.1-0.4, 0.1-0.5, 0.1-0.6, 0.1-0.7, 0.1-0.8, 0.1-0.9, 0.2-0.3, 0.2-0.4, 0.2-0.5, 0.2-0.6, 0.2-0.7, 0.2-0.8, 0.2-0.9, 0.3-0.4, 0.3-0.5, 0.3-0.6, 0.3-0.7, 0.3-0.8, 0.3-0.9, 0.4-0.5, 0.4-0.6, 0.4-0.7, 0.4-0.8, 0.4-0.9, 0.5-0.6, 0.5-0.7, 0.5-0.8, 0.5-0.9, 0.6-0.7, 0.6-0.8, 0.6-0.9, 0.7-0.8, 0.7-0.9 or 0.8-0.9.


The SRE of the effector module may be selected from, but is not limited to, a peptide, peptide complex, peptide-protein complex, protein, fusion protein, protein complex, protein-protein complex. The SRE may comprise one or more regions derived from any natural or mutated protein, or antibody. In this aspect, the SRE is an element, when responding to a stimulus, can tune intracellular localization, intramolecular activation, and/or degradation of payloads.


In some embodiments, effector modules of the present disclosure may comprise additional features that facilitate the expression and regulation of the effector module, such as one or more signal sequences (SSs), one or more cleavage and/or processing sites, one or more targeting and/or penetrating peptides, one or more tags, and/or one or more linkers. Additionally, effector modules of the present disclosure may further comprise other regulatory moieties such as inducible promoters, enhancer sequences, microRNA sites, and/or microRNA targeting sites. Each aspect or tuned modality may bring to the effector module or biocircuit a differentially tuned feature. For example, an SRE may represent a destabilizing domain, while mutations in the protein payload may alter its cleavage sites or dimerization properties or half-life and the inclusion of one or more microRNA or microRNA binding site may impart cellular detargeting or trafficking features. Consequently, the present disclosure embraces biocircuits which are multifactorial in their tenability. Such biocircuits may be engineered to contain one, two, three, four or more tuned features.


As shown in FIG. 2, representative effector module embodiments comprising one payload, i.e. one immunotherapeutic agent are illustrated. Each components of the effector module may be located or positioned in various arrangements without (A to F) or with (0 to Z, and AA to DD) a cleavage site. An optional linker may be inserted between each component of the effector module.



FIGS. 3 to 6 illustrate representative effector module embodiments comprising two payloads, i.e. two immunotherapeutic agents. In some aspects, more than two immunotherapeutic agents (payloads) may be included in the effector module under the regulation of the same SRE (e.g., the same DD). The two or more agents may be either directly linked to each other or separated (FIG. 3). The SRE may be positioned at the N-terminus of the construct, or the C-terminus of the construct, or in the internal location.


In some aspects, the two or more immunotherapeutic agents may be the same type such as two antibodies, or different types such as a CAR construct and a cytokine IL12. Biocircuits and components utilizing such effector molecules are given in FIGS. 7-12 in International Publication No. WO2017/180587, the contents of which are herein incorporated by reference in their entirety.


FIG. 7 in International Publication No. WO2017/180587, the contents of which are herein incorporated by reference in their entirety, depicts representative configurations of the stimulus and effector module within a biocircuit system. A trans-membrane effector module is activated either by a free stimulus (A) or a membrane bound stimulus (B) which binds to SRE. The response to the stimulus causes the cleavage of the intracellular signal/payload, which activates down-stream effector/payload.


FIG. 8 in International Publication No. WO2017/180587, the contents of which are herein incorporated by reference in their entirety, depicts a dual stimulus-dual presenter biocircuit system, where two bound stimuli (A and B) from two different presenters (e.g., different cells) bind to two different effector modules in a single receiver (e.g., another single cell) simultaneously and create a dual-signal to downstream payloads.


FIG. 9 in International Publication No. WO2017/180587, the contents of which are herein incorporated by reference in their entirety, depicts a dual stimulus-single presenter biocircuit system, where two bound stimuli (A and B) from the same presenter (e.g., a single cell) bind to two different effector modules in another single cell simultaneously and create a dual-signal.


FIG. 10 in International Publication No. WO2017/180587, the contents of which are herein incorporated by reference in their entirety, depicts a single-stimulus-bridged receiver biocircuit system. In this configuration, a bound stimulus (A) binds to an effector module in the bridge cell and creates a signal to activate a payload which is a stimulus (B) for another effector module in the final receiver (e.g., another cell).


FIG. 11 in International Publication No. WO2017/180587, the contents of which are herein incorporated by reference in their entirety depicts a single stimulus-single receiver biocircuit system, wherein the single receiver contains the two effector modules which are sequentially activated by a single stimulus.


FIG. 12 in International Publication No. WO2017/180587, the contents of which are herein incorporated by reference in their entirety, depicts a biocircuit system which requires a dual activation. In this embodiment, one stimulus must bind the transmembrane effector module first to prime the receiver cell being activated by the other stimulus. The receiver only activates when it senses both stimuli (B).


FIG. 13 in International Publication No. WO2017/180587, the contents of which are herein incorporated by reference in their entirety, depicts a standard effector module of a chimeric antigen receptor (CAR) system which comprises an antigen binding domain as an SRE, and signaling domain(s) as payload.


FIG. 14 in International Publication No. WO2017/180587, the contents of which are herein incorporated by reference in their entirety, depicts the structure design of a regulatable CAR system, where the trans-membrane effector modules comprise antigen binding domains sensing an antigen and a first switch domain and the intracellular module comprises a second switch domain and signaling domains A stimulus (e.g., a dimerization small molecule) can dimerize the first and second switch domains and assemble an activated CAR system.


FIG. 15 in International Publication No. WO2017/180587, the contents of which are herein incorporated by reference in their entirety, shows schematic representation of CAR systems having one (A) or two (B and C) SREs incorporated into the effector module.


FIG. 16 in International Publication No. WO2017/180587, the contents of which are herein incorporated by reference in their entirety, depicts a split CAR design to control T cell activation by a dual stimulus (e.g., an antigen and small molecule). (A) shows normal T cell activation which entails a dual activation of TCR and co-stimulatory receptor. The regular CAR design (B) combines the antigen recognition domain with TCR signaling motif and co-stimulatory motif in a single molecule. The split CAR system separates the components of the regular CAR into two separate effector modules which can be reassembled when a heterodimerizing small molecule (stimulus) is present.


FIG. 17 in International Publication No. WO2017/180587, the contents of which are herein incorporated by reference in their entirety, depicts the positive and negative regulation of CAR engineered T cell activation. The absence or presence of a second stimulus can negatively (A) or positively (B) control T cell activation.


FIG. 18 in International Publication No. WO2017/180587, the contents of which are herein incorporated by reference in their entirety, shows schematic representation of gated activation of CAR engineered T cells. If a normal cell that has no stimulus (e.g., an antigen) (A) or an antigen that cannot bind to the trans-membrane effector module (B), or only an antigen that activates the trans-membrane effector module and primes the receiver T cell to express the second effector (FIG. 18C), the receiver T cell remains inactive. When both stimuli (e.g. two antigens) that bind the trans-membrane effector module and the primed effector, are present on the presenter cell (e.g. a cancer cell), the T cell is activated (D).


As used herein a “payload” or “target payload” is defined as any protein or nucleic acid whose function is to be altered. Payloads may include any coding or non-coding gene or any protein or fragment thereof, or fusion constructs, or antibodies.


Payloads are often associated with one or more SREs (e.g., DDs) and may be encoded alone or in combination with one or more DD in a polynucleotide of the disclosure. Payloads themselves may be altered (at the protein or nucleic acid level) thereby providing for an added layer of tenability of the effector module. For example, payloads may be engineered or designed to contain mutations, single or multiple, which affect the stability of the payload or its susceptibility to degradation, cleavage or trafficking. The combination of a DD which can have a spectrum of responses to a stimulus with a payload which is altered to exhibit a variety of responses or gradations of output signals, e.g., expression levels, produce biocircuits which are superior to those in the art. For example, mutations or substitutional designs such as those created for IL12 in WO2016048903 (specifically in Example 1 therein), the contents of which are incorporated herein by reference in their entirety, may be used in any protein payload in conjunction with a DD of the present disclosure to create dual tunable biocircuits. The ability to independently tune both the DD and the payload greatly increases the scope of uses of the effector modules of the present disclosure.


Effector modules may be designed to include one or more payloads, one or more DDs, one or more cleavage sites, one or more signal sequences, one or more tags, one or more targeting peptides, and one or more additional features including the presence or absence of one or more linkers. Representative effector module embodiments of the disclosure are illustrated in FIGS. 2-6. In some aspects, the DD can be positioned at the N-terminal end, or the C-terminal end, or internal of the effector module construct. Different components of an effector module such as DDs, payloads and additional features are organized linearly in one construct, or are separately constructed in separate constructs.


Additionally, effector modules of the present disclosure may further comprise other regulatory moieties such as inducible promoters, enhancer sequences, microRNA sites, and/or microRNA targeting sites that provide flexibility on controlling the activity of the payload. The payloads of the present disclosure may be any natural proteins and their variants, or fusion polypeptides, antibodies and variants thereof, transgenes and therapeutic agents.


The stimulus of the biocircuit system may be, but is not limited to, a ligand, a small molecule, an environmental signal (e.g., pH, temperature, light and subcellular location), a peptide or a metabolite. In one aspect of the present disclosure, the stimulus is a hPDE5 DD binding ligand including Sildenafil and Vardenafil.


Polypeptides of DDs, biocircuit systems and effector modules comprising such DDs and payload constructs, other components, polynucleotides encoding these polypeptides and variants thereof, vectors comprising these polynucleotides, are provided in the present disclosure. The vector may be a plasmid or a viral vector including but not limited to a lentiviral vector, a retroviral vector, a recombinant AAV vector and oncolytic viral vector.


The position of the payload with respect to the DD, within the SRE may be varied to achieve optimal DD regulation. In some embodiments, the payload may be fused to the N terminus of the DD. In another embodiment, the payload may be fused to the C terminus of the DDs. An optional start codon nucleotide sequence encoding for methionine may be added to the DD and/or payload.


In some embodiments, more than one biocircuit system may be used in combination to control various protein functions in the same cell or organism, each of which uses different DD and ligand pair and can be regulated separately.


In some embodiments, biocircuits of the disclosure may be modified to reduce their immunogenicity. Immunogenicity is the result of a complex series of responses to a substance that is perceived as foreign and may include the production of neutralizing and non-neutralizing antibodies, formation of immune complexes, complement activation, mast cell activation, inflammation, hypersensitivity responses, and anaphylaxis. Several factors can contribute to protein immunogenicity, including, but not limited to protein sequence, route and frequency of administration and patient population. In a preferred embodiment, protein engineering may be used to reduce the immunogenicity of the compositions of the disclosure. In some embodiments, modifications to reduce immunogenicity may include those that reduce binding of the processed peptides derived from the sequence of the compositions of the disclosure, to the MK proteins. For example, amino acid may be modified such that virtually none or a minimal of number of immune epitopes predicted to bind to any prevalent MK alleles are present in the compositions of the disclosure. Several methods to identify MK binding epitopes of known protein sequences are known in the art and may be used to score epitopes in the compositions of the present disclosure. Such methods are disclosed in US Patent Publication No. US20020119492, US20040230380, and US 20060148009; the contents of each of which are incorporated by reference in their entirety.


Epitope identification and subsequent sequence modification may be applied to reduce immunogenicity. The identification of immunogenic epitopes may be achieved either physically or computationally. Physical methods of epitope identification may include, for example, mass spectrometry and tissue culture/cellular techniques. Computational approaches that utilize information related to antigen processing, loading and display, structural and/or proteomic data for identifying peptides that may result from antigen processing, and that are likely to have good binding characteristics in the groove of the MHC may also be utilized. One or more mutations may be introduced into the biocircuits of the disclosure to render the identified epitope less or non-immunogenic, while maintaining functionality.


In some embodiments, protein modifications engineered into the structure of the compositions of the disclosure to interfere with antigen processing and peptide loading such as glycosylation and PEGylation, may also be useful in the present disclosure. Compositions of the disclosure may also be engineered to include non-classical amino acid sidechains. Any of the methods discussed in International Patent Publication No. WO2005051975 for reducing immunogenicity may be useful in the present disclosure (the contents of which are incorporated by reference in their entirety).


In one embodiment, patients may also be stratified according to the immunogenic peptides presented by their immune cells and may be utilized as a parameter to determine patient cohorts that may therapeutically benefit from the compositions of the disclosure.


In some embodiments, reduced immunogenicity may be achieved by limiting immunoproteasome processing. The proteasome is an important cellular protease that is found in two forms: the constitutive proteasome, which is expressed in all cell types and which contains catalytic subunits and the immunoproteasome that is expressed in cells of the hematopoietic lineage, and which contains different active subunits termed low molecular weight proteins (LMP) namely LMP-2, LMP-7 and LMP-10. Immunoproteasomes exhibit altered peptidase activities and cleavage site preferences that result in more efficient liberation of many MHC class I epitopes. A well described function of the immunoproteasome is to generate peptides with hydrophobic C terminus that can be processed to fit in the groove of MHC class I molecules. Deol P et al. have shown that immunoproteasomes may lead to a frequent cleavage of specific peptide bonds and thereby to a faster appearance of a certain peptide on the surface of the antigen presenting cells; and enhanced peptide quantities (Deol P et al. (2007) J Immunol 178 (12) 7557-7562; the contents of which are incorporated herein reference in its entirety). This study indicates that reduced immunoproteasome processing may be accompanied by reduced immunogenicity. In some embodiments, immunogenicity of the compositions of the disclosure may be reduced by modifying the sequence encoding the compositions of the disclosure to prevent immunoproteasome processing. Biocircuits of the present disclosure may also be combined with immunoproteasome-selective inhibitors to achieve the same effects. Examples of inhibitors useful in the present disclosure include UK-101 (Bli selective compound), IPSI-001, ONX 0914 (PR-957), and PR-924 (IPSI).


In some embodiments, effector modules of the present disclosure may include one or more degrons to tune expression. As used herein, a “degron” refers to a minimal sequence within a protein that is sufficient for the recognition and the degradation by the proteolytic system. An important property of degrons is that they are transferrable, that is, appending a degron to a sequence confers degradation upon the sequence. In some embodiments, the degron may be appended to the destabilizing domains, the payload or both. Incorporation of the degron within the effector module of the disclosure, confers additional protein instability to the effector module and may be used to reduce basal expression. In some embodiments, the degron may be an N-degron, a phospho degron, a heat inducible degron, a photosensitive degron, an oxygen dependent degron. As a non-limiting example, the degron may be an Ornithine decarboxylase degron as described by Takeuchi et al. (Takeuchi J et al. (2008). Biochem J. 2008 Mar. 1; 410(2):401-7; the contents of which are incorporated by reference in their entirety). Other examples of degrons useful in the present disclosure include degrons described in International patent publication Nos. WO2017004022, WO2016210343, and WO2011062962; the contents of each of which are incorporated by reference in their entirety.


In some embodiments, the effector modules of the present disclosure may include degrons at their C termini. The degrons may comprise -GU, -RG, -KG, -QG, -WG, -PG, and -AG as the penultimate and the ultimate amino acids of the SREs. Furthermore, certain −2 amino acids (D, E, V, I and L) may be more enriched in the C terminus of the of the effector modules. Other degrons include, but are not limited, to RxxG motif, wherein x is any amino acid, C-terminal twin glutamic acid (EE) motif, and motifs that comprise an arginine at the −3 positions. Degrons may also be selected from the R-3 motif, G-end, Rat −3, A-end, A at −2, Vat −2 positions. Any of the degrons described in Koren et al., 2018, Cell 173, 1-14, may be useful in the present disclosure (the contents of which are incorporated by reference in their entirety). In some aspects, the expression of the effector module may be tuned by altering its overall amino acid composition. In some aspects, the amino acid composition of the effector module may be tuned to reduce basal expression. In some embodiments, basal expression may be tuned by increasing the number of bulky aromatic residues such as tryptophan (W), phenylalanine (F), and tyrosine (Y) in the effector module. Such bulky amino acids are known to reduce protein stability. In some embodiments, the amino acid composition of the SREs may be enriched with acidic residues such as, but not limited to, aspartic acid (D) and glutamic acid (E), and positively charged lysine (K), if an increase in the basal expression of the SRE is desired.


In some embodiments, the endoplasmic reticulum associated degradation (ERAD) pathway may be used to optimize degradation of the payloads described herein e.g. secreted and membrane cargos. In one embodiment, the effector modules of the disclosure may be directed to the ER E3 ligases by using adaptor proteins or protein domains The endoplasmic reticulum is endowed with a specialized machinery to ensure proteins deployed to the distal secretory pathway are correctly folded and assembled into native oligomeric complexes. Proteins failing to meet this conformational standard are degraded by the ERAD pathway, a process through which folding defective proteins are selected and ultimately degraded by the ubiquitin proteasome system. ERAD proceeds through four main steps involving substrate selection, dislocation across the ER membrane, covalent conjugation with polyubiquitin, and proteasome degradation. Any of these steps may be modulated to optimize the degradation of the payloads and the effector modules described herein. Protein adaptors within the ER membrane, link substrate recognition to the ERAD machinery (herein referred to as the “dislocon”), which causes the dislocation of the proteins from the ER. Non-limiting examples of protein adaptors that may be used to optimize ERAD pathway degradation include, but are not limited to SEL1L (an adaptor that links glycan recognition to the dislocon), Erlins (intermembrane substrate adaptors), Insigs (client specific adaptors), F-Box proteins (act as adaptors for dislocated glycoproteins in the cytoplasm) and viral-encoded adaptors.


According to the present disclosure, novel destabilizing domains derived from human hPDE5 (cGMP-specific phosphodiesterase type 5) protein are provided. The destabilizing mutants are derived from the human PDE5 protein, comprising the amino acid sequence of SEQ ID NO: 1 (encoded by the nucleic acid sequence of SEQ ID NO: 2). The hPDE5 DD mutant may also comprise more than one mutation in the catalytic domain of human PDE5 of SEQ ID NO: 3 (encoded by nucleic acid sequence of SEQ ID NO: 339), e.g., two, three, four, five or more mutations. These hPDE5 DDs can bind to Sildenafil and/or Vardenafil and be stabilized.


Destabilizing Domains (DDs)

As used herein, the term “destabilizing domains (DDs)” refers to protein domains that are unstable and degraded in the absence of ligand, but whose stability is rescued by binding to a high affinity cell-permeable ligand. Destabilizing domains (DDs) can be appended to a target protein of interest (POI) and can convey its destabilizing property to the protein of interest, causing protein degradation. The presence, absence or an amount of a small molecule ligand that binds to or interacts with the DD, can, upon such binding or interaction modulate the stability of the payload(s) and consequently the function of the payload. A protein domain with destabilizing property (e.g. a DD) is used in conjunction with a cell-permeable ligand to regulate any protein of interest when it is fused with the destabilizing domain. DDs render the attached protein of interest unstable in the absence of a DD-binding ligand such that the protein is rapidly degraded by the ubiquitin-proteasome system of the cell. However, when a specific small molecule ligand binds its intended DD as a ligand binding partner, the instability is reversed and protein function is restored. The conditional nature of DD stability allows a rapid and non-perturbing switch from stable protein to unstable substrate for degradation. Moreover, its dependency on the concentration of its ligand further provides tunable control of degradation rates. Depending on the degree of binding and/or interaction the altered function of the payload may vary, hence providing a “tuning” of the payload function.


Due to its reversibility, specificity and the fast and easy regulation on protein level, the post-transcriptional tuning system provides a useful system for gene regulation. Furthermore, the regulation may be dose-dependent, thereby altering the protein-turnover rate to transform a short-lived or no detectable protein into a protein that functions for a precisely controlled period of time (Iwamoto et al., Chem. Biol. 2010, 17: 981-988).


In some embodiments, the desired characteristics of the DDs may include, but are not limited to, low protein levels in the absence of a ligand of the DD (i.e. low basal stability), large dynamic range, robust and predictable dose-response behavior, and rapid kinetics of degradation. Candidate DDs that bind to a desired ligand but not endogenous molecules may be preferred.


Candidate destabilizing domain sequence identified from protein domains of known wildtype proteins (as a template) may be mutated to generate libraries of mutants based on the template candidate domain sequence. Mutagenesis strategies used to generate DD libraries may include site-directed mutagenesis e.g. by using structure guided information, or random mutagenesis e.g. using error-prone PCR, or a combination of both. In some embodiments, destabilizing domains identified using random mutagenesis may be used to identify structural properties of the candidate DDs that may be required for destabilization, which may then be used to further generate libraries of mutations using site directed mutagenesis.


In some embodiments, novel DDs may be identified by mutating one or more amino acids in the candidate destabilizing domain to an amino acid that is vicinal to the mutation site. As used herein a vicinal amino acid refers to an amino acid that is located 1, 2, 3, 4, 5 or more amino acids upstream or downstream of the mutation site in the linear sequence and/or the crystal structure of the candidate destabilizing domain. In some embodiments, the vicinal amino acid may be a conserved amino acid (with similar physicochemical properties as the amino acid at the mutation site), a semi-conserved amino acid (e.g. negatively to positively charge amino acid) or a non-conserved amino acid (with different physicochemical properties than the amino acid at the mutation site).


In some embodiments, DD mutant libraries may be screened for mutations with altered, preferably higher binding affinity to the ligand, as compared to the wild type protein. DD libraries may also be screened using two or more ligands and DD mutations that are stabilized by some ligands but not others may be preferentially selected. DD mutations that bind preferentially to the ligand compared to a naturally occurring protein may also be selected. Such methods may be used to optimize ligand selection and ligand binding affinity of the DD. Additionally, such approaches can be used to minimize deleterious effects caused by off-target ligand binding.


In some embodiments, suitable DDs may be identified by screening mutant libraries using barcodes. Such methods may be used to detect, identify and quantify individual mutant clones within the heterogeneous mutant library. Each DD mutant within the library may have distinct barcode sequences (with respect to each other). In other instances, the polynucleotides can also have different barcode sequences with respect to 2, 3, 4, 5, 6, 7, 8, 9, 10 or more nucleic acid bases. Each DD mutant within the library may also comprise a plurality of barcode sequences. When used in plurality barcodes may be used such that each barcode is unique to any other barcode. Alternatively, each barcode used may not be unique, but the combination of barcodes used may create a unique sequence that can be individually tracked. The barcode sequence may be placed upstream of the SRE, downstream of the SRE, or in some instances may be placed within the SRE. DD mutants may be identified by barcodes using sequencing approaches such as Sanger sequencing, and next generation sequencing, but also by polymerase chain reaction and quantitative polymerase chain reaction. In some embodiments, polymerase chain reaction primers that amplify a different size product for each barcode may be used to identify each barcode on an agarose gel. In other instances, each barcode may have a unique quantitative polymerase chain reaction probe sequence that enables targeted amplification of each barcode.


Inventors of the present disclosure investigated several human proteins and identified novel human DDs which can confer its instability features to the fused payload and facilitate the rapid degradation of the fusion polypeptide in the absence of its ligand but stabilize the fused payload in response to the binding to its ligand. Specifically, the new DDs are derived from human PDE5 protein.


Human PDE5 Mutants

In some embodiments, DDs of the disclosure may be derived from human cGMP-specific phosphodiesterase type 5 (PDE5); gene name: PDE5A (herein referred to as “hPDE5”). hPDE5 (phosphodiesterase 5) is a member of the 3,5′-cyclic nucleotide phosphodiesterase family which degrades/hydrolyzes cyclic GMP (cGMP) into its inactive form, GMP, and regulates cGMP signaling. The cGMP/PDE 5 signaling contributes to the development of hypertension in the vasculature, the central nervous system, and the kidney. hPDE5 is known to bind to small molecule such as Sildenafil, Vardenafil, Tadalafil, Avanafil, Lodenafil, Mirodenafil, Udenafil, Benzamidenafil, Dasantafil, Beminafil, SLx-2101, LAS 34179, UK-343,664, UK-357903, UK-371800, and BMS-341400. Sildenafil, Vardenafil, Avanafil, and Tadalafil are hPDE5 inhibitors clinically approved for the treatment of erectile dysfunction. In particular, the binding of these small molecules to hPDE5 occurs within the catalytic domain. In some embodiments, the DDs of the disclosure may be derived from the catalytic domain of hPDE5 (SEQ ID NO: 3) includes residues 535 to 860 of hPDE5 (SEQ ID NO: 1; GenBank Access NO. 076074.2) which may be stabilized by ligands such as small molecule inhibitors of hPDE5 e.g. Sildenafil and Vardenafil. As used herein the term “PDE5 WT” or “hPDE5 WT”, refers to the human wildtype PDE5 protein sequence, which is defined as SEQ ID NO: 1, with the GenBank Access NO. 076074.2. In some embodiments, DDs of the present disclosure may be identified by utilizing a cocktail of hPDE5 inhibitors. In other instances, the suitable DDs may be identified by screening first with one hPDE5 inhibitor and subsequently screening with a second hPDE5 inhibitor.


In one embodiment, the hPDE5 derived DD may comprise the amino acid sequence of UniProt ID: 076074 (SEQ ID NO: 1) or a portion or a fragment thereof. In another embodiment, the hPDE5 derived DD may comprise the catalytic domain of UniProt ID: 076074, spanning from amino acid position 535 to position 860 (SEQ ID NO: 3); encoded by SEQ ID NO: 339. In addition to the catalytic domain, hPDE5 derived DDs may also comprise one or more GAF domains and/or the C terminal portion that extends beyond the catalytic domain In some embodiment, the hPDE5 derived DD may be identified by testing constructs generated by truncating the 5′ and/or the 3′ end of hPDE5. In one embodiment, the hPDE5 derived DD may be truncated and the smallest hPDE5 based DD may be identified. In another embodiment, the hPDE5 derived DD may include amino acids from position 535 to 836 of SEQ ID NO: 1 which removes the C terminal helix. In another embodiment, the hPDE5 derived DD may consist of amino acids from position 567 to 860 of UniProt ID: 076074 (SEQ ID NO: 1), or position 590 to 860 of UniProt ID: 076074 (SEQ ID NO: 1), which removes a portion of the N terminal domain. In another embodiment, the hPDE5 derived DD may consist of amino acids from position 590 to 836 of UniProt ID: 076074 (SEQ ID NO: 1), which removes a portion of the N terminal domain and the C terminal helix. The DD may include amino acids from position 535 to position 875 of UniProt ID: 076074 (SEQ ID NO: 1). In another embodiment, the hPDE5 derived DD may consist of amino acids from position 466 to 875 of UniProt ID: 076074 (SEQ ID NO: 1) or position 420 to 875 of UniProt ID: 076074 (SEQ ID NO: 1).


According to the present disclosure, several hPDE5 destabilizing mutations were discovered by site directed mutagenesis of the catalytic domain of wildtype human PDE5 using site directed mutagenesis. The destabilization of the mutants in the absence of its binding ligands is tested. Binding to hPDE5 ligands, Sildenafil, Tadalafil and Vardenafil to human PDE5 was tested and ligand dependent stabilization was characterized. Based on the structural analysis of hPDE5 bound to Sildenafil, several residues were selected for mutagenesis. In some embodiments one or more of the residues described herein may be mutagenized to obtain hPDE5 derived DDs. The tryptophan at position 853 of SEQ ID NO:1 may be mutated to phenylalanine to induce hydrophobic packing near binding site, while maintaining pi bond with the nearby tryptophan at position 772. The isoleucine at position 821 may be mutated to valine or alanine, which results in hydrophobic packing near binding site. The tyrosine at position 829 may be mutated to isoleucine, valine or alanine, which results in hydrophobic packing near binding site. The aspartate at position 656 may be mutated to asparagine or leucine to break up the charge and the salt bridge on loop/helix. The tyrosine at position 728 may be mutated to phenylalanine or leucine to break the salt bridges at position 732 and to affect hydrophobic packing. Alternatively, the arginine at position 732 may be mutated to lysine or leucine to generate the inverse of the effects of mutating tyrosine at position 728. The methionine at position 625 may be mutated to leucine or isoleucine to alter packing in away from the binding site. In some embodiments, destabilizing mutations that do not affect ligand binding may be preferentially selected.


In some embodiments, new destabilizing domains of the present disclosure are derived from the catalytic domain of human PDE5 protein comprising the amino acid sequence of SEQ ID NO: 3. In some aspects, the destabilizing mutant domain may comprise one, two, three, four, five or more mutations such as but not limited to M625I, D656L, Y728L, R732L, F736A, F787A, I821A, Y829A and W853F. The DDs of the disclosure may further include additional mutations e.g. E535D, E5360, Q541R, K555R, S560G, F559L, F561L, F564L, F564S, S766F, V585A, N587S, K591E, I599V, K604E, K608E, N609H, K630R, K633E, N636S, I648V, N661S, S663P, L675P, Y676D, Y676N, C677R, H678R, D687A, T711A, T712S, D724N, L738H, N742S, F744L, L746S, F755L, A762S, D764V, D764N, D764G, K795E, L797F, I799T, L804P, T802P, S815C, M816A, M816T, I824T, C839S, F840S, and K852E. In some embodiments, any of the mutation sites disclosed herein may be mutated to any of the known amino acids such as Histidine, Alanine, Isoleucine, Arginine, Leucine, Aspartic acid, Lysine, Cysteine, Methionine, Glutamic acid, Phenylalanine, Glutamine, Threonine, Glycine, Tryptophan, Proline, Valine, Serine, Tyrosine, Asparagine, Selenocysteine, Pyrrolysine. In some embodiments, DDs of the present disclosure may be stabilized by ligands such as Sildenafil, Vardenafil, Tadalafil, Avanafil, Lodenafil, Mirodenafil, Udenafil, Benzamidenafil, Dasantafil, and Beminafil.


The amino acid sequences of the destabilizing domains encompassed in the disclosure have at least about 40%, 50 or 60% identity, further at least about 70% identity, preferably at least about 75% or 80% identity, more preferably at least about 85%, 86%, 87%, 88%, 89% or 90% identity, and further preferably at least about 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98% or 99% identity to the amino acid sequence set forth therein. Percent identity may be determined, for example, by comparing sequence information using the advanced BLAST computer program, including version Magic-BLAST 1.2.0, available from the National Institutes of Health. The BLAST program is based on the alignment method discussed in Karl and Altschul (1990) Proc. Natl. Acad. Sci USA, 87:2264-68 (the contents of which are incorporated by reference in their entirety).


Several hPDE5 destabilizing mutants were identified by structure guided mutagenesis and are provided in Table 1. The position of the mutated amino acids listed in Table 1 is relative to the full length hPDE5 of SEQ ID NO:1. The domains described in Table 1 include the catalytic domain of hPDE5 (e.g. 535-860 of SEQ ID NO:1). In some embodiments, the hPDE5 DDs described in Table 1 may include a methionine at the N terminal of the catalytic domain of hPDE5, i.e. amino acid 535-860 of PDE5 WT. In Table 1, the mutated amino acids are in bold and underlined.









TABLE 1







hPDE5 DDs 












AA
NA 


hPDE5 mutant 

SEQ 
SEQ


description 
Amino Acid Sequence
ID NO 
ID NO 





hPDE5 (Amino 
EETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFTDLNLVQNFQM
   5 
 350 


acid 535-860 
KHEVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMFAALKAGKIQNKLTDLEI




of WT, W853F) 
LALLIAALSHDLDHRGVNNSYIQRSEHPLAQLYCHSIMEHHHFDQCLMILNSPGN





QILSGLSIEEYKTTLKIIKQAILATDLALYIKRRGEFFELIRKNQFNLEDPHQKELFL





AMLMTACDLSAITKPWPIQQRIAELVATEFFDQGDRERKELNIEPTDLMNREKKN





KIPSMQVGFIDAICLQLYEALTHVSEDCFPLLDGCRKNRQKFQALAEQQ







hPDE5 (Amino
EETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFTDLNLVQNFQM
   6 
 351 


acid 535-860 
KHEVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMFAALKAGKIQNKLTDLEI




of WT, I821A) 
LALLIAALSHDLDHRGVNNSYIQRSEHPLAQLYCHSIMEHHHFDQCLMILNSPGN





QILSGLSIEEYKTTLKIIKQAILATDLALYIKRRGEFFELIRKNQFNLEDPHQKELFL





AMLMTACDLSAITKPWPIQQRIAELVATEFFDQGDRERKELNIEPTDLMNREKKN





KIPSMQVGFADAICLQLYEALTHVSEDCFPLLDGCRKNRQKWQALAEQQ







hPDE5 (Amino
EETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFTDLNLVQNFQM
   7 
 352 


acid 535-860 
KHEVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMFAALKAGKIQNKLTDLEI




of WT, Y829A) 
LALLIAALSHDLDHRGVNNSYIQRSEHPLAQLYCHSIMEHHHFDQCLMILNSPGN





QILSGLSIEEYKTTLKIIKQAILATDLALYIKRRGEFFELIRKNQFNLEDPHQKELFL





AMLMTACDLSAITKPWPIQQRIAELVATEFFDQGDRERKELNIEPTDLMNREKKN





KIPSMQVGFIDAICLQLAEALTHVSEDCFPLLDGCRKNRQKWQALAEQQ







hPDE5 (Amino 
EETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFTDLNLVQNFQM
   8 
 353 


acid 535-860 
KHEVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMFAALKAGKIQNKLTDLEI




of WT, F787A) 
LALLIAALSHDLDHRGVNNSYIQRSEHPLAQLYCHSIMEHHHFDQCLMILNSPGN





QILSGLSIEEYKTTLKIIKQAILATDLALYIKRRGEFFELIRKNQFNLEDPHQKELFL





AMLMTACDLSAITKPWPIQQRIAELVATEFADQGDRERKELNIEPTDLMNREKKN





KIPSMQVGFIDAICLQLYEALTHVSEDCFPLLDGCRKNRQKWQALAEQQ







hPDE5 (Amino 
EETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFTDLNLVQNFQM
   9 
 354; 


acid 535-860 
KHEVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMFAALKAGKIQNKLTDLEI

 355 


of WT, F736A) 
LALLIAALSHDLDHRGVNNSYIQRSEHPLAQLYCHSIMEHHHFDQCLMILNSPGN





QILSGLSIEEYKTTLKIIKQAILATDLALYIKRRGEFAELIRKNQFNLEDPHQKELFL





AMLMTACDLSAITKPWPIQQRIAELVATEFFDQGDRERKELNIEPTDLMNREKKN





KIPSMQVGFIDAICLQLYEALTHVSEDCFPLLDGCRKNRQKWQALAEQQ







hPDE5 (Amino
EETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFTDLNLVQNFQM
  10 
 356 


acid 535-860 
KHEVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMFAALKAGKIQNKLTDLEI




of WT, D656L) 
LALLIAALSHDLLHRGVNNSYIQRSEHPLAQLYCHSIMEHHHFDQCLMILNSPGN





QILSGLSIEEYKTTLKIIKQAILATDLALYIKRRGEFFELIRKNQFNLEDPHQKELFL





AMLMTACDLSAITKPWPIQQRIAELVATEFFDQGDRERKELNIEPTDLMNREKKN





KIPSMQVGFIDAICLQLYEALTHVSEDCFPLLDGCRKNRQKWQALAEQQ







hPDE5 (Amino
EETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFTDLNLVQNFQM
  11 
 357 


acid 535-860 
KHEVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMFAALKAGKIQNKLTDLEI




of WT, Y728L)
LALLIAALSHDLDHRGVNNSYIQRSEHPLAQLYCHSIMEHHHFDQCLMILNSPGN





QILSGLSIEEYKTTLKIIKQAILATDLALLIKRRGEFFELIRKNQFNLEDPHQKELFL





AMLMTACDLSAITKPWPIQQRIAELVATEFFDQGDRERKELNIEPTDLMNREKKN





KIPSMQVGFIDAICLQLYEALTHVSEDCFPLLDGCRKNRQKWQALAEQQ







hPDE5 (Amino
EETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFTDLNLVQNFQM
  12 
 358; 


acid 535-860 
KHEVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMFAALKAGKIQNKLTDLEI

 359 


of WT, R732L)
LALLIAALSHDLDHRGVNNSYIQRSEHPLAQLYCHSIMEHHHFDQCLMILNSPGN





QILSGLSIEEYKTTLKIIKQAILATDLALYIKRLGEFFELIRKNQFNLEDPHQKELFL





AMLMTACDLSAITKPWPIQQRIAELVATEFFDQGDRERKELNIEPTDLMNREKKN





KIPSMQVGFIDAICLQLYEALTHVSEDCFPLLDGCRKNRQKWQALAEQQ







hPDE5 (Amino
EETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFTDLNLVQNFQM
  13 
 360 


acid 535-860 
KHEVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCIFAALKAGKIQNKLTDLEIL




of WT, M625I)
ALLIAALSHDLDHRGVNNSYIQRSEHPLAQLYCHSIMEHHHFDQCLMILNSPGNQI





LSGLSIEEYKTTLKIIKQAILATDLALYIKRRGEFFELIRKNQFNLEDPHQKELFLAM





LMTACDLSAITKPWPIQQRIAELVATEFFDQGDRERKELNIEPTDLMNREKKNKIP





SMQVGFIDAICLQLYEALTHVSEDCFPLLDGCRKNRQKWQALAEQQ







Methionine; 
MEETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFTDLNLVQNFQ
 340 
  14 


hPDE5 (Amino
MKHEVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMFAALKAGKIQNKLTDL




acid 535-860 
EILALLIAALSHDLDHRGVNNSYIQRSEHPLAQLYCHSIMEHHHFDQCLMILNSPG




of WT; W853F)
NQILSGLSIEEYKTTLKIIKQAILATDLALYIKRRGEFFELIRKNQFNLEDPHQKELF





LAMLMTACDLSAITKPWPIQQRIAELVATEFFDQGDRERKELNIEPTDLMNREKK





NKIPSMQVGFIDAICLQLYEALTHVSEDCFPLLDGCRKNRQKFQALAEQQ







Methionine; 
MEETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFTDLNLVQNFQ
 341 
  15 


hPDE5 (Amino
MKHEVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMFAALKAGKIQNKLTDL




acid 535-860 
EILALLIAALSHDLDHRGVNNSYIQRSEHPLAQLYCHSIMEHHHFDQCLMILNSPG




of WT, I821A)
NQILSGLSIEEYKTTLKIIKQAILATDLALYIKRRGEFFELIRKNQFNLEDPHQKELF





LAMLMTACDLSAITKPWPIQQRIAELVATEFFDQGDRERKELNIEPTDLMNREKK





NKIPSMQVGFADAICLQLYEALTHVSEDCFPLLDGCRKNRQKWQALAEQQ







Methionine;
MEETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFTDLNLVQNFQ
 342 
  16 


hPDE5 (Amino
MKHEVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMFAALKAGKIQNKLTDL




acid 535-860 
EILALLIAALSHDLDHRGVNNSYIQRSEHPLAQLYCHSIMEHHHFDQCLMILNSPG




of WT, Y829A)
NQILSGLSIEEYKTTLKIIKQAILATDLALYIKRRGEFFELIRKNQFNLEDPHQKELF





LAMLMTACDLSAITKPWPIQQRIAELVATEFFDQGDRERKELNIEPTDLMNREKK





NKIPSMQVGFIDAICLQLAEALTHVSEDCFPLLDGCRKNRQKWQALAEQQ







Methionine;
MEETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFTDLNLVQNFQ
 343 
  17 


hPDE5 (Amino
MKHEVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMFAALKAGKIQNKLTDL




acid 535-860 
EILALLIAALSHDLDHRGVNNSYIQRSEHPLAQLYCHSIMEHHHFDQCLMILNSPG




of WT, F787A)
NQILSGLSIEEYKTTLKIIKQAILATDLALYIKRRGEFFELIRKNQFNLEDPHQKELF





LAMLMTACDLSAITKPWPIQQRIAELVATEFADQGDRERKELNIEPTDLMNREKK





NKIPSMQVGFIDAICLQLAEALTHVSEDCFPLLDGCRKNRQKWQALAEQQ







Methionine;
MEETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFTDLNLVQNFQ
 344 
  18 


hPDE5 (Amino
MKHEVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMFAALKAGKIQNKLTDL




acid 535-860 
EILALLIAALSHDLDHRGVNNSYIQRSEHPLAQLYCHSIMEHHHFDQCLMILNSPG




of WT, F736A)
NQILSGLSIEEYKTTLKIIKQAILATDLALYIKRRGEFAELIRKNQFNLEDPHQKELF





LAMLMTACDLSAITKPWPIQQRIAELVATEFFDQGDRERKELNIEPTDLMNREKK





NKIPSMQVGFIDAICLQLYEALTHVSEDCFPLLDGCRKNRQKWQALAEQQ







Methionine; 
MEETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFTDLNLVQNFQ
 345 
  19 


hPDE5 (Amino
MKHEVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMFAALKAGKIQNKLTDL




acid 535-860 
EILALLIAALSHDLLHRGVNNSYIQRSEHPLAQLYCHSIMEHHHFDQCLMILNSPG




of WT, D656L)
NQILSGLSIEEYKTTLKIIKQAILATDLALYIKRRGEFFELIRKNQFNLEDPHQKELF





LAMLMTACDLSAITKPWPIQQRIAELVATEFFDQGDRERKELNIEPTDLMNREKK





NKIPSMQVGFIDAICLQLYEALTHVSEDCFPLLDGCRKNRQKWQALAEQQ







Methionine; 
MEETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFTDLNLVQNFQ
 346 
  20 


hPDE5 (Amino
MKHEVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMFAALKAGKIQNKLTDL




acid 535-860 
EILALLIAALSHDLDHRGVNNSYIQRSEHPLAQLYCHSIMEHHHFDQCLMILNSPG




of WT, Y728L)
NQILSGLSIEEYKTTLKIIKQAILATDLALLIKRRGEFFELIRKNQFNLEDPHQKELF





LAMLMTACDLSAITKPWPIQQRIAELVATEFFDQGDRERKELNIEPTDLMNREKK





NKIPSMQVGFIDAICLQLYEALTHVSEDCFPLLDGCRKNRQKWQALAEQQ







Methionine; 
MEETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFTDLNLVQNFQ
 238 
  21 


hPDE5 (Amino
MKHEVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMFAALKAGKIQNKLTDL




acid 535-860 
EILALLIAALSHDLDHRGVNNSYIQRSEHPLAQLYCHSIMEHHHFDQCLMILNSPG




of WT, R732L)
NQILSGLSIEEYKTTLKIIKQAILATDLALYIKRLGEFFELIRKNQFNLEDPHQKELF





LAMLMTACDLSAITKPWPIQQRIAELVATEFFDQGDRERKELNIEPTDLMNREKK





NKIPSMQVGFIDAICLQLYEALTHVSEDCFPLLDGCRKNRQKWQALAEQQ







Methionine;
MEETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFTDLNLVQNFQ
 347 
  22 


hPDE5 (Amino
MKHEVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCIFAALKAGKIQNKLTDLEI




acid 535-860    
LALLIAALSHDLDHRGVNNSYIQRSEHPLAQLYCHSIMEHHHFDQCLMILNSPGN




of WT, M625I)
QILSGLSIEEYKTTLKIIKQAILATDLALYIKRRGEFFELIRKNQFNLEDPHQKELFL





AMLMTACDLSAITKPWPIQQRIAELVATEFFDQGDRERKELNIEPTDLMNREKKN





KIPSMQVGFIDAICLQLYEALTHVSEDCFPLLDGCRKNRQKWQALAEQQ







hPDE5 (Amino
EETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFTDLNLVQNFQM
 348 
 361


acid 535-860 
KHEVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMFAALKAGKIQNKLTDLEI




of WT, 11653A)
LALLIAALSADLDHRGVNNSYIQRSEHPLAQLYCHSIMEHHHFDQCLMILNSPGN





QILSGLSIEEYKTTLKIIKQAILATDLALYIKRRGEFFELIRKNQFNLEDPHQKELFL





AMLMTACDLSAITKPWPIQQRIAELVATEFFDQGDRERKELNIEPTDLMNREKKN





KIPSMQVGFIDAICLQLYEALTHVSEDCFPLLDGCRKNRQKWQALAEQQ







hPDE5 (Amino
EETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFTDLNLVQNFQM
 349 
 362 


acid 535-860 
KHEVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMFAALKAGKIQNKLTDLEI




of WT, D764A)
LALLIAALSHDLDHRGVNNSYIQRSEHPLAQLYCHSIMEHHHFDQCLMILNSPGN





QILSGLSIEEYKTTLKIIKQAILATDLALYIKRRGEFFELIRKNQFNLEDPHQKELFL





AMLMTACALSAITKPWPIQQRIAELVATEFFDQGDRERKELNIEPTDLMNREKKN





KIPSMQVGFIDAICLQLYEALTHVSEDCFPLLDGCRKNRQKWQALAEQQ







hPDE5 (Amino
EETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFTDLNLVQNFQM
8383 
8385 


acid 535-860 
KHEVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMFAALKAGKIQNKLTDLEI




of WT, E682A)
LALLIAALSHDLDHRGVNNSYIQRSEHPLAQLYCHSIMAHHHFDQCLMILNSPGN





QILSGLSIEEYKTTLKIIKQAILATDLALYIKRRGEFFELIRKNQFNLEDPHQKELFL





AMLMTACDLSAITKPWPIQQRIAELVATEFFDQGDRERKELNIEPTDLMNREKKN





KIPSMQVGFIDAICLQLYEALTHVSEDCFPLLDGCRKNRQKWQALAEQQ







hPDE5 (Amino
EETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFTDLNLVQNFQM
8384 
8386 


acid 535-860 
KHEVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMFAALKAGKIQNKLTDLEI




of WT, D724A)  
LALLIAALSHDLDHRGVNNSYIQRSEHPLAQLYCHSIMEHHHEDQCLMILNSPGN





QILSGLSIEEYKTTLKIIKQAILATALALYIKRRGEFFELIRKNQFNLEDPHQKELFL





AMLMTACDLSAITKPWPIQQRIAELVATEFFDQGDRERKELNIEPTDLMNREKKN





KIPSMQVGFIDAICLQLYEALTHVSEDCFPLLDGCRKNRQKWQALAEQQ









Also provided herein are hPDE5 mutants identified by random mutagenesis screening, using a combination of nucleotide analog mutagenesis and error-prone PCR, to generate libraries of mutants. The hPDE5 DDs identified by random mutagenesis are provided in Table 2.









TABLE 2







hPDE5 DDs generated by random mutagenesis














AA
NA





SEQ
SEQ





ID
ID


Description
Library ID
Amino acid sequence
NO:
NO:





hPDE5 (Amino
LibC000009
EETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETAMCTIRMFTDL
8387
8439


acid 535-860 of

NLVQNFQMKHEVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMF




WT, L573M,

AALKAGKIQNKLTDLEILALLIAALSHDLDHRGVNNSYIQRSEHPLA




F735L)

QLYCHSIMEHHHFDQCLMILNSPGNQILSGLSIEEYKTTLKIIKQAILA






TDLALYIKRRGELFELIRKNQFNLEDPHQKELFLAMLMTACDLSAIT






KPWPIQQRIAELVATEFFDQGDRERKELNIEPTDLMNREKKNKIPSM






QVGFIDAICLQLYEALTHVSEDCFPLLDGCRKNRQKWQALAEQQ







hPDE5 (Amino
LibC000010
EETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFTDL
8388
8440


acid 535-860 of

NLVQNFQMKHEVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMF




WT, R658H)

AALKAGKIQNKLTDLEILALLIAALSHDLDHHGVNNSYIQRSEHPLA






QLYCHSIMEHHHFDQCLMILNSPGNQILSGLSIEEYKTTLKIIKQAILA






TDLALYIKRRGEFFELIRKNQFNLEDPHQKELFLAMLMTACDLSAIT






KPWPIQQRIAELVATEFFDQGDRERKELNIEPTDLMNREKKNKIPSM






QVGFIDAICLQLYEALTHVSEDCFPLLDGCRKNRQKWQALAEQQ







hPDE5 (Amino
LibC000011
EETRELQSLAAAVVPSAQTLKITDFSFGDFELSDLETALCTIRMFTDL
8389
8441


acid 535-860 of

NLVQNFQMKHEVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMF




WT, S562G,

AALKAGKIQNKLTDLEILALLIAALSHDLDHRGVNNSYIQRSEHPLA




L727P, R847T)

QLYCHSIMEHHHFDQCLMILNSPGNQILSGLSIEEYKTTLKIIKQAILA






TDLAPYIKRRGEFFELIRKNQFNLEDPHQKELFLAMLMTACDLSAIT






KPWPIQQRIAELVATEFFDQGDRERKELNIEPTDLMNREKKNKIPSM






QVGFIDAICLQLYEALTHVSEDCFPLLDGCTKNRQKWQALAEQQ







hPDE5 (Amino
LibC000012
EETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFTDL
8390
8442


acid 535-860 of

NLVQNFQMKHEVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMF




WT, Q666H)

AALKAGKIQNKLTDLEILALLIAALSHDLDHRGVNNSYIHRSEHPLA






QLYCHSIMEHHHFDQCLMILNSPGNQILSGLSIEEYKTTLKIIKQAILA






TDLALYIKRRGEFFELIRKNQFNLEDPHQKELFLAMLMTACDLSAIT






KPWPIQQRIAELVATEFFDQGDRERKELNIEPTDLMNREKKNKIPSM






QVGFIDAICLQLYEALTHVSEDCFPLLDGCRKNRQKWQALAEQQ







hPDE5 (Amino
LibC000013
EETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFTDL
8391
8443


acid 535-860 of

NLVQNFQMKHEVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMF




WT, L781P)

AALKAGKIQNKLTDLEILALLIAALSHDLDHRGVNNSYIQRSEHPLA






QLYCHSIMEHHHEDQCLMILNSPGNQILSGLSIEEYKTTLKIIKQAILA






TDLALYIKRRGEFFELIRKNQFNLEDPHQKELFLAMLMTACDLSAIT






KPWPIQQRIAEPVATEFFDQGDRERKELNIEPTDLMNREKKNKIPSM






QVGFIDAICLQLYEALTHVSEDCFPLLDGCRKNRQKWQALAEQQ







hPDE5 (Amino
LibC000014
EETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFTDL
8392
8444


acid 535-860 of

NLVQNFQMKHEVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMF




WT, A767E)

AALKAGKIQNKLTDLEILALLIAALSHDLDHRGVNNSYIQRSEHPLA






QLYCHSIMEHHHFDQCLMILNSPGNQILSGLSIEEYKTTLKIIKQAILA






TDLALYIKRRGEFFELIRKNQFNLEDPHQKELFLAMLMTACDLSEIT






KPWPIQQRIAELVATEFFDQGDRERKELNIEPTDLMNREKKNKIPSM






QVGFIDAICLQLYEALTHVSEDCFPLLDGCRKNRQKWQALAEQQ







hPDE5 (Amino
LibC000015
EETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLESALCTIRMFTDL
8393 
8445


acid 535-860 of

NLMQNFQMKHEVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCM




WT, T571S,

FAALKAGKIQNKLTDLEILALLIAALSHDLDHRGVNNSYIQRSEHPL




V585M, T723S)

AQLYCHSIMEHHHFDQCLMILNSPGNQILSGLSIEEYKTTLKIIKQAIL






ASDLALYIKRRGEFFELIRKNQFNLEDPHQKELFLAMLMTACDLSAI






TKPWPIQQRIAELVATEFFDQGDRERKELNIEPTDLMNREKKNKIPS






MQVGFIDAICLQLYEALTHVSEDCFPLLDGCRKNRQKWQALAEQQ







hPDE5 (Amino
LibC000016
EETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFTDL
8394 
8446


acid 535-860 of

NLVQNFQMKHEVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMF




WT, Q743L)

AALKAGKIQNKLTDLEILALLIAALSHDLDHRGVNNSYIQRSEHPLA






QLYCHSIMEHHHFDQCLMILNSPGNQILSGLSIEEYKTTLKIIKQAILA






TDLALYIKRRGEFFELIRKNLFNLEDPHQKELFLAMLMTACDLSAIT






KPWPIQQRIAELVATEFFDQGDRERKELNIEPTDLMNREKKNKIPSM






QVGFIDAICLQLYEALTHVSEDCFPLLDGCRKNRQKWQALAEQQ







hPDE5 (Amino
LibC000017
EETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFTDL
8395 
8447


acid 535-860 of

NLVQNFQMKHEVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMF




WT, Y709H,

AALKAGKIQNKLTDLEILALLIAALSHDLDHRGVNNSYIQRSEHPLA




F787V)

QLYCHSIMEHHHFDQCLMILNSPGNQILSGLSIEEHKTTLKIIKQAILA






TDLALYIKRRGEFFELIRKNQFNLEDPHQKELFLAMLMTACDLSAIT






KPWPIQQRIAELVATEFVDQGDRERKELNIEPTDLMNREKKNKIPSM






QVGFIDAICLQLYEALTHVSEDCFPLLDGCRKNRQKWQALAEQQ







hPDE5 (Amino
LibC000018
EETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFTDL
8396 
8448


acid 535-860 of

NLVQNFQMKHEVLCRWILSVKKYYRKNVAYHNWRHAFNTAQCMF




WT, N605Y,

AALKAGKIQNKLTDLEILALLIAALSHDLDHRGVNNSYIQRSEHPLA




I715K)

QLYCHSIMEHHHFDQCLMILNSPGNQILSGLSIEEYKTTLKKIKQAIL






ATDLALYIKRRGEFFELIRKNQFNLEDPHQKELFLAMLMTACDLSAI






TKPWPIQQRIAELVATEFFDQGDRERKELNIEPTDLMNREKKNKIPS






MQVGFIDAICLQLYEALTHVSEDCFPLLDGCRKNRQKWQALAEQQ







hPDE5 (Amino
LibC000019
EETRELQSLAAAVVPSAQTLKITDFSFSDIELSDLETALCTIRMFTDL
8397 
8449


acid 535-860 of

NLVQNFQMKHEVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMF




WT, F564I,

AALKAGKIQNKLTDLEILALLIAALSHDLDHRGVNYSYIQRSEHPLA




N662Y, H685L,

QLYCHSIMEHHLFDQCLMIPNSPGNQILSGLSIEEYKTTLKIIKQAILA




L693P, F736I)

TDLALYIKRRGEFIELIRKNQFNLEDPHQKELFLAMLMTACDLSAIT






KPWPIQQRIAELVATEFFDQGDRERKELNIEPTDLMNREKKNKIPSM






QVGFIDAICLQLYEALTHVSEDCFPLLDGCRKNRQKWQALAEQQ







hPDE5 (Amino
LibC000020
EETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFTDL
8398 
8450


acid 535-860 of

NLVQNFQMKHEVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMF




WT, A722V,

AALKAGKIQNKLTDLEILALLIAALSHDLDHRGVNNSYIQRSEHPLA




F755L, M760I)

QLYCHSIMEHHHFDQCLMILNSPGNQILSGLSIEEYKTTLKIIKQAILV






TDLALYIKRRGEFFELIRKNQFNLEDPHQKELLLAMLITACDLSAITK






PWPIQQRIAELVATEFFDQGDRERKELNIEPTDLMNREKKNKIPSMQ






VGFIDAICLQLYEALTHVSEDCFPLLDGCRKNRQKWQALAEQQ







hPDE5 (Amino
LibC000021
EETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFTDL
8399 
8451


acid 535-860 of

NLVQNFQMKHEILCRWILSVKKNYRKNVAYHNWRHAFNTAQCMF




WT, V594I)

AALKAGKIQNKLTDLEILALLIAALSHDLDHRGVNNSYIQRSEHPLA






QLYCHSIMEHHHFDQCLMILNSPGNQILSGLSIEEYKTTLKIIKQAILA






TDLALYIKRRGEFFELIRKNQFNLEDPHQKELFLAMLMTACDLSAIT






KPWPIQQRIAELVATEFFDQGDRERKELNIEPTDLMNREKKNKIPSM






QVGFIDAICLQLYEALTHVSEDCFPLLDGCRKNRQKWQALAEQQ







hPDE5 (Amino
LibC000022
EETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFTDL
8400 
8452


acid 535-860 of

NLVQNFQMKREVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMF




WT, H592R)

AALKAGKIQNKLTDLEILALLIAALSHDLDHRGVNNSYIQRSEHPLA






QLYCHSIMEHHHFDQCLMILNSPGNQILSGLSIEEYKTTLKIIKQAILA






TDLALYIKRRGEFFELIRKNQFNLEDPHQKELFLAMLMTACDLSAIT






KPWPIQQRIAELVATEFFDQGDRERKELNIEPTDLMNREKKNKIPSM






QVGFIDAICLQLYEALTHVSEDCFPLLDGCRKNRQKWQALAEQQ







hPDE5 (Amino
LibC000023
EETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFTDL
8401 
8453


acid 535-860 of

NLVQNFQMKHEVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMF




WT, E858V)

AALKAGKIQNKLTDLEILALLIAALSHDLDHRGVNNSYIQRSEHPLA






QLYCHSIMEHHHFDQCLMILNSPGNQILSGLSIEEYKTTLKIIKQAILA






TDLALYIKRRGEFFELIRKNQFNLEDPHQKELFLAMLMTACDLSAIT






KPWPIQQRIAELVATEFFDQGDRERKELNIEPTDLMNREKKNKIPSM






QVGFIDAICLQLYEALTHVSEDCFPLLDGCRKNRQKWQALAVQQ







hPDE5 (Amino
LibC000024
EETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFTDL
8402 
8454


acid 535-860 of

NLVQNFQMKHEVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMF




WT, T784I)

AALKAGKIQNKLTDLEILALLIAALSHDLDHRGVNNSYIQRSEHPLA






QLYCHSIMEHHHFDQCLMILNSPGNQILSGLSIEEYKTTLKIIKQAILA






TDLALYIKRRGEFFELIRKNQFNLEDPHQKELFLAMLMTACDLSAIT






KPWPIQQRIAELVAIEFFDQGDRERKELNIEPTDLMNREKKNKIPSM






QVGFIDAICLQLYEALTHVSEDCFPLLDGCRKNRQKWQALAEQQ







hPDE5 (Amino
LibC000001
EETRELQLLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFTDL
8403 
8455


acid 535-860 of

NLVQNFQMKHEVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMF




WT, S542L,

AALKAGKIQNKLTDLEILALLIAALSHDLDHRGVNNSYIQRSEHPLA




E708V, W772C)

QLYCHSIMEHHHFDQCLMILNSPGNQILSGLSIEVYKTTLKIIKQAILA






TDLALYIKRRGEFFELIRKNQFNLEDPHQKELFLAMLMTACDLSAIT






KPCPIQQRIAELVATEFFDQGDRERKELNIEPTDLMNREKKNKIPSM






QVGFIDAICLQLYEALTHVSEDCFPLLDGCRKNRQKWQALAEQQ







hPDE5 (Amino
LibC000002
EETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFTDL
8404 
8456


acid 535-860 of

NLVQNFQMKHEVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMF




WT, I700F,

AALKAGKIQNKLTDLEILALLIAALSHDLDHRGVNNSYIQRSEHPLA




E796G)

QLYCHSIMEHHHFDQCLMILNSPGNQFLSGLSIEEYKTTLKIIKQAIL






ATDLALYIKRRGEFFELIRKNQFNLEDPHQKELFLAMLMTACDLSAI






TKPWPIQQRIAELVATEFFDQGDRERKGLNIEPTDLMNREKKNKIPS






MQVGFIDAICLQLYEALTHVSEDCFPLLDGCRKNRQKWQALAEQQ







hPDE5 (Amino
LibC000003
EETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFTDL
8405 
8457


acid 535-860 of

NLVQNFQMKHEVLCRWILSVKKNYRKNYAYHNWRHAFNTAQCMF




WT, D724G,

AALKAGKIQNKLTDLEILALLIAALSHDLDHRGVNNSYIQRSEHPLA




K848N)

QLYCHSIMEHHHFDQCLMILNSPGNQILSGLSIEEYKTTLKIIKQAILA






TGLALYIKRRGEFFELIRKNQFNLEDPHQKELFLAMLMTACDLSAIT






KPWPIQQRIAELVATEFFDQGDRERKELNIEPTDLMNREKKNKIPSM






QVGFIDAICLQLYEALTHVSEDCFPLLDGCRNNRQKWQALAEQQ







hPDE5 (Amino
LibC000004
EETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFTDL
8406 
8458


acid 535-860 of

NLVQNFQMKHEVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMF




WT, T712M,

AALKAGKIQNKLTDLEILALLIAALSHDLDHRGVNNSYIQRSEHPLA




M758I, Q859R)

QLYCHSIMEHHHFDQCLMILNSPGNQILSGLSIEEYKTMLKIIKQAIL






ATDLALYIKRRGEFFELIRKNQFNLEDPHQKELFLAILMTACDLSAIT






KPWPIQQRIAELVATEFFDQGDRERKELNIEPTDLMNREKKNKIPSM






QVGFIDAICLQLYEALTHVSEDCFPLLDGCRKNRQKWQALAERQ







hPDE5 (Amino
LibC000005
EETRELQSLAAAVVPSAQTLKSTDFSFSDFELSDLETALCTIRMFTDL
8407 
8459


acid 535-860 of

NLVQNFQMKHEVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMF




WT, I556S,

AALKAGKIQNKLTDLEILALLIAALSHDLDHRGVNNSYIQRSEHPLA




E796D)

QLYCHSIMEHHHFDQCLMILNSPGNQILSGLSIEEYKTTLKIIKQAILA






TDLALYIKRRGEFFELIRKNQFNLEDPHQKELFLAMLMTACDLSAIT






KPWPIQQRIAELVATEFFDQGDRERKDLNIEPTDLMNREKKNKIPSM






QVGFIDAICLQLYEALTHVSEDCFPLLDGCRKNRQKWQALAEQQ







hPDE5 (Amino
LibC000006
EETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFTDL
8408 
8460


acid 535-860 of

NLVQNFQMKHEVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMF




WT, I680S)

AALKAGKIQNKLTDLEILALLIAALSHDLDHRGVNNSYIQRSEHPLA






QLYCHSSMEHHHFDQCLMILNSPGNQILSGLSIEEYKTTLKIIKQAIL






ATDLALYIKRRGEFFELIRKNQFNLEDPHQKELYLAMLMTACDLSAI






TKPWPIQQRIAELVATEFFDQGDRERKELNIEPTDLMNREKKNKIPS






MQVGFIDAICLQLYEALTHVSEDCFPLLDGCRKNRQKWQALAEQQ







hPDE5 (Amino
LibC000007
EETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFTDL
8409 
8461


acid 535-860 of

NLVQNFQMKHEVLCRWILSVKKNYRKNVAYLNWRHAFNTAQCMF




WT, H613L,

AALKAGKIQNKLTDLEILALLIAALSHDLDHRGVNNSYIQRSEHPLA




D724Y, F755Y)

QLYCHSIMEHHHFDQCLMILNSPGNQILSGLSIEEYKTTLKIIKQAILA






TYLALYIKRRGEFFELIRKNQFNLEDPHQKELYLAMLMTACDLSAIT






KPWPIQQRIAELVATEFFDQGDRERKELNIEPTDLMNREKKNKIPSM






QVGFIDAICLQLYEALTHVSEDCFPLLDGCRKNRQKWQALAEQQ







hPDE5 (Amino
LibC000008
EETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFTDL
8410 
8462


acid 535-860 of

NLVQNFQMKHEVLCRWILSVKKNYRKNVTYHNWRHAFNTAQCMF




WT, A611T)

AALKAGKIQNKLTDLEILALLIAALSHDLDHRGVNNSYIQRSEHPLA






QLYCHSIMEHHHFDQCLMILNSPGNQILSGLSIEEYKTTLKIIKQAILA






TDLALYIKRRGEFFELIRKNQFNLEDPHQKELFLAMLMTACDLSAIT






KPWPIQQRIAELVATEFFDQGDRERKELNIEPTDLMNREKKNKIPSM






QVGFIDAICLQLYEALTHVSEDCFPLLDGCRKNRQKWQALAEQQ







hPDE5 (Amino
-
EETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFTDL
8411 
8463


acid 535-860 of

NLVQNFQMKHEVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMF




WT, N661S)

AALKAGKIQNKLTDLEILALLIAALSHDLDHRGVSNSYIQRSEHPLA






QLYCHSIMEHHHFDQCLMILNSPGNQILSGLSIEEYKTTLKIIKQAILA






TDLALYIKRRGEFFELIRKNQFNLEDPHQKELFLAMLMTACDLSAIT






KPWPIQQRIAELVATEFFDQGDRERKELNIEPTDLMNREKKNKIPSM






QVGFIDAICLQLYEALTHVSEDCFPLLDGCRKNRQKWQALAEQQ







hPDE5 (Amino
-
EETRELQSLAAAVVPSAQTLKITDFSFSDFELSDMETALCTIRMFTDL
8412 
8464


acid 535-860 of

NLVQNFQMKHEVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMF




WT, L569M,

AALKAGKIQNKLTDLEILALLIAALSHDLDHRGVNNSYIQRSEHPLA




T833S)

QLYCHSIMEHHHFDQCLMILNSPGNQILSGLSIEEYKTTLKIIKQAILA






TDLALYIKRRGEFFELIRKNQFNLEDPHQKELFLAMLMTACDLSAIT






KPWPIQQRIAELVATEFFDQGDRERKELNIEPTDLMNREKKNKIPSM






QVGFIDAICLQLYEALSHVSEDCFPLLDGCRKNRQKWQALAEQQ







hPDE5 (Amino
-
EETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFTDL
8413 
8465


acid 535-860 of

NLVQNFQMKHEVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMF




WT, I768N)

AALKAGKIQNKLTDLEILALLIAALSHDLDHRGVNNSYIQRSEHPLA






QLYCHSIMEHHHFDQCLMILNSPGNQILSGLSIEEYKTTLKIIKQAILA






TDLALYIKRRGEFFELIRKNQFNLEDPHQKELFLAMLMTACDLSANT






KPWPIQQRIAELVATEFFDQGDRERKELNIEPTDLMNREKKNKIPSM






QVGFIDAICLQLYEALTHVSEDCFPLLDGCRKNRQKWQALAEQQ







hPDE5 (Amino
-
EETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFTDL
8414 
8466


acid 535-860 of

NLVQNFQMKHEVLCRWILSVKKNYWKNVAYHNWRHAFNTAQCM




WT, R607W)

FAALKAGKIQNKLTDLEILALLIAALSHDLDHRGVNNSYIQRSEHPL






AQLYCHSIMEHHHFDQCLMILNSPGNQILSGLSIEEYKTTLKIIKQAIL






ATDLALYIKRRGEFFELIRKNQFNLEDPHQKELFLAMLMTACDLSAI






TKPWPIQQRIAELVATEFFDQGDRERKELNIEPTDLMNREKKNKIPS






MQVGFIDAICLQLYEALTHVSEDCFPLLDGCRKNRQKWQALAEQQ







hPDE5 (Amino
-
EETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFTDL
8415 
8467


acid 535-860 of

NLVQNFQMKHEVLCRWILSVKKNYRKNVAYHNWRHAFSTAQCMF




WT, N620S)

AALKAGKIQNKLTDLEILALLIAALSHDLDHRGVNNSYIQRSEHPLA






QLYCHSIMEHHHFDQCLMILNSPGNQILSGLSIEEYKTTLKIIKQAILA






TDLALYIKRRGEFFELIRKNQFNLEDPHQKELFLAMLMTACDLSAIT






KPWPIQQRIAELVATEFFDQGDRERKELNIEPTDLMNREKKNKIPSM






QVGFIDAICLQLYEALTHVSEDCFPLLDGCRKNRQKWQALAEQQ







hPDE5 (Amino
-
EETRELQSLAAAVVPSAQTRKITDFSFSDFELSDLETALCTIRMFTDL
8416 
8468


acid 535-860 of

NLVQNFEMKHEVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMF




WT, L554R,

AALKAGKIQNKLTDLEILALLIAALSHDLDHRGVNNSYIQRSEHPLA




Q589E, M691I)

QLYCHSIMEHHHFDQCLIILNSPGNQILSGLSIEEYKTTLKIIKQAILA






TDLALYIKRRGEFFELIRKNQFNLEDPHQKELFLAMLMTACDLSAITK






PWPIQQRIAELVATEFFDQGDRERKELNIEPTDLMNREKKNKIPSMQ






VGFIDAICLQLYEALTHVSEDCFPLLDGCRKNRQKWQALAEQQ







hPDE5 (Amino
-
EETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFTDL
8417 
8469


acid 535-860 of

NLVQNFQMKHEVLCRWILSVKKNYRKNVAYHNRRHAFNTAQCMF




WT, W615R,

AALKAGKIQNKLTDLEILALLIAALSHDLDHRGVNNSYIQRSEHPLA




T723R, A762T,

QLYCHSIMEHHHFDQCLMILNSPGNQILSGLSIEEYKTTLKIIKQAILA




E808G)

RDLALYIKRRGEFFELIRKNQFNLEDPHQKELFLAMLMTTCDLSAIT






KPWPIQQRIAELVATEFFDQGDRERKELNIEPTDLMNRGKKNKIPSM






QVGFIDAICLQLYEALTHVSEDCFPLLDGCRKNRQKWQALAEQQ







hPDE5 (Amino
-
EETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALYTIRMFTDL
8418 
8470


acid 535-860 of

NLVQNFQMKHEVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMF




WT, C574Y)

AALKAGKIQNKLTDLEILALLIAALSHDLDHRGVNNSYIQRSEHPLA






QLYCHSIMEHHHFDQCLMILNSPGNQILSGLSIEEYKTTLKIIKQAILA






TDLALYIKRRGEFFELIRKNQFNLEDPHQKELFLAMLMTACDLSAIT






KPWPIQQRIAELVATEFFDQGDRERKELNIEPTDLMNREKKNKIPSM






QVGFIDAICLQLYEALTHVSEDCFPLLDGCRKNRQKWQALAEQQ







hPDE5 (Amino
-
EETRELQSLAAAVVPSAQTRKITDFSFSDFELSDLETALCTIRMFTDL
8419 
8471


acid 535-860 of

NLVPNFQMKHEVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMF




WT, L554R,

AALKAGKIQNKLTDLEILALLIAALSHDLDHRGVNNSYIQRSEHPLA




Q586P, K710N,

QLYCHSIMEHHHFDQCLMILNSPGNQILSGLSIEEYNTTLKIIKQAILA




K730E)

TDLALYIERRGEFFELIRKNQFNLEDPHQKELFLAMLMTACDLSAIT






KPWPIQQRIAELVATEFFDQGDRERKELNIEPTDLMNREKKNKIPSM






QVGFIDAICLQLYEALTHVSEDCFPLLDGCRKNRQKWQALAEQQ







hPDE5 (Amino
-
EETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFTDL
8420 
8472


acid 535-860 of

NLVQNFQMKHEVLCRWILSVKKNYRKNVAYRNWRHAFNTAQCMF




WT, H613R)

AALKAGKIQNKLTDLEILALLIAALSHDLDHRGVNNSYIQRSEHPLA






QLYCHSIMEHHHFDQCLMILNSPGNQILSGLSIEEYNTTLKIIKQAILA






TDLALYIKRRGEFFELIRKNQFNLEDPHQKELFLAMLMTACDLSAIT






KPWPIQQRIAELVATEFFDQGDRERKELNIEPTDLMNREKKNKIPSM






QVGFIDAICLQLYEALTHVSEDCFPLLDGCRKNRQKWQALAEQQ







hPDE5 (Amino
-
EETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFTDL
8421 
8473


acid 535-860 of

NLVLNFQMKHEVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMF




WT, Q586L,

AALKAGKIQNKLTDLEILALLIAALSHDLDHRGVNNYYIQRSEHPLA




S663Y, A762T,

QLYCHSIMEHHHFDQCLMILNSPGNQILSGLSIEEYKTTLKIIKQAILA




E808G)

TDLALYIKRRGEFFELIRKNQFNLEDPHQKELFLAMLMTTCDLSAIT






KPWPIQQRIAELVATEFFDQGDRERKELNIEPTDLMNRGKKNKIPSM






QVGFIDAICLQLYEALTHVSEDCFPLLDGCRKNRQKWQALAEQQ







hPDE5 (Amino
-
EETRELQSLAAAVMPSAQTLKITDFSFSDFELSDLETALCTIRMFTDL
8422 
8474


acid 535-860 of

NLVQNFQMKHEVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMF




WT, V548M,

AALKAGKIQNKLTDLEILALLIAALSHDLDHRGVNNSYIQRSEHPLA




D803N)

QLYCHSIMEHHHFDQCLMILNSPGNQILSGLSIEEYKTTLKIIKQAILA






TDLALYIKRRGEFFELIRKNQFNLEDPHQKELFLAMLMTACDLSAIT






KPWPIQQRIAELVATEFFDQGDRERKELNIEPTNLMNREKKNKIPSM






QVGFIDAICLQLYEALTHVSEDCFPLLDGCRKNRQKWQALAEQQ







hPDE5 (Amino
-
EETRELQSLAAAVVPSAQTRKITDFSFSDFELSDLETALCTIRMFTDL
8423 
8475


acid 535-860 of

NLVQNFEMKHEVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMF




WT, L554R,

AALKAGKIQNKLTDLEILALLIAALSHDLDHRGVNNSYIQRSEHPLA




Q589E, A823T)

QLYCHSIMEHHHFDQCLMILNSPGNQILSGLSIEEYKTTLKIIKQAILA






TDLALYIKRRGEFFELIRKNQFNLEDPHQKELFLAMLMTACDLSAIT






KPWPIQQRIAELVATEFFDQGDRERKELNIEPTDLMNREKKNKIPSM






QVGFIDTICLQLYEALTHVSEDCFPLLDGCRKNRQKWQALAEQQ







hPDE5 (Amino
-
EETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLEIALCTIRMFTDLN
8424 
8476


acid 535-860 of

LVQNFQMKHEVLCRWILSVKRNYRKNVAYHNWRHAFNTAQCMFA




WT, T571I,

ALKAGKIQNKLTDLEILALLIAALSHDLDHRGVNNSYIQRSEHPLAQ




K604R, I706N,

LYCHSIMEHHHFDQCLMILNSPGNQILSGLSNEEYKTTLKIIKQAILA




E795R)

TDLALYIKRRGEFFELIRKNQFNLEDPHQKELFLAMLMTACDLSAIT






KPWPIQQRIAELVATEFFDQGDRERRELNIEPTDLMNREKKNKIPSM






QVGFIDAICLQLYEALTHVSEDCFPLLDGCRKNRQKWQALAEQQ







hPDE5 (Amino
-
EETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFTDL
8425 
8477


acid 535-860 of

NLVQNFQMKHEVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMF




WT, G659A,

AALKAGKIQNKLTDLEILALLIAALSHDLDHRAVNNSYIQRSEHPLA




T784I)

QLYCHSIMEHHHFDQCLMILNSPGNQILSGLSIEEYKTTLKIIKQAILA






TDLALYIKRRGEFFELIRKNQFNLEDPHQKELFLAMLMTACDLSAIT






KPWPIQQRIAELVAIEFFDQGDRERKELNIEPTDLMNREKKNKIPSM






QVGFIDAICLQLYEALTHVSEDCFPLLDGCRKNRQKWQALAEQQ







hPDE5 (Amino
-
EETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFTDL
8426 
8478


acid 535-860 of

NLVQNFQMKHEVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMF




WT, Q666H)

AALKAGKIQNKLTDLEILALLIAALSHDLDHRGVNNSYIHRSEHPLA






QLYCHSIMEHHHFDQCLMILNSPGNQILSGLSIEEYKTTLKIIKQAILA






TDLALYIKRRGEFFELIRKNQFNLEDPHQKELFLAMLMTACDLSAIT






KPWPIQQRIAELVATEFFDQGDRERKELNIEPTDLMNREKKNKIPSM






QVGFIDAICLQLYEALTHVSEDCFPLLDGCRKNRQKWQALAEQQ







hPDE5 (Amino
-
EETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFTDL
8427 
8479


acid 535-860 of

NLVQNFQMKHEVLCRWILSVKKNYRKNVAYHNWRLAFNTAQCMF




WT, H617L,

AALKAGKIQNKLTDLEILALLIAALSHDLDHRGVNNSYIQRSEHPLA




A722V)

QLYCHSIMEHHHFDQCLMILNSPGNQILSGLSIEEYKTTLKIIKQAILV






TDLALYIKRRGEFFELIRKNQFNLEDPHQKELFLAMLMTACDLSAIT






KPWPIQQRIAELVATEFFDQGDRERKELNIEPTDLMNREKKNKIPSM






QVGFIDAICLQLYEALTHVSEDCFPLLDGCRKNRQKWQALAEQQ







hPDE5 (Amino
-
EETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFTDL
8428 
8480


acid 535-860 of

NLVQNFQMKHEVLCRWILSVKKNYRKYVAYHNWRHAFNTAQCMF




WT, N609Y,

AALKAGKIQNKLTDLEILALLIAALSHDLDHRGVNNSYIQRSEHPLA




I799L)

QLYCHSIMEHHHFDQCLMILNSPGNQILSGLSIEEYKTTLKIIKQAILA






TDLALYIKRRGEFFELIRKNQFNLEDPHQKELFLAMLMTACDLSAIT






KPWPIQQRIAELVATEFFDQGDRERKELNLEPTDLMNREKKNKIPSM






QVGFIDAICLQLYEALTHVSEDCFPLLDGCRKNRQKWQALAEQQ







hPDE5 (Amino
-
EETRELQSLAAAVVPSAQTLKITDFSLSDFELSDLETALCTIRMFTDL
8429 
8481


acid 535-860 of

NLVQNFQMKHEVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMF




WT, F561L,

AALKAGKIQNKLTDLEILALLIAALSHDLDHRAVNNSYIQRSEHPLA




G659A, T784I)

QLYCHSIMEHHHFDQCLMILNSPGNQILSGLSIEEYKTTLKIIKQAILA






TDLALYIKRRGEFFELIRKNQFNLEDPHQKELFLAMLMTACDLSAIT






KPWPIQQRIAELVAIEFFDQGDRERKELNIEPTDLMNREKKNKIPSM






QVGFIDAICLQLYEALTHVSEDCFPLLDGCRKNRQKWQALAEQQ







hPDE5 (Amino
-
EETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFTDL
8430 
8482


acid 535-860 of

NLVQNFQMKHEVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMF




WT, K795N)

AALKAGKIQNKLTDLEILALLIAALSHDLDHRGVNNSYIQRSEHPLA






QLYCHSIMEHHHFDQCLMILNSPGNQILSGLSIEEYKTTLKIIKQAILA






TDLALYIKRRGEFFELIRKNQFNLEDPHQKELFLAMLMTACDLSAIT






KPWPIQQRIAELVATEFFDQGDRERNELNIEPTDLMNREKKNKIPSM






QVGFIDAICLQLYEALTHVSEDCFPLLDGCRKNRQKWQALAEQQ







hPDE5 (Amino
-
EETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFTDL
8431 
8483


acid 535-860 of

NLVQNFQMKHEVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMF




WT, K770Q,

AALKAGKIQNKLTDLEILALLIAALSHDLDHRGVNNSYIQRSEHPLA




K848N)

QLYCHSIMEHHHFDQCLMILNSPGNQILSGLSIEEYKTTLKIIKQAILA






TDLALYIKRRGEFFELIRKNQFNLEDPHQKELFLAMLMTACDLSAIT






QPWPIQQRIAELVATEFFDQGDRERKELNIEPTDLMNREKKNKIPSM






QVGFIDAICLQLYEALTHVSEDCFPLLDGCRNNRQKWQALAEQQ







hPDE5 (Amino
-
EETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFTDL
8432 
8484


acid 535-860 of

NLVQNFQMKHEVLCRWILSVKKDYRKNVAYHNWRHAFNTAQCMF




WT, N605D)

AALKAGKIQNKLTDLEILALLIAALSHDLDHRGVNNSYIQRSEHPLA






QLYCHSIMEHHHFDQCLMILNSPGNQILSGLSIEEYKTTLKIIKQAILA






TDLALYIKRRGEFFELIRKNQFNLEDPHQKELFLAMLMTACDLSAIT






KPWPIQQRIAELVATEFFDQGDRERKELNIEPTDLMNREKKNKIPSM






QVGFIDAICLQLYEALTHVSEDCFPLLDGCRKNRQKWQALAEQQ







hPDE5 (Amino
-
EETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFTDL
8433 
8485


acid 535-860 of

NLVQNFQMKHEVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMF




WT, I680S)

AALKAGKIQNKLTDLEILALLIAALSHDLDHRGVNNSYIQRSEHPLA






QLYCHSSMEHHHFDQCLMILNSPGNQILSGLSIEEYKTTLKIIKQAIL






ATDLALYIKRRGEFFELIRKNQFNLEDPHQKELFLAMLMTACDLSAI






TKPWPIQQRIAELVATEFFDQGDRERKELNIEPTDLMNREKKNKIPS






MQVGFIDAICLQLYEALTHVSEDCFPLLDGCRKNRQKWQALAEQQ







hPDE5 (Amino
-
EETRELQSLAAAVMPSAQTLKITDFSFSDFELSDLETALCTIRMFTDL
8434 
8486


acid 535-860 of

NLVQNFQMKHEVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMF




WT, V548M,

AALKAGKIQNKLTDLEILALLIAALSHDLDHRGVNNSYIQRSEHPLA




F820I)

QLYCHSIMEHHHFDQCLMILNSPGNQILSGLSIEEYKTTLKIIKQAILA






TDLALYIKRRGEFFELIRKNQFNLEDPHQKELFLAMLMTACDLSAIT






KPWPIQQRIAELVATEFFDQGDRERKELNIEPTDLMNREKKNKIPSM






QVGIIDAICLQLYEALTHVSEDCFPLLDGCRKNRQKWQALAEQQ







hPDE5 (Amino
-
EETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFTDL
8435 
8487


acid 535-860 of

NLVQNFQMKHEVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMF




WT, I799L)

AALKAGKIQNKLTDLEILALLIAALSHDLDHRGVNNSYIQRSEHPLA






QLYCHSIMEHHHFDQCLMILNSPGNQILSGLSIEEYKTTLKIIKQAILA






TDLALYIKRRGEFFELIRKNQFNLEDPHQKELFLAMLMTACDLSAIT






KPWPIQQRIAELVATEFFDQGDRERKELNLEPTDLMNREKKNKIPSM






QVGFIDAICLQLYEALTHVSEDCFPLLDGCRKNRQKWQALAEQQ







hPDE5 (Amino
-
EETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFTDL
8436 
8488


acid 535-860 of

NLVQNFQMKHEVLCRWILSVKKNYQKNVAYHNWRHAFNTAQCM




WT, R607Q)

FAALKAGKIQNKLTDLEILALLIAALSHDLDHRGVNNSYIQRSEHPL






AQLYCHSIMEHHHFDQCLMILNSPGNQILSGLSIEEYKTTLKIIKQAIL






ATDLALYIKRRGEFFELIRKNQFNLEDPHQKELFLAMLMTACDLSAI






TKPWPIQQRIAELVATEFFDQGDRERKELNIEPTDLMNREKKNKIPS






MQVGFIDAICLQLYEALTHVSEDCFPLLDGCRKNRQKWQALAEQQ







hPDE5 (Amino
-
EETRELQSLAAAVVPFAQTRKITDFSFSDFELSDLETALCTIRMFTDL
8437
8489


acid 535-860 of

NLVQNFQMKHEVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMF




WT, S550F,

AALKAGKIQNKLTDLEILALLIAALSHDLDHRGVNNSYIQRSEHPLA




L554R)

QLYCHSIMEHHHFDQCLMILNSPGNQILSGLSIEEYKTTLKIIKQAILA






TDLALYIKRRGEFFELIRKNQFNLEDPHQKELFLAMLMTACDLSAIT






KPWPIQQRIAELVATEFFDQGDRERKELNIEPTDLMNREKKNKIPSM






QVGFIDAICLQLYEALTHVSEDCFPLLDGCRKNRQKWQALAEQQ







hPDE5 (Amino
-
EETRELQSLAAAVVSSAQTLKITDFSFSDIELSDLETALCTIRMFTDL
8438
8490


acid 535-860 of

NLVQNFQMKHEVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMF




WT, P549S,

AALKAGKIQNKLTDLEILALLIAALSHDLDHHGVNNSYIQRSEHPLA




F564I, R658H,

QLYCHSIMEHHHFDQCLMILNSPGNQILSGLSIEEYKTTLKIIKQAILA




A779T, R847G)

TDLALYIKRRGEFFELIRKNQFNLEDPHQKELFLAMLMTACDLSAIT






KPWPIQQRITELVATEFFDQGDRERKELNIEPTDLMNREKKNKIPSM






QVGFIDAICLQLYEALTHVSEDCFPLLDGCGKNRQKWQALAEQQ









In some embodiments, DDs derived from hPDE5 may include one, two, three, four, five, or more of the mutations described in the previous Tables (Table 1 or Table 2).


In some embodiments, DDs derived from hPDE5 may further comprise one, two, three, four, five or more mutations to the catalytic domain of hPDE5 and may be selected from E535D, E536G, Q541R, K555R, S560G, F559L, F561L, F564L, F564S, S766F, V585A, N587S, K591E, I599V, K604E, K608E, N609H, K630R, K633E, N636S, I648V, N661S, S663P, L675P, Y676D, Y676N, C677R, H678R, D687A, T711A, T712S, D724N, L738H, N742S, F744L, L746S, F755L, A762S, D764V, D764N, D764G, K795E, L797F, I799T, L804P, T802P, S815C, M816A, M816T, I824T, C839S, F840S, and K852E (as listed in Table 3). The position of the mutated amino acid is with respect to the hPDE5 of SEQ ID NO: 1. In Table 3, the mutated amino acids are underlined and in bold. The position of the mutated amino acids listed in Table 3 is relative to the full length hPDE5 of SEQ ID NO:1









TABLE 3







Additional hPDE5 DDs











AA


hPDE5 mutant

SEQ


description
Amino Acid Sequence
ID NO





hPDE5 (Amino


D
ETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFTDLNLVQNFQMKHEVLC

23


acid 535-860 of
RWILSVKKNYRKNVAYHNWRHAFNTAQCMFAALKAGKIQNKLTDLEILALLIAALSHDLD



WT, E535D)
HRGVNNSYIQRSEHPLAQLYCHSIMEHHHFDQCLMILNSPGNQILSGLSIEEYKTTLKIIKQAI




LATDLALYIKRRGEFFELIRKNQFNLEDPHQKELFLAMLMTACDLSAITKPWPIQQRIAELV




ATEFFDQGDRERKELNIEPTDLMNREKKNKIPSMQVGFIDAICLQLYEALTHVSEDCFPLLD




GCRKNRQKWQALAEQQ






hPDE5 (Amino
EGTRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFTDLNLVQNFQMKHEVLC
24


acid 535-860 of
RWILSVKKNYRKNVAYHNWRHAFNTAQCMFAALKAGKIQNKLTDLEILALLIAALSHDLD



WT, E536G)
HRGVNNSYIQRSEHPLAQLYCHSIMEHHHFDQCLMILNSPGNQILSGLSIEEYKTTLKIIKQAI




LATDLALYIKRRGEFFELIRKNQFNLEDPHQKELFLAMLMTACDLSAITKPWPIQQRIAELV




ATEFFDQGDRERKELNIEPTDLMNREKKNKIPSMQVGFIDAICLQLYEALTHVSEDCFPLLD




GCRKNRQKWQALAEQQ






hPDE5 (Amino
EETREERSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFTDLNLVQNFQMKHEVLC
25


acid 535-860 of
RWILSVKKNYRKNVAYHNWRHAFNTAQCMFAALKAGKIQNKLTDLEILALLIAALSHDLD



WT, Q541R)
HRGVNNSYIQRSEHPLAQLYCHSIMEHHHFDQCLMILNSPGNQILSGLSIEEYKTTLKIIKQAI




LATDLALYIKRRGEFFELIRKNQFNLEDPHQKELFLAMLMTACDLSAITKPWPIQQRIAELV




ATEFFDQGDRERKELNIEPTDLMNREKKNKIPSMQVGFIDAICLQLYEALTHVSEDCFPLLD




GCRKNRQKWQALAEQQ






hPDE5 (Amino
EETRELQSLAAAVVPSAQTLRITDFSFSDFELSDLETALCTIRMFTDLNLVQNFQMKHEVLC
26


acid 535-860 of
RWILSVKKNYRKNVAYHNWRHAFNTAQCMFAALKAGKIQNKLTDLEILALLIAALSHDLD



WT, K555R)
HRGVNNSYIQRSEHPLAQLYCHSIMEHHHFDQCLMILNSPGNQILSGLSIEEYKTTLKIIKQAI




LATDLALYIKRRGEFFELIRKNQFNLEDPHQKELFLAMLMTACDLSAITKPWPIQQRIAELV




ATEFFDQGDRERKELNIEPTDLMNREKKNKIPSMQVGFIDAICLQLYEALTHVSEDCFPLLD




GCRKNRQKWQALAEQQ






hPDE5 (Amino
EETRELQSLAAAVVPSAQTLKITDLSFSDFELSDLETALCTIRMFTDLNLVQNFQMKHEVLC
27


acid 535-860 of
RWILSVKKNYRKNVAYHNWRHAFNTAQCMFAALKAGKIQNKLTDLEILALLIAALSHDLD



WT, F559L)
HRGVNNSYIQRSEHPLAQLYCHSIMEHHHFDQCLMILNSPGNQILSGLSIEEYKTTLKIIKQAI




LATDLALYIKRRGEFFELIRKNQFNLEDPHQKELFLAMLMTACDLSAITKPWPIQQRIAELV




ATEFFDQGDRERKELNIEPTDLMNREKKNKIPSMQVGFIDAICLQLYEALTHVSEDCFPLLD




GCRKNRQKWQALAEQQ






hPDE5 (Amino
EETRELQSLAAAVVPSAQTLKITDFSLSDFELSDLETALCTIRMFTDLNLVQNFQMKHEVLC
28


acid 535-860 of
RWILSVKKNYRKNVAYHNWRHAFNTAQCMFAALKAGKIQNKLTDLEILALLIAALSHDLD



WT, F561L)
HRGVNNSYIQRSEHPLAQLYCHSIMEHHHFDQCLMILNSPGNQILSGLSIEEYKTTLKIIKQAI




LATDLALYIKRRGEFFELIRKNQFNLEDPHQKELFLAMLMTACDLSAITKPWPIQQRIAELV




ATEFFDQGDRERKELNIEPTDLMNREKKNKIPSMQVGFIDAICLQLYEALTHVSEDCFPLLD




GCRKNRQKWQALAEQQ






hPDE5 (Amino
EETRELQSLAAAVVPSAQTLKITDFSFSDLELSDLETALCTIRMFTDLNLVQNFQMKHEVLC
29


acid 535-860 of
RWILSVKKNYRKNVAYHNWRHAFNTAQCMFAALKAGKIQNKLTDLEILALLIAALSHDLD



WT, F564L)
HRGVNNSYIQRSEHPLAQLYCHSIMEHHHFDQCLMILNSPGNQILSGLSIEEYKTTLKIIKQAI




LATDLALYIKRRGEFFELIRKNQFNLEDPHQKELFLAMLMTACDLSAITKPWPIQQRIAELV




ATEFFDQGDRERKELNIEPTDLMNREKKNKIPSMQVGFIDAICLQLYEALTHVSEDCFPLLD




GCRKNRQKWQALAEQQ






hPDE5 (Amino
EETRELQSLAAAVVPSAQTLKITDFSFSDSELSDLETALCTIRMFTDLNLVQNFQMKHEVLC
30


acid 535-860 of
RWILSVKKNYRKNVAYHNWRHAFNTAQCMFAALKAGKIQNKLTDLEILALLIAALSHDLD



WT, F564S)
HRGVNNSYIQRSEHPLAQLYCHSIMEHHHFDQCLMILNSPGNQILSGLSIEEYKTTLKIIKQAI




LATDLALYIKRRGEFFELIRKNQFNLEDPHQKELFLAMLMTACDLSAITKPWPIQQRIAELV




ATEFFDQGDRERKELNIEPTDLMNREKKNKIPSMQVGFIDAICLQLYEALTHVSEDCFPLLD




GCRKNRQKWQALAEQQ






hPDE5 (Amino
EETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFTDENLVQNFQMEHEVLC
31


acid 535-860 of
RWILSVKKNYRKNVAYHNWRHAFNTAQCMFAALKAGKIQNKLTDLEILALLIAALSHDLD



WT, K591E)
HRGVNNSYIQRSEHPLAQLYCHSIMEHHHFDQCLMILNSPGNQILSGLSIEEYKTTLKIIKQAI




LATDLALYIKRRGEFFELIRKNQFNLEDPHQKELFLAMLMTACDLSAITKPWPIQQRIAELV




ATEFFDQGDRERKELNIEPTDLMNREKKNKIPSMQVGFIDAICLQLYEALTHVSEDCFPLLD




GCRKNRQKWQALAEQQ






hPDE5 (Amino
EETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFTDENLVQSFQMKHEVLC
32


acid 535-860 of
RWILSVKKNYRKNVAYHNWRHAFNTAQCMFAALKAGKIQNKLTDLEILALLIAALSHDLD



WT, N587S)
HRGVNNSYIQRSEHPLAQLYCHSIMEHHHFDQCLMILNSPGNQILSGLSIEEYKTTLKIIKQAI




LATDLALYIKRRGEFFELIRKNQFNLEDPHQKELFLAMLMTACDLSAITKPWPIQQRIAELV




ATEFFDQGDRERKELNIEPTDLMNREKKNKIPSMQVGFIDAICLQLYEALTHVSEDCFPLLD




GCRKNRQKWQALAEQQ






hPDE5 (Amino
EETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFTDLNLVQNFQMKHEVLC
33


acid 535-860 of
RWILSVKENYRKNVAYHNWRHAFNTAQCMFAALKAGKIQNKLTDLEILALLIAALSHDLD



WT, K604E)
HRGVNNSYIQRSEHPLAQLYCHSIMEHHHFDQCLMILNSPGNQILSGLSIEEYKTTLKIIKQAI




LATDLALYIKRRGEFFELIRKNQFNLEDPHQKELFLAMLMTACDLSAITKPWPIQQRIAELV




ATEFFDQGDRERKELNIEPTDLMNREKKNKIPSMQVGFIDAICLQLYEALTHVSEDCFPLLD




GCRKNRQKWQALAEQQ






hPDE5 (Amino
EETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFTDLNLVQNFQMKHEVLC
34


acid 535-860 of
RWILSVKKNYRENVAYHNWRHAFNTAQCMFAALKAGKIQNKLTDLEILALLIAALSHDLD



WT, K608E)
HRGVNNSYIQRSEHPLAQLYCHSIMEHHHFDQCLMILNSPGNQILSGLSIEEYKTTLKIIKQAI




LATDLALYIKRRGEFFELIRKNQFNLEDPHQKELFLAMLMTACDLSAITKPWPIQQRIAELV




ATEFFDQGDRERKELNIEPTDLMNREKKNKIPSMQVGFIDAICLQLYEALTHVSEDCFPLLD




GCRKNRQKWQALAEQQ






hPDE5 (Amino
EETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFTDLNLVQNFQMKHEVLC
35


acid 535-860 of
RWILSVKKNYRKHVAYHNWRHAFNTAQCMFAALKAGKIQNKLTDLEILALLIAALSHDLD



WT, N609H)
HRGVNNSYIQRSEHPLAQLYCHSIMEHHHFDQCLMILNSPGNQILSGLSIEEYKTTLKIIKQAI




LATDLALYIKRRGEFFELIRKNQFNLEDPHQKELFLAMLMTACDLSAITKPWPIQQRIAELV




ATEFFDQGDRERKELNIEPTDLMNREKKNKIPSMQVGFIDAICLQLYEALTHVSEDCFPLLD




GCRKNRQKWQALAEQQ






hPDE5 (Amino
EETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFTDLNLVQNFQMKHEVLC
36


acid 535-860 of
RWILSVKKNYRKNVAYHNWRHAFNTAQCMFAALRAGKIQNKLTDLEILALLIAALSHDLD



WT, K630R)
HRGVNNSYIQRSEHPLAQLYCHSIMEHHHFDQCLMILNSPGNQILSGLSIEEYKTTLKIIKQAI




LATDLALYIKRRGEFFELIRKNQFNLEDPHQKELFLAMLMTACDLSAITKPWPIQQRIAELV




ATEFFDQGDRERKELNIEPTDLMNREKKNKIPSMQVGFIDAICLQLYEALTHVSEDCFPLLD




GCRKNRQKWQALAEQQ






hPDE5 (Amino
EETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFTDLNLVQNFQMKHEVLC
37


acid 535-860 of
RWILSVKKNYRKNVAYHNWRHAFNTAQCMFAALKAGEIQNKLTDLEILALLIAALSHDLD



WT, K633E)
HRGVNNSYIQRSEHPLAQLYCHSIMEHHHFDQCLMILNSPGNQILSGLSIEEYKTTLKIIKQAI




LATDLALYIKRRGEFFELIRKNQFNLEDPHQKELFLAMLMTACDLSAITKPWPIQQRIAELV




ATEFFDQGDRERKELNIEPTDLMNREKKNKIPSMQVGFIDAICLQLYEALTHVSEDCFPLLD




GCRKNRQKWQALAEQQ






hPDE5 (Amino
EETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFTDLNLVQNFQMKHEVLC
38


acid 535-860 of
RWILSVKKNYRKNVAYHNWRHAFNTAQCMFAALKAGKIQSKLTDLEILALLIAALSHDLD



WT, N636S)
HRGVNNSYIQRSEHPLAQLYCHSIMEHHHFDQCLMILNSPGNQILSGLSIEEYKTTLKIIKQAI




LATDLALYIKRRGEFFELIRKNQFNLEDPHQKELFLAMLMTACDLSAITKPWPIQQRIAELV




ATEFFDQGDRERKELNIEPTDLMNREKKNKIPSMQVGFIDAICLQLYEALTHVSEDCFPLLD




GCRKNRQKWQALAEQQ






hPDE5 (Amino
EETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFTDLNLVQNFQMKHEVLC
39


acid 535-860 of
RWILSVKKNYRKNVAYHNWRHAFNTAQCMFAALKAGKIQNKLTDLEILALLIAALSHDLD



WT, N661S)
HRGVSNSYIQRSEHPLAQLYCHSIMEHHHFDQCLMILNSPGNQILSGLSIEEYKTTLKIIKQAI




LATDLALYIKRRGEFFELIRKNQFNLEDPHQKELFLAMLMTACDLSAITKPWPIQQRIAELV




ATEFFDQGDRERKELNIEPTDLMNREKKNKIPSMQVGFIDAICLQLYEALTHVSEDCFPLLD




GCRKNRQKWQALAEQQ






hPDE5 (Amino
EETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFTDLNLVQNFQMKHEVLC
40


acid 535-860 of
RWILSVKKNYRKNVAYHNWRHAFNTAQCMFAALKAGKIQNKLTDLEILALLIAALSHDLD



WT, Y676D)
HRGVNNSYIQRSEHPLAQLDCHSIMEHHHFDQCLMILNSPGNQILSGESIEEYKTTLKIIKQAI




LATDLALYIKRRGEFFELIRKNQFNLEDPHQKELFLAMLMTACDLSAITKPWPIQQRIAELV




ATEFFDQGDRERKELNIEPTDLMNREKKNKIPSMQVGFIDAICLQLYEALTHVSEDCFPLLD




GCRKNRQKWQALAEQQ






hPDE5 (Amino
EETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFTDLNLVQNFQMKHEVLC
41


acid 535-860 of
RWILSVKKNYRKNVAYHNWRHAFNTAQCMFAALKAGKIQNKLTDLEILALLIAALSHDLD



WT, Y676N)
HRGVNNSYIQRSEHPLAQLNCHSIMEHHHFDQCLMILNSPGNQILSGLSIEEYKTTLKIIKQAI




LATDLALYIKRRGEFFELIRKNQFNLEDPHQKELFLAMLMTACDLSAITKPWPIQQRIAELV




ATEFFDQGDRERKELNIEPTDLMNREKKNKIPSMQVGFIDAICLQLYEALTHVSEDCFPLLD




GCRKNRQKWQALAEQQ






hPDE5 (Amino
EETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFTDLNLVQNFQMKHEVLC
42


acid 535-860 of
RWILSVKKNYRKNVAYHNWRHAFNTAQCMFAALKAGKIQNKLTDLEILALLIAALSHDLD



WT, C677R)
HRGVNNSYIQRSEHPLAQLYRHSIMEHHHFDQCLMILNSPGNQILSGLSIEEYKTTLKIIKQA




ILATDLALYIKRRGEFFELIRKNQFNLEDPHQKELFLAMLMTACDLSAITKPWPIQQRIAELV




ATEFFDQGDRERKELNIEPTDLMNREKKNKIPSMQVGFIDAICLQLYEALTHVSEDCFPLLD




GCRKNRQKWQALAEQQ






hPDE5 (Amino
EETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFTDLNLVQNFQMKHEVLC
43


acid 535-860 of
RWILSVKKNYRKNVAYHNWRHAFNTAQCMFAALKAGKIQNKLTDLEILALLIAALSHDLD



WT, H678R)
HRGVNNSYIQRSEHPLAQLYCRSIMEHHHFDQCLMILNSPGNQILSGESIEEYKTTLKIIKQAI




LATDLALYIKRRGEFFELIRKNQFNLEDPHQKELFLAMLMTACDLSAITKPWPIQQRIAELV




ATEFFDQGDRERKELNIEPTDLMNREKKNKIPSMQVGFIDAICLQLYEALTHVSEDCFPLLD




GCRKNRQKWQALAEQQ






hPDE5 (Amino
EETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFTDLNLVQNFQMKHEVLC
44


acid 535-860 of
RWILSVKKNYRKNVAYHNWRHAFNTAQCMFAALKAGKIQNKLTDLEILALLIAALSHDLD



WT, D687A)
HRGVNNSYIQRSEHPLAQLYCHSIMEHHHFAQCLMILNSPGNQILSGESIEEYKTTLKIIKQAI




LATDLALYIKRRGEFFELIRKNQFNLEDPHQKELFLAMLMTACDLSAITKPWPIQQRIAELV




ATEFFDQGDRERKELNIEPTDLMNREKKNKIPSMQVGFIDAICLQLYEALTHVSEDCFPLLD




GCRKNRQKWQALAEQQ






hPDE5 (Amino
EETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFTDLNLVQNFQMKHEVLC
45


acid 535-860 of
RWILSVKKNYRKNVAYHNWRHAFNTAQCMFAALKAGKIQNKLTDLEILALLIAALSHDLD



WT, T712S)
HRGVNNSYIQRSEHPLAQLYCHSIMEHHHFDQCLMILNSPGNQILSGESIEEYKTSLKIIKQAI




LATDLALYIKRRGEFFELIRKNQFNLEDPHQKELFLAMLMTACDLSAITKPWPIQQRIAELV




ATEFFDQGDRERKELNIEPTDLMNREKKNKIPSMQVGFIDAICLQLYEALTHVSEDCFPLLD




GCRKNRQKWQALAEQQ






hPDE5 (Amino
EETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFTDLNLVQNFQMKHEVLC
46


acid 535-860 of
RWILSVKKNYRKNVAYHNWRHAFNTAQCMFAALKAGKIQNKLTDLEILALLIAALSHDLD



WT, D724N)
HRGVNNSYIQRSEHPLAQLYCHSIMEHHHFDQCLMILNSPGNQILSGLSIEEYKTTLKIIKQAI




LATNLALYIKRRGEFFELIRKNQFNLEDPHQKELFLAMLMTACDLSAITKPWPIQQRIAELV




ATEFFDQGDRERKELNIEPTDLMNREKKNKIPSMQVGFIDAICLQLYEALTHVSEDCFPLLD




GCRKNRQKWQALAEQQ






hPDE5 (Amino
EETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFTDLNLVQNFQMKHEVLC
47


acid 535-860 of
RWILSVKKNYRKNVAYHNWRHAFNTAQCMFAALKAGKIQNKLTDLEILALLIAALSHDLD



WT, D724G)
HRGVNNSYIQRSEHPLAQLYCHSIMEHHHFDQCLMILNSPGNQILSGLSIEEYKTTLKIIKQAI




LATGLALYIKRRGEFFELIRKNQFNLEDPHQKELFLAMLMTACDLSAITKPWPIQQRIAELV




ATEFFDQGDRERKELNIEPTDLMNREKKNKIPSMQVGFIDAICLQLYEALTHVSEDCFPLLD




GCRKNRQKWQALAEQQ






hPDE5 (Amino
EETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFTDLNLVQNFQMKHEVLC
48


acid 535-860 of
RWILSVKKNYRKNVAYHNWRHAFNTAQCMFAALKAGKIQNKLTDLEILALLIAALSHDLD



WT, L738H)
HRGVNNSYIQRSEHPLAQLYCHSIMEHHHFDQCLMILNSPGNQILSGLSIEEYKTTLKIIKQAI




LATDLALYIKRRGEFFEHIRKNQFNLEDPHQKELFLAMLMTACDLSAITKPWPIQQRIAELV




ATEFFDQGDRERKELNIEPTDLMNREKKNKIPSMQVGFIDAICLQLYEALTHVSEDCFPLLD




GCRKNRQKWQALAEQQ






hPDE5 (Amino
EETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFTDLNLVQNFQMKHEVLC
49


acid 535-860 of
RWILSVKKNYRKNVAYHNWRHAFNTAQCMFAALKAGKIQNKLTDLEILALLIAALSHDLD



WT, N742S)
HRGVNNSYIQRSEHPLAQLYCHSIMEHHHFDQCLMILNSPGNQILSGLSIEEYKTTLKIIKQAI




LATDLALYIKRRGEFFELIRKSQFNLEDPHQKELFLAMLMTACDLSAITKPWPIQQRIAELV




ATEFFDQGDRERKELNIEPTDLMNREKKNKIPSMQVGFIDAICLQLYEALTHVSEDCFPLLD




GCRKNRQKWQALAEQQ






hPDE5 (Amino
EETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFTDLNLVQNFQMKHEVLC
50


acid 535-860 of
RWILSVKKNYRKNVAYHNWRHAFNTAQCMFAALKAGKIQNKLTDLEILALLIAALSHDLD



WT, A762S)
HRGVNNSYIQRSEHPLAQLYCHSIMEHHHFDQCLMILNSPGNQILSGLSIEEYKTTLKIIKQAI




LATDLALYIKRRGEFFELIRKNQFNLEDPHQKELFLAMLMTSCDLSAITKPWPIQQRIAELV




ATEFFDQGDRERKELNIEPTDLMNREKKNKIPSMQVGFIDAICLQLYEALTHVSEDCFPLLD




GCRKNRQKWQALAEQQ






hPDE5 (Amino
EETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFTDLNLVQNFQMKHEVLC
51


acid 535-860 of
RWILSVKKNYRKNVAYHNWRHAFNTAQCMFAALKAGKIQNKLTDLEILALLIAALSHDLD



WT, D764N)
HRGVNNSYIQRSEHPLAQLYCHSIMEHHHFDQCLMILNSPGNQILSGLSIEEYKTTLKIIKQAI




LATDLALYIKRRGEFFELIRKNQFNLEDPHQKELFLAMLMTACNLSAITKPWPIQQRIAELV




ATEFFDQGDRERKELNIEPTDLMNREKKNKIPSMQVGFIDAICLQLYEALTHVSEDCFPLLD




GCRKNRQKWQALAEQQ






hPDE5 (Amino
EETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFTDLNLVQNFQMKHEVLC
52


acid 535-860 of
RWILSVKKNYRKNVAYHNWRHAFNTAQCMFAALKAGKIQNKLTDLEILALLIAALSHDLD



WT, D764G)
HRGVNNSYIQRSEHPLAQLYCHSIMEHHHFDQCLMILNSPGNQILSGLSIEEYKTTLKIIKQAI




LATDLALYIKRRGEFFELIRKNQFNLEDPHQKELFLAMLMTACGLSAITKPWPIQQRIAELV




ATEFFDQGDRERKELNIEPTDLMNREKKNKIPSMQVGFIDAICLQLYEALTHVSEDCFPLLD




GCRKNRQKWQALAEQQ






hPDE5 (Amino
EETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFTDLNLVQNFQMKHEVLC
53


acid 535-860 of
RWILSVKKNYRKNVAYHNWRHAFNTAQCMFAALKAGKIQNKLTDLEILALLIAALSHDLD



WT, D764V)
HRGVNNSYIQRSEHPLAQLYCHSIMEHHHFDQCLMILNSPGNQILSGLSIEEYKTTLKIIKQAI




LATDLALYIKRRGEFFELIRKNQFNLEDPHQKELFLAMLMTACVLSAITKPWPIQQRIAELV




ATEFFDQGDRERKELNIEPTDLMNREKKNKIPSMQVGFIDAICLQLYEALTHVSEDCFPLLD




GCRKNRQKWQALAEQQ






hPDE5 (Amino
EETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFTDLNLVQNFQMKHEVLC
54


acid 535-860 of
RWILSVKKNYRKNVAYHNWRHAFNTAQCMFAALKAGKIQNKLTDLEILALLIAALSHDLD



WT, S766F)
HRGVNNSYIQRSEHPLAQLYCHSIMEHHHFDQCLMILNSPGNQILSGLSIEEYKTTLKIIKQAI




LATDLALYIKRRGEFFELIRKNQFNLEDPHQKELFLAMLMTACDLFAITKPWPIQQRIAELV




ATEFFDQGDRERKELNIEPTDLMNREKKNKIPSMQVGFIDAICLQLYEALTHVSEDCFPLLD




GCRKNRQKWQALAEQQ






hPDE5 (Amino
EETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFTDLNLVQNFQMKHEVLC
55


acid 535-860 of
RWILSVKKNYRKNVAYHNWRHAFNTAQCMFAALKAGKIQNKLTDLEILALLIAALSHDLD



WT, K795E)
HRGVNNSYIQRSEHPLAQLYCHSIMEHHHFDQCLMILNSPGNQILSGLSIEEYKTTLKIIKQAI




LATDLALYIKRRGEFFELIRKNQFNLEDPHQKELFLAMLMTACDLSAITKPWPIQQRIAELV




ATEFFDQGDREREELNIEPTDLMNREKKNKIPSMQVGFIDAICLQLYEALTHVSEDCFPLLD




GCRKNRQKWQALAEQQ






hPDE5 (Amino
EETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFTDLNLVQNFQMKHEVLC
56


acid 535-860 of
RWILSVKKNYRKNVAYHNWRHAFNTAQCMFAALKAGKIQNKLTDLEILALLIAALSHDLD



WT, L797F)
HRGVNNSYIQRSEHPLAQLYCHSIMEHHHFDQCLMILNSPGNQILSGLSIEEYKTTLKIIKQAI




LATDLALYIKRRGEFFELIRKNQFNLEDPHQKELFLAMLMTACDLSAITKPWPIQQRIAELV




ATEFFDQGDRERKEFNIEPTDLMNREKKNKIPSMQVGFIDAICLQLYEALTHVSEDCFPLLD




GCRKNRQKWQALAEQQ






hPDE5 (Amino
EETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFTDLNLVQNFQMKHEVLC
57


acid 535-860 of
RWILSVKKNYRKNVAYHNWRHAFNTAQCMFAALKAGKIQNKLTDLEILALLIAALSHDLD



WT, I799T)
HRGVNNSYIQRSEHPLAQLYCHSIMEHHHFDQCLMINSPGNQILSGLSIEEYKTTLKIIKQAI




LATDLALYIKRRGEFFELIRKNQFNLEDPHQKELFLAMLMTACDLSAITKPWPIQQRIAELV




ATEFFDQGDRERKELNTEPTDLMNREKKNKIPSMQVGFIDAICLQLYEALTHVSEDCFPLLD




GCRKNRQKWQALAEQQ






hPDE5 (Amino
EETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFTDLNLVQNFQMKHEVLC
58


acid 535-860 of
RWILSVKKNYRKNVAYHNWRHAFNTAQCMFAALKAGKIQNKLTDLEILALLIAALSHDLD



WT, T802P)
HRGVNNSYIQRSEHPLAQLYCHSIMEHHHFDQCLMINSPGNQILSGLSIEEYKTTLKIIKQAI




LATDLALYIKRRGEFFEHIRKNQFNLEDPHQKELFLAMLMTACDLSAITKPWPIQQRIAELV




ATEFFDQGDRERKELNIEPPDLMNREKKNKIPSMQVGFIDAICLQLYEALTHVSEDCFPLLD




GCRKNRQKWQALAEQQ






hPDE5 (Amino
EETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFTDLNLVQNFQMKHEVLC
59


acid 535-860 of
RWILSVKKNYRKNVAYHNWRHAFNTAQCMFAALKAGKIQNKLTDLEILALLIAALSHDLD



WT, S815C)
HRGVNNSYIQRSEHPLAQLYCHSIMEHHHFDQCLMINSPGNQILSGLSIEEYKTTLKIIKQAI




LATDLALYIKRRGEFFELIRKNQFNLEDPHQKELFLAMLMTACDLSAITKPWPIQQRIAELV




ATEFFDQGDRERKELNIEPTDLMNREKKNKIPCMQVGFIDAICLQLYEALTHVSEDCFPLLD




GCRKNRQKWQALAEQQ






hPDE5 (Amino
EETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFTDLNLVQNFQMKHEVLC
60


acid 535-860 of
RWILSVKKNYRKNVAYHNWRHAFNTAQCMFAALKAGKIQNKLTDLEILALLIAALSHDLD



WT, M816A)
HRGVNNSYIQRSEHPLAQLYCHSIMEHHHFDQCLMINSPGNQILSGLSIEEYKTTLKIIKQAI




LATDLALYIKRRGEFFELIRKNQFNLEDPHQKELFLAMLMTACDLSAITKPWPIQQRIAELV




ATEFFDQGDRERKELNIEPTDLMNREKKNKIPSAQVGFIDAICLQLYEALTHVSEDCFPLLD




GCRKNRQKWQALAEQQ






hPDE5 (Amino
EETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFTDLNLVQNFQMKHEVLC
61


acid 535-860 of
RWILSVKKNYRKNVAYHNWRHAFNTAQCMFAALKAGKIQNKLTDLEILALLIAALSHDLD



WT, I824T)
HRGVNNSYIQRSEHPLAQLYCHSIMEHHHFDQCLMINSPGNQILSGLSIEEYKTTLKIIKQAI




LATDLALYIKRRGEFFELIRKNQFNLEDPHQKELFLAMLMTACDLSAITKPWPIQQRIAELV




ATEFFDQGDRERKELNIEPTDLMNREKKNKIPSMQVGFIDATCLQLYEALTHVSEDCFPLLD




GCRKNRQKWQALAEQQ






hPDE5 (Amino
EETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFTDLNLVQNFQMKHEVLC
62


acid 535-860 of
RWILSVKKNYRKNVAYHNWRHAFNTAQCMFAALKAGKIQNKLTDLEILALLIAALSHDLD



WT, C839S)
HRGVNNSYIQRSEHPLAQLYCHSIMEHHHFDQCLMINSPGNQILSGLSIEEYKTTLKIIKQAI




LATDLALYIKRRGEFFELIRKNQFNLEDPHQKELFLAMLMTACDLSAITKPWPIQQRIAELV




ATEFFDQGDRERKELNIEPTDLMNREKKNKIPSMQVGFIDAICLQLYEALTHVSEDSFPLLD




GCRKNRQKWQALAEQQ






hPDE5 (Amino
EETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFTDLNLVQNFQMKHEVLC
63


acid 535-860 of
RWILSVKKNYRKNVAYHNWRHAFNTAQCMFAALKAGKIQNKLTDLEILALLIAALSHDLD



WT, K852E)
HRGVNNSYIQRSEHPLAQLYCHSIMEHHHFDQCLMINSPGNQILSGLSIEEYKTTLKIIKQAI




LATDLALYIKRRGEFFELIRKNQFNLEDPHQKELFLAMLMTACDLSAITKPWPIQQRIAELV




ATEFFDQGDRERKELNIEPTDLMNREKKNKIPSMQVGFIDAICLQLYEALTHVSEDCFPLLD




GCRKNRQEWQALAEQQ






hPDE5 (Amino
EETRELQSLAAAVVPSAQTLKITDFGFSDFELSDLETALCTIRMFTDLNLVQNFQMKHEVLC
64


acid 535-860 of
RWILSVKKNYRKNVAYHNWRHAFNTAQCMFAALKAGKIQNKLTDLEILALLIAALSHDLD



WT, S560G)
HRGVNNSYIQRSEHPLAQLYCHSIMEHHHFDQCLMINSPGNQILSGLSIEEYKTTLKIIKQAI




LATDLALYIKRRGEFFELIRKNQFNLEDPHQKELFLAMLMTACDLSAITKPWPIQQRIAELV




ATEFFDQGDRERKELNIEPTDLMNREKKNKIPSMQVGFIDAICLQLYEALTHVSEDCFPLLD




GCRKNRQKWQALAEQQ






hPDE5 (Amino
EETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFTDLNLAQNFQMKHEVLC
65


acid 535-860 of
RWILSVKKNYRKNVAYHNWRHAFNTAQCMFAALKAGKIQNKLTDLEILALLIAALSHDLD



WT, V585A)
HRGVNNSYIQRSEHPLAQLYCHSIMEHHHFDQCLMINSPGNQILSGLSIEEYKTTLKIIKQAI




LATDLALYIKRRGEFFELIRKNQFNLEDPHQKELFLAMLMTACDLSAITKPWPIQQRIAELV




ATEFFDQGDRERKELNIEPTDLMNREKKNKIPSMQVGFIDAICLQLYEALTHVSEDCFPLLD




GCRKNRQKWQALAEQQ






hPDE5 (Amino
EETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFTDLNLVQNFQMKHEVLC
66


acid 535-860 of
RWVLSVKKNYRKNVAYHNWRHAFNTAQCMFAALKAGKIQNKLTDLEILALLIAALSHDL



WT, I599V)
DHRGVNNSYIQRSEHPLAQLYCHSIMEHHHFDQCLMINSPGNQILSGLSIEEYKTTLKIIKQ




AILATDLALYIKRRGEFFELIRKNQFNLEDPHQKELFLAMLMTACDLSAITKPWPIQQRIAEL




VATEFFDQGDRERKELNIEPTDLMNREKKNKIPSMQVGFIDAICLQLYEALTHVSEDCFPLL




DGCRKNRQKWQALAEQQ






hPDE5 (Amino
EETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFTDLNLVQNFQMKHEVLC
67


acid 535-860 of
RWILSVKKNYRKNVAYHNWRHAFNTAQCMFAALKAGKIQNKLTDLEILALLVAALSHDL



WT, I648V)
DHRGVNNSYIQRSEHPLAQLYCHSIMEHHHEDQCLMILNSPGNQILSGLSIEEYKTTLKIIKQ




AILATDLALYIKRRGEFFELIRKNQFNLEDPHQKELFLAMLMTACDLSAITKPWPIQQRIAEL




VATEFFDQGDRERKELNIEPTDLMNREKKNKIPSMQVGFIDAICLQLYEALTHVSEDCFPLL




DGCRKNRQKWQALAEQQ






hPDE5 (Amino
EETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFTDLNLVQNFQMKHEVLC
68


acid 535-860 of
RWILSVKKNYRKNVAYHNWRHAFNTAQCMFAALKAGKIQNKLTDLEILALLIAALSHDLD



WT, S663P)
HRGVNNPYIQRSEHPLAQLYCHSIMEHHHFDQCLMILNSPGNQILSGLSIEEYKTTLKIIKQA




ILATDLALYIKRRGEFFELIRKNQFNLEDPHQKELFLAMLMTACDLSAITKPWPIQQRIAELV




ATEFFDQGDRERKELNIEPTDLMNREKKNKIPSMQVGFIDAICLQLYEALTHVSEDCFPLLD




GCRKNRQKWQALAEQQ






hPDE5 (Amino
EETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFTDLNLVQNFQMKHEVLC
69


acid 535-860 of
RWILSVKKNYRKNVAYHNWRHAFNTAQCMFAALKAGKIQNKLTDLEILALLIAALSHDLD



WT, L675P)
HRGVNNSYIQRSEHPLAQPYCHSIMEHHHFDQCLMILNSPGNQILSGLSIEEYKTTLKIIKQAI




LATDLALYIKRRGEFFELIRKNQFNLEDPHQKELFLAMLMTACDLSAITKPWPIQQRIAELV




ATEFFDQGDRERKELNIEPTDLMNREKKNKIPSMQVGFIDAICLQLYEALTHVSEDCFPLLD




GCRKNRQKWQALAEQQ






hPDE5 (Amino
EETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFTDLNLVQNFQMKHEVLC
70


acid 535-860 of
RWILSVKKNYRKNVAYHNWRHAFNTAQCMFAALKAGKIQNKLTDLEILALLIAALSHDLD



WT, T711A)
HRGVNNSYIQRSEHPLAQLYCHSIMEHHHFDQCLMILNSPGNQILSGLSIEEYKATLKIIKQA




ILATDLALYIKRRGEFFELIRKNQFNLEDPHQKELFLAMLMTACDLSAITKPWPIQQRIAELV




ATEFFDQGDRERKELNIEPTDLMNREKKNKIPSMQVGFIDAICLQLYEALTHVSEDCFPLLD




GCRKNRQKWQALAEQQ






hPDE5 (Amino
EETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFTDLNLVQNFQMKHEVLC
71


acid 535-860 of
RWILSVKKNYRKNVAYHNWRHAFNTAQCMFAALKAGKIQNKLTDLEILALLIAALSHDLD



WT, F744L)
HRGVNNSYIQRSEHPLAQLYCHSIMEHHHFDQCLMILNSPGNQILSGLSIEEYKTTLKIIKQAI




LATDLALYIKRRGEFFELIRKNQLNLEDPHQKELFLAMLMTACDLSAITKPWPIQQRIAELV




ATEFFDQGDRERKELNIEPTDLMNREKKNKIPSMQVGFIDAICLQLYEALTHVSEDCFPLLD




GCRKNRQKWQALAEQQ






hPDE5 (Amino
EETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFTDLNLVQNFQMKHEVLC
72


acid 535-860 of
RWILSVKKNYRKNVAYHNWRHAFNTAQCMFAALKAGKIQNKLTDLEILALLIAALSHDLD



WT, L746S)
HRGVNNSYIQRSEHPLAQLYCHSIMEHHHFDQCLMILNSPGNQILSGLSIEEYKTTLKIIKQAI




LATDLALYIKRRGEFFELIRKNQFNSEDPHQKELFLAMLMTACDLSAITKPWPIQQRIAELV




ATEFFDQGDRERKELNIEPTDLMNREKKNKIPSMQVGFIDAICLQLYEALTHVSEDCFPLLD




GCRKNRQKWQALAEQQ






hPDE5 (Amino
EETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFTDLNLVQNFQMKHEVLC
73


acid 535-860 of
RWILSVKKNYRKNVAYHNWRHAFNTAQCMFAALKAGKIQNKLTDLEILALLIAALSHDLD



WT, F755L)
HRGVNNSYIQRSEHPLAQLYCHSIMEHHHFDQCLMILNSPGNQILSGLSIEEYKTTLKIIKQAI




LATDLALYIKRRGEFFELIRKNQFNLEDPHQKELLLAMLMTACDLSAITKPWPIQQRIAELV




ATEFFDQGDRERKELNIEPTDLMNREKKNKIPSMQVGFIDAICLQLYEALTHVSEDCFPLLD




GCRKNRQKWQALAEQQ






hPDE5 (Amino
EETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFTDLNLVQNFQMKHEVLC
74


acid 535-860 of
RWILSVKKNYRKNVAYHNWRHAFNTAQCMFAALKAGKIQNKLTDLEILALLIAALSHDLD



WT, L804P)
HRGVNNSYIQRSEHPLAQLYCHSIMEHHHEDQCLMILNSPGNQILSGESIEEYKTTLKIIKQAI




LATDLALYIKRRGEFFELIRKNQFNLEDPHQKELFLAMLMTACDLSAITKPWPIQQRIAELV




ATEFFDQGDRERKELNIEPTDPMNREKKNKIPSMQVGFIDAICLQLYEALTHVSEDCFPLLD




GCRKNRQKWQALAEQQ






hPDE5 (Amino
EETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFTDLNLVQNFQMKHEVLC
75


acid 535-860 of
RWILSVKKNYRKNVAYHNWRHAFNTAQCMFAALKAGKIQNKLTDLEILALLIAALSHDLD



WT, M816T)
HRGVNNSYIQRSEHPLAQLYCHSIMEHHHFDQCLMILNSPGNQILSGLSIEEYKTTLKIIKQAI




LATDLALYIKRRGEFFELIRKNQFNLEDPHQKELFLAMLMTACDLSAITKPWPIQQRIAELV




ATEFFDQGDRERKELNIEPTDLMNREKKNKIPSTQVGFIDAICLQLYEALTHVSEDCFPLLD




GCRKNRQKWQALAEQQ






hPDE5 (Amino
EETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFTDLNLVQNFQMKHEVLC
76


acid 535-860 of
RWILSVKKNYRKNVAYHNWRHAFNTAQCMFAALKAGKIQNKLTDLEILALLIAALSHDLD



WT, F840S)
HRGVNNSYIQRSEHPLAQLYCHSIMEHHHEDQCLMILNSPGNQILSGLSIEEYKTTLKIIKQAI




LATDLALYIKRRGEFFELIRKNQFNLEDPHQKELFLAMLMTACDLSAITKPWPIQQRIAELV




ATEFFDQGDRERKELNIEPTDLMNREKKNKIPSMQVGFIDAICLQLYEALTHVSEDCSPLLD




GCRKNRQKWQALAEQQ









In some embodiments, DDs derived from hPDE5 may include the combination of at least one, two, three, four or five mutations listed in Table 1 or Table 2 with at least 0, 1, 2, 3, 4, 5 or more mutations listed in Table 3.


In some embodiments, the DDs may be derived from hPDE5 (SEQ ID NO: 3), by mutating one or more amino acids residues between positions 530-550, 550-570, 570-590, 590-610, 620-640, 640-660, 660-680, 680-700, 710-730, 730-750, 750-770, 770-790, 790-810-830, 830-850, 850-860 of the catalytic domain of human PDE5 (SEQ ID NO: 1). In some embodiments, the mutation may be a conserved (with similar physicochemical properties as the amino acid at the mutation site), a semi conserved (e.g., negatively to positively charge amino acid) or a non-conserved (amino acid with different physicochemical properties than the amino acid at the mutation site). In some embodiments, the amino acid lysine may be mutated to glutamic acid or arginine; the amino acid phenylalanine may be mutated to leucine; the amino acid leucine may be mutated to phenylalanine; or the amino acid asparagine may be mutated to serine. Regions or portions or domains of wild type proteins may be utilized as SREs/DDs in whole or in part. They may be combined or rearranged to create new peptides, proteins, regions or domains of which any may be used as SREs/DDs or the starting point for the design of further SREs and/or DDs.


In some embodiments, DDs may be derived from hPDE5 by mutating amino acid residues conserved within all members of the PDE family. Exemplary conserved residues include but are not limited to, E682, H613, H617, H653, D654, and H657 residues of full length human PDE5 (SEQ ID NO: 1) and are taught in Sung et al. Nature (2003) 425, 98-102 (the contents of which are incorporated herein by reference in their entirety). In other embodiments, residues that are critical for binding to metals such as zinc and magnesium may be mutated to identify novel hPDE5 DDs. In some embodiments, hPDE5 derived DDs may be identified from a library of mutants of hPDE5 catalytic domain generated using a combination of error-prone PCR and nucleotide analog mutagenesis through random mutagenesis. Any of the mutations identified by site directed mutagenesis may be combined with the mutations identified by random mutagenesis. In some embodiments, DDs described herein may be derived by mutating the Y612 amino acid of hPDE5 (SEQ ID NO:1). In some embodiments, the mutations to the Y612 amino acid may be combined with any of the mutations described herein. Independent co-crystals of hPDE5 with vardenafil and with sildenafil, have demonstrated that one of the rings of the both ligand, interacts with Y612 of hPDE5, an amino acid located within the catalytic site of hPDE5. Interactions occur via a hydrogen bond with a water molecule and via hydrophobic bonds. Y612F mutation, which ablates the hydrogen bonding potential, increases the inhibition of hPDE5 activity by both ligands. The Y612A mutation, which leads to the ablation of both hydrogen bonding and hydrophobic bonding potential has been shown to weaken the inhibition of hPDE5 catalytic activity by vardenafil and sildenafil to a lesser extent. These studies suggest that hydrophobic bonding involving Y612 is stronger for vardenafil than for sildenafil (Corbin et al. 2006, International Journal of Impotence Research 18, 251-257; the contents of which are incorporated by reference in their entirety).


The destabilization domains described herein may also include amino acid and nucleotide substitutions that do not affect stability, including conservative, non-conservative substitutions and or polymorphisms.


In some embodiments, hPDE5 DDs described herein may also be fragments of the above destabilizing domains, including fragments containing variant amino acid sequences. Preferred fragments are unstable in the absence of the stimulus and stabilized upon addition of the stimulus. Preferred fragments retain the ability to interact with the stimulus with similar efficiency as the DDs described herein.


In one embodiment, hPDE5 mutants are fused to AcGFP through a linker sequence at either the N-terminal or the C-terminal end of the fusion constructs. The AcGFP of Uniprot ID BAE93141 (SEQ ID NO: 363), may be used as the GFP template and is referred to as the wildtype or “WT” version of AcGFP. In some embodiments, the hPDE5 mutants described herein may also be operably linked to a luciferase (luc) gene, such as the firefly luciferase (Flue) or Renilla luciferase (Rluc). The position of the mutations in the Fluc protein sequence described herein are based on the comparison of the SEQ ID NO: 223 with the wildtype luciferase sequence of Photinus pyralis (Uniprot ID: P08659.1) or “Fluc WT”, comprising the amino acid sequence of SEQ ID NO: 364. The destabilizing and ligand dependent stabilization properties of the fusion proteins may be evaluated by methods such as western blotting, and FACS. hPDE5 mutants that are fused to the N terminus of GFP are provided in Table 4. Constructs may be cloned into any vector known in the art, such as, but not limited to pLVX.IRES. Puro vectors. OT-001232 was placed under the transcriptional control of the EF1a promoter, while the other constructs described in Table 4 were placed under the transcriptional control of CMV promoter. In Table 4, an asterisk indicates the translation of the stop codon.









TABLE 4







hPDE5-AcGFP constructs












Amino
Nucleic


Construct ID/

acid
Acid


Description
Amino Acid Sequence
SEQ ID NO:
SEQ ID NO:













Linker
GGSGGGSGG
77
92





Linker
GGSGGG
78
93; 300





Linker
SG

AGTGGT





AcGFP (Amino
VSKGAELFTGIVPILIELNGDVNGHKFSVSGEGEGDATYGKLTLKFICTTGK
79
372


acid 2-239 of WT)
LPVPWPTLVTTLSYGVQCFSRYPDHMKQHDFFKSAMPEGYIQERTIFFEDD





GNYKSRAEVKFEGDTLVNRIELTGTDFKEDGNILGNKMEYNYNAHNVYIM





TDKAKNGIKVNFKIRHNIEDGSVQLADHYQQNTPIGDGPVLLPDNHYLSTQ





SALSKDPNEKRDHMIYFGFVTAAAITHGMDELYK







AcGFP (Amino
MVSKGAELFTGIVPILIELNGDVNGHKFSVSGEGEGDATYGKLTLKFICTTG
365
94, 373


acid 1-239 of WT)
KLPVPWPTLVTTLSYGVQCFSRYPDHMKQHDFFKSAMPEGYIQERTIFFED





DGNYKSRAEVKFEGDTLVNRIELTGTDFKEDGNILGNKMEYNYNAHNVYI





MTDKAKNGIKVNFKIRHNIEDGSVQLADHYQQNTPIGDGPVLLPDNHYLST





QSALSKDPNEKRDHMIYFGFVTAAAITHGMDELYK







Fluc (Amino acid 2-
EDAKNIKKGPAPFYPLEDGTAGEQLHKAMKRYALVPGTIAFTDAHIEVDIT
366
374


549 of WT, N50D,
YAEYFEMSVRLAEAMKRYGLNTNHRIVVCSENSLQFFMPVLGALFIGVAV




N119G, S548I,
APANDIYNERELLNSMGISQPTVVFVSKKGLQKILNVQKKLPIIQKIIIMDSK




K549A, L550V)
TDYQGFQSMYTFVTSHLPPGFNEYDFVPESFDRDKTIALIMNSSGSTGLPKG





VALPHRTACVRFSHARDPIFGNQIIPDTAILSVVPFHHGFGMFTTLGYLICGF





RVVLMYRFEEELFLRSLQDYKIQSALLVPTLFSFFAKSTLIDKYDLSNLHEIA





SGGAPLSKEVGEAVAKRFHLPGIRQGYGLTETTSAILITPEGDDKPGAVGK





VVPFFEAKVVDLDTGKTLGVNQRGELCVRGPMIMSGYVNNPEATNALIDK





DGWLHSGDIAYWDEDEHFFIVDRLKSLIKYKGYQVAPAELESILLQHPNIFD





AGVAGLPDDDAGELPAAVVVLEHGKTMTEKEIVDYVASQVTTAKKLRGG





VVFVDEVPKGLTGKLDARKIREILIKAKKGGKIAV







OT-001075
MEETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFTDLNLV
80
95


(Methionine;
QNFQMKHEVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMFAALKAGK




hPDE5 (Amino acid
IQNKLTDLEILALLIAALSHDLDHRGVNNSYIQRSEHPLAQLYCHSIMEHHH




535-860 of WT);
FDQCLMILNSPGNQILSGLSIEEYKIILKIIKQAILATDLALYIKRRGEFFELI




linker
RKNQFNLEDPHQKELFLAMLMTACDLSAITKPWPIQQRIAELVATEFFDQG




(GGSGGGSGG
DRERKELNIEPTDLMNREKKNKIPSMQVGFIDAICLQLYEALTHVSEDCFPL




(SEQ ID NO: 77));
LDGCRKNRQKWQALAEQQGGSGGGSGGVSKGAELFTGIVPILIELNGDVN




AcGFP (Amino
GHKFSVSGEGEGDATYGKLTLKFICTTGKLPVPWPTLVTTLSYGVQCFSRY




acid 2-239 of WT);
PDHMKQHDFFKSAMPEGYIQERTIFFEDDGNYKSRAEVKFEGDTLVNRIEL




stop)
TGTDFKEDGNILGNKMEYNYNAHNVYIMTDKAKNGIKVNFKIRHNIEDGS





VQLADHYQQNTPIGDGPVLLPDNHYLSTQSALSKDPNEKRDHMIYFGFVT





AAAITHGMDELYK*







OT-001078
MEETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFTDLNLV
81
96


(Methionine;
QNFQMKHEVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMFAALKAGK




hPDE5 (Amino acid
IQNKLTDLEILALLIAALSHDLDHRGVNNSYIQRSEHPLAQLYCHSIMEHHH




535-860 of WT,
FDQCLMILNSPGNQILSGLSIEEYKTTLKIIKQAILATDLALYIKRRGEFFELI




W853F); linker
RKNQFNLEDPHQKELFLAMLMTACDLSAITKPWPIQQRIAELVATEFFDQG




(GGSGGGSGG
DRERKELNIEPTDLMNREKKNKIPSMQVGFIDAICLQLYEALTHVSEDCFPL




(SEQ ID NO: 77));
LDGCRKNRQKFQALAEQQGGSGGGSGGVSKGAELFTGIVPILIELNGDVNG




AcGFP (Amino
HKFSVSGEGEGDATYGKLTLKFICTTGKLPVPWPTLVTTLSYGVQCFSRYP




acid 2-239 of WT);
DHMKQHDFFKSAMPEGYIQERTIFFEDDGNYKSRAEVKFEGDTLVNRIELT




stop)
GTDFKEDGNILGNKMEYNYNAHNVYIMTDKAKNGIKVNFKIRHNIEDGSV





QLADHYQQNTPIGDGPVLLPDNHYLSTQSALSKDPNEKRDHMIYFGFVTA





AAITHGMDELYK*







OT-001080
MEETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFTDLNLV
82
97


(Methionine;
QNFQMKHEVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMFAALKAGK




hPDE5 (Amino acid
IQNKLTDLEILALLIAALSHDLDHRGVNNSYIQRSEHPLAQLYCHSIMEHHH




535-860 of WT,
FDQCLMILNSPGNQILSGLSIEEYKTTLKIIKQAILATDLALYIKRRGEFFELI




I821A); linker
RKNQFNLEDPHQKELFLAMLMTACDLSAITKPWPIQQRIAELVATEFFDQG




(GGSGGGSGG
DRERKELNIEPTDLMNREKKNKIPSMQVGFADAICLQLYEALTHVSEDCFP




(SEQ ID NO: 77));
LLDGCRKNRQKWQALAEQQGGSGGGSGGVSKGAELFTGIVPILIELNGDV




AcGFP (Amino
NGHKFSVSGEGEGDATYGKLTLKFICTTGKLPVPWPTLVTTLSYGVQCFSR




acid 2-239 of WT);
YPDHMKQHDFFKSAMPEGYIQERTIFFEDDGNYKSRAEVKFEGDTLVNRIE




stop)
LTGTDFKEDGNILGNKMEYNYNAHNVYIMTDKAKNGIKVNFKIRHNIEDG





SVQLADHYQQNTPIGDGPVLLPDNHYLSTQSALSKDPNEKRDHMIYFGFVT





AAAITHGMDELYK*







OT-001081
MEETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFTDLNLV
83
98


(Methionine;
QNFQMKHEVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMFAALKAGK




hPDE5 (Amino acid
IQNKLTDLEILALLIAALSHDLDHRGVNNSYIQRSEHPLAQLYCHSIMEHHH




535-860 of WT,
FDQCLMILNSPGNQILSGLSIEEYKTTLKIIKQAILATDLALYIKRRGEFFELI




Y829A); linker
RKNQFNLEDPHQKELFLAMLMTACDLSAITKPWPIQQRIAELVATEFFDQG




(GGSGGGSGG
DRERKELNIEPTDLMNREKKNKIPSMQVGFIDAICLQLYEALTHVSEDCFPL




(SEQ ID NO: 77));
LDGCRKNRQKWQALAEQQGGSGGGSGGVSKGAELFTGIVPILIELNGDVN




AcGFP (Amino
GHKFSVSGEGEGDATYGKLTLKFICTTGKLPVPWPTLVTTLSYGVQCFSRY




acid 2-239 of WT);
PDHMKQHDFFKSAMPEGYIQERTIFFEDDGNYKSRAEVKFEGDTLVNRIEL




stop)
TGTDFKEDGNILGNKMEYNYNAHNVYIMTDKAKNGIKVNFKIRHNIEDGS





VQLADHYQQNTPIGDGPVLLPDNHYLSTQSALSKDPNEKRDHMIYFGFVT





AAAITHGMDELYK*







OT-001074
MEETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFTDLNLV
84
99


(Methionine;
QNFQMKHEVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMFAALKAGK




hPDE5 (Amino acid
IQNKLTDLEILALLIAALSHDLDHRGVNNSYIQRSEHPLAQLYCHSIMEHHH




535-860 of WT,
FDQCLMILNSPGNQILSGLSIEEYKTTLKIIKQAILATDLALYIKRRGEFFELI




F787A); linker
RKNQFNLEDPHQKELFLAMLMTACDLSAITKPWPIQQRIAELVATEFADQG




(GGSGGGSGG
DRERKELNIEPTDLMNREKKNKIPSMQVGFIDAICLQLYEALTHVSEDCFPL




(SEQ ID NO: 77));
LDGCRKNRQKWQALAEQQGGSGGGSGGVSKGAELFTGIVPILIELNGDVN




AcGFP (Amino
GHKFSVSGEGEGDATYGKLTLKFICTTGKLPVPWPTLVTTLSYGVQCFSRY




acid 2-239 of WT);
PDHMKQHDFFKSAMPEGYIQERTIFFEDDGNYKSRAEVKFEGDTLVNRIEL




stop)
TGTDFKEDGNILGNKMEYNYNAHNVYIMTDKAKNGIKVNFKIRHNIEDGS





VQLADHYQQNTPIGDGPVLLPDNHYLSTQSALSKDPNEKRDHMIYFGFVT





AAAITHGMDELYK*







OT-001076
MEETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFTDLNLV
85
100


(Methionine;
QNFQMKHEVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMFAALKAGK




hPDE5 (Amino acid
IQNKLTDLEILALLIAALSHDLDHRGVNNSYIQRSEHPLAQLYCHSIMEHHH




535-860 of WT,
FDQCLMILNSPGNQILSGLSIEEYKTTLKIIKQAILATDLALYIKRRGEFAELI




F736A); linker
RKNQFNLEDPHQKELFLAMLMTACDLSAITKPWPIQQRIAELVATEFFDQG




(GGSGGGSGG
DRERKELNIEPTDLMNREKKNKIPSMQVGFIDAICLQLYEALTHVSEDCFPL




(SEQ ID NO: 77));
LDGCRKNRQKWQALAEQQGGSGGGSGGVSKGAELFTGIVPILIELNGDVN




AcGFP (Amino
GHKFSVSGEGEGDATYGKLTLKFICTTGKLPVPWPTLVTTLSYGVQCFSRY




acid 2-239 of WT);
PDHMKQHDFFKSAMPEGYIQERTIFFEDDGNYKSRAEVKFEGDTLVNRIEL




stop)
TGTDFKEDGNILGNKMEYNYNAHNVYIMTDKAKNGIKVNFKIRHNIEDGS





VQLADHYQQNTPIGDGPVLLPDNHYLSTQSALSKDPNEKRDHMIYFGFVT





AAAITHGMDELYK*







OT-001082
MEETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFTDLNLV
86
101


(Methionine;
QNFQMKHEVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMFAALKAGK




hPDE5 (Amino acid
IQNKLTDLEILALLIAALSHDLLHRGVNNSYIQRSEHPLAQLYCHSIMEHHH




535-860 of WT,
FDQCLMILNSPGNQILSGLSIEEYKTTLKIIKQAILATDLALYIKRRGEFFELI




D656L); linker
RKNQFNLEDPHQKELFLAMLMTACDLSAITKPWPIQQRIAELVATEFFDQG




(GGSGGGSGG
DRERKELNIEPTDLMNREKKNKIPSMQVGFIDAICLQLYEALTHVSEDCFPL




(SEQ ID NO: 77));
LDGCRKNRQKWQALAEQQGGSGGGSGGVSKGAELFTGIVPILIELNGDVN




AcGFP (Amino
GHKFSVSGEGEGDATYGKLTLKFICTTGKLPVPWPTLVTTLSYGVQCFSRY




acid 2-239 of WT);
PDHMKQHDFFKSAMPEGYIQERTIFFEDDGNYKSRAEVKFEGDTLVNRIEL




stop)
TGTDFKEDGNILGNKMEYNYNAHNVYIMTDKAKNGIKVNFKIRHNIEDGS





VQLADHYQQNTPIGDGPVLLPDNHYLSTQSALSKDPNEKRDHMIYFGFVT





AAAITHGMDELYK*







OT-001083
MEETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFTDLNLV
87
102


(Methionine;
QNFQMKHEVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMFAALKAGK




hPDE5 (Amino acid
IQNKLTDLEILALLIAALSHDLDHRGVNNSYIQRSEHPLAQLYCHSIMEHHH




535-860 of WT,
FDQCLMILNSPGNQILSGLSIEEYKTTLKIIKQAILATDLALLIKRRGEFFELIR




Y728L); linker
KNQFNLEDPHQKELFLAMLMTACDLSAITKPWPIQQRIAELVATEFFDQGD




(GGSGGGSGG
RERKELNIEPTDLMNREKKNKIPSMQVGFIDAICLQLYEALTHVSEDCFPLL




(SEQ ID NO: 77));
DGCRKNRQKWQALAEQQGGSGGGSGGVSKGAELFTGIVPILIELNGDVNG




AcGFP (Amino
HKESVSGEGEGDATYGKLTLKFICTTGKLPVPWPTLVTTLSYGVQCFSRYP




acid 2-239 of WT);
DHMKQHDFFKSAMPEGYIQERTIFFEDDGNYKSRAEVKFEGDTLVNRIELT




stop)
GTDEKEDGNILGNKMEYNYNAHNVYIMTDKAKNGIKVNFKIRHNIEDGSV





QLADHYQQNTPIGDGPVLLPDNHYLSTQSALSKDPNEKRDHMIYFGFVTA





AAITHGMDELYK*







OT-001084
MEETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFTDLNLV
88
103


(Methionine;
QNFQMKHEVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMFAALKAGK




hPDE5 (Amino acid
IQNKLTDLEILALLIAALSHDLDHRGVNNSYIQRSEHPLAQLYCHSIMEHHH




535-860 of WT,
FDQCLMILNSPGNQILSGLSIEEYKTTLKIIKQAILATDLALYIKRLGEFFELIR




R732L); linker
KNQFNLEDPHQKELFLAMLMTACDLSAITKPWPIQQRIAELVATEFFDQGD




(GGSGGGSGG
RERKELNIEPTDLMNREKKNKIPSMQVGFIDAICLQLYEALTHVSEDCFPLL




(SEQ ID NO: 77));
DGCRKNRQKWQALAEQQGGSGGGSGGVSKGAELFTGIVPILIELNGDVNG




AcGFP (Amino
HKESVSGEGEGDATYGKLTLKFICTTGKLPVPWPTLVTTLSYGVQCFSRYP




acid 2-239 of WT);
DHMKQHDFFKSAMPEGYIQERTIFFEDDGNYKSRAEVKFEGDTLVNRIELT




stop)
GTDEKEDGNILGNKMEYNYNAHNVYIMTDKAKNGIKVNFKIRHNIEDGSV





QLADHYQQNTPIGDGPVLLPDNHYLSTQSALSKDPNEKRDHMIYFGFVTA





AAITHGMDELYK*







OT-001070
MEETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFTDLNLV
89
104


(Methionine;
QNFQMKHEVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCIFAALKAGKI




hPDE5 (Amino acid
QNKLTDLEILALLIAALSHDLDHRGVNNSYIQRSEHPLAQLYCHSIMEHHHF




535-860 of WT,
DQCLMILNSPGNQILSGLSIEEYKTTLKIIKQAILATDLALYIKRRGEFFELIR




M625I); linker
KNQFNLEDPHQKELFLAMLMTACDLSAITKPWPIQQRIAELVATEFFDQGD




(GGSGGGSGG
RERKELNIEPTDLMNREKKNKIPSMQVGFIDAICLQLYEALTHVSEDCFPLL




(SEQ ID NO: 77));
DGCRKNRQKWQALAEQQGGSGGGSGGVSKGAELFTGIVPILIELNGDVNG




AcGFP (Amino
IIKESVSGEGEGDATYGKLTLKFICTTGKLPVPWPTLVTTLSYGVQCFSRYP




acid 2-239 of WT);
DHMKQHDFFKSAMPEGYIQERTIFFEDDGNYKSRAEVKFEGDTLVNRIELT




stop)
GTDFIKEDGNILGNIKMEYNYNAHNVYIMTDKAKNGIKVNFKIRHNIEDGSV





QLADHYQQNTPIGDGPVLLPDNHYLSTQSALSIKDPNEKRDHMIYFGFVTA





AAITHGMDELYK*







OT-001224
MEETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFTDLNLV
90
105


(Methionine;
QNFQMIKHEVLCRWILSVIKIKNYRIKNVAYHNWRHAFNTAQCMFAALKAGK




hPDE5 (Amino acid
IQNKLTDLEILALLIAALSHDLDHRGVNNSYIQRSEHPLAQLYCHSIMEHHH




535-860 of WT);
FDQCLMILNSPGNQILSGLSIEEYKTTLKIIKQAILATDLALYIKRRGEFFELI




linker (GGSGGG
RKNQFNLEDPHQKELFLAMLMTACDLSAITIKPWPIQQRIAELVATEFFDQG




(SEQ ID NO: 78));
DRERKELNIEPTDLMNREKKNKIPSMQVGFIDAICLQLYEALTHVSEDCFPL




AcGFP (Amino
LDGCRIKNRQKWQALAEQQGGSGGGVSKGAELFTGIVPILIELNGDVNGHK




acid 2-239 of WT);
FSVSGEGEGDATYGKLTLKFICTTGKLPVPWPTLVTTLSYGVQCFSRYPDH




stop)
MKQHDFFKSAMPEGYIQERTIFFEDDGNYKSRAEVKFEGDTLVNRIELTGT





DFIKEDGNILGNKMEYNYNAHNVYIMTDKAKNGIKVNFKIRHNIEDGSVQL





ADHYQQNTPIGDGPVLLPDNHYLSTQSALSIKDPNEKRDHMIYFGFVTAAAI





THGMDELYK*







OT-001232
MVSKGAELFTGIVPILIELNGDVNGIIKESVSGEGEGDATYGKLTLKFICTTG
91
106


(AcGFP (Amino
KLPVPWPTLVTTLSYGVQCFSRYPDHMKQHDFFKSAMPEGYIQERTIFFED




acid 1-239 of WT);
DGNYKSRAEVIKFEGDTLVNRIELTGTDFIKEDGNILGNIKMEYNYNAHNVYI




linker (SG); hPDE5
MTDKAKNGIKVNFKIRHNIEDGSVQLADHYQQNTPIGDGPVLLPDNHYLST




(Amino acid 535-
QSALSIKDPNEKRDHMIYFGFVTAAAITHGMDELYKSGEETRELQSLAAAV




860 of WT); stop)
VPSAQTLKITDFSFSDFELSDLETALCTIRMFTDLNLVQNFQMIKHEVLCRWI





LSVKKNYRKNVAYHNWRHAFNTAQCMFAALKAGKIQNKLTDLEILALLIA





ALSHDLDHRGVNNSYIQRSEHPLAQLYCHSIMEHHHFDQCLMILNSPGNQI





LSGLSIEEYKTTLKIIKQAILATDLALYIKRRGEFFELIRKNQFNLEDPHQKEL





FLAMLMTACDLSAITKPWPIQQRIAELVATEFFDQGDRERKELNIEPTDLM





NREKKNKIPSMQVGFIDAICLQLYEALTHVSEDCFPLLDGCRKNRQKWQA





LAEQQ*







OT-001227
MEETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFTDLNLV
367
375


(Methionine;
QNFQMIKHEVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMFAALKAGK




hPDE5 (Amino acid
IQNKLTDLEILALLIAALSHDLDHRGVNNSYIQRSEHPLAQLYCHSIMEHHH




535-860 of WT);
FDQCLMILNSPGNQILSGLSIEEYKTTLKIIKQAILATDLALYIKRRGEFFELI




linker (SG); Fluc
RKNQFNLEDPHQKELFLAMLMTACDLSAITKPWPIQQRIAELVATEFFDQG




(N50D, N119G,
DRERKELNIEPTDLMNREKKNKIPSMQVGFIDAICLQLYEALTHVSEDCFPL




S548I, K549A,
LDGCRKNRQKWQALAEQQSGEDAKNIKKGPAPFYPLEDGTAGEQLHKAM




L550V); stop)
KRYALVPGTIAFTDAHIEVDITYAEYFEMSVRLAEAMKRYGLNTNHRIVVC





SENSLQFFMPVLGALFIGVAVAPANDIYNERELLNSMGISQPTVVFVSKKGL





QKILNVQKKLPIIQKIIIMDSKTDYQGFQSMYTFVTSHLPPGFNEYDFVPESF





DRDKTIALIMNSSGSTGLPKGVALPHRTACVRFSHARDPIFGNQIIPDTAILS





VVPFHHGFGMFTTLGYLICGFRVVLMYRFEEELFLRSLQDYKIQSALLVPTL





FSFFAKSTLIDKYDLSNLHEIASGGAPLSKEVGEAVAKRFHLPGIRQGYGLT





ETTSAILITPEGDDKPGAVGKVVPFFEAKVVDLDTGKTLGVNQRGELCVRG





PMIMSGYVNNPEATNALIDKDGWLHSGDIAYWDEDEHFFIVDRLKSLIKYK





GYQVAPAELESILLQHPNIFDAGVAGLPDDDAGELPAAVVVLEHGKTMTE





KEIVDYVASQVTTAKKLRGGVVFVDEVPKGLTGKLDARKIREILIKAKKGG





KIAV*







OT-001228
MEETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFTDLNLV
368
376


(Methionine;
QNFQMKHEVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMFMLKAGK




hPDE5 (Amino acid
IQNKLTDLEILALLIAALSHDLDHRGVNNSYIQRSEHPLAQLYCHSIMEHHH




535-860 of WT,
FDQCLMILNSPGNQILSGLSIEEYKTTLKIIKQAILATDLALYIKRRGEFAELI




F736A); linker
RKNQFNLEDPHQKELFLAMLMTACDLSAITKPWPIQQRIAELVATEFFDQG




(SG); Fluc (N50D,
DRERKELNIEPTDLMNREKKNKIPSMQVGFIDAICLQLYEALTHVSEDCFPL




N119G, S548I,
LDGCRKNRQKWQALAEQQSGEDAKNIKKGPAPFYPLEDGTAGEQLHKAM




K549A, L550V);
KRYALVTGTIAFTDAHIEVDITYAEYFEMSVRLAEAMKRYGLNTNHRIVVC




stop)
SENSLQFFMPVLGALFIGVAVAPANDIYNERELLNSMGISQPTVVFVSKKGL





QKILNVQKKLPIIQKIIIMDSKTDYQGFQSMYTFVTSHLPPGFNEYDFVPESF





DRDKTIALIMNSSGSTGLPKGVALPHRTACVRFSHARDPIFGNQIIPDTAILS





VVPFHHGFGMFTTLGYLICGFRVVLMYRFEEELFLRSLQDYKIQSALLVPTL





FSFFAKSTLIDKYDLSNLHEIASGGAPLSKEVGEAVAKRFHLPGIRQGYGLT





ETTSAILITPEGDDKPGAVGKVVPFFEAKVVDLDTGKTLGVNQRGELCVRG





PMIMSGYVNNPEATNALIDKDGWLHSGDIAYWDEDEHFFIVDRLKSLIKYK





GYQVAPAELESILLQHPNIFDAGVAGLPDDDAGELPAAVVVLEHGKTMTE





KEIVDYVASQVTTAKKLRGGVVFVDEVPKGLTGKLDARKIREILIKAKKGG





KIAV*







OT-001229
MEETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFTDLNLV
369
377


(Methionine;
QNFQMKHEVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMFMLKAGK




hPDE5 (Amino acid
IQNKLTDLEILALLIAALSHDLDHRGVNNSYIQRSEHPLAQLYCHSIMEHHH




535-860 of WT,
FDQCLMILNSPGNQILSGLSIEEYKTTLKIIKQAILATDLALYIKRRGEFFELIR




R732L); linker
KNQFNLEDPHQKELFLAMLMTACDLSAITKPWPIQQRIAELVATEFFDQGD




(SG); Fluc (N50D,
RERKELNIEPTDLMNREKKNKIPSMQVGFIDAICLQLYEALTHVSEDCFPLL




N119G, S548I,
DGCRKNRQKWQALAEQQSGEDAKNIKKGPAPFYPLEDGTAGEQLHKAMK




K549A, L550V);
RYALVTGTIAFTDAHIEVDITYAEYFEMSVRLAEAMKRYGLNTNHRIVVCS




stop)
ENSLQFFMPVLGALFIGVAVAPANDIYNERELLNSMGISQPTVVFVSKKGL





QKILNVQKKLPIIQKIIIMDSKTDYQGFQSMYTFVTSHLPPGFNEYDFVPESF





DRDKTIALIMNSSGSTGLPKGVALPHRTACVRFSHARDPIFGNQIIPDTAILS





VVPFHHGFGMFTTLGYLICGFRVVLMYRFEEELFLRSLQDYKIQSALLVPTL





FSFFAKSTLIDKYDLSNLHEIASGGAPLSKEVGEAVAKRFHLPGIRQGYGLT





ETTSAILITPEGDDKPGAVGKVVPFFEAKVVDLDTGKTLGVNQRGELCVRG





PMIMSGYVNNPEATNALIDKDGWLHSGDIAYWDEDEHFFIVDRLKSLIKYK





GYQVAPAELESILLQHPNIFDAGVAGLPDDDAGELPAAVVVLEHGKTMTE





KEIVDYVASQVTTAKKLRGGVVFVDEVPKGLTGKLDARKIREILIKAKKGG





KIAV*







OT-001211
MVSKGAELFTGIVPILIELNGDVNGHKFSVSGEGEGDATYGKLTLKFICTTG
370
378


(AcGFP (Amino
KLPVPWPTLVTTLSYGVQCFSRYPDHMKQHDFFKSAMPEGYIQERTIFFED




acid 1-239 of WT);
DGNYKSRAEVKFEGDTLVNRIELTGTDFKEDGNILGNKMEYNYNAHNVYI




linker (SG); hPDE5
MTDKAKNGIKVNFKIRHNIEDGSVQLADHYQQNTPIGDGPVLLPDNHYLST




(Amino acid 535-
QSALSKDPNEKRDHMIYFGFVTAAAITHGMDELYKSGEETRELQSLAAAV




860 of WT,
VPSAQTLKITDFSFSDFELSDLETALCTIRMFTDLNLVQNFQMKHEVLCRWI




H653A); stop)
LSVKKNYRKNVAYHNWRHAFNTAQCMFAALKAGKIQNKLTDLEILALLIA





ALSADLDHRGVNNSYIQRSEHPLAQLYCHSIMEHHHFDQCLMILNSPGNQI





LSGLSIEEYKTTLKIIKQAILATDLALYIKRRGEFFELIRKNQFNLEDPHQKEL





FLAMLMTACDLSAITKPWPIQQRIAELVATEFFDQGDRERKELNIEPTDLM





NREKKNKIPSMQVGFIDAICLQLYEALTHVSEDCFPLLDGCRKNRQKWQA





LAEQQ*







OT-001208
MVSKGAELFTGIVPILIELNGDVNGHKFSVSGEGEGDATYGKLTLKFICTTG
371
379


(AcGFP (Amino
KLPVPWPTLVTTLSYGVQCFSRYPDHMKQHDFFKSAMPEGYIQERTIFFED




acid 1-239 of WT);
DGNYKSRAEVKFEGDTLVNRIELTGTDFKEDGNILGNKMEYNYNAHNVYI




linker (SG); hPDE5
MTDKAKNGIKVNFKIRHNIEDGSVQLADHYQQNTPIGDGPVLLPDNHYLST




(Amino acid 535-
QSALSKDPNEKRDHMIYFGFVTAAAITHGMDELYKSGEETRELQSLAAAV




860 of WT,
VPSAQTLKITDFSFSDFELSDLETALCTIRMFTDLNLVQNFQMKHEVLCRWI




D764A); stop)
LSVKKNYRKNVAYHNWRHAFNTAQCMFAALKAGKIQNKLTDLEILALLIA





ALSHDLDHRGVNNSYIQRSEHPLAQLYCHSIMEHHHFDQCLMILNSPGNQI





LSGLSIEEYKTTLKIIKQAILATDLALYIKRRGEFFELIRKNQFNLEDPHQKEL





FLAMLMTACDLSAITKPWPIQQRIAELVATEFFDQGDRERKELNIEPTDLM





NREKKNKIPSMQVGFIDAICLQLYEALTHVSEDCFPLLDGCRKNRQKWQA





LAEQQ*







OT-001209
MVSKGAELFTGIVPILIELNGDVNGHKFSVSGEGEGDATYGKLTLKFICTTG
8491
8521


(AcGFP (1-239 of
KLPVPWPTLVTTLSYGVQCFSRYPDHMKQHDFFKSAMPEGYIQERTIFFED




WT); linker (SG);
DGNYKSRAEVKFEGDTLVNRIELTGTDFKEDGNILGNKMEYNYNAHNVYI




hPDE5 (Amino acid
MTDKAKNGIKVNFKIRHNIEDGSVQLADHYQQNTPIGDGPVLLPDNHYLST




535-860 of WT,
QSALSKDPNEKRDHMIYFGFVTAAAITHGMDELYKSGEETRELQSLAAAV




E682A); stop)
VPSAQTLKITDFSFSDFELSDLETALCTIRMFTDLNLVQNFQMKHEVLCRWI





LSVKKNYRKNVAYHNWRHAFNTAQCMFAALKAGKIQNKLTDLEILALLIA





ALSHDLDHRGVNNSYIQRSEHPLAQLYCHSIMAHHHFDQCLMILNSPGNQI





LSGLSIEEYKTTLKIIKQAILATDLALYIKRRGEFFELIRKNQFNLEDPHQKEL





FLAMLMTACDLSAITKPWPIQQRIAELVATEFFDQGDRERKELNIEPTDLM





NREKKNKIPSMQVGFIDAICLQLYEALTHVSEDCFPLLDGCRKNRQKWQA





LAEQQ*







OT-001210
MVSKGAELFTGIVPILIELNGDVNGHKFSVSGEGEGDATYGKLTLKFICTTG
8492
8522


(AcGFP (1-239 of
KLPVPWPTLVTTLSYGVQCFSRYPDHMKQHDFFKSAMPEGYIQERTIFFED




WT); Linker (SG);
DGNYKSRAEVKFEGDTLVNRIELTGTDFKEDGNILGNKMEYNYNAHNVYI




hPDE5 (Amino acid
MTDKAKNGIKVNFKIRHNIEDGSVQLADHYQQNTPIGDGPVLLPDNHYLST




535-860 of WT,
QSALSKDPNEKRDHMIYFGFVTAAAITHGMDELYKSGEETRELQSLAAAV




D724A); stop)
VPSAQTLKITDFSFSDFELSDLETALCTIRMFTDLNLVQNFQMKHEVLCRWI





LSVKKNYRKNVAYHNWRHAFNTAQCMFAALKAGKIQNKLTDLEILALLIA





ALSHDLDHRGVNNSYIQRSEHPLAQLYCHSIMEHHHFDQCLMILNSPGNQI





LSGLSIEEYKTTLKIIKQAILATALALYIKRRGEFFELIRKNQFNLEDPHQKEL





FLAMLMTACDLSAITKPWPIQQRIAELVATEFFDQGDRERKELNIEPTDLM





NREKKNKIPSMQVGFIDAICLQLYEALTHVSEDCFPLLDGCRKNRQKWQA





LAEQQ*







OT-001358 (Met;
MEETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFTDLNLV
8493
8523


hPDE5 (535- 860 of
QNFQMKHEVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMFAALKAGK




WT, N661S); linker
IQNKLTDLEILALLIAALSHDLDHRGVSNSYIQRSEHPLAQLYCHSIMEHHH




(GGSGGGSGG
FDQCLMILNSPGNQILSGLSIEEYKTTLKIIKQAILATDLALYIKRRGEFFELI




(SEQ ID NO: 77));
RKNQFNLEDPHQKELFLAMLMTACDLSAITKPWPIQQRIAELVATEFFDQG




AcGFP (2-239 of
DRERKELNIEPTDLMNREKKNKIPSMQVGFIDAICLQLYEALTHVSEDCFPL




WT); stop)
LDGCRKNRQKWQALAEQQGGSGGGSGGVSKGAELFTGIVPILIELNGDVN





GHKFSVSGEGEGDATYGKLTLKFICTTGKLPVPWPTLVTTLSYGVQCFSRY





PDHMKQHDFFKSAMPEGYIQERTIFFEDDGNYKSRAEVKFEGDTLVNRIEL





TGTDFKEDGNILGNKMEYNYNAHNVYIMTDKAKNGIKVNFKIRHNIEDGS





VQLADHYQQNTPIGDGPVLLPDNHYLSTQSALSKDPNEKRDHMIYFGFVT





AAAITHGMDELYK*







OT-001359 (Met;
MEETRELQSLAAAVVPSAQTLKITDFSFSDFELSDMetALCTIRMFTDLNLV
8494
8524


hPDE5 (535-830 of
QNFQMKHEVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMFAALKAGK




WT, L569M,
IQNKLTDLEILALLIAALSHDLDHRGVNNSYIQRSEHPLAQLYCHSIMEHHH




T833S); linker
FDQCLMILNSPGNQILSGLSIEEYKTTLKIIKQAILATDLALYIKRRGEFFELI




(GGSGGGSGG
RKNQFNLEDPHQKELFLAMLMTACDLSAITKPWPIQQRIAELVATEFFDQG




(SEQ ID NO: 77));
DRERKELNIEPTDLMNREKKNKIPSMQVGFIDAICLQLYEALSHVSEDCFPL




AcGFP (2-239 of
LDGCRKNRQKWQALAEQQGGSGGGSGGVSKGAELFTGIVPILIELNGDVN




WT); stop)
GHKFSVSGEGEGDATYGKLTLKFICTTGKLPVPWPTLVTTLSYGVQCFSRY





PDHMKQHDFFKSAMPEGYIQERTIFFEDDGNYKSRAEVKFEGDTLVNRIEL





TGTDFKEDGNILGNKMEYNYNAHNVYIMTDKAKNGIKVNFKIRHNIEDGS





VQLADHYQQNTPIGDGPVLLPDNHYLSTQSALSKDPNEKRDHMIYFGFVT





AAAITHGMDELYK*







OT-001360 (Met;
MEETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFTDLNLV
8495
8525


hPDE5 (535-860 of
QNFQMKHEVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMFAALKAGK




WT, I768N); linker
IQNKLTDLEILALLIAALSHDLDHRGVNNSYIQRSEHPLAQLYCHSIMEHHH




(GGSGGGSGG
FDQCLMILNSPGNQILSGLSIEEYKTTLKIIKQAILATDLALYIKRRGEFFELI




(SEQ ID NO: 77));
RKNQFNLEDPHQKELFLAMLMTACDLSANTKPWPIQQRIAELVATEFFDQ




AcGFP (2-239 of
GDRERKELNIEPTDLMNREKKNKIPSMQVGFIDAICLQLYEALTHVSEDCFP




WT); stop)
LLDGCRKNRQKWQALAEQQGGSGGGSGGVSKGAELFTGIVPILIELNGDV





NGHKFSVSGEGEGDATYGKLTLKFICTTGKLPVPWPTLVTTLSYGVQCFSR





YPDHMKQHDFFKSAMPEGYIQERTIFFEDDGNYKSRAEVKFEGDTLVNRIE





LTGTDFKEDGNILGNKMEYNYNAHNVYIMTDKAKNGIKVNEKIRHNIEDG





SVQLADHYQQNTPIGDGPVLLPDNHYLSTQSALSKDPNEKRDHMIYFGFVT





AAAITHGMDELYK*







OT-001361 (Met;
MEETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFTDLNLV
8496
8526


hPDE5 (535-860 of
QNFQMKHEVLCRWILSVKKNYWKNVAYHNWRHAFNTAQCMFAALKAG




WT, R607W);
KIQNKLTDLEILALLIAALSHDLDHRGVNNSYIQRSEHPLAQLYCHSIMEHH




linker
HFDQCLMILNSPGNQILSGLSIEEYKTTLKIIKQAILATDLALYIKRRGEFFEL




(GGSGGGSGG
IRKNQFNLEDPHQKELFLAMLMTACDLSAITKPWPIQQRIAELVATEFFDQ




(SEQ ID NO: 77));
GDRERKELNIEPTDLMNREKKNKIPSMQVGFIDAICLQLYEALTHVSEDCFP




AcGFP (2-239 of
LLDGCRKNRQKWQALAEQQGGSGGGSGGVSKGAELFTGIVPILIELNGDV




WT); stop)
NGHKFSVSGEGEGDATYGKLTLKFICTTGKLPVPWPTLVTTLSYGVQCFSR





YPDHMKQHDFFKSAMPEGYIQERTIFFEDDGNYKSRAEVKFEGDTLVNRIE





LTGTDEKEDGNILGNKMEYNYNAHNVYIMTDKAKNGIKVNEKIRHNIEDG





SVQLADHYQQNTPIGDGPVLLPDNHYLSTQSALSKDPNEKRDHMIYFGFVT





AAAITHGMDELYK*







OT-001362 (Met;
MEETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFTDLNLV
8497
8527


hPDE5 (535-860 of
QNFQMKHEVLCRWILSVKKNYRKNVAYHNWRHAFSTAQCMFAALKAGK




WT, N620S); linker
IQNKLTDLEILALLIAALSHDLDHRGVNNSYIQRSEHPLAQLYCHSIMEHHH




(GGSGGGSGG
FDQCLMILNSPGNQILSGLSIEEYKTTLKIIKQAILATDLALYIKRRGEFFELI




(SEQ ID NO: 77));
RKNQFNLEDPHQKELFLAMLMTACDLSAITKPWPIQQRIAELVATEFFDQG




AcGFP (2-239 of
DRERKELNIEPTDLMNREKKNKIPSMQVGFIDAICLQLYEALTHVSEDCFPL




WT); stop)
LDGCRKNRQKWQALAEQQGGSGGGSGGVSKGAELFTGIVPILIELNGDVN





GHKFSVSGEGEGDATYGKLTLKFICTTGKLPVPWPTLVTTLSYGVQCFSRY





PDHMKQHDFFKSAMPEGYIQERTIFFEDDGNYKSRAEVKFEGDTLVNRIEL





TGTDFKEDGNILGNKMEYNYNAHNVYIMTDKAKNGIKVNFKIRHNIEDGS





VQLADHYQQNTPIGDGPVLLPDNHYLSTQSALSKDPNEKRDHMIYFGFVT





AAAITHGMDELYK*







OT-001363 (Met;
MEETRELQSLAAAVVPSAQTRKITDFSFSDFELSDLETALCTIRMFTDLNLV
8498
8528


hPDE5 (535-860 of
QNFEMKHEVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMFAALKAGK




WT, L554R,
IQNKLTDLEILALLIAALSHDLDHRGVNNSYIQRSEHPLAQLYCHSIMEHHH




Q589E, M691I);
FDQCLIILNSPGNQILSGLSIEEYKTTLKIIKQAILATDLALYIKRRGEFFELIR




linker
KNQFNLEDPHQKELFLAMLMTACDLSAITKPWPIQQRIAELVATEFFDQGD




(GGSGGGSGG
RERKELNIEPTDLMNREKKNKIPSMQVGFIDAICLQLYEALTHVSEDCFPLL




(SEQ ID NO: 77));
DGCRKNRQKWQALAEQQGGSGGGSGGVSKGAELFTGIVPILIELNGDVNG




AcGFP (2-239 of
HKFSVSGEGEGDATYGKLTLKFICTTGKLPVPWPTLVTTLSYGVQCFSRYP




WT); stop)
DHMKQHDFFKSAMPEGYIQERTIFFEDDGNYKSRAEVKFEGDTLVNRIELT





GTDFKEDGNILGNKMEYNYNAHNVYIMTDKAKNGIKVNEKIRHNIEDGSV





QLADHYQQNTPIGDGPVLLPDNHYLSTQSALSKDPNEKRDHMIYFGFVTA





AAITHGMDELYK*







OT-001364 (Met;
MEETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFTDLNLV
8499
8529


hPDE5 (535-860 of
QNFQMKHEVLCRWILSVKKNYRKNVAYHNRRHAFNTAQCMFAALKAGK




WT, W615R,
IQNKLTDLEILALLIAALSHDLDHRGVNNSYIQRSEHPLAQLYCHSIMEHHH




T723R, A762T,
FDQCLMILNSPGNQILSGLSIEEYKTTLKIIKQAILARDLALYIKRRGEFFELI




E808G); linker
RKNQFNLEDPHQKELFLAMLMTTCDLSAITKPWPIQQRIAELVATEFFDQG




(GGSGGGSGG
DRERKELNIEPTDLMNRGKKNKIPSMQVGFIDAICLQLYEALTHVSEDCFPL




(SEQ ID NO: 77));
LDGCRKNRQKWQALAEQQGGSGGGSGGVSKGAELFTGIVPILIELNGDVN




AcGFP (2-239 of
GHKFSVSGEGEGDATYGKLTLKFICTTGKLPVPWPTLVTTLSYGVQCFSRY




WT); stop)
PDHMKQHDFFKSAMPEGYIQERTIFFEDDGNYKSRAEVKFEGDTLVNRIEL





TGTDFKEDGNILGNKMEYNYNAHNVYIMTDKAKNGIKVNFKIRHNIEDGS





VQLADHYQQNTPIGDGPVLLPDNHYLSTQSALSKDPNEKRDHMIYFGFVT





AAAITHGMDELYK*







OT-001365 (Met;
MEETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALYTIRMFTDLNLV
8500
8530


hPDE5 (535-860 of
QNFQMKHEVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMFAALKAGK




WT, C574Y); linker
IQNKLTDLEILALLIAALSHDLDHRGVNNSYIQRSEHPLAQLYCHSIMEHHH




(GGSGGGSGG
FDQCLMILNSPGNQILSGLSIEEYKTTLKIIKQAILATDLALYIKRRGEFFELI




(SEQ ID NO: 77));
RKNQFNLEDPHQKELFLAMLMTACDLSAITKPWPIQQRIAELVATEFFDQG




AcGFP (2-239 of
DRERKELNIEPTDLMNREKKNKIPSMQVGFIDAICLQLYEALTHVSEDCFPL




WT); stop)
LDGCRKNRQKWQALAEQQGGSGGGSGGVSKGAELFTGIVPILIELNGDVN





GHKFSVSGEGEGDATYGKLTLKFICTTGKLPVPWPTLVTTLSYGVQCFSRY





PDHMKQHDFFKSAMPEGYIQERTIFFEDDGNYKSRAEVKFEGDTLVNRIEL





TGTDFKEDGNILGNKMEYNYNAHNVYIMTDKAKNGIKVNFKIRHNIEDGS





VQLADHYQQNTPIGDGPVLLPDNHYLSTQSALSKDPNEKRDHMIYFGFVT





AAAITHGMDELYK*







OT-001366 (Met;
MEETRELQSLAAAVVPSAQTRKITDFSFSDFELSDLETALCTIRMFTDLNLV
8501
8531


hPDE5 (535-860 of
PNFQMKHEVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMFAALKAGK




WT, L554R,
IQNKLTDLEILALLIAALSHDLDHRGVNNSYIQRSEHPLAQLYCHSIMEHHH




Q586P, K710N,
FDQCLMILNSPGNQILSGLSIEEYNTTLKIIKQAILATDLALYIERRGEFFELIR




K730E); linker
KNQFNLEDPHQKELFLAMLMTACDLSAITKPWPIQQRIAELVATEFFDQGD




(GGSGGGSGG
RERKELNIEPTDLMNREKKNKIPSMQVGFIDAICLQLYEALTHVSEDCFPLL




(SEQ ID NO: 77));
DGCRKNRQKWQALAEQQGGSGGGSGGVSKGAELFTGIVPILIELNGDVNG




AcGFP (2-239 of
HKFSVSGEGEGDATYGKLTLKFICTTGKLPVPWPTLVTTLSYGVQCFSRYP




WT); stop)
DHMKQHDFFKSAMPEGYIQERTIFFEDDGNYKSRAEVKFEGDTLVNRIELT





GTDFKEDGNILGNKMEYNYNAHNVYIMTDKAKNGIKVNEKIRHNIEDGSV





QLADHYQQNTPIGDGPVLLPDNHYLSTQSALSKDPNEKRDHMIYFGFVTA





AAITHGMDELYK*







OT-001367 (Met;
MEETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFTDLNLV
8502
8532


hPDE5 (535-860 of
QNFQMKHEVLCRWILSVKKNYRKNVAYRNWRHAFNTAQCMFAALKAGK




WT, H4613R); linker
IQNKLTDLEILALLIAALSHDLDHRGVNNSYIQRSEHPLAQLYCHSIMEHHH




(GGSGGGSGG
FDQCLMILNSPGNQILSGLSIEEYKTTLKIIKQAILATDLALYIKRRGEFFELI




(SEQ ID NO: 77));
RKNQFNLEDPHQKELFLAMLMTACDLSAITKPWPIQQRIAELVATEFFDQG




AcGFP (2-239 of
DRERKELNIEPTDLMNREKKNKIPSMQVGFIDAICLQLYEALTHVSEDCFPL




WT); stop)
LDGCRKNRQKWQALAEQQGGSGGGSGGVSKGAELFTGIVPILIELNGDVN





GHKFSVSGEGEGDATYGKLTLKFICTTGKLPVPWPTLVTTLSYGVQCFSRY





PDHMKQHDFFKSAMPEGYIQERTIFFEDDGNYKSRAEVKFEGDTLVNRIEL





TGTDFKEDGNILGNKMEYNYNAHNVYIMTDKAKNGIKVNFKIRHNIEDGS





VQLADHYQQNTPIGDGPVLLPDNHYLSTQSALSKDPNEKRDHMIYFGFVT





AAAITHGMDELYK*







OT-001368 (Met;
MEETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFTDLNLV
8503
8533


hPDE5 (535-860 of
LNFQMKHEVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMFAALKAGK




WT, Q586L,
IQNKLTDLEILALLIAALSHDLDHRGVNNYYIQRSEHPLAQLYCHSIMEHHH




5663Y, A762T,
FDQCLMILNSPGNMSGLSIEEYKTTLKIIKQAILATDLALYIKRRGEFFELI




E808G); linker
RKNQFNLEDPHQKELFLAMLMTTCDLSAITKPWPIQQRIAELVATEFFDQG




(GGSGGGSGG
DRERKELNIEPTDLMNRGKKNKIPSMQVGFIDAICLQLYEALTHVSEDCFPL




(SEQ ID NO: 77));
LDGCRKNRQKWQALAEQQGGSGGGSGGVSKGAELFTGIVPILIELNGDVN




AcGFP (2-239 of
GHKFSVSGEGEGDATYGKLTLKFICTTGKLPVPWPTLVTTLSYGVQCFSRY




WT); stop)
PDHMKQHDFFKSAMPEGYIQERTIFFEDDGNYKSRAEVKFEGDTLVNRIEL





TGTDFKEDGNILGNKMEYNYNAHNVYIMTDKAKNGIKVNFKIRHNIEDGS





VQLADHYQQNTPIGDGPVLLPDNHYLSTQSALSKDPNEKRDHMIYFGFVT





AAAITHGMDELYK*







OT-001369 (Met;
MEETRELQSLAAAVMPSAQTLKITDFSFSDFELSDLETALCTIRMFTDLNLV
8504
8534


hPDE5 (535-860 of
QNFQMKHEVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMFAALKAGK




WT, V548M,
IQNKLTDLEILALLIAALSHDLDHRGVNNSYIQRSEHPLAQLYCHSIMEHHH




D803N); linker
FDQCLMILNSPGNQILSGLSIEEYKTTLKIIKQAILATDLALYIKRRGEFFELI




(GGSGGGSGG
RKNQFNLEDPHQKELFLAMLMTACDLSAITKPWPIQQRIAELVATEFFDQG




(SEQ ID NO: 77));
DRERKELNIEPTNLMNREKKNKIPSMQVGFIDAICLQLYEALTHVSEDCFPL




AcGFP (2-239 of
LDGCRKNRQKWQALAEQQGGSGGGSGGVSKGAELFTGIVPILIELNGDVN




WT); stop)
GHKFSVSGEGEGDATYGKLTLKFICTTGKLPVPWPTLVTTLSYGVQCFSRY





PDHMKQHDFFKSAMPEGYIQERTIFFEDDGNYKSRAEVKFEGDTLVNRIEL





TGTDFKEDGNILGNKMEYNYNAHNVYIMTDKAKNGIKVNFKIRHNIEDGS





VQLADHYQQNTPIGDGPVLLPDNHYLSTQSALSKDPNEKRDHMIYFGFVT





AAAITHGMDELYK*







OT-001370 (Met;
MEETRELQSLAAAVVPSAQTRKITDFSFSDFELSDLETALCTIRMFTDLNLV
8505
8535


hPDE5 (535-860
QNFEMKREVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMFAALKAGK




OF WT, L554R,
IQNKLTDLEILALLIAALSHDLDHRGVNNSYIQRSEHPLAQLYCHSIMEHHH




Q589E, A823T);
FDQCLMILNSPGNMSGLSIEEYKTTLKIIKQAILATDLALYIKRRGEFFELI




linker
RKNQFNLEDPHQKELFLAMLMTACDLSAITKPWPIQQRIAELVATEFFDQG




(GGSGGGSGG
DRERKELNIEPTDLMNREKKNKIPSMQVGFIDTICLQLYEALTHVSEDCFPL




(SEQ ID NO: 77));
LDGCRKNRQKWQALAEQQGGSGGGSGGVSKGAELFTGIVPILIELNGDVN




AcGFP (2-239 of
GHKFSVSGEGEGDATYGKLTLKFICTTGKLPVPWPTLVTTLSYGVQCFSRY




WT); stop)
PDHMKQHDFFKSAMPEGYIQERTIFFEDDGNYKSRAEVKFEGDTLVNRIEL





TGTDFKEDGNILGNKMEYNYNAHNVYIMTDKAKNGIKVNFKIRHNIEDGS





VQLADHYQQNTPIGDGPVLLPDNHYLSTQSALSKDPNEKRDHMIYFGFVT





AAAITHGMDELYK*







OT-001371 (Met;
MEETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLEIALCITRMFTDLNLV
8506
8536


hPDE5 (535-860 of
QNFQMKHEVLCRWILSVKRNYRKNVAYHNWRHAFNTAQCMFAALKAGK




WT, T5711, K604R,
IQNKLTDLEILALLIAALSHDLDHRGVNNSYIQRSEHPLAQLYCHSIMEHHH




1706N, E795R);
FDQCLMILNSPGNQILSGLSNEEYKTTLKIIKQAILATDLALYIKRRGEFFELI




linker
RKNQFNLEDPHQKELFLAMLMTACDLSAITKPWPIQQRIAELVATEFFDQG




(GGSGGGSGG
DRERRELNIEPTDLMNREKKNKIPSMQVGFIDAICLQLYEALTHVSEDCFPL




(SEQ ID NO: 77));
LDGCRKNRQKWQALAEQQGGSGGGSGGVSKGAELFTGIVPILIELNGDVN




AcGFP (2-239 of
GHKFSVSGEGEGDATYGKLTLKFICTTGKLPVPWPTLVTTLSYGVQCFSRY




WT); stop)
PDHMKQHDFFKSAMPEGYIQERTIFFEDDGNYKSRAEVKFEGDTLVNRIEL





TGTDFKEDGNILGNKMEYNYNAHNVYIMTDKAKNGIKVNFKIRHNIEDGS





VQLADHYQQNTPIGDGPVLLPDNHYLSTQSALSKDPNEKRDHMIYFGFVT





AAAITHGMDELYK*







OT-001372 (Met;
MEETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFTDLNLV
8507
8537


hPDE5 (535-860 of
QNFQMKHEVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMFAALKAGK




WT, G659A,
IQNKLTDLEILALLIAALSHDLDHRAVNNSYIQRSEHPLAQLYCHSIMEHHH




T784I); linker
FDQCLMILNSPGNQILSGLSIEEYKTTLKIIKQAILATDLALYIKRRGEFFELI




(GGSGGGSGG
RKNQFNLEDPHQKELFLAMLMTACDLSAITKPWPIQQRIAELVAIEFFDQG




(SEQ ID NO: 77));
DRERKELNIEPTDLMNREKKNKIPSMQVGFIDAICLQLYEALTHVSEDCFPL




AcGFP (2-239 of
LDGCRKNRQKWQALAEQQGGSGGGSGGVSKGAELFTGIVPILIELNGDVN




WT); stop)
GHKFSVSGEGEGDATYGKLTLKFICTTGKLPVPWPTLVTTLSYGVQCFSRY





PDHMKQHDFFKSAMPEGYIQERTIFFEDDGNYKSRAEVKFEGDTLVNRIEL





TGTDFKEDGNILGNKMEYNYNAHNVYIMTDKAKNGIKVNFKIRHNIEDGS





VQLADHYQQNTPIGDGPVLLPDNHYLSTQSALSKDPNEKRDHMIYFGFVT





AAAITHGMDELYK*







OT-001373 (Met;
MEETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFTDLNLV
8508
8538


hPDE5 (535-860 of
QNFQMKHEVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMFAALKAGK




WT, Q666H);
IQNKLTDLEILALLIAALSHDLDHRGVNNSYIHRSEHPLAQLYCHSIMEHHH




linker
FDQCLMILNSPGNQILSGLSIEEYKTTLKIIKQAILATDLALYIKRRGEFFELI




(GGSGGGSGG
RKNQFNLEDPHQKELFLAMLMTACDLSAITKPWPIQQRIAELVATEFFDQG




(SEQ ID NO: 77));
DRERKELNIEPTDLMNREKKNKIPSMQVGFIDAICLQLYEALTHVSEDCFPL




AcGFP (2-239 of
LDGCRKNRQKWQALAEQQGGSGGGSGGVSKGAELFTGIVPILIELNGDVN




WT); stop)
GHKFSVSGEGEGDATYGKLTLKFICTTGKLPVPWPTLVTTLSYGVQCFSRY





PDHMKQHDFFKSAMPEGYIQERTIFFEDDGNYKSRAEVKFEGDTLVNRIEL





TGTDFKEDGNILGNKMEYNYNAHNVYIMTDKAKNGIKVNFKIRHNIEDGS





VQLADHYQQNTPIGDGPVLLPDNHYLSTQSALSKDPNEKRDHMIYFGFVT





AAAITHGMDELYK*







OT-001374 (Met;
MEETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFTDLNLV
8509
8539


hPDE5 (535-860 of
QNFQMKHEVLCRWILSVKKNYRKNVAYHNWRLAFNTAQCMFAALKAGK




WT, H617L,
IQNKLTDLEILALLIAALSHDLDHRGVNNSYIQRSEHPLAQLYCHSIMEHHH




A722V); linker
FDQCLMILNSPGNQILSGLSIEEYKTTLKIIKQAILVTDLALYIKRRGEFFELI




(GGSGGGSGG
RKNQFNLEDPHQKELFLAMLMTACDLSAITKPWPIQQRIAELVATEFFDQG




(SEQ ID NO: 77));
DRERKELNIEPTDLMNREKKNKIPSMQVGFIDAICLQLYEALTHVSEDCFPL




AcGFP (2-239 of
LDGCRKNRQKWQALAEQQGGSGGGSGGVSKGAELFTGIVPILIELNGDVN




WT); stop)
GHKFSVSGEGEGDATYGKLTLKFICTTGKLPVPWPTLVTTLSYGVQCFSRY





PDHMKQHDFFKSAMPEGYIQERTIFFEDDGNYKSRAEVKFEGDTLVNRIEL





TGTDFKEDGNILGNKMEYNYNAHNVYIMTDKAKNGIKVNFKIRHNIEDGS





VQLADHYQQNTPIGDGPVLLPDNHYLSTQSALSKDPNEKRDHMIYFGFVT





AAAITHGMDELYK*







OT-001375 (Met;
MEETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFTDLNLV
8510
8540


hPDE5 (535-860 of
QNFQMKHEVLCRWILSVKKNYRKYVAYHNWRHAFNTAQCMFAALKAGK




WT, N609Y,
IQNKLTDLEILALLIAALSHDLDHRGVNNSYIQRSEHPLAQLYCHSIMEHHH




I799L); linker
FDQCLMILNSPGNQILSGLSIEEYKTTLKIIKQAILATDLALYIKRRGEFFELI




(GGSGGGSGG
RKNQFNLEDPHQKELFLAMLMTACDLSAITKPWPIQQRIAELVATEFFDQG




(SEQ ID NO: 77));
DRERKELNLEPTDLMNREKKNKIPSMQVGFIDAICLQLYEALTHVSEDCFP




AcGFP (2-239 of
LLDGCRKNRQKWQALAEQQGGSGGGSGGVSKGAELFTGIVPILIELNGDV




WT); stop)
NGHKFSVSGEGEGDATYGKLTLKFICTTGKLPVPWPTLVTTLSYGVQCFSR





YPDHMKQHDFFKSAMPEGYIQERTIFFEDDGNYKSRAEVKFEGDTLVNRIE





LTGTDFKEDGNILGNKMEYNYNAHNVYIMTDKAKNGIKVNEKIRHNIEDG





SVQLADHYQQNTPIGDGPVLLPDNHYLSTQSALSKDPNEKRDHMIYFGFVT





AAAITHGMDELYK*







OT-001376 (Met;
MEETRELQSLAAAVVPSAQTLKITDFSLSDFELSDLETALCTIRMFTDLNLV
8511
8541


hPDE5 (535-860 of
QNFQMKHEVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMFAALKAGK




WT, F561L,
IQNKLTDLEILALLIAALSHDLDHRAVNNSYIQRSEHPLAQLYCHSIMEHHH




G659A, T784I);
FDQCLMILNSPGNQILSGLSIEEYKTTLKIIKQAILATDLALYIKRRGEFFELI




linker
RKNQFNLEDPHQKELFLAMLMTACDLSAITKPWPIQQRIAELVAIEFFDQG




(GGSGGGSGG
DRERKELNIEPTDLMNREKKNKIPSMQVGFIDAICLQLYEALTHVSEDCFPL




(SEQ ID NO: 77));
LDGCRKNRQKWQALAEQQGGSGGGSGGVSKGAELFTGIVPILIELNGDVN




AcGFP (2-239 of
GHKFSVSGEGEGDATYGKLTLKFICTTGKLPVPWPTLVTTLSYGVQCFSRY




WT); stop)
PDHMKQHDFFKSAMPEGYIQERTIFFEDDGNYKSRAEVKFEGDTLVNRIEL





TGTDFKEDGNILGNKMEYNYNAHNVYIMTDKAKNGIKVNFKIRHNIEDGS





VQLADHYQQNTPIGDGPVLLPDNHYLSTQSALSKDPNEKRDHMIYFGFVT





AAAITHGMDELYK*







OT-001377 (Met;
MEETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFTDLNLV
8512
8542


hPDE5 (535-860 of
QNFQMKHEVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMFAALKAGK




WT, K795N);
IQNKLTDLEILALLIAALSHDLDHRGVNNSYIQRSEHPLAQLYCHSIMEHHH




linker
FDQCLMILNSPGNQILSGLSIEEYKTTLKIIKQAILATDLALYIKRRGEFFELI




(GGSGGGSGG
RKNQFNLEDPHQKELFLAMLMTACDLSAITKPWPIQQRIAELVATEFFDQG




(SEQ ID NO: 77));
DRERNELNIEPTDLMNREKKNKIPSMQVGFIDAICLQLYEALTHVSEDCFPL




AcGFP (2-239 of
LDGCRKNRQKWQALAEQQGGSGGGSGGVSKGAELFTGIVPILIELNGDVN




WT); stop)
GHKFSVSGEGEGDATYGKLTLKFICTTGKLPVPWPTLVTTLSYGVQCFSRY





PDHMKQHDFFKSAMPEGYIQERTIFFEDDGNYKSRAEVKFEGDTLVNRIEL





TGTDFKEDGNILGNKMEYNYNAHNVYIMTDKAKNGIKVNFKIRHNIEDGS





VQLADHYQQNTPIGDGPVLLPDNHYLSTQSALSKDPNEKRDHMIYFGFVT





AAAITHGMDELYK*







OT-001378 (Met;
MEETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFTDLNLV
8513
8543


hPDE5 (535-860 of
QNFQMKHEVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMFAALKAGK




WT, K770Q,
IQNKLTDLEILALLIAALSHDLDHRGVNNSYIQRSEHPLAQLYCHSIMEHHH




K848N); linker
FDQCLMILNSPGNQILSGLSIEEYKTTLKIIKQAILATDLALYIKRRGEFFELI




(GGSGGGSGG
RKNQFNLEDPHQKELFLAMLMTACDLSAITQPWPIQQRIAELVATEFFDQG




(SEQ ID NO: 77));
DRERKELNIEPTDLMNREKKNKIPSMQVGFIDAICLQLYEALTHVSEDCFPL




AcGFP (2-239 of
LDGCRNNRQKWQALAEQQGGSGGGSGGVSKGAELFTGIVPILIELNGDVN




WT); stop)
GHKFSVSGEGEGDATYGKLTLKFICTTGKLPVPWPTLVTTLSYGVQCFSRY





PDHMKQHDFFKSAMPEGYIQERTIFFEDDGNYKSRAEVKFEGDTLVNRIEL





TGTDFKEDGNILGNKMEYNYNAHNVYIMTDKAKNGIKVNFKIRHNIEDGS





VQLADHYQQNTPIGDGPVLLPDNHYLSTQSALSKDPNEKRDHMIYFGFVT





AAAITHGMDELYK*







OT-001379 (Met;
MEETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFTDLNLV
8514
8544


hPDE5 (535-860 of
QNFQMKHEVLCRWILSVKKDYRKNVAYHNWRHAFNTAQCMFAALKAGK




WT, N605D);
IQNKLTDLEILALLIAALSHDLDHRGVNNSYIQRSEHPLAQLYCHSIMEHHH




linker
FDQCLMILNSPGNQILSGLSIEEYKTTLKIIKQAILATDLALYIKRRGEFFELI




(GGSGGGSGG
RKNQFNLEDPHQKELFLAMLMTACDLSAITKPWPIQQRIAELVATEFFDQG




(SEQ ID NO: 77));
DRERKELNIEPTDLMNREKKNKIPSMQVGFIDAICLQLYEALTHVSEDCFPL




AcGFP (2-239 of
LDGCRKNRQKWQALAEQQGGSGGGSGGVSKGAELFTGIVPILIELNGDVN




WT); stop)
GHKFSVSGEGEGDATYGKLTLKFICTTGKLPVPWPTLVTTLSYGVQCFSRY





PDHMKQHDFFKSAMPEGYIQERTIFFEDDGNYKSRAEVKFEGDTLVNRIEL





TGTDFKEDGNILGNKMEYNYNAHNVYIMTDKAKNGIKVNFKIRHNIEDGS





VQLADHYQQNTPIGDGPVLLPDNHYLSTQSALSKDPNEKRDHMIYFGFVT





AAAITHGMDELYK*







OT-001380 (Met;
MEETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFTDLNLV
8515
8545


hPDE5 (535-860 of
QNFQMKHEVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMFAALKAGK




WT, I680S); linker
IQNKLTDLEILALLIAALSHDLDHRGVNNSYIQRSEHPLAQLYCHSSMEHHH




(GGSGGGSGG
FDQCLMILNSPGNQILSGLSIEEYKTTLKIIKQAILATDLALYIKRRGEFFELI




(SEQ ID NO: 77));
RKNQFNLEDPHQKELFLAMLMTACDLSAITKPWPIQQRIAELVATEFFDQG




AcGFP (2-239 of
DRERKELNIEPTDLMNREKKNKIPSMQVGFIDAICLQLYEALTHVSEDCFPL




WT); stop)
LDGCRKNRQKWQALAEQQGGSGGGSGGVSKGAELFTGIVPILIELNGDVN





GHKFSVSGEGEGDATYGKLTLKFICTTGKLPVPWPTLVTTLSYGVQCFSRY





PDHMKQHDFFKSAMPEGYIQERTIFFEDDGNYKSRAEVKFEGDTLVNRIEL





TGTDFKEDGNILGNKMEYNYNAHNVYIMTDKAKNGIKVNFKIRHNIEDGS





VQLADHYQQNTPIGDGPVLLPDNHYLSTQSALSKDPNEKRDHMIYFGFVT





AAAITHGMDELYK*







OT-001381 (Met;
MEETRELQSLAAAVMPSAQTLKITDFSFSDFELSDLETALCTIRMFTDLNLV
8516
8546


hPDE5 (535-860 of
QNFQMKHEVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMFAALKAGK




WT, V548M,
IQNKLTDLEILALLIAALSHDLDHRGVNNSYIQRSEHPLAQLYCHSIMEHHH




F820I); linker
FDQCLMILNSPGNQILSGLSIEEYKTTLKIIKQAILATDLALYIKRRGEFFELI




(GGSGGGSGG
RKNQFNLEDPHQKELFLAMLMTACDLSAITKPWPIQQRIAELVATEFFDQG




(SEQ ID NO: 77));
DRERKELNIEPTDLMNREKKNKIPSMQVGIIDAICLQLYEALTHVSEDCFPL




AcGFP (2-239 of
LDGCRKNRQKWQALAEQQGGSGGGSGGVSKGAELFTGIVPILIELNGDVN




WT); stop)
GHKFSVSGEGEGDATYGKLTLKFICTTGKLPVPWPTLVTTLSYGVQCFSRY





PDHMKQHDFFKSAMPEGYIQERTIFFEDDGNYKSRAEVKFEGDTLVNRIEL





TGTDFKEDGNILGNKMEYNYNAHNVYIMTDKAKNGIKVNFKIRHNIEDGS





VQLADHYQQNTPIGDGPVLLPDNHYLSTQSALSKDPNEKRDHMIYFGFVT





AAAITHGMDELYK*







OT-001382 (Met;
MEETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFTDLNLV
8517
8547


hPDE5 (535-860 of
QNFQMKHEVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMFAALKAGK




WT, I799L); linker
IQNKLTDLEILALLIAALSHDLDHRGVNNSYIQRSEHPLAQLYCHSIMEHHH




(GGSGGGSGG
FDQCLMILNSPGNQILSGLSIEEYKTTLKIIKQAILATDLALYIKRRGEFFELI




(SEQ ID NO: 77));
RKNQFNLEDPHQKELFLAMLMTACDLSAITKPWPIQQRIAELVATEFFDQG




AcGFP (2-239 of
DRERKELNLEPTDLMNREKKNKIPSMQVGFIDAICLQLYEALTHVSEDCFP




WT); stop)
LLDGCRKNRQKWQALAEQQGGSGGGSGGVSKGAELFTGIVPILIELNGDV





NGHKFSVSGEGEGDATYGKLTLKFICTTGKLPVPWPTLVTTLSYGVQCFSR





YPDHMKQHDFFKSAMPEGYIQERTIFFEDDGNYKSRAEVKFEGDTLVNRIE





LTGTDFKEDGNILGNKMEYNYNAHNVYIMTDKAKNGIKVNFKIRHNIEDG





SVQLADHYQQNTPIGDGPVLLPDNHYLSTQSALSKDPNEKRDHMIYFGFVT





AAAITHGMDELYK*







OT-001383 (Met;
MEETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFTDLNLV
8518
8548


hPDE5 (535-860 of
QNFQMKHEVLCRWILSVKKNYQKNVAYHNWRHAFNTAQCMFAALKAG




WT, R607Q); linker
KIQNKLTDLEILALLIAALSHDLDHRGVNNSYIQRSEHPLAQLYCHSIMEHH




(GGSGGGSGG
HFDQCLMILNSPGNQILSGLSIEEYKTTLKIIKQAILATDLALYIKRRGEFFEL




(SEQ ID NO: 77));
IRKNQFNLEDPHQKELFLAMLMTACDLSAITKPWPIQQRIAELVATEFFDQ




AcGFP (2-239 of
GDRERKELNIEPTDLMNREKKNKIPSMQVGFIDAICLQLYEALTHVSEDCFP




WT); stop)
LLDGCRKNRQKWQALAEQQGGSGGGSGGVSKGAELFTGIVPILIELNGDV





NGHKFSVSGEGEGDATYGKLTLKFICTTGKLPVPWPTLVTTLSYGVQCFSR





YPDHMKQHDFFKSAMPEGYIQERTIFFEDDGNYKSRAEVKFEGDTLVNRIE





LTGTDFKEDGNILGNKMEYNYNAHNVYIMTDKAKNGIKVNFKIRHNIEDG





SVQLADHYQQNTPIGDGPVLLPDNHYLSTQSALSKDPNEKRDHMIYFGFVT





AAAITHGMDELYK*







OT-001384 (Met;
MEETRELQSLAAAVVPFAQTRKITDFSFSDFELSDLETALCTIRMFTDLNLV
8519
8549


hPDE5 (535-860 of
QNFQMKHEVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMFAALKAGK




WT, S550F,
IQNKLTDLEILALLIAALSHDLDHRGVNNSYIQRSEHPLAQLYCHSIMEHHH




L554R); linker
FDQCLMILNSPGNQILSGLSIEEYKTTLKIIKQAILATDLALYIKRRGEFFELI




(GGSGGGSGG
RKNQFNLEDPHQKELFLAMLMTACDLSAITKPWPIQQRIAELVATEFFDQG




(SEQ ID NO: 77));
DRERKELNIEPTDLMNREKKNKIPSMQVGFIDAICLQLYEALTHVSEDCFPL




AcGFP (2-239 of
LDGCRKNRQKWQALAEQQGGSGGGSGGVSKGAELFTGIVPILIELNGDVN




WT); stop)
GHKFSVSGEGEGDATYGKLTLKFICTTGKLPVPWPTLVTTLSYGVQCFSRY





PDHMKQHDFFKSAMPEGYIQERTIFFEDDGNYKSRAEVKFEGDTLVNRIEL





TGTDFKEDGNILGNKMEYNYNAHNVYIMTDKAKNGIKVNFKIRHNIEDGS





VQLADHYQQNTPIGDGPVLLPDNHYLSTQSALSKDPNEKRDHMIYFGFVT





AAAITHGMDELYK*







OT-001385 (Met;
MEETRELQSLAAAVVSSAQTLKITDFSFSDIELSDLETALCTIRMFTDLNLV
8520
8550


hPDE5 (535-860 of
QNFQMKHEVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMFAALKAGK




WT, P549S, F564I,
IQNKLTDLEILALLIAALSHDLDHHGVNNSYIQRSEHPLAQLYCHSIMEHHH




R658H, A779T,
FDQCLMILNSPGNQILSGLSIEEYKTTLKIIKQAILATDLALYIKRRGEFFELI




R847G); linker
RKNQFNLEDPHQKELFLAMLMTACDLSAITKPWPIQQRITELVATEFFDQG




(GGSGGGSGG
DRERKELNIEPTDLMNREKKNKIPSMQVGFIDAICLQLYEALTHVSEDCFPL




(SEQ ID NO: 77));
LDGCGKNRQKWQALAEQQGGSGGGSGGVSKGAELFTGIVPILIELNGDVN




AcGFP (2-239 of
GHKFSVSGEGEGDATYGKLTLKFICTTGKLPVPWPTLVTTLSYGVQCFSRY




WT); stop)
PDHMKQHDFFKSAMPEGYIQERTIFFEDDGNYKSRAEVKFEGDTLVNRIEL





TGTDFKEDGNILGNKMEYNYNAHNVYIMTDKAKNGIKVNFKIRHNIEDGS





VQLADHYQQNTPIGDGPVLLPDNHYLSTQSALSKDPNEKRDHMIYFGFVT





AAAITHGMDELYK*









In addition to human PDE5, other phosphodiesterases may also be used to generate novel destabilizing domains The human PDE superfamily includes 11 structurally related but functionally distinct gene families (hPDE1 to hPDE11). These differ in their cellular functions, primary structures, affinities for cAMP and cGMP, catalytic properties and response to specific activators, inhibitors, effectors and mechanisms of regulation. As modular proteins, hPDEs exhibit a common structural organization with divergent amino-terminal regulatory regions and conserved carboxy-terminal catalytic core. The hPDE family proteins contain an N terminal regulatory region and a C terminal catalytic region. The N-terminal regulatory regions contain structural determinants that target individual hPDEs to different subcellular locations, and allow individual hPDEs to specifically respond to different post translational modification. The structural elements include dimerization domains, auto-inhibitory modules, binding sites for ligands and allosteric effectors. In contrast, the X ray crystal structure isolated catalytic domains of nine hPDE families (hPDE1 to hPDE5 and hPDE7 to hPDE10) have demonstrated that the catalytic domains of hPDEs share a similar topography, composed of ˜350 amino acids folded into 16 helices. Across the hPDE families, the active site forms a deep hydrophobic pocket that contains a hPDE specific, histidine-containing signature motif, HD(X2) H(X4) N (SEQ ID NO: 8377), and binding sites for two divalent metal ions that are essential for catalytic function. The affinity of hPDEs to specific cyclic nucleotides varies within the family-some hPDEs specifically hydrolyze cAMP (hPDE4, hPDE7 and hPDE8), whereas others hydrolyze cGMP (hPDE5, hPDE6 and hPDE9), and some hydrolyze both cAMP and cGMP (hPDE1, hPDE2, hPDE3, hPDE10 and hPDE11).


Similar to hPDE5, the catalytic domain or other functional domain of any hPDE family member may be mutagenized and screened for destabilizing mutations. Known inhibitors for each hPDE protein may also be tested for ligand-dependent stabilization.


In some embodiments, known mutations in phosphodiesterases that affect protein stability may be utilized to identify novel hPDE derived DDs. Mutations previously identified include, but are not limited to, hPDE5 (I778T), or hPDE6C (H602L), hPDE6C (E790K), hPDE6C (R104W), hPDE6C (Y323N), and hPDE6C (P391L) or hPDE4D (5752A), hPDE4D (5754A), hPDE4D (S752A, S754A), and hPDE4D (E757A, E758A, D759A) (Zhu et al. (2010) Mol Cell Biol. 4379-4390; Alexandre et al. (2015). Endocr. Relat. Cancer 22(4):519-30; Cheguru P. et al. (2015) Mol Cell Neurosci; 64: 1-8; the contents of each of which are incorporated herein by reference in their entirety).


In some embodiments, novel DDs may be generated from hPDE1 which is also known as calcium and calmodulin dependent phosphodiesterase. It has three subtypes hPDE1A, hPDE1B and hPDE1C. The enzyme contains three functional domains; a conserved catalytic core, a regulatory N-terminus and a C-terminus. The catalytic domains of hPDE1 have three helical subdomains; an N-terminal cyclin fold region, a linker region and a C-terminal helical bundle. Vinpocetine is a known inhibitor of hPDE1.


In some embodiments, novel DDs may be generated from hPDE2, a dual substrate enzyme that hydrolyzes both cAMP and cGMP. The distinguishing feature of this hPDE is that it is allosterically stimulated by cGMP binding to one of its GAF domains The crystal structure of hPDE2 GAF-B domain reveals that the GAF-B domain binds cGMP with high affinity and selectivity. Exemplary hPDE2 inhibitors include EHNA (erythro-9-(2-hydroxy-3-nonyl) adenine), Oxindole, PDP and BAY 60-7550. Inhibitors that selectively inhibit a hPDE2 isoform may also be used, for example, substituted pyrido (2,3-b) pyrazines having a hPDE2A selective inhibitory action (See, e.g., U.S. Pat. No. 9,527,841; the contents of which are incorporated by reference in its entirety.)


In some embodiments, novel DDs may be generated from hPDE3 which preferentially hydrolyses cAMP. Like other hPDE family members, it comprises three functional domains, a conserved catalytic core, a regulatory terminus and the C-terminus. The catalytic core of hPDE is characterized by a unique 44-amino acid insert. Amrinone, Cilostazol, Milrinone, Enoximone and Pimobendan are inhibitors for hPDE3 enzyme.


In some embodiments, novel DDs may be generated from hPDE4, the principal second messenger for immune response regulation and is responsible for the hydrolysis of cAMP. Four isoforms of hPDE4 exist with each isoform having a unique N terminal region that specifies cellular localization by mediating interactions with scaffolding proteins which may further comprise upstream conserved regions (UCRs). All isoforms share invariant catalytic domain. The catalytic pocket is lined with highly conserved and invariant residues, including an invariant glutamine (Q369) that forms crucial hydrogen bond with substrates. Analyses of crystal structure of hPDE-inhibitor complexes suggest that two conserved residues are essential for inhibitor binding. The formation of hydrogen bonds with invariant glutamine determines the orientation of the inhibitors and conserved hydrophobic residues (1336 and F340) form a hydrophobic clamp that anchors inhibitors in the pocket. A number of small molecules can inhibit hPDE 4 activity, some of which are FDA approved such as AN2728 (4-[(1-hydroxy-1,3-dihydro-2,1-benzoxaborol-5-yl) oxy]benzonitrile), Apremilast/CC10004 (N-{2-[(1S)-1-(3-Ethoxy-4-methoxyphenyl)-2-(methyl sulfonyl) ethyl]-1,3-dioxo-2,3-dihydro-1H-isoindol-4-yl}acetamide), and Roflumilast. Other small molecules that inhibit hPDE4 also include E6005/RVT501, Cilomilast/SB-207,499, Ibudilast (AV-411 or MN-166), Mesembrenone, Piclamilast/RP 73401, Rolipram, Atizoram/CP-80633, Arofylline, CC-1088, Catramilast, CGH-2466, Cipamfylline, Drotaverine, Filaminast/WAY-PDA 641, HT-0712, DNS-001, ICI-63197, Indimilast, Irsogladine/MN 1695, Lirimilast/BAY 19-8004, Oglemilast, Revamilast, Ro 20-1724, Ronomilast, GSK256066, DC-TA-46, AWD 12-281 and YM-976.


In some embodiments, novel DDs may be generated from hPDE6. This holoenzyme includes hPDE6 alpha, hPDE6 beta and/or two identical inhibitory subunits of hPDE6 gamma. hPDE6 alpha and beta forms comprise three domains: two N-terminal GAF domains and one C-terminal catalytic domain. The non-catalytic GAF domains are responsible for cGMP binding.


In some embodiments, novel DDs may be generated from hPDE7, a cAMP specific hPDE which consists of two genes, hPDE7A and hPDE7B. There are no known regulatory domains on the N terminus as established for most of the other hPDE families, although consensus PKA phosphorylation sites exist in this region. Several small molecules can inhibit PDE7, including BRL-50481 (N, N,2-Trimethyl-5-nitrobenzenesulfonamide) and ASB 16165 (1H-Thieno(2,3-C) pyrazole-5-carboxamide, 1-cyclohexyl-N-(6-(4-hydroxy-1-piperidinyl)-3-pyridinyl)-3-methyl).


In some embodiments, novel DDs may be generated from hPDE8. Two subfamilies of hPDE8 exist and both they have very high affinity for the substrate cAMP and are insensitive to the non-specific PDE inhibitor IBMX. Each protein contains a catalytic core, a PAS (Per, Arnt and Sim) and a REC (receiver) domain The crystal structure of the catalytic core of hPDE8 identified Tyr748 residue as a unique residue that distinguishes hPDE8 inhibitor binding from other hPDE proteins bound to inhibitors. PF-04957325 (Pfizer) is a small molecule inhibitor of hPDE8.


In some embodiments, novel DDs may be generated from hPDE9, which has the highest affinity for cGMP. The primary structure of hPDE9A is simple as it does not appear to contain any GAF domains or other N-terminal regulatory sequences found in other hPDEs. The catalytic pocket is lined with highly conserved and invariant residues, including an invariant glutamine Gln 453 in hPDE9A2 that forms crucial hydrogen bond with substrates. The formation of hydrogen bonds with invariant glutamine determines the orientation of the inhibitors and conserved hydrophobic residues form a hydrophobic clamp that anchors inhibitors in the pocket and wedges their ring structures against F456 in hPDE9A. Tested hPDE9 inhibitors may include BAY73-6691 (1-(2-chlorophenyl)-6-[(2R)-3,3,3-trifluoro-2-methylpropyl]-1,5-dihydro-4H-pyrazolo[3,4-d] pyrimidine-4-one), PF-04447943 (6-[(3S,4S)-4-methyl-1-(pyrimidin-2-ylmethyl)pyrrolidin-3-yl]-1-(oxan-4-yl)-2H-pyrazolo[3,4-d]pyrimidin-4-one) and WYQ-C28L.


In some embodiments, novel DDs may be generated from hPDE10, which can hydrolyze both cAMP and cGMP. Like some other hPDE family proteins, hPDE10 comprises 2 GAF domains in the N terminal region, a Protein Kinase A phosphorylation site and a catalytic domain. The catalytic pocket is lined with highly conserved and invariant residues, including an invariant glutamine Q726 in hPDE10A2 that forms crucial hydrogen bond with substrates. Several PDE10 inhibitors are under clinical trials including OMS 824, Papaverine and PF-2545920 (2-(4-(1-methyl-4-pyridin-4-yl-1H-pyrazol-3-yl) phenoxymethyl) quinolone).


In some embodiments, novel DDs may be generated from hPDE11. Like hPDE10, the recently discovered hPDE11 can hydrolyze both cAMP and cGMP. It comprises of only one gene with four isoform variants. The longest variant, hPDE11A4, has two N-terminal GAF domains, whereas the other variants are truncations of this variant of varying lengths.


In some embodiments, any of the destabilizing mutations related to hPDE5 described herein may be structurally mapped onto other phosphodiesterases to generate destabilizing domains In one embodiment, mutations that destabilize hPDE5, and which subsequently result in stabilization in the presence of sildenafil and/or vardenafil may be engineered onto hPDE6. In one embodiment, mutations that destabilize hPDE5, and which subsequently result in stabilization in the presence of Tadalafil may be engineered onto hPDE11.


The full length hPDEs and their catalytic domains that may be utilized to derive novel DDs are listed in Table 5.









TABLE 5







Sequences of human PDE proteins and their catalytic domains









PDE protein




(Uniprot ID or

AA


domain

SEQ ID


description)
Amino Acid sequence
NO:





hPDE1A (Uniprot
MDDHVTIRKKHLQRPIFRLRCLVKQLERGDVNVVDLKKNIEYAASVLEAVYIDETRRLLDT
107


ID: P54750)
EDELSDIQTDSVPSEVRDWLASTFTRKMGMTKKKPEEKPKFRSIVHAVQAGIFVERMYRKT




YHMVGLAYPAAVIVTLKDVDKWSFDVFALNEASGEHSLKFMIYELFTRYDLINRFKIPVSC




LITFAEALEVGYSKYKNPYHNLIHAADVTQTVHYIMLHTGIMHWLTELEILAMVFAAAIHD




YEHTGTTNNFHIQTRSDVAILYNDRSVLENHHVSAAYRLMQEEEMNILINLSKDDWRDLR




NLVIEMVLSTDMSGHFQQIKNIRNSLQQPEGIDRAKTMSLILHAADISHPAKSWKLHYRWT




MALMEEFFLQGDKEAELGLPFSPLCDRKSTMVAQSQIGHDFIVEPTTSLLTDSTEKIVIPLIE




EASKAETSSYVASSSTTIVGLHIADALRRSNTKGSMSDGSYSPDYSLAAVDLKSFKNNLVDI




IQQNKERWKELAAQEARTSSQKCEFIHQ






hPDE1A Catalytic
FKIPVSCLITFAEALEVGYSKYKNPYHNLIHAADVTQTVHYIMIHTGIMHWLTELEILAMV
108


domain (Amino
FAAAIHDYEHTGTTNNFHIQTRSDVAILYNDRSVLENHHVSAAYRLMQEEEMNILINLSKD



acid 193-515 of
DWRDLRNLVIEMVLSTDMSGHFQQIKNIRNSLQQPEGIDRAKTMSLILHAADISHPAKSWK



PDEIA)
LHYRWTMALMEEFFLQGDKEAELGLPFSPLCDRKSTMVAQSQIGFIDFIVEPTFSLLTDSTE




KIVIPLIEEASKAETSSYVASSSTTIVGLHIADALRRSNTKGSMSDGSYSPDYSLAAVDLKSF




KNNLVDIIQQNKERW






hPDE1B (Uniprot
MELSPRSPPEMLEESDCPSPLELKSAPSKKMWIKLRSLLRYMVKQLENGEINIEELKKNLEY
109


ID: Q01064)
TASLLEAVYIDETRQILDTEDELQELRSDAVPSEVRDWLASTFTQQARAKGRRAEEKPKFR




SIVHAVQAGIFVERMFRRTYTSVGPTYSTAVLNCLKNLDLWCFDVFSLNQAADDHALRTI




VFELLTRHNLISRFKIPTVFLMSFLDALETGYGKYKNPYHNQIHAADVTQTVHCFLLRTGM




VHCLSEIELLAIIFAAAIHDYEHTGTTNSFHIQTKSECAIVYNDRSVLENHHISSVFRLMQDD




EMNIFINLTKDEFVELRALVIEMVLATDMSCHFQQVKTMKTALQQLERIDKPKALSLLLHA




ADISRPTKQWLVHSRWTKALMEEFFRQGDKEAELGLPFSPLCDRTSTLVAQSQIGFIDFIVE




PTFSVLTDVAEKSVQPLADEDSKSKNQPSFQWRQPSLDVEVGDPNPDVVSFRSTWVKRIQE




NKQKWKERAASGITNQMSIDELSPCEEEAPPSPAEDEHNQNGNLD






hPDE1B Catalytic
FKIPTVFLMSFLDALETGYGKYKNPYHNQIHAADVTQTVHCFLLRTGMVHCLSEIELLAIIF
110


domain (Amino
AAAIHDYEHTGTTNSFHIQTKSECAIVYNDRSVLENHHISSVFRLMQDDEMNIFINLTKDEF



acid 197-496 of
VELRALVIEMVLATDMSCHFQQVKTMKTALQQLERIDKPKALSLLLHAADISHPTKQWLV



PDE1B)
HSRWTKALMEEFFRQGDKEAELGLPFSPLCDRTSTLVAQSQIGFIDFIVEPTFSVLTDVAEK




SVQPLADEDSKSKNQPSFQWRQPSLDVEVGDPNPDVVSFRSTWVKRIQENKQKW






hPDE1C (Uniprot
MESPTKEIEEFESNSLKYLQPEQIEKIWLRLRGLRKYKKTSQRLRSLVKQLERGEASVVDLK
111


ID: Q14123)
KNLEYAATVLESVYIDETRRLLDTEDELSDIQSDAVPSEVRDWLASTFTRQMGMMLRRSD




EKPRFKSIVHAVQAGIFVERMYRRTSNMVGLSYPPAVIEALKDVDKWSFDVFSLNEASGD




HALKFIFYELLTRYDLISRFKIPISALVSFVEALEVGYSKHKNPYHNLMHAADVTQTVHYLL




YKTGVANWLTELEIFAIIFSAAIHDYEHTGTTNNFHIQTRSDPAILYNDRSVLENHRLSAAY




RLLQDDEEMNILINLSKDDWREFRTLVIEMVMATDMSCHFQQIKAMKTALQQPEAIEKPK




ALSLMLHTADISRPAKAWDLHHRWTMSLLEEFFRQGDREAELGLPFSPLCDRKSTMVAQS




QVGFIDFIVEPTFTVLTDMTEKIVSPLIDETSQTGGTGQRRSSLNSISSSDAKRSGVKTSGSEG




SAPINNSVISVDYKSFKATWTEVVHINRERWRAKVPKEEKAKKEAEEKARLAAEEQQKEM




EAKSQAEEGASGKAEKKTSGETKNQVNGTRANKSDNPRGKNSKAEKSSGEQQQNGDFKD




GKNKTDKKDHSNIGNDSKKTDGTKQRSHGSPAPSTSSTCRLTLPVIKPPLRHFKRPAYASSS




YAPSVSKKTDEHPARYKMLDQRIKMKKIQNISHNWNRK






hPDE1C Catalytic
FKIPISALVSFVEALEVGYSKHKNPYHNLMHAADVTQTVHYLLYKTGVANWLTELEIFAIIF
112


domain (Amino
SAAIHDYEHTGTTNNFHIQTRSDPAILYNDRSVLENHHLSAAYRLLQDDEEMNILINLSKDD



acid 202-521 of
WREFRTLVIEMVMATDMSCHFQQIKAMKTALQQPEAIEKPKALSLMLHTADISRPAKAW



PDE1C)
DLHHRWTMSLLEEFFRQGDREAELGLPFSPLCDRKSTMVAQSQVGFIDFIVEPTFTVLTDM




TEKIVSPLIDETSQTGGTGQRRSSLNSISSSDAKRSGVKTSGSEGSAPINNSVISVDYKSFKAT




WTEVVHINRERW






hPDE2A (Uniprot
MGQACGHSILCRSQQYPAARPAEPRGQQVFLKPDEPPPPPQPCADSLQDALLSLGSVIDISG
113


ID: O00408)
LQRAVKEALSAVLPRVETVYTYLLDGESQLVCEDPPHELPQEGKVREAIISQKRLGCNGLG




FSDLPGKPLARLVAPLAPDTQVLVMPLADKEAGAVAAVILVHCGQLSDNEEWSLQAVEK




HTLVALRRVQVLQQRGPREAPRAVQNPPEGTAEDQKGGAAYTDRDRKILQLCGELYDLD




ASSLQLKVLQYLQQETRASRCCLLLVSEDNLQLSCKVIGDKVLGEEVSFPLTGCLGQVVED




KKSIQLKDLTSEDVQQLQSMLGCELQAMLCVPVISRATDQVVALACAFNKLEGDLFTDED




EHVIQHCFHYTSTVLTSTLAFQKEQKLKCECQALLQVAKNLFTHLDDVSVLLQEIITEARNL




SNAEICSVFLLDQNELVAKVFDGGVVDDESYEIRIPADQGIAGHVATTGQILNIPDAYAHPL




FYRGVDDSTGFRTRNILCFPIKNENQEVIGVAELVNKINGPWFSKEDEDLATAFSIYCGISIA




HSLLYKKVNEAQYRSHLANEMMMYHMKVSDDEYTKLLHDGIQPVAAIDSNFASFTYTPR




SLPEDDTSMAILSMLQDMNFINNYKIDCPTLARFCLMVKKGYRDPPYHNWMHAFSVSHFC




YLLYKNLELTNYLEDIEIFALFISCMCHDLDHRGTNNSFQVASKSVLAALYSSEGSVMERH




HFAQAIAILNTHGCNIFDHFSRKDYQRMLDLMRDIILATDLAHHLRIFKDLQKMAEVGYDR




NNKQHHRLLLCLLMTSCDLSDQTKGWKTTRKIAELIYKEFFSQGDLEKAMGNRPMEMMD




REKAYIPELQISFMEHIAMPIYKLLQDLFPKAAELYERVASNREHWTKVSHKFTIRGLPSNN




SLDFLDEEYEVPDLDGTRAPINGCCSLDAE






hPDE2A Catalytic
KIDCPTLARFCLMVKKGYRDPPYHNWMHAFSVSHFCYLLYKNLELTNYLEDILIFALFISC
114


domain (Amino
MCHDLDHRGTNNSFQVASKSVLAALYSSEGSVMERHHFAQAIAILNTHGCNIFDHFSRKD



acid 633-891 of
YQRMLDLMRDIILATDLAHHLRIFKDLQKMAEVGYDRNNKQHHRLLLCLLMTSCDLSDQ



PDE2A)
TKGWKTTRKIAELIYKEFFSQGDLEKAMGNRPMEMMDREKAYIPELQISFMEHIAMPIYKL




LQDLFPKAAELYERVASN






hPDE3A (Uniprot
MAVPGDAARVRDKPVHSGVSQAPTAGRDCHHRADPASPRDSGCRGCWGDLVLQPLRSSR
115


ID: Q14432)
KLSSALCAGSLSFLLALLVRLVRGEVGCDLEQCKEAAAAEEEEAAPGAEGGVFPGPRGGA




PGGGARLSPWLQPSALLFSLLCAFFWMGLYLLRAGVRLPLAVALLAACCGGEALVQIGLG




VGEDHLLSLPAAGVVLSCLAAATWLVLRLRLGVLMIALTSAVRTVSLISLERFKVAWRPY




LAYLAGVLGILLARYVEQILPQSAEAAPREHLGSQLIAGTKEDIPVFKRRRRSSSVVSAEMS




GCSSKSHRRTSLPCIPREQLMGHSEWDHKRGPRGSQSSGTSITVDIAVMGEAHGLITDLLAD




PSLPPNVCTSLRAVSNLLSTQLTFQAIHKPRVNPVTSLSENYTCSDSEESSEKDKLAIPKRLR




RSLPPGLLRRVSSTWTTTTSATGLPTLEPAPVRRDRSTSIKLQEAPSSSPDSWNNPVMMTLT




KSRSFTSSYAISAANHVKAKKQSRPGALAKISPLSSPCSSPLQGTPASSLVSKISAVQFPESA




DTTAKQSLGSHRALTYTQSAPDLSPQILTPPVICSSCGRPYSQGNPADEPLERSGVATRTPSR




TDDTAQVTSDYETNNNSDSSDIVQNEDETECLREPLRKASACSTYAPETMMFLDKPILAPE




PLVMDNLDSIMEQLNTWNFPIFDLVENIGRKCGRILSQVSYRLFEDMGLFEAFKIPIREFMN




YFHALEIGYRDIPYHNRIHATDVLHAVWYLTTQPIPGLSTVINDHGSTSDSDSDSGFTHGHM




GYVESKTYNVTDDKYGCLSGNIPALELMALYVAAAMHDYDHPGRTNAFLVATSAPQAVL




YNDRSVLENHHAAAAWNLFMSRPEYNFLINLDHVEFKHFRFLVIEAILATDLKKHFDFVA




KFNGKVNDDVGIDWTNENDRLLVCQMCIKLADINGPAKCKELHLQWTDGIVNEFYEQGD




EEASLGLPISPFMDRSAPQLANLQESFISHIVGPLCNSYDSAGLMPGKWVEDSDESGDTDDP




EEEEEEAPAPNEEETCENNESPKKKTFKRRKIYCQITQHLLQNHKMWKKVIEEEQRLAGIE




NQSLDQTPQSHSSEQIQAIKEEEEEKGKPRGEEIPTQKPDQ






hPDE3A Catalytic
FKIPIREFMNYFHALEIGYRDIPYHNRIHATDVLHAVWYLTTQPIPGLSTVINDHGSTSDSDS
116


domain (Amino
DSGFTHGHMGYVFSKTYNVTDDKYGCLSGNIPALELMALYVAAAMHDYDHPGRTNAFL



acid 728-1086 of
VATSAPQAVLYNDRSVLENHHAAAAWNLFMSRPEYNFLINLDHVEFKHFRFLVIEAILATD



PDE3A)
LKKHFDFVAKFNGKVNDDVGIDWTNENDRLLVCQMCIKLADINGPAKCKELHLQWTDGI




VNEFYEQGDEEASLGLPISPFMDRSAPQLANLQESFISHIVGPLCNSYDSAGLMPGKWVEDS




DESGDTDDPEEEEEEAPAPNEEETCENNESPKKKTFKRRKIYCQITQHLLQNHKMW






hPDE3B (Uniprot
MRRDERDAKAMRSLQPPDGAGSPPESLRNGYVKSCVSPLRQDPPRGEFFHLCRECNVELRP
117


ID: Q13370)
PPASPQQPRRCSPFCRARLSLGALAAFVLALLLGAEPESWAAGAAWLRTLLSVCSHSLSPL




FSIACAFFFLTCFLTRTKRGPGPGRSCGSWWLLALPACCYLGDFLVWQWWSWPWGDGDA




GSAAPHTPPEAAAGRLLLVLSCVGLLLTLAHPLRLRHCVLVLLLASFVWWVSFTSLGSLPS




ALRPLLSGLVGGAGCLLALGLDHFFQIREAPLHPRLSSAAEEKVPVIRPRRRSSCVSLGETA




ASYYGSCKIFRRPSLPCISREQMILWDWDLKQWYKPHYQNSGGGNGVDLSVLNEARNMV




SDLLTDPSLPPQVISSLRSISSLMGAFSGSCRPKINPLTPFPGFYPCSEIEDPAEKGDRKLNKG




LNRNSLPTPQLRRSSGTSGLLPVEQSSRWDRNNGKRPHQEFGISSQGCYLNGPFNSNLLTIP




KQRSSSVSLTHHVGLRRAGVLSSLSPVNSSNHGPVSTGSLTNRSPIEFPDTADFLNKPSVILQ




RSLGNAPNTPDFYQQLRNSDSNLCNSCGHQMLKYVSTSESDGTDCCSGKSGEEENIFSKES




FKLMETQQEEETEKKDSRKLFQEGDKWLTEEAQSEQQTNIEQEVSLDLILVEEYDSLIEKM




SNWNFPIFELVEKMGEKSGRILSQVMYTLFQDTGLLEIFKIPTQQFMNYFRALENGYRDIPY




HNRIHATDVLHAVWYLTTRPVPGLQQIHNGCGTGNETDSDGRINHGRIAYISSKSCSNPDE




SYGCLSSNIPALELMALYVAAAMHDYDHPGRTNAFLVATNAPQAVLYNDRSVLENHHAA




SAWNLYLSRPEYNFLLHLDHVEFKRFRFLVIEAILATDLKKHFDFLAEFNAKANDVNSNGI




EWSNENDRLLVCQVCIKLADINGPAKVRDLHLKWTEGIVNEFYEQGDEEANLGLPISPFMD




RSSPQLAKLQESFITHIVGPLCNSYDAAGLLPGQWLEAEEDNDTESGDDEDGEELDTEDEE




MENNLNPKPPRRKSRRRIFCQLMHHLTENHKIWKEIVEEEEKCKADGNKLQVENSSLPQA




DEIQVIEEADEEE






hPDE3B Catalytic
FKIPTQQFMNYFRALENGYRDIPYHNRIHATDVLHAVWYLTTRPVPGLQQIHNGCGTGNE
118


domain (Amino
TDSDGRINHGRIAYISSKSCSNPDESYGCLSSNIPALELMALYVAAAMHDYDHPGRTNAFL



acid 713-1072 of
VATNAPQAVLYNDRSVLENHHAASAWNLYLSRPEYNFLLHLDHVEFKRFRFLVIEAILAT



PDE3B)
DLKKHFDFLAEFNAKANDVNSNGIEWSNENDRLLVCQVCIKLADINGPAKVRDLHLKWTE




GIVNEFYEQGDEEANLGLPISPFMDRSSPQLAKLQESFITHIVGPLCNSYDAAGLLPGQWLE




AEEDNDTESGDDEDGEELDTEDEEMENNLNPKPPRRKSRRRIFCQLMHHLTENHKIW






hPDE4A (Uniprot
MEPPTVPSERSLSLSLPGPREGQATLKPPPQHLWRQPRTPIRIQQRGYSDSAERAERERQPH
119


ID: P27815)
RPIERADAMDTSDRPGLRTTRMSWPSSFHGTGTGSGGAGGGSSRRFEAENGPTPSPGRSPL




DSQASPGLVLHAGAATSQRRESFLYRSDSDYDMSPKTMSRNSSVTSEAHAEDLIVTPFAQV




LASLRSVRSNFSLLTNVPVPSNKRSPLGGPTPVCKATLSEETCQQLARETLEELDWCLEQLE




TMQTYRSVSEMASHKFKRMLNRELTHLSEMSRSGNQVSEYISTTFLDKQNEVEIPSPTMKE




REKQQAPRPRPSQPPPPPVPHLQPMSQITGLKKLMHSNSLNNSNIPRFGVKTDQEELLAQEL




ENLNKWGLNIFCVSDYAGGRSLTCIMYMIFQERDLLKKFRIPVDTMVTYMLTLEDHYHAD




VAYHNSLHAADVLQSTHVLLATPALDAVFTDLEILAALFAAAIHDVDHPGVSNQFLINTNS




ELALMYNDESVLENHHLAVGFKLLQEDNCDIFQNLSKRQRQSLRKMVIDMVLATDMSKH




MTLLADLKTMVETKKVTSSGVLLLDNYSDRIQVLRNMVHCADLSNPTKPLELYRQWTDRI




MAEFFQQGDRERERGMEISPMCDKHTASVEKSQVGFIDYIVHPLWETWADLVHPDAQEIL




DTLEDNRDWYYSAIRQSPSPPPEEESRGPGHPPLPDKFQFELTLEEEEEEEISMAQIPCTAQE




ALTAQGLSGVEEALDATIAWEASPAQESLEVMAQEASLEAELEAVYLTQQAQSTGSAPVA




PDEFSSREEFVVAVSHSSPSALALQSPLLPAWRTLSVSEHAPGLPGLPSTAAEVEAQREHQA




AKRACSACAGTFGEDTSALPAPGGGGSGGDPT






hPDE4A Catalytic
QPMSQITGLKKLMHSNSLNNSNIPRFGVKTDQEELLAQELENLNKWGLNIFCVSDYAGGRS
120


domain (Amino
LTCIMYMIFQERDLLKKFRIPVDTMVTYMLTLEDHYHADVAYHNSLHAADVLQSTHVLLA



acid 330-723 of
TPALDAVFTDLEILAALFAAAIHDVDHPGVSNQFLINTNSELALMYNDESVLENHHLAVGF



PDE4A)
KLLQEDNCDIFQNLSKRQRQSLRKMVIDMVLATDMSKHMTLLADLKTMVETKKVTSSGV




LLLDNYSDRIQVLRNMVHCADLSNPTKPLELYRQWTDRIMAEFFQQGDRERERGMEISPM




CDKHTASVEKSQVGFIDYIVHPLWETWADLVHPDAQEILDTLEDNRDWYYSAIRQSPSPPP




EEESRGPGHPPLPDKFQFELTLEEEEEEEISM






hPDE4B (Uniprot
MKKSRSVMTVMADDNVKDYFECSLSKSYSSSSNTLGIDLWRGRRCCSGNLQLPPLSQRQS
121


ID: Q07343)
ERARTPEGDGISRPTTLPLTTLPSIAITTVSQECFDVENGPSPGRSPLDPQASSSAGLVLHATF




PGHSQRRESFLYRSDSDYDLSPKAMSRNSSLPSEQHGDDLIVTPFAQVLASLRSVRNNFTIL




TNLHGTSNKRSPAASQPPVSRVNPQEESYQKLAMETLEELDWCLDQLETIQTYRSVSEMAS




NKFKRMLNRELTHLSEMSRSGNQVSEYISNTFLDKQNDVEIPSPTQKDREKKKKQQLMTQI




SGVKKLMHSSSLNNTSISRFGVNTENEDHLAKELEDLNKWGLNIFNVAGYSHNRPLTCIMY




AIFQERDLLKTFRISSDTFITYMMTLEDHYHSDVAYHNSLHAADVAQSTHVLLSTPALDAV




FTDLEILAAIFAAAIHDVDHPGVSNQFLINTNSELALMYNDESVLENHHLAVGFKLLQEEH




CDIFMNLTKKQRQTLRKMVIDMVLATDMSKHMSLLADLKTMVETKKVTSSGVLLLDNYT




DRIQVLRNMVHCADLSNPTKSLELYRQWTDRIMEEFFQQGDKERERGMEISPMCDKHTAS




VEKSQVGFIDYIVHPLWETWADLVQPDAQDILDTLEDNRNWYQSMIPQSPSPPLDEQNRD




CQGLMEKFQFELTLDEEDSEGPEKEGEGHSYFSSTKTLCVIDPENRDSLGETDIDIATEDKSP




VDT






hPDE4B Catalytic
VNTENEDHLAKELEDLNKWGLNIFNVAGYSHNRPLTCIMYAIFQERDLLKTFRISSDTFITY
122


domain (Amino
MMTLEDHYHSDVAYHNSLHAADVAQSTHVLLSTPALDAVFTDLEILAAIFAAAIHDVDHP



acid 330-682 of
GVSNQFLINTNSELALMYNDESVLENHHLAVGFKLLQEEHCDIFMNLTKKQRQTLRKMVI



PDE4B)
DMVLATDMSKHMSLLADLKTMVETKKVTSSGVLLLDNYTDRIQVLRNMVHCADLSNPT




KSLELYRQWTDRIMEEFFQQGDKERERGMEISPMCDKHTASVEKSQVGFIDYIVHPLWET




WADLVQPDAQDILDTLEDNRNWYQSMIPQSPSPPLDEQNRDCQGLMEKFQFEL






hPDE4C (Uniprot
MENLGVGEGAEACSRLSRSRGRHSMTRAPKHLWRQPRRPIRIQQRFYSDPDKSAGCRERD
123


ID: Q08493)
LSPRPELRKSRLSWPVSSCRRFDLENGLSCGRRALDPQSSPGLGRIMQAPVPHSQRRESFLY




RSDSDYELSPKAMSRNSSVASDLHGEDMIVTPFAQVLASLRTVRSNVAALARQQCLGAAK




QGPVGNPSSSNQLPPAEDTGQKLALETLDELDWCLDQLETLQTRHSVGEMASNKFKRILN




RELTHLSETSRSGNQVSEYISRTFLDQQTEVELPKVTAEEAPQPMSRISGLHGLCHSASLSSA




TVPRFGVQTDQEEQLAKELEDTNKWGLDVFKVAELSGNRPLTAIIFSIFQERDLLKTFQIPA




DTLATYLLMLEGHYHANVAYHNSLHAADVAQSTHVLLATPALEAVFTDLEILAALFASAI




HDVDHPGVSNQFLINTNSELALMYNDASVLENHHLAVGFKLLQAENCDIFQNLSAKQRLS




LRRMVIDMVLATDMSKHMNLLADLKTMVETKKVTSLGVLLLDNYSDRIQVLQNLVHCA




DLSNPTKPLPLYRQWTDRIMAEFFQQGDRERESGLDISPMCDKHTASVEKSQVGFIDYIAH




PLWETWADLVHPDAQDLLDTLEDNREWYQSKIPRSPSDLTNPERDGPDRFQFELTLEEAEE




EDEEEEEEGEETALAKEALELPDTELLSPEAGPDPGDLPLDNQRT






hPDE4C Catalytic
VQTDQEEQLAKELEDTNKWGLDVFKVAELSGNRPLTAIIFSIFQERDLLKTFQIPADTLATY
124


domain (Amino
LLMLEGHYHANVAYHNSLHAADVAQSTHVLLATPALEAVFTDLEILAALFASAIHDVDHP



acid 312-677 of
GVSNQFLINTNSELALMYNDASVLENHHLAVGFKLLQAENCDIFQNLSAKQRLSLRRMVI



PDE4C)
DMVLATDMSKHMNLLADLKTMVETKKVTSLGVLLLDNYSDRIQVLQNLVHCADLSNPTK




PLPLYRQWTDRIMAEFFQQGDRERESGLDISPMCDKHTASVEKSQVGFIDYIAHPLWETWA




DLVHPDAQDLLDTLEDNREWYQSKIPRSPSDLTNPERDGPDRFQFELTLEEAEEEDEEEEEE




GE






hPDE4D (Uniprot
MEAEGSSAPARAGSGEGSDSAGGATLKAPKHLWRHEQHHQYPLRQPQERLLHPHHHLPPP
125


ID: Q08499)
PPPSPQPQPQCPLQPPPPPPLPPPPPPPGAARGRYASSGATGRVRHRGYSDTERYLYCRAMD




RTSYAVETGHRPGLKKSRMSWPSSFQGLRRFDVDNGTSAGRSPLDPMTSPGSGLILQANFV




HSQRRESFLYRSDSDYDLSPKSMSRNSSIASDIHGDDLIVTPEAQVLASLRTVRNNFAALTN




LQDRAPSKRSPMCNQPSINKATITEEAYQKLASETLEELDWCLDQLETLQTRHSVSEMASN




KFKRMLNRELTHLSEMSRSGNQVSEFISNTFLDKQHEVEIPSPTQKEKEKKKRPMSQISGVK




KLMHSSSLTNSSIPRFGVKTEQEDVLAKELEDVNKWGLHVFRIAELSGNRPLTVIMHTIFQE




RDLLKTFKIPVDTLITYLMTLEDHYHADVAYHNNIHAADVVQSTHVLLSTPALEAVFTDLE




ILAAIFASAIHDVDHPGVSNQFLINTNSELALMYNDSSVLENHHLAVGFKLLQEENCDIFQN




LTKKQRQSLRKMVIDIVLATDMSKHMNLLADLKTMVETKKVTSSGVLLLDNYSDRIQVLQ




NMVHCADLSNPTKPLQLYRQWTDRIMEEFFRQGDRERERGMEISPMCDKHNASVEKSQV




GFIDYIVHPLWETWADLVHPDAQDILDTLEDNREWYQSTIPQSPSPAPDDPEEGRQGQTEK




FQFELTLEEDGESDTEKDSGSQVEEDTSCSDSKTLCTQDSESTEIPLDEQVEEEAVGEEEESQ




PEACVIDDRSPDT






hPDE4D Catalytic
VKTEQEDVLAKELEDVNKWGLHVERIAELSGNRPLTVIMHTIFQERDLLKTFKIPVDTLITY
126


domain (Amino
LMTLEDHYHADVAYHNNIHAADVVQSTHVLLSTPALEAVFTDLEILAAIFASAIHDVDHPG



acid 386-751 of
VSNQFLINTNSELALMYNDSSVLENHHLAVGFKLLQEENCDIFQNLTKKQRQSLRKMVIDI



PDE4D)
VLATDMSKHMNLLADLKTMVETKKVTSSGVLLLDNYSDRIQVLQNMVHCADLSNPTKPL




QLYRQWTDRIMEEFFRQGDRERERGMEISPMCDKHNASVEKSQVGFIDYIVHPLWETWAD




LVHPDAQDILDTLEDNREWYQSTIPQSPSPAPDDPEEGRQGQTEKFQFELTLEEDGESDTEK




D






hPDE6A (Uniprot
MGEVTAEEVEKELDSNIGFAKQYYNLHYRAKLISDLLGAKEAAVDFSNYHSPSSMEESEIIF
127


ID: P16499)
DLLRDFQENLQTEKCIFNVMKKLCFLLQADRMSLFMYRTRNGIAELATRLFNVHKDAVLE




DCLVMPDQEIVEPLDMGIVGHVAHSKKIANVPNTEEDEHFCDFVDILTEYKTKNILASPIMN




GKDVVAIIMAVNKVDGSHFTKRDEEILLKYLNFANLIMKVYHLSYLHNCETRRGQILLWS




GSKVFEELTDIERQFHKALYTVRAFLNCDRYSVGLLDMTKQKEFFDVWPVLMGEVPPYSG




PRTPDGREINFYKVIDYILHGKEDIKVIPNPPPDHWALVSGLPAYVAQNGLICNIMNAPAED




FFAFQKEPLDESGWMIKNVLSMPIVNKKEEIVGVATFYNRKDGKPFDEMDETLMESLTQFL




GWSVLNPDTYESMNKLENRKDIFQDIVKYHVKCDNEEIQKILKTREVYGKEPWECEEEEL




AEILQAELPDADKYEINKFHFSDLPLTELELVKCGIQMYYELKVVDKFHIPQEALVRFMYSL




SKGYRKITYHNWRHGFNVGQTMFSLLVTGKLKRYFTDLEALAMVTAAFCHDIDHRGTNN




LYQMKSQNPLAKLHGSSILERHHLEFGKTLLRDESLNIFQNLNRRQHEHAIHMMDIAIIATD




LALYFKKRTMFQKIVDQSKTYESEQEWTQYMMLEQTRKEIVMAMMMTACDLSAITKPW




EVQSQVALLVAAEFWEQGDLERTVLQQNPIPMMDRNKADELPKLQVGFIDFVCTFVYKEF




SRFHEEITPMLDGITNNRKEWKALADEYDAKMKVQEEKKQKQQSAKSAAAGNQPGGNPS




PGGATTSKSCCIQ






hPDE6A Catalytic
EEEELAEILQAELPDADKYEINKFHFSDLPLTELELVKCGIQMYYELKVVDKEHIPQEALVR
128


domain (Amino
FMYSLSKGYRKITYHNWRHGFNVGQTMFSLLVTGKLKRYFTDLEALAMVTAAFCHDIDH



acid 483-819 of
RGTNNLYQMKSQNPLAKLHGSSILERHHLEFGKTLLRDESLNIFQNLNRRQHEHAIHMMDI



PDE6A)
AIIATDLALYFKKRTMFQKIVDQSKTYESEQEWTQYMMLEQTRKEIVMAMMMTACDLSA




ITKPWEVQSQVALLVAAEFWEQGDLERTVLQQNPIPMMDRNKADELPKLQVGFIDFVCTF




VYKEFSREHEEITPMLDGITNNRKEWKALADEYDAK






hPDE6B (Uniprot
MSLSEEQARSFLDQNPDFARQYFGKKLSPENVAAACEDGCPPDCDSLRDLCQVEESTALLE
129


ID: P35913)
LVQDMQESINMERVVFKVLRRLCTLLQADRCSLFMYRQRNGVAELATRLFSVQPDSVLED




CLVPPDSEIVEPLDIGVVGHVAQTKKMVNVEDVAECPHFSSFADELTDYKTKNMLATPIM




NGKDVVAVIMAVNKLNGPFFTSEDEDVFLKYLNFATLYLKIYHLSYLHNCETRRGQVLLW




SANKVFEELTDIERQFHKAFYTVRAYLNCERYSVGLLDMTKEKEFEDVWSVLMGESQPYS




GPRTPDGREIVFYKVIDYVLHGKEEIKVIPTPSADHWALASGLPSYVAESGFICNIMNASAD




EMFKFQEGALDDSGWLIKNVLSMPIVNKKEEIVGVATFYNRKDGKPEDEQDEVLMESLTQ




FLGWSVMNTDTYDKMNKLENRKDIAQDMVLYHVKCDRDEIQLILPTRARLGKEPADCDE




DELGEILKEELPGPTTFDIYEFHFSDLECTELDLVKCGIQMYYELGVVRKFQIPQEVLVRFLF




SISKGYRRITYHNWRHGFNVAQTMFTLLMTGKLKSYYTDLEAFAMVTAGLCHDIDHRGT




NNLYQMKSQNPLAKLHGSSILERHHLEFGKELLSEETLNIYQNLNRRQHEHVIHLMDIAIIA




TDLALYFKKRAMFQKIVDESKNYQDKKSWVEYLSLETTRKEIVMAMMMTACDLSAITKP




WEVQSKVALEVAAEFWEQGDLERTVEDQQPIPMMDRNKAAELPKEQVGFIDFVCTFVYK




EFSREHEEILPMFDRLQNNRKEWKALADEYEAKVKALEEKEEEERVAAKKVGTEICNGGP




APKSSTCCIL






hPDE6B Catalytic
PADCDEDELGEILKEELPGPTTFDIYEFHFSDLECTELDLVKCGIQMYYELGVVRKFQIPQE
130


domain (Amino
VLVRFLESISKGYRRITYHNWRHGFNVAQTMFTLLMTGKLKSYYTDLEAFAMVTAGLCH



acid 476-817 of
DIDHRGTNNLYQMKSQNPLAKLHGSSILERHHLEFGKFLLSEETENIYQNENRRQHEHVIH



PDE6B)
LMDIAIIATDLALYFKKRAMFQKIVDESKNYQDKKSWVEYLSLETTRKEIVMAMMMTAC




DLSAITKPWEVQSKVALLVAAEFWEQGDLERTVLDQQPIPMMDRNKAAELPKEQVGFIDF




VCTFVYKEFSRFHEEILPMFDRLQNNRKEWKALADEYEAK






hPDE6C (Uniprot
MGEINQVAVEKYLEENPQFAKEYFDRKLRVEVLGEIFKNSQVPVQSSMSFSELTQVEESAL
131


ID: P51160)
CLELLWTVQEEGGTPEQGVHRALQRLAHLLQADRCSMFLCRSRNGIPEVASRLLDVTPTS




KFEDNLVGPDKEVVFPLDIGIVGWAAHTKKTHNVPDVKKNSHFSDFMDKQTGYVTKNLL




ATPIVVGKEVLAVIMAVNKVNASEFSKQDEEVFSKYLNEVSIILRLHHTSYMYNIESRRSQI




LMWSANKVFEELTDVERQFHKALYTVRSYLNCERYSIGLLDMTKEKEFYDEWPIKLGEVE




PYKGPKTPDGREVNFYKIIDYILHGKEEIKVIPTPPADHWTLISGLPTYVAENGFICNMMNA




PADEYFTFQKGPVDETGWVIKNVLSLPIVNKKEDIVGVATFYNRKDGKPFDEHDEYITETL




TQFLGWSLLNTDTYDKMNKLENRKDIAQEMLMNQTKATPEEIKSILKFQEKLNVDVIDDC




EEKQEVAILKEDEPDPRSAELYEFRFSDFPLTEHGLIKCGIRLFFEINVVEKFKVPVEVLTRW




MYTVRKGYRAVTYHNWRHGFNVGQTMFTLLMTGRLKKYYTDLEAFAMLAAAECHDID




HRGTNNLYQMKSTSPLARLHGSSILERHHLEYSKTLLQDESLNIFQNLNKRQFETVIHLFEV




AIIATDLALYFKKRTMFQKIVDACEQMQTEEEAIKYVTVDPTKKEIIMAMMMTACDLSAIT




KPWEVQSQVALMVANEFWEQGDLERTVLQQQPIPMMDRNKRDELPKEQVGFIDFVCTFV




YKEFSRFHKEITPMLSGLQNNRVEWKSLADEYDAKMKVIEEEAKKQEGGAEKAAEDSGG




GDDKKSKTCLML






hPDE6C Catalytic
DDCEEKQEVAILKEDLPDPRSAELYEFRFSDFPLTEHGLIKCGIRLFFEINVVEKFKVPVEVL
132


domain (Amino
TRWMYTVRKGYRAVTYHNWRHGFNVGQTMFTLLMTGRLKKYYTDLEAFAMLAAAFCH



acid 483-822 of
DIDHRGTNNLYQMKSTSPLAREHGSSILERHHLEYSKTLLQDESLNIFQNLNKRQFETVIHL



PDE6C)
FEVAIIATDLALYFKKRTMFQKIVDACEQMQTEEEAIKYVTVDPTKKEIIMAMMMTACDLS




AITKPWEVQSQVALMVANEFWEQGDLERTVLQQQPIPMMDRNKRDELPKEQVGFIDFVC




TFVYKEFSRFHKEITPMLSGLQNNRVEWKSLADEYDAK






hPDE7A (Uniprot
MEVCYQLPVLPLDRPVPQHVLSRRGAISFSSSSALFGCPNPRQLSQRRGAISYDSSDQTALYI
133


ID: Q13946)
RMLGDVRVRSRAGFESERRGSHPYIDFRIFHSQSEIEVSVSARNIRRLLSFQRYLRSSRFFRG




TAVSNSLNILDDDYNGQAKCMLEKVGNWNFDIFLFDRLTNGNSLVSLTFHLFSLHGLIEYF




HLDMMKLRRFLVMIQEDYHSQNPYHNAVHAADVTQAMHCYLKEPKLANSVTPWDILLSE




IAAATHDLDHPGVNQPFLIKTNHYLATLYKNTSVLENHHWRSAVGLLRESGLFSHLPLESR




QQMETQIGALILATDISRQNEYLSLFRSHLDRGDLCLEDTRHRHLVLQMALKCADICNPCR




TWELSKQWSEKVTEEFFHQDIEKKYHLGVSPLCDRHTESIANIQIGFMTYLVEPLFTEWA




RFSNTRLSQTMLGHVGLNKASWKGLQREQSSSEDTDAAFELNSQLLPQENRLS






hPDE7A Catalytic
FHLDMMKLRRFLVMIQEDYHSQNPYHNAVHAADVTQAMHCYLKEPKLANSVTPWDILLS
134


domain (Amino
LIAAATHDLDHPGVNQPFLIKTNHYLATLYKNTSVLENHHWRSAVGLLRESGLFSHEPLES



acid 187-451 of
RQQMETQIGALILATDISRQNEYLSLFRSHLDRGDLCLEDTRHRHLVLQMALKCADICNPC



PDE7A)
RTWELSKQWSEKVTEEFFHQGDIEKKYHLGVSPLCDRHTESIANIQIGFMTYLVEPLFTEW




ARFSNTRLSQTMLGHVGLNKASW






hPDE7B (Uniprot
MSCLMVERCGEILFENPDQNAKCVCMLGDIRLRGQTGVRAERRGSVPFIDFRLLNSTTYSG
135


ID: Q9NP56)
EIGTKKKVKRLLSFQRYFHASRLLRGIIPQAPLHLLDEDYLGQARHMLSKVGMWDFDIFLF




DRLTNGNSLVTLLCHLFNTHGLIHHFKLDMVTLHRFLVMVQEDYHSQNPYHNAVHAADV




TQAMHCYLKEPKEASFLTPLDIMLGLLAAAAHDVDHPGVNQPFLIKTNHHLANLYQNMS




VLENHHWRSTIGMLRESRLLAHLPKEMTQDIEQQLGSLILATDINRQNEFLTRLKAHLHNK




DLRLEDAQDRHFMLQIALKCADICNPCRIWEMSKQWSERVCEEFYRQGELEQKFELEISPL




CNQQKDSIPSIQIGFMSYIVEPLFREWAHFTGNSTLSENMLGHLAHNKAQWKSLLPRQHRS




RGSSGSGPDHDHAGQGTESEEQEGDSP






hPDE7B Catalytic
YHNAVHAADVTQAMHCYLKEPKEASFLTPEDIMLGLLAAAAHDVDHPGVNQPFLIKTNH
136


domain (Amino
HLANLYQNMSVLENHHWRSTIGMLRESRLLAHLPKEMTQDIEQQLGSLILATDINRQNEFL



acid 172-410 of
TRLKAHLHNKDLRLEDAQDRHFMLQIALKCADICNPCRIWEMSKQWSERVCEEFYRQGEL



PDE7B)
EQKFELEISPLCNQQKDSIPSIQIGFMSYIVEPLFREWAHFTGNSTLSENMLGHLAHNK






hPDE8A (Uniprot
MGCAPSIHISERLVAEDAPSPAAPPLSSGGPREPQGQKTAALPRTRGAGELESEERDGSGKK
137


ID: O60658)
VAVADVQFGPMRFHQDQLQVLLVFTKEDNQCNGFCRACEKAGFKCTVTKEAQAVEACFL




DKHHDIIIIDHRNPRQLDAEALCRSIRSSKLSENTVIVGVVRRVDREELSVMPFISAGFTRRY




VENPNIMACYNELLQLEFGEVRSQLKLRACNSVFTALENSEDAIEITSEDRFIQYANPAFETT




MGYQSGELIGKELGEVPINEKKADLLDTINSCIRIGKEWQGIVYAKKKNGDNIQQNVKIIPV




IGQGGKIRHYVSIIRVCNGNNKAEKISECVQSDTHTDNQTGKHKDRRKGSLDVKAVASRA




TEVSSQRRHSSMARIHSMTIEAPITKVINIINAAQESSPMPVTEALDRVLEIERTTELYSPQFG




AKDDDPHANDLVGGLMSDGLRRLSGNEYVLSTKNTQMVSSNIITPISLDDVPPRIARAMEN




EEYWDFDIFELEAATHNRPLIYLGLKMFARFGICEFLHCSESTLRSWLQIIEANYHSSNPYH




NSTHSADVLHATAYFLSKERIKETLDPIDEVAALIAATIHDVDHPGRTNSFLCNAGSELAIL




YNDTAVLESHHAALAFQETTGDDKCNIDKNMERNDYRTLRQGIIDMVLATEMTKHFEHV




NKFVNSINKPLATLEENGETDKNQEVINTMLRTPENRTLIKRMLIKCADVSNPCRPEQYCIE




WAARISEEYFSQTDEEKQQGLPVVMPVFDRNTCSIPKSQISFIDYFITDMFDAWDAFVDLPD




LMQHLDNNFKYWKGLDEMKLRNLRPPPE






hPDE8A Catalytic
LHCSESTLRSWLQIIEANYHSSNPYHNSTHSADVLHATAYFLSKERIKETLDPIDEVAALIAA
138


domain (Amino
TIHDVDHPGRTNSFLCNAGSELAILYNDTAVLESHHAALAFQLTTGDDKCNIFKNMERND



acid 531-813 of
YRTLRQGIIDMVLATEMTKHDEHVNKDVNSINKPLATLEENGETDKNQEVINTMLRTPENR



PDE8A)
TLIKRMLIKCADVSNPCRPEQYCIEWAARISEEYFSQTDEEKQQGLPVVMPVFDRNTCSIPK




SQISFIDYFITDMFDAWDAFVDLPDLMQHLDNNFKYW






hPDE8B (Uniprot
MGCAPSIHVSQSGVIVCRDSDESSSPRQTTSVSQGPAAPEPGLFVQTDAADAIPPSRASGPPS
139


ID: O95263)
VARVRRARTELGSGSSAGSAAPAATTSRGRRRHCCSSAEAETQTCYTSVKQVSSAEVRIGP




MRLTQDPIQVLLIFAKEDSQSDGFWWACDRAGYRCNIARTPESALECFLDKHHEIIVIDHRQ




TQNFDAEAVCRSIRATNPSEHTVILAVVSRVSDDHEEASVLPLLHAGFNRRFMENSSIIACY




NELIQIEHGEVRSQFKLRACNSVFTALDHCHEAIEITSDDHVIQYVNPAFERMMGYHKGEL




LGKELADLPKSDKNRADLLDTINTCIKKGKEWQGVYYARRKSGDSIQQHVKITPVIGQGG




KIRHFVSLKKLCCTTDNNKQIHKIHRDSGDNSQTEPHSFRYKNRRKESIDVKSISSRGSDAPS




LQNRRYPSMARIHSMTIEAPITKVINIINAAQENSPVTVAEALDRVLEILRTTELYSPQLGTK




DEDPHTSDLVGGEMTDGLRRLSGNEYVFTKNVHQSHSHLAMPITINDVPPCISQLLDNEES




WDFNIFELEAITHKRPLVYLGLKVFSRFGVCEFLNCSETTLRAWFQVIEANYHSSNAYHNS




THAADVLHATAFFLGKERVKGSLDQLDEVAALIAATVHDVDHPGRTNSFLCNAGSELAVL




YNDTAVLESHHTALAFQLTVKDTKCNIFKNIDRNHYRTLRQAIIDMVLATEMTKHFEHVN




KFVNSINKPMAAEIEGSDCECNPAGKNFPENQILIKRMMIKCADVANPCRPLDLCIEWAGRI




SEEYFAQTDEEKRQGLPVVMPVFDRNTCSIPKSQISFIDYFITDMFDAWDAFAHLPALMQH




LADNYKHWKTLDDEKCKSLRLPSDS






hPDE8B Catalytic
LNCSETTLRAWFQVIEANYHSSNAYHNSTHAADVLHATAFFLGKERVKGSLDQLDEVAAL
140


domain (Amino
IAATVHDVDHPGRTNSFLCNAGSELAVLYNDTAVLESHHTALAFQLTVKDTKCNIFKNIDR



acid 590-868 of
NHYRTLRQAIIDMVLATEMTKHFEHVNKFVNSINKPMAAEIEGSDCECNPAGKNFPENQILI



PDE8B)
KRMMIKCADVANPCRPLDLCIEWAGRISEEYFAQTDEEKRQGLPVVMPVFDRNTCSIPKSQ




ISFIDYFITDMFDAWDAFAHLPALMQHLADNYKHW






hPDE9A (Uniprot
MGSGSSSYRPKAIYLDIDGRIQKVIFSKYCNSSDIMDLFCIATGLPRNTTISLLTTDDAMVSID
141


ID: O76083)
PTMPANSERTPYKVRPVAIKQLSAGVEDKRTTSRGQSAERPLRDRRVVGLEQPRREGAFES




GQVEPRPREPQGCYQEGQRIPPEREELIQSVLAQVAEQFSRAFKINELKAEVANHLAVLEKR




VELEGEKVVEIEKCKSDIKKMREELAARSSRTNCPCKYSFLDNHKKLTPRRDVPTYPKYLL




SPETIEALRKPTFDVWLWEPNEMLSCLEHMYHDLGLVRDFSINPVTLRRWLFCVHDNYRN




NPFHNFRHCFCVAQMMYSMVWLCSLQEKFSQTDILILMTAAICHDLDHPGYNNTYQINAR




TELAVRYNDISPLENHHCAVAFQILAEPECNIFSNIPPDGFKQIRQGMITLILATDMARHAEI




MDSFKEKMENFDYSNEEHMTLLKMILIKCCDISNEVRPMEVAEPWVDCLLEEYFMQSDRE




KSEGLPVAPFMDRDKVTKATAQIGFIKFVLIPMFETVTKLFPMVEEIMELQPLWESRDRYEEL




KRIDDAMKELQKKTDSLTSGATEKSRERSRDVKNSEGDCA






hPDE9A Catalytic
FSINPVTLRRWLFCVHDNYRNNPFHNFRHCFCVAQMMYSMVWLCSLQEKFSQTDILILMT
142


domain (Amino
AAICHDLDHPGYNNTYQINARTELAVRYNDISPLENHHCAVAFQILAEPECNIFSNIPPDGF



acid 288-550 of
KQIRQGMITLILATDMARHAEIMDSFKEKMENFDYSNEEHMTLLKMILIKCCDISNEVRPM



PDE9A)
EVAEPWVDCLLEEYFMQSDREKSEGLPVAPFMDRDKVTKATAQIGFIKFVLIPMFETVTKL




FPMVEEIMLQPLWESRDRY






hPDE10A (Uniprot
MRIEERKSQHLTGLTDEKVKAYLSLHPQVLDEFVSESVSAETVEKWLKRKNNKSEDESAP
143


ID: Q9Y233)
KEVSRYQDTNMQGVVYELNSYIEQRLDTGGDNQLLLYELSSIIKIATKADGFALYFLGECN




NSLCIFTPPGIKEGKPRLIPAGPITQGTTVSAYVAKSRKTLLVEDILGDERFPRGTGLESGTRI




QSVLCLPIVTAIGDLIGILELYRHWGKEAFCLSHQEVATANLAWASVAIHQVQVCRGLAKQ




TELNDFLLDVSKTYFDNIVAIDSLLEHIMIYAKNLVNADRCALFQVDHKNKELYSDLFDIGE




EKEGKPVFKKTKEIRFSIEKGIAGQVARTGEVLNIPDAYADPRFNREVDLYTGYTTRNILCM




PIVSRGSVIGVVQMVNKISGSAFSKTDENNFKMFAVFCALALHCANMYHRIRHSECIYRVT




MEKLSYHSICTSEEWQGLMQFTLPVRLCKEIELFHFDIGPFENMWPGIFVYMVHRSCGTSC




FELEKLCRFIMSVKKNYRRVPYHNWKHAVTVAHCMYAILQNNHTLFTDLERKGLLIACLC




HDLDHRGFSNSYLQKFDHPLAALYSTSTMEQHHFSQTVSILQLEGHNIFSTLSSSEYEQVLEI




IRKAIIATDLALYFGNRKQLEEMYQTGSLNLNNQSHRDRVIGLMMTACDLCSVTKLWPVT




KLTANDIYAEFWAEGDEMKKLGIQPIPMMDRDKKDEVPQGQLGFYNAVAIPCYTTLTQIL




PPTEPLLKACRDNLSQWEKVIRGEETATWISSPSVAQKAAASED






hPDE10A Catalytic
CKEIELFHFDIGPFENMWPGIFVYMVIIRSCGTSCFELEKLCRFIMSVKKNYRRVPYHNWKH
144


domain (Amino
AVTVAHCMYAILQNNHTLFTDLERKGLLIACLCHDLDHRGFSNSYLQKFDHPLAALYSTST



acid 458-760 of
MEQHHFSQTVSILQLEGHNIFSTLSSSEYEQVLEIIRKAIIATDLALYFGNRKQLEEMYQTGS



PDE10A)
LNLNNQSHRDRVIGLMMTACDLCSVTKLWPVTKLTANDIYAEFWAEGDEMKKLGIQPIP




MMDRDKKDEVPQGQLGFYNAVAIPCYTTLTQILPPTEPLLKACRDNLSQWEKVIRGEE






hPDE11A (Uniprot
MAASRLDFGEVETFLDRHPELFEDYLMRKGKQEMVEKWLQRHSQGQGALGPRPSLAGTS
145


ID: Q9HCR9)
SLAHSTCRGGSSVGGGTGPNGSAHSQPLPGGGDCGGVPLSPSWAGGSRGDGNLQRRASQK




ELRKSFARSKAIHVNRTYDEQVTSRAQEPLSSVRRRALLRKASSLPPTTAHILSALLESRVN




LPRYPPTAIDYKCHLKKHNERQFFLELVKDISNDLDLTSLSYKILIFVCLMVDADRCSLFLV




EGAAAGKKTLVSKFFDVHAGTPLLPCSSTENSNEVQVPWGKGIIGYVGEHGETVNIPDAYQ




DRRFNDEIDKLTGYKTKSLLCMPIRSSDGEIIGVAQAINKIPEGAPFTEDDEKVMQMYLPFC




GIAISNAQLFAASRKEYERSRALLEVVNDLFEEQTDLEKIVKKIMHRAQTLLKCERCSVLLL




EDIESPVVKFTKSFELMSPKCSADAENSFKESMEKSSYSDWLINNSIAELVASTGLPVNISDA




YQDPRFDAEADQISGFHIRSVLCVPIWNSNHQIIGVAQVLNRLDGKPFDDADQRLFEAFVIF




CGLGINNTIMYDQVKKSWAKQSVALDVLSYHATCSKAEVDKFKAANIPLVSELAIDDIHFD




DFSLDVDAMITAALRMFMELGMVQKFKIDYETLCRWLLTVRKNYRMVLYHNWRHAFNV




CQLMFAMITTAGFQDILTEVEILAVIVGCLCHDLDHRGTNNAFQAKSGSALAQLYGTSAT




LEHHHFNHAVMILQSEGHNIFANLSSKEYSDLMQLLKQSILATDLTLYFERRTEFFELVSKG




EYDWNIKNHRDIFRSMLMTACDLGAVTKPWEISRQVAELVTSEFFEQGDRERLELKLTPSA




IFDRNRKDELPRLQLEWIDSICMPLYQALVKVNVKLKPMLDSVATNRSKWEELHQKRLLA




STASSSPASVMVAKEDRN






hPDE11A Catalytic
FKIDYETLCRWLLTVRKNYRMVLYHNWRHAFNVCQLMFAMITTAGFQDILTEVEILAVIV
146


Domain (Amino
GCLCHDLDHRGTNNAFQAKSGSALAQLYGTSATLEHHHFNHAVMILQSEGHNIFANLSSK



acid 640-905 of
EYSDLMQLLKQSILATDLTLYFERRTEFFELVSKGEYDWNIKNHRDIFRSMLMTACDLGAV



PDE11A)
TKPWEISRQVAELVTSEFFEQGDRERLELKLTPSAIFDRNRKDELPRLQLEWIDSICMPLYQ




ALVKVNVKLKPMLDSVATNRSKW









In some embodiments, the hPDE5 derived destabilizing domains may be derived from variants, and/or isoforms of hPDE5. The three isoforms hPDE5 Isoform 1, hPDE5 Isoform 2, and hPDE5 Isoform 3 differ at their N terminal regions, and all 3 have unique first exons followed by a common sequence of 823 amino acids. Accordingly, hPDE5 derived DDs may be derived from hPDE5 Isoform 1 (SEQ ID NO: 1; encoded by the nucleotide sequence of SEQ ID NO: 2; hPDE5 Isoform 2 (SEQ ID NO: 147; encoded by the nucleotides 113-2611 of the nucleotide sequence of SEQ ID NO: 148 or the nucleotide sequence of SEQ ID NO: 380) and/or hPDE5 isoform 3 (SEQ ID NO: 149; encoded by the nucleotides 95-2563 of nucleotide sequence of SEQ ID NO: 150 or SEQ ID NO: 381). In some embodiments, the hPDE5 DDs may be derived from hPDE5 Isoform X1 (SEQ ID NO: 382).


In some embodiments, the DD mutations identified herein may be mapped back to the hPDE5 sequence to identify DD hotspots. DD hotspots as used herein refer to amino acids within the hPDE5 of SEQ ID NO: 1 whose mutation results in the “responsive” nature of the stimulus responsive element generated from hPDE5. The DD characteristics may be improved by saturation mutagenesis, which involves mutating the amino acids at the hotspot position to any of the known amino acids, including, but not limited to lysine, aspartic acid, glutamic acid, glutamine, asparagine, histidine, serine, threonine, tyrosine, cysteine, methionine, tryptophan, alanine, isoleucine, leucine, phenylalanine, valine, proline, and glycine. In some instances, a library of hotspot mutations may be generated by site directed mutagenesis and each of the mutants in the library is fused to a reporter protein e.g. AcGFP (SEQ ID NO: 79) via a linker such as SG. The properties of the DDs may be analyzed in the presence and absence of ligands such as Sildenafil, Vardenafil and Tadalafil. In some embodiments, the arginine at position 732 (also referred to as R732) of the hPDE5 of SEQ ID NO: 1, may be mutated to any of the known amino acids and are provided in Table 6. The mutations of the amino acid R732 may include but are not limited to R732L, R732A, R732G, R732V, R732I, R732P, R732F, R732W, R732Y, R732H, R732S, R732T, R732D, R732E, R732Q, R732N, R732M, R732C, and R732K. The hPDE5 mutants fused either at the N terminus or the C terminus to a linker and GFP are provided in Table 8. In Table 6, the mutations are in bold. Table 7 provides the additional components that may be combined with the mutants listed in Table 6 to generate the constructs described in Table 8. In Table 8, asterisk indicates the translation of the stop codon.









TABLE 6







hPDE5 R732 mutants












Amino
Nucleic


Construct ID/

acid SEQ
Acid SEQ


Description
Sequence
ID NO:
ID NO:













hPDE5 (Amino acid
MKHEVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMFAALKAGKIQNKLTDLEI
151
169


590-836 of WT,
LALLIAALSHDLDHRGVNNSYIQRSEHPLAQLYCHSIMEHHHFDQCLMILNSPGNQI




R732G)
LSGESIEEYKTTLKIIKQAILATDLALYIKRGGEFFELIRKNQFNLEDPHQKELFLAM





LMTACDLSAITKPWPIQQRIAELVATEFFDQGDRERKELNIEPTDEMNREKKNKIPS





MQVGFIDAICLQLYEALTHVS







hPDE5 (Amino acid
MKHEVECRWILSVKKNYRKNVAYHNWRHAFNTAQCMFAALKAGKIQNKLTDLEI
152
170


590-836 of WT,
LALLIAALSHDLDHRGVNNSYIQRSEHPLAQLYCHSIMEHHHFDQCLMILNSPGNQI




R732A)
LSGESILEYKTTLKIIKQAILATDLALYIKRAGEFFEIRKNQFNLEDPHQKELFLAM





LMTACDLSAITKPWPIQQRIAELVATEFFDQGDRERKELNIEPTDLMNREKKNKIPS





MQVGFIDAICLQLYEALTHVS







hPDE5 (Amino acid
MKHEVECRWILSVKKNYRKNVAYHNWRHAFNTAQCMFAALKAGKIQNKLTDLEI
153
171


590-836 of WT,
LALLIAALSHDLDHRGVNNSYIQRSEHPLAQLYCHSIMEHHHFDQCLMILNSPGNQI




R732V)
LSGLSIEEYKTTLKIIKQAILATDLALYIKRVGEFFELIRKNQFNLEDPHQKELFLAM





LMTACDLSAITKPWPIQQRIAELVATEFFDQGDRERKELNIEPTDLMNREKKNKIPS





MQVGFIDAICLQLYEALTHVS







hPDE5 (Amino acid
MKHEVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMFAALKAGKIQNKLTDLEI
154
172


590-836 of WT,
LALLIAALSHDLDHRGVNNSYIQRSEHPLAQLYCHSIMEHHHFDQCLMILNSPGNQI




R732I)
LSGLSIEEYKTTLKIIKQAILATDLALYIKRIGEFFELIRKNQFNLEDPHQKELFLAML





MTACDLSAITKPWPIQQRIAELVATEFFDQGDRERKELNIEPTDLMNREKKNKIPSM





QVGFIDAICLQLYEALTHVS







hPDE5 (Amino acid
MKHEVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMFAALKAGKIQNKLTDLEI
155
173


590-836 of WT,
LALLIAALSHDLDHRGVNNSYIQRSEHPLAQLYCHSIMEHHHFDQCLMILNSPGNQI




R732P)
LSGLSIEEYKTTLKIIKQAILATDLALYIKRPGEFFELIRKNQFNLEDPHQKELFLAML





MTACDLSAITKPWPIQQRIAELVATEFFDQGDRERKELNIEPTDLMNREKKNKIPSM





QVGFIDAICLQLYEALTHVS







hPDE5 (Amino acid
MKHEVLCRWILSVKKNYRKNVAYHNWRHAENTAQCMFAALKAGKIQNKLTDLEI
156
174


590-836 of WT,
LALLIAALSHDLDHRGVNNSYIQRSEHPLAQLYCHSIMEHHHFDQCLMILNSPGNQI




R732F)
LSGLSIEEYKTTLKIIKQAILATDLALYIKRFGEFFELIRKNQFNLEDPHQKELFLAML





MTACDLSAITKPWPIQQRIAELVATEFFDQGDRERKELNIEPTDLMNREKKNKIPSM





QVGFIDAICLQLYEALTHVS







hPDE5 (Amino acid
MKHEVLCRWILSVKKNYRKNVAYHNWRHAENTAQCMFAALKAGKIQNKLTDLEI
157
175


590-836 of WT,
LALLIAALSHDLDHRGVNNSYIQRSEHPLAQLYCHSIMEHHHFDQCLMILNSPGNQI




R732W)
LSGLSILEYKTTLKIIKQAILATDLALYIKRWGEFFELIRKNQFNLEDPHQKELFLAM





LMTACDLSAITKPWPIQQRIAELVATEFFDQGDRERKELNIEPTDLMNREKKNKIPS





MQVGFIDAICLQLYEALTHVS







hPDE5 (Amino acid
MKHEVLCRWILSVKKNYRKNVAYHNWRHAENTAQCMFAALKAGKIQNKLTDLEI
158
176


590-836 of WT,
LALLIAALSHDLDHRGVNNSYIQRSEHPLAQLYCHSIMEHHHFDQCLMILNSPGNQI




R732Y)
LSGLSILEYKTTLKIIKQAILATDLALYIKRYGEFFELIRKNQFNLEDPHQKELFLAM





LMTACDLSAITKPWPIQQRIAELVATEFFDQGDRERKELNIEPTDLMNREKKNKIPS





MQVGFIDAICLQLYEALTHVS







hPDE5 (Amino acid
MKHEVLCRWILSVKKNYRKNVAYHNWRHAENTAQCMFAALKAGKIQNKLTDLEI
159
177


590-836 of WT,
LALLIAALSHDLDHRGVNNSYIQRSEHPLAQLYCHSIMEHHHFDQCLMILNSPGNQI




R732H)
LSGLSILEYKTTLKIIKQAILATDLALYIKRHGEFFELIRKNQFNLEDPHQKELFLAM





LMTACDLSAITKPWPIQQRIAELVATEFFDQGDRERKELNIEPTDLMNREKKNKIPS





MQVGFIDAICLQLYEALTHVS







hPDE5 (Amino acid
MKHEVLCRWILSVKKNYRKNVAYHNWRHAENTAQCMFAALKAGKIQNKLTDLEI
160
178


590-836 of WT,
LALLIAALSHDLDHRGVNNSYIQRSEHPLAQLYCHSIMEHHHFDQCLMILNSPGNQI




R732S)
LSGLSILEYKTTLKIIKQAILATDLALYIKRSGEFFELIRKNQFNLEDPHQKELFLAML





MTACDLSAITKPWPIQQRIAELVATEFFDQGDRERKELNIEPTDLMNREKKNKIPSM





QVGFIDAICLQLYEALTHVS







hPDE5 (Amino acid
MKHEVLCRWILSVKKNYRKNVAYHNWRHAENTAQCMFAALKAGKIQNKLTDLEI
161
179


590-836 of WT,
LALLIAALSHDLDHRGVNNSYIQRSEHPLAQLYCHSIMEHHHFDQCLMILNSPGNQI




R732T)
LSGLSILEYKTTLKIIKQAILATDLALYIKRTGEFFELIRKNQFNLEDPHQKELFLAML





MTACDLSAITKPWPIQQRIAELVATEFFDQGDRERKELNIEPTDLMNREKKNKIPSM





QVGFIDAICLQLYEALTHVS







hPDE5 (Amino acid
MKHEVLCRWILSVKKNYRKNVAYHNWRHAENTAQCMFAALKAGKIQNKLTDLEI
162
180


590-836 of WT,
LALLIAALSHDLDHRGVNNSYIQRSEHPLAQLYCHSIMEHHHFDQCLMILNSPGNQI




R732D)
LSGLSILEYKTTLKIIKQAILATDLALYIKRDGEFFELIRKNQFNLEDPHQKELFLAM





LMTACDLSAITKPWPIQQRIAELVATEFFDQGDRERKELNIEPTDLMNREKKNKIPS





MQVGFIDAICLQLYEALTHVS







hPDE5 (Amino acid
MKHEVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMFAALKAGKIQNKLTDLEI
163
181


590-836 of WT,
LALLIAALSHDLDHRGVNNSYIQRSEHPLAQLYCHSIMEHHHFDQCLMILNSPGNQI




R732E)
LSGLSIEEYKTTLKIIKQAILATDLALYIKREGEFFELIRKNQFNLEDPHQKELFLAML





MTACDLSAITKPWPIQQRIAELVATEFFDQGDRERKELNIEPTDLMNREKKNKIPSM





QVGFIDAICLQLYEALTHVS







hPDE5 (Amino acid
MKHEVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMFAALKAGKIQNKLTDLEI
164
182


590-836 of WT,
LALLIAALSHDLDHRGVNNSYIQRSEHPLAQLYCHSIMEHHHFDQCLMILNSPGNQI




R732Q)
LSGLSIEEYKTTLKIIKQAILATDLALYIKRQGEFFELIRKNQFNLEDPHQKELFLAM





LMTACDLSAITKPWPIQQRIAELVATEFFDQGDRERKELNIEPTDLMNREKKNKIPS





MQVGFIDAICLQLYEALTHVS







hPDE5 (Amino acid
MKHEVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMFAALKAGKIQNKLTDLEI
165
183


590-836 of WT,
LALLIAALSHDLDHRGVNNSYIQRSEHPLAQLYCHSIMEHHHFDQCLMILNSPGNQI




R732N)
LSGLSIEEYKTTLKIIKQAILATDLALYIKRNGEFFELIRKNQFNLEDPHQKELFLAM





LMTACDLSAITKPWPIQQRIAELVATEFFDQGDRERKELNIEPTDLMNREKKNKIPS





MQVGFIDAICLQLYEALTHVS







hPDE5 (Amino acid
MKHEVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMFAALKAGKIQNKLTDLEI
166
184


590-836 of WT,
LALLIAALSHDLDHRGVNNSYIQRSEHPLAQLYCHSIMEHHHFDQCLMILNSPGNQI




R732M)
LSGLSIEEYKTTLKIIKQAILATDLALYIKRMGEFFELIRKNQFNLEDPHQKELFLAM





LMTACDLSAITKPWPIQQRIAELVATEFFDQGDRERKELNIEPTDLMNREKKNKIPS





MQVGFIDAICLQLYEALTHVS







hPDE5 (Amino acid
MKHEVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMFAALKAGKIQNKLTDLEI
167
185


590-836 of WT,
LALLIAALSHDLDHRGVNNSYIQRSEHPLAQLYCHSIMEHHHFDQCLMILNSPGNQI




R732C)
LSGLSIEEYKTTLKIIKQAILATDLALYIKRCGEFFELIRKNQFNLEDPHQKELFLAM





LMTACDLSAITKPWPIQQRIAELVATEFFDQGDRERKELNIEPTDLMNREKKNKIPS





MQVGFIDAICLQLYEALTHVS







hPDE5 (Amino acid
MKHEVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMFAALKAGKIQNKLTDLEI
168
186


590-836 of WT,
LALLIAALSHDLDHRGVNNSYIQRSEHPLAQLYCHSIMEHHHFDQCLMILNSPGNQI




R732K)
LSGLSIEEYKTTLKIIKQAILATDLALYIKRKGEFFELIRKNQFNLEDPHQKELFLAM





LMTACDLSAITKPWPIQQRIAELVATEFFDQGDRERKELNIEPTDLMNREKKNKIPS





MQVGFIDAICLQLYEALTHVS







hPDE5 (Amino acid
EETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFTDLNLVQNFQMK
383
401; 402


535-860 of WT,
HEVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMFAALKAGKIQNKLTDLEILA




R732G)
LLIAALSHDLDHRGVNNSYIQRSEHPLAQLYCHSIMEHHHFDQCLMILNSPGNQILS





GLSIEEYKTTLKIIKQAILATDLALYIKRGGEFFELIRKNQFNLEDPHQKELFLAMLM





TACDLSAITKPWPIQQRIAELVATEFFDQGDRERKELNIEPTDLMNREKKNKIPSMQ





VGFIDAICLQLYEALTHVSEDCFPLLDGCRKNRQKWQALAEQQ







hPDE5 (Amino acid
EETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFTDLNLVQNFQMK
384
403; 404


535-860 of WT,
HEVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMFAALKAGKIQNKLTDLEILA




R732A)
LLIAALSHDLDHRGVNNSYIQRSEHPLAQLYCHSIMEHHHFDQCLMILNSPGNQILS





GLSIEEYKTTLKIIKQAILATDLALYIKRAGEFFELIRKNQFNLEDPHQKELFLAMLM





TACDLSAITKPWPIQQRIAELVATEFFDQGDRERKELNIEPTDLMNREKKNKIPSMQ





VGFIDAICLQLYEALTHVSEDCFPLLDGCRKNRQKWQALAEQQ







hPDE5 (Amino acid
EETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFTDLNLVQNFQMK
12
405


535-860 of WT,
HEVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMFAALKAGKIQNKLTDLEILA




R732L)
LLIAALSHDLDHRGVNNSYIQRSEHPLAQLYCHSIMEHHHFDQCLMILNSPGNQILS





GLSIEEYKTTLKIIKQAILATDLALYIKRLGEFFELIRKNQFNLEDPHQKELFLAMLM





TACDLSAITKPWPIQQRIAELVATEFFDQGDRERKELNIEPTDLMNREKKNKIPSMQ





VGFIDAICLQLYEALTHVSEDCFPLLDGCRKNRQKWQALAEQQ







hPDE5 (Amino acid
EETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFTDLNLVQNFQMK
385
406; 407


535-860 of WT,
HEVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMFAALKAGKIQNKLTDLEILA




R732V)
LLIAALSHDLDHRGVNNSYIQRSEHPLAQLYCHSIMEHHHFDQCLMILNSPGNQILS





GLSIEEYKTTLKIIKQAILATDLALYIKRVGEFFELIRKNQFNLEDPHQKELFLAMLM





TACDLSAITKPWPIQQRIAELVATEFFDQGDRERKELNIEPTDLMNREKKNKIPSMQ





VGFIDAICLQLYEALTHVSEDCFPLLDGCRKNRQKWQALAEQQ







hPDE5 (Amino acid
EETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFTDLNLVQNFQMK
386
408; 8551


535-860 of WT,
HEVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMFAALKAGKIQNKLTDLEILA




R732I)
LLIAALSHDLDHRGVNNSYIQRSEHPLAQLYCHSIMEHHHFDQCLMILNSPGNQILS





GLSIEEYKTTLKIIKQAILATDLALYIKRIGEFFELIRKNQFNLEDPHQKELFLAMLMT





ACDLSAITKPWPIQQRIAELVATEFFDQGDRERKELNIEPTDLMNREKKNKIPSMQV





GFIDAICLQLYEALTHVSEDCFPLLDGCRKNRQKWQALAEQQ







hPDE5 (Amino acid
EETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFTDLNLVQNFQMK
387
409; 410


535-860 of WT,
HEVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMFAALKAGKIQNKLTDLEILA




R732P)
LLIAALSHDLDHRGVNNSYIQRSEHPLAQLYCHSIMEHHHFDQCLMILNSPGNQILS





GLSIEEYKTTLKIIKQAILATDLALYIKRPGEFFELIRKNQFNLEDPHQKELFLAMLM





TACDLSAITKPWPIQQRIAELVATEFFDQGDRERKELNIEPTDLMNREKKNKIPSMQ





VGFIDAICLQLYEALTHVSEDCFPLLDGCRKNRQKWQALAEQQ







hPDE5 (Amino acid
EETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFTDLNLVQNFQMK
388
411


535-860 of WT,
HEVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMFAALKAGKIQNKLTDLEILA




R732F)
LLIAALSHDLDHRGVNNSYIQRSEHPLAQLYCHSIMEHHHFDQCLMILNSPGNQILS





GLSIEEYKTTLKIIKQAILATDLALYIKREGEFFELIRKNQFNLEDPHQKELFLAMLM





TACDLSAITKPWPIQQRIAELVATEFFDQGDRERKELNIEPTDLMNREKKNKIPSMQ





VGFIDAICLQLYEALTHVSEDCFPLLDGCRKNRQKWQALAEQQ







hPDE5 (Amino acid
EETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFTDLNLVQNFQMK
389
412


535-860 of WT,
HEVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMFAALKAGKIQNKLTDLEILA




R732W)
LLIAALSHDLDHRGVNNSYIQRSEHPLAQLYCHSIMEHHHFDQCLMILNSPGNQILS





GLSIWEYKTTLKIIKQAILATDLALYIKRWGEFFELIRKNQFNLEDPHQKELFLAMLM





TACDLSAITKPWPIQQRIAELVATEFFDQGDRERKELNIEPTDLMNREKKNKIPSMQ





VGFIDAICLQLYEALTHVSEDCFPLLDGCRKNRQKWQALABQQ







hPDE5 (Amino acid
EETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFTDLNLVQNFQMK
390
413; 414


535-860 of WT,
HEVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMFAALKAGKIQNKLTDLEILA




R732Y)
LLIAALSHDLDHRGVNNSYIQRSEHPLAQLYCHSIMEHHHFDQCLMILNSPGNQILS





GLSIEEYKTTLKIIKQAILATDLALYIKRYGEFFELIRKNQFNLEDPHQKELFLAMLM





TACDLSAITKPWPIQQRIAELVATEFFDQGDRERKELNIEPTDLMNREKKNKIPSMQ





VGFIDAICLQLYEALTHVSEDCFPLLDGCRKNRQKWQALAEQQ







hPDE5 (Amino acid
EETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFTDLNLVQNFQMK
391
415; 416


535-860 of WT,
HEVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMFAALKAGKIQNKLTDLEILA




R732H)
LLIAALSHDLDHRGVNNSYIQRSEHPLAQLYCHSIMEHHHFDQCLMILNSPGNQILS





GLSIEEYKTTLKIIKQAILATDLALYIKRHGEFFELIRKNQFNLEDPHQKELFLAMLM





TACDLSAITKPWPIQQRIAELVATEFFDQGDRERKELNIEPTDLMNREKKNKIPSMQ





VGFIDAICLQLYEALTHVSEDCFPLLDGCRKNRQKWQALAEQQ







hPDE5 (Amino acid
EETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFTDLNLVQNFQMK
392
417; 418


535-860 of WT,
HEVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMFAALKAGKIQNKLTDLEILA




R732S)
LLIAALSHDLDHRGVNNSYIQRSEHPLAQLYCHSIMEHHHFDQCLMILNSPGNQILS





GLSIEEYKTTLKIIKQAILATDLALYIKRSGEFFELIRKNQFNLEDPHQKELFLAMLM





TACDLSAITKPWPIQQRIAELVATEFFDQGDRERKELNIEPTDLMNREKKNKIPSMQ





VGFIDAICLQLYEALTHVSEDCFPLLDGCRKNRQKWQALAEQQ







hPDE5 (Amino acid
EETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFTDLNLVQNFQMK
393
419; 8552


535-860 of WT,
HEVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMFAALKAGKIQNKLTDLEILA




R732T)
LLIAALSHDLDHRGVNNSYIQRSEHPLAQLYCHSIMEHHHFDQCLMILNSPGNQILS





GLSIEEYKTTLKIIKQAILATDLALYIKRTGEFFELIRKNQFNLEDPHQKELFLAMLM





TACDLSAITKPWPIQQRIAELVATEFFDQGDRERKELNIEPTDLMNREKKNKIPSMQ





VGFIDAICLQLYEALTHVSEDCFPLLDGCRKNRQKWQALAEQQ







hPDE5 (Amino acid
EETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFTDLNLVQNFQMK
394
420; 421


535-860 of WT,
HEVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMFAALKAGKIQNKLTDLEILA




R732D)
LLIAALSHDLDHRGVNNSYIQRSEHPLAQLYCHSIMEHHHFDQCLMILNSPGNQILS





GLSIEEYKTTLKIIKQAILATDLALYIKRDGEFFELIRKNQFNLEDPHQKELFLAMLM





TACDLSAITKPWPIQQRIAELVATEFFDQGDRERKELNIEPTDLMNREKKNKIPSMQ





VGFIDAICLQLYEALTHVSEDCFPLLDGCRKNRQKWQALAEQQ







hPDE5 (Amino acid
EETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFTDLNLVQNFQMK
395
422; 423


535-860 of WT,
HEVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMFAALKAGKIQNKLTDLEILA




R732E)
LLIAALSHDLDHRGVNNSYIQRSEHPLAQLYCHSIMEHHHFDQCLMILNSPGNQILS





GLSIEEYKTTLKIIKQAILATDLALYIKREGEFFELIRKNQFNLEDPHQKELFLAMLM





TACDLSAITKPWPIQQRIAELVATEFFDQGDRERKELNIEPTDLMNREKKNKIPSMQ





VGFIDAICLQLYEALTHVSEDCFPLLDGCRKNRQKWQALAEQQ







hPDE5 (Amino acid
EETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFTDLNLVQNFQMK
396
424; 425


535-860 of WT,
HEVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMFAALKAGKIQNKLTDLEILA




R732Q)
LLIAALSHDLDHRGVNNSYIQRSEHPLAQLYCHSIMEHHHFDQCLMILNSPGNQILS





GLSIEEYKTTLKIIKQAILATDLALYIKRQGEFFELIRKNQFNLEDPHQKELFLAMLM





TACDLSAITKPWPIQQRIAELVATEFFDQGDRERKELNIEPTDLMNREKKNKIPSMQ





VGFIDAICLQLYEALTHVSEDCFPLLDGCRKNRQKWQALAEQQ







hPDE5 (Amino acid
EETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFTDLNLVQNFQMK
397
426; 8553


535-860 of WT,
HEVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMFAALKAGKIQNKLTDLEILA




R732N)
LLIAALSHDLDHRGVNNSYIQRSEHPLAQLYCHSIMEHHHFDQCLMILNSPGNQILS





GLSIEEYKTTLKIIKQAILATDLALYIKRNGEFFELIRKNQFNLEDPHQKELFLAMLM





TACDLSAITKPWPIQQRIAELVATEFFDQGDRERKELNIEPTDLMNREKKNKIPSMQ





VGFIDAICLQLYEALTHVSEDCFPLLDGCRKNRQKWQALAEQQ







hPDE5 (Amino acid
EETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFTDLNLVQNFQMK
398
427


535-860 of WT,
HEVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMFAALKAGKIQNKLTDLEILA




R732M)
LLIAALSHDLDHRGVNNSYIQRSEHPLAQLYCHSIMEHHHFDQCLMILNSPGNQILS





GLSIEEYKTTLKIIKQAILATDLALYIKRMGEFFELIRKNQFNLEDPHQKELFLAMLM





TACDLSAITKPWPIQQRIAELVATEFFDQGDRERKELNIEPTDLMNREKKNKIPSMQ





VGFIDAICLQLYEALTHVSEDCFPLLDGCRKNRQKWQALAEQQ







hPDE5 (Amino acid
EETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFTDLNLVQNFQMK
399
428; 8554


535-860 of WT,
HEVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMFAALKAGKIQNKLTDLEILA




R732C)
LLIAALSHDLDHRGVNNSYIQRSEHPLAQLYCHSIMEHHHFDQCLMILNSPGNQILS





GLSIEEYKTTLKIIKQAILATDLALYIKRCGEFFELIRKNQFNLEDPHQKELFLAMLM





TACDLSAITKPWPIQQRIAELVATEFFDQGDRERKELNIEPTDLMNREKKNKIPSMQ





VGFIDAICLQLYEALTHVSEDCFPLLDGCRKNRQKWQALAEQQ







hPDE5 (Amino acid
EETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFTDLNLVQNFQMK
400
429


535-860 of WT,
HEVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMFAALKAGKIQNKLTDLEILA




R732K)
LLIAALSHDLDHRGVNNSYIQRSEHPLAQLYCHSIMEHHHFDQCLMILNSPGNQILS





GLSIEEYKTTLKIIKQAILATDLALYIKRKGEFFELIRKNQFNLEDPHQKELFLAMLM





TACDLSAITKPWPIQQRIAELVATEFFDQGDRERKELNIEPTDLMNREKKNKIPSMQ





VGFIDAICLQLYEALTHVSEDCFPLLDGCRKNRQKWQALAEQQ
















TABLE 7







Additional hPDE5 R732 construct components












Amino acid
Nucleic Acid


Component
Amino Acid Sequence
SEQ ID NO
SEQ ID NO













AcGFP (Amino
VSKGAELFTGIVPILIELNGDVNGRKFSVSGEGEGDATYGKLTLKFICTT
79
372


acid 2-239 of WT)
GKLPVPWPTLVTTLSYGVQCFSRYPDHMKQHDFFKSAMPEGYIQERTIF





FEDDGNYKSRAEVKFEGDTLVNRIELTGTDFKEDGNILGNKMEYNYNA





HNVYIMTDKAKNGIKVNEKIRHNIEDGSVQLADHYQQNTPIGDGPVLLP





DNHYLSTQSALSKDPNEKRDHMIYFGFVTAAAITHGMDELYK







AcGFP (Amino
MVSKGAELFTGIVPILIELNGDVNGHKESVSGEGEGDATYGKLTLKFICT
365
373


acid 1-239 of WT)
TGKLPVPWPTLVTTLSYGVQCFSRYPDHMKQHDFFKSAMPEGYIQERTI





FFEDDGNYKSRAEVKFEGDTLVNRIELTGTDFKEDGNILGNKMEYNYN





AHNVYIMTDKAKNGIKVNFKIRHNIEDGSVQLADHYQQNTPIGDGPVLL





PDNHYLSTQSALSKDPNEKRDHMIYEGFVTAAAITHGMDELYK







linker (SG)
SG

AGTGGT





linker (GS)
GS

GGATCC
















TABLE 8







hPDE5 R732 constructs












Amino
Nucleic




acid
Acid


Construct ID/

SEQ
SEQ


Description
Sequence
ID NO:
ID NO:





OT-001233 (hPDE5
MKHEVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMFAALKAGKIQNKLTDL
187
205


(Amino acid 590-
EILALLIAALSHDLDHRGVNNSYIQRSEHPLAQLYCHSIMEHHFIFDQCLMILNSPG




836 of WT,
NQILSGLSIEEYKTTLKIIKQAILATDLALYIKRGGEFFEURKNQFNLEDPHQKELF




R732G); linker
LAMLMTACDLSAITKPWPIQQRIAELVATEFFDQGDRERKELNIEPTDLMNREKK




(SG); AcGFP
NKIPSMQVGFIDAICLQLYEALTHVSSGVSKGAELFTGIVPILIELNGDVNGHKFSV




(Amino acid 2-239
SGEGEGDATYGKLTLKFICTTGKLPVPWPTLVTTLSYGVQCFSRYPDHMKQHDFF




of WT); stop)
KSAMPEGYIQERTIFFEDDGNYKSRAEVKFEGDTLVNRIELTGTDFKEDGNILGNK





MEYNYNAHNVYIMTDKAKNGIKVNFKIRHNIEDGSVQLADHYQQNTPIGDGPVL





LPDNHYLSTQSALSKDPNEKRDHMIYFGFVTAAAITHGMDELYK*







OT-001234 (hPDE5
MKHEVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMFAALKAGKIQNKLTDL
188
206


(Amino acid 590-
EILALLIAALSHDLDHRGVNNSYIQRSEHPLAQLYCHSIMEHHHFDQCLMILNSPG




836 of WT,
NQILSGLSIEEYKTTLKIIKQAILATDLALYIKRAGEFFLIRKNQFNLEDPHQKELF




R732A); linker
LAMLMTACDLSAITKPWPIQQRIAELVATEFFDQGDRERKELNIEPTDLMNREKK




(SG); AcGFP
NKIPSMQVGFIDAICLQLYEALTHVSSGVSKGAELFTGIVPILIELNGDVNGHKFSV




(Amino acid 2-239
SGEGEGDATYGKLTLKFICTTGKLPVPWPTLVTTLSYGVQCFSRYPDHMKQHDFF




of WT); stop)
KSAMPEGYIQERTIFFEDDGNYKSRAEVKFEGDTLVNRIELTGTDFKEDGNILGNK





MEYNYNAHNVYIMTDKAKNGIKVNFKIRHNIEDGSVQLADHYQQNTPIGDGPVL





LPDNHYLSTQSALSKDPNEKRDHMIYFGFVTAAAITHGMDELYK*







OT-001235 (hPDE5
MKREVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMFAALKAGKIQNKLTDL
189
207


(Amino acid 590-
EILALLIAALSHDLDHRGVNNSYIQRSEHPLAQLYCHSIMEHHHFDQCLMILNSPG




836 of WT,
NQILSGLSIEEYKTTLKIIKQAILATDLALYIKRVGEFFELIRKNQFNLEDPHQKELF




R732V); linker
LAMLMTACDLSAITKPWPIQQRIAELVATEFFDQGDRERKELNIEPTDLMNREKK




(SG); AcGFP
NKIPSMQVGFIDAICLQLYEALTHVSSGVSKGAELFTGIVPILIELNGDVNGHKFSV




(Amino acid 2-239
SGEGEGDATYGKLTLKFICTTGKLPVPWPTLVTTLSYGVQCFSRYPDHMKQHDFF




of WT); stop)
KSAMPEGYIQERTIFFEDDGNYKSRAEVKFEGDTLVNRIELTGTDFKEDGNILGNK





MEYNYNAHNVYIMTDKAKNGIKVNFKIRHNIEDGSVQLADHYQQNTPIGDGPVL





LPDNHYLSTQSALSKDPNEKRDHMIYFGFVTAAAITHGMDELYK*







OT-001236 (hPDE5
MKREVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMFAALKAGKIQNKLTDL
190
208


(Amino acid 590-
EILALLIAALSHDLDHRGVNNSYIQRSEHPLAQLYCHSIMEHHHFDQCLMILNSPG




836 of WT, R7321);
NQILSGLSIEEYKTTLKIIKQAILATDLALYIKRIGEFFELRKNQFNLEDPHQKELFL




linker (SG); AcGFP
AMLMTACDLSAITKPWPIQQRIAELVATEFFDQGDRERKELNIEPTDLMNREKKN




(Amino acid 2-239
KIPSMQVGFIDAICLQLYEALTHVSSGVSKGAELFTGIVPILIELNGDVNGHKFSVS




of WT); stop)
GEGEGDATYGKLTLKFICTTGKLPVPWPTLVTTLSYGVQCFSRYPDHMKQHDFFK





SAMPEGYIQERTIFFEDDGNYKSRAEVKFEGDTLVNRIELTGTDEKEDGNILGNKM





EYNYNAHNVYIMTDKAKNGIKVNFKIRHNIEDGSVQLADHYQQNTPIGDGPVLLP





DNHYLSTQSALSKDPNEKRDHMIYFGFVTAAAITHGMDELYK*







OT-001237 (hPDE5
MKREVECRWILSVKKNYRKNVAYHNWRHAFNTAQCMFAALKAGKIQNKLTDL
191
209


(Amino acid 590-
EILALLIAALSHDLDHRGVNNSYIQRSEHPLAQLYCHSIMEHHHFDQCLMILNSPG




836 of WT,
NQILSGESIEEYKTTLKIIKQAILATDLALYIKRPGEFFELIKNQFNLEDPHQKELFL




R732P); linker
AMLMTACDLSAITKPWPIQQRIAELVATEFFDQGDRERKELNIEPTDLMNREKKN




(SG); AcGFP
KIPSMQVGFIDAICLQLYEALTHVSSGVSKGAELFTGIVPILIELNGDVNGHKESVS




(Amino acid 2-239
GEGEGDATYGKLTLKFICTTGKLPVPWPTLVTTLSYGVQCFSRYPDHMKQHDFFK




of WT); stop)
SAMPEGYIQERTIFFEDDGNYKSRAEVKFEGDTLVNRIELTGTDFKEDGNILGNKM





EYNYNAHNVYIMTDKAKNGIKVNFKIRHNIEDGSVQLADHYQQNTPIGDGPVLLP





DNHYLSTQSALSKDPNEKRDHMIYFGFVTAAAITHGMDELYK*







OT-001238 (hPDE5
MKREVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMFAALKAGKIQNKLTDE
192
210


(Amino acid 590-
EILALLIAALSHDLDHRGVNNSYIQRSEHPLAQLYCHSIMEHHHFDQCLMILNSPG




836 of WT,
NQILSGESIEEYKTTLKIIKQAILATDLALYIKRFGEFFELIRKNQFNLEDPHQKELFL




R732F); linker
AMLMTACDLSAITKPWPIQQRIAELVATEFFDQGDRERKELNIEPTDLMNREKKN




(SG); AcGFP
KIPSMQVGFIDAICLQLYEALTHVSSGVSKGAELFTGIVPILIELNGDVNGHKESVS




(Amino acid 2-239
GEGEGDATYGKLTLKFICTTGKLPVPWPTLVTTLSYGVQCFSRYPDHMKQHDFFK




of WT); stop)
SAMPEGYIQERTIFFEDDGNYKSRAEVKFEGDTLVNRIELTGTDFKEDGNILGNKM





EYNYNAHNVYIMTDKAKNGIKVNFKIRHNIEDGSVQLADHYQQNTPIGDGPVLLP





DNHYLSTQSALSKDPNEKRDHMIYFGFVTAAAITHGMDELYK*







OT-001239 (hPDE5
MKHEVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMFAALKAGKIQNKLTDL
193
211


(Amino acid 590-
EILALLIAALSHDLDHRGVNNSYIQRSEHPLAQLYCHSIMEHHHFDQCLMILNSPG




836 of WT,
NQILSGESIEEYKTTLKIIKQAILATDLALYIKRWGEFFELIRKNQFNLEDPHQKELF




R732W); linker
LAMLMTACDLSAITKPWPIQQRIAELVATEFFDQGDRERKELNIEPTDLMNREKK




(SG); AcGFP
NKIPSMQVGFIDAICLQLYEALTHVSSGVSKGAELFTGIVPILIELNGDVNGHKFSV




(Amino acid 2-239
SGEGEGDATYGKLTLKFICTTGKLPVPWPTLVTTLSYGVQCFSRYPDHMKQHDFF




of WT); stop)
KSAMPEGYIQERTIFFEDDGNYKSRAEVKFEGDTLVNRIELTGTDFKEDGNILGNK





MEYNYNAHNVYIMTDKAKNGIKVNFKIRHNIEDGSVQLADHYQQNTPIGDGPVL





LPDNHYLSTQSALSKDPNEKRDHMIYEGFVTAAAITHGMDELYK*







OT-001240 (hPDE5
MKREVECRWILSVKKNYRKNVAYHNWRHAFNTAQMFAALKAGKIQNKLTDL
194
212


(Amino acid 590-
EILALLIAALSHDLDHRGVNNSYIQRSEHPLAQLYCHSIMEHHHFDQCLMILNSPG




836 of WT,
NQILSGESIEEYKTTLKIIKQAILATDLALYIKRYGEFFELIRKNQFNLEDPHQKELF




R732Y); linker
LAMLMTACDLSAITKPWPIQQRIAELVATEFFDQGDRERKELNIEPTDLMNREKK




(SG); AcGFP
NKIPSMQVGFIDAICLQLYEALTHVSSGVSKGAELFTGIVPILIELNGDVNGHKFSV




(Amino acid 2-239
SGEGEGDATYGKLTLKFICTTGKLPVPWPTLVTTLSYGVQCFSRYPDHMKQHDFF




of WT); stop)
KSAMPEGYIQERTIFFEDDGNYKSRAEVKFEGDTLVNRIELTGTDFKEDGNILGNK





MEYNYNAHNVYIMTDKAKNGIKVNFKIRHNIEDGSVQLADHYQQNTPIGDGPVL





LPDNHYLSTQSALSKDPNEKRDHMIYFGFVTAAAITHGMDELYK*







OT-001241 (hPDE5
MKHEVECRWILSVKKNYRKNVAYHNWRHAFNTAQCMFAALKAGKIQNKLTDL
195
213


(Amino acid 590-
EILALLIAALSHDLDHRGVNNSYIQRSEHPLAQLYCHSIMEHHHFDQCLMILNSPG




836 of WT,
NQILSGESIEEYKTTLKIIKQAILATDLALYIKRHGEFFELIRKNQFNLEDPHQKELF




R732H); linker
LAMLMTACDLSAITKPWPIQQRIAELVATEFFDQGDRERKELNIEPTDLMNREKK




(SG); AcGFP
NKIPSMQVGFIDAICLQLYEALTHVSSGVSKGAELFTGIVPILIELNGDVNGHKESV




(Amino acid 2-239
SGEGEGDATYGKLTLKFICTTGKLPVPWPTLVTTLSYGVQCFSRYPDHMKQHDFF




of WT); stop)
KSAMPEGYIQERTIFFEDDGNYKSRAEVKFEGDTLVNRIELTGTDFKEDGNILGNK





MEYNYNAHNVYIMTDKAKNGIKVNFKIRHNIEDGSVQLADHYQQNTPIGDGPVL





LPDNHYLSTQSALSKDPNEKRDHMIYFGFVTAAAITHGMDELYK*







OT-001242 (hPDE5
MKHEVECRWILSVKKNYRKNVAYHNWRHAFNTAQCMFAALKAGKIQNKLTDL
196
214


(Amino acid 590-
EILALLIAALSHDLDHRGVNNSYIQRSEHPLAQLYCHSIMEHHHFDQCLMILNSPG




836 of WT,
NQILSGESIEEYKTTLKIIKQAILATDLALYIKRSGEFFLIRKNQFNLEDPHQKELFL




R732S); linker
AMLMTACDLSAITKPWPIQQRIAELVATEFFDQGDRERKELNIEPTDLMNREKKN




(SG); AcGFP
KIPSMQVGFIDAICLQLYEALTHVSSGVSKGAELFTGIVPILIELNGDVNGHKESVS




(Amino acid 2-239
GEGEGDATYGKLTLKFICTTGKLPVPWPTLVTTLSYGVQCFSRYPDHMKQHDFFK




of WT); stop)
SAMPEGYIQERTIFFEDDGNYKSRAEVKFEGDTLVNRIELTGTDFKEDGNILGNKM





EYNYNAHNVYIMTDKAKNGIKVNFKIRHIEDGSVQLADHYQQNTPIGDGPVLLP





DNHYLSTQSALSKDPNEKRDHMIYFGFVTAAAITHGMDELYK*







OT-001243 (hPDE5
MKHEVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMFAALKAGKIQNKLTDL
197
215


(Amino acid 590-
EILALLIAALSHDLDHRGVNNSYIQRSEHPLAQLYCHSIMEHHHFDQCLMILNSPG




836 of WT,
NQILSGLSIEEYKTTLKIIKQAILATDLALYIKRTGEFFELIRKNQFNLEDPHQKELF




R732T); linker
LAMLMTACDLSAITKPWPIQQRIAELVATEFFDQGDRERKELNIEPTDLMNREKK




(SG); AcGFP
NKIPSMQVGFIDAICLQLYEALTHVSSGVSKGAELFTGIVPILIELNGDVNGHKFSV




(Amino acid 2-239
SGEGEGDATYGKLTLKFICTTGKLPVPWPTLVTTLSYGVQCFSRYPDHMKQHDFF




of WT); stop)
KSAMPEGYIQERTIFFEDDGNYKSRAEVKFEGDTLVNRIELTGTDFKEDGNILGNK





MEYNYNAHNVYIMTDKAKNGIKVNFKIRHNIEDGSVQLADHYQQNTPIGDGPVL





LPDNHYLSTQSALSKDPNEKRDHMIYFGFVTAAAITHGMDELYK*







OT-001244 (hPDE5
MKHEVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMFAALKAGKIQNKLTDL
198
216


(Amino acid 590-
EILALLIAALSHDLDHRGVNNSYIQRSEHPLAQLYCHSIMEHHHFDQCLMILNSPG




836 of WT,
NQILSGLSIEEYKTTLKIIKQAILATDLALYIKRDGEFFELIRKNQFNLEDPHQKELF




R732D); linker
LAMLMTACDLSAITKPWPIQQRIAELVATEFFDQGDRERKELNIEPTDLMNREKK




(SG); AcGFP
NKIPSMQVGFIDAICLQLYEALTHVSSGVSKGAELFTGIVPILIELNGDVNGHKESV




(Amino acid 2-239
SGEGEGDATYGKLTLKFICTTGKLPVPWPTLVTTLSYGVQCFSRYPDHMKQHDFF




of WT); stop)
KSAMPEGYIQERTIFFEDDGNYKSRAEVKFEGDTLVNRIELTGTDFKEDGNILGNK





MEYNYNAHNVYIMTDKAKNGIKVNFKIRHNIEDGSVQLADHYQQNTPIGDGPVL





LPDNHYLSTQSALSKDPNEKRDHMIYFGFVTAAAITHGMDELYK*







OT-001245 (hPDE5
MKHEVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMFAALKAGKIQNKLTDL
199
217


(Amino acid 590-
EILALLIAALSHDLDHRGVNNSYIQRSEHPLAQLYCHSIMEHHHFDQCLMILNSPG




836 of WT,
NQILSGESIEEYKTTLKIIKQAILATDLALYIKREGEFFELIRKNQFNLEDPHQKELF




R732E); linker
LAMLMTACDLSAITKPWPIQQRIAELVATEFFDQGDRERKELNIEPTDLMNREKK




(SG); AcGFP
NKIPSMQVGFIDAICLQLYEALTHVSSGVSKGAELFTGIVPILIELNGDVNGHKFSV




(Amino acid 2-239
SGEGEGDATYGKLTLKFICTTGKLPVPWPTLVTTLSYGVQCFSRYPDHMKQHDFF




of WT); stop)
KSAMPEGYIQERTIFFEDDGNYKSRAEVKFEGDTLVNRIELTGTDFKEDGNILGNK





MEYNYNAHNVYIMTDKAKNGIKVNFKIRHNIEDGSVQLADHYQQNTPIGDGPVL





LPDNHYLSTQSALSKDPNEKRDHMIYEGFVTAAAITHGMDELYK*







OT-001246 (hPDE5
MKHEVECRWILSVKKNYRKNVAYHNWRHAFNTAQCMFAALKAGKIQNKLTDL
200
218


(Amino acid 590-
EILALLIAALSHDLDHRGVNNSYIQRSEHPLAQLYCHSIMEHHHFDQCLMILNSPG




836 of WT,
NQILSGESIEEYKTTLKIIKQAILATDLALYIKRQGEFFELIRKNQFNLEDPHQKELF




R732Q); linker
LAMLMTACDLSAITKPWPIQQRIAELVATEFFDQGDRERKELNIEPTDLMNREKK




(SG); AcGFP
NKIPSMQVGFIDAICLQLYEALTHVSSGVSKGAELFTGIVPILIELNGDVNGHKFSV




(Amino acid 2-239
SGEGEGDATYGKLTLKFICTTGKLPVPWPTLVTTLSYGVQCFSRYPDHMKQHDFF




of WT); stop)
KSAMPEGYIQERTIFFEDDGNYKSRAEVKFEGDTLVNRIELTGTDFKEDGNILGNK





MEYNYNAHNVYIMTDKAKNGIKVNFKIRHNIEDGSVQLADHYQQNTPIGDGPVL





LPDNHYLSTQSALSKDPNEKRDHMIYFGFVTAAAITHGMDELYK*







OT-001247 (hPDE5
MKHEVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMFAALKAGKIQNKLTDL
201
219


(Amino acid 590-
EILALLIAALSHDLDHRGVNNSYIQRSEHPLAQLYCHSIMEHHHFDQCLMILNSPG




836 of WT,
NQILSGESIEEYKTTLKIIKQAILATDLALYIKRNGEFFELIRKNQFNLEDPHQKELF




R732N); linker
LAMLMTACDLSAITKPWPIQQRIAELVATEFFDQGDRERKELNIEPTDLMNREKK




(SG); AcGFP
NKIPSMQVGFIDAICLQLYEALTHVSSGVSKGAELFTGIVPILIELNGDVNGHKFSV




(Amino acid 2-239
SGEGEGDATYGKLTLKFICTTGKLPVPWPTLVTTLSYGVQCFSRYPDHMKQHDFF




of WT); stop)
KSAMPEGYIQERTIFFEDDGNYKSRAEVKFEGDTLVNRIELTGTDFKEDGNILGNK





MEYNYNAHNVYIMTDKAKNGIKVNFKIRHNIEDGSVQLADHYQQNTPIGDGPVL





LPDNHYLSTQSALSKDPNEKRDHMIYFGFVTAAAITHGMDELYK*







OT-001248 (hPDE5
MKHEVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMFAALKAGKIQNKLTDL
202
220


(Amino acid 590-
EILALLIAALSHDLDHRGVNNSYIQRSEHPLAQLYCHSIMEHHHFDQCLMILNSPG




836 of WT,
NQILSGESIEEYKTTLKIIKQAILATDLALYIKRMGEFFELIRKNQFNLEDPHQKELF




R732M); linker
LAMLMTACDLSAITKPWPIQQRIAELVATEFFDQGDRERKELNIEPTDLMNREKK




(SG); AcGFP
NKIPSMQVGFIDAICLQLYEALTHVSSGVSKGAELFTGIVPILIELNGDVNGHKFSV




(Amino acid 2-239
SGEGEGDATYGKLTLKFICTTGKLPVPWPTLVTTLSYGVQCFSRYPDHMKQHDFF




of WT); stop)
KSAMPEGYIQERTIFFEDDGNYKSRAEVKFEGDTLVNRIELTGTDFKEDGNILGNK





MEYNYNAHNVYIMTDKAKNGIKVNFKIRHNIEDGSVQLADHYQQNTPIGDGPVL





LPDNHYLSTQSALSKDPNEKRDHMIYFGFVTAAAITHGMDELYK*







OT-001249 (hPDE5
MKHEVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMFAALKAGKIQNKLTDL
203
221


(Amino acid 590-
EILALLIAALSHDLDHRGVNNSYIQRSEHPLAQLYCHSIMEHHHFDQCLMILNSPG




836 of WT,
NQILSGLSIEEYKTTLKIIKQAILATDLALYIKRCGEFFELIRKNQFNLEDPHQKELF




R732C); linker
LAMLMTACDLSAITKPWPIQQRIAELVATEFFDQGDRERKELNIEPTDLMNREKK




(SG); AcGFP
NKIPSMQVGFIDAICLQLYEALTHVSSGVSKGAELFTGIVPILIELNGDVNGHKFSV




(Amino acid 2-239
SGEGEGDATYGKLTLKFICTTGKLPVPWPTLVTTLSYGVQCFSRYPDHMKQHDFF




of WT); stop)
KSAMPEGYIQERTIFFEDDGNYKSRAEVKFEGDTLVNRIELTGTDFKEDGNILGNK





MEYNYNAHNVYIMTDKAKNGIKVNFKIRHNIEDGSVQLADHYQQNTPIGDGPVL





LPDNHYLSTQSALSKDPNEKRDHMIYFGFVTAAAITHGMDELYK*







OT-001250 (hPDE5
MKHEVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMFAALKAGKIQNKLTDL
204
222


(Amino acid 590-
EILALLIAALSHDLDHRGVNNSYIQRSEHPLAQLYCHSIMEHHHEDQCLMILNSPG




836 of WT,
NQILSGLSILEEKTTLKIIKQAILATDLALYIKRKGEFFELIRKNQFNLEDPHQKELF




R732K); linker
LAMLMTACDLSAITKPWPIQQRIAELVATEFFDQGDRERKELNIEPTDLMNREKK




(SG); AcGFP
NKIPSMQVGFIDAICLQLYEALTHVSSGVSKGAELFTGIVPILIELNGDVNGHKFSV




(Amino acid 2-239
SGEGEGDATYGKLTLKFICTTGKLPVPWPTLVTTLSYGVQCFSRYPDHMKQHDFF




of WT); stop)
KSAMPEGYIQERTIFFEDDGNYKSRAEVKFEGDTLVNRIELTGTDFKEDGNILGNK





MEYNYNAHNVYIMTDKAKNGIKVNFKIRHNIEDGSVQLADHYQQNTPIGDGPVL





LPDNHYLSTQSALSKDPNEKRDHMIYEGFVTAAAITHGMDELYK*







OT-001186
MEETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFTDLNLVQNFQ
430
467


(Methionine;
MKHEVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMFAALKAGKIQNKLTDL




(hPDE5 (Amino
EILALLIAALSHDLDHRGVNNSYIQRSEHPLAQLYCHSIMEHHHFDQCLMILNSPG




acid 535-860 of
NQILSGLSIEEYKTTLKIIKQAILATDLALYIKRGGEFFELIRKNQFNLEDPHQKELF




WT, R732G); linker
LAMLMTACDLSAITKPWPIQQRIAELVATEFFDQGDRERKELNIEPTDLMNREKK




(SG); AcGFP
NKIPSMQVGFIDAICLQLYEALTHVSEDCFPLLDGCRKNRQKWQALAEQQSGVSK




(Amino acid 2-239
GAELFTGIVPILIELNGDVNGHKFSVSGEGEGDATYGKLTLKFICTTGKLPVPWPT




of WT); stop)
LVTTLSYGVQCFSRYPDHMKQHDFFKSAMPEGYIQERTIFFEDDGNYKSRAEVKF





EGDTLVNRIELTGTDFKEDGNILGNKMEYNYNAHNVYIMTDKAKNGIKVNFKIR





HNIEDGSVQLADHYQQNTPIGDGPVLLPDNHYLSTQSALSKDPNEKRDHMIYFGF





VTAAAITHGMDELYK*







OT-001187
MEETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFTDLNLVQNFQ
431
468


(Methionine;
MKHEVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMFAALKAGKIQNKLTDL




(hPDE5 (Amino
EILALLIAALSHDLDHRGVNNSYIQRSEHPLAQLYCHSIMEHHHFDQCLMILNSPG




acid 535-860 of
NQILSGLSIEEYKTTLKIIKQAILATDLALYIKRAGEFFELIRKNQFNLEDPHQKELF




WT, R732A); linker
LAMLMTACDLSAITKPWPIQQRIAELVATEFFDQGDRERKELNIEPTDLMNREKK




(SG); AcGFP
NKIPSMQVGFIDAICLQLYEALTHVSEDCFPLLDGCRKNRQKWQALAEQQSGVSK




(Amino acid 2-239
GAELFTGIVPILIELNGDVNGHKFSVSGEGEGDATYGKLTLKFICTTGKLPVPWPT




of WT); stop)
LVTTLSYGVQCFSRYPDHMKQHDFFKSAMPEGYIQERTIFFEDDGNYKSRAEVKF





EGDTLVNRIELTGTDFKEDGNILGNKMEYNYNAHNVYIMTDKAKNGIKVNFKIR





HNIEDGSVQLADHYQQNTPIGDGPVLLPDNHYLSTQSALSKDPNEKRDHMIYFGF





VTAAAITHGMDELYK*







OT-001188
MEETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFTDLNLVQNFQ
432
469


(Methionine;
MKHEVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMFAALKAGKIQNKLTDL




(hPDE5 (Amino
EILALLIAALSHDLDHRGVNNSYIQRSEHPLAQLYCHSIMEHHHFDQCLMILNSPG




acid 535-860 of
NQILSGLSIEEYKTTLKIIKQAILATDLALYIKRVGEFFELIRKNQFNLEDPHQKELF




WT, R732V); linker
LAMLMTACDLSAITKPWPIQQRIAELVATEFFDQGDRERKELNIEPTDLMNREKK




(SG); AcGFP
NKIPSMQVGFIDAICLQLYEALTHVSEDCFPLLDGCRKNRQKWQALAEQQSGVSK




(Amino acid 2-239
GAELFTGIVPILIELNGDVNGHKFSVSGEGEGDATYGKLTLKFICTTGKLPVPWPT




of WT); stop)
LVTTLSYGVQCFSRYPDHMKQHDFFKSAMPEGYIQERTIFFEDDGNYKSRAEVKF





EGDTLVNRIELTGTDFKEDGNILGNKMEYNYNAHNVYIMTDKAKNGIKVNFKIR





HNIEDGSVQLADHYQQNTPIGDGPVLLPDNHYLSTQSALSKDPNEKRDHMIYFGF





VTAAAITHGMDELYK*







OT-001189
MEETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFTDLNLVQNFQ
433
470


(Methionine;
MKHEVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMFAALKAGKIQNKLTDL




(hPDE5 (Amino
EILALLIAALSHDLDHRGVNNSYIQRSEHPLAQLYCHSIMEHHHFDQCLMILNSPG




acid 535-860 of
NQILSGLSIEEYKTTLKIIKQAILATDLALYIKRIGEFFELIRKNQFNLEDPHQKELFL




WT, R732I); linker
AMLMTACDLSAITKPWPIQQRIAELVATEFFDQGDRERKELNIEPTDLMNREKKN




(SG); AcGFP
KIPSMQVGFIDAICLQLYEALTHVSEDCFPLLDGCRKNRQKWQALAEQQSGVSKG




(Amino acid 2-239
AELFTGIVPILIELNGDVNGHKFSVSGEGEGDATYGKLTLKFICTTGKLPVPWPTL




of WT); stop)
VTTLSYGVQCFSRYPDHMKQHDFFKSAMPEGYIQERTIFFEDDGNYKSRAEVKFE





GDTLVNRIELTGTDFKEDGNILGNKMEYNYNAHNVYIMTDKAKNGIKVNFKIRH





NIEDGSVQLADHYQQNTPIGDGPVLLPDNHYLSTQSALSKDPNEKRDHMIYFGFV





TAAAITHGMDELYK*







OT-001190
MEETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFTDLNLVQNFQ
434
471


(Methionine;
MKHEVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMFAALKAGKIQNKLTDL




(hPDE5 (Amino
EILALLIAALSHDLDHRGVNNSYIQRSEHPLAQLYCHSIMEHHHFDQCLMILNSPG




acid 535-860 of
NQILSGLSIEEYKTTLKIIKQAILATDLALYIKRPGEFFELORKNQFNLEDPHQKELFL




WT, R732P); linker
AMLMTACDLSAITKPWPIQQRIAELVATEFFDQGDRERKELNIEPTDLMNREKKN




(SG); AcGFP
KIPSMQVGFIDAICLQLYEALTHVSEDCFPLLDGCRKNRQKWQALAEQQSGVSKG




(Amino acid 2-239
AELFTGIVPILIELNGDVNGHKESVSGEGEGDATYGKLTLKFICTTGKLPVPWPTL




of WT); stop)
VTTLSYGVQCFSRYPDHMKQHDFFKSAMPEGYIQERTIFFEDDGNYKSRAEVKFE





GDTLVNRIELTGTDEKEDGNILGNKMEYNYNAHNVYIMTDKAKNGIKVNFKIRH





NIEDGSVQLADHYQQNTPIGDGPVLLPDNHYLSTQSALSKDPNEKRDHMIYFGFV





TAAAITHGMDELYK*







OT-001191
MEETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFTDLNLVQNFQ
435
472


(Methionine;
MKHEVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMFAALKAGKIQNKLTDL




(hPDE5 (Amino
EILALLIAALSHDLDHRGVNNSYIQRSEHPLAQLYCHSIMEHHHFDQCLMILNSPG




acid 535-860 of
NQILSGLSIEEYKTTLKIIKQAILATDLALYIKRFGEFFELIRKNQFNLEDPHQKELFL




WT, R732F); linker
AMLMTACDLSAITKPWPIQQRIAELVATEFFDQGDRERKELNIEPTDLMNREKKN




(SG); AcGFP
KIPSMQVGFIDAICLQLYEALTHVSEDCFPLLDGCRKNRQKWQALAEQQSGVSKG




(Amino acid 2-239
AELFTGIVPILIELNGDVNGHKFSVSGEGEGDATYGKLTLKFICTTGKLPVPWPTL




of WT); stop)
VTTLSYGVQCFSRYPDHMKQHDFFKSAMPEGYIQERTIFFEDDGNYKSRAEVKFE





GDTLVNRIELTGTDFKEDGNILGNKMEYNYNAHNVYIMTDKAKNGIKVNFKIRH





NIEDGSVQLADHYQQNTPIGDGPVLLPDNHYLSTQSALSKDPNEKRDHMIYFGFV





TAAAITHGMDELYK*







OT-001192
MEETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFTDLNLVQNFQ
436
473


(Methionine;
MKHEVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMFAALKAGKIQNKLTDL




(hPDE5 (Amino
EILALLIAALSHDLDHRGVNNSYIQRSEHPLAQLYCHSIMEHHHFDQCLMILNSPG




acid 535-860 of
NQILSGLSIEEYKTTLKIIKQAILATDLALYIKRWGEFFELIRKNQFNLEDPHQKELF




WT, R732W);
LAMLMTACDLSAITKPWPIQQRIAELVATEFFDQGDRERKELNIEPTDLMNREKK




linker (SG); AcGFP
NKIPSMQVGFIDAICLQLYEALTHVSEDCFPLLDGCRKNRQKWQALAEQQSGVSK




(Amino acid 2-239
GAELFTGIVPILIELNGDVNGHKFSVSGEGEGDATYGKLTLKFICTTGKLPVPWPT




of WT); stop)
LVTTLSYGVQCFSRYPDHMKQHDFFKSAMPEGYIQERTIFFEDDGNYKSRAEVKF





EGDTLVNRIELTGTDFKEDGNILGNKMEYNYNAHNVYIMTDKAKNGIKVNFKIR





HNIEDGSVQLADHYQQNTPIGDGPVLLPDNHYLSTQSALSKDPNEKRDHMIYFGF





VTAAAITHGMDELYK*







OT-001193
MEETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFTDLNLVQNFQ
437
474


(Methionine;
MKHEVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMFAALKAGKIQNKLTDL




(hPDE5 (Amino
EILALLIAALSHDLDHRGVNNSYIQRSEHPLAQLYCHSIMEHHHFDQCLMILNSPG




acid 535-860 of
NQILSGLSIEEYKTTLKIIKQAILATDLALYIKRYGEFFELIRKNQFNLEDPHQKELF




WT, R732Y); linker
LAMLMTACDLSAITKPWPIQQRIAELVATEFFDQGDRERKELNIEPTDLMNREKK




(SG); AcGFP
NKIPSMQVGFIDAICLQLYEALTHVSEDCFPLLDGCRKNRQKWQALAEQQSGVSK




(Amino acid 2-239
GAELFTGIVPILIELNGDVNGHKESVSGEGEGDATYGKLTLKFICTTGKLPVPWPT




of WT); stop)
LVTTLSYGVQCFSRYPDHMKQHDFFKSAMPEGYIQERTIFFEDDGNYKSRAEVKF





EGDTLVNRIELTGTDFKEDGNILGNKMEYNYNAHNVYIMTDKAKNGIKVNFKIR





HNIEDGSVQLADHYQQNTPIGDGPVLLPDNHYLSTQSALSKDPNEKRDHMIYFGF





VTAAAITHGMDELYK*







OT-001195
MEETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFTDLNLVQNFQ
438
475


(Methionine;
MKHEVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMFAALKAGKIQNKLTDL




(hPDE5 (Amino
EILALLIAALSHDLDHRGVNNSYIQRSEHPLAQLYCHSIMEHHHFDQCLMILNSPG




acid 535-860 of
NQILSGLSIEEYKTTLKIIKQAILATDLALYIKRHGEFFELIRKNQFNLEDPHQKELF




WT, R732I4); linker
LAMLMTACDLSAITKPWPIQQRIAELVATEFFDQGDRERKELNIEPTDLMNREKK




(SG); AcGFP
NKIPSMQVGFIDAICLQLYEALTHVSEDCFPLLDGCRKNRQKWQALAEQQSGVSK




(Amino acid 2-239
GAELFTGIVPILIELNGDVNGHKFSVSGEGEGDATYGKLTLKFICTTGKLPVPWPT




of WT); stop)
LVTTLSYGVQCFSRYPDHMKQHDFFKSAMPEGYIQERTIFFEDDGNYKSRAEVKF





EGDTLVNRIELTGTDFKEDGNILGNKMEYNYNAHNVYIMTDKAKNGIKVNFKIR





HNIEDGSVQLADHYQQNTPIGDGPVLLPDNHYLSTQSALSKDPNEKRDHMIYFGF





VTAAAITHGMDELYK*







OT-001196
MEETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFTDLNLVQNFQ
439
476


(Methionine;
MKHEVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMFAALKAGKIQNKLTDL




(hPDE5 (Amino
EILALLIAALSHDLDHRGVNNSYIQRSEHPLAQLYCHSIMEHHHFDQCLMILNSPG




acid 535-860 of
NQILSGLSIEEYKTTLKIIKQAILATDLALYIKRSGEFFELIRKNQFNLEDPHQKELFL




WT, R732S); linker
AMLMTACDLSAITKPWPIQQRIAELVATEFFDQGDRERKELNIEPTDLMNREKKN




(SG); AcGFP
KIPSMQVGFIDAICLQLYEALTHVSEDCFPLLDGCRKNRQKWQALAEQQSGVSKG




(Amino acid 2-239
AELFTGIVPILIELNGDVNGHKESVSGEGEGDATYGKLTLKFICTTGKLPVPWPTL




of WT); stop)
VTTLSYGVQCFSRYPDHMKQHDFFKSAMPEGYIQERTIFFEDDGNYKSRAEVKFE





GDTLVNRIELTGTDFKEDGNILGNKMEYNYNAHNVYIMTDKAKNGIKVNFKIRH





NIEDGSVQLADHYQQNTPIGDGPVLLPDNHYLSTQSALSKDPNEKRDHMIYFGFV





TAAAITHGMDELYK*







OT-001197
MEETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFTDLNLVQNFQ
440
477


(Methionine;
MKHEVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMFAALKAGKIQNKLTDL




(hPDE5 (Amino
EILALLIAALSHDLDHRGVNNSYIQRSEHPLAQLYCHSIMEHHHFDQCLMILNSPG




acid 535-860 of
NQILSGLSIEEYKTTLKIIKQAILATDLALYIKRTGEFFELIRKNQFNLEDPHQKELF




WT, R732T); linker
LAMLMTACDLSAITKPWPIQQRIAELVATEFFDQGDRERKELNIEPTDLMNREKK




(SG); AcGEP
NKIPSMQVGFIDAICLQLYEALTHVSEDCFPLLDGCRKNRQKWQALAEQQSGVSK




(Amino acid 2-239
GAELFTGIVPILIELNGDVNGHKFSVSGEGEGDATYGKLTLKFICTTGKLPVPWPT




of WT); stop)
LVTTLSYGVQCFSRYPDHMKQHDFFKSAMPEGYIQERTIFFEDDGNYKSRAEVKF





EGDTLVNRIELTGTDFKEDGNILGNKMEYNYNAHNVYIMTDKAKNGIKVNFKIR





HNIEDGSVQLADHYQQNTPIGDGPVLLPDNHYLSTQSALSKDPNEKRDHMIYFGF





VTAAAITHGMDELYK*







OT-001198
MEETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFTDLNLVQNFQ
441
478


(Methionine;
MKHEVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMFAALKAGKIQNKLTDL




(hPDE5 (Amino
EILALLIAALSHDLDHRGVNNSYIQRSEHPLAQLYCHSIMEHHHFDQCLMILNSPG




acid 535-860 of
NQILSGLSIEEYKTTLKIIKQAILATDLALYIKRDGEFFELIRKNQFNLEDPHQKELF




WT, R732D); linker
LAMLMTACDLSAITKPWPIQQRIAELVATEFFDQGDRERKELNIEPTDLMNREKK




(SG); AcGEP
NKIPSMQVGFIDAICLQLYEALTHVSEDCFPLLDGCRKNRQKWQALAEQQSGVSK




(Amino acid 2-239
GAELFTGIVPILIELNGDVNGHKFSVSGEGEGDATYGKLTLKFICTTGKLPVPWPT




of WT); stop)
LVTTLSYGVQCFSRYPDHMKQHDFFKSAMPEGYIQERTIFFEDDGNYKSRAEVKF





EGDTLVNRIELTGTDEKEDGNILGNKMEYNYNAHNVYIMTDKAKNGIKVNFKIR





HNIEDGSVQLADHYQQNTPIGDGPVLLPDNHYLSTQSALSKDPNEKRDHMIYFGF





VTAAAITHGMDELYK*







OT-001199
MEETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFTDLNLVQNFQ
442
479


(Methionine;
MKHEVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMFAALKAGKIQNKLTDL




(hPDE5 (Amino
EILALLIAALSHDLDHRGVNNSYIQRSEHPLAQLYCHSIMEHHHFDQCLMILNSPG




acid 535-860 of
NQILSGLSIEEYKTTLKIIKQAILATDLALYIKREGEFFELIRKNQFNLEDPHQKELF




WT, R732E); linker
LAMLMTACDLSAITKPWPIQQRIAELVATEFFDQGDRERKELNIEPTDLMNREKK




(SG); AcGEP
NKIPSMQVGFIDAICLQLYEALTHVSEDCFPLLDGCRKNRQKWQALAEQQSGVSK




(Amino acid 2-239
GAELFTGIVPILIELNGDVNGHKFSVSGEGEGDATYGKLTLKFICTTGKLPVPWPT




of WT); stop)
LVTTLSYGVQCFSRYPDHMKQHDFFKSAMPEGYIQERTIFFEDDGNYKSRAEVKF





EGDTLVNRIELTGTDFKEDGNILGNKMEYNYNAHNVYIMTDKAKNGIKVNFKIR





HNIEDGSVQLADHYQQNTPIGDGPVLLPDNHYLSTQSALSKDPNEKRDHMIYFGF





VTAAAITHGMDELYK*







OT-001200
MEETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFTDLNLVQNFQ
443
480


(Methionine;
MKHEVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMFAALKAGKIQNKLTDL




(hPDE5 (Amino
EILALLIAALSHDLDHRGVNNSYIQRSEHPLAQLYCHSIMEHHHFDQCLMILNSPG




acid 535-860 of
NQILSGLSIEEYKTTLKIIKQAILATDLALYIKRQGEFFELIRKNQFNLEDPHQKELF




WT, R732Q); linker
LAMLMTACDLSAITKPWPIQQRIAELVATEFFDQGDRERKELNIEPTDLMNREKK




(SG); AcGEP
NKIPSMQVGFIDAICLQLYEALTHVSEDCFPLLDGCRKNRQKWQALAEQQSGVSK




(Amino acid 2-239
GAELFTGIVPILIELNGDVNGHKFSVSGEGEGDATYGKLTLKFICTTGKLPVPWPT




of WT); stop)
LVTTLSYGVQCFSRYPDHMKQHDFFKSAMPEGYIQERTIFFEDDGNYKSRAEVKF





EGDTLVNRIELTGTDFKEDGNILGNKMEYNYNAHNVYIMTDKAKNGIKVNFKIR





HNIEDGSVQLADHYQQNTPIGDGPVLLPDNHYLSTQSALSKDPNEKRDHMIYFGF





VTAAAITHGMDELYK*







OT-001201
MEETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFTDLNLVQNFQ
444
481


(Methionine;
MKHEVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMFAALKAGKIQNKLTDL




(hPDE5 (Amino
EILALLIAALSHDLDHRGVNNSYIQRSEHPLAQLYCHSIMEHHHFDQCLMILNSPG




acid 535-860 of
NQILSGLSIEEYKTTLKIIKQAILATDLALYIKRNGEFFELIRKNQFNLEDPHQKELF




WT, R732N); linker
LAMLMTACDLSAITKPWPIQQRIAELVATEFFDQGDRERKELNIEPTDLMNREKK




(SG); AcGFP
NKIPSMQVGFIDAICLQLYEALTHVSEDCFPLLDGCRKNRQKWQALAEQQSGVSK




(Amino acid 2-239
GAELFTGIVPILIELNGDVNGHKFSVSGEGEGDATYGKLTLKFICTTGKLPVPWPT




of WT); stop)
LVTTLSYGVQCFSRYPDHMKQHDFFKSAMPEGYIQERTIFFEDDGNYKSRAEVKF





EGDTLVNRIELTGTDFKEDGNILGNKMEYNYNAHNVYIMTDKAKNGIKVNFKIR





HNIEDGSVQLADHYQQNTPIGDGPVLLPDNHYLSTQSALSKDPNEKRDHMIYFGF





VTAAAITHGMDELYK*







OT-001202
MEETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFTDLNLVQNFQ
445
482


(Methionine;
MKHEVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMFAALKAGKIQNKLTDL




(hPDE5 (Amino
EILALLIAALSHDLDHRGVNNSYIQRSEHPLAQLYCHSIMEHHHFDQCLMILNSPG




acid 535-860 of
NQILSGLSIEEYKTTLKIIKQAILATDLALYIKRMGEFFELIRKNQFNLEDPHQKELF




WT, R732M);
LAMLMTACDLSAITKPWPIQQRIAELVATEFFDQGDRERKELNIEPTDLMNREKK




linker (SG); AcGFP
NKIPSMQVGFIDAICLQLYEALTHVSEDCFPLLDGCRKNRQKWQALAEQQSGVSK




(Amino acid 2-239
GAELFTGIVPILIELNGDVNGHKFSVSGEGEGDATYGKLTLKFICTTGKLPVPWPT




of WT); stop)
LVTTLSYGVQCFSRYPDHMKQHDFFKSAMPEGYIQERTIFFEDDGNYKSRAEVKF





EGDTLVNRIELTGTDEKEDGNILGNKMEYNYNAHNVYIMTDKAKNGIKVNFKIR





HNIEDGSVQLADHYQQNTPIGDGPVLLPDNHYLSTQSALSKDPNEKRDHMIYFGF





VTAAAITHGMDELYK*







OT-001203
MEETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFTDLNLVQNFQ
446
483


(Methionine;
MKHEVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMFAALKAGKIQNKLTDL




(hPDE5 (Amino
EILALLIAALSHDLDHRGVNNSYIQRSEHPLAQLYCHSIMEHHHFDQCLMILNSPG




acid 535-860 of
NQILSGLSIEEYKTTLKIIKQAILATDLALYIKRCGEFFELIRKNQFNLEDPHQKELF




WT, R732C); linker
LAMLMTACDLSAITKPWPIQQRIAELVATEFFDQGDRERKELNIEPTDLMNREKK




(SG); AcGFP
NKIPSMQVGFIDAICLQLYEALTHVSEDCFPLLDGCRKNRQKWQALAEQQSGVSK




(Amino acid 2-239
GAELFTGIVPILIELNGDVNGHKESVSGEGEGDATYGKLTLKFICTTGKLPVPWPT




of WT); stop)
LVTTLSYGVQCFSRYPDHMKQHDFFKSAMPEGYIQERTIFFEDDGNYKSRAEVKF





EGDTLVNRIELTGTDFKEDGNILGNKMEYNYNAHNVYIMTDKAKNGIKVNFKIR





HNIEDGSVQLADHYQQNTPIGDGPVLLPDNHYLSTQSALSKDPNEKRDHMIYFGF





VTAAAITHGMDELYK*







OT-001204
MEETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFTDLNLVQNFQ
447
484


(Methionine;
MKHEVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMFAALKAGKIQNKLTDL




(hPDE5 (Amino
EILALLIAALSHDLDHRGVNNSYIQRSEHPLAQLYCHSIMEHHHFDQCLMILNSPG




acid 535-860 of
NQILSGLSIEEYKTTLKIIKQAILATDLALYIKRKGEFFELIRKNQFNLEDPHQKELF




WT, R732K); linker
LAMLMTACDLSAITKPWPIQQRIAELVATEFFDQGDRERKELNIEPTDLMNREKK




(SG); AcGFP
NKIPSMQVGFIDAICLQLYEALTHVSEDCFPLLDGCRKNRQKWQALAEQQSGVSK




(Amino acid 2-239
GAELFTGIVPILIELNGDVNGHKFSVSGEGEGDATYGKLTLKFICTTGKLPVPWPT




of WT); stop)
LVTTLSYGVQCFSRYPDHMKQHDFFKSAMPEGYIQERTIFFEDDGNYKSRAEVKF





EGDTLVNRIELTGTDFKEDGNILGNKMEYNYNAHNVYIMTDKAKNGIKVNFKIR





HNIEDGSVQLADHYQQNTPIGDGPVLLPDNHYLSTQSALSKDPNEKRDHMIYFGF





VTAAAITHGMDELYK*







OT-001279
MVSKGAELFTGIVPILIELNGDVNGHKFSVSGEGEGDATYGKLTLKFICTTGKLPV
448
485


(AcGFP (Amino
PWPTLVTTLSYGVQCFSRYPDHMKQHDFFKSAMPEGYIQERTIFFEDDGNYKSRA




acid 1-239 of WT);
EVKFEGDTLVNRIELTGTDFKEDGNILGNKMEYNYNAHNVYIMTDKAKNGIKVN




linker (GS);
FKIRHNIEDGSVQLADHYQQNTPIGDGPVLLPDNHYLSTQSALSKDPNEKRDHMI




(hPDE5 (Amino
YFGFVTAAAITHGMDELYKGSEETRELQSLAAAVVPSAQTLKITDFSFSDFELSDL




acid 535-860 of
ETALCTIRMFTDLNLVQNFQMKREVLCRWILSVKKNYRKNVAYHNWRHAFNTA




WT, R732G); Xba I
QCMFAALKAGKIQNKLTDLEILALLIAALSHDLDHRGVNNSYIQRSEHPLAQLYC




site (TCTAGA);
HSIMEHHHFDQCLMILNSPGNQILSGLSIEEYKTTLKIIKQAILATDLALYIKRGGEF




stop)
FELIRKNQFNLEDPHQKELFLAMLMTACDLSAITKPWPIQQRIAELVATEFFDQGD





RERKELNIEPTDLMNREKKNKIPSMQVGFIDAICLQLYEALTHVSEDCFPLLDGCR





KNRQKWQALAEQQSR*







OT-001280
MVSKGAELFTGIVPILIELNGDVNGHKFSVSGEGEGDATYGKLTLKFICTTGKLPV
449
486


(AcGFP (Amino
PWPTLVTTLSYGVQCFSRYPDHMKQHDFFKSAMPEGYIQERTIFFEDDGNYKSRA




acid 1-239 of WT);
EVKFEGDTLVNRIELTGTDFKEDGNILGNKMEYNYNAHNVYIMTDKAKNGIKVN




linker (GS);
FKIRHNIEDGSVQLADHYQQNTPIGDGPVLLPDNHYLSTQSALSKDPNEKRDHMI




(hPDE5 (Amino
YFGFVTAAAITHGMDELYKGSEETRELQSLAAAVVPSAQTLKITDFSFSDFELSDL




acid 535-860 of
ETALCTIRMFTDLNLVQNFQMKREVLCRWILSVKKNYRKNVAYHNWRHAFNTA




WT, R732A); Xba I
QCMFAALKAGKIQNKLTDLEILALLIAALSHDLDHRGVNNSYIQRSEHPLAQLYC




site (TCTAGA);
HSIMEHHHFDQCLMILNSPGNQILSGLSIEEYKTTLKIIKQAILATDLALYIKRAGEF




stop)
FELIRKNQFNLEDPHQKELFLAMLMTACDLSAITKPWPIQQRIAELVATEFFDQGD





RERKELNIEPTDLMNREKKNKIPSMQVGFIDAICLQLYEALTHVSEDCFPLLDGCR





KNRQKWQALAEQQSR*







OT-001281
MVSKGAELFTGIVPILIELNGDVNGHKFSVSGEGEGDATYGKLTLKFICTTGKLPV
450
487


(AcGFP (Amino
PWPTLVTTLSYGVQCFSRYPDHMKQHDFFKSAMPEGYIQERTIFFEDDGNYKSRA




acid 1-239 of WT);
EVKFEGDTLVNRIELTGTDFKEDGNILGNKMEYNYNAHNVYIMTDKAKNGIKVN




linker (GS);
FKIRHNIEDGSVQLADHYQQNTPIGDGPVLLPDNHYLSTQSALSKDPNEKRDHMI




(hPDE5 (Amino
YFGFVTAAAITHGMDELYKGSEETRELQSLAAAVVPSAQTLKITDFSFSDFELSDL




acid 535-860 of
ETALCTIRMFTDLNLVQNFQMKHEVLCRWILSVKKNYRKNVAYHNWRHAFNTA




WT, R732L); Xba I
QCMFAALKAGKIQNKLTDLEILALLIAALSHDLDHRGVNNSYIQRSEHPLAQLYC




site (TCTAGA);
HSIMEHHHFDQCLMILNSPGNQILSGLSIEEYKTTLKIIKQAILATDLALYIKRLGEF




stop)
FELIRKNQFNLEDPHQKELFLAMLMTACDLSAITKPWPIQQRIAELVATEFFDQGD





RERKELNIEPTDLMNREKKNKIPSMQVGFIDAICLQLYEALTHVSEDCFPLLDGCR





KNRQKWQALAEQQSR*







OT-001282
MVSKGAELFTGIVPILIELNGDVNGHKESVSGEGEGDATYGKLTLKFICTTGKLPV
451
488


(AcGFP (Amino
PWPTLVTTLSYGVQCFSRYPDHMKQHDFFKSAMPEGYIQERTIFFEDDGNYKSRA




acid 1-239 of WT);
EVKFEGDTLVNRIELTGTDFKEDGNILGNKMEYNYNAHNVYIMTDKAKNGIKVN




linker (GS);
FKIRHNIEDGSVQLADHYQQNTPIGDGPVLLPDNHYLSTQSALSKDPNEKRDHMI




(hPDE5 (Amino
YFGFVTAAAITHGMDELYKGSEETRELQSLAAAVVPSAQTLKITDFSFSDFELSDL




acid 535-860 of
ETALCTIRMFTDLNLVQNFQMKHEVLCRWILSVKKNYRKNVAYHNWRHAFNTA




WT, R732M); Xba
QCMFAALKAGKIQNKLTDLEILALLIAALSHDLDHRGVNNSYIQRSEHPLAQLYC




I site (TCTAGA);
HSIMEHHHFDQCLMILNSPGNQILGLSIEEYKTTLKIIKQAILATDLALYIKRMGEF




stop)
FELIRKNQFNLEDPHQKELFLAMLMTACDLSAITKPWPIQQRIAELVATEFFDQGD





RERKELNIEPTDLMNREKKNKIPSMQVGFIDAICLQLYEALTHVSEDCFPLLDGCR





KNRQKWQALAEQQSR*







OT-001283
MVSKGAELFTGIVPILIELNGDVNGHKFSVSGEGEGDATYGKLTLKFICTTGKLPV
452
489


(AcGFP (Amino
PWPTLVTTLSYGVQCFSRYPDHMKQHDFFKSAMPEGYIQERTIFFEDDGNYKSRA




acid 1-239 of WT);
EVKFEGDTLVNRIELTGTDFKEDGNILGNKMEYNYNAHNVYIMTDKAKNGIKVN




linker (GS);
FKIRHNIEDGSVQLADHYQQNTPIGDGPVLLPDNHYLSTQSALSKDPNEKRDHMI




(hPDE5 (Amino
YFGFVTAAAITHGMDELYKGSEETRELQSLAAAVVPSAQTLKITDFSFSDFELSDL




acid 535-860 of
ETALCTIRMFTDLNLVQNFQMKHEVLCRWILSVKKNYRKNVAYHNWRHAFNTA




WT, R732F); Xba I
QCMFAALKAGKIQNKLTDLEILALLIAALSHDLDHRGVNNSYIQRSEHPLAQLYC




site (TCTAGA);
HSIMEHHHFDQCLMILNSPGNQILSGLSIEEYKTTLKIIKQAILATDLALYIKRFGEF




stop)
FELIRKNQFNLEDPHQKELFLAMLMTACDLSAITKPWPIQQRIAELVATEFFDQGD





RERKELNIEPTDLMNREKKNKIPSMQVGFIDAICLQLYEALTHVSEDCFPLLDGCR





KNRQKWQALAEQQSR*







OT-001284
MVSKGAELFTGIVPILIELNGDVNGHKFSVSGEGEGDATYGKLTLKFICTTGKLPV
453
490


(AcGFP (Amino
PWPTLVTTLSYGVQCFSRYPDHMKQHDFFKSAMPEGYIQERTIFFEDDGNYKSRA




acid 1-239 of WT);
EVKFEGDTLVNRIELTGTDFKEDGNILGNKMEYNYNAHNVYIMTDKAKNGIKVN




linker (GS);
FKIRHNIEDGSVQLADHYQQNTPIGDGPVLLPDNHYLSTQSALSKDPNEKRDHMI




(hPDE5 (Amino
YFGFVTAAAITHGMDELYKGSEETRELQSLAAAVVPSAQTLKITDFSFSDFELSDL




acid 535-860 of
ETALCTIRMFTDLNLVQNFQMKHEVLCRWILSVKKNYRKNVAYHNWRHAFNTA




WT, R732W); Xba
QCMFAALKAGKIQNKLTDLEILALLIAALSHDLDHRGVNNSYIQRSEHPLAQLYC




I site (TCTAGA);
HSIMEHHHFDQCLMILNSPGNQILSGLSIEEYKTTLKIIKQAILATDLALYIKRWGE




stop)
FFELIRKNQFNLEDPHQKELFLAMLMTACDLSAITKPWPIQQRIAELVATEFFDQG





DRERKELNIEPTDLMNREKKNKIPSMQVGFIDAICLQLYEALTHVSEDCFPLLDGC





RKNRQKWQALAEQQSR*







OT-001285
MVSKGAELFTGIVPILIELNGDVNGHKFSVSGEGEGDATYGKLTLKFICTTGKLPV
454
491


(AcGFP (Amino
PWPTLVTTLSYGVQCFSRYPDHMKQHDFFKSAMPEGYIQERTIFFEDDGNYKSRA




acid 1-239 of WT);
EVKFEGDTLVNRIELTGTDFKEDGNILGNKMEYNYNAHNVYIMTDKAKNGIKVN




linker (GS);
FKIRHNIEDGSVQLADHYQQNTPIGDGPVLLPDNHYLSTQSALSKDPNEKRDHMI




(hPDE5 (Amino
YFGFVTAAAITHGMDELYKGSEETRELQSLAAAVVPSAQTLKITDFSFSDFELSDL




acid 535-860 of
ETALCTIRMFTDLNLVQNFQMKHEVLCRWILSVKKNYRKNVAYHNWRHAFNTA




WT, R732K); Xba I
QCMFAALKAGKIQNKLTDLEILALLIAALSHDLDHRGVNNSYIQRSEHPLAQLYC




site (TCTAGA);
HSIMEHHHFDQCLMILNSPGNQILSGLSIEEYKTTLKIIKQAILATDLALYIKRKGEF




stop)
FELIRKNQFNLEDPHQKELFLAMLMTACDLSAITKPWPIQQRIAELVATEFFDQGD





RERKELNIEPTDLMNREKKNKIPSMQVGFIDAICLQLYEALTHVSEDCFPLLDGCR





KNRQKWQALAEQQSR*







OT-001286
MVSKGAELFTGIVPILIELNGDVNGHKFSVSGEGEGDATYGKLTLKFICTTGKLPV
455
492


(AcGFP (Amino
PWPTLVTTLSYGVQCFSRYPDHMKQHDFFKSAMPEGYIQERTIFFEDDGNYKSRA




acid 1-239 of WT);
EVKFEGDTLVNRIELTGTDFKEDGNILGNKMEYNYNAHNVYIMTDKAKNGIKVN




linker (GS);
FKIRHNIEDGSVQLADHYQQNTPIGDGPVLLPDNHYLSTQSALSKDPNEKRDHMI




(hPDE5 (Amino
YFGFVTAAAITHGMDELYKGSEETRELQSLAAAVVPSAQTLKITDFSFSDFELSDL




acid 535-860 of
ETALCTIRMFTDLNLVQNFQMKHEVLCRWILSVKKNYRKNVAYHNWRHAFNTA




WT, R732Q); Xba I
QCMFAALKAGKIQNKLTDLEILALLIAALSHDLDHRGVNNSYIQRSEHPLAQLYC




site (TCTAGA);
HSIMEHHHFDQCLMILNSPGNQILSGLSIEEYKTTLKIIKQAILATDLALYIKRQGEF




stop)
FELIRKNQFNLEDPHQKELFLAMLMTACDLSAITKPWPIQQRIAELVATEFFDQGD





RERKELNIEPTDLMNREKKNKIPSMQVGFIDAICLQLYEALTHVSEDCFPLLDGCR





KNRQKWQALAEQQSR*







OT-001287
MVSKGAELFTGIVPILIELNGDVNGHKFSVSGEGEGDATYGKLTLKFICTTGKLPV
456
493


(AcGFP (Amino
PWPTLVTTLSYGVQCFSRYPDHMKQHDFFKSAMPEGYIQERTIFFEDDGNYKSRA




acid 1-239 of WT);
EVKFEGDTLVNRIELTGTDFKEDGNILGNKMEYNYNAHNVYIMTDKAKNGIKVN




linker (GS);
FKIRHNIEDGSVQLADHYQQNTPIGDGPVLLPDNHYLSTQSALSKDPNEKRDHMI




(hPDE5 (Amino
YFGFVTAAAITHGMDELYKGSEETRELQSLAAAVVPSAQTLKITDFSFSDFELSDL




acid 535-860 of
ETALCTIRMFTDLNLVQNFQMKHEVLCRWILSVKKNYRKNVAYHNWRHAFNTA




WT, R732E); Xba I
QCMFAALKAGKIQNKLTDLEILALLIAALSHDLDHRGVNNSYIQRSEHPLAQLYC




site (TCTAGA);
HSIMEHHHFDQCLMILNSPGNQILSGLSIEEYKTTLKIIKQAILATDLALYIKREGEF




stop)
FELIRKNQFNLEDPHQKELFLAMLMTACDLSAITKPWPIQQRIAELVATEFFDQGD





RERKELNIEPTDLMNREKKNKIPSMQVGFIDAICLQLYEALTHVSEDCFPLLDGCR





KNRQKWQALAEQQSR*







OT-001288
MVSKGAELFTGIVPILIELNGDVNGHKFSVSGEGEGDATYGKLTLKFICTTGKLPV
457
494


(AcGFP (Amino
PWPTLVTTLSYGVQCFSRYPDHMKQHDFFKSAMPEGYIQERTIFFEDDGNYKSRA




acid 1-239 of WT);
EVKFEGDTLVNRIELTGTDEKEDGNILGNKMEYNYNAHNVYIMTDKAKNGIKVN




linker (GS);
FKIRHNIEDGSVQLADHYQQNTPIGDGPVLLPDNHYLSTQSALSKDPNEKRDHMI




(hPDE5 (Amino
YFGFVTAAAITHGMDELYKGSEETRELQSLAAAVVPSAQTLKITDFSFSDFELSDL




acid 535-860 of
ETALCTIRMFTDLNLVQNFQMKHEVLCRWILSVKKNYRKNVAYHNWRHAFNTA




WT, R732S); Xba I
QCMFAALKAGKIQNKLTDLEILALLIAALSHDLDHRGVNNSYIQRSEHPLAQLYC




site (TCTAGA);
HSIMEHHHFDQCLMILNSPGNQILSGLSIEEYKTTLKIIKQAILATDLALYIKRSGEF




stop)
FELIRKNQFNLEDPHQKELFLAMLMTACDLSAITKPWPIQQRIAELVATEFFDQGD





RERKELNIEPTDLMNREKKNKIPSMQVGFIDAICLQLYEALTHVSEDCFPLLDGCR





KNRQKWQALAEQQSR*







OT-001289
MVSKGAELFTGIVPILIELNGDVNGHKFSVSGEGEGDATYGKLTLKFICTTGKLPV
458
495


(AcGFP (Amino
PWPTLVTTLSYGVQCFSRYPDHMKQHDFFKSAMPEGYIQERTIFFEDDGNYKSRA




acid 1-239 of WT);
EVKFEGDTLVNRIELTGTDEKEDGNILGNKMEYNYNAHNVYIMTDKAKNGIKVN




linker (GS);
FKIRHNIEDGSVQLADHYQQNTPIGDGPVLLPDNHYLSTQSALSKDPNEKRDHMI




(hPDE5 (Amino
YFGFVTAAAITHGMDELYKGSEETRELQSLAAAVVPSAQTLKITDFSFSDFELSDL




acid 535-860 of
ETALCTIRMFTDLNLVQNFQMKHEVLCRWILSVKKNYRKNVAYHNWRHAFNTA




WT, R732P); Xba I
QCMFAALKAGKIQNKLTDLEILALLIAALSHDLDHRGVNNSYIQRSEHPLAQLYC




site (TCTAGA);
HSIMEHHHFDQCLMILNSPGNQILSGLSIEEYKTTLKIIKQAILATDLALYIKRPGEF




stop)
FELIRKNQFNLEDPHQKELFLAMLMTACDLSAITKPWPIQQRIAELVATEFFDQGD





RERKELNIEPTDLMNREKKNKIPSMQVGFIDAICLQLYEALTHVSEDCFPLLDGCR





KNRQKWQALAEQQSR*







OT-001290
MVSKGAELFTGIVPILIELNGDVNGHKFSVSGEGEGDATYGKLTLKFICTTGKLPV
459
496


(AcGFP (Amino
PWPTLVTTLSYGVQCFSRYPDHMKQHDFFKSAMPEGYIQERTIFFEDDGNYKSRA




acid 1-239 of WT);
EVKFEGDTLVNRIELTGTDFKEDGNILGNKMEYNYNAHNVYIMTDKAKNGIKVN




linker (GS);
FKIRHNIEDGSVQLADHYQQNTPIGDGPVLLPDNHYLSTQSALSKDPNEKRDHMI




(hPDE5 (Amino
YFGFVTAAAITHGMDELYKGSEETRELQSLAAAVVPSAQTLKITDFSFSDFELSDL




acid 535-860 of
ETALCTIRMFTDLNLVQNFQMKHEVLCRWILSVKKNYRKNVAYHNWRHAFNTA




WT, R732V); Xba I
QCMFAALKAGKIQNKLTDLEILALLIAALSHDLDHRGVNNSYIQRSEHPLAQLYC




site (TCTAGA);
HSIMEHHHFDQCLMILNSPGNQILSGLSIEEYKTTLKIIKQAILATDLALYIKRVGEF




stop)
FELIRKNQFNLEDPHQKELFLAMLMTACDLSAITKPWPIQQRIAELVATEFFDQGD





RERKELNIEPTDLMNREKKNKIPSMQVGFIDAICLQLYEALTHVSEDCFPLLDGCR





KNRQKWQALAEQQSR*







OT-001291
MVSKGAELFTGIVPILIELNGDVNGHKFSVSGEGEGDATYGKLTLKFICTTGKLPV
460
497


(AcGFP (Amino
PWPTLVTTLSYGVQCFSRYPDHMKQHDFFKSAMPEGYIQERTIFFEDDGNYKSRA




acid 1-239 of WT);
EVKFEGDTLVNRIELTGTDFKEDGNILGNKMEYNYNAHNVYIMTDKAKNGIKVN




linker (GS);
FKIRHNIEDGSVQLADHYQQNTPIGDGPVLLPDNHYLSTQSALSKDPNEKRDHMI




(hPDE5 (Amino
YFGFVTAAAITHGMDELYKGSEETRELQSLAAAVVPSAQTLKITDFSFSDFELSDL




acid 535-860 of
ETALCTIRMFTDLNLVQNFQMKHEVLCRWILSVKKNYRKNVAYHNWRHAFNTA




WT, R732I); Xba I
QCMFAALKAGKIQNKLTDLEILALLIAALSHDLDHRGVNNSYIQRSEHPLAQLYC




site (TCTAGA);
HSIMEHHHFDQCLMILNSPGNQILSGLSIEEYKTTLKIIKQAILATDLALYIKRIGEFF




stop)
ELIRKNQFNLEDPHQKELFLAMLMTACDLSAITKPWPIQQRIAELVATEFFDQGDR





ERKELNIEPTDLMNREKKNKIPSMQVGFIDAICLQLYEALTHVSEDCFPLLDGCRK





NRQKWQALAEQQSR*







OT-001292
MVSKGAELFTGIVPILIELNGDVNGHKESVSGEGEGDATYGKLTLKFICTTGKLPV
461
498


(AcGFP (Amino
PWPTLVTTLSYGVQCFSRYPDHMKQHDFFKSAMPEGYIQERTIFFEDDGNYKSRA




acid 1-239 of WT);
EVKFEGDTLVNRIELTGTDFKEDGNILGNKMEYNYNAHNVYIMTDKAKNGIKVN




linker (GS);
FKIRHNIEDGSVQLADHYQQNTPIGDGPVLLPDNHYLSTQSALSKDPNEKRDHMI




(hPDE5 (Amino
YFGFVTAAAITHGMDELYKGSEETRELQSLAAAVVPSAQTLKITDFSFSDFELSDL




acid 535-860 of
ETALCTIRMFTDLNLVQNFQMKHEVLCRWILSVKKNYRKNVAYHNWRHAFNTA




WT, R732C); Xba I
QCMFAALKAGKIQNKLTDLEILALLIAALSHDLDHRGVNNSYIQRSEHPLAQLYC




site (TCTAGA);
HSIMEHHHFDQCLMILNSPGNQILSGLSIEEYKTTLKIIKQAILATDLALYIKRCGEF




stop)
FELIRKNQFNLEDPHQKELFLAMLMTACDLSAITKPWPIQQRIAELVATEFFDQGD





RERKELNIEPTDLMNREKKNKIPSMQVGFIDAICLQLYEALTHVSEDCFPLLDGCR





KNRQKWQALAEQQSR*







OT-001293
MVSKGAELFTGIVPILIELNGDVNGHKESVSGEGEGDATYGKLTLKFICTTGKLPV
462
499


(AcGFP (Amino
PWPTLVTTLSYGVQCFSRYPDHMKQHDFFKSAMPEGYIQERTIFFEDDGNYKSRA




acid 1-239 of WT);
EVKFEGDTLVNRIELTGTDFKEDGNILGNKMEYNYNAHNVYIMTDKAKNGIKVN




linker (GS);
FKIRHNIEDGSVQLADHYQQNTPIGDGPVLLPDNHYLSTQSALSKDPNEKRDHMI




(hPDE5 (Amino
YFGFVTAAAITHGMDELYKGSEETRELQSLAAAVVPSAQTLKITDFSFSDFELSDL




acid 535-860 of
ETALCTIRMFTDLNLVQNFQMKHEVLCRWILSVKKNYRKNVAYHNWRHAFNTA




WT, R732Y); Xba I
QCMFAALKAGKIQNKLTDLEILALLIAALSHDLDHRGVNNSYIQRSEHPLAQLYC




site (TCTAGA);
HSIMEHHHFDQCLMILNSPGNQILSGLSIEEYKTTLKIIKQAILATDLALYIKRYGEF




stop)
FELIRKNQFNLEDPHQKELFLAMLMTACDLSAITKPWPIQQRIAELVATEFFDQGD





RERKELNIEPTDLMNREKKNKIPSMQVGFIDAICLQLYEALTHVSEDCFPLLDGCR





KNRQKWQALAEQQSR*







OT-001294
MVSKGAELFTGIVPILIELNGDVNGHKFSVSGEGEGDATYGKLTLKFICTTGKLPV
463
500


(AcGFP (Amino
PWPTLVTTLSYGVQCFSRYPDHMKQHDFFKSAMPEGYIQERTIFFEDDGNYKSRA




acid 1-239 of WT);
EVKFEGDTLVNRIELTGTDFKEDGNILGNKMEYNYNAHNVYIMTDKAKNGIKVN




linker (GS);
FKIRHNIEDGSVQLADHYQQNTPIGDGPVLLPDNHYLSTQSALSKDPNEKRDHMI




(hPDE5 (Amino
YFGFVTAAAITHGMDELYKGSEETRELQSLAAAVVPSAQTLKITDFSFSDFELSDL




acid 535-860 of
ETALCTIRMFTDLNLVQNFQMKHEVLCRWILSVKKNYRKNVAYHNWRHAFNTA




WT, R732I4); Xba I
QCMFAALKAGKIQNKLTDLEILALLIAALSHDLDHRGVNNSYIQRSEHPLAQLYC




site (TCTAGA);
HSIMEHHHFDQCLMILNSPGNQILSGLSIEEYKTTLKIIKQAILATDLALYIKRHGEF




stop)
FELIRKNQFNLEDPHQKELFLAMLMTACDLSAITKPWPIQQRIAELVATEFFDQGD





RERKELNIEPTDLMNREKKNKIPSMQVGFIDAICLQLYEALTHVSEDCFPLLDGCR





KNRQKWQALAEQQSR*







OT-001295
MVSKGAELFTGIVPILIELNGDVNGHKFSVSGEGEGDATYGKLTLKFICTTGKLPV
464
501


(AcGFP (Amino
PWPTLVTTLSYGVQCFSRYPDHMKQHDFFKSAMPEGYIQERTIFFEDDGNYKSRA




acid 1-239 of WT);
EVKFEGDTLVNRIELTGTDFKEDGNILGNKMEYNYNAHNVYIMTDKAKNGIKVN




linker (GS);
FKIRHNIEDGSVQLADHYQQNTPIGDGPVLLPDNHYLSTQSALSKDPNEKRDHMI




(hPDE5 (Amino
YFGFVTAAAITHGMDELYKGSEETRELQSLAAAVVPSAQTLKITDFSFSDFELSDL




acid 535-860 of
ETALCTIRMFTDLNLVQNFQMKHEVLCRWILSVKKNYRKNVAYHNWRHAFNTA




WT, R732N); Xba I
QCMFAALKAGKIQNKLTDLEILALLIAALSHDLDHRGVNNSYIQRSEHPLAQLYC




site (TCTAGA);
HSIMEHHHFDQCLMILNSPGNQILSGLSIEEYKTTLKIIKQAILATDLALYIKRNGEF




stop)
FELIRKNQFNLEDPHQKELFLAMLMTACDLSAITKPWPIQQRIAELVATEFFDQGD





RERKELNIEPTDLMNREKKNKIPSMQVGFIDAICLQLYEALTHVSEDCFPLLDGCR





KNRQKWQALAEQQSR*







OT-001296
MVSKGAELFTGIVPILIELNGDVNGHKFSVSGEGEGDATYGKLTLKFICTTGKLPV
465
502


(AcGFP (Amino
PWPTLVTTLSYGVQCFSRYPDHMKQHDFFKSAMPEGYIQERTIFFEDDGNYKSRA




acid 1-239 of WT);
EVKFEGDTLVNRIELTGTDFKEDGNILGNKMEYNYNAHNVYIMTDKAKNGIKVN




linker (GS);
FKIRHNIEDGSVQLADHYQQNTPIGDGPVLLPDNHYLSTQSALSKDPNEKRDHMI




(hPDE5 (Amino
YFGFVTAAAITHGMDELYKGSEETRELQSLAAAVVPSAQTLKITDFSFSDFELSDL




acid 535-860 of
ETALCTIRMFTDLNLVQNFQMKHEVLCRWILSVKKNYRKNVAYHNWRHAFNTA




WT, R732D); Xba I
QCMFAALKAGKIQNKLTDLEILALLIAALSHDLDHRGVNNSYIQRSEHPLAQLYC




site (TCTAGA);
HSIMEHHHFDQCLMILNSPGNQILSGLSIEEYKTTLKIIKQAILATDLALYIKRDGEF




stop)
FELIRKNQFNLEDPHQKELFLAMLMTACDLSAITKPWPIQQRIAELVATEFFDQGD





RERKELNIEPTDLMNREKKNKIPSMQVGFIDAICLQLYEALTHVSEDCFPLLDGCR





KNRQKWQALAEQQSR*







OT-001297
MVSKGAELFTGIVPILIELNGDVNGHKFSVSGEGEGDATYGKLTLKFICTTGKLPV
466
503


(AcGFP (Amino
PWPTLVTTLSYGVQCFSRYPDHMKQHDFFKSAMPEGYIQERTIFFEDDGNYKSRA




acid 1-239 of WT);
EVKFEGDTLVNRIELTGTDFKEDGNILGNKMEYNYNAHNVYIMTDKAKNGIKVN




linker (GS);
FKIRHNIEDGSVQLADHYQQNTPIGDGPVLLPDNHYLSTQSALSKDPNEKRDHMI




(hPDE5 (Amino
YFGFVTAAAITHGMDELYKGSEETRELQSLAAAVVPSAQTLKITDFSFSDFELSDL




acid 535-860 of
ETALCTIRMFTDLNLVQNFQMKHEVLCRWILSVKKNYRKNVAYHNWRHAFNTA




WT, R732T); Xba I
QCMFAALKAGKIQNKLTDLEILALLIAALSHDLDHRGVNNSYIQRSEHPLAQLYC




site (TCTAGA);
HSIMEHHHFDQCLMILNSPGNQILSGLSIEEYKTTLKIIKQAILATDLALYIKRTGEF




stop)
FELIRKNQFNLEDPHQKELFLAMLMTACDLSAITKPWPIQQRIAELVATEFFDQGD





RERKELNIEPTDLMNREKKNKIPSMQVGFIDAICLQLYEALTHVSEDCFPLLDGCR





KNRQKWQALAEQQSR*









In some embodiments, the phenylalanine at position 736 (also referred to as F736) of the hPDE5 (SEQ ID NO: 1), may be mutated to any of the known amino acids and are provided in Table 9. The mutations of the amino acid F736 may include, but are not limited to F736G, F736A, F736L, F736M, F736R, F736W, F736K, F736Q, F736E, F736S, F736P, F736V, F736I, F736C, F736Y, F736H, F736N, F736D, and F736T. The hPDE5 mutants fused either at the N terminus or the C terminus to a linker and GFP are provided in Table 9. Also provided in Table 9 are the components that may be combined with the hPDE5 F736 mutants to generate constructs. In Table 9, the “*” indicates the translation of the stop codon.









TABLE 9







hPDE5 F736 constructs










Construct

AA
NA


ID/Description
Amino acid sequence
SEQ ID
SEQ ID













AcGFP (Amino acid
MVSKGAELFTGIVPILIELNGDVNGHKFSVSGEGEGDATYGKLTLKFICTTGKLP
365
373


1-239 of WT)
VPWPTLVTTLSYGVQCFSRYPDHMKQHDFFKSAMPEGYIQERTIFFEDDGNYKS





RAEVKFEGDTLVNRIELTGTDFKEDGNILGNKMEYNYNAHNVYIMTDKAKNGI





KVNFKIRHNIEDGSVQLADHYQQNTPIGDGPVLLPDNHYLSTQSALSKDPNEKR





DHMIYFGFVTAAAITHGMDELYK







linker (GS)
GS

GGATC





C





Xba I site
SR

TCTAG





A





hPDE5 (Amino acid
EETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFTDLNLVQNFQ
8555
8592


535-860 of WT,
MKHEVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMFAALKAGKIQNKLTD




F736G)
LEILALLIAALSHDLDHRGVNNSYIQRSEHPLAQLYCHSIMEHHHFDQCLMILNS





PGNQILSGLSIEEYKTTLKIIKQAILATDLALYIKRRGEFGELIRKNQFNLEDPHQK





ELFLAMLMTACDLSAITKPWPIQQRIAELVATEFFDQGDRERKELNIEPTDLMNR





EKKNKIPSMQVGFIDAICLQLYEALTHVSEDCFPLLDGCRKNRQKWQALAEQQ







hPDE5 (Amino acid
EETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFTDLNLVQNFQ
9
8593


535-860 of WT,
MKHEVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMFAALKAGKIQNKLTD




F736A)
LEILALLIAALSHDLDHRGVNNSYIQRSEHPLAQLYCHSIMEHHHFDQCLMILNS





PGNQILSGLSIEEYKTTLKIIKQAILATDLALYIKRRGEFAELIRKNQFNLEDPHQK





ELFLAMLMTACDLSAITKPWPIQQRIAELVATEFFDQGDRERKELNIEPTDLMNR





EKKNKIPSMQVGFIDAICLQLYEALTHVSEDCFPLLDGCRKNRQKWQALAEQQ







hPDE5 (Amino acid
EETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFTDLNLVQNFQ
8556
8594


535-860 of WT,
MKHEVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMFAALKAGKIQNKLTD




F736L)
LEILALLIAALSHDLDHRGVNNSYIQRSEHPLAQLYCHSIMEHHHFDQCLMILNS





PGNQILSGLSIEEYKTTLKIIKQAILATDLALYIKRRGEFLELIRKNQFNLEDPHQK





ELFLAMLMTACDLSAITKPWPIQQRIAELVATEFFDQGDRERKELNIEPTDLMNR





EKKNKIPSMQVGFIDAICLQLYEALTHVSEDCFPLLDGCRKNRQKWQALAEQQ







hPDE5 (Amino acid
EETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFTDLNLVQNFQ
8557
8595


535-860 of WT,
MKHEVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMFAALKAGKIQNKLTD




F736M)
LEILALLIAALSHDLDHRGVNNSYIQRSEHPLAQLYCHSIMEHHHFDQCLMILNS





PGNQILSGLSIEEYKTTLKIIKQAILATDLALYIKRRGEFMELIRKNQFNLEDPHQK





ELFLAMLMTACDLSAITKPWPIQQRIAELVATEFFDQGDRERKELNIEPTDLMNR





EKKNKIPSMQVGFIDAICLQLYEALTHVSEDCFPLLDGCRKNRQKWQALAEQQ







hPDE5 (Amino acid
EETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFTDLNLVQNFQ
8558
8596


535-860 of WT,
MKHEVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMFAALKAGKIQNKLTD




F736R)
LEILALLIAALSHDLDHRGVNNSYIQRSEHPLAQLYCHSIMEHHHFDQCLMILNS





PGNQILSGLSIEEYKTTLKIIKQAILATDLALYIKRRGEFRELIRKNQFNLEDPHQK





ELFLAMLMTACDLSAITKPWPIQQRIAELVATEFFDQGDRERKELNIEPTDLMNR





EKKNKIPSMQVGFIDAICLQLYEALTHVSEDCFPLLDGCRKNRQKWQALAEQQ







hPDE5 (Amino acid
EETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFTDLNLVQNFQ
8559
8597


535-860 of WT,
MKHEVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMFAALKAGKIQNKLTD




F736W)
LEILALLIAALSHDLDHRGVNNSYIQRSEHPLAQLYCHSIMEHHHFDQCLMILNS





PGNQILSGLSIEEYKTTLKIIKQAILATDLALYIKRRGEFWELIRKNQFNLEDPHQK





ELFLAMLMTACDLSAITKPWPIQQRIAELVATEFFDQGDRERKELNIEPTDLMNR





EKKNKIPSMQVGFIDAICLQLYEALTHVSEDCFPLLDGCRKNRQKWQALAEQQ







hPDE5 (Amino acid
EETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFTDLNLVQNFQ
8560
8598


535-860 of WT,
MKHEVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMFAALKAGKIQNKLTD




F736K)
LEILALLIAALSHDLDHRGVNNSYIQRSEHPLAQLYCHSIMEHHHFDQCLMILNS





PGNQILSGLSIEEYKTTLKIIKQAILATDLALYIKRRGEFKELIRKNQFNLEDPHQK





ELFLAMLMTACDLSAITKPWPIQQRIAELVATEFFDQGDRERKELNIEPTDLMNR





EKKNKIPSMQVGFIDAICLQLYEALTHVSEDCFPLLDGCRKNRQKWQALAEQQ







hPDE5 (Amino acid
EETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFTDLNLVQNFQ
8561
8599


535-860 of WT,
MKHEVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMFAALKAGKIQNKLTD




F736Q)
LEILALLIAALSHDLDHRGVNNSYIQRSEHPLAQLYCHSIMEHHHFDQCLMILNS





PGNQILSGLSIEEYKTTLKIIKQAILATDLALYIKRRGEFQELIRKNQFNLEDPHQK





ELFLAMLMTACDLSAITKPWPIQQRIAELVATEFFDQGDRERKELNIEPTDLMNR





EKKNKIPSMQVGFIDAICLQLYEALTHVSEDCFPLLDGCRKNRQKWQALAEQQ







hPDE5 (Amino acid
EETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFTDLNLVQNFQ
8562
8600


535-860 of WT,
MKHEVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMFAALKAGKIQNKLTD




F736E)
LEILALLIAALSHDLDHRGVNNSYIQRSEHPLAQLYCHSIMEHHHFDQCLMILNS





PGNQILSGLSIEEYKTTLKIIKQAILATDLALYIKRRGEFEELIRKNQFNLEDPHQK





ELFLAMLMTACDLSAITKPWPIQQRIAELVATEFFDQGDRERKELNIEPTDLMNR





EKKNKIPSMQVGFIDAICLQLYEALTHVSEDCFPLLDGCRKNRQKWQALAEQQ







hPDE5 (Amino acid
EETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFTDLNLVQNFQ
8563
8601


535-860 of WT,
MKHEVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMFAALKAGKIQNKLTD




F736S)
LEILALLIAALSHDLDHRGVNNSYIQRSEHPLAQLYCHSIMEHHHFDQCLMILNS





PGNQILSGLSIEEYKTTLKIIKQAILATDLALYIKRRGEFSELIRKNQFNLEDPHQK





ELFLAMLMTACDLSAITKPWPIQQRIAELVATEFFDQGDRERKELNIEPTDLMNR





EKKNKIPSMQVGFIDAICLQLYEALTHVSEDCFPLLDGCRKNRQKWQALAEQQ







hPDE5 (Amino acid
EETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFTDLNLVQNFQ
8564
8602


535-860 of WT,
MKHEVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMFAALKAGKIQNKLTD




F736P)
LEILALLIAALSHDLDHRGVNNSYIQRSEHPLAQLYCHSIMEHHHFDQCLMILNS





PGNQILSGLSIEEYKTTLKIIKQAILATDLALYIKRRGEFPELIRKNQFNLEDPHQK





ELFLAMLMTACDLSAITKPWPIQQRIAELVATEFFDQGDRERKELNIEPTDLMNR





EKKNKIPSMQVGFIDAICLQLYEALTHVSEDCFPLLDGCRKNRQKWQALAEQQ







hPDE5 (Amino acid
EETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFTDLNLVQNFQ
8565
8603


535-860 of WT,
MKHEVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMFAALKAGKIQNKLTD




F736V)
LEILALLIAALSHDLDHRGVNNSYIQRSEHPLAQLYCHSIMEHHHFDQCLMILNS





PGNQILSGLSIEEYKTTLKIIKQAILATDLALYIKRRGEFVELIRKNQFNLEDPHQK





ELFLAMLMTACDLSAITKPWPIQQRIAELVATEFFDQGDRERKELNIEPTDLMNR





EKKNKIPSMQVGFIDAICLQLYEALTHVSEDCFPLLDGCRKNRQKWQALAEQQ







hPDE5 (Amino acid
EETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFTDLNLVQNFQ
8566
8604


535-860 of WT,
MKHEVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMFAALKAGKIQNKLTD




F7361)
LEILALLIAALSHDLDHRGVNNSYIQRSEHPLAQLYCHSIMEHHHFDQCLMILNS





PGNQILSGLSIEEYKTTLKIIKQAILATDLALYIKRRGEFIELIRKNQFNLEDPHQKE





LFLAMLMTACDLSAITKPWPIQQRIAELVATEFFDQGDRERKELNIEPTDLMNRE





KKNKIPSMQVGFIDAICLQLYEALTHVSEDCFPLLDGCRKNRQKWQALAEQQ







hPDE5 (Amino acid
EETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFTDLNLVQNFQ
8567
8605


535-860 of WT,
MKHEVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMFAALKAGKIQNKLTD




F736C)
LEILALLIAALSHDLDHRGVNNSYIQRSEHPLAQLYCHSIMEHHHFDQCLMILNS





PGNQILSGLSIEEYKTTLKIIKQAILATDLALYIKRRGEFCELIRKNQFNLEDPHQK





ELFLAMLMTACDLSAITKPWPIQQRIAELVATEFFDQGDRERKELNIEPTDLMNR





EKKNKIPSMQVGFIDAICLQLYEALTHVSEDCFPLLDGCRKNRQKWQALAEQQ







hPDE5 (Amino acid
EETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFTDLNLVQNFQ
8568
8606


535-860 of WT,
MKHEVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMFAALKAGKIQNKLTD




F736Y)
LEILALLIAALSHDLDHRGVNNSYIQRSEHPLAQLYCHSIMEHHHFDQCLMILNS





PGNQILSGLSIEEYKTTLKIIKQAILATDLALYIKRRGEFYELIRKNQFNLEDPHQK





ELFLAMLMTACDLSAITKPWPIQQRIAELVATEFFDQGDRERKELNIEPTDLMNR





EKKNKIPSMQVGFIDAICLQLYEALTHVSEDCFPLLDGCRKNRQKWQALAEQQ







hPDE5 (Amino acid
EETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFTDLNLVQNFQ
8569
8607


535-860 of WT,
MKHEVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMFAALKAGKIQNKLTD




F73611)
LEILALLIAALSHDLDHRGVNNSYIQRSEHPLAQLYCHSIMEHHHFDQCLMILNS





PGNQILSGLSIEEYKTTLKIIKQAILATDLALYIKRRGEFHELIRKNQFNLEDPHQK





ELFLAMLMTACDLSAITKPWPIQQRIAELVATEFFDQGDRERKELNIEPTDLMNR





EKKNKIPSMQVGFIDAICLQLYEALTHVSEDCFPLLDGCRKNRQKWQALAEQQ







hPDE5 (Amino acid
EETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFTDLNLVQNFQ
8570
8608


535-860 of WT,
MKHEVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMFAALKAGKIQNKLTD




F736N)
LEILALLIAALSHDLDHRGVNNSYIQRSEHPLAQLYCHSIMEHHHFDQCLMILNS





PGNQILSGLSIEEYKTTLKIIKQAILATDLALYIKRRGEFNELIRKNQFNLEDPHQK





ELFLAMLMTACDLSAITKPWPIQQRIAELVATEFFDQGDRERKELNIEPTDLMNR





EKKNKIPSMQVGFIDAICLQLYEALTHVSEDCFPLLDGCRKNRQKWQALAEQQ







hPDE5 (Amino acid
EETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFTDLNLVQNFQ
8571
8609


535-860 of WT,
MKHEVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMFAALKAGKIQNKLTD




F736D)
LEILALLIAALSHDLDHRGVNNSYIQRSEHPLAQLYCHSIMEHHHFDQCLMILNS





PGNQILSGLSIEEYKTTLKIIKQAILATDLALYIKRRGEFDELIRKNQFNLEDPHQK





ELFLAMLMTACDLSAITKPWPIQQRIAELVATEFFDQGDRERKELNIEPTDLMNR





EKKNKIPSMQVGFIDAICLQLYEALTHVSEDCFPLLDGCRKNRQKWQALAEQQ







hPDE5 (Amino acid
EETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFTDLNLVQNFQ
8572
8610


535-860 of WT,
MKHEVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMFAALKAGKIQNKLTD




F736T)
LEILALLIAALSHDLDHRGVNNSYIQRSEHPLAQLYCHSIMEHHHFDQCLMILNS





PGNQILSGLSIEEYKTTLKIIKQAILATDLALYIKRRGEFTELIRKNQFNLEDPHQK





ELFLAMLMTACDLSAITKPWPIQQRIAELVATEFFDQGDRERKELNIEPTDLMNR





EKKNKIPSMQVGFIDAICLQLYEALTHVSEDCFPLLDGCRKNRQKWQALAEQQ







OT-001259 (AcGFP
MVSKGAELFTGIVPILIELNGDVNGHKFSVSGEGEGDATYGKLTLKFICTTGKLP
8573
8611


(1-239 of WT);
VPWPTLVTTLSYGVQCFSRYPDHMKQHDFFKSAMPEGYIQERTIFFEDDGNYKS




Linker (GS); hPDE5
RAEVKFEGDTLVNRIELTGTDFKEDGNILGNKMEYNYNAHNVYIMTDKAKNGI




(Amino acid 535-860
KVNFKIRHNIEDGSVQLADHYQQNTPIGDGPVLLPDNHYLSTQSALSKDPNEKR




of WT, F736G); Xba
DHMIYFGFVTAAAITHGMDELYKGSEETRELQSLAAAVVPSAQTLKITDFSFSDF




I site (TCTAGA);
ELSDLETALCTIRMFTDLNLVQNFQMKHEVLCRWILSVKKNYRKNVAYHNWR




stop)
HAFNTAQCMFAALKAGKIQNKLTDLEILALLIAALSHDLDHRGVNNSYIQRSEH





PLAQLYCHSIMEHHHFDQCLMILNSPGNQILSGLSIEEYKTTLKIIKQAILATDLAL





YIKRRGEFGELIRKNQFNLEDPHQKELFLAMLMTACDLSAITKPWPIQQRIAELV





ATEFFDQGDRERKELNIEPTDLMNREKKNKIPSMQVGFIDAICLQLYEALTHVSE





DCFPLLDGCRKNRQKWQALAEQQSR*







OT-001260 (AcGFP
MVSKGAELFTGIVPILIELNGDVNGHKFSVSGEGEGDATYGKLTLKFICTTGKLP
8574
8612


(1-239 of WT);
VPWPTLVTTLSYGVQCFSRYPDHMKQHDFFKSAMPEGYIQERTIFFEDDGNYKS




Linker (GS); hPDE5
RAEVKFEGDTLVNRIELTGTDFKEDGNILGNKMEYNYNAHNVYIMTDKAKNGI




(Amino acid 535-860
KVNFKIRHNIEDGSVQLADHYQQNTPIGDGPVLLPDNHYLSTQSALSKDPNEKR




of WT, F736A); Xba
DHMIYFGFVTAAAITHGMDELYKGSEETRELQSLAAAVVPSAQTLKITDFSFSDF




I site (TCTAGA);
ELSDLETALCTIRMFTDLNLVQNFQMKHEVLCRWILSVKKNYRKNVAYHNWR




stop)
HAFNTAQCMFAALKAGKIQNKLTDLEILALLIAALSHDLDHRGVNNSYIQRSEH





PLAQLYCHSIMEHHHFDQCLMILNSPGNQILSGLSIEEYKTTLKIIKQAILATDLAL





YIKRRGEFAELIRKNQFNLEDPHQKELFLAMLMTACDLSAITKPWPIQQRIAELV





ATEFFDQGDRERKELNIEPTDLMNREKKNKIPSMQVGFIDAICLQLYEALTHVSE





DCFPLLDGCRKNRQKWQALAEQQSR*







OT-001261 (AcGFP
MVSKGAELFTGIVPILIELNGDVNGHKFSVSGEGEGDATYGKLTLKFICTTGKLP
8575
8613


(1-239 of WT);
VPWPTLVTTLSYGVQCFSRYPDHMKQHDFFKSAMPEGYIQERTIFFEDDGNYKS




Linker (GS); hPDE5
RAEVKFEGDTLVNRIELTGTDFKEDGNILGNKMEYNYNAHNVYIMTDKAKNGI




(Amino acid 535-860
KVNFKIRHNIEDGSVQLADHYQQNTPIGDGPVLLPDNHYLSTQSALSKDPNEKR




of WT, F736L); Xba
DHMIYFGFVTAAAITHGMDELYKGSEETRELQSLAAAVVPSAQTLKITDFSFSDF




I site (TCTAGA);
ELSDLETALCTIRMFTDLNLVQNFQMKHEVLCRWILSVKKNYRKNVAYHNWR




stop)
HAFNTAQCMFAALKAGKIQNKLTDLEILALLIAALSHDLDHRGVNNSYIQRSEH





PLAQLYCHSIMEHHHFDQCLMILNSPGNQILSGLSIEEYKTTLKIIKQAILATDLAL





YIKRRGEFLELIRKNQFNLEDPHQKELFLAMLMTACDLSAITKPWPIQQRIAELV





ATEFFDQGDRERKELNIEPTDLMNREKKNKIPSMQVGFIDAICLQLYEALTHVSE





DCFPLLDGCRKNRQKWQALAEQQSR*







OT-001262 (AcGFP
MVSKGAELFTGIVPILIELNGDVNGHKFSVSGEGEGDATYGKLTLKFICTTGKLP
8576
8614


(1-239 of WT);
VPWPTLVTTLSYGVQCFSRYPDHMKQHDFFKSAMPEGYIQERTIFFEDDGNYKS




Linker (GS); hPDE5
RAEVKFEGDTLVNRIELTGTDFKEDGNILGNKMEYNYNAHNVYIMTDKAKNGI




(Amino acid 535-860
KVNFKIRHNIEDGSVQLADHYQQNTPIGDGPVLLPDNHYLSTQSALSKDPNEKR




of WT, F736M); Xba
DHMIYFGFVTAAAITHGMDELYKGSEETRELQSLAAAVVPSAQTLKITDFSFSDF




I site (TCTAGA);
ELSDLETALCTIRMFTDLNLVQNFQMKHEVLCRWILSVKKNYRKNVAYHNWR




stop)
HAFNTAQCMFAALKAGKIQNKLTDLEILALLIAALSHDLDHRGVNNSYIQRSEH





PLAQLYCHSIMEHHHFDQCLMILNSPGNQILSGLSIEEYKTTLKIIKQAILATDLAL





YIKRRGEFMELIRKNQFNLEDPHQKELFLAMLMTACDLSAITKPWPIQQRIAELV





ATEFFDQGDRERKELNIEPTDLMNREKKNKIPSMQVGFIDAICLQLYEALTHVSE





DCFPLLDGCRKNRQKWQALAEQQSR*







OT-001263 (AcGFP
MVSKGAELFTGIVPILIELNGDVNGHKFSVSGEGEGDATYGKLTLKFICTTGKLP
8577
8615


(1-239 of WT);
VPWPTLVTTLSYGVQCFSRYPDHMKQHDFFKSAMPEGYIQERTIFFEDDGNYKS




Linker (GS); hPDE5
RAEVKFEGDTLVNRIELTGTDFKEDGNILGNKMEYNYNAHNVYIMTDKAKNGI




(Amino acid 535-860
KVNFKIRHNIEDGSVQLADHYQQNTPIGDGPVLLPDNHYLSTQSALSKDPNEKR




of WT, F736R); Xba
DHMIYFGFVTAAAITHGMDELYKGSEETRELQSLAAAVVPSAQTLKITDFSFSDF




I site (TCTAGA);
ELSDLETALCTIRMFTDLNLVQNFQMKHEVLCRWILSVKKNYRKNVAYHNWR




stop)
HAFNTAQCMFAALKAGKIQNKLTDLEILALLIAALSHDLDHRGVNNSYIQRSEH





PLAQLYCHSIMEHHHFDQCLMILNSPGNQILSGLSIEEYKTTLKIIKQAILATDLAL





YIKRRGEFRELIRKNQFNLEDPHQKELFLAMLMTACDLSAITKPWPIQQRIAELV





ATEFFDQGDRERKELNIEPTDLMNREKKNKIPSMQVGFIDAICLQLYEALTHVSE





DCFPLLDGCRKNRQKWQALAEQQSR*







OT-001264 (AcGFP
MVSKGAELFTGIVPILIELNGDVNGHKFSVSGEGEGDATYGKLTLKFICTTGKLP
8578
8616


(1-239 of WT);
VPWPTLVTTLSYGVQCFSRYPDHMKQHDFFKSAMPEGYIQERTIFFEDDGNYKS




Linker (GS); hPDE5
RAEVKFEGDTLVNRIELTGTDFKEDGNILGNKMEYNYNAHNVYIMTDKAKNGI




(Amino acid 535-860
KVNFKIRHNIEDGSVQLADHYQQNTPIGDGPVLLPDNHYLSTQSALSKDPNEKR




of WT, F736W); Xba
DHMIYFGFVTAAAITHGMDELYKGSEETRELQSLAAAVVPSAQTLKITDFSFSDF




I site (TCTAGA);
ELSDLETALCTIRMFTDLNLVQNFQMKHEVLCRWILSVKKNYRKNVAYHNWR




stop)
HAFNTAQCMFAALKAGKIQNKLTDLEILALLIAALSHDLDHRGVNNSYIQRSEH





PLAQLYCHSIMEHHHFDQCLMILNSPGNQILSGLSIEEYKTTLKIIKQAILATDLAL





YIKRRGEFWELIRKNQFNLEDPHQKELFLAMLMTACDLSAITKPWPIQQRIAELV





ATEFFDQGDRERKELNIEPTDLMNREKKNKIPSMQVGFIDAICLQLYEALTHVSE





DCFPLLDGCRKNRQKWQALAEQQSR*







OT-001265 (AcGFP
MVSKGAELFTGIVPOLIELNGDVNGHKFSVSGEGEGDATYGKLTLKFICTTGKLP
8579
8617


(1-239 of WT);
VPWPTLVTTLSYGVQCFSRYPDHMKQHDFFKSAMPEGYIQERTIFFEDDGNYKS




Linker (GS); hPDE5
RAEVKFEGDTLVNRIELTGTDFKEDGNILGNKMEYNYNAHNVYIMTDKAKNGI




(Amino acid 535-860
KVNFKIRHNIEDGSVQLADHYQQNTPIGDGPVLLPDNHYLSTQSALSKDPNEKR




of WT, F736K); Xba
DHMIYFGFVTAAAITHGMDELYKGSEETRELQSLAAAVVPSAQTLKITDFSFSDF




I site (TCTAGA);
ELSDLETALCTIRMFTDLNLVQNFQMKHEVLCRWILSVKKNYRKNVAYHNWR




stop)
HAFNTAQCMFAALKAGKIQNKLTDLEILALLIAALSHDLDHRGVNNSYIQRSEH





PLAQLYCHSIMEHHHFDQCLMILNSPGNQILSGLSIEEYKTTLKIIKQAILATDLAL





YIKRRGEFKELIRKNQFNLEDPHQKELFLAMLMTACDLSAITKPWPIQQRIAELV





ATEFFDQGDRERKELNIEPTDLMNREKKNKIPSMQVGFIDAICLQLYEALTHVSE





DCFPLLDGCRKNRQKWQALAEQQSR*







OT-001266 (AcGFP
MVSKGAELFTGIVPILIELNGDVNGHKFSVSGEGEGDATYGKLTLKFICTTGKLP
8580
8618


(1-239 of WT);
VPWPTLVTTLSYGVQCFSRYPDHMKQHDFFKSAMPEGYIQERTIFFEDDGNYKS




Linker (GS); hPDE5
RAEVKFEGDTLVNRIELTGTDFKEDGNILGNKMEYNYNAHNVYIMTDKAKNGI




(Amino acid 535-860
KVNFKIRHNIEDGSVQLADHYQQNTPIGDGPVLLPDNHYLSTQSALSKDPNEKR




of WT, F736Q); Xba
DHMIYFGFVTAAAITHGMDELYKGSEETRELQSLAAAVVPSAQTLKITDFSFSDF




I site (TCTAGA);
ELSDLETALCTIRMFTDLNLVQNFQMKHEVLCRWOLSVKKNYRKNVAYHNWR




stop)
HAFNTAQCMFAALKAGKIQNKLTDLEILALLIAALSHDLDHRGVNNSYIQRSEH





PLAQLYCHSIMEHHHFDQCLMILNSPGNQILSGLSIEEYKTTLKIIKQAILATDLAL





YIKRRGEFQELIRKNQFNLEDPHQKELFLAMLMTACDLSAITKPWPIQQRIAELV





ATEFFDQGDRERKELNIEPTDLMNREKKNKIPSMQVGFIDAICLQLYEALTHVSE





DCFPLLDGCRKNRQKWQALAEQQSR*







OT-001267 (AcGFP
MVSKGAELFTGIVPILIELNGDVNGHKFSVSGEGEGDATYGKLTLKFICTTGKLP
8581
8619


(1-239 of WT);
VPWPTLVTTLSYGVQCFSRYPDHMKQHDFFKSAMPEGYIQERTIFFEDDGNYKS




Linker (GS); hPDE5
RAEVKFEGDTLVNRIELTGTDFKEDGNILGNKMEYNYNAHNVYIMTDKAKNGI




(Amino acid 535-860
KVNFKIRHNIEDGSVQLADHYQQNTPIGDGPVLLPDNHYLSTQSALSKDPNEKR




of WT, F736E); Xba
DHMIYFGFVTAAAITHGMDELYKGSEETRELQSLAAAVVPSAQTLKITDFSFSDF




I site (TCTAGA);
ELSDLETALCTIRMFTDLNLVQNFQMKHEVLCRWILSVKKNYRKNVAYHNWR




stop)
HAFNTAQCMFAALKAGKIQNKLTDLEILALLIAALSHDLDHRGVNNSYIQRSEH





PLAQLYCHSIMEHHHFDQCLMILNSPGNQILSGLSIEEYKTTLKIIKQAILATDLAL





YIKRRGEFEELIRKNQFNLEDPHQKELFLAMLMTACDLSAITKPWPIQQRIAELV





ATEFFDQGDRERKELNIEPTDLMNREKKNKIPSMQVGFIDAICLQLYEALTHVSE





DCFPLLDGCRKNRQKWQALAEQQSR*







OT-001268 (AcGFP
MVSKGAELFTGIVPILIELNGDVNGHKFSVSGEGEGDATYGKLTLKFICTTGKLP
8582
8620


(1-239 of WT);
VPWPTLVTTLSYGVQCFSRYPDHMKQHDFFKSAMPEGYIQERTIFFEDDGNYKS




Linker (GS); hPDE5
RAEVKFEGDTLVNRIELTGTDFKEDGNILGNKMEYNYNAHNVYIMTDKAKNGI




(Amino acid 535-860
KVNFKIRHNIEDGSVQLADHYQQNTPIGDGPVLLPDNHYLSTQSALSKDPNEKR




of WT, F736S); Xba
DHMIYFGFVTAAAITHGMDELYKGSEETRELQSLAAAVVPSAQTLKITDFSFSDF




I site (TCTAGA);
ELSDLETALCTIRMFTDLNLVQNFQMKHEVLCRWILSVKKNYRKNVAYHNWR




stop)
HAFNTAQCMFAALKAGKIQNKLTDLEILALLIAALSHDLDHRGVNNSYIQRSEH





PLAQLYCHSIMEHHHFDQCLMILNSPGNQILSGLSIEEYKTTLKIIKQAILATDLAL





YIKRRGEFSELIRKNQFNLEDPHQKELFLAMLMTACDLSAITKPWPIQQRIAELV





ATEFFDQGDRERKELNIEPTDLMNREKKNKIPSMQVGFIDAICLQLYEALTHVSE





DCFPLLDGCRKNRQKWQALAEQQSR*







OT-001269 (AcGFP
MVSKGAELFTGIVPILIELNGDVNGHKFSVSGEGEGDATYGKLTLKFICTTGKLP
8583
8621


(1-239 of WT);
VPWPTLVTTLSYGVQCFSRYPDHMKQHDFFKSAMPEGYIQERTIFFEDDGNYKS




Linker (GS); hPDE5
RAEVKFEGDTLVNRIELTGTDFKEDGNILGNKMEYNYNAHNVYIMTDKAKNGI




(Amino acid 535-860
KVNFKIRHNIEDGSVQLADHYQQNTPIGDGPVLLPDNHYLSTQSALSKDPNEKR




of WT, F736P); Xba
DHMIYFGFVTAAAITHGMDELYKGSEETRELQSLAAAVVPSAQTLKITDFSFSDF




I site (TCTAGA);
ELSDLETALCTIRMFTDLNLVQNFQMKHEVLCRWILSVKKNYRKNVAYHNWR




stop)
HAFNTAQCMFAALKAGKIQNKLTDLEILALLIAALSHDLDHRGVNNSYIQRSEH





PLAQLYCHSIMEHHHFDQCLMILNSPGNQILSGLSIEEYKTTLKIIKQAILATDLAL





YIKRRGEFPELIRKNQFNLEDPHQKELFLAMLMTACDLSAITKPWPIQQRIAELV





ATEFFDQGDRERKELNIEPTDLMNREKKNKIPSMQVGFIDAICLQLYEALTHVSE





DCFPLLDGCRKNRQKWQALAEQQSR*







OT-001270 (AcGFP
MVSKGAELFTGIVPILIELNGDVNGHKFSVSGEGEGDATYGKLTLKFICTTGKLP
8584
8622


(1-239 of WT);
VPWPTLVTTLSYGVQCFSRYPDHMKQHDFFKSAMPEGYIQERTIFFEDDGNYKS




Linker (GS); hPDE5
RAEVKFEGDTLVNRIELTGTDFKEDGNILGNKMEYNYNAHNVYIMTDKAKNGI




(Amino acid 535-860
KVNFKIRHNIEDGSVQLADHYQQNTPIGDGPVLLPDNHYLSTQSALSKDPNEKR




of WT, F736V); Xba
DHMIYFGFVTAAAITHGMDELYKGSEETRELQSLAAAVVPSAQTLKITDFSFSDF




I site (TCTAGA);
ELSDLETALCTIRMFTDLNLVQNFQMKHEVLCRWILSVKKNYRKNVAYHNWR




stop)
HAFNTAQCMFAALKAGKIQNKLTDLEILALLIAALSHDLDHRGVNNSYIQRSEH





PLAQLYCHSIMEHHHFDQCLMILNSPGNQILSGLSIEEYKTTLKIIKQAILATDLAL





YIKRRGEFVELIRKNQFNLEDPHQKELFLAMLMTACDLSAITKPWPIQQRIAELV





ATEFFDQGDRERKELNIEPTDLMNREKKNKIPSMQVGFIDAICLQLYEALTHVSE





DCFPLLDGCRKNRQKWQALAEQQSR*







OT-001271 (AcGFP
MVSKGAELFTGIVPILIELNGDVNGHKFSVSGEGEGDATYGKLTLKFICTTGKLP
8585
8623


(1-239 of WT);
VPWPTLVTTLSYGVQCFSRYPDHMKQHDFFKSAMPEGYIQERTIFFEDDGNYKS




Linker (GS); hPDE5
RAEVKFEGDTLVNRIELTGTDFKEDGNILGNKMEYNYNAHNVYIMTDKAKNGI




(Amino acid 535-860
KVNFKIRHNIEDGSVQLADHYQQNTPIGDGPVLLPDNHYLSTQSALSKDPNEKR




of WT, F736I); Xba I
DHMIYFGFVTAAAITHGMDELYKGSEETRELQSLAAAVVPSAQTLKITDFSFSDF




site (TCTAGA);
ELSDLETALCTIRMFTDLNLVQNFQMKHEVLCRWILSVKKNYRKNVAYHNWR




stop)
HAFNTAQCMFAALKAGKIQNKLTDLEILALLIAALSHDLDHRGVNNSYIQRSEH





PLAQLYCHSIMEHHHFDQCLMILNSPGNQILSGLSIEEYKTTLKIIKQAILATDLAL





YIKRRGEHELIRKNQFNLEDPHQKELFLAMLMTACDLSAITKPWPIQQRIAELVA





TEFFDQGDRERKELNIEPTDLMNREKKNKIPSMQVGFIDAICLQLYEALTHVSED





CFPLLDGCRKNRQKWQALAEQQSR*







OT-001272 (AcGFP
MVSKGAELFTGIVPILIELNGDVNGHKFSVSGEGEGDATYGKLTLKFICTTGKLP
8586
8624


(1-239 of WT);
VPWPTLVTTLSYGVQCFSRYPDHMKQHDFFKSAMPEGYIQERTIFFEDDGNYKS




Linker (GS); hPDE5
RAEVKFEGDTLVNRIELTGTDFKEDGNILGNKMEYNYNAHNVYIMTDKAKNGI




(Amino acid 535-860
KVNFKIRHNIEDGSVQLADHYQQNTPIGDGPVLLPDNHYLSTQSALSKDPNEKR




of WT, F736C); Xba
DHMIYFGFVTAAAITHGMDELYKGSEETRELQSLAAAVVPSAQTLKITDFSFSDF




I site (TCTAGA);
ELSDLETALCTIRMFTDLNLVQNFQMKHEVLCRWILSVKKNYRKNVAYHNWR




stop)
HAFNTAQCMFAALKAGKIQNKLTDLEILALLIAALSHDLDHRGVNNSYIQRSEH





PLAQLYCHSIMEHHHFDQCLMILNSPGNQILSGLSIEEYKTTLKIIKQAILATDLAL





YIKRRGEFCELIRKNQFNLEDPHQKELFLAMLMTACDLSAITKPWPIQQRIAELV





ATEFFDQGDRERKELNIEPTDLMNREKKNKIPSMQVGFIDAICLQLYEALTHVSE





DCFPLLDGCRKNRQKWQALAEQQSR*







OT-001273 (AcGFP
MVSKGAELFTGIVPILIELNGDVNGHKFSVSGEGEGDATYGKLTLKFICTTGKLP
8587
8625


(1-239 of WT);
VPWPTLVTTLSYGVQCFSRYPDHMKQHDFFKSAMPEGYIQERTIFFEDDGNYKS




Linker (GS); hPDE5
RAEVKFEGDTLVNRIELTGTDFKEDGNILGNKMEYNYNAHNVYIMTDKAKNGI




(Amino acid 535-860
KVNFKIRHNIEDGSVQLADHYQQNTPIGDGPVLLPDNHYLSTQSALSKDPNEKR




of WT, F736Y); Xba
DHMIYFGFVTAAAITHGMDELYKGSEETRELQSLAAAVVPSAQTLKITDFSFSDF




I site (TCTAGA);
ELSDLETALCTIRMFTDLNLVQNFQMKHEVLCRWILSVKKNYRKNVAYHNWR




stop)
HAFNTAQCMFAALKAGKIQNKLTDLEILALLIAALSHDLDHRGVNNSYIQRSEH





PLAQLYCHSIMEHHHFDQCLMILNSPGNQILSGLSIEEYKTTLKIIKQAILATDLAL





YIKRRGEFYELIHRKNQFNLEDPHQKELFLAMLMTACDLSAITKPWPIQQRIAELV





ATEFFDQGDRERKELNIEPTDLMNREKKNKIPSMQVGFIDAICLQLYEALTHVSE





DCFPLLDGCRKNRQKWQALAEQQSR*







OT-001274 (AcGFP
MVSKGAELFTGIVPILIELNGDVNGHKFSVSGEGEGDATYGKLTLKFICTTGKLP
8588
8626


(1-239 of WT);
VPWPTLVTTLSYGVQCFSRYPDHMKQHDFFKSAMPEGYIQERTIFFEDDGNYKS




Linker (GS); hPDE5
RAEVKFEGDTLVNRIELTGTDFKEDGNILGNKMEYNYNAHNVYIMTDKAKNGI




(Amino acid 535-860
KVNFKIRHNIEDGSVQLADHYQQNTPIGDGPVLLPDNHYLSTQSALSKDPNEKR




of WT, F736I4); Xba
DHMIYFGFVTAAAITHGMDELYKGSEETRELQSLAAAVVPSAQTLKITDFSFSDF




I site (TCTAGA);
ELSDLETALCTIRMFTDLNLVQNFQMKHEVLCRWILSVKKNYRKNVAYHNWR




stop)
HAFNTAQCMFAALKAGKIQNKLTDLEILALLIAALSHDLDHRGVNNSYIQRSEH





PLAQLYCHSIMEHHHFDQCLMILNSPGNQILSGLSIEEYKTTLKIIKQAILATDLAL





YIKRRGEFHELIHRKNQFNLEDPHQKELFLAMLMTACDLSAITKPWPIQQRIAELV





ATEFFDQGDRERKELNIEPTDLMNREKKNKIPSMQVGFIDAICLQLYEALTHVSE





DCFPLLDGCRKNRQKWQALAEQQSR*







OT-001275 (AcGFP
MVSKGAELFTGIVPILIELNGDVNGHKFSVSGEGEGDATYGKLTLKFICTTGKLP
8589
8627


(1-239 of WT);
VPWPTLVTTLSYGVQCFSRYPDHMKQHDFFKSAMPEGYIQERTIFFEDDGNYKS




Linker (GS); hPDE5
RAEVKFEGDTLVNRIELTGTDFKEDGNILGNKMEYNYNAHNVYIMTDKAKNGI




(Amino acid 535-860
KVNFKIRHNIEDGSVQLADHYQQNTPIGDGPVLLPDNHYLSTQSALSKDPNEKR




of WT, F736N); Xba
DHMIYFGFVTAAAITHGMDELYKGSEETRELQSLAAAVVPSAQTLKITDFSFSDF




I site (TCTAGA);
ELSDLETALCTIRMFTDLNLVQNFQMKHEVLCRWILSVKKNYRKNVAYHNWR




stop)
HAFNTAQCMFAALKAGKIQNKLTDLEILALLIAALSHDLDHRGVNNSYIQRSEH





PLAQLYCHSIMEHHHFDQCLMILNSPGNQILSGLSIEEYKTTLKIIKQAILATDLAL





YIKRRGEFNELIRKNQFNLEDPHQKELFLAMLMTACDLSAITKPWPIQQRIAELV





ATEFFDQGDRERKELNIEPTDLMNREKKNKIPSMQVGFIDAICLQLYEALTHVSE





DCFPLLDGCRKNRQKWQALAEQQSR*







OT-001276 (AcGFP
MVSKGAELFTGIVPILIELNGDVNGHKFSVSGEGEGDATYGKLTLKFICTTGKLP
8590
8628


(1-239 of WT);
VPWPTLVTTLSYGVQCFSRYPDHMKQHDFFKSAMPEGYIQERTIFFEDDGNYKS




Linker (GS); hPDE5
RAEVKFEGDTLVNRIELTGTDFKEDGNILGNKMEYNYNAHNVYIMTDKAKNGI




(Amino acid 535-860
KVNFKIRHNIEDGSVQLADHYQQNTPIGDGPVLLPDNHYLSTQSALSKDPNEKR




of WT, F736D); Xba
DHMIYFGFVTAAAITHGMDELYKGSEETRELQSLAAAVVPSAQTLKITDFSFSDF




I site (TCTAGA);
ELSDLETALCTIRMFTDLNLVQNFQMKHEVLCRWILSVKKNYRKNVAYHNWR




stop)
HAFNTAQCMFAALKAGKIQNKLTDLEILALLIAALSHDLDHRGVNNSYIQRSEH





PLAQLYCHSIMEHHHFDQCLMILNSPGNQILSGLSIEEYKTTLKIIKQAILATDLAL





YIKRRGEFDELIRKNQFNLEDPHQKELFLAMLMTACDLSAITKPWPIQQRIAELV





ATEFFDQGDRERKELNIEPTDLMNREKKNKIPSMQVGFIDAICLQLYEALTHVSE





DCFPLLDGCRKNRQKWQALAEQQSR*







OT-001277 (AcGFP
MVSKGAELFTGIVPILIELNGDVNGHKFSVSGEGEGDATYGKLTLKFICTTGKLP
8591
8629


(1-239 of WT);
VPWPTLVTTLSYGVQCFSRYPDHMKQHDFFKSAMPEGYIQERTIFFEDDGNYKS




Linker (GS); hPDE5
RAEVKFEGDTLVNRIELTGTDFKEDGNILGNKMEYNYNAHNVYIMTDKAKNGI




(Amino acid 535-860
KVNFKIRHNIEDGSVQLADHYQQNTPIGDGPVLLPDNHYLSTQSALSKDPNEKR




of WT, F736T); Xba
DHMIYFGFVTAAAITHGMDELYKGSEETRELQSLAAAVVPSAQTLKITDFSFSDF




I site (TCTAGA);
ELSDLETALCTIRMFTDLNLVQNFQMKHEVLCRWILSVKKNYRKNVAYHNWR




stop)
HAFNTAQCMFAALKAGKIQNKLTDLEILALLIAALSHDLDHRGVNNSYIQRSEH





PLAQLYCHSIMEHHHFDQCLMILNSPGNQILSGLSIEEYKTTLKIIKQAILATDLAL





YIKRRGEFTELIRKNQFNLEDPHQKELFLAMLMTACDLSAITKPWPIQQRIAELV





ATEFFDQGDRERKELNIEPTDLMNREKKNKIPSMQVGFIDAICLQLYEALTHVSE





DCFPLLDGCRKNRQKWQALAEQQSR*









In some embodiments, any of the mutations taught in Table 1, Table 3, Table 6, Table 9 may be combined. In one embodiment, the combination mutations are provided in Table 10. Combination mutations may be linked to AcGFP (Amino acid 2-239 of WT) (SEQ ID NO: 79); encoded by the nucleotide sequence of SEQ ID NO: 372; AcGFP (Amino acid 1-239 of WT) (SEQ ID NO: 365); encoded by the nucleotide sequence of SEQ ID NO: 94; or firefly luciferase, Fluc (N50D, N119G, S548I, K549A, L550V) (SEQ ID NO: 223) encoded by the nucleotide sequence of SEQ ID NO: 224. In some embodiments, the portions of the construct may be linked through a linker e.g. SG linker, encoded by the nucleotide sequence (AGTGGT) or a GGSGGG linker (SEQ ID NO: 8630), encoded by (SEQ ID NO: 8631). In some embodiments, the constructs described in Table 10 may comprise an Xba I restriction site, SR, encoded by the nucleotide sequence, TCTAGA. Table 10 provides the constructs comprising the combination mutations. In Table 10, translation of the stop codon is indicated by asterisk.









TABLE 10







hPDE5 combination mutations












Amino
Nucleic




acid
Acid


Construct ID/

SEQ
SEQ


Description
Amino Acid Sequence
ID NO:
ID NO:













hPDE5 (Amino
EETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFTDLNLVQNFQM
504
519


acid 535-860 of
KHEVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMFAALKAGKIQNKLTDLEI




WT, F736A,
LALLIAALSHDLDHRGVNNSYIQRSEHPLAQLYCHSIMEHHHFDQCLMILNSPGN




D764N)
QILSGLSIEEYKTTLKIIKQAILATDLALYIKRRGEFAELIRKNQFNLEDPHQKELFL





AMLMTACNLSAITKPWPIQQRIAELVATEFFDQGDRERKELNIEPTDLMNREKKN





KIPSMQVGFIDAICLQLYEALTHVSEDCFPLLDGCRKNRQKWQALAEQQ







Methionine;
MEETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFTDLNLVQNFQ
225
231


hPDE5 (Amino
MKHEVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMFAALKAGKIQNKLTDL




acid 535-860 of
EILALLIAALSHDLDHRGVNNSYIQRSEHPLAQLYCHSIMEHHHFDQCLMILNSPG




WT, F736A,
NQILSGLSIEEYKTTLKIIKQAILATDLALYIKRRGEFAELIRKNQFNLEDPHQKELF




D764N)
LAMLMTACNLSAITKPWPIQQRIAELVATEFFDQGDRERKELNIEPTDLMNREKK





NKIPSMQVGFIDAICLQLYEALTHVSEDCFPLLDGCRKNRQKWQALAEQQ







hPDE5 (Amino
EETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFTDLNLVQNFQM
505
520


acid 535-860 of
KHEVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMFAALKAGKIQNKLTDLEI




WT, R732L,
LALLIAALSHDLDHRGVNNSYIQRSEHPLAQLYCHSIMEHHHFDQCLMILNSPGN




D764N)
QILSGLSIEEYKTTLKIIKQAILATDLALYIKRLGEFFELIRKNQFNLEDPHQKELFL





AMLMTACNLSAITKPWPIQQRIAELVATEFFDQGDRERKELNIEPTDLMNREKKN





KIPSMQVGFIDAICLQLYEALTHVSEDCFPLLDGCRKNRQKWQALAEQQ







Methionine;
MEETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFTDLNLVQNFQ
226
232


hPDE5 (Amino
MKHEVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMFAALKAGKIQNKLTDL




acid 535-860 of
EILALLIAALSHDLDHRGVNNSYIQRSEHPLAQLYCHSIMEHHHFDQCLMILNSPG




WT, R732L,
NQILSGLSIEEYKTTLKIIKQAILATDLALYIKRLGEFFELIRKNQFNLEDPHQKELF




D764N)
LAMLMTACNLSAITKPWPIQQRIAELVATEFFDQGDRERKELNIEPTDLMNREKK





NKIPSMQVGFIDAICLQLYEALTHVSEDCFPLLDGCRKNRQKWQALAEQQ







hPDE5 (Amino
EETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFTDLNLVQNFQM
227
233


acid 535-860 of
KHEVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMFAALKAGKIQNKLTDLEI




WT, R732L,
LALLIAALSHDLDHRGVNNSYIQRSEHPLAQLYCHSIMEHHHFDQCLMILNSPGN




F736A)
QILSGLSIEEYKTTLKIIKQAILATDLALYIKRLGEFAELIRKNQFNLEDPHQKELFL





AMLMTACDLSAITKPWPIQQRIAELVATEFFDQGDRERKELNIEPTDLMNREKKN





KIPSMQVGFIDAICLQLYEALTHVSEDCFPLLDGCRKNRQKWQALAEQQ







hPDE5 (Amino
EETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFTDLNLVQNFQM
506
521


acid 535-860 of
KHEVLCRWILSVKKNYRKNVAFHNWRHAFNTAQCMFAALKAGKIQNKLTDLEI




WT, Y612F,
LALLIAALSHDLDHRGVNNSYIQRSEHPLAQLYCHSIMEHHHFDQCLMILNSPGN




R732L)
QILSGLSIEEYKTTLKIIKQAILATDLALYIKRLGEFFELIRKNQFNLEDPHQKELFL





AMLMTACDLSAITKPWPIQQRIAELVATEFFDQGDRERKELNIEPTDLMNREKKN





KIPSMQVGFIDAICLQLYEALTHVSEDCFPLLDGCRKNRQKWQALAEQQ







hPDE5 (Amino
EETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFTDLNLVQNFQM
507
522


acid 535-860 of
KHEVLCRWILSVKKNYRKNVAWHNWRHAFNTAQCMFAALKAGKIQNKLTDLEI




WT, Y612W,
LALLIAALSHDLDHRGVNNSYIQRSEHPLAQLYCHSIMEHHHFDQCLMILNSPGN




R732L)
QILSGLSIEEYKTTLKIIKQAILATDLALYIKRLGEFFELIRKNQFNLEDPHQKELFL





AMLMTACDLSAITKPWPIQQRIAELVATEFFDQGDRERKELNIEPTDLMNREKKN





KIPSMQVGFIDAICLQLYEALTHVSEDCFPLLDGCRKNRQKWQALAEQQ







hPDE5 (Amino
EETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFTDLNLVQNFQM
508
523


acid 535-860 of
KHEVLCRWILSVKKNYRKNVAAHNWRHAFNTAQCMFAALKAGKIQNKLTDLEI




WT, Y612A,
LALLIAALSHDLDHRGVNNSYIQRSEHPLAQLYCHSIMEHHHFDQCLMILNSPGN




R732L)
QILSGLSIEEYKTTLKIIKQAILATDLALYIKRLGEFFELIRKNQFNLEDPHQKELFL





AMLMTACDLSAITKPWPIQQRIAELVATEFFDQGDRERKELNIEPTDLMNREKKN





KIPSMQVGFIDAICLQLYEALTHVSEDCFPLLDGCRKNRQKWQALAEQQ







hPDE5 (Amino
EETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFTDLNLVQNFQM
509
524


acid 535-860 of
KHEVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMFAALKAGKIQNKLTDLEI




WT, 11653A,
LALLIAALSADLDHRGVNNSYIQRSEHPLAQLYCHSIMEHHHFDQCLMILNSPGN




R732L)
QILSGLSIEEYKTTLKIIKQAILATDLALYIKRLGEFFELIRKNQFNLEDPHQKELFL





AMLMTACDLSAITKPWPIQQRIAELVATEFFDQGDRERKELNIEPTDLMNREKKN





KIPSMQVGFIDAICLQLYEALTHVSEDCFPLLDGCRKNRQKWQALAEQQ







hPDE5 (Amino
EETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFTDLNLVQNFQM
510
525


acid 535-860 of
KHEVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMFAALKAGKIQNKLTDLEI




WT, R732L,
LALLIAALSHDLDHRGVNNSYIQRSEHPLAQLYCHSIMEHHHFDQCLMILNSPGN




D764A)
QILSGLSIEEYKTTLKIIKQAILATDLALYIKRLGEFFELIRKNQFNLEDPHQKELFL





AMLMTACALSAITKPWPIQQRIAELVATEFFDQGDRERKELNIEPTDLMNREKKN





KIPSMQVGFIDAICLQLYEALTHVSEDCFPLLDGCRKNRQKWQALAEQQ







hPDE5 (Amino
EETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFTDLNLVQNFQM
8632
8640


acid 535-860 of
KHEVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMFAALKAGKIQNKLTDLEI




WT, D724G,
LALLIAALSHDLDHRGVNNSYIQRSEHPLAQLYCHSIMEHHHFDQCLMILNSPGN




D764G)
QILSGLSIEEYKTTLKIIKQAILATGLALYIKRRGEFFELIRKNQFNLEDPHQKELFL





AMLMTACGLSAITKPWPIQQRIAELVATEFFDQGDRERKELNIEPTDLMNREKKN





KIPSMQVGFIDAICLQLYEALTHVSEDCFPLLDGCRKNRQKWQALAEQQ







hPDE5 (Amino
EETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFTDLNLVQNFQM
8633
8641


acid 535-860 of
KHEVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMFAALKAGKIQNKLTDLEI




WT, Y728L,
LALLIAALSHDLDHRGVNNSYIQRSEHPLAQLYCHSIMEHHHFDQCLMILNSPGN




D764N)
QILSGLSIEEYKTTLKIIKQAILATDLALLIKRRGEFFELIRKNQFNLEDPHQKELFLA





MLMTACNLSAITKPWPIQQRIAELVATEFFDQGDRERKELNIEPTDLMNREKKNKI





PSMQVGFIDAICLQLYEALTHVSEDCFPLLDGCRKNRQKWQALAEQQ







hPDE5 (Amino
EETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFTDLNLVQNFQM
8634
8642


acid 535-860 of
KHEVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMFAALKAGKIQNKLTDLEI




WT, E682A,
LALLIAALSHDLDHRGVNNSYIQRSEHPLAQLYCHSIMAHHHFDQCLMILNSPGN




R732L)
QILSGLSIEEYKTTLKIIKQAILATDLALYIKRLGEFFELIRKNQFNLEDPHQKELFL





AMLMTACDLSAITKPWPIQQRIAELVATEFFDQGDRERKELNIEPTDLMNREKKN





KIPSMQVGFIDAICLQLYEALTHVSEDCFPLLDGCRKNRQKWQALAEQQ







hPDE5 (Amino
EETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFTDLNLVQNFQM
8635
8643


acid 535-860 of
KHEVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMFAALKAGKIQNKLTDLEI




WT, D724A,
LALLIAALSHDLDHRGVNNSYIQRSEHPLAQLYCHSIMEHHHFDQCLMILNSPGN




R732L)
QILSGLSIEEYKTTLKIIKQAILATALALYIKRLGEFFELIRKNQFNLEDPHQKELFL





AMLMTACDLSAITKPWPIQQRIAELVATEFFDQGDRERKELNIEPTDLMNREKKN





KIPSMQVGFIDAICLQLYEALTHVSEDCFPLLDGCRKNRQKWQALAEQQ







OT-001222
MEETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFTDLNLVQNFQ
228
234


(Methionine;
MKHEVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMFAALKAGKIQNKLTDL




hPDE5 (Amino
EILALLIAALSHDLDHRGVNNSYIQRSEHPLAQLYCHSIMEHHHFDQCLMILNSPG




acid 535-860 of
NQILSGLSIEEYKTTLKIIKQAILATDLALYIKRRGEFAELIRKNQFNLEDPHQKELF




WT, F736A,
LAMLMTACNLSAITKPWPIQQRIAELVATEFFDQGDRERKELNIEPTDLMNREKK




D764N); linker
NKIPSMQVGFIDAICLQLYEALTHVSEDCFPLLDGCRKNRQKWQALAEQQSGVSK




(SG); AcGFP
GAELFTGIVPILIELNGDVNGHKFSVSGEGEGDATYGKLTLKFICTTGKLPVPWPT




(Amino acid 2-239
LVTTLSYGVQCFSRYPDHMKQHDFFKSAMPEGYIQERTIFFEDDGNYKSRAEVKF




of WT); stop
EGDTLVNRIELTGTDFKEDGNILGNKMEYNYNAHNVYIMTDKAKNGIKVNEKIR





HNIEDGSVQLADHYQQNTPIGDGPVLLPDNHYLSTQSALSKDPNEKRDHMIYEGF





VTAAAITHGMDELYK*







OT-001223
MEETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFTDLNLVQNFQ
229
235


(Methionine;
MKHEVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMFAALKAGKIQNKLTDL




hPDE5 (Amino
EILALLIAALSHDLDHRGVNNSYIQRSEHPLAQLYCHSIMEHHHFDQCLMILNSPG




acid 535-860 of
NQILSGLSIEEYKTTLKIIKQAILATDLALYIKRLGEFFELIRKNQFNLEDPHQKELF




WT, R732L,
LAMLMTACNLSAITKPWPIQQRIAELVATEFFDQGDRERKELNIEPTDLMNREKK




D764N); linker
NKIPSMQVGFIDAICLQLYEALTHVSEDCFPLLDGCRKNRQKWQALAEQQSGVSK




(SG); AcGFP
GAELFTGIVPILIELNGDVNGHKESVSGEGEGDATYGKLTLKFICTTGKLPVPWPT




(Amino acid 2-239
LVTTLSYGVQCFSRYPDHMKQHDFFKSAMPEGYIQERTIFFEDDGNYKSRAEVKF




of WT); stop)
EGDTLVNRIELTGTDFKEDGNILGNKMEYNYNAHNVYIMTDKAKNGIKVNFKIR





HNIEDGSVQLADHYQQNTPIGDGPVLLPDNHYLSTQSALSKDPNEKRDHMIYFGF





VTAAAITHGMDELYK*







OT-001231 (Fluc
MEDAKNIKKGPAPFYPLEDGTAGEQLHKAMKRYALVPGTIAFTDAHIEVDITYAE
230
236


(N50D, N119G,
YFEMSVRLAEAMKRYGLNTNHRIVVCSENSLQFFMPVLGALFIGVAVAPANDIYN




S548I, K549A,
ERELLNSMGISQPTVVFVSKKGLQKILNVQKKLPIIQKIIIMDSKTDYQGFQSMYTE




L550V); linker
VTSHIPPGFNEYDFVPESFDRDKTIALIMNSSGSTGLPKGVALPHRTACVRFSHAR




(SG); hPDE5
DPIFGNQIIPDTAILSVVPFHHGFGMFTTLGYLICGFRVVLMYRFEEELFLRSLQDY




(Amino acid 535-
KIQSALLVPTLFSFFAKSTLIDKYDLSNLHEIASGGAPLSKEVGEAVAKRFHLPGIR




860 of WT,
QGYGLTETTSAILITPEGDDKPGAVGKVVPFFEAKVVDLDTGKTLGVNQRGELCV




R732L; F736A);
RGPMIMSGYVNNPEATNALIDKDGWLHSGDIAYWDEDEHFFIVDRLKSLIKYKG




stop)
YQVAPAELESILLQHPNIFDAGVAGLPDDDAGELPAAVVVLEHGKTMTEKEIVDY





VASQVTTAKKLRGGVVFVDEVPKGLTGKLDARKIREILIKAKKGGKIAVSGEETR





ELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFTDLNLVQNFQMKHEV





LCRWILSVKKNYRKNVAYHNWRHAFNTAQCMFAALKAGKIQNKLTDLEILALLI





AALSHDLDHRGVNNSYIQRSEHPLAQLYCHSIMEHHHFDQCLMILNSPGNQILSG





LSIEEYKTTLKIIKQAILATDLALYIKRLGEFAELIRKNQFNLEDPHQKELFLAMLM





TACDLSAITKPWPIQQRIAELVATEFFDQGDRERKELNIEPTDLMNREKKNKIPSM





QVGFIDAICLQLYEALTHVSEDCFPLLDGCRKNRQKWQALAEQQ*







OT-001225
MEETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFTDLNLVQNFQ
511
526


(Methionine;
MKHEVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMFAALKAGKIQNKLTDL




hPDE5 (Amino
EILALLIAALSHDLDHRGVNNSYIQRSEHPLAQLYCHSIMEHHHFDQCLMILNSPG




acid 535-860 of
NQILSGLSIEEYKTTLKIIKQAILATDLALYIKRLGEFAELIRKNQFNLEDPHQKELF




WT, R732L,
LAMLMTACDLSAITKPWPIQQRIAELVATEFFDQGDRERKELNIEPTDLMNREKK




F736A); Linker
NKIPSMQVGFIDAICLQLYEALTHVSEDCFPLLDGCRKNRQKWQALAEQQSGVSK




(SG); AcGFP
GAELFTGIVPILIELNGDVNGHKFSVSGEGEGDATYGKLTLKFICTTGKLPVPWPT




(Amino acid 2-239
LVTTLSYGVQCFSRYPDHMKQHDFFKSAMPEGYIQERTIFFEDDGNYKSRAEVKF




of WT); stop)
EGDTLVNRIELTGTDFKEDGNILGNKMEYNYNAHNVYIMTDKAKNGIKVNFKIR





HNIEDGSVQLADHYQQNTPIGDGPVLLPDNHYLSTQSALSKDPNEKRDHMIYFGF





VTAAAITHGMDELYK*







OT-001226
MVSKGAELFTGIVPILIELNGDVNGHKFSVSGEGEGDATYGKLTLKFICTTGKLPV
512
527


(AeGFP (Amino
PWPTLVTTLSYGVQCFSRYPDHMKQHDFFKSAMPEGYIQERTIFFEDDGNYKSRA




acid 1-239 of
EVKFEGDTLVNRIELTGTDFKEDGNILGNKMEYNYNAHNVYIMTDKAKNGIKVN




WT); linker (SG);
FKIRHNIEDGSVQLADHYQQNTPIGDGPVLLPDNHYLSTQSALSKDPNEKRDHMI




PDE5 (Amino
YFGFVTAAAITHGMDELYKSGEETRELQSLAAAVVPSAQTLKITDFSFSDFELSDL




acid 535-860 of
ETALCTIRMFTDLNLVQNFQMKHEVLCRWILSVKKNYRKNVAYHNWRHAFNTA




WT, R732L,
QCMFAALKAGKIQNKLTDLEILALLIAALSHDLDHRGVNNSYIQRSEHPLAQLYC




F736A); stop)
HSIMEHHHFDQCLMILNSPGNQILSGLSIEEYKTTLKIIKQAILATDLALYIKRLGEF





AELIRKNQFNLEDPHQKELFLAMLMTACDLSAITKPWPIQQRIAELVATEFFDQGD





RERKELNIEPTDLMNREKKNKIPSMQVGFIDAICLQLYEALTHVSEDCFPLLDGCR





KNRQKWQALAEQQ*







OT-001205
MVSKGAELFTGIVPILIELNGDVNGHKFSVSGEGEGDATYGKLTLKFICTTGKLPV
513
528


(AeGFP (Amino
PWPTLVTTLSYGVQCFSRYPDHMKQHDFFKSAMPEGYIQERTIFFEDDGNYKSRA




acid 1-239 of
EVKFEGDTLVNRIELTGTDEKEDGNILGNKMEYNYNAHNVYIMTDKAKNGIKVN




WT); linker (SG);
FKIRHNIEDGSVQLADHYQQNTPIGDGPVLLPDNHYLSTQSALSKDPNEKRDHMI




hPDE5 (Amino
YFGFVTAAAITHGMDELYKSGEETRELQSLAAAVVPSAQTLKITDFSFSDFELSDL




acid 535-860 of
ETALCTIRMFTDLNLVQNFQMKHEVLCRWILSVKKNYRKNVAFHNWRHAFNTA




WT, Y612F,
QCMFAALKAGKIQNKLTDLEILALLIAALSHDLDHRGVNNSYIQRSEHPLAQLYC




R732L) stop)
HSIMEHHHFDQCLMILNSPGNQILSGLSIEEYKTTLKIIKQAILATDLALYIKRLGEF





FELIRKNQFNLEDPHQKELFLAMLMTACDLSAITKPWPIQQRIAELVATEFFDQGD





RERKELNIEPTDLMNREKKNKIPSMQVGFIDAICLQLYEALTHVSEDCFPLLDGCR





KNRQKWQALAEQQ*







OT-001206
MVSKGAELFTGIVPILIELNGDVNGHKFSVSGEGEGDATYGKLTLKFICTTGKLPV
514
529


(AeGFP (Amino
PWPTLVTTLSYGVQCFSRYPDHMKQHDFFKSAMPEGYIQERTIFFEDDGNYKSRA




acid 1-239 of
EVKFEGDTLVNRIELTGTDFKEDGNILGNKMEYNYNAHNVYIMTDKAKNGIKVN




WT); linker (SG);
FKIRHNIEDGSVQLADHYQQNTPIGDGPVLLPDNHYLSTQSALSKDPNEKRDHMI




hPDE5 (Amino
YFGFVTAAAITHGMDELYKSGEETRELQSLAAAVVPSAQTLKITDFSFSDFELSDL




acid 535-860 of
ETALCTIRMFTDLNLVQNFQMKHEVLCRWILSVKKNYRKNVAWHNWRHAFNTA




WT, Y612W,
QCMFAALKAGKIQNKLTDLEILALLIAALSHDLDHRGVNNSYIQRSEHPLAQLYC




R732L) stop)
HSIMEHHHFDQCLMILNSPGNQILSGLSIEEYKTTLKIIKQAILATDLALYIKRLGEF





FELIRKNQFNLEDPHQKELFLAMLMTACDLSAITKPWPIQQRIAELVATEFFDQGD





RERKELNIEPTDLMNREKKNKIPSMQVGFIDAICLQLYEALTHVSEDCFPLLDGCR





KNRQKWQALAEQQ*







OT-001207
MVSKGAELFTGIVPILIELNGDVNGHKESVSGEGEGDATYGKLTLKFICTTGKLPV
515
530


(AcGFP (Amino
PWPTLVTTLSYGVQCFSRYPDHMKQHDFFKSAMPEGYIQERTIFFEDDGNYKSRA




acid 1-239 of
EVKFEGDTLVNRIELTGTDFKEDGNILGNKMEYNYNAHNVYIMTDKAKNGIKVN




WT); linker (SG);
FKIRHNIEDGSVQLADHYQQNTPIGDGPVLLPDNHYLSTQSALSKDPNEKRDHMI




hPDE5 (Amino
YFGFVTAAAITHGMDELYKSGEETRELQSLAAAVVPSAQTLKITDFSFSDFELSDL




acid 535-860 of
ETALCTIRMFTDLNLVQNFQMKHEVLCRWILSVKKNYRKNVAAHNWRHAFNTA




WT, Y612A,
QCMFAALKAGKIQNKLTDLEILALLIAALSHDLDHRGVNNSYIQRSEHPLAQLYC




R732L) stop)
HSIMEHHHFDQCLMILNSPGNQILSGLSIEEYKTTLKIIKQAILATDLALYIKRLGEF





FELIRKNQFNLEDPHQKELFLAMLMTACDLSAITKPWPIQQRIAELVATEFFDQGD





RERKELNIEPTDLMNREKKNKIPSMQVGFIDAICLQLYEALTHVSEDCFPLLDGCR





KNRQKWQALAEQQ*







OT-001212
MVSKGAELFTGIVPILIELNGDVNGHKFSVSGEGEGDATYGKLTLKFICTTGKLPV
516
531


(AcGFP (Amino
PWPTLVTTLSYGVQCFSRYPDHMKQHDFFKSAMPEGYIQERTIFFEDDGNYKSRA




acid 1-239 of
EVKFEGDTLVNRIELTGTDFKEDGNILGNKMEYNYNAHNVYIMTDKAKNGIKVN




WT); linker (SG);
FKIRHNIEDGSVQLADHYQQNTPIGDGPVLLPDNHYLSTQSALSKDPNEKRDHMI




hPDE5 (Amino
YFGFVTAAAITHGMDELYKSGEETRELQSLAAAVVPSAQTLKITDFSFSDFELSDL




acid 535-860 of
ETALCTIRMFTDLNLVQNFQMKHEVLCRWILSVKKNYRKNVAYHNWRHAFNTA




WT, 11653A,
QCMFAALKAGKIQNKLTDLEILALLIAALSADLDHRGVNNSYIQRSEHPLAQLYC




R732L); stop)
HSIMEHHHFDQCLMILNSPGNQILSGLSIEEYKTTLKIIKQAILATDLALYIKRLGEF





FELIRKNQFNLEDPHQKELFLAMLMTACDLSAITKPWPIQQRIAELVATEFFDQGD





RERKELNIEPTDLMNREKKNKIPSMQVGFIDAICLQLYEALTHVSEDCFPLLDGCR





KNRQKWQALAEQQ*







OT-001213
MVSKGAELFTGIVPILIELNGDVNGHKFSVSGEGEGDATYGKLTLKFICTTGKLPV
517
532


(AcGFP (Amino
PWPTLVTTLSYGVQCFSRYPDHMKQHDFFKSAMPEGYIQERTIFFEDDGNYKSRA




acid 1-239 of
EVKFEGDTLVNRIELTGTDFKEDGNILGNKMEYNYNAHNVYIMTDKAKNGIKVN




WT); linker (SG);
FKIRHNIEDGSVQLADHYQQNTPIGDGPVLLPDNHYLSTQSALSKDPNEKRDHMI




hPDE5 (Amino
YFGFVTAAAITHGMDELYKSGEETRELQSLAAAVVPSAQTLKITDFSFSDFELSDL




acid 535-860 of
ETALCTIRMFTDLNLVQNFQMKHEVLCRWILSVKKNYRKNVAYHNWRHAFNTA




WT, R732L,
QCMFAALKAGKIQNKLTDLEILALLIAALSHDLDHRGVNNSYIQRSEHPLAQLYC




D764A); stop)
HSIMEHHHFDQCLMILNSPGNQILSGLSIEEYKTTLKIIKQAILATDLALYIKRLGEF





FELIRKNQFNLEDPHQKELFLAMLMTACALSAITKPWPIQQRIAELVATEFFDQGD





RERKELNIEPTDLMNREKKNKIPSMQVGFIDAICLQLYEALTHVSEDCFPLLDGCR





KNRQKWQALAEQQ*







OT-001253
MVSKGAELFTGIVPILIELNGDVNGHKFSVSGEGEGDATYGKLTLKFICTTGKLPV
518
533


(AcGFP (Amino
PWPTLVTTLSYGVQCFSRYPDHMKQHDFFKSAMPEGYIQERTIFFEDDGNYKSRA




acid 1-239 of
EVKFEGDTLVNRIELTGTDFKEDGNILGNKMEYNYNAHNVYIMTDKAKNGIKVN




WT); linker (SG);
FKIRHNIEDGSVQLADHYQQNTPIGDGPVLLPDNHYLSTQSALSKDPNEKRDHMI




hPDE5 (Amino
YFGFVTAAAITHGMDELYKSGEETRELQSLAAAVVPSAQTLKITDFSFSDFELSDL




acid 535-860 of
ETALCTIRMFTDLNLVQNFQMKHEVLCRWILSVKKNYRKNVAYHNWRHAFNTA




WT; R732L); Xba
QCMFAALKAGKIQNKLTDLEILALLIAALSHDLDHRGVNNSYIQRSEHPLAQLYC




I site (TCTAGA);
HSIMEHHHFDQCLMILNSPGNQILSGLSIEEYKTTLKIIKQAILATDLALYIKRLGEF




stop)
FELIRKNQFNLEDPHQKELFLAMLMTACDLSAITKPWPIQQRIAELVATEFFDQGD





RERKELNIEPTDLMNREKKNKIPSMQVGFIDAICLQLYEALTHVSEDCFPLLDGCR





KNRQKWQALAEQQSR*







OT-001073
MVSKGAELFTGIVPILIELNGDVNGHKFSVSGEGEGDATYGKLTLKFICTTGKLPV
8636
8644


(AcGFP (Amino
PWPTLVTTLSYGVQCFSRYPDHMKQHDFFKSAMPEGYIQERTIFFEDDGNYKSRA




acid 1-239 of
EVKFEGDTLVNRIELTGTDFKEDGNILGNKMEYNYNAHNVYIMTDKAKNGIKVN




WT); linker
FKIRHNIEDGSVQLADHYQQNTPIGDGPVLLPDNHYLSTQSALSKDPNEKRDHMI




(GGSGGG (SEQ
YFGFVTAAAITHGMDELYKGGSGGGEETRELQSLAAAVVPSAQTLKITDFSFSDF




ID NO: 78));
ELSDLETALCTIRMFTDLNLVQNFQMKHEVLCRWILSVKKNYRKNVAYHNWRH




hPDE5 (535-860
AFNTAQCMFAALKAGKIQNKLTDLEILALLIAALSHDLDHRGVNNSYIQRSEHPL




of WT, D724G,
AQLYCHSIMEHHHFDQCLMILNSPGNQILSGLSIEEYKTTLKIIKQAILATGLALYIK




D764G); stop)
RRGEFFELIRKNQFNLEDPHQKELFLAMLMTACGLSAITKPWPIQQRIAELVATEF





FDQGDRERKELNIEPTDLMNREKKNKIPSMQVGFIDAICLQLYEALTHVSEDCFPL





LDGCRKNRQKWQALAEQQ*







OT-001251
MEETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFTDLNLVQNFQ
8637
8645


(Methionine;
MKHEVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMFAALKAGKIQNKLTDL




hPDE5 (Amino
EILALLIAALSHDLDHRGVNNSYIQRSEHPLAQLYCHSIMEHHHFDQCLMILNSPG




acid 535-860 of
NQILSGLSIEEYKTTLKIIKQAILATDLALLIKRRGEFFELIRKNQFNLEDPHQKELFL




WT, Y728L,
AMLMTACNLSAITKPWPIQQRIAELVATEFFDQGDRERKELNIEPTDLMNREKKN




D764N); linker
KIPSMQVGFIDAICLQLYEALTHVSEDCFPLLDGCRKNRQKWQALAEQQSGVSKG




(SG); AcGEP (2-
AELFTGIVPILIELNGDVNGHKFSVSGEGEGDATYGKLTLKEICTTGKLPVPWPTL




239 of WT); stop)
VTTLSYGVQCFSRYPDBMKQHDFFKSAMPEGYIQERTIFFEDDGNYKSRAEVKFE





GDTLVNRIELTGTDFKEDGNILGNKMEYNYNAHNVYIMTDKAKNGIKVNFKIRH





NIEDGSVQLADHYQQNTPIGDGPVLLPDNHYLSTQSALSKDPNEKRDHMIYFGFV





TAAAITHGMDELYK*







OT-001214
MVSKGAELFTGIVPILIELNGDVNGHKFSVSGEGEGDATYGKLTLKFICTTGKLPV
8638
8646


(AcGEP (1-239 of
PWPTLVTTLSYGVQCFSRYPDHMKQHDFFKSAMPEGYIQERTIFFEDDGNYKSRA




WT); Linker (SG);
EVKFEGDTLVNRIELTGTDFKEDGNILGNKMEYNYNAHNVYIMTDKAKNGIKVN




hPDE5 (Amino
FKIRHNIEDGSVQLADHYQQNTPIGDGPVLLPDNHYLSTQSALSKDPNEKRDHMI




acid 535-860 of
YFGFVTAAAITHGMDELYKSGEETRELQSLAAAVVPSAQTLKITDFSFSDFELSDL




WT, E682A,
ETALCTIRMFTDLNLVQNFQMKHEVLCRWILSVKKNYRKNVAYHNWRHAFNTA




R732L); stop)
QCMFAALKAGKIQNKLTDLEILALLIAALSHDLDHRGVNNSYIQRSEHPLAQLYC





HSIMAHHHFDQCLMILNSPGNQILSGLSIEEYKTTLKIIKQAILATDLALYIKRLGEF





FELIRKNQFNLEDPHQKELFLAMLMTACDLSAITKPWPIQQRIAELVATEFFDQGD





RERKELNIEPTDLMNREKKNKIPSMQVGFIDAICLQLYEALTHVSEDCFPLLDGCR





KNRQKWQALAEQQ*







OT-001215
MVSKGAELFTGIVPILIELNGDVNGHKFSVSGEGEGDATYGKLTLKFICTTGKLPV
8639
8647


(AcGEP (1-239 of
PWPTLVTTLSYGVQCFSRYPDHMKQHDFFKSAMPEGYIQERTIFFEDDGNYKSRA




WT); linker (SG);
EVKFEGDTLVNRIELTGTDFKEDGNILGNKMEYNYNAHNVYIMTDKAKNGIKVN




hPDE5 (Amino
FKIRHNIEDGSVQLADHYQQNTPIGDGPVLLPDNHYLSTQSALSKDPNEKRDHMI




acid 535-860 of
YFGFVTAAAITHGMDELYKSGEETRELQSLAAAVVPSAQTLKITDFSFSDFELSDL




WT, D724A,
ETALCTIRMFTDLNLVQNFQMKHEVLCRWILSVKKNYRKNVAYHNWRHAFNTA




R732L); stop)
QCMFAALKAGKIQNKLTDLEILALLIAALSHDLDHRGVNNSYIQRSEHPLAQLYC





HSIMEHHHFDQCLMILNSPGNQILSGLSIEEYKTTLKIIKQAILATALALYIKRLGEF





FELIRKNQFNLEDPHQKELFLAMLMTACDLSAITKPWPIQQRIAELVATEFFDQGD





RERKELNIEPTDLMNREKKNKIPSMQVGFIDAICLQLYEALTHVSEDCFPLLDGCR





KNRQKWQALAEQQ*









In some embodiments, any of the mutations described herein may be tested in the context of the truncated hPDE5 domains As used herein truncated hPDE5 domains refers to regions and/or portions of hPDE5 of SEQ ID NO: 1, and are exemplified in Table 11. Also provided in Table 11 are the constructs utilizing the regions or portions of hPDE5, fused to AcGFP via linkers. In Table 11, translation of the stop codon is indicated by asterisk.









TABLE 11







hPDE5 truncation constructs and its components












Amino
Nucleic




acid
Acid


Construct ID/

SEQ ID
SEQ ID


Description
Sequence
NO
NO













Methionine;
MEETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCDTIRMFTDLNLVQNFQMK
237
4


hPDE5 (Amino
HEVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMFAALKAGKIQNKLTDLEILAL




acid 535-860 of
LIAALSHDLDHRGVNNSYIQRSEHPLAQLYCHSIMEHHHFDQCLMILNSPGNQILSGL




WT)
SIEEYKTTLKIIKQAILATDLALYIKRRGEFFELIRKNQFNLEDPHQKELFLAMLMTAC





DLSAITKPWPIQQRIAELVATEFFDQGDRERKELNIEPTDLMNREKKNKIPSMQVGFI





DAICLQLYEALTHVSEDCFPLLDGCRKNRQKWQALAEQQ







Methionine;
MEETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFTDLNLVQNFQMK
238
250


hPDE5 (Amino
HEVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMFAALKAGKIQNKLTDLEILAL




acid 535-860 of
LIAALSHDLDHRGVNNSYIQRSEHPLAQLYCHSIMEHHHFDQCLMILNSPGNQILSGL




WT, R732L)
SIEEYKTTLKIIKQAILATDLALYIKRLGEFFELIRKNQFNLEDPHQKELFLAMLMTAC





DLSAITKPWPIQQRIAELVATEFFDQGDRERKELNIEPTDLMNREKKNKIPSMQVGFI





DAICLQLYEALTHVSEDCFPLLDGCRKNRQKWQALAEQQ







Methionine;
MEETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFTDLNLVQNFQMK
239
251


hPDE5 (Amino
HEVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMFAALKAGKIQNKLTDLEILAL




acid 535-836 of
LIAALSHDLDHRGVNNSYIQRSEHPLAQLYCHSIMEHHHFDQCLMILNSPGNQILSGL




WT, R732L)
SIEEYKTTLKIIKQAILATDLALYIKRLGEFFELIRKNQFNLEDPHQKELFLAMLMTAC





DLSAITKPWPIQQRIAELVATEFFDQGDRERKELNIEPTDLMNREKKNKIPSMQVGFI





DAICLQLYEALTHVS







Methionine;
MSDLETALCTIRMFTDLNLVQNFQMKHEVLCRWILSVKKNYRKNVAYHNWRHAFN
240
252


hPDE5 (Amino
TAQCMFAALKAGKIQNKLTDLEILALLIAALSHDLDHRGVNNSYIQRSEHPLAQLYC




acid 567-860 of
HSIMEHHHFDQCLMILNSPGNQILSGLSIEEYKTTLKIIKQAILATDLALYIKRLGEFFE




WT, R732L)
LIRKNQFNLEDPHQKELFLAMLMTACDLSAITKPWPIQQRIAELVATEFFDQGDRER





KELNIEPTDLMNREKKNKIPSMQVGFIDAICLQLYEALTHVSEDCFPLLDGCRKNRQ





KWQALAEQQ







hPDE5 (Amino
MKHEVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMFAALKAGKIQNKLTDLEIL
241
253


acid 590-860 of
ALLIAALSHDLDHRGVNNSYIQRSEHPLAQLYCHSIMEHHHFDQCLMILNSPGNQILS




WT, R732L)
GLSIEEYKTTLKIIKQAILATDLALYIKRLGEFFELIRKNQFNLEDPHQKELFLAMLMT





ACDLSAITKPWPIQQRIAELVATEFFDQGDRERKELNIEPTDLMNREKKNKIPSMQVG





FIDAICLQLYEALTHVSEDCFPLLDGCRKNRQKWQALAEQQ







hPDE5 (Amino
MKHEVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMFAALKAGKIQNKLTDLEIL
242
254


acid 590-836 of
ALLIAALSHDLDHRGVNNSYIQRSEHPLAQLYCHSIMEHHHFDQCLMILNSPGNQILS




WT, R732L)
GLSIEEYKTTLKIIKQAILATDLALYIKRLGEFFELIRKNQFNLEDPHQKELFLAMLMT





ACDLSAITKPWPIQQRIAELVATEFFDQGDRERKELNIEPTDLMNREKKNKIPSMQVG





FIDAICLQLYEALTHVS







hPDE5 (Amino
EETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFTDLNLVQNFQMKH
3
339


acid 535-860 of
EVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMFAALKAGKIQNKLTDLEILALLI




WT)
AALSHDLDHRGVNNSYIQRSEHPLAQLYCHSIMEHHHFDQCLMILNSPGNQILSGLSI





EEYKTTLKIIKQAILATDLALYIKRRGEFFELIRKNQFNLEDPHQKELFLAMLMTACD





LSAITKPWPIQQRIAELVATEFFDQGDRERKELNIEPTDLMNREKKNKIPSMQVGFID





AICLQLYEALTHVSEDCFPLLDGCRKNRQKWQALAEQQ







hPDE5 (Amino
EETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFTDLNLVQNFQMKH
12
536


acid 535-860 of
EVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMFAALKAGKIQNKLTDLEILALLI




WT, R732L)
AALSHDLDHRGVNNSYIQRSEHPLAQLYCHSIMEHHHFDQCLMILNSPGNQILSGLSI





EEYKTTLKIIKQAILATDLALYIKRLGEFFELIRKNQFNLEDPHQKELFLAMLMTACD





LSAITKPWPIQQRIAELVATEFFDQGDRERKELNIEPTDLMNREKKNKIPSMQVGFID





AICLQLYEALTHVSEDCFPLLDGCRKNRQKWQALAEQQ







hPDE5 (Amino
EETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFTDLNLVQNFQMKH
534
537


acid 535-836 of
EVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMFAALKAGKIQNKLTDLEILALLI




WT, R732L)
AALSHDLDHRGVNNSYIQRSEHPLAQLYCHSIMEHHHFDQCLMILNSPGNQILSGLSI





EEYKTTLKIIKQAILATDLALYIKRLGEFFELIRKNQFNLEDPHQKELFLAMLMTACD





LSAITKPWPIQQRIAELVATEFFDQGDRERKELNIEPTDLMNREKKNKIPSMQVGFID





AICLQLYEALTHVS







hPDE5 (Amino
SDLETALCTIRMFTDLNLVQNFQMKHEVLCRWILSVKKNYRKNVAYHNWRHAFNT
535
538


acid 567-860 of
AQCMFAALKAGKIQNKLTDLEILALLIAALSHDLDHRGVNNSYIQRSEHPLAQLYCH




WT, R732L)
SIMEHHHFDQCLMILNSPGNQILSGLSIEEYKTTLKIIKQAILATDLALYIKRLGEFFELI





RKNQFNLEDPHQKELFLAMLMTACDLSAITKPWPIQQRIAELVATEFFDQGDRERKE





LNIEPTDLMNREKKNKIPSMQVGFIDAICLQLYEALTHVSEDCFPLLDGCRKNRQKW





QALAEQQ







Linker (SG)
SG

AGTGGT





AcGFP
VSKGAELFTGIVPILIELNGDVNGHKFSVSGEGEGDATYGKLTLKFICTTGKLPVPWP
79
372



TLVTTLSYGVQCFSRYPDHMKQHDFFKSAMPEGYIQERTIFFEDDGNYKSRAEVKFE





GDTLVNRIELTGTDFKEDGNILGNKMEYNYNAHNVYIMTDKAKNGIKVNFKIRHNIE





DGSVQLADHYQQNTPIGDGPVLLPDNHYLSTQSALSKDPNEKRDHMIYFGFVTAAAI





THGMDELYK







OT-001216
MEETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFTDLNLVQNFQMK
243
255


(Methionine;
HEVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMFAALKAGKIQNKLTDLEILAL




hPDE5 (Amino
LIAALSHDLDHRGVNNSYIQRSEHPLAQLYCHSIMEHHHFDQCLMILNSPGNQILSGL




acid 535-860 of
SILEYKTTLKIIKQAILATDLALYIKRRGEFFELIRKNQFNLEDPHQKELFLAMLMTAC




WT); linker
DLSAITKPWPIQQRIAELVATEFFDQGDRERKELNIEPTDLMNREKKNKIPSMQVGFI




(SG); AcGFP
DAICLQLYEALTHVSEDCFPLLDGCRKNRQKWQALAEQQSGVSKGAELFTGIVPILIE




(Amino acid 2-
LNGDVNGHKFSVSGEGEGDATYGKLTLKFICTTGKLPVPWPTLVTTLSYGVQCFSRY




239 of WT);
PDHMKQHDFFKSAMPEGYIQERTIFFEDDGNYKSRAEVKFEGDTLVNRIELTGTDFK




stop)
EDGNILGNKMEYNYNAHNVYIMTDKAKNGIKVNFKIRHNIEDGSVQLADHYQQNTP





IGDGPVLLPDNHYLSTQSALSKDPNEKRDHMIYFGFVTAAAITHGMDELYK*







OT-001217
MEETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFTDLNLVQNFQMK
244
256


(Methionine;
HEVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMFAALKAGKIQNKLTDLEILAL




hPDE5 (Amino
LIAALSHDLDHRGVNNSYIQRSEHPLAQLYCHSIMEHHHFDQCLMILNSPGNQILSGL




acid 535-860 of
SIEEYKTTLKIIKQAILATDLALYIKRLGEFFELIRKNQFNLEDPHQKELFLAMLMTAC




WT, R732L)
DLSAITKPWPIQQRIAELVATEFFDQGDRERKELNIEPTDLMNREKKNKIPSMQVGFI




linker (SG);
DAICLQLYEALTHVSEDCFPLLDGCRKNRQKWQALAEQQSGVSKGAELFTGIVPILIE




AcGFP; stop
LNGDVNGHKFSVSGEGEGDATYGKLTLKFICTTGKLPVPWPTLVTTLSYGVQCFSRY




(Amino acid 2-
PDHMKQHDFFKSAMPEGYIQERTIFFEDDGNYKSRAEVKFEGDTLVNRIELTGTDFK




239 of WT);
EDGNILGNKMEYNYNAHNVYIMTDKAKNGIKVNFKIRHNIEDGSVQLADHYQQNTP




stop)
IGDGPVLLPDNHYLSTQSALSKDPNEKRDHMIYFGFVTAAAITHGMDELYK*







OT-001218
MEETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFTDLNLVQNFQMK
245
257


(Methionine;
HEVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMFAALKAGKIQNKLTDLEILAL




hPDE5 (Amino
LIAALSHDLDHRGVNNSYIQRSEHPLAQLYCHSIMEHHHFDQCLMILNSPGNQILSGL




acid 535-836 of
SIEEYKTTLKIIKQAILATDLALYIKRLGEFFELIRKNQFNLEDPHQKELFLAMLMTAC




WT, R732L);
DLSAITKPWPIQQRIAELVATEFFDQGDRERKELNIEPTDLMNREKKNKIPSMQVGFI




linker (SG);
DAICLQLYEALTHVSSGVSKGAELFTGIVPILIELNGDVNGHKFSVSGEGEGDATYGK




AcGFP (Amino
LTLKFICTTGKLPVPWPTLVTTLSYGVQCFSRYPDHMKQHDFFKSAMPEGYIQERTIF




acid 2-239 of
FEDDGNYKSRAEVKFEGDTLVNRIELTGTDFKEDGNILGNKMEYNYNAHNVYIMTD




WT); stop)
KAKNGIKVNFKIRHNIEDGSVQLADHYQQNTPIGDGPVLLPDNHYLSTQSALSKDPN





EKRDHMIYFGFVTAAAITHGMDELYK*







OT-001219
MSDLETALCTIRMFTDLNLVQNFQMKHEVLCRWILSVKKNYRKNVAYHNWRHAFN
246
258


(Methionine;
TAQCMFAALKAGKIQNKLTDLEILALLIAALSHDLDHRGVNNSYIQRSEHPLAQLYC




hPDE5 (Amino
HSIMEHHHFDQCLMILNSPGNQILSGLSIEEYKTTLKIIKQAILATDLALYIKRLGEFFE




acid 567-860 of
LIRKNQFNLEDPHQKELFLAMLMTACDLSAITKPWPIQQRIAELVATEFFDQGDRER




WT, R732L);
KELNIEPTDLMNREKKNKIPSMQVGFIDAICLQLYEALTHVSEDCFPLLDGCRKNRQ




linker (SG);
KWQALAEQQSGVSKGAELFTGIVPILIELNGDVNGHKFSVSGEGEGDATYGKLTLKF




AcGFP (Amino
ICTTGKLPVPWPTLVTTLSYGVQCFSRYPDHMKQHDFFKSAMPEGYIQERTIFFEDD




acid 2-239 of
GNYKSRAEVKFEGDTLVNRIELTGTDFKEDGNILGNKMEYNYNAHNVYIMTDKAK




WT); stop)
NGIKVNFKIRHNIEDGSVQLADHYQQNTPIGDGPVLLPDNHYLSTQSALSKDPNEKR





DHMIYFGFVTAAAITHGMDELYK*







OT-001220
MKHEVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMFAALKAGKIQNKLTDLEIL
247
259


(hPDE5 (Amino
ALLIAALSHDLDHRGVNNSYIQRSEHPLAQLYCHSIMEHHHFDQCLMILNSPGNQILS




acid 590-860 of
GLSIEEYKTTLKIIKQAILATDLALYIKRLGEFFELIRKNQFNLEDPHQKELFLAMLMT




WT, R732L);
ACDLSAITKPWPIQQRIAELVATEFFDQGDRERKELNIEPTDLMNREKKNKIPSMQVG




linker (SG);
FIDAICLQLYEALTHVSEDCFPLLDGCRKNRQKWQALAEQQSGVSKGAELFTGIVPIL




AcGFP (Amino
IELNGDVNGHKFSVSGEGEGDATYGKLTLKFICTTGKLPVPWPTLVTTLSYGVQCFS




acid 2-239 of
RYPDHMKQHDFFKSAMPEGYIQERTIFFEDDGNYKSRAEVKFEGDTLVNRIELTGTD




WT); stop)
FKEDGNILGNKMEYNYNAHNVYIMTDKAKNGIKVNFKIRHNIEDGSVQLADHYQQ





NTPIGDGPVLLPDNHYLSTQSALSKDPNEKRDHMIYFGFVTAAAITHGMDELYK*







OT-001221
MKHEVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMFAALKAGKIQNKLTDLEIL
248
260


(hPDE5 (Amino
ALLIAALSHDLDHRGVNNSYIQRSEHPLAQLYCHSIMEHHHFDQCLMILNSPGNQILS




acid 590-836 of
GLSIEEYKTTLKIIKQAILATDLALYIKRLGEFFELIRKNQFNLEDPHQKELFLAMLMT




WT, R732L);
ACDLSAITKPWPIQQRIAELVATEFFDQGDRERKELNIEPTDLMNREKKNKIPSMQVG




linker (SG);
FIDAICLQLYEALTHVSSGVSKGAELFTGIVPILIELNGDVNGHKFSVSGEGEGDATY




AcGFP (Amino
GKLTLKFICTTGKLPVPWPTLVTTLSYGVQCFSRYPDHMKQHDFFKSAMPEGYIQER




acid 2-239 of
TIFFEDDGNYKSRAEVKFEGDTLVNRIELTGTDFKEDGNILGNKMEYNYNAHNVYI




WT); stop)
MTDKAKNGIKVNFKIRHNIEDGSVQLADHYQQNTPIGDGPVLLPDNHYLSTQSALSK





DPNEKRDHMIYFGFVTAAAITHGMDELYK*









Mutant library wherein both the amino acid at the position 732 (R732) as well as at position 736 (F736) were mutated to any of the known amino acids, including, but not limited to, aspartic acid, glutamic acid, glutamine, asparagine, histidine, serine, threonine, tyrosine, cysteine, methionine, tryptophan, alanine, isoleucine, leucine, phenylalanine, valine, proline, and glycine were generated. Mutants were screened by appended DDs to payloads such as GFP and mcherry. Table 12 provides the R732, F736 mutants and related constructs. In Table 12, * indicates the translation of the stop codon.









TABLE 12







hPDE5(R732, F736) DDs, constructs and its components












AA
NA


Construct ID/

SEQ
SEQ


Description
Sequence
ID NO
ID NO










DDs










hPDE5 (aa 535
EETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFTDLNLVQNFQMK
8721
8763


to 860 of WT,
HEVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMFAALKAGKIQNKLTDLEILA




R732D, F736S)
LLIAALSHDLDHRGVNNSYIQRSEHPLAQLYCHSIMEHHHFDQCLMILNSPGNQILS





GLSIEEYKTTLKIIKQAILATDLALYIKRDGEFSELIRKNQFNLEDPHQKELFLAMLM





TACDLSAITKPWPIQQRIAELVATEFFDQGDRERKELNIEPTDLMNREKKNKIPSMQ





VGFIDAICLQLYEALTHVSEDCFPLLDGCRKNRQKWQALAEQQ







hPDE5 (aa 535
EETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFTDLNLVQNFQMK
8722
8764


to 860 of WT,
HEVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMFAALKAGKIQNKLTDLEILA




R732E, F736D)
LLIAALSHDLDHRGVNNSYIQRSEHPLAQLYCHSIMEHHHFDQCLMILNSPGNQILS





GLSIEEYKTTLKIIKQAILATDLALYIKREGEFDELIRKNQFNLEDPHQKELFLAMLM





TACDLSAITKPWPIQQRIAELVATEFFDQGDRERKELNIEPTDLMNREKKNKIPSMQ





VGFIDAICLQLYEALTHVSEDCFPLLDGCRKNRQKWQALAEQQ







hPDE5 (aa 535
EETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFTDLNLVQNFQMK
8723
8765


to 860 of WT,
HEVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMFAALKAGKIQNKLTDLEILA




R732V,
LLIAALSHDLDHRGVNNSYIQRSEHPLAQLYCHSIMEHHHFDQCLMILNSPGNQILS




F736G)
GLSIEEYKTTLKIIKQAILATDLALYIKRVGEFGELIRKNQFNLEDPHQKELFLAMLM





TACDLSAITKPWPIQQRIAELVATEFFDQGDRERKELNIEPTDLMNREKKNKIPSMQ





VGFIDAICLQLYEALTHVSEDCFPLLDGCRKNRQKWQALAEQQ







hPDE5 (aa 535
EETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFTDLNLVQNFQMK
8724
8766


to 860 of WT,
HEVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMFAALKAGKIQNKLTDLEILA




R732W,
LLIAALSHDLDHRGVNNSYIQRSEHPLAQLYCHSIMEHHHFDQCLMILNSPGNQILS




F736G)
GLSIEEYKTTLKIIKQAILATDLALYIKRWGEFGELIRKNQFNLEDPHQKELFLAML





MTACDLSAITKPWPIQQRIAELVATEFFDQGDRERKELNIEPTDLMNREKKNKIPSM





QVGFIDAICLQLYEALTHVSEDCFPLLDGCRKNRQKWQALAEQQ







hPDE5 (aa 535
EETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFTDLNLVQNFQMK
8725
8767


to 860 of WT,
HEVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMFAALKAGKIQNKLTDLEILA




R732W,
LLIAALSHDLDHRGVNNSYIQRSEHPLAQLYCHSIMEHHHFDQCLMILNSPGNQILS




F736V)
GLSIEEYKTTLKIIKQAILATDLALYIKRWGEFVELIRKNQFNLEDPHQKELFLAML





MTACDLSAITKPWPIQQRIAELVATEFFDQGDRERKELNIEPTDLMNREKKNKIPSM





QVGFIDAICLQLYEALTHVSEDCFPLLDGCRKNRQKWQALAEQQ







hPDE5 (aa 535
EETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFTDLNLVQNFQMK
8726
8768


to 860 of WT,
HEVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMFAALKAGKIQNKLTDLEILA




R732L,
LLIAALSHDLDHRGVNNSYIQRSEHPLAQLYCHSIMEHHHFDQCLMILNSPGNQILS




F736W)
GLSIEEYKTTLKIIKQAILATDLALYIKRLGEFWELIRKNQFNLEDPHQKELFLAML





MTACDLSAITKPWPIQQRIAELVATEFFDQGDRERKELNIEPTDLMNREKKNKIPSM





QVGFIDAICLQLYEALTHVSEDCFPLLDGCRKNRQKWQALAEQQ







hPDE5 (aa 535
EETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFTDLNLVQNFQMK
8727
8769


to 860 of WT,
HEVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMFAALKAGKIQNKLTDLEILA




R732P, F736Q)
LLIAALSHDLDHRGVNNSYIQRSEHPLAQLYCHSIMEHHHFDQCLMILNSPGNQILS





GLSIEEYKTTLKIIKQAILATDLALYIKRPGEFQELIRKNQFNLEDPHQKELFLAMLM





TACDLSAITKPWPIQQRIAELVATEFFDQGDRERKELNIEPTDLMNREKKNKIPSMQ





VGFIDAICLQLYEALTHVSEDCFPLLDGCRKNRQKWQALAEQQ







hPDE5 (aa 535
EETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFTDLNLVQNFQMK
8728
8770


to 860 of WT,
HEVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMFAALKAGKIQNKLTDLEILA




R732A,
LLIAALSHDLDHRGVNNSYIQRSEHPLAQLYCHSIMEHHHFDQCLMILNSPGNQILS




F736A)
GLSIEEYKTTLKIIKQAILATDLALYIKRAGEFAELIRKNQFNLEDPHQKELFLAMLM





TACDLSAITKPWPIQQRIAELVATEFFDQGDRERKELNIEPTDLMNREKKNKIPSMQ





VGFIDAICLQLYEALTHVSEDCFPLLDGCRKNRQKWQALAEQQ







hPDE5 (aa 535
EETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFTDLNLVQNFQMK
8729
8771


to 860 of WT,
HEVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMFAALKAGKIQNKLTDLEILA




R732S, F736G)
LLIAALSHDLDHRGVNNSYIQRSEHPLAQLYCHSIMEHHHFDQCLMILNSPGNQILS





GLSIEEYKTTLKIIKQAILATDLALYIKRSGEFGELIRKNQFNLEDPHQKELFLAMLM





TACDLSAITKPWPIQQRIAELVATEFFDQGDRERKELNIEPTDLMNREKKNKIPSMQ





VGFIDAICLQLYEALTHVSEDCFPLLDGCRKNRQKWQALAEQQ







hPDE5 (aa 535
EETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFTDLNLVQNFQMK
8730
8772


to 860 of WT,
HEVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMFAALKAGKIQNKLTDLEILA




R732T, F736P)
LLIAALSHDLDHRGVNNSYIQRSEHPLAQLYCHSIMEHHHFDQCLMILNSPGNQILS





GLSIEEYKTTLKIIKQAILATDLALYIKRTGEFPELIRKNQFNLEDPHQKELFLAMLM





TACDLSAITKPWPIQQRIAELVATEFFDQGDRERKELNIEPTDLMNREKKNKIPSMQ





VGFIDAICLQLYEALTHVSEDCFPLLDGCRKNRQKWQALAEQQ







hPDE5 (aa 535
EETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFTDLNLVQNFQMK
8731
8773


to 860 of WT,
HEVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMFAALKAGKIQNKLTDLEILA




R732M,
LLIAALSHDLDHRGVNNSYIQRSEHPLAQLYCHSIMEHHHFDQCLMILNSPGNQILS




F736H)
GLSIEEYKTTLKIIKQAILATDLALYIKRMGEFHELIRKNQFNLEDPHQKELFLAML





MTACDLSAITKPWPIQQRIAELVATEFFDQGDRERKELNIEPTDLMNREKKNKIPSM





QVGFIDAICLQLYEALTHVSEDCFPLLDGCRKNRQKWQALAEQQ







hPDE5 (aa 535
EETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFTDLNLVQNFQMK
8732
8774


to 860 of WT,
HEVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMFAALKAGKIQNKLTDLEILA




R732Y,
LLIAALSHDLDHRGVNNSYIQRSEHPLAQLYCHSIMEHHHFDQCLMILNSPGNQILS




F736M)
GLSIEEYKTTLKIIKQAILATDLALYIKRYGEFMELIRKNQFNLEDPHQKELFLAML





MTACDLSAITKPWPIQQRIAELVATEFFDQGDRERKELNIEPTDLMNREKKNKIPSM





QVGFIDAICLQLYEALTHVSEDCFPLLDGCRKNRQKWQALAEQQ







hPDE5 (aa 535
EETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFTDLNLVQNFQMK
8733
8775


to 860 of WT,
HEVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMFAALKAGKIQNKLTDLEILA




R732P, F736D)
LLIAALSHDLDHRGVNNSYIQRSEHPLAQLYCHSIMEHHHFDQCLMILNSPGNQILS





GLSIEEYKTTLKIIKQAILATDLALYIKRPGEFDELIRKNQFNLEDPHQKELFLAMLM





TACDLSAITKPWPIQQRIAELVATEFFDQGDRERKELNIEPTDLMNREKKNKIPSMQ





VGFIDAICLQLYEALTHVSEDCFPLLDGCRKNRQKWQALAEQQ







hPDE5 (aa 535
EETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFTDLNLVQNFQMK
8734
8776


to 860 of WT,
HEVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMFAALKAGKIQNKLTDLEILA




R732P, F736G)
LLIAALSHDLDHRGVNNSYIQRSEHPLAQLYCHSIMEHHHFDQCLMILNSPGNQILS





GLSIEEYKTTLKIIKQAILATDLALYIKRPGEFGELIRKNQFNLEDPHQKELFLAMLM





TACDLSAITKPWPIQQRIAELVATEFFDQGDRERKELNIEPTDLMNREKKNKIPSMQ





VGFIDAICLQLYEALTHVSEDCFPLLDGCRKNRQKWQALAEQQ







hPDE5 (aa 535
EETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFTDLNLVQNFQMK
8735
8777


to 860 of WT,
HEVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMFAALKAGKIQNKLTDLEILA




R732W,
LLIAALSHDLDHRGVNNSYIQRSEHPLAQLYCHSIMEHHHFDQCLMILNSPGNQILS




F736L)
GLSIEEYKTTLKIIKQAILATDLALYIKRWGEFLELIRKNQFNLEDPHQKELFLAML





MTACDLSAITKPWPIQQRIAELVATEFFDQGDRERKELNIEPTDLMNREKKNKIPSM





QVGFIDAICLQLYEALTHVSEDCFPLLDGCRKNRQKWQALAEQQ







hPDE5 (aa 535
EETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFTDLNLVQNFQMK
8736
8778


to 860 of WT,
HEVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMFAALKAGKIQNKLTDLEILA




R732L, F736S)
LLIAALSHDLDHRGVNNSYIQRSEHPLAQLYCHSIMEHHHFDQCLMILNSPGNQILS





GLSIEEYKTTLKIIKQAILATDLALYIKRLGEFSELIRKNQFNLEDPHQKELFLAMLM





TACDLSAITKPWPIQQRIAELVATEFFDQGDRERKELNIEPTDLMNREKKNKIPSMQ





VGFIDAICLQLYEALTHVSEDCFPLLDGCRKNRQKWQALAEQQ







hPDE5 (aa 535
EETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFTDLNLVQNFQMK
8737
8779


to 860 of WT,
HEVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMFAALKAGKIQNKLTDLEILA




R732D, F736T)
LLIAALSHDLDHRGVNNSYIQRSEHPLAQLYCHSIMEHHHFDQCLMILNSPGNQILS





GLSIEEYKTTLKIIKQAILATDLALYIKRDGEFTELIRKNQFNLEDPHQKELFLAMLM





TACDLSAITKPWPIQQRIAELVATEFFDQGDRERKELNIEPTDLMNREKKNKIPSMQ





VGFIDAICLQLYEALTHVSEDCFPLLDGCRKNRQKWQALAEQQ







hPDE5 (aa 535
EETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFTDLNLVQNFQMK
8738
8780


to 860 of WT,
HEVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMFAALKAGKIQNKLTDLEILA




R732L, F736V)
LLIAALSHDLDHRGVNNSYIQRSEHPLAQLYCHSIMEHHHFDQCLMILNSPGNQILS





GLSIEEYKTTLKIIKQAILATDLALYIKRLGEFVELIRKNQFNLEDPHQKELFLAMLM





TACDLSAITKPWPIQQRIAELVATEFFDQGDRERKELNIEPTDLMNREKKNKIPSMQ





VGFIDAICLQLYEALTHVSEDCFPLLDGCRKNRQKWQALAEQQ







hPDE5 (aa 535
EETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFTDLNLVQNFQMK
8739
8781


to 860 of WT,
HEVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMFAALKAGKIQNKLTDLEILA




R732G,
LLIAALSHDLDHRGVNNSYIQRSEHPLAQLYCHSIMEHHHFDQCLMILNSPGNQILS




F736V)
GLSIEEYKTTLKIIKQAILATDLALYIKRGGEFVELIRKNQFNLEDPHQKELFLAMLM





TACDLSAITKPWPIQQRIAELVATEFFDQGDRERKELNIEPTDLMNREKKNKIPSMQ





VGFIDAICLQLYEALTHVSEDCFPLLDGCRKNRQKWQALAEQQ







hPDE5 (aa 535
EETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFTDLNLVQNFQMK
8740
8782


to 860 of WT,
HEVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMFAALKAGKIQNKLTDLEILA




R732W,
LLIAALSHDLDHRGVNNSYIQRSEHPLAQLYCHSIMEHHHFDQCLMILNSPGNQILS




F736A)
GLSIEEYKTTLKIIKQAILATDLALYIKRWGEFAELIRKNQFNLEDPHQKELFLAML





MTACDLSAITKPWPIQQRIAELVATEFFDQGDRERKELNIEPTDLMNREKKNKIPSM





QVGFIDAICLQLYEALTHVSEDCFPLLDGCRKNRQKWQALAEQQ












Construct components










AcGFP (1-239
MVSKGAELFTGIVPILIELNGDVNGHKFSVSGEGEGDATYGKLTLKFICTTGKLPVP
365
373


of WT)
WPTLVTTLSYGVQCFSRYPDHMKQHDFFKSAMPEGYIQERTIFFEDDGNYKSRAE





VKFEGDTLVNRIELTGTDFKEDGNILGNKMEYNYNAHNVYIMTDKAKNGIKVNFK





IRHNIEDGSVQLADHYQQNTPIGDGPVLLPDNHYLSTQSALSKDPNEKRDHMIYFG





FVTAAAITHGMDELYK







Linker (GS);
GS




BamH1 Site








GSLDG Linker
GSLDG
8741
8783





mCherry
LSKGEEDNMAIIKEFMRFKVHMEGSVNGHEFFIEGEGEGRPYEGTQTAKLKVTKG
8240
8269


(M1L)
GPLPFAWDILSPQFMYGSKAYVKHPADIPDYLKLSFPEGFKWERVMNFEDGGVVT





VTQDSSLQDGEFIYKVKLRGTNFPSDGPVMQKKTMGWEASSERMYPEDGALKGEI





KQRLKLKDGGHYDAEVKTTYKAKKPVQLPGAYNVNIKLDITSHNEDYTIVEQYER





AEGRHSTGGMDELYK







P2A cleavage
ATNFSLLKQAGDVEENPGP
8742
8784


site













Constructs










OT-
MVSKGAELFTGIVPILIELNGDVNGHKFSVSGEGEGDATYGKLTLKFICTTGKLPVP
8743
8785


001876(AcGFP
WPTLVTTLSYGVQCFSRYPDHMKQHDFFKSAMPEGYIQERTIFFEDDGNYKSRAE




(1-239 of WT);
VKFEGDTLVNRIELTGTDFKEDGNILGNKMEYNYNAHNVYIMTDKAKNGIKVNFK




Linker (GS);
IRHNIEDGSVQLADHYQQNTPIGDGPVLLPDNHYLSTQSALSKDPNEKRDHMIYFG




hPDE5 (aa 535
FVTAAAITHGMDELYKGSEETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETAL




to 860 of WT,
CTIRMFTDLNLVQNFQMKHEVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMF




R732D,
AALKAGKIQNKLTDLEILALLIAALSHDLDHRGVNNSYIQRSEHPLAQLYCHSIMEH




F7365); stop)
HHFDQCLMILNSPGNQILSGLSIEEYKTTLKIIKQAILATDLALYIKRDGEFSELIRKN





QFNLEDPHQKELFLAMLMTACDLSAITKPWPIQQRIAELVATEFFDQGDRERKELNI





EPTDLMNREKKNKIPSMQVGFIDAICLQLYEALTHVSEDCFPLLDGCRKNRQKWQ





ALAEQQ*







OT-
MVSKGAELFTGIVPILIELNGDVNGHKFSVSGEGEGDATYGKLTLKFICTTGKLPVP
8744
8786


001875 (AcGFP
WPTLVTTLSYGVQCFSRYPDHMKQHDFFKSAMPEGYIQERTIFFEDDGNYKSRAE




(1-239 of WT);
VKFEGDTLVNRIELTGTDFKEDGNILGNKMEYNYNAHNVYIMTDKAKNGIKVNFK




Linker (GS);
IRHNIEDGSVQLADHYQQNTPIGDGPVLLPDNHYLSTQSALSKDPNEKRDHMIYFG




hPDE5 (aa 535
FVTAAAITHGMDELYKGSEETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETAL




to 860 of WT,
CTIRMFTDLNLVQNFQMKHEVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMF




R732E,
AALKAGKIQNKLTDLEILALLIAALSHDLDHRGVNNSYIQRSEHPLAQLYCHSIMEH




F736D); stop)
HHFDQCLMILNSPGNQILSGLSIEEYKTTLKIIKQAILATDLALYIKREGEFDELIRKN





QFNLEDPHQKELFLAMLMTACDLSAITKPWPIQQRIAELVATEFFDQGDRERKELNI





EPTDLMNREKKNKIPSMQVGFIDAICLQLYEALTHVSEDCFPLLDGCRKNRQKWQ





ALAEQQ*







OT-
MVSKGAELFTGIVPILIELNGDVNGHKFSVSGEGEGDATYGKLTLKFICTTGKLPVP
8745
8787


001877(AcGFP
WPTLVTTLSYGVQCFSRYPDHMKQHDFFKSAMPEGYIQERTIFFEDDGNYKSRAE




(1-239 of WT);
VKFEGDTLVNRIELTGTDFKEDGNILGNKMEYNYNAHNVYIMTDKAKNGIKVNFK




Linker (GS);
IRHNIEDGSVQLADHYQQNTPIGDGPVLLPDNHYLSTQSALSKDPNEKRDHMIYFG




hPDE5 (aa 535
FVTAAAITHGMDELYKGSEETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETAL




to 860 of WT,
CTIRMFTDLNLVQNFQMKHEVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMF




R732V,
AALKAGKIQNKLTDLEILALLIAALSHDLDHRGVNNSYIQRSEHPLAQLYCHSIMEH




F736G);
HHFDQCLMILNSPGNQILSGLSIEEYKTTLKIIKQAILATDLALYIKRVGEFGELIRKN




GSLDG Linker
QFNLEDPHQKELFLAMLMTACDLSAITKPWPIQQRIAELVATEFFDQGDRERKELNI




(SEQ ID NO:
EPTDLMNREKKNKIPSMQVGFIDAICLQLYEALTHVSEDCFPLLDGCRKNRQKWQ




8741); P2A
ALAEQQGSLDGATNFSLLKQAGDVEENPGPLSKGEEDNMAIIKEFMRFKVHMEGS




cleavage site;
VNGHEFEIEGEGEGRPYEGTQTAKLKVTKGGPLPFAWDILSPQFMYGSKAYVKHP




mCherry
ADIPDYLKLSFPEGFKWERVMNFEDGGVVTVTQDSSLQDGEFIYKVKLRGTNFPSD




(M1L); stop)
GPVMQKKTMGWEASSERMYPEDGALKGEIKQRLKLKDGGHYDAEVKTTYKAKK





PVQLPGAYNVNIKLDITSHNEDYTIVEQYERAEGRHSTGGMDELYK*







OT-
MVSKGAELFTGIVPILIELNGDVNGHKFSVSGEGEGDATYGKLTLKFICTTGKLPVP
8746
8788


001879(AcGFP
WPTLVTTLSYGVQCFSRYPDHMKQHDFFKSAMPEGYIQERTIFFEDDGNYKSRAE




(1-239 of WT);
VKFEGDTLVNRIELTGTDFKEDGNILGNKMEYNYNAHNVYIMTDKAKNGIKVNFK




Linker (GS);
IRHNIEDGSVQLADHYQQNTPIGDGPVLLPDNHYLSTQSALSKDPNEKRDHMIYFG




hPDE5 (aa 535
FVTAAAITHGMDELYKGSEETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETAL




to 860 of WT,
CTIRMFTDLNLVQNFQMKHEVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMF




R732W,
AALKAGKIQNKLTDLEILALLIAALSHDLDHRGVNNSYIQRSEHPLAQLYCHSIMEH




F736G);
HHFDQCLMILNSPGNQILSGLSIEEYKTTLKIIKQAILATDLALYIKRWGEFGELIRK




GSLDG Linker
NQFNLEDPHQKELFLAMLMTACDLSAITKPWPIQQRIAELVATEFFDQGDRERKEL




(SEQ ID NO:
NIEPTDLMNREKKNKIPSMQVGFIDAICLQLYEALTHVSEDCFPLLDGCRKNRQKW




8741); P2A
QALAEQQGSLDGATNFSLLKQAGDVEENPGPLSKGEEDNMAIIKEFMRFKVHMEG




cleavage site;
SVNGHEFEIEGEGEGRPYEGTQTAKLKVTKGGPLPFAWDILSPQFMYGSKAYVKHP




mCherry
ADIPDYLKLSFPEGFKWERVMNFEDGGVVTVTQDSSLQDGEFIYKVKLRGTNFPSD




(M1L); stop)
GPVMQKKTMGWEASSERMYPEDGALKGEIKQRLKLKDGGHYDAEVKTTYKAKK





PVQLPGAYNVNIKLDITSHNEDYTIVEQYERAEGRHSTGGMDELYK*







OT-
MVSKGAELFTGIVPILIELNGDVNGHKESVSGEGEGDATYGKLTLKFICTTGKLPVP
8747
8789


001880(AcGFP
WPTLVTTLSYGVQCFSRYPDHMKQHDFFKSAMPEGYIQERTIFFEDDGNYKSRAE




(1-239 of WT);
VKFEGDTLVNRIELTGTDFKEDGNILGNKMEYNYNAHNVYIMTDKAKNGIKVNFK




Linker (GS);
IRHNIEDGSVQLADHYQQNTPIGDGPVLLPDNHYLSTQSALSKDPNEKRDHMIYFG




hPDE5 (aa 535
FVTAAAITHGMDELYKGSEETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETAL




to 860 of WT,
CTIRMFTDLNLVQNFQMKHEVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMF




R732W,
AALKAGKIQNKLTDLEILALLIAALSHDLDHRGVNNSYIQRSEHPLAQLYCHSIMEH




F736V);
HHFDQCLMILNSPGNQILSGLSIEEYKTTLKIIKQAILATDLALYIKRWGEFVELIRK




GSLDG Linker
NQFNLEDPHQKELFLAMLMTACDLSAITKPWPIQQRIAELVATEFFDQGDRERKEL




(SEQ ID NO:
NIEPTDLMNREKKNKIPSMQVGFIDAICLQLYEALTHVSEDCFPLLDGCRKNRQKW




8741); P2A
QALAEQQGSLDGATNFSLLKQAGDVEENPGPLSKGEEDNMAIIKEFMRFKVHMEG




cleavage site;
SVNGHEFEIEGEGEGRPYEGTQTAKLKVTKGGPLPFAWDILSPQFMYGSKAYVKHP




mCherry
ADIPDYLKLSFPEGFKWERVMNFEDGGVVTVTQDSSLQDGEFIYKVKLRGTNFPSD




(M1L); stop)
GPVMQKKTMGWEASSERMYPEDGALKGEIKQRLKLKDGGHYDAEVKTTYKAKK





PVQLPGAYNVNIKLDITSHNEDYTIVEQYERAEGRHSTGGMDELYK*







OT-
MVSKGAELFTGIVPILIELNGDVNGHKFSVSGEGEGDATYGKLTLKFICTTGKLPVP
8748
8790


001882(AcGFP
WPTLVTTLSYGVQCFSRYPDHMKQHDFFKSAMPEGYIQERTIFFEDDGNYKSRAE




(1-239 of WT);
VKFEGDTLVNRIELTGTDFKEDGNILGNKMEYNYNAHNVYIMTDKAKNGIKVNFK




Linker (GS);
IRHNIEDGSVQLADHYQQNTPIGDGPVLLPDNHYLSTQSALSKDPNEKRDHMIYFG




hPDE5 (aa 535
FVTAAAITHGMDELYKGSEETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETAL




to 860 of WT,,
CTIRMFTDLNLVQNFQMKHEVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMF




R732L,
AALKAGKIQNKLTDLEILALLIAALSHDLDHRGVNNSYIQRSEHPLAQLYCHSIMEH




F736W)
HHFDQCLMILNSPGNQILSGLSIEEYKTTLKIIKQAILATDLALYIKRLGEFWELIRKN




GSLDG Linker
QFNLEDPHQKELFLAMLMTACDLSAITKPWPIQQRIAELVATEFFDQGDRERKELNI




(SEQ ID NO:
EPTDLMNREKKNKIPSMQVGFIDAICLQLYEALTHVSEDCFPLLDGCRKNRQKWQ




8741); P2A
ALAEQQGSLDGATNFSLLKQAGDVEENPGPLSKGEEDNMAIIKEFMRFKVHMEGS




cleavage site;
VNGHEFEIEGEGEGRPYEGTQTAKLKVTKGGPLPFAWDILSPQFMYGSKAYVKHP




mCherry
ADIPDYLKLSFPEGFKWERVMNFEDGGVVTVTQDSSLQDGEFIYKVKLRGTNFPSD




(M1L); stop)
GPVMQKKTMGWEASSERMYPEDGALKGEIKQRLKLKDGGHYDAEVKTTYKAKK





PVQLPGAYNVNIKLDITSHNEDYTIVEQYERAEGRHSTGGMDELYK*







OT-
MVSKGAELFTGIVPILIELNGDVNGHKFSVSGEGEGDATYGKLTLKFICTTGKLPVP
8749
8791


001881(AcGFP
WPTLVTTLSYGVQCFSRYPDHMKQHDFFKSAMPEGYIQERTIFFEDDGNYKSRAE




(1-239 of WT);
VKFEGDTLVNRIELTGTDFKEDGNILGNKMEYNYNAHNVYIMTDKAKNGIKVNFK




Linker (GS);
IRHNIEDGSVQLADHYQQNTPIGDGPVLLPDNHYLSTQSALSKDPNEKRDHMIYFG




hPDE5 (aa 535
FVTAAAITHGMDELYKGSEETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETAL




to 860 of WT,
CTIRMFTDLNLVQNFQMKHEVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMF




R732P,
AALKAGKIQNKLTDLEILALLIAALSHDLDHRGVNNSYIQRSEHPLAQLYCHSIMEH




F736Q);
HHFDQCLMILNSPGNQILSGLSIEEYKTTLKIIKQAILATDLALYIKRPGEFQELIRKN




GSLDG Linker
QFNLEDPHQKELFLAMLMTACDLSAITKPWPIQQRIAELVATEFFDQGDRERKELNI




(SEQ ID NO:
EPTDLMNREKKNKIPSMQVGFIDAICLQLYEALTHVSEDCFPLLDGCRKNRQKWQ




8741); P2A
ALAEQQGSLDGATNFSLLKQAGDVEENPGPLSKGEEDNMAIIKEFMRFKVHMEGS




cleavage site;
VNGHEFEIEGEGEGRPYEGTQTAKLKVTKGGPLPFAWDILSPQFMYGSKAYVKHP




mCherry
ADIPDYLKLSFPEGFKWERVMNFEDGGVVTVTQDSSLQDGEFIYKVKLRGTNFPSD




(M1L); stop)
GPVMQKKTMGWEASSERMYPEDGALKGEIKQRLKLKDGGHYDAEVKTTYKAKK





PVQLPGAYNVNIKLDITSHNEDYTIVEQYERAEGRHSTGGMDELYK*







OT-
MVSKGAELFTGIVPILIELNGDVNGHKFSVSGEGEGDATYGKLTLKFICTTGKLPVP
8750
8792


001874(AcGFP
WPTLVTTLSYGVQCFSRYPDHMKQHDFFKSAMPEGYIQERTIFFEDDGNYKSRAE




(1-239 of WT);
VKFEGDTLVNRIELTGTDFKEDGNILGNKMEYNYNAHNVYIMTDKAKNGIKVNFK




Linker (GS);
IRHNIEDGSVQLADHYQQNTPIGDGPVLLPDNHYLSTQSALSKDPNEKRDHMIYFG




hPDE5 (aa 535
FVTAAAITHGMDELYKGSEETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETAL




to 860 of WT,
CTIRMFTDLNLVQNFQMKHEVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMF




R732A,
AALKAGKIQNKLTDLEILALLIAALSHDLDHRGVNNSYIQRSEHPLAQLYCHSIMEH




F736A); stop)
HHFDQCLMILNSPGNQILSGLSIEEYKTTLKIIKQAILATDLALYIKRAGEFAELIRKN





QFNLEDPHQKELFLAMLMTACDLSAITKPWPIQQRIAELVATEFFDQGDRERKELNI





EPTDLMNREKKNKIPSMQVGFIDAICLQLYEALTHVSEDCFPLLDGCRKNRQKWQ





ALAEQQ*







OT-
MVSKGAELFTGIVPILIELNGDVNGHKESVSGEGEGDATYGKLTLKFICTTGKLPVP
8751
8793


001883(AcGFP
WPTLVTTLSYGVQCFSRYPDHMKQHDFFKSAMPEGYIQERTIFFEDDGNYKSRAE




(1-239 of WT);
VKFEGDTLVNRIELTGTDFKEDGNILGNKMEYNYNAHNVYIMTDKAKNGIKVNFK




Linker (GS);
IRHNIEDGSVQLADHYQQNTPIGDGPVLLPDNHYLSTQSALSKDPNEKRDHMIYFG




hPDE5 (aa 535
FVTAAAITHGMDELYKGSEETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETAL




to 860 of WT,
CTIRMFTDLNLVQNFQMKHEVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMF




R732S,
AALKAGKIQNKLTDLEILALLIAALSHDLDHRGVNNSYIQRSEHPLAQLYCHSIMEH




F736G);
HHFDQCLMILNSPGNQILSGLSIEEYKTTLKIIKQAILATDLALYIKRSGEFGELIRKN




GSLDG Linker
QFNLEDPHQKELFLAMLMTACDLSAITKPWPIQQRIAELVATEFFDQGDRERKELNI




(SEQ ID NO:
EPTDLMNREKKNKIPSMQVGFIDAICLQLYEALTHVSEDCFPLLDGCRKNRQKWQ




8741); P2A
ALAEQQGSLDGATNFSLLKQAGDVEENPGPLSKGEEDNMAIIKEFMRFKVHMEGS




cleavage site;
VNGHEFEIEGEGEGRPYEGTQTAKLKVTKGGPLPFAWDILSPQFMYGSKAYVKHP




mCherry
ADIPDYLKLSFPEGFKWERVMNFEDGGVVTVTQDSSLQDGEFIYKVKLRGTNFPSD




(M1L); stop)
GPVMQKKTMGWEASSERMYPEDGALKGEIKQRLKLKDGGHYDAEVKTTYKAKK





PVQLPGAYNVNIKLDITSHNEDYTIVEQYERAEGRHSTGGMDELYK*







OT-
MVSKGAELFTGIVPILIELNGDVNGHKFSVSGEGEGDATYGKLTLKFICTTGKLPVP
8752
8794


001884(AcGFP
WPTLVTTLSYGVQCFSRYPDHMKQHDFFKSAMPEGYIQERTIFFEDDGNYKSRAE




(1-239 of WT);
VKFEGDTLVNRIELTGTDFKEDGNILGNKMEYNYNAHNVYIMTDKAKNGIKVNFK




Linker (GS);
IRHNIEDGSVQLADHYQQNTPIGDGPVLLPDNHYLSTQSALSKDPNEKRDHMIYFG




hPDE5 (aa 535
FVTAAAITHGMDELYKGSEETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETAL




to 860 of WT,
CTIRMFTDLNLVQNFQMKHEVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMF




R732T,
AALKAGKIQNKLTDLEILALLIAALSHDLDHRGVNNSYIQRSEHPLAQLYCHSIMEH




F736P);
HHFDQCLMILNSPGNQILSGLSIEEYKTTLKIIKQAILATDLALYIKRTGEFPELIRKN




GSLDG Linker
QFNLEDPHQKELFLAMLMTACDLSAITKPWPIQQRIAELVATEFFDQGDRERKELNI




(SEQ ID NO:
EPTDLMNREKKNKIPSMQVGFIDAICLQLYEALTHVSEDCFPLLDGCRKNRQKWQ




8741); P2A
ALAEQQGSLDGATNFSLLKQAGDVEENPGPLSKGEEDNMAIIKEFMRFKVHMEGS




cleavage site;
VNGHEFEIEGEGEGRPYEGTQTAKLKVTKGGPLPFAWDILSPQFMYGSKAYVKHP




mCherry
ADIPDYLKLSFPEGFKWERVMNFEDGGVVTVTQDSSLQDGEFIYKVKLRGTNFPSD




(M1L); stop)
GPVMQKKTMGWEASSERMYPEDGALKGEIKQRLKLKDGGHYDAEVKTTYKAKK





PVQLPGAYNVNIKLDITSHNEDYTIVEQYERAEGRHSTGGMDELYK*







OT-
MVSKGAELFTGIVPILIELNGDVNGHKFSVSGEGEGDATYGKLTLKFICTTGKLPVP
8753
8795


001885 (AcGFP
WPTLVTTLSYGVQCFSRYPDHMKQHDFFKSAMPEGYIQERTIFFEDDGNYKSRAE




(1-239 of WT);
VKFEGDTLVNRIELTGTDFKEDGNILGNKMEYNYNAHNVYIMTDKAKNGIKVNFK




Linker (GS);
IRHNIEDGSVQLADHYQQNTPIGDGPVLLPDNHYLSTQSALSKDPNEKRDHMIYFG




hPDE5 (aa 535
FVTAAAITHGMDELYKGSEETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETAL




to 860 of WT,
CTIRMFTDLNLVQNFQMKHEVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMF




R732M,
AALKAGKIQNKLTDLEILALLIAALSHDLDHRGVNNSYIQRSEHPLAQLYCHSIMEH




F736H);
HHFDQCLMILNSPGNQILSGLSIEEYKTTLKIIKQAILATDLALYIKRMGEFHELIRK




GSLDG Linker
NQFNLEDPHQKELFLAMLMTACDLSAITKPWPIQQRIAELVATEFFDQGDRERKEL




(SEQ ID NO:
NIEPTDLMNREKKNKIPSMQVGFIDAICLQLYEALTHVSEDCFPLLDGCRKNRQKW




8741); P2A
QALAEQQGSLDGATNFSLLKQAGDVEENPGPLSKGEEDNMAIIKEFMRFKVHMEG




cleavage site;
SVNGHEFEIEGEGEGRPYEGTQTAKLKVTKGGPLPFAWDILSPQFMYGSKAYVKHP




mCherry
ADIPDYLKLSFPEGFKWERVMNFEDGGVVTVTQDSSLQDGEFIYKVKLRGTNFPSD




(M1L); stop)
GPVMQKKTMGWEASSERMYPEDGALKGEIKQRLKLKDGGHYDAEVKTTYKAKK





PVQLPGAYNVNIKLDITSHNEDYTIVEQYERAEGRHSTGGMDELYK*







OT-
MVSKGAELFTGIVPILIELNGDVNGHKESVSGEGEGDATYGKLTLKFICTTGKLPVP
8754
8796


001886(AcGFP
WPTLVTTLSYGVQCFSRYPDHMKQHDFFKSAMPEGYIQERTIFFEDDGNYKSRAE




(1-239 of WT);
VKFEGDTLVNRIELTGTDFKEDGNILGNKMEYNYNAHNVYIMTDKAKNGIKVNFK




Linker (GS);
IRHNIEDGSVQLADHYQQNTPIGDGPVLLPDNHYLSTQSALSKDPNEKRDHMIYFG




hPDE5 (aa 535
FVTAAAITHGMDELYKGSEETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETAL




to 860 of WT,
CTIRMFTDLNLVQNFQMKHEVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMF




R732Y,
AALKAGKIQNKLTDLEILALLIAALSHDLDHRGVNNSYIQRSEHPLAQLYCHSIMEH




F736M);
HHFDQCLMILNSPGNQILSGLSIEEYKTTLKIIKQAILATDLALYIKRYGEFMELIRK




GSLDG Linker
NQFNLEDPHQKELFLAMLMTACDLSAITKPWPIQQRIAELVATEFFDQGDRERKEL




(SEQ ID NO:
NIEPTDLMNREKKNKIPSMQVGFIDAICLQLYEALTHVSEDCFPLLDGCRKNRQKW




8741); P2A
QALAEQQGSLDGATNFSLLKQAGDVEENPGPLSKGEEDNMAIIKEFMRFKVHMEG




cleavage site;
SVNGHEFEIEGEGEGRPYEGTQTAKLKVTKGGPLPFAWDILSPQFMYGSKAYVKHP




mCherry
ADIPDYLKLSFPEGFKWERVMNFEDGGVVTVTQDSSLQDGEFIYKVKLRGTNFPSD




(M1L); stop)
GPVMQKKTMGWEASSERMYPEDGALKGEIKQRLKLKDGGHYDAEVKTTYKAKK





PVQLPGAYNVNIKLDITSHNEDYTIVEQYERAEGRHSTGGMDELYK*







OT-
MVSKGAELFTGIVPILIELNGDVNGHKFSVSGEGEGDATYGKLTLKFICTTGKLPVP
8755
8797


001887(AcGFP
WPTLVTTLSYGVQCFSRYPDHMKQHDFFKSAMPEGYIQERTIFFEDDGNYKSRAE




(1-239 of WT);
VKFEGDTLVNRIELTGTDFKEDGNILGNKMEYNYNAHNVYIMTDKAKNGIKVNFK




Linker (GS);
IRHNIEDGSVQLADHYQQNTPIGDGPVLLPDNHYLSTQSALSKDPNEKRDHMIYFG




hPDE5 (aa 535
FVTAAAITHGMDELYKGSEETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETAL




to 860 of WT,
CTIRMFTDLNLVQNFQMKHEVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMF




R732P,
AALKAGKIQNKLTDLEILALLIAALSHDLDHRGVNNSYIQRSEHPLAQLYCHSIMEH




F736D);
HHFDQCLMILNSPGNQILSGLSIEEYKTTLKIIKQAILATDLALYIKRPGEFDELIRKN




GSLDG Linker
QFNLEDPHQKELFLAMLMTACDLSAITKPWPIQQRIAELVATEFFDQGDRERKELNI




(SEQ ID NO:
EPTDLMNREKKNKIPSMQVGFIDAICLQLYEALTHVSEDCFPLLDGCRKNRQKWQ




8741); P2A
ALAEQQGSLDGATNFSLLKQAGDVEENPGPLSKGEEDNMAIIKEFMRFKVHMEGS




cleavage site;
VNGHEFEIEGEGEGRPYEGTQTAKLKVTKGGPLPFAWDILSPQFMYGSKAYVKHP




mCherry
ADIPDYLKLSFPEGFKWERVMNFEDGGVVTVTQDSSLQDGEFIYKVKLRGTNFPSD




(M1L); stop)
GPVMQKKTMGWEASSERMYPEDGALKGEIKQRLKLKDGGHYDAEVKTTYKAKK





PVQLPGAYNVNIKLDITSHNEDYTIVEQYERAEGRHSTGGMDELYK*







OT-
MVSKGAELFTGIVPILIELNGDVNGHKFSVSGEGEGDATYGKLTLKFICTTGKLPVP
8756
8798


001873(AcGFP
WPTLVTTLSYGVQCFSRYPDHMKQHDFFKSAMPEGYIQERTIFFEDDGNYKSRAE




(1-239 of WT);
VKFEGDTLVNRIELTGTDFKEDGNILGNKMEYNYNAHNVYIMTDKAKNGIKVNFK




Linker (GS);
IRHNIEDGSVQLADHYQQNTPIGDGPVLLPDNHYLSTQSALSKDPNEKRDHMIYFG




hPDE5 (aa 535
FVTAAAITHGMDELYKGSEETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETAL




to 860 of WT,
CTIRMFTDLNLVQNFQMKHEVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMF




R732P,
AALKAGKIQNKLTDLEILALLIAALSHDLDHRGVNNSYIQRSEHPLAQLYCHSIMEH




F736G); stop)
HHFDQCLMILNSPGNQILSGLSIEEYKTTLKIIKQAILATDLALYIKRPGEFGELIRKN





QFNLEDPHQKELFLAMLMTACDLSAITKPWPIQQRIAELVATEFFDQGDRERKELNI





EPTDLMNREKKNKIPSMQVGFIDAICLQLYEALTHVSEDCFPLLDGCRKNRQKWQ





ALAEQQ*







OT-
MVSKGAELFTGIVPILIELNGDVNGHKFSVSGEGEGDATYGKLTLKFICTTGKLPVP
8757
8799


001878(AcGFP
WPTLVTTLSYGVQCFSRYPDHMKQHDFFKSAMPEGYIQERTIFFEDDGNYKSRAE




(1-239 of WT);
VKFEGDTLVNRIELTGTDFKEDGNILGNKMEYNYNAHNVYIMTDKAKNGIKVNFK




Linker (GS);
IRHNIEDGSVQLADHYQQNTPIGDGPVLLPDNHYLSTQSALSKDPNEKRDHMIYFG




hPDE5 (aa 535
FVTAAAITHGMDELYKGSEETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETAL




to 860 of WT,
CTIRMFTDLNLVQNFQMKHEVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMF




R732W,
AALKAGKIQNKLTDLEILALLIAALSHDLDHRGVNNSYIQRSEHPLAQLYCHSIMEH




F736L);
HHFDQCLMILNSPGNQILSGLSIEEYKTTLKIIKQAILATDLALYIKRWGEFLELIRKN




GSLDG Linker
QFNLEDPHQKELFLAMLMTACDLSAITKPWPIQQRIAELVATEFFDQGDRERKELNI




(SEQ ID NO:
EPTDLMNREKKNKIPSMQVGFIDAICLQLYEALTHVSEDCFPLLDGCRKNRQKWQ




8741); P2A
ALAEQQGSLDGATNFSLLKQAGDVEENPGPLSKGEEDNMAIIKEFMRFKVHMEGS




cleavage site;
VNGHEFEIEGEGEGRPYEGTQTAKLKVTKGGPLPFAWDILSPQFMYGSKAYVKHP




mCherry
ADIPDYLKLSFPEGFKWERVMNFEDGGVVTVTQDSSLQDGEFIYKVKLRGTNFPSD




(M1L); stop)
GPVMQKKTMGWEASSERMYPEDGALKGEIKQRLKLKDGGHYDAEVKTTYKAKK





PVQLPGAYNVNIKLDITSHNEDYTIVEQYERAEGRHSTGGMDELYK*







OT-
MVSKGAELFTGIVPILIELNGDVNGHKFSVSGEGEGDATYGKLTLKFICTTGKLPVP
8758
8800


001872(AcGFP
WPTLVTTLSYGVQCFSRYPDHMKQHDFFKSAMPEGYIQERTIFFEDDGNYKSRAE




(1-239 of WT);
VKFEGDTLVNRIELTGTDFKEDGNILGNKMEYNYNAHNVYIMTDKAKNGIKVNFK




Linker (GS);
IRHNIEDGSVQLADHYQQNTPIGDGPVLLPDNHYLSTQSALSKDPNEKRDHMIYFG




hPDE5 (aa 535
FVTAAAITHGMDELYKGSEETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETAL




to 860 of WT,
CTIRMFTDLNLVQNFQMKHEVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMF




R732L,
AALKAGKIQNKLTDLEILALLIAALSHDLDHRGVNNSYIQRSEHPLAQLYCHSIMEH




F736S); stop)
HHFDQCLMILNSPGNQILSGLSIEEYKTTLKIIKQAILATDLALYIKRLGEFSELIRKN





QFNLEDPHQKELFLAMLMTACDLSAITKPWPIQQRIAELVATEFFDQGDRERKELNI





EPTDLMNREKKNKIPSMQVGFIDAICLQLYEALTHVSEDCFPLLDGCRKNRQKWQ





ALAEQQ*







OT-
MVSKGAELFTGIVPILIELNGDVNGHKFSVSGEGEGDATYGKLTLKFICTTGKLPVP
8759
8801


001889(AcGFP
WPTLVTTLSYGVQCFSRYPDHMKQHDFFKSAMPEGYIQERTIFFEDDGNYKSRAE




(1-239 of WT);
VKFEGDTLVNRIELTGTDFKEDGNILGNKMEYNYNAHNVYIMTDKAKNGIKVNFK




Linker (GS);
IRHNIEDGSVQLADHYQQNTPIGDGPVLLPDNHYLSTQSALSKDPNEKRDHMIYFG




hPDE5 (aa 535
FVTAAAITHGMDELYKGSEETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETAL




to 860 of WT,
CTIRMFTDLNLVQNFQMKHEVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMF




R732D,
AALKAGKIQNKLTDLEILALLIAALSHDLDHRGVNNSYIQRSEHPLAQLYCHSIMEH




F736T);
HHFDQCLMILNSPGNQILSGLSIEEYKTTLKIIKQAILATDLALYIKRDGEFTELIRKN




GSLDG Linker
QFNLEDPHQKELFLAMLMTACDLSAITKPWPIQQRIAELVATEFFDQGDRERKELNI




(SEQ ID NO:
EPTDLMNREKKNKIPSMQVGFIDAICLQLYEALTHVSEDCFPLLDGCRKNRQKWQ




8741); P2A
ALAEQQGSLDGATNFSLLKQAGDVEENPGPLSKGEEDNMAIIKEFMRFKVHMEGS




cleavage site;
VNGHEFEIEGEGEGRPYEGTQTAKLKVTKGGPLPFAWDILSPQFMYGSKAYVKHP




mCherry
ADIPDYLKLSFPEGFKWERVMNFEDGGVVTVTQDSSLQDGEFIYKVKLRGTNFPSD




(M1L); stop)
GPVMQKKTMGWEASSERMYPEDGALKGEIKQRLKLKDGGHYDAEVKTTYKAKK





PVQLPGAYNVNIKLDITSHNEDYTIVEQYERAEGRHSTGGMDELYK*







OT-
MVSKGAELFTGIVPILIELNGDVNGHKFSVSGEGEGDATYGKLTLKFICTTGKLPVP
8760
8802


001871(AcGFP
WPTLVTTLSYGVQCFSRYPDHMKQHDFFKSAMPEGYIQERTIFFEDDGNYKSRAE




(1-239 of WT);
VKFEGDTLVNRIELTGTDFKEDGNILGNKMEYNYNAHNVYIMTDKAKNGIKVNFK




Linker (GS);
IRHNIEDGSVQLADHYQQNTPIGDGPVLLPDNHYLSTQSALSKDPNEKRDHMIYFG




hPDE5 (aa 535
FVTAAAITHGMDELYKGSEETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETAL




to 860 of WT,
CTIRMFTDLNLVQNFQMKHEVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMF




R732L,
AALKAGKIQNKLTDLEILALLIAALSHDLDHRGVNNSYIQRSEHPLAQLYCHSIMEH




F736V); stop)
HHFDQCLMILNSPGNQILSGLSIEEYKTTLKIIKQAILATDLALYIKRLGEFVELIRKN





QFNLEDPHQKELFLAMLMTACDLSAITKPWPIQQRIAELVATEFFDQGDRERKELNI





EPTDLMNREKKNKIPSMQVGFIDAICLQLYEALTHVSEDCFPLLDGCRKNRQKWQ





ALAEQQ*







OT-
MVSKGAELFTGIVPILIELNGDVNGHKESVSGEGEGDATYGKLTLKFICTTGKLPVP
8761
8803


001888(AcGFP
WPTLVTTLSYGVQCFSRYPDHMKQHDFFKSAMPEGYIQERTIFFEDDGNYKSRAE




(1-239 of WT);
VKFEGDTLVNRIELTGTDFKEDGNILGNKMEYNYNAHNVYIMTDKAKNGIKVNFK




Linker (GS);
IRHNIEDGSVQLADHYQQNTPIGDGPVLLPDNHYLSTQSALSKDPNEKRDHMIYFG




hPDE5 (aa 535
FVTAAAITHGMDELYKGSEETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETAL




to 860 of WT,
CTIRMFTDLNLVQNFQMKHEVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMF




R732G,
AALKAGKIQNKLTDLEILALLIAALSHDLDHRGVNNSYIQRSEHPLAQLYCHSIMEH




F736V);
HHFDQCLMILNSPGNQILSGLSIREYKTTLKIIKQAILATDLALYIKRGGEFVELIRKN




GSLDG Linker
QFNLEDPHQKELFLAMLMTACDLSAITKPWPIQQRIAELVATEFFDQGDRERKELNI




(SEQ ID NO:
EPTDLMNREKKNKIPSMQVGFIDAICLQLYEALTHVSEDCFPLLDGCRKNRQKWQ




8741); P2A
ALAEQQGSLDGATNFSLLKQAGDVEENPGPLSKGEEDNMAIIKEFMRFKVHMEGS




cleavage site;
VNGHEFEIEGEGEGRPYEGTQTAKLKVTKGGPLPFAWDILSPQFMYGSKAYVKHP




mCherry
ADIPDYLKLSFPEGFKWERVMNFEDGGVVTVTQDSSLQDGEFIYKVKLRGTNFPSD




(M1L); stop)
GPVMQKKTMGWEASSERMYPEDGALKGEIKQRLKLKDGGHYDAEVKTTYKAKK





PVQLPGAYNVNIKLDITSHNEDYTIVEQYERAEGRHSTGGMDELYK*







OT-
MVSKGAELFTGIVPILIELNGDVNGHKFSVSGEGEGDATYGKLTLKFICTTGKLPVP
8762
8804


001890(AcGFP
WPTLVTTLSYGVQCFSRYPDHMKQHDFFKSAMPEGYIQERTIFFEDDGNYKSRAE




(1-239 of WT);
VKFEGDTLVNRIELTGTDFKEDGNILGNKMEYNYNAHNVYIMTDKAKNGIKVNFK




Linker (GS);
IRHNIEDGSVQLADHYQQNTPIGDGPVLLPDNHYLSTQSALSKDPNEKRDHMIYFG




hPDE5 (aa 535
FVTAAAITHGMDELYKGSEETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETAL




to 860 of WT,
CTIRMFTDLNLVQNFQMKHEVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMF




R732W,
AALKAGKIQNKLTDLEILALLIAALSHDLDHRGVNNSYIQRSEHPLAQLYCHSIMEH




F736A);
HHFDQCLMILNSPGNQILSGLSIEEYKTTLKIIKQAILATDLALYIKRWGEFAELIRK




GSLDG Linker
NQFNLEDPHQKELFLAMLMTACDLSAITKPWPIQQRIAELVATEFFDQGDRERKEL




(SEQ ID NO:
NIEPTDLMNREKKNKIPSMQVGFIDAICLQLYEALTHVSEDCFPLLDGCRKNRQKW




8741); P2A
QALAEQQGSLDGATNFSLLKQAGDVEENPGPLSKGEEDNMAIIKEFMRFKVHMEG




cleavage site;
SVNGHEFEIEGEGEGRPYEGTQTAKLKVTKGGPLPFAWDILSPQFMYGSKAYVKHP




mCherry
ADIPDYLKLSFPEGFKWERVMNFEDGGVVTVTQDSSLQDGEFIYKVKLRGTNFPSD




(M1L); stop)
GPVMQKKTMGWEASSERMYPEDGALKGEIKQRLKLKDGGHYDAEVKTTYKAKK





PVQLPGAYNVNIKLDITSHNEDYTIVEQYERAEGRHSTGGMDELYK*









Saturation mutagenesis screens were performed using mutant library wherein every amino acid within position 535 to 860 of SEQ ID NO: 1 was mutated. Mutants were screened by appended DDs to payloads such as GFP and mcherry Table 13 provides hPDE5 mutants identified by this screen. In Table 13, * indicates the translation of the stop codon.









TABLE 13







hPDE5 saturation mutagenesis DD and constructs












AA
NA


Construct ID/

SEQ
SEQ


Description
Sequence
ID NO
ID NO










DDs










hPDE5 (aa 535
EETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALNTIRMFTDLNLVQNFQ
8805
8813


to 860 of WT,
MKREVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMFAALKAGKIQNKLTD




C574N)
LEILALLIAALSHDLDHRGVNNSYIQRSEHPLAQLYCHSIMEHHHFDQCLMILNS





PGNQILSGLSIEEYKTTLKIIKQAILATDLALYIKRRGEFFELIRKNQFNLEDPHQK





ELFLAMLMTACDLSAITKPWPIQQRIAELVATEFFDQGDRERKELNIEPTDLMNR





EKKNKIPSMQVGFIDAICLQLYEALTHVSEDCFPLLDGCRKNRQKWQALAEQQ







hPDE5 (aa 535
EKTRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFTDLNLVQNFQ
8806
8814


to 860 of WT,
MKHEVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMFAALKAGKIQNKLTD




E536K, I739W)
LEILALLIAALSHDLDHRGVNNSYIQRSEHPLAQLYCHSIMEHHHFDQCLMILNS





PGNQILSGLSIEEYKTTLKIIKQAILATDLALYIKRRGEFFELWRKNQFNLEDPHQ





KELFLAMLMTACDLSAITKPWPIQQRIAELVATEFFDQGDRERKELNIEPTDLMN





REKKNKIPSMQVGFIDAICLQLYEALTHVSEDCFPLLDGCRKNRQKWQALAEQQ










hPDE5 (aa 535
EETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFTDLNLVQNFQ
8807
8815


to 860 of WT,
MKREVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMFAALKAGKIQNKLTD




H678F, S702F)
LEILALLIAALSHDLDHRGVNNSYIQRSEHPLAQLYCFSIMEHHHFDQCLMILNSP





GNQILFGLSIEEYKTTLKIIKQAILATDLALYIKRRGEFFELIRKNQFNLEDPHQKE





LFLAMLMTACDLSAITKPWPIQQRIAELVATEFFDQGDRERKELNIEPTDLMNRE





KKNKIPSMQVGFIDAICLQLYEALTHVSEDCFPLLDGCRKNRQKWQALAEQQ












Construct components










AcGFP (1-239
MVSKGAELFTGIVPILIELNGDVNGHKESVSGEGEGDATYGKLTLKFICTTGKLP
365
373


of WT)
VPWPTLVTTLSYGVQCFSRYPDHMKQHDFFKSAMPEGYIQERTIFFEDDGNYKS





RAEVKFEGDTLVNRIELTGTDFKEDGNILGNKMEYNYNAHNVYIMTDKAKNGI





KVNFKIRHNIEDGSVQLADHYQQNTPIGDGPVLLPDNHYLSTQSALSKDPNEKR





DHMIYFGFVTAAAITHGMDELYK







Linker (GS);
GS




BamH1 Site








SLDG Linker
SLDG
8808
8816





mCherry
LSKGEEDNMAIIKEFMRFKVHMEGSVNGHEFEIEGEGEGRPYEGTQTAKLKVTK
8240
8269


(M1L)
GGPLPFAWDILSPQFMYGSKAYVKHPADIPDYLKLSFPEGFKWERVMNFEDGG





VVTVTQDSSLQDGEFIYKVKLRGTNFPSDGPVMQKKTMGWEASSERMYPEDGA





LKGEIKQRLKLKDGGHYDAEVKTTYKAKKPVQLPGAYNVNIKLDITSHNEDYTI





VEQYERAEGRHSTGGMDELYK







P2A cleavage
ATNFSLLKQAGDVEENPGP
8809
8817


site













Constructs










OT-001869
MVSKGAELFTGIVPILIELNGDVNGHKFSVSGEGEGDATYGKLTLKFICTTGKLP
8810
8818


(AcGFP (1-239
VPWPTLVTTLSYGVQCFSRYPDHMKQHDFFKSAMPEGYIQERTIFFEDDGNYKS




of WT); Linker
RAEVKFEGDTLVNRIELTGTDFKEDGNILGNKMEYNYNAHNVYIMTDKAKNGI




(GS); hPDE5
KVNFKIRHNIEDGSVQLADHYQQNTPIGDGPVLLPDNHYLSTQSALSKDPNEKR




(aa 535 to 860
DHMIYFGFVTAAAITHGMDELYKGSEETRELQSLAAAVVPSAQTLKITDFSFSDF




of WT,
ELSDLETALNTIRMFTDLNLVQNFQMKHEVLCRWILSVKKNYRKNVAYHNWR




C574N); SLDG
HAFNTAQCMFAALKAGKIQNKLTDLEILALLIAALSHDLDHRGVNNSYIQRSEH




Linker (SEQ ID
PLAQLYCHSIMEHHHFDQCLMILNSPGNQILSGLSIEEYKTTLKIIKQAILATDLAL




NO: 8808);
YIKRRGEFFELIRKNQFNLEDPHQKELFLAMLMTACDLSAITKPWPIQQRIAELV




P2A cleavage
ATEFFDQGDRERKELNIEPTDLMNREKKNKIPSMQVGFIDAICLQLYEALTHVSE




site; mCherry
DCFPLLDGCRKNRQKWQALAEQQSLDGATNFSLLKQAGDVEENPGPLSKGEED




(M1L); stop)
NMAIIKEFMRFKVHMEGSVNGHEFEIEGEGEGRPYEGTQTAKLKVTKGGPLPFA





WDILSPQFMYGSKAYVKHPADIPDYLKLSFPEGFKWERVMNFEDGGVVTVTQD





SSLQDGEFIYKVKLRGTNFPSDGPVMQKKTMGWEASSERMYPEDGALKGEIKQ





RLKLKDGGHYDAEVKTTYKAKKPVQLPGAYNVNIKLDITSHNEDYTIVEQYER





AEGRHSTGGMDELYK*







OT-001868
MVSKGAELFTGIVPILIELNGDVNGHKFSVSGEGEGDATYGKLTLKFICTTGKLP
8811
8819


(AcGFP (1-239
VPWPTLVTTLSYGVQCFSRYPDHMKQHDFFKSAMPEGYIQERTIFFEDDGNYKS




of WT); Linker
RAEVKFEGDTLVNRIELTGTDFKEDGNILGNKMEYNYNAHNVYIMTDKAKNGI




(GS); hPDE5
KVNFKIRHNIEDGSVQLADHYQQNTPIGDGPVLLPDNHYLSTQSALSKDPNEKR




(aa 535 to 860
DHMIYFGFVTAAAITHGMDELYKGSEKTRELQSLAAAVVPSAQTLKITDFSFSDF




of WT E536K,
ELSDLETALCTIRMFTDLNLVQNFQMKHEVLCRWILSVKKNYRKNVAYHNWR




I739W); SLDG
HAFNTAQCMFAALKAGKIQNKLTDLEILALLIAALSHDLDHRGVNNSYIQRSEH




Linker (SEQ ID
PLAQLYCHSIMEHHHFDQCLMILNSPGNQILSGLSIEEYKTTLKIIKQAILATDLAL




NO: 8808);
YIKRRGEFFELWRKNQFNLEDPHQKELFLAMLMTACDLSAITKPWPIQQRIAEL




P2A cleavage
VATEFFDQGDRERKELNIEPTDLMNREKKNKIPSMQVGFIDAICLQLYEALTHVS




site; mCherry
EDCFPLLDGCRKNRQKWQALAEQQSLDGATNFSLLKQAGDVEENPGPLSKGEE




(M1L); stop)
DNMAIIKEFMRFKVHMEGSVNGHEFEIEGEGEGRPYEGTQTAKLKVTKGGPLPF





AWDILSPQFMYGSKAYVKHPADIPDYLKLSFPEGFKWERVMNFEDGGVVTVTQ





DSSLQDGEFIYKVKLRGTNFPSDGPVMQKKTMGWEASSERMYPEDGALKGEIK





QRLKLKDGGHYDAEVKTTYKAKKPVQLPGAYNVNIKLDITSHNEDYTIVEQYE





RAEGRHSTGGMDELYK*







OT-001870
MVSKGAELFTGIVPILIELNGDVNGHKFSVSGEGEGDATYGKLTLKFICTTGKLP
8812
8820


(AcGFP (1-239
VPWPTLVTTLSYGVQCFSRYPDHMKQHDFFKSAMPEGYIQERTIFFEDDGNYKS




of WT); Linker
RAEVKFEGDTLVNRIELTGTDFKEDGNILGNKMEYNYNAHNVYIMTDKAKNGI




(GS); hPDE5
KVNFKIRHNIEDGSVQLADHYQQNTPIGDGPVLLPDNHYLSTQSALSKDPNEKR




(aa 535 to 860
DHMIYFGFVTAAAITHGMDELYKGSEETRELQSLAAAVVPSAQTLKITDFSFSDF




of WT, H678F,
ELSDLETALCTIRMFTDLNLVQNFQMKHEVLCRWILSVKKNYRKNVAYHNWR




S702F); SLDG
HAFNTAQCMFAALKAGKIQNKLTDLEILALLIAALSHDLDHRGVNNSYIQRSEH




Linker (SEQ ID
PLAQLYCFSIMEHHHFDQCLMILNSPGNQILFGLSIEEYKTTLKIIKQAILATDLAL




NO: 8808);
YIKRRGEFFELIRKNQFNLEDPHQKELFLAMLMTACDLSAITKPWPIQQRIAELV




P2A cleavage
ATEFFDQGDRERKELNIEPTDLMNREKKNKIPSMQVGFIDAICLQLYEALTHVSE




site; mCherry
DCFPLLDGCRKNRQKWQALAEQQSLDGATNFSLLKQAGDVEENPGPLSKGEED




(M1L); stop)
NMAIIKEFMRFKVHMEGSVNGHEFEIEGEGEGRPYEGTQTAKLKVTKGGPLPFA





WDILSPQFMYGSKAYVKHPADIPDYLKLSFPEGFKWERVMNFEDGGVVTVTQD





SSLQDGEFIYKVKLRGTNFPSDGPVMQKKTMGWEASSERMYPEDGALKGEIKQ





RLKLKDGGHYDAEVKTTYKAKKPVQLPGAYNVNIKLDITSHNEDYTIVEQYER





AEGRHSTGGMDELYK*









The position of hPDE5 in a construct comprising hPDE5 fused to GFP may affect the resultant library of mutants generated by mutagenesis screening. The effect of positioning the DD at the c terminal construct on the identification of DD clones was tested. PDE5 library generated by random mutagenesis fused GFP to generate AcGFP-PDE5-IRES-Puro constructs. Mutants were screened by appended DDs to payloads such as GFP and mcherry Table 14 provides PDE5 DDs generated in C terminal screens and their related constructs. In Table 14, * indicates the translation of the stop codon.









TABLE 14







hPDE5 mutagenesis by C terminal positioning












AA
NA


Construct ID/

SEQ
SEQ


Description
Sequence
ID NO
ID NO










DDs










hPDE5 (aa 535
EETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFTDLNLV
8821
8841


to 860 of WT,
QNFQMKHEVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMFAALKAG




E669G, I700T)
KIQNKLTDLEILALLIAALSHDLDHRGVNNSYIQRSGHPLAQLYCHSIMEH





HHFDQCLMILNSPGNQTLSGLSIEEYKTTLKIIKQAILATDLALYIKRRGEF





FELIRKNQFNLEDPHQKELFLAMLMTACDLSAITKPWPIQQRIAELVATEF





FDQGDRERKELNIEPTDLMNREKKNKIPSMQVGFIDAICLQLYEALTHVS





EDCFPLLDGCRKNRQKWQALAEQQ







hPDE5 (aa 535
EETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFTDLNLV
8822
8842


to 860 of WT,
QNFQMKHEVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMFAALKAS




hPDE5 (G632S,
KIQNKLTDLEILALLTAALSHDLDHRGVNNSYIQRSEHPLAQLYCHSIMEH




I648T)
HHFDQCLMILNSPGNQILSGLSIEEYKTTLKIIKQAILATDLALYIKRRGEFF





ELIRKNQFNLEDPHQKELFLAMLMTACDLSAITKPWPIQQRIAELVATEFF





DQGDRERKELNIEPTDLMNREKKNKIPSMQVGFIDAICLQLYEALTHVSE





DCFPLLDGCRKNRQKWQALAEQQ







hPDE5 (aa 535
EETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFTDLNLV
8823
8843


to 774 of WT,
QNFQMKHEVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMFAALKAG




hPDE5 (L646S)
KIQNKLTDLEILASLIAALSHDLDHRGVNNSYIQRSEHPLAQLYCHSIMEH





HHFDQCLMILNSPGNQILSGLSIEEYKTTLKIIKQAILATDLALYIKRRGEFF





ELIRKNQFNLEDPHQKELFLAMLMTACDLSAITKPWPI







hPDE5 (aa 535
EETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFTDLNLV
8824
8844


to 860 of WT,
QNFQMKHEVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMFAALKAG




hPDE5 (A762V)
KIQNKLTDLEILALLIAALSHDLDHRGVNNSYIQRSEHPLAQLYCHSIMEH





HHFDQCLMILNSPGNQILSGLSIEEYKTTLKIIKQAILATDLALYIKRRGEFF





ELIRKNQFNLEDPHQKELFLAMLMTVCDLSAITKPWPIQQRIAELVATEFF





DQGDRERKELNIEPTDLMNREKKNKIPSMQVGFIDAICLQLYEALTHVSE





DCFPLLDGCRKNRQKWQALAEQQ







hPDE5 (aa 535
EETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFTDLNLV
8825
8845


to 860 of WT,
QNFQMKHEVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMFAALKAG




hPDE5 (D640N)
KIQNKLTNLEILALLIAALSHDLDHRGVNNSYIQRSEHPLAQLYCHSIMEH





HHFDQCLMILNSPGNQILSGLSIEEYKTTLKIIKQAILATDLALYIKRRGEFF





ELIRKNQFNLEDPHQKELFLAMLMTACDLSAITKPWPIQQRIAELVATEFF





DQGDRERKELNIEPTDLMNREKKNKIPSMQVGFIDAICLQLYEALTHVSE





DCFPLLDGCRKNRQKWQALAEQQ







hPDE5 (aa 535
EETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFTDLNLV
8826
8846


to 860 of WT,
QNFQMKHEVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMFAALKAG




hPDE5 (N636S)
KIQSKLTDLEILALLIAALSHDLDHRGVNNSYIQRSEHPLAQLYCHSIMEH





HHFDQCLMILNSPGNQILSGLSIEEYKTTLKIIKQAILATDLALYIKRRGEFF





ELIRKNQFNLEDPHQKELFLAMLMTACDLSAITKPWPIQQRIAELVATEFF





DQGDRERKELNIEPTDLMNREKKNKIPSMQVGFIDAICLQLYEALTHVSE





DCFPLLDGCRKNRQKWQALAEQQ







hPDE5 (aa 535
EETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFTDLNLV
8827
8847


to 860 of WT,
QNFQMKHEVLCRWILSVKKNYRKNVAYHNWRHAFNTARCMFAALKAG




hPDE5 (Q623R,
KIQNKLTDLEILALLIAALSHGLDHRGVNNSYIQRSEHPLAQLYCHSIMEH




D654G, K741N)
HHFDQCLMILNSPGNQILSGLSIEEYKTTLKIIKQAILATDLALYIKRRGEFF





ELIRNXQFNLEDPHQKELFLAMLMTACDLSAITKPWPIQQRIAELVATEFF





DQGDRERKELNIEPTDLMNREKKNKIPSMQVGFIDAICLQLYEALTHVSE





DCFPLLDGCRKNRQKWQALAEQQ







hPDE5 (aa 535
EETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFTDLNLV
8828
8848


to 860 of WT,
QNFQMKHEVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMFAALKAG




hPDE5 (A673T,
KIQNKLTDLEILALLIAALSHDLDHRGVNNSYIQRSEHPLTQLYCHSIMEH




L756V, C846Y)
HHFDQCLMILNSPGNQILSGLSIEEYKTTLKIIKQAILATDLALYIKRRGEFF





ELIRKNQFNLEDPHQKELFVAMLMTACDLSAITKPWPIQQRIAELVATEFF





DQGDRERKELNIEPTDLMNREKKNKIPSMQVGFIDAICLQLYEALTHVSE





DCFPLLDGYRKNRQKWQALAEQQ







hPDE5 (aa 535
EETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFTDLNLV
8829
8849


to 860 of WT,
QNFQMKHEVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMFAALKAG




hPDE5 (V660A,
KIQNKLTDLEILALLIAALSHDLDHRGANNSYIQRSEHPLAQLYCHSIMEH




L781F, R794G,
HHFDQCLMILNSPGNQILSGLSIEEYKTTLKIIKQAILATDLALYIKRRGEFF




C825R, E858G)
ELIRKNQFNLEDPHQKELFLAMLMTACDLSAITKPWPIQQRIAEFVATEFF





DQGDREGKELNIEPTDLMNREKKNKIPSMQVGFIDAIRLQLYEALTHVSE





DCFPLLDGCRKNRQKWQALAGQQ







hPDE5 (aa 535
EETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFTDLNLV
8830
8850


to 860 of WT,
QNFQMKHEVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMFAALKAG




hPDE5 (E642G,
KIQNKLTDLGILALLIAALSHDLDHRGVNNSYIQRSEHPLAQLYCHSIMEH




G697D, I813T)
HHFDQCLMILNSPDNQILSGLSIEEYKTTLKIIKQAILATDLALYIKRRGEFF





ELIRKNQFNLEDPHQKELFLAMLMTACDLSAITKPWPIQQRIAELVATEFF





DQGDRERKELNIEPTDLMNREKKNKTPSMQVGFIDAICLQLYEALTHVSE





DCFPLLDGCRKNRQKWQALAEQQ












Components










AcGFP (1-239
MVSKGAELFTGIVPILIELNGDVNGHKFSVSGEGEGDATYGKLTLKFICTT
365
373


of WT)
GKLPVPWPTLVTTLSYGVQCFSRYPDHMKQHDFFKSAMPEGYIQERTIFF





EDDGNYKSRAEVKFEGDTLVNRIELTGTDFKEDGNILGNKMEYNYNAHN





VYIMTDKAKNGIKVNFKIRHNIEDGSVQLADHYQQNTPIGDGPVLLPDNH





YLSTQSALSKDPNEKRDHMIYFGFVTAAAITHGMDELYK







Linker (GS);
GS

GGAT


BamH1 Site


CC





Linker (SR)
SR

TCTA





GA










Constructs










OT-001947
MVSKGAELFTGIVPILIELNGDVNGHKFSVSGEGEGDATYGKLTLKFICTT
8831
8851


(AcGFP (1-239
GKLPVPWPTLVTTLSYGVQCFSRYPDHMKQHDFFKSAMPEGYIQERTIFF




of WT); Linker
EDDGNYKSRAEVKFEGDTLVNRIELTGTDFKEDGNILGNKMEYNYNAHN




(GS); hPDE5 (aa
VYIMTDKAKNGIKVNFKIRHNIEDGSVQLADHYQQNTPIGDGPVLLPDNH




535 to 860 of
YLSTQSALSKDPNEKRDHMIYFGFVTAAAITHGMDELYKGSEETRELQSL




WT, E669G,
AAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFTDLNLVQNFQMKHE




I700T); Linker
VLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMFAALKAGKIQNKLTD




(SR); stop)
LEILALLIAALSHDLDHRGVNNSYIQRSGHPLAQLYCHSIMEHHHFDQCL





MILNSPGNQTLSGLSIEEYKTTLKIIKQAILATDLALYIKRRGEFFELIRKNQ





FNLEDPHQKELFLAMLMTACDLSAITKPWPIQQRIAELVATEFFDQGDRE





RKELNIEPTDLMNREKKNKIPSMQVGFIDAICLQLYEALTHVSEDCFPLLD





GCRKNRQKWQALAEQQSR*







OT-001948
MVSKGAELFTGIVPILIELNGDVNGHKFSVSGEGEGDATYGKLTLKFICTT
8832
8852


(AcGFP (1-239
GKLPVPWPTLVTTLSYGVQCFSRYPDHMKQHDFFKSAMPEGYIQERTIFF




of WT); Linker
EDDGNYKSRAEVKFEGDTLVNRIELTGTDFKEDGNILGNKMEYNYNAHN




(GS); hPDE5 (aa
VYIMTDKAKNGIKVNFKIRHNIEDGSVQLADHYQQNTPIGDGPVLLPDNH




535 to 860 of
YLSTQSALSKDPNEKRDHMIYFGFVTAAAITHGMDELYKGSEETRELQSL




WT, hPDE5
AAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFTDLNLVQNFQMKHE




(G6325, I648T);
VLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMFAALKASKIQNKLTDL




Linker (SR);
EILALLTAALSHDLDHRGVNNSYIQRSEHPLAQLYCHSIMEHHHFDQCLM




stop)
ILNSPGNQILSGLSIEEYKTTLKIIKQAILATDLALYIKRRGEFFELIRKNQFN





LEDPHQKELFLAMLMTACDLSAITKPWPIQQRIAELVATEFFDQGDRERK





ELNIEPTDLMNREKKNKIPSMQVGFIDAICLQLYEALTHVSEDCFPLLDGC





RKNRQKWQALAEQQSR*







OT-001945
MVSKGAELFTGIVPILIELNGDVNGHKFSVSGEGEGDATYGKLTLKFICTT
8833
8853


(AcGFP (1-239
GKLPVPWPTLVTTLSYGVQCFSRYPDHMKQHDFFKSAMPEGYIQERTIFF




of WT); Linker
EDDGNYKSRAEVKFEGDTLVNRIELTGTDFKEDGNILGNKMEYNYNAHN




(GS); hPDE5 (aa
VYIMTDKAKNGIKVNFKIRHNIEDGSVQLADHYQQNTPIGDGPVLLPDNH




535 to 860 of
YLSTQSALSKDPNEKRDHMIYFGFVTAAAITHGMDELYKGSEETRELQSL




WT, hPDE5
AAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFTDLNLVQNFQMKHE




(L646S); Linker
VLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMFAALKAGKIQNKLTD




(SR); stop)
LEILASLIAALSHDLDHRGVNNSYIQRSEHPLAQLYCHSIMEHHHFDQCL





MILNSPGNQILSGLSIEEYKTTLKIIKQAILATDLALYIKRRGEFFELIRKNQ





FNLEDPHQKELFLAMLMTACDLSAITKPWPISR*







OT-001944
MVSKGAELFTGIVPILIELNGDVNGHKFSVSGEGEGDATYGKLTLKFICTT
8834
8854


(AcGEP (1-239
GKLPVPWPTLVTTLSYGVQCFSRYPDHMKQHDFFKSAMPEGYIQERTIFF




of WT); Linker
EDDGNYKSRAEVKFEGDTLVNRIELTGTDFKEDGNILGNKMEYNYNAHN




(GS); hPDE5 (aa
VYIMTDKAKNGIKVNFKIRHNIEDGSVQLADHYQQNTPIGDGPVLLPDNH




535 to 860 of
YLSTQSALSKDPNEKRDHMIYFGFVTAAAITHGMDELYKGSEETRELQSL




WT, A762V);
AAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFTDLNLVQNFQMKHE




Linker (SR);
VLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMFAALKAGKIQNKLTD




stop)
LEILALLIAALSHDLDHRGVNNSYIQRSEHPLAQLYCHSIMEHHHFDQCL





MILNSPGNQILSGLSIEEYKTTLKIIKQAILATDLALYIKRRGEFFELIRKNQ





FNLEDPHQKELFLAMLMTVCDLSAITKPWPIQQRIAELVATEFFDQGDRE





RKELNIEPTDLMNREKKNKIPSMQVGFIDAICLQLYEALTHVSEDCFPLLD





GCRKNRQKWQALAEQQSR*







OT-001943
MVSKGAELFTGIVPILIELNGDVNGHKFSVSGEGEGDATYGKLTLKFICTT
8835
8855


(AcGEP (1239
GKLPVPWPTLVTTLSYGVQCFSRYPDHMKQHDFFKSAMPEGYIQERTIFF




of WT); Linker
EDDGNYKSRAEVKFEGDTLVNRIELTGTDFKEDGNILGNKMEYNYNAHN




(GS); hPDE5 (aa
VYIMTDKAKNGIKVNFKIRHNIEDGSVQLADHYQQNTPIGDGPVLLPDNH




535 to 860 of
YLSTQSALSKDPNEKRDHMIYFGFVTAAAITHGMDELYKGSEETRELQSL




WT, hPDE5
AAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFTDLNLVQNFQMKHE




(D640N); Linker
VLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMFAALKAGKIQNKLTN




(SR); stop)
LEILALLIAALSHDLDHRGVNNSYIQRSEHPLAQLYCHSIMEHHHFDQCL





MILNSPGNQILSGLSIEEYKTTLKIIKQAILATDLALYIKRRGEFFELIRKNQ





FNLEDPHQKELFLAMLMTACDLSAITKPWPIQQRIAELVATEFFDQGDRE





RKELNIEPTDLMNREKKNKIPSMQVGFIDAICLQLYEALTHVSEDCFPLLD





GCRKNRQKWQALAEQQSR*







OT-001941
MVSKGAELFTGIVPILIELNGDVNGHKFSVSGEGEGDATYGKLTLKFICTT
8836
8856


(AcGEP (1-239
GKLPVPWPTLVTTLSYGVQCFSRYPDHMKQHDFFKSAMPEGYIQERTIFF




of WT); Linker
EDDGNYKSRAEVKFEGDTLVNRIELTGTDFKEDGNILGNKMEYNYNAHN




(GS); hPDE5 (aa
VYIMTDKAKNGIKVNFKIRHNIEDGSVQLADHYQQNTPIGDGPVLLPDNH




535 to 860 of
YLSTQSALSKDPNEKRDHMIYFGFVTAAAITHGMDELYKGSEETRELQSL




WT, N636S);
AAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFTDLNLVQNFQMKHE




Linker (SR);
VLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMFAALKAGKIQSKLTDL




stop)
EILALLIAALSHDLDHRGVNNSYIQRSEHPLAQLYCHSIMEHHHFDQCLMI





LNSPGNQILSGLSIEEYKTTLKIIKQAILATDLALYIKRRGEFFELIRKNQFN





LEDPHQKELFLAMLMTACDLSAITKPWPIQQRIAELVATEFFDQGDRERK





ELNIEPTDLMNREKKNKIPSMQVGFIDAICLQLYEALTHVSEDCFPLLDGC





RKNRQKWQALAEQQSR*







OT-001942
MVSKGAELFTGIVPILIELNGDVNGHKFSVSGEGEGDATYGKLTLKFICTT
8837
8857


(AcGEP (1-239
GKLPVPWPTLVTTLSYGVQCFSRYPDHMKQHDFFKSAMPEGYIQERTIFF




of WT); Linker
EDDGNYKSRAEVKFEGDTLVNRIELTGTDFKEDGNILGNKMEYNYNAHN




(GS); hPDE5 (aa
VYIMTDKAKNGIKVNFKIRHNIEDGSVQLADHYQQNTPIGDGPVLLPDNH




535 to 860 of
YLSTQSALSKDPNEKRDHMIYFGEVTAAAITHGMDELYKGSEETRELQSL




WT, Q623R,
AAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFTDLNLVQNFQMKHE




D654G,
VLCRWILSVKKNYRKNVAYHNWRHAFNTARCMFAALKAGKIQNKLTDL




K741N); Linker
EILALLIAALSHGLDHRGVNNSYIQRSEHPLAQLYCHSIMEHHHFDQCLMI




(SR); stop)
LNSPGNQILSGLSIEEYKTTLKIIKQAILATDLALYIKRRGEFFELIRNNQFN





LEDPHQKELFLAMLMTACDLSAITKPWPIQQRIAELVATEFFDQGDRERK





ELNIEPTDLMNREKKNKIPSMQVGFIDAICLQLYEALTHVSEDCFPLLDGC





RKNRQKWQALAEQQSR*







OT-001940
MVSKGAELFTGIVPILIELNGDVNGHKFSVSGEGEGDATYGKLTLKFICTT
8838
8858


(AcGEP (1-239
GKLPVPWPTLVTTLSYGVQCFSRYPDHMKQHDFFKSAMPEGYIQERTIFF




of WT); Linker
EDDGNYKSRAEVKFEGDTLVNRIELTGTDFKEDGNILGNKMEYNYNAHN




(GS); hPDE5 (aa
VYIMTDKAKNGIKVNFKIRHNIEDGSVQLADHYQQNTPIGDGPVLLPDNH




535 to 860 of
YLSTQSALSKDPNEKRDHMIYFGFVTAAAITHGMDELYKGSEETRELQSL




WT, A673T,
AAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFTDLNLVQNFQMKHE




L756V, C846Y);
VLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMFAALKAGKIQNKLTD




Linker (SR);
LEILALLIAALSHDLDHRGVNNSYIQRSEHPLTQLYCHSIMEHHHFDQCL




stop)
MILNSPGNQILSGLSIEEYKTTLKIIKQAILATDLALYIKRRGEFFELIRKNQ





FNLEDPHQKELFVAMLMTACDLSAITKPWPIQQRIAELVATEFFDQGDRE





RKELNIEPTDLMNREKKNKIPSMQVGFIDAICLQLYEALTHVSEDCFPLLD





GYRKNRQKWQALAEQQSR*







OT-001946
MVSKGAELFTGIVPILIELNGDVNGHKFSVSGEGEGDATYGKLTLKFICTT
8839
8859


(AcGFP (1-239
GKLPVPWPTLVTTLSYGVQCFSRYPDHMKQHDFFKSAMFEGYIQERTIFF




of WT); Linker
EDDGNYKSRAEVKFEGDTLVNRIELTGTDFKEDGNILGNKMEYNYNAHN




(GS); hPDE5 (aa
VYIMTDKAKNGIKVNFKIRHNIEDGSVQLADHYQQNTPIGDGPVLLPDNH




535 to 860 of
YLSTQSALSKDPNEKRDHMIYFGFVTAAAITHGMDELYKGSEETRELQSL




WT, V660A,
AAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFTDLNLVQNFQMKHE




L781F, R794G,
VLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMFAALKAGKIQNKLTD




C825R, E858G);
LEILALLIAALSHDLDHRGANNSYIQRSEHPLAQLYCHSIMEHHHFDQCL




Linker (SR);
MILNSPGNQILSGLSIEEYKTTLKIIKQAILATDLALYIKRRGEFFELIRKNQ




stop)
FNLEDPHQKELFLAMLMTACDLSAITKPWPIQQRIAEFVATEFFDQGDRE





GKELNIEPTDLMNREKKNKIPSMQVGFIDAIRLQLYEALTHVSEDCFPLLD





GCRKNRQKWQALAGQQSR*







OT-001939
MVSKGAELFTGIVPILIELNGDVNGHKFSVSGEGEGDATYGKLTLKFICTT
8840
8860


(AcGFP (1-239
GKLPVPWPTLVTTLSYGVQCFSRYPDHMKQHDFFKSAMFEGYIQERTIFF




of WT); Linker
EDDGNYKSRAEVKFEGDTLVNRIELTGTDFKEDGNILGNKMEYNYNAHN




(GS); hPDE5 (aa
VYIMTDKAKNGIKVNEKIRHNIEDGSVQLADHYQQNTPIGDGPVLLPDNH




535 to 860 of
YLSTQSALSKDPNEKRDHMIYFGFVTAAAITHGMDELYKGSEETRELQSL




WT, hPDE5
AAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFTDLNLVQNFQMKHE




(E642G, G697D,
VLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMFAALKAGKIQNKLTD




I813T); Linker
LGILALLIAALSHDLDHRGVNNSYIQRSEHPLAQLYCHSIMEHHHFDQCL




(SR); stop)
MILNSPDNQILSGLSIEEYKTTLKIIKQAILATDLALYIKRRGEFFELIRKNQ





FNLEDPHQKELFLAMLMTACDLSAITKPWPIQQRIAELVATEFFDQGDRE





RKELNIEPTDLMNREKKNKTPSMQVGFIDAICLQLYEALTHVSEDCFPLL





DGCRKNRQKWQALAEQQSR*









Additional DDs generated by random mutagenesis are provided in Table 15.









TABLE 15







hPDE5 mutants












AA
NA


Construct ID/

SEQ
SEQ


Description
Sequence
ID NO
ID NO





hPDE5 AA
EETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFTDLNLVQNFQ
8861
8891


535-860 of WT
MKHEVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMFAALKAGKIQNKLTD




(M758T)
LEILALLIAALSHDLDHRGVNNSYIQRSEHPLAQLYCHSIMEHHHFDQCLMILNS





PGNQILSGLSIEEYKTTLKIIKQAILATDLALYIKRRGEFFELIRKNQFNLEDPHQK





ELFLATLMTACDLSAITKPWPIQQRIAELVATEFFDQGDRERKELNIEPTDLMNR





EKKNKIPSMQVGFIDAICLQLYEALTHVSEDCFPLLDGCRKNRQKWQALAEQQ







hPDE5 AA
EETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFTDLNLVQNFQ
8862
8892


535-860 of WT
MKREVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMFAALKAGKIQNKLTD




(K752E)
LEILALLIAALSHDLDHRGVNNSYIQRSEHPLAQLYCHSIMEHHHFDQCLMILNS





PGNQILSGLSIEEYKTTLKIIKQAILATDLALYIKRRGEFFELIRKNQFNLEDPHQE





ELFLAMLMTACDLSAITKPWPIQQRIAELVATEFFDQGDRERKELNIEPTDLMNR





EKKNKIPSMQVGFIDAICLQLYEALTHVSEDCFPLLDGCRKNRQKWQALAEQQ







hPDE5 AA
EETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFTDLNLVQNFQ
8863
8893


535-860 of WT
MKHEVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMFAALKAGKIQNKLTD




(C677Y,
LEILALLIAALSHDLDHRGVNNSYIQRSEHPLAQLYYHSIMEHHRFDQCLMILNS




H685R,
PGNQILSGLSIEEYKTTLKIIKQAILVTDLALYIKRRGEFFELIRKNQFNLEDPHQK




A722V)
ELFLAMLMTACDLSAITKPWPIQQRIAELVATEFFDQGDRERKELNIEPTDLMNR





EKKNKIPSMQVGFIDAICLQLYEALTHVSEDCFPLLDGCRKNRQKWQALAEQQ







hPDE5 AA
EETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFTDLNLVQNFQ
8864
8894


535-860 of WT
MKHEVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMFAALKAGKIQNKLSD




(T639S,
LEILALLIAALSHDLDHRGVNNSYIQRSEHPLAQLYCHSIMEHHHFDQCLMILNS




M816R)
PGNQILSGLSIEEYKTTLKIIKQAILATDLALYIKRRGEFFELIRKNQFNLEDPHQK





ELFLAMLMTACDLSAITKPWPIQQRIAELVATEFFDQGDRERKELNIEPTDLMNR





EKKNKIPSRQVGFIDAICLQLYEALTHVSEDCFPLLDGCRKNRQKWQALAEQQ







hPDE5 AA
EEARELQSLAAAVVPSAQTLKITGFSFSDFELSDLETALCTIRMFTDLNLVQNFQ
8865
8895


535-860 of WT
MKHEVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMFAALKAGKIQNKLTD




(T537A,
LEILALLIAALSHDLDHRGVNNSYIQRSEHPLAQLYCHSIMEHHHEDQCLMILNS




D558G, 1706T,
PGNQILSGLSTEEYKTTLKIIKQAILATDLALYIKRRGEFFELIRKNQLNLEDPHQK




F744L, D764N)
ELFLAMLMTACNLSAITKPWPIQQRIAELVATEFFDQGDRERKELNIEPTDLMNR





EKKNKIPSMQVGFIDAICLQLYEALTHVSEDCFPLLDGCRKNRQKWQALAEQQ







hPDE5 AA
EETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFTDLNLVRNFQ
8866
8896


535-860 of WT
MKHEVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMFAALKAGKIQNKLTD




(Q586R,
LEILALLIAALSHDLDHRGVNNSYIQRSEHPLAQLYCHSIMEHHHFDQCLMILNS




D724G)
PGNQILSGLSIEEYKTTLKIIKQAILATGLALYIKRRGEFFELIRKNQFNLEDPHQK





ELFLAMLMTACDLSAITKPWPIQQRIAELVATEFFDQGDRERKELNIEPTDLMNR





EKKNKIPSMQVGFIDAICLQLYEALTHVSEDCFPLLDGCRKNRQKWQALAEQQ







hPDE5 AA
EETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFTDLNLVQNFQ
8867
8897


535-860 of WT
MKHEVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMFAALKAGKIQNKLTD




(F686S)
LEILALLIAALSHDLDHRGVNNSYIQRSEHPLAQLYCHSIMEHHHSDQCLMILNS





PGNQILSGLSIEEYKTTLKIIKQAILATDLALYIKRRGEFFELIRKNQFNLEDPHQK





ELFLAMLMTACDLSAITKPWPIQQRIAELVATEFFDQGDRERKELNIEPTDLMNR





EKKNKIPSMQVGFIDAICLQLYEALTHVSEDCFPLLDGCRKNRQKWQALAEQQ







hPDE5 AA
EETRGLQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFTDLNLVQNFQ
8868
8898


535-860 of WT
MKHEVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMFAALKAGKIQNKLTD




(E539G, L738I)
LEILALLIAALSHDLDHRGVNNSYIQRSEHPLAQLYCHSIMEHHHFDQCLMILNS





PGNQILSGLSIEEYKTTLKIIKQAILATDLALYIKRRGEFFEIIRKNQFNLEDPHQKE





LFLAMLMTACDLSAITKPWPIQQRIAELVATEFFDQGDRERKELNIEPTDLMNRE





KKNKIPSMQVGFIDAICLQLYEALTHVSEDCFPLLDGCRKNRQKWQALAEQQ







hPDE5 AA
EETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFTDLNLVQNFQ
8869
8899


535-860 of WT
MKHEVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMFAALKAGKIRNKLTD




(Q635R,
LEILALLIAALSHDLDHRGVNNSYIQRSEHPLAQLYCHSIMEHHHFDQCLMILNS




E753K, I813T)
PGNQILSGLSIEEYKTTLKIIKQAILATDLALYIKRRGEFFELIRKNQFNLEDPHQK





KLFLAMLMTACDLSAITKPWPIQQRIAELVATEFFDQGDRERKELNIEPTDLMNR





EKKNKTPSMQVGFIDAICLQLYEALTHVSEDCFPLLDGCRKNRQKWQALAEQQ







hPDE5 AA
EETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFTDLNLVQNFQ
8870
8900


535-860 of WT
MKHEVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMFAALKAGKIQNKLTD




(L672P,
LEILALLIAALSHDLDHRGVNNSYIQRSEHPPAQLYCHSIMEHHHFDQCLMILNS




S836L)
PGNQILSGLSIEEYKTTLKIIKQAILATDLALYIKRRGEFFELIRKNQFNLEDPHQK





ELFLAMLMTACDLSAITKPWPIQQRIAELVATEFFDQGDRERKELNIEPTDLMNR





EKKNKIPSMQVGFIDAICLQLYEALTHVLEDCFPLLDGCRKNRQKWQALAEQQ







hPDE5 AA
EETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFTDLNLVQNFQ
8871
8901


535-860 of WT
MKHEVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMFAALKAGKIQNKLTD




(M691T,
LEILALLIAALSHDLDHRGVNNSYIQRSEHPLAQLYCHSIMEHHHFDQCLTILNSP




D764N)
GNQILSGLSIEEYKTTLKIIKQAILATDLALYIKRRGEFFELIRKNQFNLEDPHQKE





LFLAMLMTACNLSAITKPWPIQQRIAELVATEFFDQGDRERKELNIEPTDLMNRE





KKNKIPSMQVGFIDAICLQLYEALTHVSEDCFPLLDGCRKNRQKWQALAEQQ







hPDE5 AA
EETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFTDLNLVQNFQ
8872
8902


535-860 of WT
MKHEVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMFAALKAGKIQNKLTD




(R807G)
LEILALLIAALSHDLDHRGVNNSYIQRSEHPLAQLYCHSIMEHHHFDQCLMILNS





PGNQILSGLSIEEYKTTLKIIKQAILATDLALYIKRRGEFFELIRKNQFNLEDPHQK





ELFLAMLMTACDLSAITKPWPIQQRIAELVATEFFDQGDRERKELNIEPTDLMNG





EKKNKIPSMQVGFIDAICLQLYEALTHVSEDCFPLLDGCRKNRQKWQALAEQQ







hPDE5 AA
EETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIQMFTDLNLVQNFQ
8873
8903


535-860 of WT
MKHEVLRRWILSVKKNYRKNVAYHNWRHAFNTAQCMFAALKAGKIQNKLTD




(R577Q,
LEILALLIAALSHDLDHRGANNSYIQRSEHPLAQLYCHSIMEHHHFDQCLMILNS




C596R,
PGNQILSGLSIEEYKTTLKVIKQAILATDLALYIKRRGEFFELIRKNQFNLEDPHQK




V660A, I715V,
ELFLAMLMTACDLSAITKPWPIQQRIAELVATKFFDQGDRERKELNIEPTDLMNR




E785K, L856P)
EKKNKIPSMQVGFIDAICLQLYEALTHVSEDCFPLLDGCRKNRQKWQAPAEQQ







hPDE5 AA
EETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFTDLNLVQNFQ
8874
8904


535-860 of WT
MKHEVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMFAALKAGKIQNKLTD




(I720V, F820S)
LEILALLIAALSHDLDHRGVNNSYIQRSEHPLAQLYCHSIMEHHHFDQCLMILNS





PGNQILSGLSIEEYKTTLKIIKQAVLATDLALYIKRRGEFFELIRKNQFNLEDPHQK





ELFLAMLMTACDLSAITKPWPIQQRIAELVATEFFDQGDRERKELNIEPTDLMNR





EKKNKIPSMQVGSIDAICLQLYEALTHVSEDCFPLLDGCRKNRQKWQALAEQQ







hPDE5 AA
EETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFTDLNLVQNFQ
8875
8905


535-860 of WT
MKHEVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMFAALKAGKIQNKLTD




(S695G,
LEILALLIAALSHDLDHRGVNNSYIQRSEHPLAQLYCHSIMEHHHFDQCLMILNG




E707K, I739M,
PGNQILSGLSIKEYKTTLKIIKQAILATDLALYIKRRGEFFELMRKNQFNLEDPHQ




C763R)
KELFLAMLMTARDLSAITKPWPIQQRIAELVATEFFDQGDRERKELNIEPTDLMN





REKKNKIPSMQVGFIDAICLQLYEALTHVSEDCFPLLDGCRKNRQKWQALAEQQ







hPDE5 AA
EETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFTDLNLVQNFQ
8876
8906


535-860 of WT
MKHEVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMFAALKAGKIQNKLTD




(Y709H,
LEILALLIAALSHDLDHRGVNNSYIQRSEHPLAQLYCHSIMEHHHFDQCLMILNS




K812R, L832P)
PGNQILSGLSIEELIKTTLKIIKQAILATDLALYIKRRGEFFELIRKNQFNLEDPHQK





ELFLAMLMTACDLSAITKPWPIQQRIAELVATEFFDQGDRERKELNIEPTDLMNR





EKKNRIPSMQVGFIDAICLQLYEAPTHVSEDCFPLLDGCRKNRQKWQALAEQQ







hPDE5 AA
EETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFTDLSLVQNFQM
8877
8907


535-860 of WT
KHEVLCRWISVKKNYRKNVAYHNWRHAFNTAQCMFAALKAGKIQNKLTDLE




(N583S,
ILALLIAALSHDLDHRGVNNSYIQRSEHPLAQLYCHSIMEHHHFDQCLMILNSPG




K752E, C846S)
NQILSGLSIEEYKTTLKIIKQAILATDLALYIKRRGEFFELIRKNQFNLEDPHQEELF





LAMLMTACDLSAITKPWPIQQRIAELVATEFFDQGDRERKELNIEPTDLMNREK





KNKIPSMQVGFIDAICLQLYEALTHVSEDCFPLLDGSRKNRQKWQALAEQQ







hPDE5 AA
EETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFTDLNLVQNFQ
8878
8908


535-860 of WT
MKHEVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMFAALKAGKIQNKLTD




(E682G,
LEILALLIAALSHDLDHRGVNNSYIQRSEHPLAQLYCHSIMGHHHFDQCLMILNS




D748N)
PGNQILSGLSIEEYKTTLKIIKQAILATDLALYIKRRGEFFELIRKNQFNLENPHQK





ELFLAMLMTACDLSAITKPWPIQQRIAELVATEFFDQGDRERKELNIEPTDLMNR





EKKNKIPSMQVGFIDAICLQLYEALTHVSEDCFPLLDGCRKNRQKWQALAEQQ







hPDE5 AA
EETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFTDLNLVQNFQ
8879
8909


535-860 of WT
MRHEVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMFAALKAGKIQNKLTD




(K591R, I643T,
LETLALLIAALSHDLDHRGVNNSYIQRSEHPLAQLYCHSIMEHHHFDQCLMILNS




L856P)
PGNQILSGLSIEEYKTTLKIIKQAILATDLALYIKRRGEFFELIRKNQFNLEDPHQK





ELFLAMLMTACDLSAITKPWPIQQRIAELVATEFFDQGDRERKELNIEPTDLMNR





EKKNKIPSMQVGFIDAICLQLYEALTHVSEDCFPLLDGCRKNRQKWQAPAEQQ







hPDE5 AA
EETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFTDLNLVQNFQ
8880
8910


535-860 of WT
MKHEVLCRWILSVKKNYRKNVAYHNWRHASNTAQCMFAALKAGKIQNKLTD




(F619S,
LEILALLIAALSHDLDHRGVNNSYIQRSEHPLAQLYCHSIMEHHHFDQCLMILNS




V818A,
PGNQILSGLSIEEYKTTLKIIKQAILATDLALYIKRRGEFFELIRKNQFNLEDPHQK




Y829C)
ELFLAMLMTACDLSAITKPWPIQQRIAELVATEFFDQGDRERKELNIEPTDLMNR





EKKNKIPSMQAGFIDAICLQLCEALTHVSEDCFPLLDGCRKNRQKWQALAEQQ







hPDE5 AA
EETRELQSLAAAVEPSAQTLKITDFSFSDFELSDLETALCTIRMFTDLNLVQNFLM
8881
8911


535-860 of WT
KHEVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMFAALKAGIIQNKLTDLEI




(V548E,
LALLIAALSHDLDHRGVNNSYIQRSEHPLAQLYCHSITEHHHFDQCLMILNSPGN




Q589L, K633I,
QILIGLSIEEYKTTLKIIKQAILATDLALYIKRRGEFFELIRKNQFNLEDPHQEELFL




M681T, S702I,
AMLMTACDLSAITKPWPIQQRIAEPVATEFFDQGDRERKELNIEPTDLMNREKK




K752E, L781P,
NKIPSMQVGFIDAICLQLYEALTHVSEDCFPLLDGCRKNRQKWQALTEQQ




A857T)








hPDE5 AA
EETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFTDLNLVQNFQ
8882
8912


535-860 of WT
MKHEVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMFAALKAGKIQNKLTD




(S652G,
LEILALLIAALGHDLDHRGVNNSYIQRSEHPLAQLYCHSIMEHHHFDRCLMILNS




Q688R)
PGNQILSGLSIEEYKTTLKIIKQAILATDLALYIKRRGEFFELIRKNQFNLEDPHQK





ELFLAMLMTACDLSAITKPWPIQQRIAELVATEFFDQGDRERKELNIEPTDLMNR





EKKNKIPSMQVGFIDAICLQLYEALTHVSEDCFPLLDGCRKNRQKWQALAEQQ







hPDE5 AA
EETRELQSLAAAVVPSAQTLKITDFSFSDFGLSDLETALCTIRMFTDLNLVQNFQ
8883
8913


535-860 of WT
MKHEVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMFAALKAGKIQNKLTD




(E565G)
LEILALLIAALSHDLDHRGVNNSYIQRSEHPLAQLYCHSIMEHHHFDQCLMILNS





PGNQILSGLSIEEYKTTLKIIKQAILATDLALYIKRRGEFFELIRKNQFNLEDPHQK





ELFLAMLMTACDLSAITKPWPIQQRIAELVATEFFDQGDRERKELNIEPTDLMNR





EKKNKIPSMQVGFIDAICLQLYEALTHVSEDCFPLLDGCRKNRQKWQALAEQQ







hPDE5 AA
EETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFTDLNLVQNFQ
8884
8914


535-860 of WT
MKHEVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMFAALKAGKIQNKLTD




(I774V)
LEILALLIAALSHDLDHRGVNNSYIQRSEHPLAQLYCHSIMEHHHFDQCLMILNS





PGNQILSGLSIEEYKTTLKIIKQAILATDLALYIKRRGEFFELIRKNQFNLEDPHQK





ELFLAMLMTACDLSAITKPWPVQQRIAELVATEFFDQGDRERKELNIEPTDLMN





REKKNKIPSMQVGFIDAICLQLYEALTHVSEDCFPLLDGCRKNRQKWQALAEQQ







hPDE5 AA
EETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFTDLNLVQNFQ
8885
8915


535-860 of WT
MRHEVECRWILSVKKNYRKNVAYHNWRHAFNTAQCMFAALKAGKIQNKLTD




(K591R)
LEILALLIAALSHDLDHRGVNNSYIQRSEHPLAQLYCHSIMEHHHFDQCLMILNS





PGNQILSGLSIEEYKTTLKIIKQAILATDLALYIKRRGEFFELIRKNQFNLEDPHQK





ELFLAMLMTACDLSAITKPWPIQQRIAELVATEFFDQGDRERKELNIEPTDLMNR





EKKNKIPSMQVGFIDAICLQLYEALTHVSEDCFPLLDGCRKNRQKWQALAEQQ







hPDE5 AA
EETRELQSLAAAVVPSAQTLKITDSSFSDFELSDLETALCTIRMFTDLNLVQNFQ
8886
8916


535-860 of WT
MKHEVECRWILSVKKNYRKNVAYHNWRHAFNTAQCMFAALKAGKIQNKLTD




(F559S,
LEILALLIAALSHDLDHRGVNNSYIQRSEHPLAQLYCHSIMEHHHFDQCLMILNS




Y709C,
PGNQILSGLSIEECKTTLKIIKQAILATDLALYIKRRGEFFELIRKNQFNLEDPHQK




M760T)
ELFLAMLTTACDLSAITKPWPIQQRIAELVATEFFDQGDRERKELNIEPTDLMNR





EKKNKIPSMQVGFIDAICLQLYEALTHVSEDCFPLLDGCRKNRQKWQALAEQQ







hPDE5 AA
EETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFTDLNLVQNFQ
8887
8917


535-860 of WT
MKHEVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMFAALKAGKIQNKLTD




(A649V,
LEILALLIVTLSHDLDHRGVNNSYIQRSEHPLAQLYCHSIMEHHHFDQCLMILNSP




A650T, K730E,
GNQILSGLSIEEYKTTLKIIKQAILATDLALYIERRGEFFELIRKNQFNLEDPHQKE




E830K)
LFLAMLMTACDLSAITKPWPIQQRIAELVATEFFDQGDRERKELNIEPTDLMNRE





KKNKIPSMQVGFIDAICLQLYKALTHVSEDCFPLLDGCRKNRQKWQALAEQQ







hPDE5 AA
EETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFTDLNLVQNFQ
8888
8918


535-860 of WT
MKHEVECRWILSVKKNYRKNVAYHNWRHAFNTAQCMFAALKAGKIQNKLTD




(Y728C,
LEILALLIAALSHDLDHRGVNNSYIQRSEHPLAQLYCHSIMEHHHFDQCLMILNS




Q817R)
PGNQILSGLSIEEYKTTLKIIKQAILATDLALCIKRRGEFFELIRKNQFNLEDPHQK





ELFLAMLMTACDLSAITKPWPIQQRIAELVATEFFDQGDRERKELNIEPTDLMNR





EKKNKIPSMRVGFIDAICLQLYEALTHVSEDCFPLLDGCRKNRQKWQALAEQQ







hPDE5 AA
EETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFTDLNLVQNFQ
8889
8919


535-860 of WT
MKHEVPCRWILSVKKNYRKNVAYHNWRHAFNTAQCMFAALKAGKIQNKLTD




(L595P,
LEILALLIAALSHDLDHRGVNNSYIQRSEHPLAQLYCHSIMEHHHFDQCLMILNS




K741R)
PGNQILSGLSIEEYKTTLKIIKQAILATDLALYIKRRGEFFELIRRNQFNLEDPHQK





ELFLAMLMTACDLSAITKPWPIQQRIAELVATEFFDQGDRERKELNIEPTDLMNR





EKKNKIPSMQVGFIDAICLQLYEALTHVSEDCFPLLDGCRKNRQKWQALAEQQ







hPDE5 AA
EETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIWMFTDLNLVQNFQ
8890
8920


535-860 of WT
MKHEVLCRWILSVKKNYRKNVAYHNRRHAFNTAQCMFAALKAGKIQNKLTDL




(R577W,
EILALLIAALSHDLDHRGVNNSYIQRSEHPLAQLYCHSIMEHHHFDQCLMILNSP




W615R,
GNQILSGLSIEEYKTTLKIIKQAILATDLALYIKRRGEFFELIRKNQFNLEDPHQKE




M805T, I821V)
LFLAMLMTACDLSAITKPWPIQQRIAELVATEFFDQGDRERKELNIEPTDLTNRE





KKNKIPSMQVGFVDAICLQLYEALTHVSEDCFPLLDGCRKNRQKWQALAEQQ









Stimulus

Biocircuits of the disclosure are triggered by one or more stimuli. Stimuli may be selected from a ligand, an externally added or endogenous metabolite, the presence or absence of a defined ligand, pH, temperature, light, ionic strength, radioactivity, cellular location, subject site, microenvironment, the presence or the concentration of one or more metal ions.


In some embodiments, the stimulus is a ligand. Ligands may be nucleic acid-based, protein-based, lipid based, organic, inorganic or any combination of the foregoing. In some embodiments, the ligand is selected from the group consisting of a protein, peptide, nucleic acid, lipid, lipid derivative, sterol, steroid, metabolite derivative and a small molecule. In some embodiments, the stimulus is a small molecule. In some embodiments, the small molecules are cell permeable. Ligands useful in the present disclosure include without limitation, any of those taught in Table 2 of co-owned U.S. Provisional Patent Application No. 62/320,864 filed Apr. 11, 2016, 62/466,596 filed Mar. 3, 2017 and the International Publication WO2017/180587 (the contents of each of which are herein incorporated by reference in their entirety). In some embodiments, the small molecules are FDA-approved, safe and orally administered.


In some embodiments, the ligand binds to phosphodiesterases. In some embodiments, the ligand binds to and inhibits phosphodiesterase function and is herein referred to as a phosphodiesterase inhibitor.


In some embodiments, the ligand is a small molecule that binds to phosphodiesterase 5. In one embodiment, the small molecule is a hPDE5 inhibitor. Examples of hPDE5 inhibitors include, but are not limited to, Sildenafil, Vardenafil, Tadalafil, Avanafil, Lodenafil, Mirodenafil, Udenafil, Benzamidenafil, Dasantafil, Beminafil, SLx-2101, LAS 34179, UK-343,664, UK-357903, UK-371800, and BMS-341400.


In some embodiments, ligands include sildenafil-derived ligands containing portions of the ligand known to mediate binding to hPDE5. Ligands may also be modified to reduce off-target binding to Phosphodiesterases and increase specific binding to hPDE5.


hPDE5 inhibitors cover a broad pharmacokinetic space with respect to the approved dose and their duration of action and is described in Table 16. In Table 16, PO stands for per os (i.e. by mouth); QD represents quaque die (i.e. every day); IV represents intravenous; HD represents ter un die (i.e. three times a day); and Cmax represents the peak serum concentration that a drug achieves after its administration.









TABLE 16







Pharmacokinetics of hPDE5 inhibitors















Duration of



Drug
Approved Dose
Cmax
action

















Sildenafil
PO: 100 mg QD or
PO: 1 μM
4-8
hrs




20 mgTID
IV: 1 μM




IV: 10 mgTID



Vardenafil
PO: 20 mgQD
0.1 μM
2-8
hrs



Tadalafil
PO: 40 QD
1.5 μM
24-36
hrs










In some embodiments, the ligand selection is determined by the magnitude and duration of expression of the effector modules of the disclosure using the PK parameters described in Table 16. In some embodiments, high levels of expression of the payload for a short duration of time may be desired. In such instances, vardenafil may be selected as the ligand. In some embodiments, high levels of expression of the payload may be desired for a long duration. In such instances, the ligand, Tadalafil may be selected. In some embodiments, low levels of expression of the payload may be desired for a long duration of time. In such instances, Sildenafil may be selected as the ligand.


In some embodiments, additional hPDE5 inhibitors may be developed to show selectivity towards a specific phosphodiesterase protein; to reduce or increase the duration of treatment with the ligand; and to improve the rate of onset of the ligand.


In one embodiment, the ligand may not be capable of suppressing the immune system i.e. the ligand may be non-immunosuppressive.


Ligands may also be selected from the analysis of the dependence of a known hPDE5 ligand's activity on its molecular/chemical structure, through Structure Activity Relationships (SAR) study. Any of the methods related to SAR, known in art may be utilized to identify stabilizing ligands of the disclosure. SAR may be utilized to improve properties of the ligand such as specificity, potency, pharmacokinetics, bioavailability, and safety. SAR analysis of known hPDE5 inhibitors may also be combined with high resolution X ray structures of hPDE5 complexed with ligands. The X ray structure of hPDE5 co-crystallized with Sildenafil, Tadalafil, and Vardenafil have been studied and the binding mode of the inhibitors has been identified (Zhang, K. Y. J. et al. (2004) Mol. Cell., 15, 279; Card, G. L. et al. (2004) Structure. 12, 2233; the contents of each of which are incorporated herein by reference in their entirety). There are several classes of hPDE5 inhibitors described. These include aryl, beryl, heteroaryl or heterobiaryl classes with different scaffold structures. The aryl class includes substituted nitroanilines and the biaryl class includes substituted naphthalenes. The heterobiaryl and heterotriaryl are further sub classified based on its fused system into pyrazolopyrimidinones, triazolopyrimidinones, imidazotriazines, purines, pyrrolopyrimidinones, triazolotrizinones, isoxazolopyrimidinones, β-carbolines, pyrroloquinolones, isoquinolines, quinazolines, imidazoquinazolinones, pyrazolopyridines, pyrazolopyridopyrimidinones. These widely different chemical structures are suggested to have different orientation in the binding site of hPDE5 enzyme. Sildenafil has three main chemical groups, the pyrazolopyrimidinone ring, the ethoxyphenyl ring and the methylpiperazine ring. The pyrazolopyrimidinone group is responsible for the binding of the drug to its active binding site of hPDE5.


Many hPDE inhibitors act by competing with the substrate, cGMP, for the catalytic site of the enzyme. Sildenafil and Vardenafil differ in the heterocyclic ring system used to mimic the purine ring of cGMP. They also differ in the substituent (ethyl/methyl) of a piperazine side chain. Although these are the only structural differences, Vardenafil is more potent than Sildenafil. In some embodiments, the structural differences between different know inhibitors of hPDE may be utilized to design better hPDE inhibitor based ligands. For example, Corbin et al. synthesized an analog of sildenafil that contained the sildenafil ring system but with the appended ethyl group found in vardenafil; and an analog of vardenafil (dimethyl-vardenafil) that contained the vardenafil ring system but with the appended methyl group found in sildenafil was also generated. These studies identified that the ring systems play a critical role in higher potency of vardenafil over sildenafil (Corbin J D et al. (2004) Neurochem Int; 45(6):859-63; the contents of which are incorporated herein by reference in their entirety). Based on the X ray crystal structure of hPDE complexed with sildenafil, the active site region was defined as a sphere within the 6.5 Angstrom from the reference ligand, sildenafil. Surface hydrophobicity (lipophilicity) potential physicochemical property map of the hPDE5 active site may be generated based on this information. The ethoxyphenyl group of sildenafil fits into the hydrophobic pocket formed by Phe 786, Ala783, Leu804, and Val782, and the pyrazolopyrimidinone ring also forms hydrophobic interaction with the side chains of Val782, Tyr612, and Phe820 in the binding pocket.


New hPDE5 inhibitors may also be developed using a series of analogs of known hPDE5 inhibitors. 3D-Quantitative Structure activity analysis (QSAR), CoMFA (comparative molecular field analysis) and CoMSIA (comparative molecular similarity indices analysis) may be implemented for this purpose. In one embodiment, the structure of hPDE5 inhibitor may preferentially incorporate an N ethyl group in the pyrrolopyrimidinone ring at N5 position; and a propoxyphenyl group, which bear a substituent; one methylene unit longer, respectively in comparison with the corresponding positions of sildenafil. Any of the modifications to Sildenafil structure taught by Koo J et al. may be useful in the present disclosure (Koo J et al. (2007) Bioorg. & Med. Chem Lett 17; 4271-4274; the contents of which are incorporated by reference in their entirety).


In some embodiments, the stimulus may be a ligand that binds to more than one phosphodiesterase. In one embodiment, the stimulus is a pan phosphodiesterase inhibitor that may bind to two or more hPDEs such as Aminophyline, Paraxanthine, Pentoxifylline, Theobromine, Dipyridamole, Theophyline, Zaprinast, Icariin, CDP-840, Etazolate and Glaucine.


In some embodiments, the ligand is a hPDE1 inhibitor. Exemplary hPDE1 inhibitor, Vinpocetine may in some instances be used as the ligand in the present disclosure. In some embodiments, the ligand is a hPDE2 inhibitor. Exemplary hPDE2 inhibitors include EHNA (erythro-9-(2-hydroxy-3-nonyl) adenine), Oxindole, PDP and BAY 60-7550. Inhibitors that selectively inhibit a hPDE2 isoform may also be used, for example, substituted pyrido (2,3-b) pyrazines having a hPDE2A selective inhibitory action (See, e.g., U.S. Pat. No. 9,527,841; the contents of which are incorporated by reference in its entirety). In some embodiments, the ligand is a hPDE3 inhibitor. hPDE3 inhibitors useful in the disclosure include, but are not limited to Amrinone, Cilostazol, Milrinone, Enoximone, and Pimobendan. In some embodiments, the ligand is a hPDE4 inhibitor. Exemplary hPDE4 inhibitors include FDA approved small molecules such as, but not limited to AN2728 (4-[(1-hydroxy-1,3-dihydro-2,1-benzoxaborol-5-yl) oxy] benzonitrile), Apremilast/CC10004 (N-{2-[(1S)-1-(3-Ethoxy-4-methoxyphenyl)-2-(methylsulfonyl) ethyl]-1,3-dioxo-2,3-dihydro-1H-isoindol-4-yl} acetamide), and Roflumilast. Other exemplary hPDE4 inhibitors include Other small molecules that inhibit hPDE4 also include E6005/RVT501, Cilomilast/SB-207,499, Ibudilast (AV-411 or MN-166), Mesembrenone, Piclamilast/RP 73401, Rolipram, Atizoram/CP-80633, Arofylline, CC-1088, Catramilast, CGH-2466, Cipamfylline, Drotaverine, Filaminast/WAY-PDA 641, HT-0712, DNS-001, ICI-63197, Indimilast, Irsogladine/MN 1695, Lirimilast/BAY 19-8004, Oglemilast, Revamilast, Ro 20-1724, Ronomilast, GSK256066, DC-TA-46, AWD 12-281 and YM-976. Any of the hPDE4 inhibitors described in International Patent Publication No. WO2014078220A1 and US Patent Publication No. US20170129887A1 may be useful in the present disclosure (the contents of each of which are incorporated by reference in their entirety). In some embodiments, the ligand is a hPDE6 inhibitor. In some embodiments, the ligand is a hPDE7 inhibitor. Exemplary hPDE7 inhibitors, include BRL-50481 (N, N,2-Trimethyl-5-nitrobenzenesulfonamide) and ASB16165 (1H-Thieno(2,3-C) pyrazole-5-carboxamide, 1-cyclohexyl-N-(6-(4-hydroxy-1-piperidinyl)-3-pyridinyl)-3-methyl). In some embodiments, the ligand is a hPDE8 inhibitor such as PF-04957325 (Pfizer). In some embodiments, the ligand is a hPDE9 inhibitor. Exemplary hPDE9 inhibitors include, but are not limited to BAY73-6691 (1-(2-chlorophenyl)-6-[(2R)-3,3,3-trifluoro-2-methylpropyl]-1,5-dihydro-4H-pyrazolo[3,4-d] pyrimidine-4-one), PF-04447943 (6-[(3S,4S)-4-methyl-1-(pyrimidin-2-ylmethyl) pyrrolidin-3-yl]-1-(oxan-4-yl)-2H-pyrazolo[3,4-d] pyrimidin-4-one) and WYQ-C28L. In some embodiments, the ligand is a hPDE10 inhibitor. Exemplary PDE10 inhibitors include, but are not limited to OMS 824, Papaverine and PF-2545920 (2-(4-(1-methyl-4-pyridin-4-yl-1H-pyrazol-3-yl) phenoxymethyl) quinolone), and GS-5759 (Gilead).


In one embodiment, the stimuli of the present disclosure may be FDA approved ligands capable of binding to the specific DDs or target regions within the DDs. In other embodiments, FDA approved ligands may be used to screen potential binders in the human protein. DDs may be designed based on the positive hits from the screen using the portion of the protein that binds to the ligand. In one embodiment, proteins that bind to FDA approved ligands as off target interactions may be used to design DDs of the present disclosure.


In some embodiments, ligands that do not affect the activity of the immune cell, and/or the chimeric antigen receptor, in the absence of the SREs may be preferably selected.


Stabilizing Domains

In some embodiments, the stimulus response element may be stabilized in the absence of the stimulus but destabilized by the stimulus. In some embodiments, SREs may be derived from protein complexes that comprise at least one protein-protein interaction. In other aspects, the SRE may form a protein-protein interaction with a natural protein within the cell. Protein complexes reduce the exposure of the constituent proteins to the risk of undesired oligomerization by reducing the concentration of the free monomeric state. Payloads appended to such SREs may stabilized in the absence of the stimulus. In some aspects, the stimulus may be a small molecule that is capable of interrupting or disrupting the protein-protein interactions related to the SRE. In such instances, addition of the stimulus, results in the reduced expression and/or function of the payload. In some embodiments, stimuli that induce conformational change of the SRE may be utilized. In one aspect, the SRE may be stabilized by the conformational change. In another aspect, the SRE may be destabilized by the conformational change. The stimuli may also be small molecules that disrupt post translational modification of SREs which may result in the disruption of the protein-protein interaction related to the SRE. In some embodiments, SREs may be identified using protein interatomic techniques known in the art. Such methods may enable the identification of protein interactions that are therapeutically relevant. Any of the large-scale quantitative proteomics methods described in International Patent Publication NOs. WO2017210427A1, WO2016196994A9, and WO2014200987A3 may be useful in the present disclosure (the contents of each of which are incorporated by reference in their entirety).


Molecular Switches in Biocircuits, Genetic Circuits
Molecular Switches

In some embodiments, the DDs described herein can include aspects of molecular switches. Alternatively or additionally, molecular switches can be constructed using DDs as described. The term “molecular switch” as used herein refers to any molecule that can be reversibly shifted between two or more stable states in response to a stimulus (e.g., a ligand). Molecular switches can be employed in biocircuits or genetic circuits, i.e., engineered input-responsive biological circuits.


In some embodiments, molecular switches can be RNA-based switches. As a non-limiting example, a DD-regulated effector module can be provided in an RNA molecule that comprises a coding sequence for a destabilization domain fused to a translational repressor such as, for example, L7Ae, a kink-turn (K-turn) motif in the 5′ UTR of a payload mRNA, and the coding sequence for the payload (e.g., peptide or protein) (see, e.g., International Patent Publication NO: WO2016040395, the contents of which are incorporated herein by reference in their entirety). L7Ae is an archaeal protein that binds K-turn and K-loop motifs with high affinity. In the absence of a ligand that stabilizes the destabilization domain, fusion L7Ae protein is degraded and the payload peptide or protein is expressed (ON state), whereas in the presence of the ligand, the fusion L7Ae protein is not destabilized and binds to the K-turn motif and represses expression of the payload peptide or protein (OFF state). Other translational regulation systems can also be used, such as, but not limited to, MS2-tethered repressors, Tet repressors, and microRNAs. Other uses of tunable expression repressors are contemplated; for example, effector modules comprising DD-regulated repressor payloads can be used to control inducible expression of transgenes, including to block background or “leaky” expression of transgenes (see U.S. Pat. No. 9,388,425, the contents of which are incorporated herein by reference in their entirety).


DD-regulated effector modules as described herein can be utilized to establish tunable bistable genetic toggles, wherein ligand-mediated stabilization and/or destabilization of a SRE appended, for example, to a payload of interest stably shifts expression of a gene of interest between on and off states (see U.S. Pat. No. 6,841,376, the contents of which are incorporated herein by reference in their entirety). Trans-acting SREs can also be utilized to tunably transition cis-acting self-repressive expression cassettes (see U.S. Pat. No. 10,208,312, the contents of which are incorporated herein by reference in their entirety).


RNA-based molecular switches can be synthetic RNA. In some cases, such RNA molecules can comprise modified bases (modRNA) or self-replicating RNAs (replicons). RNA-based molecular switches can be responsive to small molecules, for example, small molecule-responsive RNA binding proteins (RBPs) (e.g., Wagner et al., Nat. Chem. Bio. 2018 14:1043-50). In this way, effector modules as described herein can be RBPs useful in regulating RNA circuits.


In some embodiments, molecular switches can be switched on/off via dimerization. For example, a first effector module can comprise a DD-regulated SRE which is a first member of a dimerization pair and optionally a first payload, and a second effector module can comprise a DD-regulated SRE which is second member of a dimerization pair and optionally a second payload, wherein the two members of the dimerization pair dimerize upon addition of a dimerization ligand. In some embodiments, dimerization can restore stability of the members of the dimerization pair and/or the attached payloads. Dimerization induces interaction, whether direct or indirect, of the two payloads to create a desired effect. In some embodiments, dimerization can induce degradation of the dimerization pair and/or the attached payloads. For example, bivalent small molecules can dimerize two molecules of an E3 ubiquitin ligase to induce self-degradation (see, e.g., Maniaci et al., Nat Commun. 2017 Oct. 10; 8(1):830, the contents of which are incorporated herein by reference in their entirety). A dimerization pair can comprise, or be derived from, for example, an antibody and its antigen, two fragments of an antibody, a ligand-binding domain and a cognate receptor (e.g., any of those described in International Patent Publication NO: WO2017120546, the contents of which are incorporated herein by reference in their entirety), and an E3 ubiquitin ligase and a substrate (e.g., as described in Maniaci et al.).


In some embodiments, molecular switches can be conditionally active in specific cell types or under specific cellular conditions. For example, the stimulus required to stimulate the DD-regulated SREs of the effector modules may only be present in a particular cell type or under a particular cellular condition. This allows various applications, such as cell-type specific delivery of a payload, or detection of a particular cellular target. Based on this property, biocircuits or effector modules described herein can be developed as biosensors. For example, a DD can be fused to a reporter protein (e.g., GFP). Such DD, in the context of an SRE, can contain mutations such that the SRE is conditionally stable only in the presence of a stabilizing ligand which is also the target to be detected. When the target is present in the cell, the fusion protein is stabilized and the reporter activity can be detected (see, e.g., International Patent Publication NOs: WO2009137136, WO2017048316, and WO2017156238; and U.S. Pat. Nos. 8,329,889, and 9,766,255, the contents of each of which are incorporated herein by reference in their entireties). In some embodiments, genetic circuits may include a conditional NF-kB (nuclear factor kappa-B) responsive promoter driving expression of the effector modules described herein. Such circuits are described in the International Patent Publication WO2018170390, the contents of which are incorporated by reference in their entirety.


In some embodiments, engineered cell circuits that enable multifactorial modulation within and/or near a tumor (a tumor microenvironment (TME)) may be utilized. Such circuits are described in the International Patent Publication WO2018191619, the contents of which are incorporated by reference in their entirety.


In some embodiments, the biocircuits described herein may include SynNotch switches that include a synthetic notch (SynNotch) receptors. SynNotch receptors contain the core regulatory domain of the juxtacrine signaling receptor Notch, linked to a chimeric extracellular recognition domain (such as but not limited to an scFv and a chimeric intracellular transcriptional domain. Upon interacting with the cognate ligand which may be present on a neighboring cell, the SynNotch receptor undergoes cleavage of the transmembrane region, releasing the intracellular transcriptional domain to enter the nucleus and drive the expression of user-specified target genes. SynNotch circuits may be generated by linking one or more transcriptional outputs to SynNotch receptors. Any of the SynNotch circuits described by Toda et al. may be used in the biocircuits described herein (Programming self-organizing multicellular structures with synthetic cell-cell signaling Science 13 Jul. 2018: Vol. 361, Issue 6398, pp. 156-162; the contents of which are herein incorporated by reference in their entirety).


In some embodiments, the biocircuits described herein may include a proteolytic switch. Such switches may include a set of split proteases with highly specific orthogonal cleavage motifs which may be combined with cleavage sites and orthogonal coiled coils dimerizing domains strategically positioned in payloads of interest. Proteolytic cleavage induces conformational rearrangements within and between the CC modules, thus leading to the reconstitution of downstream functional protein domains resulting in a cellular outcome. Split-protease-cleavable orthogonal-CC-based (SPOC) logic circuits described by Fink et al. may be utilized in the biocircuits described herein (Design of fast proteolysis based signaling and logic circuits in mammalian cells, Nat. Chem. Bio 15, 115-122 (2019); the contents of which are herein incorporated by reference in their entirety).


In one embodiment, the molecular switches may be based on chemically induced proximity (CIP) systems, wherein two proteins are colocalized upon addition of a bridging small molecule. In some aspects, the molecular switches may be based on chemically disrupted proximity (CDP) systems, which may include systems that allow the interaction of two basally colocalized proteins to be rapidly disrupted with a small. As non-limiting example, the interaction between the antiapoptotic protein BCL-xL and a BH3 peptide may be used as a chemically disrupted proximity system for intramolecularly controlling the activities of various enzymes. Intermolecular CDP systems that allow a basally localized activity to be chemically disrupted may be used as off switches. In one embodiment, the CDP system may be based on the hepatitis C virus protease (HCVp) NS3a and its interaction with a peptide inhibitor. Clinically approved protease inhibitors that efficiently disrupt the NS3a/peptide interaction may be utilized as bio-orthogonal inputs for this system.


In some embodiments, Zapalog, a small molecule dimerizer that undergoes photolysis when exposed to blue light. Zapalog dimerizes any two proteins tagged with the FKBP and DHFR domains until exposure to light causes its photolysis. Dimerization can be repeatedly restored with uncleaved Zapalog. In some embodiments, molecular switches described herein may be heterodimerization switches. Heterodimerization may include chemical induced dimerization domains (CIDs) with two orthogonal ligand moieties that exhibit high specificity and affinity for their binding domains and lack alternative endogenous binding partners in mammalian cells at useful concentrations. The CIDs may be membrane permeable. In some aspects, the linker may be long enough to allow both binding domains to be simultaneously engaged without steric interference. The linker may in some instances be a photocleavable linker. Linkers that respond to a wavelength that is neither cytotoxic nor interferes with imaging common fluorophores may be preferentially selected. In some embodiments, the heterodimerization switches may include FKBP and DHFR domains and Zapalog, a small molecule dimerizer that undergoes photolysis when exposed to blue light. Zapalog may dimerize any two proteins tagged with the FKBP and DHFR domains until exposure to light causes its photolysis. Dimerization may be restored with uncleaved Zapalog. In some embodiments, Zapalog may include the heterodimerizer trimethoprim-synthetic ligand of FK506-binding protein (TMP-SLF), wherein the SLF portion binds the FK506-binding protein (FKBP) domain of one chimeric partner; the TMP portion binds the Escherichia coli dihydrofolate reductase (DHFR) domain of another. To render dimerization reversible with light, the alkyl linker between TMP and SLF may be replaced with a dialkoxynitrobenzyl (DANB) moiety. Two payloads described herein are tagged with DHFR and FKBP domains Addition of Zapalog may induce dimerization of the tagged proteins. Exposure to 405 nm light may photocleave Zapalog, causing rapid dissociation of the dimer. Dimerization may be restored by the addition of uncleaved Zapalog which may outcompete the photolysed Zapalog moieties. Any of the ligands described herein may be utilized to build Zapalog-like ligands and any of the SREs described herein may be used to generate CIDs.


Boolean Switches

DD-regulated effector modules described herein can also be incorporated into the design of cellular Boolean switches. As used herein, a Boolean switch refers to a circuit that is designed to perform a logical operation based on one or more inputs and which produces an output. Logical operations performed by Boolean switches include but are not limited to, AND, OR, NOR, NAND, NOT, IMPLY, NIMPLY, XOR, and XNOR. AND and OR gates represent the most fundament logical operations, where OR represents a scenario where any of the one or more inputs is required to produce an output, and AND represents a scenario where all of the inputs are required to generate an output. Compound Boolean switches that consist of multiple logical operations can also be generated using effector modules as described herein. In some embodiments, biocircuits and/or any of their components can represent one or more inputs in a Boolean switch. In other embodiments, DDs described herein can be combined with switches known in the art to generate Boolean switches. The output of a Boolean switch can depend on the payload of the effector module utilized. In one embodiment, the DDs and/or the biocircuits can be utilized in NOT gates. NOT gates are inverters whose function is to invert the input i.e. stimulus. In some embodiments, the NOT gates described herein can be used to convert an immunosuppressive stimulus into an immune potentiating output such as the expression and/or function of an immune potentiating (promoting) payload. In another non-limiting example, an AND based Boolean switch may be generated where a first input comprises a biocircuit with gene editing nuclease, Cas9, as the payload and a second input comprises a biocircuit with transcriptional activator, VPR, as the payload. In the presence of the target gene guide RNA, addition of the stimuli to both inputs is required for the transcriptional activation of the target gene (see Gao Y et al. (2016) Nat Methods. 13(12):1043-1049; the contents of which are incorporated herein by reference in their entirety).


Safety Switches

In some embodiments, effector module payloads can comprise DD-regulated safety switches that can eliminate adoptively transferred cells in the case of severe toxicity, thereby mitigating the adverse effects of T cell therapy. Adoptively transferred T cells in immunotherapy can attack normal cells in response to normal tissue expression of TAA. Even on-tumor target activity of adoptively transferred T cells can result in toxicities such as tumor lysis syndrome, cytokine release syndrome and the related macrophage activation syndrome. Safety switches can be utilized to eliminate inappropriately activated adoptively transferred cells by induction of apoptosis or by immunosurveillance.


In some embodiments, DD-regulated payloads can comprise inducible killer/suicide genes that act as a safety switch. The killer/suicide gene when introduced into adoptively transferred immune cells, could control their alloreactivity. The killer/suicide gene can be an apoptotic gene (e.g., any Caspase gene) which allows conditional apoptosis of the transduced cells by administration of a non-therapeutic ligand of the SRE (e.g., DD).


In some embodiments, the payload can be Caspase 9. In some instances, Caspase 9 can be modified to have low basal expression and lacking the caspase recruitment domain (CARD) (SEQ ID NO. 26 and SEQ ID NO. 28 of U.S. Pat. No. 9,434,935B2; the contents of which are incorporated by reference in their entirety). In some embodiments, the safety switches may also be referred to as genetic erasers. In one aspect, the genetic eraser may include a selection marker such as those described in International Patent Publication, WO2018022747, the contents of which are incorporated by reference in their entirety.


In some embodiments, DDs, SREs and/or payloads of effector modules as described can include molecular safeguards for T-cell immunotherapies. Molecular safeguards can allow, in the event of side-effects, selective depletion of engineered T-cells (e.g., CAR T-cells). Molecular safeguards can respond to activating agents which trigger on-demand depletion of the engineered T-cells. Non-limiting examples of molecular safeguards to be used in combination with CAR expression include CD20, which respond to the antibody Rituximab; RQR8, which responds to the antibody Rituximab; huEGFRtr, which responds to the antibody Erbitux; HSV-TK, which responds to the small molecule Ganciclovir; ICasp9, which responds to the small molecule Rimudicid; and CubiCAR, which is a CAR architecture with built-in safeguard CD20 that responds to the antibody Rituximab (Valton et al., Scientific Reports volume 8, Article number: 8972 (2018), the contents of which are incorporated herein by reference in their entirety).


In one embodiment, the payload is a suicide gene system, iCasp9/Chemical induced dimerization (CID) system which consists of a polypeptide derived from the Caspase9 gene fused to a drug binding domain derived from the human FK506 protein. Administration of bioinert, small molecule AP1903 (rimiducid), induces cross linking of the drug binding domains and dimerization of the fusion protein and in turn the dimerization of Caspase 9. This results in the activation of downstream effector Caspase 3 and subsequent induction of cellular apoptosis (Straathof et al., Blood, 2005, 105: 4247-4254; incorporated herein by reference in its entirety). Preclinical trials using CART including an iCasp9 gene have shown effective elimination of CAR T cells in vivo in mouse models and demonstrate the potential efficacy of this approach. (Budde et al, Plos One, 2013, 8: e82742.10.1371; Hoyos et al., Leukemia, 2010; 24(6):1160-1170). In one embodiment, the payload can comprise Caspase 9. In one aspect, the effector module can be a DD-Caspase9 fusion polypeptide.


Regulatory Switches

The utility of adoptive cell therapy (ACT) has been limited by the high incidence of graft versus host disease (GVHD). GVHD occurs when adoptively transferred T cells elicit an immune response resulting in host tissue damage. Recognition of host antigens by the graft cells triggers a proinflammatory cytokine storm cascade that signifies acute GVHD. GVHD is characterized as an imbalance between the effector and the regulatory arms of the immune system. In some embodiments, the payloads described herein can be used as regulatory switches. As used herein “regulatory switch” refers proteins, which when expressed in target cells increase tolerance to the graft by enhancing the regulatory arm of the immune system.


In one embodiment, regulatory switches can include DD-regulated payloads that preferentially promote the expansion of regulatory T (Treg cells). Tregs are a distinct population of cells that are positively selected on high affinity ligands in the thymus and play an important role in the tolerance to self-antigens. In addition, T regs have also been shown to play a role in peripheral tolerance to foreign antigens. Since Tregs promote immune tolerance, expansion of Tregs with compositions as described herein can be desirable to limit GVHD.


In some embodiments, the regulatory switch can include, but is not limited to T regs activation factors such NF-kappa B (NFKB or NFκB) FOXO, nuclear receptor Nr4a, Retinoic acid receptor alpha, NFAT, AP-1 and SMAD. Such factors can result in the expression of Fork headbox P3 (FOXP3) in T cells resulting in the activation of the regulatory T cell program and the expansion of T cells.


In some embodiments, the regulatory switch can be FOXP3, a transcriptional regulator in T cells. A function of FOXP3 is to suppress the function of NFAT, which leads to the suppression of expression of many genes including IL2 and effector T-cell cytokines. FOXP3 acts also as a transcription activator for genes such as CD2S, Cytotoxic T-Lymphocyte Antigen Cytotoxic T-Lymphocyte Antigen 4 (CTLA4), glucocorticoid-induced TNF receptor family gene (GITR) and folate receptor 4. FOXP3 also inhibits the differentiation of IL17 producing helper T-cells (Th17) by antagonizing RORC (RAR related orphan receptor C). Isoforms of FOXP3 lacking exon2 (FOXP3 delta 2) or exon 7 (FOXP3 delta 7) can also be used as regulatory switches. In one aspect, an effector module as described herein can be a DD-FOXP3 fusion polypeptide.


Regulatory switches can be designed using Boolean switches, e.g. NOT gates. For example, an immunosuppressive signal can be converted into an immune potentiating output such as expression and/or function of an immune potentiating (promoting) payload. The stimulus of a NOT gate can be, for example, phosphorylated SHP2, a signaling molecule produced by the activation of the immunosuppressive PD1 signaling pathway. Another non-limiting example for a NOT gate can be metabolite kynurenine, which is produced by the indoleamine 2,3-dioxygenase pathway.


Epigenetic Switches

In some embodiments, the DDs described herein can include epigenetic switches. Alternatively or additionally, epigenetic switches can be constructed using DDs described herein. Epigenetic switches utilize chemical modification of nucleic acids, the propagation, and the actuation of the chemical modifications. In some embodiments, the epigenetic switches may be built by utilizing chemical modifications of nucleic acids that are naturally found in bacterial such as 6-methyl-adenosine (m6A). m6A switches are described in Park et al. 2019 (Engineering Epigenetic Regulation Using Synthetic Read-Write Modules. Cell. January 10; 176(1-2):227-238.; the contents of which are incorporated by reference in their entirety). The epigenetic circuits described herein may include a “writer” protein that adds m6A at specific DNA sequences. The writer module may be based on a methylase such as but not limited to dam methylase, which adds m6A to GATC sequences in Escherichia coli and is active when expressed in human cells. By fusing dam to a zinc finger proteins (ZF), allows targeting m6A methylation to specific loci. Specificity of the dam methylases to ZF targeted sequences may be achieved using by engineering mutations that reduce the catalytic activity of dam. In some embodiments, the epigenetic switch may include a “reader” protein that can recognize the m6A methylation marks In one aspect, the reader domain may be the binding domain of the restriction enzyme DpnI. This reader domain (RD) may be fused to DAM to propagate m6A marks at nearby and complemental), GATC sites in DNA, thereby spreading methylation across a locus and cell divisions. The RD may also be fused to proteins that activate or repress transcription (EDs), thus creating m6A-dependent transcriptional regulation.


Payloads

In some embodiments, payloads can be any natural protein in an organism genome, a fusion polypeptide, an antibody, or variants, mutants and derivatives thereof. In some embodiments, the effector module of the present disclosure is a fusion construct comprising a DD of the disclosure operably linked to at least one payload. In one aspect, the payload may be any natural protein of interest (POI) or variants thereof, an antibody or fragments thereof, a therapeutic agent, or any artificial peptide or polypeptide.


In some embodiments, payloads of the present disclosure may be immunotherapeutic agents. As used herein, an immunotherapeutic agent is any agent that induces immune responses in an organism. An immunotherapeutic agent may be a natural protein in an organism or it may be an artificial protein such as a fusion protein or an antibody. The immunotherapeutic agent may be, but is not limited to, an antibody and fragments and variants thereof, a MHC molecule, an antigen and fragments thereof, a T cell receptor (TCR) such as a tumor specific TCR and variants thereof, a chimeric antigen receptor (CAR), a chimeric switch receptor, a co-stimulatory molecule, a co-inhibitory molecule, an inhibitor of a co-inhibitory receptor or ligand, an agonist of a co-stimulatory receptor and ligand, a cytokine, chemokine, a cytokine receptor, a chemokine receptor, a soluble growth factor, a metabolic factor, a homing receptor, a safety switch (e.g., a suicide gene), or any agent that induces an immune response. In one embodiment, the immunotherapeutic agent induces an anti-cancer immune response in a cell, or in a subject. In some aspects, the immunotherapeutic agent reduces the tumor burden in a subject.


The payload may be any immunotherapeutic agent used for cancer immunotherapy such as a T cell receptor (TCR), a chimeric agent receptor (CAR) such as CD19 CAR that targets any molecule of tumor cells, an antibody, an antigen binding domain or combination of antigen binding domains, a cytokine such as IL2, IL12, IL15 or IL15/IL15Ra fusion, an antagonist of an immune checkpoint, an agonist of co-stimulatory molecule, a chimeric switch receptor, a safety switch, a metabolic factor, a growth factor, a chemokine, a chemokine receptor, a homing receptor, or any agent that can induce an immune response. The SRE and payload may be operably linked through one or more linkers and the positions of components may vary within the effector module.


In some embodiments, the payload may be a fusion protein comprising any of the immunotherapeutic agents described and ubiquitin. Within the fusion protein, the ubiquitin may be positioned at the N terminus and the immunotherapeutic agent may be positioned at the C terminus. In one aspect, the immunotherapeutic agent may itself be a fusion protein and the ubiquitin may be located in between the proteins that are fused. The payloads may include a single ubiquitin protein or a chain of ubiquitin proteins. The ubiquitin protein may be linked to the immunotherapeutic agent through a single amino acid. The selection of the single amino acid may depend on the desired half-life of the fusion protein. In one embodiment, the immunotherapeutic agent may be IL12.


1. Protein of Interest

In some embodiments, payloads of the disclosure may be a natural protein in an organism genome, or variants, mutants, derivatives thereof. The natural protein may be from, for example, a mammalian organism, a bacterium, and a virus.


In one example, the payload may be a protein of interest, or a polypeptide from human genome.


2. Antibodies

In some embodiments, antibodies, fragments and variants thereof are payloads of the present disclosure. The antibody may be an intact antibody, an antibody light chain, antibody heavy chain, an antibody fragment, an antibody variant, or an antibody derivative.


In some embodiments, payloads of the disclosure may be an antibody or fragments thereof. Antibodies useful in this method include without limitation, any of those taught in co-owned U.S. Provisional Patent Application No. 62/320,864 filed Apr. 11, 2016, 62/466,596 filed Mar. 3, 2017 and the International Publication WO2017/180587 (the contents of each of which are herein incorporated by reference in their entirety).


Antibody Fragments and Variants

In some embodiments, antibody fragments and variants may comprise antigen binding regions from intact antibodies. Examples of antibody fragments and variants may include, but are not limited to Fab, Fab′, F(ab′)2, and Fv fragments; diabodies; linear antibodies; single-chain antibody molecules such as single chain variable fragment (scFv); and multispecific antibodies formed from antibody fragments. Papain digestion of antibodies produces two identical antigen-binding fragments, called “Fab” fragments, each with a single antigen-binding site. Also produced is a residual “Fc” fragment, whose name reflects its ability to crystallize readily. Pepsin treatment yields an F(ab′)2 fragment that has two antigen-binding sites and is still capable of cross-linking with the antigen. Pharmaceutical compositions, biocircuits, biocircuit components, effector modules including their SREs or payloads of the present disclosure may comprise one or more of these fragments.


For the purposes herein, an “antibody” may comprise a heavy and light variable domain as well as an Fc region. As used herein, the term “native antibody” usually refers to a heterotetrametric glycoprotein of about 150,000 Daltons, composed of two identical light (L) chains and two identical heavy (H) chains. Genes encoding antibody heavy and light chains are known and segments making up each have been well characterized and described (Matsuda et al., The Journal of Experimental Medicine. 1998, 188(11): 2151-62 and Li et al., Blood, 2004, 103(12): 4602-4609; the content of each of which are herein incorporated by reference in their entirety). Each light chain is linked to a heavy chain by one covalent disulfide bond, while the number of disulfide linkages varies among the heavy chains of different immunoglobulin isotypes. Each heavy and light chain also has regularly spaced intrachain disulfide bridges. Each heavy chain has at one end a variable domain (VH) followed by a number of constant domains Each light chain has a variable domain at one end (VL) and a constant domain at its other end; the constant domain of the light chain is aligned with the first constant domain of the heavy chain, and the light chain variable domain is aligned with the variable domain of the heavy chain.


As used herein, the term “variable domain” refers to specific antibody domains found on both the antibody heavy and light chains that differ extensively in sequence among antibodies and are used in the binding and specificity of each particular antibody for its particular antigen. Variable domains comprise hypervariable regions. As used herein, the term “hypervariable region” refers to a region within a variable domain comprising amino acid residues responsible for antigen binding. The amino acids present within the hypervariable regions determine the structure of the complementarity determining regions (CDRs) that become part of the antigen-binding site of the antibody. As used herein, the term “CDR” refers to a region of an antibody comprising a structure that is complimentary to its target antigen or epitope. Other portions of the variable domain, not interacting with the antigen, are referred to as framework (FW) regions. The antigen-binding site (also known as the antigen combining site or paratope) comprises the amino acid residues necessary to interact with a particular antigen. The exact residues making up the antigen-binding site are typically elucidated by co-crystallography with bound antigen, however computational assessments based on comparisons with other antibodies can also be used (Strohl, W. R. Therapeutic Antibody Engineering. Woodhead Publishing, Philadelphia Pa. 2012. Ch. 3, p 47-54, the contents of which are herein incorporated by reference in their entirety). Determining residues that make up CDRs may include the use of numbering schemes including, but not limited to, those taught by Kabat (Wu et al., JEM, 1970, 132(2):211-250 and Johnson et al., Nucleic Acids Res. 2000, 28(1): 214-218, the contents of each of which are herein incorporated by reference in their entirety), Chothia (Chothia and Lesk, J. Mol. Biol. 1987, 196, 901, Chothia et al., Nature, 1989, 342, 877, and Al-Lazikani et al., J. Mol. Biol. 1997, 273(4): 927-948, the contents of each of which are herein incorporated by reference in their entirety), Lefranc (Lefranc et al., Immunome Res. 2005, 1:3) and Honegger (Honegger and Pluckthun, J. Mol. Biol. 2001, 309(3): 657-70, the contents of which are herein incorporated by reference in their entirety).


VH and VL domains have three CDRs each. VL CDRs are referred to herein as CDR-L1, CDR-L2 and CDR-L3, in order of occurrence when moving from N- to C-terminus along the variable domain polypeptide. VH CDRs are referred to herein as CDR-H1, CDR-H2 and CDR-H3, in order of occurrence when moving from N- to C-terminus along the variable domain polypeptide. Each of CDRs has favored canonical structures with the exception of the CDR-H3, which comprises amino acid sequences that may be highly variable in sequence and length between antibodies resulting in a variety of three-dimensional structures in antigen-binding domains (Nikoloudis, et al., PeerJ. 2014, 2: e456). In some cases, CDR-H3s may be analyzed among a panel of related antibodies to assess antibody diversity. Various methods of determining CDR sequences are known in the art and may be applied to known antibody sequences (Strohl, W. R. Therapeutic Antibody Engineering. Woodhead Publishing, Philadelphia Pa. 2012. Ch. 3, p47-54, the contents of which are herein incorporated by reference in their entirety).


As used herein, the term “Fv” refers to an antibody fragment comprising the minimum fragment on an antibody needed to form a complete antigen-binding site. These regions consist of a dimer of one heavy chain and one light chain variable domain in tight, non-covalent association. Fv fragments can be generated by proteolytic cleavage, but are largely unstable. Recombinant methods are known in the art for generating stable Fv fragments, typically through insertion of a flexible linker between the light chain variable domain and the heavy chain variable domain (to form a single chain Fv (scFv)) or through the introduction of a disulfide bridge between heavy and light chain variable domains (Strohl, W. R. Therapeutic Antibody Engineering. Woodhead Publishing, Philadelphia Pa. 2012. Ch. 3, p46-47, the contents of which are herein incorporated by reference in their entirety).


As used herein, the term “light chain” refers to a component of an antibody from any vertebrate species assigned to one of two clearly distinct types, called kappa and lambda based on amino acid sequences of constant domains Depending on the amino acid sequence of the constant domain of their heavy chains, antibodies can be assigned to different classes. There are five major classes of intact antibodies: IgA, IgD, IgE, IgG, and IgM, and several of these may be further divided into subclasses (isotypes), e.g., IgG1, IgG2, IgG3, IgG4, IgA, and IgA2.


As used herein, the term “single chain Fv” or “scFv” refers to a fusion protein of VH and VL antibody domains, wherein these domains are linked together into a single polypeptide chain by a flexible peptide linker. In some embodiments, the Fv polypeptide linker enables the scFv to form the desired structure for antigen binding. In some embodiments, scFvs are utilized in conjunction with phage display, yeast display or other display methods where they may be expressed in association with a surface member (e.g. phage coat protein) and used in the identification of high affinity peptides for a given antigen.


Using molecular genetics, two scFvs can be engineered in tandem into a single polypeptide, separated by a linker domain, called a “tandem scFv” (tascFv). Construction of a tascFv with genes for two different scFvs yields a “bispecific single-chain variable fragments” (bis-scFvs). Only two tascFvs have been developed clinically by commercial firms; both are bispecific agents in active early phase development by Micromet for oncologic indications, and are described as “Bispecific T-cell Engagers (BiTE).” Blinatumomab is an anti-CD19/anti-CD3 bispecific tascFv that potentiates T-cell responses to B-cell non-Hodgkin lymphoma in Phase 2. MT110 is an anti-EP-CAM/anti-CD3 bispecific tascFv that potentiates T-cell responses to solid tumors in Phase 1. Bispecific, tetravalent “TandAbs” are also being researched by Affimed (Nelson, A. L., MAbs., 2010, January-February; 2(1):77-83). Maxibodies (bivalent scFv fused to the amino terminus of the Fc (CH2-CH3 domains) of IgG may also be included.


As used herein, the term “bispecific antibody” refers to an antibody capable of binding two different antigens. Such antibodies typically comprise regions from at least two different antibodies. Bispecific antibodies may include any of those described in Riethmuller, G. Cancer Immunity. 2012, 12:12-18, Marvin et al., 2005. Acta Pharmacologica Sinica. 2005, 26(6): 649-658 and Schaefer et al., PNAS. 2011, 108(27):11187-11192, the contents of each of which are herein incorporated by reference in their entirety. In some aspects, bispecific antibodies may be trifunctional antibodies (3funct) and BiTE (bi-specific T cell engager).


As used herein, the term “diabody” refers to a small antibody fragment with two antigen-binding sites. Diabodies are functional bispecific single-chain antibodies (bscAb). Diabodies comprise a heavy chain variable domain VH connected to a light chain variable domain VL in the same polypeptide chain. By using a linker that is too short to allow pairing between the two domains on the same chain, the domains are forced to pair with the complementary domains of another chain and create two antigen-binding sites. Diabodies are described more fully in, for example, EP 404,097; WO 93/11161; and Hollinger et al. (Hollinger, P. et al., “Diabodies”: Small bivalent and bispecific antibody fragments. PNAS, 1993. 90: 6444-6448); the contents of each of which are incorporated herein by reference in their entirety.


The term “intrabody” refers to a form of antibody that is not secreted from a cell in which it is produced, but instead targets one or more intracellular proteins. Intrabodies may be used to affect a multitude of cellular processes including, but not limited to intracellular trafficking, transcription, translation, metabolic processes, proliferative signaling and cell division. In some embodiments, methods of the present disclosure may include intrabody-based therapies. In some such embodiments, variable domain sequences and/or CDR sequences disclosed herein may be incorporated into one or more constructs for intrabody-based therapy.


As used herein, the term “monoclonal antibody” refers to an antibody obtained from a population of substantially homogeneous cells (or clones), i.e., the individual antibodies comprising the population are identical and/or bind the same epitope, except for possible variants that may arise during production of the monoclonal antibodies, such variants generally being present in minor amounts. In contrast to polyclonal antibody preparations that typically include different antibodies directed against different determinants (epitopes), each monoclonal antibody is directed against a single determinant on the antigen.


The modifier “monoclonal” indicates the character of the antibody as being obtained from a substantially homogeneous population of antibodies, and is not to be construed as requiring production of the antibody by any particular method. The monoclonal antibodies herein include “chimeric” antibodies (immunoglobulins) in which a portion of the heavy and/or light chain is identical with or homologous to corresponding sequences in antibodies derived from a particular species or belonging to a particular antibody class or subclass, while the remainder of the chain(s) is identical with or homologous to corresponding sequences in antibodies derived from another species or belonging to another antibody class or subclass, as well as fragments of such antibodies.


As used herein, the term “humanized antibody” refers to a chimeric antibody comprising a minimal portion from one or more non-human (e.g., murine) antibody source(s) with the remainder derived from one or more human immunoglobulin sources. For the most part, humanized antibodies are human immunoglobulins (recipient antibody) in which residues from the hypervariable region from an antibody of the recipient are replaced by residues from the hypervariable region from an antibody of a non-human species (donor antibody) such as mouse, rat, rabbit or nonhuman primate having the desired specificity, affinity, and/or capacity. In one embodiment, the antibody may be a humanized full-length antibody. As a non-limiting example, the antibody may have been humanized using the methods taught in US Patent Publication NO. US20130303399, the contents of which are herein incorporated by reference in its entirety.


As used herein, the term “antibody variant” refers to a modified antibody (in relation to a native or starting antibody) or a biomolecule resembling a native or starting antibody in structure and/or function (e.g., an antibody mimetic). Antibody variants may be altered in their amino acid sequence, composition or structure as compared to a native antibody. Antibody variants may include, but are not limited to, antibodies with altered isotypes (e.g., IgA, IgD, IgE, IgG1, IgG2, IgG3, IgG4, or IgM), humanized variants, optimized variants, multispecific antibody variants (e.g., bispecific variants), and antibody fragments.


In some embodiments, pharmaceutical compositions, biocircuits, biocircuit components, effector modules including their SREs or payloads of the present disclosure may be antibody mimetics. As used herein, the term “antibody mimetic” refers to any molecule which mimics the function or effect of an antibody and which binds specifically and with high affinity to their molecular targets. In some embodiments, antibody mimetics may be monobodies, designed to incorporate the fibronectin type III domain (Fn3) as a protein scaffold (U.S. Pat. Nos. 6,673,901; 6,348,584). In some embodiments, antibody mimetics may be those known in the art including, but are not limited to affibody molecules, affilins, affitins, anticalins, avimers, Centyrins, DARPINS™, Fynomers and Kunitz and domain peptides. In other embodiments, antibody mimetics may include one or more non-peptide regions.


In one embodiment, the antibody may comprise a modified Fc region. As a non-limiting example, the modified Fc region may be made by the methods or may be any of the regions described in US Patent Publication NO. US20150065690, the contents of which are herein incorporated by reference in its entirety.


In some embodiments, payloads of the disclosure may encode multispecific antibodies that bind more than one epitope. As used herein, the terms “multibody” or “multispecific antibody” refer to an antibody wherein two or more variable regions bind to different epitopes. The epitopes may be on the same or different targets. In one embodiment, the multispecific antibody may be generated and optimized by the methods described in International Patent Publication NO. WO2011109726 and US Patent Publication NO. US20150252119, the contents of which each of which are herein incorporated by reference in their entirety. These antibodies are able to bind to multiple antigens with high specificity and high affinity.


In certain embodiments, a multi-specific antibody is a “bispecific antibody” which recognizes two different epitopes on the same or different antigens. In one aspect, bispecific antibodies are capable of binding two different antigens. Such antibodies typically comprise antigen-binding regions from at least two different antibodies. For example, a bispecific monoclonal antibody (BsMAb, BsAb) is an artificial protein composed of fragments of two different monoclonal antibodies, thus allowing the BsAb to bind to two different types of antigen. Bispecific antibody frameworks may include any of those described in Riethmuller, G., 2012. Cancer Immunity, 2012, 12:12-18; Marvin et al., Acta Pharmacologica Sinica. 2005, 26(6):649-658; and Schaefer et al., PNAS. 2011, 108(27): 11187-11192, the contents of each of which are herein incorporated by reference in their entirety. New generations of BsMAb, called “trifunctional bispecific” antibodies, have been developed. These consist of two heavy and two light chains, one each from two different antibodies, where the two Fab regions (the arms) are directed against two antigens, and the Fc region (the foot) comprises the two heavy chains and forms the third binding site.


In some embodiments, payloads may encode antibodies comprising a single antigen-binding domain These molecules are extremely small, with molecular weights approximately one-tenth of those observed for full-sized mAbs. Further antibodies may include “nanobodies” derived from the antigen-binding variable heavy chain regions (VHHs) of heavy chain antibodies found in camels and llamas, which lack light chains (Nelson, A. L., MAbs. 2010. January-February; 2(1):77-83).


In some embodiments, the antibody may be “miniaturized”. Among the best examples of mAb miniaturization are the small modular immunopharmaceuticals (SMIPs) from Trubion Pharmaceuticals. These molecules, which can be monovalent or bivalent, are recombinant single-chain molecules containing one VL, one VH antigen-binding domain, and one or two constant “effector” domains, all connected by linker domains Presumably, such a molecule might offer the advantages of increased tissue or tumor penetration claimed by fragments while retaining the immune effector functions conferred by constant domains Δt least three “miniaturized” SMIPs have entered clinical development. TRU-015, an anti-CD20 SMIP developed in collaboration with Wyeth, is the most advanced project, having progressed to Phase 2 for rheumatoid arthritis (RA). Earlier attempts in systemic lupus erythrematosus (SLE) and B cell lymphomas were ultimately discontinued. Trubion and Facet Biotechnology are collaborating in the development of TRU-016, an anti-CD37 SMIP, for the treatment of CLL and other lymphoid neoplasias, a project that has reached Phase 2. Wyeth has licensed the anti-CD20 SMIP SBI-087 for the treatment of autoimmune diseases, including RA, SLE and possibly multiple sclerosis, although these projects remain in the earliest stages of clinical testing. (Nelson, A. L., MAbs, 2010. January-February; 2(1):77-83).


On example of miniaturized antibodies is called “unibody” in which the hinge region has been removed from IgG4 molecules. While IgG4 molecules are unstable and can exchange light-heavy chain heterodimers with one another, deletion of the hinge region prevents heavy chain-heavy chain pairing entirely, leaving highly specific monovalent light/heavy heterodimers, while retaining the Fc region to ensure stability and half-life in vivo. This configuration may minimize the risk of immune activation or oncogenic growth, as IgG4 interacts poorly with FcRs and monovalent unibodies fail to promote intracellular signaling complex formation (see, e.g., Nelson, A. L., MAbs, 2010. January-February; 2(1):77-83).


In some embodiments, payloads of the disclosure may encode single-domain antibodies (sdAbs, or nanobodies) which are antibody fragment consisting of a single monomeric variable antibody domain Like a whole antibody, it is able to bind selectively to a specific antigen. In one aspect, a sdAb may be a “Camel Ig or “camelid VHH”. As used herein, the term “camel Ig” refers to the smallest known antigen-binding unit of a heavy chain antibody (Koch-No lte, et al, FASEB J., 2007, 21: 3490-3498). A “heavy chain antibody” or a “camelid antibody” refers to an antibody that contains two VH domains and no light chains (Riechmann L et al, J. Immunol. Methods, 1999, 231: 25-38; International patent publication NOs.: WO1994/04678 and WO1994/025591; and U.S. Pat. No. 6,005,079). In another aspect, a sdAb may be a “immunoglobulin new antigen receptor” (IgNAR). As used herein, the term “immunoglobulin new antigen receptor” refers to class of antibodies from the shark immune repertoire that consist of homodimers of one variable new antigen receptor (VNAR) domain and five constant new antigen receptor (CNAR) domains IgNARs represent some of the smallest known immunoglobulin-based protein scaffolds and are highly stable and possess efficient binding characteristics. The inherent stability can be attributed to both (i) the underlying Ig scaffold, which presents a considerable number of charged and hydrophilic surface exposed residues compared to the conventional antibody VH and VL domains found in murine antibodies; and (ii) stabilizing structural features in the complementary determining region (CDR) loops including inter-loop disulfide bridges, and patterns of intra-loop hydrogen bonds.


In some embodiments, payloads of the disclosure may encode intrabodies. Intrabodies are a form of antibody that is not secreted from a cell in which it is produced, but instead targets one or more intracellular proteins. Intrabodies are expressed and function intracellularly, and may be used to affect a multitude of cellular processes including, but not limited to intracellular trafficking, transcription, translation, metabolic processes, proliferative signaling and cell division. In some embodiments, methods described herein include intrabody-based therapies. In some such embodiments, variable domain sequences and/or CDR sequences disclosed herein are incorporated into one or more constructs for intrabody-based therapy. For example, intrabodies may target one or more glycated intracellular proteins or may modulate the interaction between one or more glycated intracellular proteins and an alternative protein.


The intracellular expression of intrabodies in different compartments of mammalian cells allows blocking or modulation of the function of endogenous molecules (Biocca, et al., EMBO J. 1990, 9: 101-108; Colby et al., Proc. Natl. Acad. Sci. U.S.A. 2004, 101: 17616-17621). Intrabodies can alter protein folding, protein-protein, protein-DNA, protein-RNA interactions and protein modification. They can induce a phenotypic knockout and work as neutralizing agents by direct binding to the target antigen, by diverting its intracellular trafficking or by inhibiting its association with binding partners. With high specificity and affinity to target antigens, intrabodies have advantages to block certain binding interactions of a particular target molecule, while sparing others.


Sequences from donor antibodies may be used to develop intrabodies. Intrabodies are often recombinantly expressed as single domain fragments such as isolated VH and VL domains or as a single chain variable fragment (scFv) antibody within the cell. For example, intrabodies are often expressed as a single polypeptide to form a single chain antibody comprising the variable domains of the heavy and light chains joined by a flexible linker polypeptide. Intrabodies typically lack disulfide bonds and are capable of modulating the expression or activity of target genes through their specific binding activity. Single chain intrabodies are often expressed from a recombinant nucleic acid molecule and engineered to be retained intracellularly (e.g., retained in the cytoplasm, endoplasmic reticulum, or periplasm). Intrabodies may be produced using methods known in the art, such as those disclosed and reviewed in: (Marasco et al., PNAS, 1993, 90: 7889-7893; Chen et al., Hum. Gene Ther. 1994, 5:595-601; Chen et al., 1994, PNAS, 91: 5932-5936; Maciejewski et al., 1995, Nature Med., 1: 667-673; Marasco, 1995, Immunotech, 1: 1-19; Mhashilkar, et al., 1995, EMBO J. 14: 1542-51; Chen et al., 1996, Hum. Gene Therap., 7: 1515-1525; Marasco, Gene Ther. 4:11-15, 1997; Rondon and Marasco, 1997, Annu. Rev. Microbiol. 51:257-283; Cohen, et al., 1998, Oncogene 17:2445-56; Proba et al., 1998, J. Mol. Biol. 275:245-253; Cohen et al., 1998, Oncogene 17:2445-2456; Hassanzadeh, et al., 1998, FEBS Lett. 437:81-6; Richardson et al., 1998, Gene Ther. 5:635-44; Ohage and Steipe, 1999, J. Mol. Biol. 291:1119-1128; Ohage et al., 1999, J. Mol. Biol. 291:1129-1134; Wirtz and Steipe, 1999, Protein Sci. 8:2245-2250; Zhu et al., 1999, J. Immunol. Methods 231:207-222; Arafat et al., 2000, Cancer Gene Ther. 7:1250-6; der Maur et al., 2002, J. Biol. Chem. 277:45075-85; Mhashilkar et al., 2002, Gene Ther. 9:307-19; and Wheeler et al., 2003, FASEB J. 17: 1733-5; and references cited therein).


In some embodiments, payloads of the disclosure may encode biosynthetic antibodies as described in U.S. Pat. No. 5,091,513, the contents of which are herein incorporated by reference in their entirety. Such antibody may include one or more sequences of amino acids constituting a region which behaves as a biosynthetic antibody binding site (BAB S). The sites comprise 1) non-covalently associated or disulfide bonded synthetic VH and VL dimers, 2) VH-VL or VL-VH single chains wherein the VH and VL are attached by a polypeptide linker, or 3) individuals VH or VL domains The binding domains comprise linked CDR and FR regions, which may be derived from separate immunoglobulins. The biosynthetic antibodies may also include other polypeptide sequences which function, e.g., as an enzyme, toxin, binding site, or site of attachment to an immobilization media or radioactive atom. Methods are disclosed for producing the biosynthetic antibodies, for designing BABS having any specificity that can be elicited by in vivo generation of antibody, and for producing analogs thereof.


In some embodiments, payloads may encode antibodies with antibody acceptor frameworks taught in U.S. Pat. No. 8,399,625. Such antibody acceptor frameworks may be particularly well suited accepting CDRs from an antibody of interest.


In one embodiment, the antibody may be a conditionally active biologic protein. An antibody may be used to generate a conditionally active biologic protein which are reversibly or irreversibly inactivated at the wild type normal physiological conditions as well as to such conditionally active biologic proteins and uses of such conditional active biologic proteins are provided. Such methods and conditionally active proteins are taught in, for example, International Publication No. WO2015175375 and WO2016036916 and US Patent Publication No. US20140378660, the contents of each of which are incorporated herein by reference in their entirety.


Antibody Preparations

The preparation of antibodies, whether monoclonal or polyclonal, is known in the art. Techniques for the production of antibodies are well known in the art and described, e.g. in Harlow and Lane “Antibodies, A Laboratory Manual”, Cold Spring Harbor Laboratory Press, 1988; Harlow and Lane “Using Antibodies: A Laboratory Manual” Cold Spring Harbor Laboratory Press, 1999 and “Therapeutic Antibody Engineering: Current and Future Advances Driving the Strongest Growth Area in the Pharmaceutical Industry” Woodhead Publishing, 2012.


The antibodies and fragments and variants thereof as described herein can be produced using recombinant polynucleotides. In one embodiment, the polynucleotides have a modular design to encode at least one of the antibodies, fragments or variants thereof. As a non-limiting example, the polynucleotide construct may encode any of the following designs: (1) the heavy chain of an antibody, (2) the light chain of an antibody, (3) the heavy and light chain of the antibody, (4) the heavy chain and light chain separated by a linker, (5) the VH1, CH1, CH2, CH3 domains, a linker and the light chain or (6) the VH1, CH1, CH2, CH3 domains, VL region, and the light chain. Any of these designs may also comprise optional linkers between any domain and/or region. The polynucleotides of the present disclosure may be engineered to produce any standard class of immunoglobulins using an antibody described herein or any of its component parts as a starting molecule.


Antibodies Used for Immunotherapy

In some embodiments, payloads of the present disclosure may be antibodies, fragments and variants thereof which are specific to tumor specific antigens (TSAs) and tumor associated antigens (TAAs). Antibodies circulate throughout the body until they find and attach to the TSA/TAA. Once attached, they recruit other parts of the immune system, increasing ADCC (antibody dependent cell-mediated cytotoxicity) and ADCP (antibody dependent cell-mediated phagocytosis) to destroy tumor cells. As used herein, the term “tumor specific antigen (TSA)” means an antigenic substance produced in tumor cells, which can trigger an anti-tumor immune response in a host organism. In one embodiment, a TSA may be a tumor neoantigen. The tumor antigen specific antibody mediates complement-dependent cytotoxic response against tumor cells expressing the same antigen.


Of particular interest is a TSA that is a breast cancer antigen, an ovarian cancer antigen, a prostate cancer antigen, a cervical cancer antigen, a pancreatic carcinoma antigen, a lung cancer antigen, a bladder cancer antigen, a colon cancer antigen, a testicular cancer antigen, a glioblastoma cancer antigen, an antigen associated with a B cell malignancy, an antigen associated with multiple myeloma, an antigen associated with non-Hodgkin's lymphoma, or an antigen associated with chronic lymphocytic leukemia.


Suitable antibodies which can immunoactively bind to a TSA may include, but are not limited to, those specific to 5T4, 707-AP, A33, AFP (α-fetoprotein), AKAP-4 (A kinase anchor protein 4), ALK, α5β1-integrin, androgen receptor, annexin II, alpha-actinin-4, ART-4, B1, B7H3, B7H4, BAGE (B melanoma antigen), BCMA, BCR-ABL fusion protein, beta-catenin, BKT-antigen, BTAA, CA-I (carbonic anhydrase I), CA50 (cancer antigen 50), CA125, CA15-3, CA195, CA242, calretinin, CAIX (carbonic anhydrase), CAMEL (cytotoxic T-lymphocyte recognized antigen on melanoma), CAM43, CAP-1, Caspase-8/m, CD4, CD5, CD7, CD19, CD20, CD22, CD23, CD25, CD27/m, CD28, CD30, CD33, CD34, CD36, CD38, CD40/CD154, CD41, CD44v6, CD44v7/8, CD45, CD49f, CD56, CD68\KP1, CD74, CD79a/CD79b, CD103, CD123, CD133, CD138, CD171, cdc27/m, CDK4 (cyclin dependent kinase 4), CDKN2A, CDS, CEA (carcinoembryonic antigen), CEACAM5, CEACAM6, chromogranin, c-Met, c-Myc, coa-1, CSAp, CT7, CT10, cyclophilin B, cyclin B1, cytoplasmic tyrosine kinases, cytokeratin, DAM-10, DAM-6, dek-can fusion protein, desmin, DEPDC1 (DEP domain containing 1), E2A-PRL, EBNA, EGF-R (epidermal growth factor receptor), EGP-1 (epithelial glycoprotein-1) (TROP-2), EGP-2, EGP-40, EGFR (epidermal growth factor receptor), EGFRvIII, EF-2, ELF2M, EMMPRIN, EpCAM (epithelial cell adhesion molecule), EphA2, Epstein Barr virus antigens, Erb (ErbB1; ErbB3; ErbB4), ETA (epithelial tumor antigen), ETV6-AML1 fusion protein, FAP (fibroblast activation protein), FBP (folate-binding protein), FGF-5, folate receptor α, FOS related antigen 1, fucosyl GM1, 0250, GAGE (GAGE-1; GAGE-2), galactin, GD2 (ganglioside), GD3, GFAP (glial fibrillary acidic protein), GM2 (oncofetal antigen-immunogenic-1; OFA-I-1), GnT-V, Gp100, H4-RET, HAGE (helicase antigen), HER-2/neu, HIFs (hypoxia inducible factors), HIF-la, HIF-2a, HLA-A2, HLA-A*0201-R170I, HLA-A11, HMWMAA, Hom/Mel-40, HSP70-2M (Heat shock protein 70), HST-2, HTgp-175, hTERT (or hTRT), human papillomavirus-E6/human papillomavirus-E7 and E6, iCE (immune-capture EIA), IGF-1R, IGH-IGK, IL2R, ILS, ILK (integrin-linked kinase), IMP3 (insulin-like growth factor II mRNA-binding protein 3), IRF4 (interferon regulatory factor 4), KDR (kinase insert domain receptor), KIAA0205, KRAB-zinc finger protein (KID)-3; KID31, KSA (17-1A), K-ras, LAGE, LCK, LDLR/FUT (LDLR-fucosyltransferaseAS fusion protein), LeY (Lewis Y), MAD-CT-1, MAGE (tyrosinase, melanoma-associated antigen) (MAGE-1; MAGE-3), melan-A tumor antigen (MART), MART-2/Ski, MC1R (melanocortin 1 receptor), MDM2, mesothelin, MPHOSPH1, MSA (muscle-specific actin), mTOR (mammalian targets of rapamycin), MUC-1, MUC-2, MUM-1 (melanoma associated antigen (mutated) 1), MUM-2, MUM-3, Myosin/m, MYL-RAR, NA88-A, N-acetylglucosaminyltransferase, neo-PAP, NF-KB (nuclear factor-kappa B), neurofilament, NSE (neuron-specific enolase), Notch receptors, NuMa, N-Ras, NY-BR-1, NY-CO-1, NY-ESO-1, Oncostatin M, OS-9, OY-TES1, p53 mutants, p190 minor bcr-abl, p15(58), p185erbB2, p180erbB-3, PAGE (prostate associated gene), PAP (prostatic acid phosphatase), PAX3, PAX5, PDGFR (platelet derived growth factor receptor), cytochrome P450 involved in piperidine and pyrrolidine utilization (PIPA), Pml-RAR alpha fusion protein, PR-3 (proteinase 3), PSA (prostate specific antigen), PSM, PSMA (Prostate stem cell antigen), PRAME (preferentially expressed antigen of melanoma), PTPRK, RAGE (renal tumor antigen), Raf (A-Raf, B-Raf and C-Raf), Ras, receptor tyrosine kinases, RCAS1, RGSS, ROR1 (receptor tyrosine kinase-like orphan receptor 1), RU1, RU2, SAGE, SART-1, SART-3, SCP-1, SDCCAG16, SP-17 (sperm protein 17), src-family, SSX (synovial sarcoma X breakpoint)-1, SSX-2 (HOM-MEL-40), SSX-3, SSX-4, SSX-5, STAT-3, STAT-5, STAT-6, STEAD, STn, survivin, syk-ZAP70, TA-90 (Mac-2 binding protein\cyclophilin C-associated protein), TAAL6, TACSTD1 (tumor associated calcium signal transducer 1), TACSTD2, TAG-72-4, TAGE, TARP (T cell receptor gamma alternate reading frame protein), TEL/AML1 fusion protein, TEM1, TEM8 (endosialin or CD248), TGFβ, TIE2, TLP, TMPRSS2 ETS fusion gene, TNF-receptor (TNF-α receptor, TNF-β receptor; or TNF-γ receptor), transferrin receptor, TPS, TRP-1 (tyrosine related protein 1), TRP-2, TRP-2/INT2, TSP-180, VEGF receptor, WNT, WT-1 (Wilm's tumor antigen) and XAGE.


In one embodiment, the payload of the present disclosure may be an anti-CD47 antibody. CD47 is a ubiquitously expressed immunoregulatory protein that prevents phagocytic removal of healthy cells by the immune system. CD47 is expressed on the surface of many types of cancer cells, thereby disrupting anti-cancer immune responses. CD47 is also involved in various other important cellular processes, such as angiogenesis, cancer cell death and regulation of T-cell immunity Anti-CD47 antibodies in several pre-clinical studies have shown therapeutic benefit in solid cancers and most notably B-cell malignancies.


In one embodiment, the payload of the present disclosure may be an anti-CD22 antibody. As a non-limiting example, the anti-CD22 antibody is any of the antibodies, fragments or variants thereof described in US Patent Publication No. US20150086562. The anti-CD22 antibody may comprise a heavy chain variable region having the amino acid sequences of SEQ ID NO: 49-64 in US20150086562, and/or a light chain variable region having the amino acid sequence of SEQ ID NO: 17-32 in US20150086562; the contents of which are incorporated herein by reference in their entirety.


In some embodiments, payloads of the present disclosure may be antibodies, fragments and variants thereof which can specifically block an immunoinhibitory signal. These blocking antibodies (also referred to as antagonists) bind to co-inhibitory receptors, therefore blocking their signal transduction. As non-limiting examples, the blocking antibodies may be specific to CTLA-4, PD-1, and PD-L1/L2. In one embodiment, the anti-CTLA-4 antibody is Ipilimumab. In another embodiment, the anti-PD-1 antibody is Nivolumab. Antibodies that bind to PD-L1 and enhance T cell immune response may include antibodies taught in US patent publication NO.: 2016/0108123; the contents of which are incorporated by reference herein in their entirety. Other inhibitory immunomodulatory targets may include B7-H3, which can increase cancer cell metabolism such as glucose uptakes and lactate production (Lim et al., Cancer Res., 2016, 76(8): 1-12). Antibodies that block B7-H3 are disclosed in U.S. Pat. No. 9,150,656; the contents of which are incorporated by reference herein in their entirety.


In one aspect, payloads of the present disclosure may be antagonistic antibodies specific to VSIG8 (v-set and immunoglobulin domain containing 8) comprising the amino acid sequences of SEQ ID NOs: 1, 2 and 3 in US patent publication NO.: US2016/0159927; the contents of which are incorporated by reference herein in their entirety. Antagonistic antibodies may also include a chimeric IL2 receptor (CD25) antibody (Basiliximab) (US Patent Publication NO.: 20080171017; the contents of which are incorporated herein by reference in their entirety), and antagonizing antibodies which bind to human TIM-3 (US patent publication NO.: US2015/0218274; the contents of which are incorporated herein by reference in their entirety), BTLA, VISTA and LAG-3 (See, e.g., US patent publication NO.: US2015/0259420; the contents of which are incorporated herein by reference in their entirety).


In one aspect, the payload of the present disclosure may be an anti-CSF-IR antibody, which is characterized in binding to the dimerization domains D4 to D5 of the extracellular domain of human CSF-IR. This antibody inhibitor can inhibit cell proliferation and survival in CSF-IR ligand-dependent and CSF-1 ligand-independent CSF-IR expressing tumor cells, monocytes and infiltrating macrophages (See, e.g., International Patent Publication NO.: WO2013/132044; the contents of which are incorporated herein by reference in their entirety).


In another aspect, the payload of the present disclosure may be an antagonistic antibody against CXCL12. The anti-CXCL12 antibody blocks the interaction of CXCL12 with its receptor CXCR4, thereby inhibiting CXCR4 signaling. The CXCR4 signaling inhibitor increases the proximity or the frequency of T-cells among cancer cells in the tumor tissue (See, International Patent Publication NO.: WO 2015/019284; the contents of which are incorporated by reference herein in their entirety).


In some embodiments, payloads of the present disclosure may be agonistic antibodies, fragments and variants thereof, which trigger immune responses, including antibodies specific to co-stimulatory molecules, including but not limited to 4-1BB (CD137), OX40 (CD134), CD40, GITR and CD27.


In one embodiment, the payload of the present disclosure may be an agonistic CD40 antibody. In another embodiment, the agonistic antibody specific to 4-1BB (CD137) may be Uremab, a fully human IgG4 monoclonal antibody which specifically binds to and activates 4-1BB (CD137) expressing immune cells, stimulating an immune response, in particular a cytotoxic T cell response, against tumor cells; or Utomilumab, a fully human IgG2 monoclonal antibody; or anti-CD137 antibody described in International Patent Publication NO.: WO2006/088447; the contents of which are incorporated herein by reference in their entirety.


In some embodiments, the payload of the present disclosure may be an antagonistic antibody against Amphiregulin. Amphiregulin (AREG) is an EGF-like growth factor which binds to the EGFR receptor and enhances T regulatory cell function. AREG is produced in a phenotypically and functionally distinct subtype of CD4+ regulatory T cells (Tregs) which have a distinct T cell receptor (TCR) repertoire and express the IL33R. AREG promotes immune suppression in the tumor environment. The anti-Amphiregulin antibody may comprise a heavy chain variable region having the amino acid sequences of SEQ ID NO:: 2, 4, and 12 in U.S. Pat. No. 7,223,393, and/or a light chain variable region having the amino acid sequence of SEQ ID NO:: 3, 5, and 14 in U.S. Pat. No. 7,223,393; the contents of which are incorporated herein by reference in their entirety.


In some embodiments, antibodies specific to co-inhibitory molecules and co-stimulatory molecules may be secreted scFv antibodies.


In some embodiments, antibody payloads of the present disclosure may be T-cell bispecific antibodies (e.g. T cell-engaging BiTE™ antibodies CDS-CD 19, CD3-EpCam, and CD3-EGFR). Other bispecific antibodies used for immunotherapy may also be included as payloads of the present disclosure, for example, bispecific anti-TNF-α and anti-IL6 antibody (EP3062818), bispecific antibodies to an immune cell antigen and TAG-72 (WO2016/089610), anti-ovarian and D3 bispecific antibodies in U.S. Pat. No. 7,262,276; bispecific antibodies against CD133 and CD3 in WO2014/128185; bispecific antibodies against CTLA-4 and PD-1 discussed in US2016/0145355, bispecific antibodies against CD3 and CD19 disclosed in WO2015/006749, and U.S. Pat. Nos. 7,635,472; 7,112,324; bispecific antibodies against Her2 and CD3 in US2014/0170149; bispecific antibodies against CD19 and CD16 in US2005/0089519; the contents of each of which are incorporated by reference herein in their entirety.


In some embodiments, antibodies with decreased affinity may be selected over antibodies with high affinity for the same antigen. Such low affinity antibodies are more effective in discriminating tumors which express high levels of the antigen and normal tissues that express the same antigen at lower levels, while maintaining similar antitumor response.


In some embodiments, the targeting moieties of the present disclosure may include variable heavy chain and variable light chain comprising the amino acid sequences selected from those in Table 10 of co-owned U.S. Provisional Patent Application No. 62/683,972, filed Jun. 12, 2018, and the International Patent Application No. PCT/US18/37005 filed on Jun. 12, 2018 (the contents of each of which are incorporated by reference in their entirety). Heavy chain amino acid sequences are provided as SEQ ID NO: 539 to SEQ ID NO: 3094; and light chain amino acid sequences are provided as SEQ ID NO: 3095 to SEQ ID NO: 5473.


Intrabodies

In some embodiments, payloads of the present disclosure may be intrabodies against players in regulating immune cells. An intrabody is an antibody that is designed to be expressed intracellularly and can be directed to a specific target antigen present in various subcellular locations including the cytosol, nucleus, endoplasmic reticulum (ER), mitochondria, peroxisomes, plasma membrane and trans-Golgi network (TGN) through in frame fusion with intracellular trafficking/localization peptide sequences. The most commonly used format is a single chain antibody (scFv) created by joining the antigen-binding variable domains of heavy and light chain with a linker, most often the 15-amino acid linker (e.g., (GGGGS)3 (SEQ ID NO: 307)) between the variable heavy (VH) and variable light (VL) chains. The intracellular intrabodies are being developed to bind to, neutralize, or modify the function or localization of cancer-related targets and thereby affect the malignant phenotype.


Players that modulate immune cells (e.g., T cells) may be any intracellular signaling checkpoint. Exemplary players may include a co-inhibitory ligand, Casitas B-linage lymphoma proto-oncogene-b (Cbl-b) (a E3 ligase), a protein tyrosine phosphatase (PTP) such as Src homology 2 domain-containing protein tyrosine phosphatase 1 (SHP-1), and Ras. For example, an intrabody may be an intrabody against oncogenic form of RAS disclosed in PCT patent publication NO.: WO2004/046186; the contents of which are incorporated by reference in their entirety.


Therapeutic Antibodies

In some embodiments, antibody payloads of the present disclosure may be therapeutic antibodies. As non-limiting examples, antibodies and fragments and variants thereof may be specific to tumor associated antigens, or tumor specific antigens, or pathogen antigens. In some aspects, antibodies may be blocking antibodies (also referred to as antagonistic antibodies), for example, blocking antibodies against PD-1, PD-L1, PD-L2, CTLA-4 and other inhibitory molecules. In other aspects, antibodies may be agonist antibodies such as agonistic antibodies specific to stimulatory molecules, e g., 4-1BB (CD137), OX40 (CD134), CD40, GITR and CD27.


Other exemplary therapeutic antibodies may include, but are not limited to, Abagovomab, Abcxmab, Abituzumab, Abrilumab, Actoxumab, Adalimumab, Adecatumumab, Afasevikumab, Afelimomab, Afutuzumab, Alacizumab, Alemtuzumab, Alirocumab, Altumomab, Amatuximab, Anetumab, Anifrolumab, Apolizumab, Arcitumomab, Ascrinvacumab, Aselizumab, Atezolizumab, Atinumab, Atlizumab, Atorolimumab, Avelumab, Bapineuzumab, Basiliximab, Bavituximab, Bectumomab, Begelomab, Belimumab, Benralizumab, Bertilimumab, Besilesomab, Bevacizumab, Bezlotoxumab, Biciromab, Bimagrumab, Bimekizumab, Bivatuzumab, Bleselumab, Blinatumomab, Blinatumomab, Blosozumab, Bococizumab, Brentuximab, Briaknumab, Brodalumab, Brolucizumab, Brontictuzumab, Cabiralizumab, Canakinumab, Cantuzumab, Caplacizumab, Capromab, Carlumab, Carotuximab, Catumaxomab, cBR96-doxorubicin immunoconjugate, Cedelizumab, Cergutuzumab, Certolizumab pegol, Cetuximab, Citatuzumab, Cixutumumab, Clazakizumab, Clenoliximab, Clivatuzumab, Codrituzumab, Coltuximab, Contatumumab, Concizumab, Crenezumab, Crotedumab, CR6261, Dacetumab, Daclizumab, Dalotuzumab, Dapirolizumab pegol, Daratumumab, Dectrekumab, Demcizumab, Denintuzumab, Denosumab, Derlotuximab biotin, Detumomab, Dinutuximab, Diridavumab, Domagrozumab, Dorlimomab aritox, Drozitumab, Duligotumab, Dupilumab, Durvalumab, Dusigitumab, Ecromeximab, Eculizumab, Edobacomab, Edrecolomab, Efalizumab, Efungumab, Eldelumab, Elgemtumab, Elotuzumab, Elsilimomab, Emactuzumab, Emibetuzumab, Emicizumab, Enavatuzumab, Enfortumab vedotin, Enlimomab pegol, Enoblituzumab, Enokizumab, Enoticumab, Ensituximab, Epitumomab cituxetan, Epratuzumab, Erlizumab, Ertumaxomab, Etaracizumab, Etrolizumab, Evinacumab, Evolocumab, Exbivirumab, Fanolesomab, Faralimomab, Farletuzumab, Fasinumab, FBTA05, Felvizumab, Fezakinumab, Fibatuzumab, Ficlatuzumab, Figitumumab, Firivumab, Flanvotumab, Fletikumab, Fontolizumab, Foralumab, Foravirumab, Fresolimumab, Fulranumab, Futuximab, Galcanezumab, Galiximab, Ganitumab, Gantenerumab, Gavilimomab, Gemtuzumab ozogamicin, Gevokizumab, Girentuximab, Glembatumumab vedotin, Golimumab, Gomiliximab, Guselkumab, Ibalizumab, Ibritumomab tituxetan, icrucumab, Idarucizumab, Igovomab, IMAB362, Imalumab, Imciromab, Imgatuzumab, Inclacumab, Indatuximab, Indusatumab, Inebilizumab, Infliximab, Intetumumab, Inolimomab, Inotuzumab, Ipilimumab, Iratumumab, Isatuximab, Itolizumab, Ixekizumab, Keliximab, Labetuzumab, Lambrolizumab, Lampalizumab, Lanadelumab, Landogrozumab, Laprituximab, Lebrikizumab, Lemalesomab, Lendalizumab, Lenzilumab, Lerdelimumab, Lexatumumab, Libivirumab, Lifastuzumab, Ligelizumab, Lilotomab, Lintuzumab, Lirilumab, Lodelcizumab, Lokivetmab, Lorvotuzumab, Lucatumumab, Lulizumab pegol, Lumiliximab, Lumretuzumab, Mapatumumab, Margetuximab, Maslimomab, Mavrilimumab, Matuzumab, Mepolizumab, Metelimumab, Milatuzumab, Minretumomab, Mirvetuximab, Mitumomab, Mogamulizumab, Monalizumab, Morolimumab, Motavizumab, Moxetumomab pasudotox, Muromonab-CD3, nacolomab tafenatox, Namilumab, naptumomab, naratuximab, Narnatumab, Natalizumab, Navicixizumab, Navivumab, Nebacumab, Necitumumab, Nemolizumab, Nerelimomab, Nesvacumab, Nimotuzumab, Nivolumab, Nofetumomab, Obiltoxaximab, Obinutuzumab, Ocaratuzumab, Ocrelizumab, Odulimomab, Ofatumumab, Olaratumab, Olaratumab, Olokizumab, Omalizumab, Onartuzumab, Ontuxizumab, Opicinumab, Oportuzumab monatox, Oregovomab, Orticumab, Otelixizumab, Otlertuzumab, Oxelumab, Ozanezumab, Ozoralizumab, Pagibaximab, Palivizumab, Pamrevlumab, Panitumumab, Pankomab, Panobacumab, Parsatuzumab, Pascolizumab, Pasotuxizumab, Pateclizumab, Patritumab, Pembrolizumab, Pemtumomab, Perakizumab, Pertuzumab, Pexelizumab, Pidilizumab, Pinatuzumab, Pintumomab, Placulumab, Plozalizumab, Pogalizumab, Polatuzumab, Ponezumab, Prezalizumab, Priliximab, Pritoxaximab, Pritumumab, PRO 140, Quilizumab, Racotumomab, Radretumab, Rafivirumab, Ralpancizumab, Ramucirumab, Ranibizumab, Raxibacumab, Refanezumab, Regavirumab, Reslizumab, Rilotumumab, Rinucumab, Risankizumab, Rituximab, Rivabazumab pegol, Robatumumab, Roledumab, Romosozumab, Rontalizumab, Rovalpituzumab, Rovelizumab, Ruplizumab, Sacituzumab, Samalizumab, Sapelizumab, Sarilumab, Satumomab pendetide, Secukinumab, Seribantumab, Setoxaximab, Sevirumab, Sibrotuzumab, SGN-CD19A, SGN-CD33A, Sifalimumab, Siltuximab, Simtuzumab, Siplizumab, Sirukumab, Sofituzumab vedotin, Solanezumab, Solitomab, Sonepcizumab, Sontuzumab, Stamulumab, Sulesomab, Suvizumab, tabalumab, Tacatuzumab, Tadocizumab, Talizumab, Tamtuvetmab, Tanezumab, Taplitumomab, Tarextumab, Tefibazumab, Telimomab aritox, Tenatumomab, Teneliximab, Teplizumab, Teprotumumab, Tesidolumab, Tetulomab, Tezepelumab, TGN1412, Ticilimumab, Tildrakizumab, Tigatuzumab, Timolumab, Tisotumab vedotin, TNX-650, Tocilizumab, Toralizumab, Tosatoxumab, Tositumomab, Tovetumab, Tralokinumab, Trastuzumab, TRBS07, Tregalizumab, Tremelimumab, Trevogrumab, Tucotuzumab, Tuvirumab, Ublituximab, Ulcocuplumab, Urelumab, Urtoxazumab, Ustekinumab, Vadastuximab Whine, Vandortuzumab vedotin, Vantictumab, Vanucizumab, Vapaliximab, Varlilumab, Vatelizumab, Vedolizumab, Veltuzumab, Vepalimomab, Vesencumab, Visilizumab, Vobarilizumab, Volociximab, Vorsetuzumab, Votumumab, Xentuzumab, Zalutumumab, Zanolimumab, Zatuximab, Ziralimumab and Zolimomab aritox.


Bicistronic and/or Pseudo-Bicistronic Antibody Payloads


According to the present disclosure, a bicistronic payload is a polynucleotide encoding a two-protein chain antibody on a single polynucleotide strand. A pseudo bicistronic payload is a polynucleotide encoding a single chain antibody discontinuously on a single polynucleotide strand. For bicistronic payloads, the encoded two strands or two portions/regions and/or domains (as is the case with pseudo-bicistronic) are separated by at least one nucleotide not encoding the strands or domains More often the separation comprises a cleavage signal or site or a non-coding region of nucleotides. Such cleavage sites include, for example, furin cleavage sites encoded as an “RKR” site, or a modified furin cleavage site in the resultant polypeptide or any of those taught herein.


According to the present disclosure, a single domain payload comprises one or two polynucleotides encoding a single monomeric variable antibody domain Typically, single domain antibodies comprise one variable domain (VH) of a heavy-chain antibody.


According to the present disclosure, a single chain Fv payloads is a polynucleotide encoding at least two coding regions and a linker region. The scFv payload may encode a fusion protein of the variable regions of the heavy (VH) and light chains (VL) of immunoglobulins, connected with a short linker peptide of ten to about 25 amino acids. The linker is usually rich in glycine for flexibility, as well as serine or threonine for solubility, and can either connect the N-terminus of the VH with the C-terminus of the VL, or vice versa. Other linkers include those known in the art and disclosed herein.


According to the present disclosure, a bispecific payload is a polynucleotide encoding portions or regions of two different antibodies. Bispecific payloads encode polypeptides which may bind two different antigens. Polynucleotides of the present disclosure may also encode trispecific antibodies having an affinity for three antigens.


3. Tumor and Pathogen Specific Antigens

In some embodiments, payloads of the present disclosure may be tumor specific antigens (TSAs), tumor associated antigens (TAAs), pathogen associated antigens, or fragments thereof. The antigen can be expressed as a peptide or as an intact protein or portion thereof. The intact protein or a portion thereof can be native or mutagenized. Antigens associated with cancers or virus-induced cancers as described herein are well-known in the art. Such a TSA or TAA may be previously associated with a cancer or may be identified by any method known in the art.


A tumor specific antigen (TSA) may be a tumor neoantigen. A neoantigen is a mutated antigen that is only expressed by tumor cells because of genetic mutations or alterations in transcription which alter protein coding sequences, therefore creating novel, foreign antigens. The genetic changes result from genetic substitution, insertion, deletion or any other genetic changes of a native cognate protein (i.e. a molecule that is expressed in normal cells).


As non-limiting examples, neoantigens may include mutated new peptides derived from alpha-actinin-4, ARTC1, BCR-ABL fusion protein (b3a2), B-RAF, CASP-5, CASP-8, beta-catenin, Cdc27, CDK4, CDKN2A, CLPP, CML-66, COA-1, connexin 37, dek-can fusion protein, EFTUD2, Elongation factor 2, ETV6-AML1 fusion protein, fibronectin, FLT3-ITD, FN1, GPNM8, LDLR-fucosyltransferase AS fusion protein, HLA-A2, HLA-A11, Hsp-70-1B, MART-2, ME1, MUM-1, MUM-2, MUM-3, Myosin class I, NFYC, neo-PAP, OGT, OS-9, p53, pml-RARalpha fusion protein, PRDX5, PTPRK, K-Ras, N-Ras, RBAF600, sirtuin-2, SNRPD1, SYT-SSX1/SSX2 fusion protein, TGF-beta receptor II, etc. Additional neoantigen peptides may include SF3B1 peptides, MYD peptides, TP53 peptides, Abl peptides, FBXW7 peptides, MAPK peptides, and GNB1 peptides disclosed in US patent publication NO.: 20110293637; the contents of which are incorporated herein by reference in their entirety.


New neoantigens identified through large-scale sequencing and algorithm calculation may also be included. See, e.g., International Patent Publication NO.: WO2014/168874; Nishimura et al., Cancer Sci. 2015, 106(5): 505-511; and Linnemann et al., Nat. Med., 2015, 21(1): 81-85; the contents of each of which are incorporated herein by reference in their entirety.


A tumor associated antigen (TAA) may be an overexpressed or accumulated antigen that is expressed by both normal and neoplastic tissue, with the level of expression highly elevated in cancer tissues. Numerous proteins (e.g. oncogenes) are up-regulated in tumor tissues, including but not limited to adipophilin, AIM-2, ALDH1A1, BCLX(L), BING-4, CALCA, CD45, CD274, CPSF, cyclin D1, DKK1, ENAH, epCAM, ephA3, EZH2, FGF5, 0250, HER-2/neu, HLA-DOB, Hepsin, ID01, IGFB3, IL13Ralpha2, Intestinal carboxyl esterase, kallikrein 4, KIF20A, lengsin, M-CSF, MCSP, mdm-2, Meloe, Midkine, MMP-2, MMP-7, MUC-1, MUC5AC, p53, Pax5, PBF, PRAME, PSMA, RAGE-1, RGS5, RhoC, RNF43, RU2A5, SECERNIN 1, SOX10, STEAP1, survivin, Telomerase, TPBG, VEGF, and WT1.


A TAA may be an oncofetal antigen that is typically only expressed at different stages during the development of the fetus and in cancerous somatic cells. Many proteins are normally expressed during fetal development but are transcriptionally repressed after birth or at early stage of infancy, therefore are not present, or are expressed in significantly lower levels in the corresponding normal adult tissue. Some of these developmental proteins are re-expressed in certain tumor cells and become oncofetal antigens. Examples of oncofetal antigens may include, but are not limited to CEA (carcinoembryonic antigen) in colorectal carcinoma, iLRP/OFA (immature laminin receptor protein/oncofetal antigen) in renal cell carcinoma (RCC), TAG-72 (tumor associated glycoprotein-72) in prostate carcinoma, AFP (alpha-fetoprotein) in hepatocellular carcinoma (HCC), ROR1 (a receptor tyrosine kinase) in many malignant cells such as brain tumors, sperm protein 17, HMGA2 (high mobility group A2) in ovarian carcinoma, oncofetal H19, CR-1 (Cripto-1, a member of epidermal growth factor (EGF)-CFC family), trophoblast glycoprotein precursor and GPC-3 (Glypican-3, a member of heparan sulphate proteoglycans) in HCC.


A TAA may be a cancer-testis antigen that is expressed only by cancer cells and adult reproductive tissues such as testis and placenta, including, but limited to antigens from BAGE family, CAGE family, HAGE family, GAGE family, MAGE family (e.g., MAGE-A1, MAGE-A2, MAGE-A3, MAGE-A6 and MAGE-A13), SAGE family, XAGE family, MCAK, NA88-A (cancer/testis antigen 88), PSAD1, SSX-2, and SLLP-1.


A TAA may be a lineage restricted antigen that is expressed largely by a single cancer histotype, such as Melan-A/MART-1, Gp100/pmel17, Tyrosinase, TRP-1/-2, P. polypeptide, MC1R in melanoma; and prostate specific antigen (PSA) in prostate cancer.


A TAA may be an oncoviral antigen that is encoded by tumorigenic transforming viruses (also called oncogenic viruses). Oncogenic viruses, when they infect host cells, can insert their own DNA (or RNA) into that of the host cells. When the viral DNA or RNA affects the host cell's genes, it can push the cell toward becoming cancer. Oncogenic viruses include, but are not limited to, RNA viruses, and DNA viruses. Some examples of commonly known oncoviruses include human papilloma viruses (HPVs) which are main causes of cervical cancer, Epstein-Barr virus (EBV) which may cause nasopharyngeal cancer, certain types of fast-growing lymphomas (e.g., Burkitt lymphoma) and stomach cancer, hepatitis B, C and D viruses (HBV, HCV and HDV) in hepatocellular carcinoma (HCC), human immunodeficiency virus (HIV) which increases the risk of getting many types of cancer (e.g., liver cancer, anal cancer and Hodgkin cancer), Kaposi sarcoma herpes virus (KSHV; also known as human herpes virus 8 (HHV8)) which is linked to lymphoma, human T-lymphotropic virus (HTLV-1) and Merkle cell polyomavirus (MCV). A viral antigen can be any defined antigen of a virus that is associated with a cancer in a human. For example, antigens from EBV may include but are not limited to, Epstein-Barr nuclear antigen-1 (EBNA1), latent membrane protein 1 (LMP1), or latent membrane protein 2 (LMP2).


A TAA may be an idiotypic antigen that is generated from highly polymorphic genes where a tumor cell expresses a specific “clonotype”, i.e., as in B cell, T cell lymphoma/leukemia resulting from clonal aberrancies, such as Immunoglobulin and T cell receptors (TCRs). Idiotypic antigens are a class of non-pathogen-associated neoantigens. For example, the malignant B cells express rearranged and multiply mutated surface immunoglobulins (Ig). Tumor specific idiotypes (e.g., immunoglobulin idiotypes) are regarded as particularly attractive tumor-specific antigens that can be successfully targeted by immunotherapy (e.g., Alejandro et al., Front Oncol., 2012, 2: 159).


4. T Cell Receptors (TCRs)

In some embodiments, payloads of the present disclosure may be T cell receptors (TCRs). The TCR may be specific to a cancer antigen, having a specific α chain and β chain which together form a TCRαβ heterodimer, or having a specific γ chain and δ chain which together form a TCRγδ heterodimer. The TCR may be a recombinant antigen specific T cell receptor.


The variable regions of α chain and β chain determine T cell specificity to an antigenic peptide presented by the major histocompatibility complex (MHC) class I and II molecules. The TCR recognition of the tumor antigen on the surface of a tumor cell presented by MHC molecules by TCR triggers T cell activation. The use of TCR gene therapy can equip a subject's own T cells with desired specificities and generate sufficient numbers of T cells to eradicate tumor cells. In some embodiments, a biocircuit or an effector module comprising a tumor specific TCR may be transduced into T cells and TCR-engineered T cells will be infused into cancer patients who have lymphocytopenia or lymphopenia by chemotherapy or irradiation, allowing efficient engraftment but inhibiting immune suppression.


Sequences encoding tumor antigen recognizing TCR chains can be obtained from tumor-reactive T cells (e.g., tumor-infiltrating lymphocytes isolated from the tumor of a patient).


According to the present disclosure, a TCR specific to tumor cells can be produced by methods described in International Patent Publication NO.: WO2014/083173; the contents of which are incorporated herein by reference in their entirety. A host organism expressing a transgene of a human leucocyte antigen (HLA) type which is known or suspected to be able to present a mutated tumor specific antigen (TSA) is transduced to express the un-rearranged human TCR loci. Preferably these loci encode TCR α and β chains, and preferably comprise a plurality, ideally all, of human TCR V, D, J, and/or C genes. The host organism is immunized with a cancer specific TSA or a peptide epitope derived from the TSA and T cells expressing rearranged TCRs specifically against the TSA are isolated and cloned. The TCR from the cloned T cells are sequenced (International Patent Publication NO.: WO2014/083173; the contents of which are incorporated herein by reference in their entirety).


In some embodiments, payloads of the present disclosure may be TCRs that specifically recognize TSAs, TAAs, or epitopes thereof, complexed with MHC molecules.


Exemplary tumor antigens that can be recognized by a TCR may include at least the following: 5T4, 707-AP, A33, AFP (α-fetoprotein), AKAP-4 (A kinase anchor protein 4), ALK, α5β1-integrin, androgen receptor, annexin II, alpha-actinin-4, ART-4, B1, B7H3, B7H4, BAGE (B melanoma antigen), BCMA, BCR-ABL fusion protein, beta-catenin, BKT-antigen, BTAA, CA-I (carbonic anhydrase I), CA50 (cancer antigen 50), CA125, CA15-3, CA195, CA242, calretinin, CAIX (carbonic anhydrase), CAMEL (cytotoxic T-lymphocyte recognized antigen on melanoma), CAM43, CAP-1, Caspase-8/m, CD4, CD5, CD7, CD19, CD20, CD22, CD23, CD25, CD27/m, CD28, CD30, CD33, CD34, CD36, CD38, CD40/CD154, CD41, CD44v6, CD44v7/8, CD45, CD49f, CD56, CD68\KP1, CD74, CD79a/CD79b, CD103, CD123, CD133, CD138, CD171, cdc27/m, CDK4 (cyclin dependent kinase 4), CDKN2A, CDS, CEA (carcinoembryonic antigen), CEACAM5, CEACAM6, chromogranin, c-Met, c-Myc, coa-1, CSAp, CT7, CT10, cyclophilin B, cyclin B1, cytoplasmic tyrosine kinases, cytokeratin, DAM-10, DAM-6, dek-can fusion protein, desmin, DEPDC1 (DEP domain containing 1), E2A-PRL, EBNA, EGF-R (epidermal growth factor receptor), EGP-1 (epithelial glycoprotein-1) (TROP-2), EGP-2, EGP-40, EGFR (epidermal growth factor receptor), EGFRvIII, EF-2, ELF2M, EMMPRIN, EpCAM (epithelial cell adhesion molecule), EphA2, Epstein Barr virus antigens, Erb (ErbB1; ErbB3; ErbB4), ETA (epithelial tumor antigen), ETV6-AML1 fusion protein, FAP (fibroblast activation protein), FBP (folate-binding protein), FGF-5, folate receptor α, FOS related antigen 1, fucosyl GM1, G250, GAGE (GAGE-1; GAGE-2), galactin, GD2 (ganglioside), GD3, GFAP (glial fibrillary acidic protein), GM2 (oncofetal antigen-immunogenic-1; OFA-I-1), GnT-V, Gp100, H4-RET, HAGE (helicase antigen), HER-2/neu, HIFs (hypoxia inducible factors), HIF-1α, HIF-2α, HLA-A2, HLA-A*0201-R170I, HLA-A11, HMWMAA, Hom/Mel-40, HSP70-2M (Heat shock protein 70), HST-2, HTgp-175, hTERT (or hTRT), human papillomavirus-E6/human papillomavirus-E7 and E6, iCE (immune-capture EIA), IGF-1R, IGH-IGK, IL2R, IL5, ILK (integrin-linked kinase), IMP3 (insulin-like growth factor II mRNA-binding protein 3), IRF4 (interferon regulatory factor 4), KDR (kinase insert domain receptor), KIAA0205, KRAB-zinc finger protein (KID)-3; KID31, KSA (17-1A), K-ras, LAGE, LCK, LDLR/FUT (LDLR-fucosyltransferaseAS fusion protein), LeY (Lewis Y), MAD-CT-1, MAGE (tyrosinase, melanoma-associated antigen) (MAGE-1; MAGE-3), melan-A tumor antigen (MART), MART-2/Ski, MC1R (melanocortin 1 receptor), MDM2, mesothelin, MPHOSPH1, MSA (muscle-specific actin), mTOR (mammalian targets of rapamycin), MUC-1, MUC-2, MUM-1 (melanoma associated antigen (mutated) 1), MUM-2, MUM-3, Myosin/m, MYL-RAR, NA88-A, N-acetylglucosaminyltransferase, neo-PAP, NF-KB (nuclear factor-kappa B), neurofilament, NSE (neuron-specific enolase), Notch receptors, NuMa, N-Ras, NY-BR-1, NY-CO-1, NY-ESO-1, Oncostatin M, OS-9, OY-TES1, p53 mutants, p190 minor bcr-abl, p15(58), p185erbB2, p180erbB-3, PAGE (prostate associated gene), PAP (prostatic acid phosphatase), PAX3, PAX5, PDGFR (platelet derived growth factor receptor), cytochrome P450 involved in piperidine and pyrrolidine utilization (PIPA), Pml-RAR alpha fusion protein, PR-3 (proteinase 3), PSA (prostate specific antigen), PSM, PSMA (Prostate stem cell antigen), PRAMS (preferentially expressed antigen of melanoma), PTPRK, RAGE (renal tumor antigen), Raf (A-Raf, B-Raf and C-Raf), Ras, receptor tyrosine kinases, RCAS1, RGSS, ROR1 (receptor tyrosine kinase-like orphan receptor 1), RU1, RU2, SAGE, SART-1, SART-3, SCP-1, SDCCAG16, SP-17 (sperm protein 17), src-family, SSX (synovial sarcoma X breakpoint)-1, SSX-2 (HOM-MEL-40), SSX-3, SSX-4, SSX-5, STAT-3, STAT-5, STAT-6, STEAD, STn, survivin, syk-ZAP70, TA-90 (Mac-2 binding protein\cyclophilin C-associated protein), TAAL6, TACSTD1 (tumor associated calcium signal transducer 1), TACSTD2, TAG-72-4, TAGE, TARP (T cell receptor gamma alternate reading frame protein), TEL/AML1 fusion protein, TEM1, TEM8 (endosialin or CD248), TGFβ, TIE2, TLP, TMPRSS2 ETS fusion gene, TNF-receptor (TNF-α receptor, TNF-β receptor; or TNF-γ receptor), transferrin receptor, TPS, TRP-1 (tyrosine related protein 1), TRP-2, TRP-2/INT2, TSP-180, VEGF receptor, WNT, WT-1 (Wilm's tumor antigen) and XAGE.


In one aspect, the payload of the present disclosure may be a TCR specifically recognizing Her2/neu epitope which has nucleic acid sequences of α chain and β chain disclosed in U.S. Patent Publication NO.: US20110280894 and International Patent Publication NO. WO2016133779A1; the contents of each of which are incorporated herein by reference in their entirety. In another aspect, the payload of the present disclosure may be a TCR specific to TSA tyrosinase (See U.S. Pat. No. 8,697,854; the contents of which are incorporated herein by reference in their entirety).


In other aspects, payloads of the present disclosure may be TCRs having polypeptide sequences specific to synovial sarcoma X Breakpoint (SSX)-2 antigen (U.S. Pat. No. 9,345,748); human papillomavirus (HPV) 16 E6 antigen (International Patent Publication NO.: WO2015/009606); cytomegalovirus (CMV) phosphoprotein pp65 (U.S. Pat. No. 8,722,048); and WT-1 specific TCR comprising a TCR α-chain having an amino acid sequence as set forth in any one of SEQ ID NOs.: 5-8, and comprising a TCR β-chain having an amino acid sequence as set forth in SEQ ID NO:: 12 or 13, as disclosed in US patent publication NO.: US2016/0083449; the contents of each of which are incorporated herein by reference in their entirety.


In some embodiments, the TCR specific to a TSA may be modified to possess a sequence encoding an affinity weakening motif which imparts a reduction in non-specific binding to a TSA. In some embodiments, an affinity weakening motif having a modification to a TCR CDR1 or CDR2 region may be used to weaken the interaction between TCR and HLA proteins (see, International Patent Publication NO.: WO2016/014725; the contents of which are incorporated herein by reference in their entirety).


In some embodiments, the TCR specific to a TSA may be modified to possess an affinity enhancing motif which imparts an enhancement of binding specificity and affinity for a target antigen. In some embodiments, such high affinity TCRs may be generated by using TCR α-chain to select de novo generated TCR β-chains that pair with an antigen specific TCR α-chain during T cell development in vitro to form enhanced TCRs (see, International Patent Publication NO.: WO2013/166321; the contents of which are incorporated herein by reference in their entirety). In other embodiments, the modified TCR may also possess a sequence encoding an affinity enhancing modification CDR3 region which strengthens the interaction between the TCR and the TSA.


In one embodiment, the TCR specific to a TSA may be modified using zinc finger nucleases (ZFNs), TALENs or a CRISPR/Cas system. The TCR α chain and β chain may contain target sites of a nuclease. The nuclease can cleave the TCR sequence causing a certain degree of disruption of the TCR (see US Patent Publication NO.: US2014/0301990; the contents of which are incorporated herein by reference in their entirety).


In one embodiment, the TCR specific to a TSA may be a soluble single-chain TCR having the structure: Vα2-L-Vβ or Vβ-L-Vα2, wherein L is a linker peptide that links a TCR variable β region (Vβ) with a TCR variable a region of the family 2 (Vα2), as discussed in International Patent Publication NO.: WO2011/044186; the contents of which are incorporated herein by reference in their entirety.


In one embodiment, the TCR specific to a TSA may be maturated to increase its affinity to the TSA according to methods described in US Patent Publication NO.: US2014/0065111; the contents of which are incorporated here in by reference in their entirety.


In some embodiments, the TCRs may be specific to the Fc domain of an antibody (e.g. FcgRla) and utilized to enhance efficacy of antibody mediated therapy, as discussed in International Patent Publication NO.: WO2015/179833; the contents of which are incorporated herein by reference in their entirety.


In some embodiments, payloads of the present disclosure may be recombinant constructs which act as trifunctional T-cell signaling couplers (TriTACs) mimicking the naturally signaling through T cell receptors. The TriTACs enhance chimeric receptor activity while retaining MHC unrestricted targeting. In some aspects, the recombinant construct may comprise a target specific binding ligand such as a scFV specific to a TSA or a designed ankyrin repeat (DARPin), a ligand that binds a protein associated with the TCR complex and a TCR signaling domain polypeptide, e.g. as described in the International Patent Application NO.: WO2015/117229; the contents of which are incorporated herein by reference in their entirety. The TCR associated proteins may be selected from CD3, ZAP70 9zeta-chain associated protein kinase 70), TYN and CD247. In some aspects, the ligand of a TriTAC that binds the TCR associated protein may be an antibody or an antibody fragment (e.g., scFv). In other aspects, the TCR signaling domain polypeptide of a TriTAC may comprise the transmembrane and cytoplasmic domain of CD4.


According to the present disclosure, the α chain and β chain of the TCR of the present disclosure may be included in separate constructs, for example as payloads of two effector modules. In other embodiments, the α chain and β chain of the TCR of the present disclosure may be included in a single effector module as two payloads of the same effector module, for example as illustrated in FIGS. 3-6.


5. Chimeric Antigen Receptors (CARs)

In some embodiments, payloads of the present disclosure may be a chimeric antigen receptors (CARs) which when transduced into immune cells (e.g., T cells and NK cells), can re-direct the immune cells against the target (e.g., a tumor cell) which expresses a molecule recognized by the extracellular target moiety of the CAR.


As used herein, the term “chimeric antigen receptor (CAR)” refers to a synthetic receptor that mimics TCR on the surface of T cells. In general, a CAR is composed of an extracellular targeting domain, a transmembrane domain/region and an intracellular signaling/activation domain. In a standard CAR receptor, the components: the extracellular targeting domain, transmembrane domain and intracellular signaling/activation domain, are linearly constructed as a single fusion protein. The extracellular region comprises a targeting domain/moiety (e.g., a scFv) that recognizes a specific tumor antigen or other tumor cell-surface molecules. The intracellular region may contain a signaling domain of TCR complex (e.g., the signal region of CD3ζ) and/or one or more costimulatory signaling domains, such as those from CD28, 4-1BB (CD137) and OX-40 (CD134). For example, a “first-generation CAR” only has the CD3ζ signaling domain, whereas in an effort to augment T-cell persistence and proliferation, costimulatory intracellular domains are added, giving rise to second generation CARs having a CD3ζ signal domain plus one costimulatory signaling domain, and third generation CARs having CD3ζ signal domain plus two or more costimulatory signaling domains A CAR, when expressed by a T cell, endows the T cell with antigen specificity determined by the extracellular targeting moiety of the CAR. Recently, it is also desirable to add one or more elements such as homing and suicide genes to develop a more competent and safer architecture of CAR, so called the fourth-generation CAR.


Cells such as T cells engineered to express a CAR can be redirected to attack target cells that express a molecule which can be recognized by the targeting moiety of the CAR.


In some embodiments, the extracellular targeting domain is joined through the hinge (also called space domain or spacer) and transmembrane regions to an intracellular signaling domain. The hinge connects the extracellular targeting domain to the transmembrane domain which transverses the cell membrane and connects to the intracellular signaling domain. The hinge may need to be varied to optimize the potency of CAR transformed cells toward cancer cells due to the size of the target protein where the targeting moiety binds, and the size and affinity of the targeting domain itself. Upon recognition and binding of the targeting moiety to the target cell, the intracellular signaling domain leads to an activation signal to the CAR T cell, which is further amplified by the “second signal” from one or more intracellular costimulatory domains The CAR T cell, once activated, can destroy the target cell.


In some embodiments, the CAR of the present disclosure may be split into two parts, each part is linked a dimerizing domain, such that an input that triggers the dimerization promotes assembly of the intact functional receptor. Wu and Lim recently reported a split CAR in which the extracellular CD19 binding domain and the intracellular signaling element are separated and linked to the FKBP domain and the FRB* (T2089L mutant of FKBP-rapamycin binding) domain that heterodimerize in the presence of the rapamycin analog AP21967. The split receptor is assembled in the presence of AP21967 and together with the specific antigen binding, activates T cells (Wu et al., Science, 2015, 625(6258): aab4077).


In some embodiments, the CAR of the present disclosure may be designed as an inducible CAR.


Sakemura et al recently reported the incorporation of a Tet-On inducible system to the CD19 CAR construct. The CD19 CAR is activated only in the presence of doxycycline (Dox). Sakemura reported that Tet-CD19CAR T cells in the presence of Dox were equivalently cytotoxic against CD19+ cell lines and had equivalent cytokine production and proliferation upon CD19 stimulation, compared with conventional CD19CAR T cells (Sakemura et al., Cancer Immuno. Res., 2016, Jun. 21, Epub ahead of print). In one example, this Tet-CAR may be the payload of the effector module under the control of SREs (e.g., DDs) of the disclosure. The dual systems provide more flexibility to turn-on and off the CAR expression in transduced T cells.


According to the present disclosure, the payload of the present disclosure may be a first-generation CAR, or a second-generation CAR, or a third-generation CAR, or a fourth-generation CAR. Representative effector module embodiments comprising CAR constructs are illustrated in FIGS. 13-18. In some embodiments, the payload of the present disclosure may be a full CAR construct composed of the extracellular domain, the hinge and transmembrane domain and the intracellular signaling region. In other embodiments, the payload of the present disclosure may be a component of the full CAR construct including an extracellular targeting moiety, a hinge region, a transmembrane domain, an intracellular signaling domain, one or more co-stimulatory domain, and other additional elements that improve CAR architecture and functionality including but not limited to a leader sequence, a homing element and a safety switch, or the combination of such components.


CARs regulated by biocircuits and compositions of the present disclosure are tunable and thereby offer several advantages. The reversible on-off switch mechanism allows management of acute toxicity caused by excessive CAR-T cell expansion. Pulsatile CAR expression using SREs of the present disclosure may be achieved by cycling ligand level. The ligand conferred regulation of the CAR may be effective in offsetting tumor escape induced by antigen loss, avoiding functional exhaustion caused by tonic signaling due to chronic antigen exposure and improving the persistence of CAR expressing cells in vivo.


In some embodiments, biocircuits and compositions of the disclosure may be utilized to down regulate CAR expression to limit on target on tissue toxicity caused by tumor lysis syndrome. Down regulating the expression of the CARs of the present disclosure following anti-tumor efficacy may prevent (1) On target off tumor toxicity caused by antigen expression in normal tissue. (2) antigen independent activation in vivo.


In some embodiments, the payload may be a cytokine-based CAR, wherein the antigen binding domain of the CAR is substituted by a cytokine which may bind to its cognate receptor. In one embodiment, the payload is humanized interleukin-13 receptor α2 (IL-13Rα2) chimeric antigen receptors (CARs), Hu07BBz and Hu08BBz, that recognized human IL-13Rα2, but not IL-13Rα1. The efficacy of such CAR may further be improved by PD-1 and TIM-3 blockade. Any of the CARs described in Yin et al. Mol Ther Oncolytics. 2018 Aug. 28; 11:20-38. may be useful in the present disclosure (the contents of which are incorporated by reference in their entirety).


In some embodiments, the CD19 CAR tertiary structure may be modified to improve safety profile of CD19 CART cell therapy using tertiary-structure-prediction program (Phrye2) (Kelley et al. 2009. Nat. Protoc. 4, 363-371. CAR with improved safety profile may include but are not limited to those with reduced ability to produce cytokines. In some embodiments, the CARs with improved safety profile may include the CD19-BBz CAR variant contains an 86-amino-acid fragment from human CD8α, comprising a longer extracellular-domain fragment (55 amino acids versus 45 amino acids in the CD19-BBz (prototype) and a longer intracellular sequence (7 amino acids versus 3 amino acids in CD19-BBz (prototype/Kyrmirah™)) as described by Ying et al. 2019 Nat Med. doi: 10.1038/s41591-019-0421-7 (the contents of which are herein incorporated by reference in their entirety). In another aspect, the payloads of the present disclosure may be the CD19-BBz (86) variant CAR co-expressed with truncated, nonfunctional epidermal growth factor receptor (tEGFR) as described by Ying et al. 2019.


Extracellular Targeting Domain/Moiety

In accordance with the disclosure, the extracellular target moiety of a CAR may be any agent that recognizes and binds to a given target molecule, for example, a neoantigen on tumor cells, with high specificity and affinity. The target moiety may be an antibody and variants thereof that specifically binds to a target molecule on tumor cells, or a peptide aptamer selected from a random sequence pool based on its ability to bind to the target molecule on tumor cells, or a variant or fragment thereof that can bind to the target molecule on tumor cells, or an antigen recognition domain from native T-cell receptor (TCR) (e.g. CD4 extracellular domain to recognize HIV infected cells), or exotic recognition components such as a linked cytokine that leads to recognition of target cells bearing the cytokine receptor, or a natural ligand of a receptor.


In some embodiments, the targeting domain of a CAR may be a Ig NAR, a Fab fragment, a Fab′ fragment, a F(ab)′2 fragment, a F(ab)′3 fragment, Fv, a single chain variable fragment (scFv), a bis-scFv, a (scFv)2, a minibody, a diabody, a tribody, a tetrabody, a disulfide stabilized Fv protein (dsFv), a unibody, a nanobody, or an antigen binding region derived from an antibody that specifically recognizes a target molecule, for example a tumor specific antigen (TSA). In one embodiment, the targeting moiety is a scFv antibody. The scFv domain, when it is expressed on the surface of a CAR T cell and subsequently binds to a target protein on a cancer cell, is able to maintain the CAR T cell in proximity to the cancer cell and to trigger the activation of the T cell. A scFv can be generated using routine recombinant DNA technology techniques and is discussed in the present disclosure.


In one embodiment, the targeting moiety of a CAR construct may be an aptamer such as a peptide aptamer that specifically binds to a target molecule of interest. The peptide aptamer may be selected from a random sequence pool based on its ability to bind to the target molecule of interest.


In some embodiments, the targeting moiety of a CAR construct may be a natural ligand of the target molecule, or a variant and/or fragment thereof capable of binding the target molecule. In some aspects, the targeting moiety of a CAR may be a receptor of the target molecule, for example, a full-length human CD27, as a CD70 receptor, may be fused in frame to the signaling domain of CD3 ζ, forming a CD27 chimeric receptor as an immunotherapeutic agent for CD70-positive malignancies (See, e.g., US patent publication NO.: US20130323214; the contents of which are incorporated by reference herein in their entirety).


In some embodiments, the targeting moiety of a CAR may recognize a tumor specific antigen (TSA), for example a cancer neoantigen which is restrictedly expressed on tumor cells.


As non-limiting examples, the CAR of the present disclosure may comprise the extracellular targeting domain capable of binding to a tumor specific antigen selected from 5T4, 707-AP, A33, AFP (α-fetoprotein), AKAP-4 (A kinase anchor protein 4), ALK, α5β1-integrin, androgen receptor, annexin II, alpha-actinin-4, ART-4, B1, B7H3, B7H4, BAGE (B melanoma antigen), BCMA, BCR-ABL fusion protein, beta-catenin, BKT-antigen, BTAA, CA-I (carbonic anhydrase I), CA50 (cancer antigen 50), CA125, CA15-3, CA195, CA242, calretinin, CAIX (carbonic anhydrase), CAMEL (cytotoxic T-lymphocyte recognized antigen on melanoma), CAM43, CAP-1, Caspase-8/m, CD4, CD5, CD7, CD19, CD20, CD22, CD23, CD25, CD27/m, CD28, CD30, CD33, CD34, CD36, CD38, CD40/CD154, CD41, CD44v6, CD44v7/8, CD45, CD49f, CD56, CD68\KP1, CD74, CD79a/CD79b, CD103, CD123, CD133, CD138, CD171, cdc27/m, CDK4 (cyclin dependent kinase 4), CDKN2A, CDS, CEA (carcinoembryonic antigen), CEACAM5, CEACAM6, chromogranin, c-Met, c-Myc, coa-1, CSAp, CT7, CT10, cyclophilin B, cyclin B1, cytoplasmic tyrosine kinases, cytokeratin, DAM-10, DAM-6, dek-can fusion protein, desmin, DEPDC1 (DEP domain containing 1), E2A-PRL, EBNA, EGF-R (epidermal growth factor receptor), EGP-1 (epithelial glycoprotein-1) (TROP-2), EGP-2, EGP-40, EGFR (epidermal growth factor receptor), EGFRvIII, EF-2, ELF2M, EMMPRIN, EpCAM (epithelial cell adhesion molecule), EphA2, Epstein Barr virus antigens, Erb (ErbB1; ErbB3; ErbB4), ETA (epithelial tumor antigen), ETV6-AML1 fusion protein, FAP (fibroblast activation protein), FBP (folate-binding protein), FGF-5, folate receptor α, FOS related antigen 1, fucosyl GM1, 0250, GAGE (GAGE-1; GAGE-2), galactin, GD2 (ganglioside), GD3, GFAP (glial fibrillary acidic protein), GM2 (oncofetal antigen-immunogenic-1; OFA-I-1), GnT-V, Gp100, H4-RET, HAGE (helicase antigen), HER-2/neu, HIFs (hypoxia inducible factors), HIF-1α, HIF-2α, HLA-A2, HLA-A*0201-R170I, HLA-A11, HMWMAA, Hom/Mel-40, HSP70-2M (Heat shock protein 70), HST-2, HTgp-175, hTERT (or hTRT), human papillomavirus-E6/human papillomavirus-E7 and E6, iCE (immune-capture EIA), IGF-1R, IGH-IGK, IL2R, ILS, ILK (integrin-linked kinase), IMP3 (insulin-like growth factor II mRNA-binding protein 3), IRF4 (interferon regulatory factor 4), KDR (kinase insert domain receptor), KIAA0205, KRAB-zinc finger protein (KID)-3; KID31, KSA (17-1A), K-ras, LAGE, LCK, LDLR/FUT (LDLR-fucosyltransferaseAS fusion protein), LeY (Lewis Y), MAD-CT-1, MAGE (tyrosinase, melanoma-associated antigen) (MAGE-1; MAGE-3), melan-A tumor antigen (MART), MART-2/Ski, MC1R (melanocortin 1 receptor), MDM2, mesothelin, MPHOSPH1, MSA (muscle-specific actin), mTOR (mammalian targets of rapamycin), MUC-1, MUC-2, MUM-1 (melanoma associated antigen (mutated) 1), MUM-2, MUM-3, Myosin/m, MYL-RAR, NA88-A, N-acetylglucosaminyltransferase, neo-PAP, NF-KB (nuclear factor-kappa B), neurofilament, NSE (neuron-specific enolase), Notch receptors, NuMa, N-Ras, NY-BR-1, NY-CO-1, NY-ESO-1, Oncostatin M, OS-9, OY-TES1, p53 mutants, p190 minor bcr-abl, p15(58), p185erbB2, p180erbB-3, PAGE (prostate associated gene), PAP (prostatic acid phosphatase), PAX3, PAX5, PDGFR (platelet derived growth factor receptor), cytochrome P450 involved in piperidine and pyrrolidine utilization (PIPA), Pml-RAR alpha fusion protein, PR-3 (proteinase 3), PSA (prostate specific antigen), PSM, PSMA (Prostate stem cell antigen), PRAME (preferentially expressed antigen of melanoma), PTPRK, RAGE (renal tumor antigen), Raf (A-Raf, B-Raf and C-Raf), Ras, receptor tyrosine kinases, RCAS1, RGSS, ROR1 (receptor tyrosine kinase-like orphan receptor 1), RU1, RU2, SAGE, SART-1, SART-3, SCP-1, SDCCAG16, SP-17 (sperm protein 17), src-family, SSX (synovial sarcoma X breakpoint)-1, SSX-2 (HOM-MEL-40), SSX-3, SSX-4, SSX-5, STAT-3, STAT-5, STAT-6, STEAD, STn, survivin, syk-ZAP70, TA-90 (Mac-2 binding protein\cyclophilin C-associated protein), TAAL6, TACSTD1 (tumor associated calcium signal transducer 1), TACSTD2, TAG-72-4, TAGE, TARP (T cell receptor gamma alternate reading frame protein), TEL/AML1 fusion protein, TEM1, TEM8 (endosialin or CD248), TGFβ, TIE2, TLP, TMPRSS2 ETS fusion gene, TNF-receptor (TNF-α receptor, TNF-β receptor; or TNF-γ receptor), transferrin receptor, TPS, TRP-1 (tyrosine related protein 1), TRP-2, TRP-2/INT2, TSP-180, VEGF receptor, WNT, WT-1 (Wilm's tumor antigen) and XAGE.


In some embodiments, the CAR of the present disclosure may comprise a universal immune receptor which has a targeting moiety capable of binding to a labelled antigen. Methods of generating universal immune receptor CAR are discussed in International Patent Publication NO.: WO2013044225A1; the contents of which are incorporated herein by reference in their entirety.


In some embodiments, the CAR of the present disclosure may comprise the targeting moiety capable of binding to a pathogen antigen.


In some embodiments, the CAR of the present disclosure may comprise the targeting moiety capable of binding to non-protein molecules such as tumor-associated glycolipids and carbohydrates. TSAs may also be lipid molecules, polysaccharides, saccharides, nucleic acids, haptens, carbohydrate, or the combinations thereof.


In some embodiments, the CAR of the present disclosure may comprise the targeting moiety capable of binding to a component within the tumor microenvironment including proteins expressed in various tumor stroma cells including tumor associated macrophages (TAMs), immature monocytes, immature dendritic cells, immunosuppressive CD4+CD25+ regulatory T cells (Treg) and MDSCs. A recent study using an animal model, demonstrated that after systemic transplantation, T cells expressing VEGFR-2 CAR and IL12 infiltrated the tumors, expanded and persisted within tumor mass leading to tumor regression. The anti-tumor effect was dependent on targeting of IL12-responsive host cells via activation of VEGFR-2 CAR-T cells and release of IL12 (Chinnasamy et al., Clinical Cancer Research, 2012, 18: 1672-1683).


In some embodiments, the CAR of the present disclosure may comprise the targeting moiety capable of binding to a cell surface adhesion molecule, a surface molecule of an inflammatory cell that appears in an autoimmune disease, or a TCR causing autoimmunity.


As non-limiting examples, the targeting moiety of the present disclosure may be a scFv antibody that recognizes a tumor specific antigen (TSA), for example scFvs of antibodies SS, SS1 and HN1 that specifically recognize and bind to human mesothelin (U.S. Pat. No. 9,359,447), scFv of antibody of GD2 (U.S. Pat. No. 9,315,585), a CD19 antigen binding domain (U.S. Pat. No. 9,328,156); a NKG2D ligand binding domain (U.S. Pat. No. 9,273,283; US patent publication NO.: US20160311906A1); human anti-mesothelin scFvs comprising the amino acid sequences of SEQ ID Nos.: 11 and 12 of U.S. Pat. No. 9,272,002 an anti-CS1 binding agent (US patent publication NO.: US20160075784); an anti-BCMA binding domain (International Patent Publication NO.: WO2016/014565); anti-CD19 scFv antibody of SEQ ID NO:: 20 in U.S. Pat. No. 9,102,761; GFR alpha 4 antigen binding fragments having the amino acid sequences of SEQ ID NOs: 59 and 79 of International patent publication NO.: 2016/025880; anti-CLL-1 (C-type lectin-like molecule 1) binding domains having the amino acid sequences of SEQ ID NO.:47, 44, 48, 49, 50, 39, 40, 41, 42, 43, 45, 46, 51, 73, 70, 74, 75, 76, 65, 66, 67, 68, 69, 71, 72, 77, 195, 86, 83, 87, 88, 89, 78, 79, 80, 81, 82, 84, 85, 90 and 196 of International Patent Publication NO.: WO2016014535); CD33 binding domains having the amino acid sequences of SEQ ID NOs: 39-46 of International patent publication NO.: WO2016014576; a GPC3 (glypican-3) binding domain (SEQ ID NO:: 2 and SEQ ID NO:: 4 of International patent publication NO.: WO2016036973); a GFR alpha4 (Glycosyl-phosphatidylinositol (GPI)-linked GDNF family α-receptor 4 cell-surface receptor) binding domain (International Patent Publication NO.: WO2016025880); CD123 binding domains having the amino acid sequences of SEQ ID NOs: 480, 483, 485, 478, 158, 159, 160, 157, 217, 218, 219, 216, 276, 277, 278, and 275 of International patent publication NO.: WO20160258896; an anti-ROR1 antibody or fragments thereof (International patent publication NO.: WO2016016344); scFvs specific to GPC-3 (SEQ ID NOs: 1 and 24 of International patent publication NO.: WO2016049459); scFv for CSPG4 (SEQ ID NO:: 2 of International patent publication NO.: WO2015080981; scFv for folate receptor alpha (US Patent Publication NO.: US20170002072A1); the contents of each of which are incorporated herein by reference in their entirety.


In some embodiments, natural ligands may be used as the targeting moieties of the CARs of the present disclosure. Such natural ligands may be capable of binding to the antigens with affinity in the range of the scFvs and can redirect T cells specificity and effector functions to target cells expressing the complementary receptor. In some embodiments, the targeting moiety of the CAR may be neuregulin-1 (NRG1) which is a natural ligand for HER3 and HER4; VEGF which is a natural ligand of VEGFR; IL13 wildtype protein or IL13 mutein e.g., E13Y which binds to IL13Ra2; NKG2D ligand, which is a natural ligand of NKG2D receptor; CD70 which is ligand of CD27; and a proliferation-inducing ligand (APRIL) which is a natural high affinity ligand for BCMA8 and transmembrane activator and CAML interactor (TACI). Any of the ligand based BCMA CARs taught in the US Patent Publication No. US20160362467A1, the contents of which are incorporated by reference in their entirety.


In some embodiments, the targeting moieties of the present disclosure may be scFv comprising the amino acid sequences in Table 11 of co-owned U.S. Provisional Patent Application No. 62/683,972, filed Jun. 12, 2018, and the International Patent Application No. PCT/US18/37005 filed on Jun. 12, 2018 (the contents of each of which are incorporated by reference in their entirety). SEQ ID NO: 5474 to SEQ ID NO: 6571 describe scFv that may be utilized in the payloads described herein.


In one embodiment, the targeting moiety of the CAR may recognize CD19. CD19 is a well-known B cell surface molecule, which upon B cell receptor activation enhances B-cell antigen receptor induced signaling and expansion of B cell populations. CD19 is broadly expressed in both normal and neoplastic B cells. Malignancies derived from B cells such as chronic lymphocytic leukemia, acute lymphocytic leukemia and many non-Hodgkin lymphomas frequently retain CD19 expression. This near universal expression and specificity for a single cell lineage has made CD19 an attractive target for immunotherapies. Human CD19 has 14 exons wherein exon 1-4 encode the extracellular portion of the CD19, exon 5 encodes the transmembrane portion of CD19 and exons 6-14 encode the cytoplasmic tail. In one embodiment, the targeting moiety may comprise scFvs derived from the variable regions of the FMC63 antibody. FMC63 is an IgG2a mouse monoclonal antibody clone specific to the CD19 antigen that reacts with CD19 antigen on cells of the B lineage. The epitope of CD19 recognized by the FMC63 antibody is in exon 2 (Sotillo et al (2015) Cancer Discov; 5(12):1282-95; the contents of which are incorporated by reference in their entirety). In some embodiments, the targeting moiety of the CAR may be derived from the variable regions of other CD19 monoclonal antibody clones including but not limited to 467, SJ25C1, CVID3/429, CVID3/155, HIB19, and J3-119.


In some embodiments, the targeting moiety of a CAR may recognize a tumor specific antigen (TSA), for example a cancer neoantigen that is only expressed by tumor cells because of genetic mutations or alterations in transcription which alter protein coding sequences, therefore creating novel, foreign antigens. The genetic changes result from genetic substitution, insertion, deletion or any other genetic changes of a native cognate protein (i.e. a molecule that is expressed in normal cells). In the context of CD19, TSAs may include a transcript variant of human CD lacking exon 2 or lacking exon 5-6 or both (see International patent publication No. WO2016061368; the contents of which are incorporated herein by reference in their entirety). Since FMC63 binding epitope is in exon 2, CD19 lacking exon 2 is not recognized by FMC63 antibody. Thus, in some embodiments, the targeting moiety of the CAR may be an FMC63-distinct scFV. As used herein “FMC63-distinct” refers, to an antibody, scFv or a fragment thereof that is immunologically specific and binds to an epitope of the CD19 antigen that is different or unlike the epitope of CD19 antigen that is bound by FMC63. In some instances, targeting moiety may recognize a CD19 antigen lacking exon2. In one embodiment, the targeting moiety recognizes a fragment of CD19 encoded by exon 1, 3 and/or 4. In one example, the targeting moiety recognizes the epitope that bridges the portion of CD19 encoded by exon 1 and the portion of CD19 encoded by exon 3.


Intracellular Signaling Domains

The intracellular domain of a CAR fusion polypeptide, after binding to its target molecule, transmits a signal to the immune effector cell, activating at least one of the normal effector functions of immune effector cells, including cytolytic activity (e.g., cytokine secretion) or helper activity. Therefore, the intracellular domain comprises an “intracellular signaling domain” of a T cell receptor (TCR).


In some aspects, the entire intracellular signaling domain can be employed. In other aspects, a truncated portion of the intracellular signaling domain may be used in place of the intact chain as long as it transduces the effector function signal.


In some embodiments, the intracellular signaling domain of the present disclosure may contain signaling motifs which are known as immunoreceptor tyrosine based activation motifs (ITAMs). Examples of ITAM containing cytoplasmic signaling sequences include those derived from TCR CD3zeta, FcR gamma, FcR beta, CD3 gamma, CD3 delta, CD3 epsilon, CD5, CD22, CD79a, CD79b, and CD66d. In one example, the intracellular signaling domain is a CD3 zeta (CD3ζ) signaling domain.


In some embodiments, the intracellular region of the present disclosure further comprises one or more costimulatory signaling domains which provide additional signals to the immune effector cells. These costimulatory signaling domains, in combination with the signaling domain can further improve expansion, activation, memory, persistence, and tumor-eradicating efficiency of CAR engineered immune cells (e.g., CAR T cells). In some cases, the costimulatory signaling region contains 1, 2, 3, or 4 cytoplasmic domains of one or more intracellular signaling and/or costimulatory molecules. The costimulatory signaling domain may be the intracellular/cytoplasmic domain of a costimulatory molecule, including but not limited to CD2, CD7, CD27, CD28, 4-1BB (CD137), OX40 (CD134), CD30, CD40, ICOS (CD278), GITR (glucocorticoid-induced tumor necrosis factor receptor), LFA-1 (lymphocyte function-associated antigen-1), LIGHT, NKG2C, B7-H3. In one example, the costimulatory signaling domain is derived from the cytoplasmic domain of CD28. In another example, the costimulatory signaling domain is derived from the cytoplasmic domain of 4-1BB (CD137). In another example, the co-stimulatory signaling domain may be an intracellular domain of GITR as taught in U.S. Pat. No. 9,175,308; the contents of which are incorporated herein by reference in its entirety.


In some embodiments, the intracellular region of the present disclosure may comprise a functional signaling domain from a protein selected from the group consisting of an MHC class I molecule, a TNF receptor protein, an immunoglobulin-like protein, a cytokine receptor, an integrin, a signaling lymphocytic activation protein (SLAM) such as CD48, CD229, 2B4, CD84, NTB-A, CRACC, BLAME, CD2F-10, SLAMF6, SLAMF7, an activating NK cell receptor, BTLA, a Toll ligand receptor, OX40, CD2, CD7, CD27, CD28, CD30, CD40, CDS, ICAM-1, LFA-1 (CD11a/CD18), 4-1BB (CD137), B7-H3, CDS, ICAM-1, ICOS (CD278), GITR, BAFFR, LIGHT, HVEM (LIGHTR), SLAMF7, NKp80 (KLRF1), NKp44, NKp30, NKp46, CD19, CD4, CD8alpha, CD8beta, IL2R beta, IL2R gamma, IL7R alpha, IL15Ra, ITGA4, VLA1, CD49a, ITGA4, IA4, CD49D, ITGA6, VLA-6, CD49f, ITGAD, CD11d, ITGAE, CD103, ITGAL, CD11a, LFA-1, ITGAM, CD11b, ITGAX, CD11c, ITGB1, CD29, ITGB2, CD18, LFA-1, ITGB7, NKG2D, NKG2C, NKD2C SLP76, TNFR2, TRANCE/RANKL, DNAM1 (CD226), SLAMF4 (CD244, 2B4), CD84, CD96 (Tactile), CEACAM1, CRTAM, Ly9 (CD229), CD160 (BY55), PSGL1, CD100 (SEMA4D), CD69, SLAMF6 (NTB-A, Ly108), SLAM (SLAMF1, CD150, IPO-3), BLAME (SLAMF8), SELPLG (CD162), LTBR, LAT, CD270 (HVEM), GADS, SLP-76, PAG/Cbp, CD19a, a ligand that specifically binds with CD83, DAP 10, TRIM, ZAP70, Killer immunoglobulin receptors (KIRs) such as KIR2DL1, KIR2DL2/L3, KIR2DL4, KIR2DL5A, KIR2DL5B, KIR2DS1, KIR2DS2, KIR2D S3, KIR2DS4, KIR2D S5, KIR3DL1/S1, KIR3DL2, KIR3DL3, and KIR2DP1; lectin related NK cell receptors such as Ly49, Ly49A, and Ly49C.


In some embodiments, the intracellular signaling domain of the present disclosure may contain signaling domains derived from JAK-STAT. In other embodiments, the intracellular signaling domain of the present disclosure may contain signaling domains derived from DAP-12 (Death associated protein 12) (Topfer et al., Immunol., 2015, 194: 3201-3212; and Wang et al., Cancer Immunol., 2015, 3: 815-826). DAP-12 is a key signal transduction receptor in NK cells. The activating signals mediated by DAP-12 play important roles in triggering NK cell cytotoxicity responses toward certain tumor cells and virally infected cells. The cytoplasmic domain of DAP12 contains an Immunoreceptor Tyrosine-based Activation Motif (ITAM). Accordingly, a CAR containing a DAP12-derived signaling domain may be used for adoptive transfer of NK cells.


In some embodiments, T cells engineered with two or more CARs incorporating distinct co-stimulatory domains and regulated by distinct DD may be used to provide kinetic control of downstream signaling


In some embodiments, the payload of the disclosure may be any of the co-stimulatory molecules and/or intracellular domains described herein. In some embodiments, one or more co-stimulatory molecules, each under the control of different SRE may be used in the present disclosure. SRE regulated co-stimulatory molecules may also be expressed in conjunction with a first-generation CAR, a second-generation CAR, a third-generation CAR, a fourth-generation, or any other CAR design described herein.


In some embodiments, the intracellular domain of the present disclosure may comprise amino acid sequences of Table 12 of co-owned U.S. Provisional Patent Application No. 62/683,972, filed Jun. 12, 2018, and the International Patent Application No. PCT/US18/37005 filed on Jun. 12, 2018 (the contents of each of which are incorporated by reference in their entirety). Exemplary intracellular signaling domains and costimulatory domains are described as SEQ ID NO: 6572 to SEQ ID NO: 6678.


Transmembrane Domains

In some embodiments, the CAR of the present disclosure may comprise a transmembrane domain. As used herein, the term “Transmembrane domain (TM)” refers broadly to an amino acid sequence of about 15 residues in length which spans the plasma membrane. More preferably, a transmembrane domain includes at least 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, or 45 amino acid residues and spans the plasma membrane. In some embodiments, the transmembrane domain of the present disclosure may be derived either from a natural or from a synthetic source. The transmembrane domain of a CAR may be derived from any naturally membrane-bound or transmembrane protein. For example, the transmembrane region may be derived from (i.e. comprise at least the transmembrane region(s) of) the alpha, beta or zeta chain of the T-cell receptor, CD3 epsilon, CD4, CD5, CD8, CD8a, CD9, CD16, CD22, CD33, CD28, CD37, CD45, CD64, CD80, CD86, CD134, CD137, CD152, or CD154.


Alternatively, the transmembrane domain of the present disclosure may be synthetic. In some aspects, the synthetic sequence may comprise predominantly hydrophobic residues such as leucine and valine.


In some embodiments, the transmembrane domain of the present disclosure may be selected from the group consisting of a CD8a transmembrane domain, a CD4 transmembrane domain, a CD 28 transmembrane domain, a CTLA-4 transmembrane domain, a PD-1 transmembrane domain, and a human IgG4 Fc region. As non-limiting examples, the transmembrane domain may be a CTLA-4 transmembrane domain comprising the amino acid sequences of SEQ ID NOs.: 1-5 of International Patent Publication NO.: WO2014/100385; and a PD-1 transmembrane domain comprising the amino acid sequences of SEQ ID NOs.: 6-8 of International Patent Publication NO.: WO2014100385; the contents of each of which are incorporated herein by reference in their entirety.


In some embodiments, the CAR of the present disclosure may comprise an optional hinge region (also called spacer). A hinge sequence is a short sequence of amino acids that facilitates flexibility of the extracellular targeting domain that moves the target binding domain away from the effector cell surface to enable proper cell/cell contact, target binding and effector cell activation (Patel et al., Gene Therapy, 1999; 6: 412-419). The hinge sequence may be positioned between the targeting moiety and the transmembrane domain The hinge sequence can be any suitable sequence derived or obtained from any suitable molecule. The hinge sequence may be derived from all or part of an immunoglobulin (e.g., IgG1, IgG2, IgG3, IgG4) hinge region, i.e., the sequence that falls between the CHI and CH2 domains of an immunoglobulin, e.g., an IgG4 Fc hinge, the extracellular regions of type 1 membrane proteins such as CD8a CD4, CD28 and CD7, which may be a wild type sequence or a derivative. Some hinge regions include an immunoglobulin CH3 domain or both a CH3 domain and a CH2 domain. In certain embodiments, the hinge region may be modified from an IgG1, IgG2, IgG3, or IgG4 that includes one or more amino acid residues, for example, 1, 2, 3, 4 or 5 residues, substituted with an amino acid residue different from that present in an unmodified hinge. Table 13 of co-owned U.S. Provisional Patent Application No. 62/683,972 filed Jun. 12, 2018, and the International Patent Application No. PCT/US18/37005 filed on Jun. 12, 2018 (the contents of each of which are incorporated by reference in their entirety). and SEQ ID NO: 6679 to SEQ ID NO: 6811 provide various transmembrane regions that can be used in the CARs described herein.


Hinge region sequences useful in the present disclosure are provided in Table 14 of co-owned U.S. Provisional Patent Application No. 62/683,972, filed Jun. 12, 2018, and the International Patent Application No. PCT/US18/37005 filed on Jun. 12, 2018 (the contents of each of which are incorporated by reference in their entirety) and SEQ ID NO: 6730 to SEQ ID NO: 6806.


In some embodiments, hinge domains may be present at the N terminus of the transmembrane domain, at C terminus of the transmembrane domain or within the transmembrane domain. Hinge and transmembrane region sequences which may be useful in the present disclosure are provided in Table 15 of co-owned U.S. Provisional Patent Application No. 62/683,972, filed Jun. 12, 2018, and the International Patent Application No. PCT/US18/37005 filed on Jun. 12, 2018 (the contents of each of which are incorporated by reference in their entirety) and as SEQ ID NO: 6807 to SEQ ID NO:6811.


In some embodiments, the CAR of the present disclosure may comprise one or more linkers between any of the domains of the CAR. The linker may be between 1-30 amino acids long. In this regard, the linker may be 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29 or 30 amino acids in length. In other embodiments, the linker may be flexible.


In some embodiments, the components including the targeting moiety, transmembrane domain and intracellular signaling domains of the present disclosure may be constructed in a single fusion polypeptide. The fusion polypeptide may be the payload of an effector module of the disclosure. In some embodiments, more than one CAR fusion polypeptides may be included in an effector module, for example, two, three or more CARs may be included in the effector module under the control of a single SRE (e.g., a DD). Representative effector modules comprising the CAR payload are illustrated in FIGS. 2-6.


In some embodiments, payloads of the present disclosure may comprise the CAR constructs including the extracellular targeting domain, transmembrane domain and intracellular signaling domains that are taught in the art, for example, a CAR targeting mesothelin (U.S. Pat. Nos. 9,272,002 and 9,359,447); EGFRvIII specific CARs in U.S. Pat. No. 9,266,960; anti-TAG CARs in U.S. Pat. No. 9,233,125; CD19 CARs in US Patent publication NO.: 2016014533; CD19 CAR having the amino acid sequence of SEQ ID NO:: 24 of U.S. Pat. No. 9,328,156; CD19 CARs in U.S. Pat. Nos. 8,911,993; 8,975,071; 9,101,584; 9,102,760; and 9,102,761; BCMA (CD269) specific CARs disclosed in International patent publication NOs: WO2016/014565 (SEQ ID Nos.: 109-113 and 213 to 233) and WO2016/014789; CLL-1 (C-type lectin-like molecule 1) CARs comprising the amino acid sequences of SEQ ID NOs: 99, 96, 100, 101, 102, 91, 92, 93, 94, 95, 97, 98, 103, and 197 disclosed in International patent publication NO.: WO2016014535; CD33 specific CARs comprising the amino acid sequences of SEQ ID NOs: 48-56 in International patent publication NO.: WO2016014576; CD33 specific CARs comprising the amino acid sequences of SEQ ID NOs: 19-22, 27-30 and 35-38 in International patent publication NO.: WO2015150526; CD37 specific CARs encoded by the nucleic acids of SEQ ID NOs: 1-5 in US patent publication NO.: US20150329640; GPC3 CAR (International patent publication NO.: WO2016036973), GFR alpha 4 CARs having the amino acid sequences of SEQ ID NOs: 85, 86, 90, 92, 94, 96, 98, 100, 102, and 104 in International patent publication NO.: WO2016025880; CD123 CARs comprising the amino acid sequences of SEQ ID NO: 98, 99, 100 and 101 in International patent publication NOs: WO2016028896; CD123 specific multi-chain CARs in International patent publication NO: WO2015193406; CD123 CARS comprising the amino acid sequences of SEQ ID NO:: 160, 171, 188-197 in International patent publication NO: WO2016/120220; ROR-1 specific CARs comprising the amino acid sequences of SEQ ID NOs: 93, 95 and 117 in International patent publication NO.: WO2016/016344; ROR-1 specific multi-chain CARs in International patent publication NO.: WO2016/016343; trophoblast glycoprotein (5T4, TPBG) specific CARs comprising the amino acid sequences of SEQ ID NOs: 21, 27, 33, 39, 23, 29, 34, 41, 19, 25, 31, 37, 20, 26, 32, 38, 22, 28, 34, 40, 24, 30, 36 and 42 in International patent publication NO.: WO2016034666; EGFRvIII specific CARs comprising the amino acid sequences of SEQ ID NOs: 15, 17, 24, 25, 26 and 27 in International patent publication NO.: WO2016016341; a TEM 8 CAR comprising the amino acid sequence of SEQ ID NO: 1 in International patent publication NO.: WO2014164544, a TEM1 CAR comprising the amino acid sequence of SEQ ID NO:2 in International patent publication NO: WO2014164544; GPC-3 CAR having the amino acid sequences of SEQ ID NOs: 3 and 26 in International patent publication NO.: WO2016/049459, a chondroitin sulfate proteoglycan-4 (CSPG4) CAR in International patent publication NO.: WO2015/080981; Kappa/lambda CARs in International patent publication NO.: WO2015/164739; GD2 CAR in International patent publication NO.: WO2016/134284; CLL1 CARs in International patent publication NO.: WO2016120218; CLL1 multi-subunit CARs in International patent publication NO.: WO2016120219; Hsp70 CARs in International patent publication NO.: WO2016120217; mAb-driven CARs in International patent publication NO.: WO2016120216; the contents of each of which are incorporated herein by reference in their entirety.


In some embodiments, the CAR constructs of the present disclosure may include CAIX (carboxy-anhydrase-IX (CAIX) specific CAR (Lamers et al., Biochem Soc Trans, 2016, 44(3): 951-959), HIV-1 specific CAR (Ali et al., J Virol., 2016, May 25, pii: JVI.00805-16), CD20 specific CAR (Rufener et al., Cancer Immunol. Res., 2016, 4(6): 509-519), a CD20/CD19 bispecific CAR (Zah et al., Cancer Immunol Res., 2016, 4(6): 498-508), a CD22/CD19 CAR (International Publication No: WO2016/149578), a CD138/BCMA bi-specific CAR (International Publication No: WO2016/130598) an EGFR specific CARs and anti EGFR viii specific CAR; the contents of each of which are incorporated herein by reference in their entirety.


In some embodiments, the chimeric antigen receptors described herein may include CD3 zeta domains altered to tune CAR activity. The CD3 zeta domains may include one or more mutations in the immunoreceptor tyrosine based activation motifs (ITAMs). In one aspect, the tyrosine residues within the ITAMs may be mutated resulting in reduced phosphorylation and limited downstream signaling. In some embodiments, one or more of the ITAMs may be deleted from the CD3 zeta domain. In one aspect, the CD3 zeta may include one ITAM. Any of the CARs and CD3 zeta domains described by Feucht et al. 2019 may be used herein (Calibration of CAR activation potential directs alternative T cell fates and therapeutic potency. Nature Medicine 25, 82-88 (2019); the contents of which are herein incorporated by reference in their entirety).


In some embodiments, the CAR sequences may be selected from Table 16 of co-owned U.S. Provisional Patent Application No. 62/683,972, filed Jun. 12, 2018, and the International Patent Application No. PCT/US18/37005 filed on Jun. 12, 2018 (the contents of each of which are incorporated by reference in their entirety) or from SEQ ID NO:6812 to SEQ ID NO: 8232.


In one embodiment of the present disclosure, the payload of the disclosure is a CD19 specific CAR targeting different B cell malignancies and HER2-specific CAR targeting sarcoma, glioblastoma, and advanced Her2-positive lung malignancy.


In some embodiments, the CAR is a CD19 CAR. The amino acid sequences of CD19 CAR components and CD19 CAR constructs are presented in Table 17 and Table 18.









TABLE 17







CD19 CAR construct components












AA SEQ
NA SEQ


Description
Amino Acid Sequence
ID NO
ID NO













CD19 scFv
DIQMTQTTSSLSASLGDRVTISCRASQDISKYLNWYQQKPDGTVKLLIYHTSRL
8233
8241-8246



HSGVPSRFSGSGSGTDYSLTISNLEQEDIATYFCQQGNTLPYTFGGGTKLEITGG





GGSGGGGSGGGGSEVKLQESGPGLVAPSQSLSVTCTVSGVSLPDYGVSWIRQP





PRKGLEWLGVIWGSETTYYNSALKSRLTIIKDNSKSQVFLKMNSLQTDDTAIYY





CAKHYYYGGSYAMDYWGQGTSVTVSS







CD8α hinge
TTTPAPRPPTPAPTIASQPLSLRPEACRPAAGGAVHTRGLDFACD
8234
8247-8251





CD8α hinge-TM
TTTPAPRPPTPAPTIASQPLSLRPEACRPAAGGAVHTRGLDFACDIYIWAPLAGT
8235
8252-8254


(hinge and
CGVLLLSLVITLYC




transmembrane)








CD3 zeta
RVKFSRSADAPAYKQGQNQLYNELNLGRREEYDVLDKRRGRDPEMGGKPRR
8236
8255-8261


signaling domain
KNPQEGLYNELQKDKMAEAYSEIGMKGERRRGKGHDGLYQGLSTATKDTYD





ALHMQALPPR







4-1BB
KRGRKKLLYIFKQPFMRPVQTTQEEDGCSCRFPEEEEGGCEL
8237
8262-8267


intracellular





signaling domain;





CD28 co-





stimulatory





domain;








CD8α leader
MALPVTALLLPLALLLHAARP
278
279-283





hPDE5 (Amino
EETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFTDLNLVQNFQ
3
339


acid 535-860 of
MKHEVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMFAALKAGKIQNKLT




WT)
DLEILALLIAALSHDLDHRGVNNSYIQRSEHPLAQLYCHSIMEHHHFDQCLMIL





NSPGNQILSGLSIEEYKTTLKIIKQAILATDLALYIKRRGEFFELIRKNQFNLEDPH





QKELFLAMLMTACDLSAITKPWPIQQRIAELVATEFFDQGDRERKELNIEPTDL





MNREKKNKIPSMQVGFIDAICLQLYEALTHVSEDCFPLLDGCRKNRQKWQALA





EQQ







hPDE5 (Amino
EETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFTDLNLVQNFQ
12
359


acid 535-860 of
MKHEVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMFAALKAGKIQNKLT




WT, R732L)
DLEILALLIAALSHDLDHRGVNNSYIQRSEHPLAQLYCHSIMEHHHFDQCLMIL





NSPGNQILSGLSIEEYKTTLKIIKQAILATDLALYIKRLGEFFELIRKNQFNLEDPH





QKELFLAMLMTACDLSAITKPWPIQQRIAELVATEFFDQGDRERKELNIEPTDL





MNREKKNKIPSMQVGFIDAICLQLYEALTHVSEDCFPLLDGCRKNRQKWQALA





EQQ







hPDE5 (Amino
EETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFTDLNLVQNFQ
505
520


acid 535-860 of
MKHEVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMFAALKAGKIQNKLT




WT, R732L,
DLEILALLIAALSHDLDHRGVNNSYIQRSEHPLAQLYCHSIMEHHHFDQCLMIL




D764N)
NSPGNQILSGLSIEEYKTTLKIIKQAILATDLALYIKRLGEFFELIRKNQFNLEDPH





QKELFLAMLMTACNLSAITKPWPIQQRIAELVATEFFDQGDRERKELNIEPTDL





MNREKKNKIPSMQVGFIDAICLQLYEALTHVSEDCFPLLDGCRKNRQKWQALA





EQQ







hPDE5 (Amino
EETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFTDLNLVQNFQ
227
233


acid 535-860 of
MKHEVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMFAALKAGKIQNKLT




WT, R732L,
DLEILALLIAALSHDLDHRGVNNSYIQRSEHPLAQLYCHSIMEHHHFDQCLMIL




F736A)
NSPGNQILSGLSIEEYKTTLKIIKQAILATDLALYIKRLGEFAELIRKNQFNLEDP





HQKELFLAMLMTACDLSAITKPWPIQQRIAELVATEFFDQGDRERKELNIEPTD





LMNREKKNKIPSMQVGFIDAICLQLYEALTHVSEDCFPLLDGCRKNRQKWQAL





AEQQ







hPDE5 (Amino
EETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFTDLNLVQNFQ
348
361


acid 535-860 of
MKHEVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMFAALKAGKIQNKLT




WT, H653A)
DLEILALLIAALSADLDHRGVNNSYIQRSEHPLAQLYCHSIMEHHHFDQCLMIL





NSPGNQILSGLSIEEYKTTLKIIKQAILATDLALYIKRRGEFFELIRKNQFNLEDPH





QKELFLAMLMTACDLSAITKPWPIQQRIAELVATEFFDQGDRERKELNIEPTDL





MNREKKNKIPSMQVGFIDAICLQLYEALTHVSEDCFPLLDGCRKNRQKWQALA





EQQ







hPDE5 (Amino
EETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFTDLNLVQNFQ
509
524


acid 535-860 of
MKHEVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMFAALKAGKIQNKLT




WT, R732L,
DLEILALLIAALSADLDHRGVNNSYIQRSEHPLAQLYCHSIMEHHHFDQCLMIL




H653A)
NSPGNQILSGLSIEEYKTTLKIIKQAILATDLALYIKRLGEFFELIRKNQFNLEDPH





QKELFLAMLMTACDLSAITKPWPIQQRIAELVATEFFDQGDRERKELNIEPTDL





MNREKKNKIPSMQVGFIDAICLQLYEALTHVSEDCFPLLDGCRKNRQKWQALA





EQQ







hPDE5 (Amino
EETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFTDLNLVQNFQ
510
525


acid 535-860 of
MKHEVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMFAALKAGKIQNKLT




WT, R732L,
DLEILALLIAALSHDLDHRGVNNSYIQRSEHPLAQLYCHSIMEHHHFDQCLMIL




D764A)
NSPGNQILSGLSIEEYKTTLKIIKQAILATDLALYIKRLGEFFELIRKNQFNLEDPH





QKELFLAMLMTACALSAITKPWPIQQRIAELVATEFFDQGDRERKELNIEPTDL





MNREKKNKIPSMQVGFIDAICLQLYEALTHVSEDCFPLLDGCRKNRQKWQALA





EQQ







HA Tag
YPYDVPDYA
8238
8268





P2A Cleavable
GATNFSLLKQAGDVEENPGP
8239
8270


peptide








Modified Furin
ESRRVRRNKRSK
288
291


Cleavage Site








P2A Cleavage Site
ATNFSLLKQAGDVEENPGP
8742
8817





eGFP (A206K)
MVSKGEELFTGVVPILVELDGDVNGHKFSVSGEGEGDATYGKLTLKFICTTGK
8921
8923



LPVPWPTLVTTLTYGVQCFSRYPDHMKQHDFFKSAMPEGYVQERTIFFKDDGN





YKTRAEVKFEGDTLVNRIELKGIDFKEDGNILGHKLEYNYNSHNVYIMADKQK





NGIKVNfKIRHNIEDGSVQLADHYQQNTPIGDGPVLLPDNHYLSTQSKLSKDPN





EKRDHMVLLEFVTAAGITLGMDELYK







eGFP (M1del)
VSKGEELFTGVVPILVELDGDVNGHKFSVSGEGEGDATYGKLTLKFICTTGKLP
8922
8924



VPWPTLVTTLTYGVQCFSRYPDHMKQHDFFKSAMPEGYVQERTIFFKDDGNY





KTRAEVKFEGDTLVNRIELKGIDFKEDGNILGHKLEYNYNSHNVYIMADKQKN





GIKVNFKIRHNIEDGSVQLADHYQQNTPIGDGPVLLPDNHYLSTQSALSKDPNE





KRDHMVLLEFVTAAGITLGMDELYK







Firefly Luciferase
MEDAKNIKKGPAPFYPLEDGTAGEQLHKAMKRYALVPGTIAFTDAHIEVDITY
223
224


(N50D, N119G,
AEYFEMSVRLAEAMKRYGLNTNHRIVVCSENSLQFFMPVLGALFIGVAVAPAN




S548I, K549A,
DIYNERELLNSMGISQPTVVFVSKKGLQKILNVQKKLPIIQKIIIMDSKTDYQGF




L550V)
QSMYTFVTSHLPPGFNEYDFVPESFDRDKTIALIMNSSGSTGLPKGVALPHRTA





CVRFSHARDPIFGNQIIPDTAILSVVPFHHGFGMFTTLGYLICGFRVVLMYRFEE





ELFLRSLQDYKIQSALLVPTLFSFFAKSTLIDKYDLSNLHEIASGGAPLSKEVGE





AVAKRFHLPGIRQGYGLTETTSAILITPEGDDKPGAVGKVVPFFEAKVVDLDTG





KTLGVNQRGELCVRGPMIMSGYVNNPEATNALIDKDGWLHSGDIAYWDEDEH





FFIVDRLKSLIKYKGYQVAPAELESILLQHPNIFDAGVAGLPDDDAGELPAAVV





VLEHGKTMTEKEIVDYVASQVTTAKKLRGGVVFVDEVPKGLTGKLDARKIREI





LIKAKKGGKIAV







mCherry (M1L)
LSKGEEDNMAIIKEFMRFKVHMEGSVNGHEFEIEGEGEGRPYEGTQTAKLKVT
8240
8269



KGGPLPFAWDILSPQFMYGSKAYVKHPADIPDYLKLSFPEGFKWERVMNFEDG





GVVTVTQDSSLQDGEFIYKVKLRGTNFPSDGPVMQKKTMGWEASSERMYPED





GALKGEIKQRLKLKDGGHYDAEVKTTYKAKKPVQLPGAYNVNIKLDITSHNE





DYTIVEQYERAEGRHSTGGMDELYK







SG LINKER
SG

AGTGGT





Linker (GSG)
GSG

GGATCC


(BamH1-Gly)


GGA





Flexible G/S rich
GS

GGATCC


linker; BamH1





Site








Lys-Asp Acid
LD

CTAGAT


Linker
















TABLE 18







CD19 CARs constructs












Amino
Nucleic




Acid
Acid




SEQ
SEQ


Description
Amino Acid Sequence
ID NO
ID NO





OT-001407 (CD8a leader;
MALPVTALLLPLALLLHAARPDIQMTQTTSSLSASLGDRVTISCRAS
8271
8285


CD19 scFv; CD8a Hinge and
QDISKYLNWYQQKPDGTVKLLIYHTSRLHSGVPSRFSGSGSGTDYS




Transmembrane Domain; 4-
LTISNLEQEDIATYFCQQGNTLPYTFGGGTKLEITGGGGSGGGGSG




1BB intracellular domain;
GGGSEVKLQESGPGLVAPSQSLSVTCTVSGVSLPDYGVSWIRQPPR




CD3 zeta signaling domain;
KGLEWLGVIWGSETTYYNSALKSRLTIIKDNSKSQVFLKMNSLQTD




stop)
DTAIYYCAKHYYYGGSYAMDYWGQGTSVTVSSTTTPAPRPPTPAP





TIASQPLSLRPEACRPAAGGAVHTRGLDFACDIYIWAPLAGTCGVL





LLSLVITLYCKRGRKKLLYIFKQPFMRPVQTTQEEDGCSCRFPEEEE





GGCELRVKFSRSADAPAYKQGQNQLYNELNLGRREEYDVLDKRR





GRDPEMGGKPRRKNPQEGLYNELQKDKMAEAYSEIGMKGERRRG





KGHDGLYQGLSTATKDTYDALHMQALPPR*







OT-001258 (CD8a leader;
MALPVTALLLPLALLLHAARPDIQMTQTTSSLSASLGDRVTISCRAS
8272
8286


CD19 scFV; CD8a-Tm; (4-
QDISKYLNWYQQKPDGTVKLLIYHTSRLHSGVPSRFSGSGSGTDYS




1BB intracellular domain);
LTISNLEQEDIATYFCQQGNTLPYTFGGGTKLEITGGGGSGGGGSG




CD3zeta signaling domain;
GGGSEVKLQESGPGLVAPSQSLSVTCTVSGVSLPDYGVSWIRQPPR




Linker (GSG), hPDE5
KGLEWLGVIWGSETTYYNSALKSRLTIIKDNSKSQVFLKMNSLQTD




(Amino acid 535-860 of WT,
DTAIYYCAKHYYYGGSYAMDYWGQGTSVTVSSTTTPAPRPPTPAP




R732L, D764N), stop)
TIASQPLSLRPEACRPAAGGAVHTRGLDFACDIYIWAPLAGTCGVL





LLSLVITLYCKRGRKKLLYIFKQPFMRPVQTTQEEDGCSCRFPEEEE





GGCELRVKFSRSADAPAYKQGQNQLYNELNLGRREEYDVLDKRR





GRDPEMGGKPRRKNPQEGLYNELQKDKMAEAYSEIGMKGERRRG





KGHDGLYQGLSTATKDTYDALHMQALPPRGSGEETRELQSLAAA





VVPSAQTLKITDFSFSDFELSDLETALCTIRMFTDLNLVQNFQMKHE





VLCRWISVKKNYRKNVAYHNWRHAFNTAQCMFAALKAGKIQN





KLTDLEILALLIAALSHDLDHRGVNNSYIQRSEHPLAQLYCHSIMEH





HHFDQCLMILNSPGNQILSGLSIEEYKTTLKIIKQAILATDLALYIKR





LGEFFELIRKNQFNLEDPHQKELFLAMLMTACNLSAITKPWPIQQRI





AELVATEFFDQGDRERKELNIEPTDLMNREKKNKIPSMQVGFIDAI





CLQLYEALTHVSEDCFPLLDGCRKNRQKWQALAEQQ*







OT-001298 (CD8a leader;
MALPVTALLLPLALLLHAARPDIQMTQTTSSLSASLGDRVTISCRAS
8273
8287


CD19 scFV; CD8a-Tm; (4-
QDISKYLNWYQQKPDGTVKLLIYHTSRLHSGVPSRFSGSGSGTDYS




1BB intracellular domain);
LTISNLEQEDIATYFCQQGNTLPYTFGGGTKLEITGGGGSGGGGSG




CD3zeta signaling domain;
GGGSEVKLQESGPGLVAPSQSLSVTCTVSGVSLPDYGVSWIRQPPR




Linker (GSG); hPDE5
KGLEWLGVIWGSETTYYNSALKSRLTIIKDNSKSQVFLKMNSLQTD




(Amino acid 535-860 of WT,
DTAIYYCAKHYYYGGSYAMDYWGQGTSVTVSSTTTPAPRPPTPAP




R732L, F736A); stop)
TIASQPLSLRPEACRPAAGGAVHTRGLDFACDIYIWAPLAGTCGVL





LLSLVITLYCKRGRKKLLYIFKQPFMRPVQTTQEEDGCSCRFPEEEE





GGCELRVKFSRSADAPAYKQGQNQLYNELNLGRREEYDVLDKRR





GRDPEMGGKPRRKNPQEGLYNELQKDKMAEAYSEIGMKGERRRG





KGHDGLYQGLSTATKDTYDALHMQALPPRGSGEETRELQSLAAA





VVPSAQTLKITDFSFSDFELSDLETALCTIRMFTDLNLVQNFQMKHE





VLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMFAALKAGKIQN





KLTDLEILALLIAALSHDLDHRGVNNSYIQRSEHPLAQLYCHSIMEH





HHFDQCLMILNSPGNQILSGLSIEEYKTTLKIIKQAILATDLALYIKR





LGEFAELIRKNQFNLEDPHQKELFLAMLMTACDLSAITKPWPIQQRI





AELVATEFDQGDRERKELNIEPTDLMNREKKNKIPSMQVGFIDAI





CLQLYEALTHVSEDCFPLLDGCRKNRQKWQALAEQQ*







OT-001299 (CD8a leader;
MALPVTALLLPLALLLHAARPDIQMTQTTSSLSASLGDRVTISCRAS
8274
8288


CD19 scEV; CD8a-Tm; (4-
QDISKYLNWYQQKPDGTVKLLIYHTSRLHSGVPSRFSGSGSGTDYS




1BB intracellular domain);
LTISNLEQEDIATYFCQQGNTLPYTFGGGTKLEITGGGGSGGGGSG




CD3zeta signaling domain;
GGGSEVKLQESGPGLVAPSQSLSVTCTVSGVSLPDYGVSWIRQPPR




Linker (GSG); hPDE5 (Amino
KGLEWLGVIWGSETTYYNSALKSRLTIIKDNSKSQVFLKMNSLQTD




acid 535-860 of WT); stop)
DTAIYYCAKHYYYGGSYAMDYWGQGTSVTVSSTTTPAPRPPTPAP





TIASQPLSLRPEACRPAAGGAVHTRGLDFACDIYIWAPLAGTCGVL





LLSLVITLYCKRGRKKLLYIFKQPFMRPVQTTQEEDGCSCRFPEEEE





GGCELRVKFSRSADAPAYKQGQNQLYNELNLGRREEYDVLDKRR





GRDPEMGGKPRRKNPQEGLYNELQKDKMAEAYSEIGMKGERRRG





KGHDGLYQGLSTATKDTYDALHMQALPPRGSGEETRELQSLAAA





VVPSAQTLKITDFSFSDFELSDLETALCTIRMFTDLNLVQNFQMIKHE





VLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMFAALKAGKIQN





KLTDLEILALLIAALSHDLDHRGVNNSYIQRSEHPLAQLYCHSIMEH





HHFDQCLMILNSPGNQILSGLSIEEYKTTLKIIKQAILATDLALYIKR





RGEFFELIRKNQFNLEDPHQKELFLAMLMTACDLSAITKPWPIQQRI





AELVATEFFDQGDRERKELNIEPTDLMNREKKNKPSMQVGFIDAI





CLQLYEALTHVSEDCFPLLDGCRKNRQKWQALAEQQ*







OT-001300 (CD8a leader;
MALPVTALLLPLALLLHAARPYPYDVPDYADIQMTQTTSSLSASLG
8275
8289


HA Tag; CD19 scFV; CD8a-
DRVTISCRASQDISKYLNWYQQKPDGTVKLLIYHTSRLHSGVPSRF




Tm; (4-1BB intracellular
SGSGSGTDYSLTISNLEQEDIATYFCQQGNTLPYTFGGGTKLEITGG




domain); CD3zeta signaling
GGSGGGGSGGGGSEVKLQESGPGLVAPSQSLSVTCTVSGVSLPDY




domain; Linker (SG); hPDE5
GVSWIRQPPRKGLEWLGVIWGSETTYYNSALKSRLTIIKDNSKSQV




(Amino acid 535-860 of WT);
FLKMNSLQTDDTAIYYCAKHYYYGGSYAMDYWGQGTSVTVSSTT




stop)
TPAPRPPTPAPTIASQPLSLRPEACRPAAGGAVHTRGLDFACDIYIW





APLAGTCGVLLLSLVITLYCKRGRKKLLYIFKQPFMRPVQTTQEED





GCSCRFPEEEEGGCELRVKFSRSADAPAYKQGQNQLYNELNLGRR





EEYDVLDKRRGRDPEMGGKPRRKNPQEGLYNELQKDKMAEAYSE





IGMKGERRRGKGHDGLYQGLSTATKDTYDALHMQALPPRSGEET





RELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFTDLNL





VQNFQMKHEVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMFA





ALKAGKIQNKLTDLEILALLIAALSHDLDHRGVNNSYIQRSEHPLA





QLYCHSIMEHHHFDQCLMILNSPGNQILSGLSIEEYKTTLKIIKQAIL





ATDLALYIKRRGEFFELIRKNQFNLEDPHQKELFLAMLMTACDLSA





ITKPWPIQQRIAELVATEFFDQGDRERKELNIEPTDLMNREKKNKIP





SMQVGFIDAICLQLYEALTHVSEDCFPLLDGCRKNRQKWQALAEQ





Q*







OT-001301 (CD8a leader;
MALPVTALLLPLALLLHAARPYPYDVPDYADIQMTQTTSSLSASLG
8276
8290


HA Tag; CD19 scEV; CD8a-
DRVTISCRASQDISKYLNWYQQKPDGTVKLLIYHTSRLHSGVPSRF




Tm; (4-1BB intracellular
SGSGSGTDYSLTISNLEQEDIATYFCQQGNTLPYTFGGGTKLEITGG




domain); CD3zeta signaling
GGSGGGGSGGGGSEVKLQESGPGLVAPSQSLSVTCTVSGVSLPDY




domain; linker (SG); hPDE5
GVSWIRQPPRKGLEWLGVIWGSETTYYNSALKSRLTIIKDNSKSQV




(Amino acid 535-860 of WT,
FLKMNSLQTDDTAIYYCAKHYYYGGSYAMDYWGQGTSVTVSSTT




R732L); stop)
TPAPRPPTPAPTIASQPLSLRPEACRPAAGGAVHTRGLDFACDIYIW





APLAGTCGVLLLSLVITLYCKRGRKKLLYIFKQPFMRPVQTTQEED





GCSCRFPEEEEGGCELRVKFSRSADAPAYKQGQNQLYNELNLGRR





EEYDVLDKRRGRDPEMGGKPRRKNPQEGLYNELQKDKMAEAYSE





IGMKGERRRGKGHDGLYQGLSTATKDTYDALHMQALPPRSGEET





RELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFTDLNL





VQNFQMKHEVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMFA





ALKAGKIQNKLTDLEILALLIAALSHDLDHRGVNNSYIQRSEHPLA





QLYCHSIMEHHHFDQCLMILNSPGNQILSGLSIEEYKTTLKIIKQAIL





ATDLALYIKRLGEFFELIRKNQFNLEDPHQKELFLAMLMTACDLSA





ITKPWPIQQRIAELVATEFFDQGDRERKELNIEPTDLMNREKKNKIP





SMQVGFIDAICLQLYEALTHVSEDCFPLLDGCRKNRQKWQALAEQ





Q*







OT-001302 (CD8a leader;
MALPVTALLLPLALLLHAARPDIQMTQTTSSLSASLGDRVTISCRAS
8277
8291


CD19 scEV; CD8a-Tm; (4-
QDISKYLNWYQQKPDGTVKLLIYHTSRLHSGVPSRFSGSGSGTDYS




1BB intracellular domain);
LTISNLEQEDIATYFCQQGNTLPYTFGGGTKLEITGGGGSGGGGSG




CD3zeta signaling domain;
GGGSEVKLQESGPGLVAPSQSLSVTCTVSGVSLPDYGVSWIRQPPR




linker (GS); hPDE5 (Amino
KGLEWLGVIWGSETTYYNSALKSRLTIIKDNSKSQVFLKMNSLQTD




acid 535-860 of WT, R732L,
DTAIYYCAKHYYYGGSYAMDYWGQGTSVTVSSTTTPAPRPPTPAP




F736A); linker (GS); mcherry
TIASQPLSLRPEACRPAAGGAVHTRGLDFACDIYIWAPLAGTCGVL




(M1L); stop)
LLSLVITLYCKRGRKKLLYIFKQPFMRPVQTTQEEDGCSCRFPEEEE





GGCELRVKFSRSADAPAYKQGQNQLYNELNLGRREEYDVLDKRR





GRDPEMGGKPRRKNPQEGLYNELQKDKMAEAYSEIGMKGERRRG





KGHDGLYQGLSTATKDTYDALHMQALPPRGSEETRELQSLAAAV





VPSAQTLKITDFSFSDFELSDLETALCTIRMFTDLNLVQNFQMKHEV





LCRWILSVKKNYRKNVAYHNWRHAFNTAQCMFAALKAGKIQNK





LTDLEILALLIAALSHDLDHRGVNNSYIQRSEHPLAQLYCHSIMEHH





HFDQCLMILNSPGNQILSGLSIEEYKTTLKIIKQAILATDLALYIKRL





GEFAELIRKNQFNLEDPHQKELFLAMLMTACDLSAITKPWPIQQRI





AELVATEFFDQGDRERKELNIEPTDLMNREKKNKIPSMQVGFIDAI





CLQLYEALTHVSEDCFPLLDGCRKNRQKWQALAEQQGSLSKGEED





NMAIIKEFMRFKVHMEGSVNGHEFEIEGEGEGRPYEGTQTAKLKV





TKGGPLPFAWDILSPQFMYGSKAYVKHPADIPDYLKLSFPEGFKWE





RVMNFEDGGVVTVTQDSSLQDGEFIYKVKLRGTNFPSDGPVMQK





KTMGWEASSERMYPEDGALKGEIKQRLKLKDGGHYDAEVKTTYK





AKKPVQLPGAYNVNIKLDITSHNEDYTIVEQYERAEGRHSTGGMD





ELYK*







OT-001303 (CD8a leader;
MALPVTALLLPLALLLHAARPDIQMTQTTSSLSASLGDRVTISCRAS
8278
8292


CD19 scEV; CD8a-Tm; (4-
QDISKYLNWYQQKPDGTVKLLIYHTSRLHSGVPSRFSGSGSGTDYS




1BB intracellular domain);
LTISNLEQEDIATYFCQQGNTLPYTFGGGTKLEITGGGGSGGGGSG




CD3zeta signaling domain;
GGGSEVKLQESGPGLVAPSQSLSVTCTVSGVSLPDYGVSWIRQPPR




linker (GS); hPDE5 (Amino
KGLEWLGVIWGSETTYYNSALKSRLTIIKDNSKSQVFLKMNSLQTD




acid 535-860 of WT, R732L,
DTAIYYCAKHYYYGGSYAMDYWGQGTSVTVSSTTTPAPRPPTPAP




F736A); linker (GSG); P2A
TIASQPLSLRPEACRPAAGGAVHTRGLDFACDIYIWAPLAGTCGVL




linker; mcherry (M1L); stop)
LLSLVITLYCKRGRKKLLYIFKQPFMRPVQTTQEEDGCSCRFPEEEE





GGCELRVKFSRSADAPAYKQGQNQLYNELNLGRREEYDVLDKRR





GRDPEMGGKPRRKNPQEGLYNELQKDKMAEAYSEIGMKGERRRG





KGHDGLYQGLSTATKDTYDALHMQALPPRGSEETRELQSLAAAV





VPSAQTLKITDFSFSDFELSDLETALCTIRMFTDLNLVQNFQMKHEV





LCRWILSVKKNYRKNVAYHNWRHAFNTAQCMFAALKAGKIQNK





LTDLEILALLIAALSHDLDHRGVNNSYIQRSEHPLAQLYCHSIMEHH





HFDQCLMILNSPGNQILSGLSIEEYKTTLKIIKQAILATDLALYIKRL





GEFAELIRKNQFNLEDPHQKELFLAMLMTACDLSAITKPWPIQQRI





AELVATEFFDQGDRERKELNIEPTDLMNREKKNKIPSMQVGFIDAI





CLQLYEALTHVSEDCFPLLDGCRKNRQKWQALAEQQGSGGATNF





SLLKQAGDVEENPGPLSKGEEDNMAIIKEFMRFKVHMEGSVNGHE





FEIEGEGEGRPYEGTQTAKLKVTKGGPLPFAWDILSPQFMYGSKAY





VKHPADIPDYLKLSFPEGFKWERVMNFEDGGVVTVTQDSSLQDGE





FIYKVKLRGTNFPSDGPVMQKKTMGWEASSERMYPEDGALKGEIK





QRLKLKDGGHYDAEVKTTYKAKKPVQLPGAYNVNIKLDITSHNED





YTIVEQYERAEGRHSTGGMDELYK*







OT-001304 (CD8a leader;
MALPVTALLLPLALLLHAARPYPYDVPDYADIQMTQTTSSLSASLG
8279
8293


HA Tag; CDI9 scEV; CD8a-
DRVTISCRASQDISKYLNWYQQKPDGTVKLLIYHTSRLHSGVPSRF




Tm, (4-1BB intracellular
SGSGSGTDYSLTISNLEQEDIATYFCQQGNTLPYTFGGGTKLEITGG




domain); CD3zeta signaling
GGSGGGGSGGGGSEVKLQESGPGLVAPSQSLSVTCTVSGVSLPDY




domain; linker (GS);
GVSWIRQPPRKGLEWLGVIWGSETTYYNSALKSRLTIIKDNSKSQV




hPDE5(Amino acid 535-860
FLKMNSLQTDDTAIYYCAKHYYYGGSYAMDYWGQGTSVTVSSTT




of WT); linker (GS), Spacer
TPAPRPPTPAPTIASQPLSLRPEACRPAAGGAVHTRGLDFACDIYIW




(LD); P2A linker; mcherry
APLAGTCGVLLLSLVITLYCKRGRKKLLYIFKQPFMRPVQTTQEED




(M1L); stop)
GCSCRFPEEEEGGCELRVKFSRSADAPAYKQGQNQLYNELNLGRR





EEYDVLDKRRGRDPEMGGKPRRKNPQEGLYNELQKDKMAEAYSE





IGMKGERRRGKGHDGLYQGLSTATKDTYDALHMQALPPRGSEET





RELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFTDLNL





VQNFQMKHEVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMFA





ALKAGKIQNKLTDLEILALLIAALSHDLDHRGVNNSYIQRSEHPLA





QLYCHSIMEHHHFDQCLMILNSPGNQILGLSIEEYKTTLKIIKQAIL





ATDLALYIKRRGEFFELIRKNQFNLEDPHQKELFLAMLMTACDLSA





ITKPWPIQQRIAELVATEFFDQGDRERKELNIEPTDLMNREKKNKIP





SMQVGFIDAICLQLYEALTHVSEDCFPLLDGCRKNRQKWQALAEQ





QGSLDGATNFSLLKQAGDVEENPGPLSKGEEDNMAIIKEFMRFKV





HMEGSVNGHEFEIEGEGEGRPYEGTQTAKLKVTKGGPLPFAWDILS





PQFMYGSKAYVKHPADIPDYLKLSFPEGFKWERVMNFEDGGVVT





VTQDSSLQDGEFIYKVKLRGTNFPSDGPVMQKKTMGWEASSERM





YPEDGALKGEIKQRLKLKDGGHYDAEVKTTYKAKKPVQLPGAYN





VNIKLDITSHNEDYTIVEQYERAEGRHSTGGMDELYK*







OT-001305 (CD8a leader;
MALPVTALLLPLALLLHAARPYPYDVPDYADIQMTQTTSSLSASLG
8280
8294


HA Tag, CD19 scEV; CD8a-
DRVTISCRASQDISKYLNWYQQKPDGTVKLLIYHTSRLHSGVPSRF




Tm; (4-1BB intracellular
SGSGSGTDYSLTISNLEQEDIATYFCQQGNTLPYTFGGGTKLEITGG




domain); CD3zeta signaling
GGSGGGGSGGGGSEVKLQESGPGLVAPSQSLSVTCTVSGVSLPDY




domain; Linker (GS);
GVSWIRQPPRKGLEWLGVIWGSETTYYNSALKSRLTIIKDNSKSQV




hPDE5(Amino acid 535-860
FLKMNSLQTDDTAIYYCAKHYYYGGSYAMDYWGQGTSVTVSSTT




of WT, R732L); Linker (GS),
TPAPRPPTPAPTIASQPLSLRPEACRPAAGGAVHTRGLDFACDIYIW




Spacer (LD); P2A linker;
APLAGTCGVLLLSLVITLYCKRGRKKLLYIFKQPFMRPVQTTQEED




mcherry (M1L); stop)
GCSCRFPEEEEGGCELRVKFSRSADAPAYKQGQNQLYNELNLGRR





EEYDVLDKRRGRDPEMGGKPRRKNPQEGLYNELQKDKMAEAYSE





IGMKGERRRGKGHDGLYQGLSTATKDTYDALHMQALPPRGSEET





RELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFTDLNL





VQNFQMKHEVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMFA





ALKAGKIQNKLTDLEILALLIAALSHDLDHRGVNNSYIQRSEHPLA





QLYCHSIMEHHHFDQCLMILNSPGNQILSGLSIEEYKTTLKIIKQAIL





ATDLALYIKRLGEFFELIRKNQFNLEDPHQKELFLAMLMTACDLSA





ITKPWPIQQRIAELVATEFFDQGDRERKELNIEPTDLMNREKKNKIP





SMQVGFIDAICLQLYEALTHVSEDCFPLLDGCRKNRQKWQALAEQ





QGSLDGATNFSLLKQAGDVEENPGPLSKGEEDNMAIIKEFMRFKV





HMEGSVNGHEFEIEGEGEGRPYEGTQTAKLKVTKGGPLPFAWDILS





PQFMYGSKAYVKHPADIPDYLKLSFPEGFKWERVMNFEDGGVVT





VTQDSSLQDGEFIYKVKLRGTNFPSDGPVMQKKTMGWEASSERM





YPEDGALKGEIKQRLKLKDGGHYDAEVKTTYKAKKPVQLPGAYN





VNIKLDITSHNEDYTIVEQYERAEGRHSTGGMDELYK*







OT-001454 (CD8a leader;
MALPVTALLLPLALLLHAARPDIQMTQTTSSLSASLGDRVTISCRAS
8281
8295


CD19 scEV; CD8a-Tm; (4-
QDISKYLNWYQQKPDGTVKLLIYHTSRLHSGVPSRFSGSGSGTDYS




1BB intracellular domain);
LTISNLEQEDIATYFCQQGNTLPYTFGGGTKLEITGGGGSGGGGSG




CD3zeta signaling domain;
GGGSEVKLQESGPGLVAPSQSLSVTCTVSGVSLPDYGVSWIRQPPR




Linker (GS); hPDE5(Amino
KGLEWLGVIWGSETTYYNSALKSRLTIIKDNSKSQVFLKMNSLQTD




acid 535-860 of WT, R732L);
DTAIYYCAKHYYYGGSYAMDYWGQGTSVTVSSTTTPAPRPPTPAP




stop)
TIASQPLSLRPEACRPAAGGAVHTRGLDFACDIYIWAPLAGTCGVL





LLSLVITLYCKRGRKKLLYIFKQPFMRPVQTTQEEDGCSCRFPEEEE





GGCELRVKFSRSADAPAYKQGQNQLYNELNLGRREEYDVLDKRR





GRDPEMGGKPRRKNPQEGLYNELQKDKMAEAYSEIGMKGERRRG





KGHDGLYQGLSTATKDTYDALHMQALPPRGSEETRELQSLAAAV





VPSAQTLKITDFSFSDFELSDLETALCTIRMFTDLNLVQNFQMKHEV





LCRWILSVKKNYRKNVAYHNWRHAFNTAQCMFAALKAGKIQNK





LTDLEILALLIAALSHDLDHRGVNNSYIQRSEHPLAQLYCHSIMEHH





HFDQCLMILNSPGNQILSGLSIEEYKTTLKIIKQAILATDLALYIKRL





GEFFELIRKNQFNLEDPHQKELFLAMLMTACDLSAITKPWPIQQRIA





ELVATEFFDQGDRERKELNIEPTDLMNREKKNKIPSMQVGFIDAICL





QLYEALTHVSEDCFPLLDGCRKNRQKWQALAEQQ*







OT-001455 (CD8a leader;
MALPVTALLLPLALLLHAARPDIQMTQTTSSLSASLGDRVTISCRAS
8282
8296


CD19 scFV; CD8a-Tm; (4-
QDISKYLNWYQQKPDGTVKLLIYHTSRLHSGVPSRFSGSGSGTDYS




1BB intracellular domain);
LTISNLEQEDIATYFCQQGNTLPYTFGGGTKLEITGGGGSGGGGSG




CD3zeta signaling domain;
GGGSEVKLQESGPGLVAPSQSLSVTCTVSGVSLPDYGVSWIRQPPR




Linker (GS); hPDE5(Amino
KGLEWLGVIWGSETTYYNSALKSRLTIIKDNSKSQVFLKMNSLQTD




acid 535-860 of WT,
DTAIYYCAKHYYYGGSYAMDYWGQGTSVTVSSTTTPAPRPPTPAP




H653A); stop)
TIASQPLSLRPEACRPAAGGAVHTRGLDFACDIYIWAPLAGTCGVL





LLSLVITLYCKRGRKKLLYIFKQPFMRPVQTTQEEDGCSCRFPEEEE





GGCELRVKFSRSADAPAYKQGQNQLYNELNLGRREEYDVLDKRR





GRDPEMGGKPRRKNPQEGLYNELQKDKMAEAYSEIGMKGERRRG





KGHDGLYQGLSTATKDTYDALHMQALPPRGSEETRELQSLAAAV





VPSAQTLKITDFSFSDFELSDLETALCTIRMFTDLNLVQNFQMKHEV





LCRWILSVKKNYRKNVAYHNWRHAFNTAQCMFAALKAGKIQNK





LTDLEMALLIAALSADLDHRGVNNSYIQRSEHPLAQLYCHSIMEHH





HFDQCLMILNSPGNQILGLSIEEYKTTLKIIKQAILATDLALYIKRR





GEFFELIRKNQFNLEDPHQKELFLAMLMTACDLSAITKPWPIQQRIA





ELVATEFFDQGDRERKELNIEPTDLMNREKKNKIPSMQVGFIDAICL





QLYEALTHVSEDCFPLLDGCRKNRQKWQALAEQQ*







OT-001456 (CD8a leader;
MALPVTALLLPLALLLHAARPDIQMTQTTSSLSASLGDRVTISCRAS
8283
8297


CD19 scFV; CD8a-Tm; (4-
QDISKYLNWYQQKPDGTVKLLIYHTSRLHSGVPSRFSGSGSGTDYS




1BB intracellular domain);
LTISNLEQEDIATYFCQQGNTLPYTFGGGTKLEITGGGGSGGGGSG




CD3zeta signaling domain;
GGGSEVKLQESGPGLVAPSQSLSVTCTVSGVSLPDYGVSWIRQPPR




Linker (GS); hPDE5(Amino
KGLEWLGVIWGSETTYYNSALKSRLTIIKDNSKSQVFLKMNSLQTD




acid 535-860 of WT, H653A,
DTAIYYCAKHYYYGGSYAMDYWGQGTSVTVSSTTTPAPRPPTPAP




R732L); stop)
TIASQPLSLRPEACRPAAGGAVHTRGLDFACDIYIWAPLAGTCGVL





LLSLVITLYCKRGRKKLLYIFKQPFMRPVQTTQEEDGCSCRFPEEEE





GGCELRVKFSRSADAPAYKQGQNQLYNELNLGRREEYDVLDKRR





GRDPEMGGKPRRKNPQEGLYNELQKDKMAEAYSEIGMKGERRRG





KGHDGLYQGLSTATKDTYDALHMQALPPRGSEETRELQSLAAAV





VPSAQTLKITDFSFSDFELSDLETALCTIRMFTDLNLVQNFQMKHEV





LCRWILSVKKNYRKNVAYHNWRHAFNTAQCMFAALKAGKIQNK





LTDLEIALLIAALSADLDHRGVNNSYIQRSEHPLAQLYCHSIMEHH





HFDQCLMILNSPGNQILSGLSIEEYKTTLKIIKQAILATDLALYIKRL





GEFFELIRKNQFNLEDPHQKELFLAMLMTACDLSAITKPWPIQQRIA





ELVATEFFDQGDRERKELNIEPTDLMNREKKNKIPSMQVGFIDAICL





QLYEALTHVSEDCFPLLDGCRKNRQKWQALAEQQ*







OT-001457 (CD8a leader;
MALPVTALLLPLALLLHAARPDIQMTQTTSSLSASLGDRVTISCRAS
8284
8298


CD19 scFV; CD8a-Tm; (4-
QDISKYLNWYQQKPDGTVKLLIYHTSRLHSGVPSRFSGSGSGTDYS




1BB intracellular domain);
LTISNLEQEDIATYFCQQGNTLPYTFGGGTKLEITGGGGSGGGGSG




CD3zeta signaling domain;
GGGSEVKLQESGPGLVAPSQSLSVTCTVSGVSLPDYGVSWIRQPPR




Linker (GS); hPDE5(Amino
KGLEWLGVIWGSETTYYNSALKSRLTIIKDNSKSQVFLKMNSLQTD




acid 535-860 of WT, R732L,
DTAIYYCAKHYYYGGSYAMDYWGQGTSVTVSSTTTPAPRPPTPAP




D764A); stop)
TIASQPLSLRPEACRPAAGGAVHTRGLDFACDIYIWAPLAGTCGVL





LLSLVITLYCKRGRKKLLYIFKQPFMRPVQTTQEEDGCSCRFPEEEE





GGCELRVKFSRSADAPAYKQGQNQLYNELNLGRREEYDVLDKRR





GRDPEMGGKPRRKNPQEGLYNELQKDKMAEAYSEIGMKGERRRG





KGHDGLYQGLSTATKDTYDALHMQALPPRGSEETRELQSLAAAV





VPSAQTLKITDFSFSDFELSDLETALCTIRMFTDLNLVQNFQMKHEV





LCRWILSVKKNYRKNVAYHNWRHAFNTAQCMFAALKAGKIQNK





LTDLEILALLIAALSHDLDHRGVNNSYIQRSEHPLAQLYCHSIMEHH





HFDQCLMILNSPGNQILSGLSIEEYKTTLKIIKQAILATDLALYIKRL





GEFFELIRKNQFNLEDPHQKELFLAMLMTACALSAITKPWPIQQRIA





ELVATEFFDQGDRERKELNIEPTDLMNREKKNKIPSMQVGFIDAICL





QLYEALTHVSEDCFPLLDGCRKNRQKWQALAEQQ*







OT-001897 (CD8a leader;
MALPVTALLLPLALLLHAARPDIQMTQTTSSLSASLGDRVTISCRAS
8925
8976


CD19 scFv; CD8a Hinge and
QDISKYLNWYQQKPDGTVKLLIYHTSRLHSGVPSRFSGSGSGTDYS




Transmembrane Domain; 4-
LTISNLEQEDIATYFCQQGNTLPYTFGGGTKLEITGGGGSGGGGSG




1BB intracellular domain
GGGSEVKLQESGPGLVAPSQSLSVTCTVSGVSLPDYGVSWIRQPPR




(CD28 co-stimulatory
KGLEWLGVIWGSETTYYNSALKSRLTIIKDNSKSQVFLKMNSLQTD




domain); CD3 zeta
DTAIYYCAKHYYYGGSYAMDYWGQGTSVTVSSTTTPAPRPPTPAP




intracellular domain; Linker
TIASQPLSLRPEACRPAAGGAVHTRGLDFACDIYIWAPLAGTCGVL




(GS); stop)
LLSLVITLYCKRGRKKLLYIFKQPFMRPVQTTQEEDGCSCRFPEEEE





GGCELRVKFSRSADAPAYKQGQNQLYNELNLGRREEYDVLDKRR





GRDPEMGGKPRRKNPQEGLYNELQKDKMAEAYSEIGMKGERRRG





KGHDGLYQGLSTATKDTYDALHMQALPPRGS*







OT-001896 (CD8a leader;
MALPVTALLLPLALLLHAARPDIQMTQTTSSLSASLGDRVTISCRAS
8926
8977


CD19 scFv; CD8a Hinge and
QDISKYLNWYQQKPDGTVKLLIYHTSRLHSGVPSRFSGSGSGTDYS




Transmembrane Domain; 4-
LTISNLEQEDIATYFCQQGNTLPYTFGGGTKLEITGGGGSGGGGSG




1BB intracellular domain
GGGSEVKLQESGPGLVAPSQSLSVTCTVSGVSLPDYGVSWIRQPPR




(CD28 co-stimulatory
KGLEWLGVIWGSETTYYNSALKSRLTIIKDNSKSQVFLKMNSLQTD




domain); CD3 zeta
DTAIYYCAKHYYYGGSYAMDYWGQGTSVTVSSTTTPAPRPPTPAP




intracellular domain; Linker
TIASQPLSLRPEACRPAAGGAVHTRGLDFACDIYIWAPLAGTCGVL




(GS); hPDE5 AA 535-860 of
LLSLVITLYCKRGRKKLLYIFKQPFMRPVQTTQEEDGCSCRFPEEEE




WT (H653A, R732L); stop)
GGCELRVKFSRSADAPAYKQGQNQLYNELNLGRREEYDVLDKRR





GRDPEMGGKPRRKNPQEGLYNELQKDKMAEAYSEIGMKGERRRG





KGHDGLYQGLSTATKDTYDALHMQALPPRGSEETRELQSLAAAV





VPSAQTLKITDFSFSDFELSDLETALCTIRMFTDLNLVQNFQMKHEV





LCRWILSVKKNYRKNVAYHNWRHAFNTAQCMFAALKAGKIQNK





LTDLEILALLIAALSADLDHRGVNNSYIQRSEHPLAQLYCHSIMEHH





HFDQCLMILNSPGNQILSGLSIEEYKTTLKIIKQAILATDLALYIKRL





GEFFELIRKNQFNLEDPHQKELFLAMLMTACDLSAITKPWPIQQRIA





ELVATEFFDQGDRERKELNIEPTDLMNREKKNKIPSMQVGFIDAICL





QLYEALTHVSEDCFPLLDGCRKNRQKWQALAEQQ*







OT-001907 (CD8a leader;
MALPVTALLLPLALLLHAARPYPYDVPDYADIQMTQTTSSLSASLG
8927
8978


HA Tag; CD19 scFv; CD8a
DRVTISCRASQDISKYLNWYQQKPDGTVKLLIYHTSRLHSGVPSRF




Hinge and Transmembrane
SGSGSGTDYSLTISNLEQEDIATYFCQQGNTLPYTFGGGTKLEITGG




Domain; 4-1BB intracellular
GGSGGGGSGGGGSEVKLQESGPGLVAPSQSLSVTCTVSGVSLPDY




domain (CD28 co-stimulatory
GVSWIRQPPRKGLEWLGVIWGSETTYYNSALKSRLTIIKDNSKSQV




domain); CD3 zeta
FLKMNSLQTDDTAIYYCAKHYYYGGSYAMDYWGQGTSVTVSSTT




intracellular domain; Linker
TPAPRPPTPAPTIASQPLSLRPEACRPAAGGAVHTRGLDFACDIYIW




(GS); hPDE5 AA 535-860 of
APLAGTCGVLLLSLVITLYCKRGRKKLLYIFKQPFMRPVQTTQEED




WT (R732L, F736A); stop)
GCSCRFPEEEEGGCELRVKFSRSADAPAYKQGQNQLYNELNLGRR





EEYDVLDKRRGRDPEMGGKPRRKNPQEGLYNELQKDKMAEAYSE





IGMKGERRRGKGHDGLYQGLSTATKDTYDALHMQALPPRGSEET





RELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFTDLNL





VQNFQMKHEVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMFA





ALKAGKIQNKLTDLEILALLIAALSHDLDHRGVNNSYIQRSEHPLA





QLYCHSIMEHHHFDQCLMILNSPGNQILSGLSIEEYKTTLKIIKQAIL





ATDLALYIKRLGEFAELIRKNQFNLEDPHQKELFLAMLMTACDLSA





ITKPWPIQQRIAELVATEFFDQGDRERKELNIEPTDLMNREKKNKIP





SMQVGFIDAICLQLYEALTHVSEDCFPLLDGCRKNRQKWQALAEQ





Q*







OT-001903 (CD8a leader;
MALPVTALLLPLALLLHAARPYPYDVPDYADIQMTQTTSSLSASLG
8928
8979


HA Tag; CD19 scFv; CD8a
DRVTISCRASQDISKYLNWYQQKPDGTVKLLIYHTSRLHSGVPSRF




Hinge and Transmembrane
SGSGSGTDYSLTISNLEQEDIATYFCQQGNTLPYTFGGGTKLEITGG




Domain; 4-1BB intracellular
GGSGGGGSGGGGSEVKLQESGPGLVAPSQSLSVTCTVSGVSLPDY




domain (CD28 co-stimulatory
GVSWIRQPPRKGLEWLGVIWGSETTYYNSALKSRLTIIKDNSKSQV




domain); CD3 zeta
FLKMNSLQTDDTAIYYCAKHYYYGGSYAMDYWGQGTSVTVSSTT




intracellular domain; Linker
TPAPRPPTPAPTIASQPLSLRPEACRPAAGGAVHTRGLDFACDIYIW




(GS); hPDE5 AA 535-860 of
APLAGTCGVLLLSLVITLYCKRGRKKLLYIFKQPFMRPVQTTQEED




WT (H653A, R732L); stop)
GCSCRFPEEEEGGCELRVKFSRSADAPAYKQGQNQLYNELNLGRR





EEYDVLDKRRGRDPEMGGKPRRKNPQEGLYNELQKDKMAEAYSE





IGMKGERRRGKGHDGLYQGLSTATKDTYDALHMQALPPRGSEET





RELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFTDLNL





VQNFQMKHEVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMFA





ALKAGKIQNKLTDLEILALLIAALSADLDHRGVNNSYIQRSEHPLA





QLYCHSIMEHHHFDQCLMILNSPGNQILSGLSIEEYKTTLKIIKQAIL





ATDLALYIKRLGEFFELIRKNQFNLEDPHQKELFLAMLMTACDLSA





ITKPWPIQQRIAELVATEFFDQGDRERKELNIEPTDLMNREKKNKIP





SMQVGFIDAICLQLYEALTHVSEDCFPLLDGCRKNRQKWQALAEQ





Q*







OT-001906 (CD8a leader;
MALPVTALLLPLALLLHAARPYPYDVPDYADIQMTQTTSSLSASLG
8929
8980


HA Tag; CD19 scFv; CD8a
DRVTISCRASQDISKYLNWYQQKPDGTVKLLIYHTSRLHSGVPSRF




Hinge and Transmembrane
SGSGSGTDYSLTISNLEQEDIATYECQQGNTLPYTEGGGTKLEITGG




Domain; 4-1BB intracellular
GGSGGGGSGGGGSEVKLQESGPGLVAPSQSLSVTCTVSGVSLPDY




domain (CD28 co-stimulatory
GVSWIRQPPRKGLEWLGVIWGSETTYYNSALKSRLTIIKDNSKSQV




domain); CD3 zeta
FLKMNSLQTDDTAIYYCAKHYYYGGSYAMDYWGQGTSVTVSSTT




intracellular domain; Linker
TPAPRPPTPAPTIASQPLSLRPEACRPAAGGAVHTRGLDFACDIYIW




(GS); stop)
APLAGTCGVLLLSLVITLYCKRGRKKLLYIFKQPFMRPVQTTQEED





GCSCRFPEEEEGGCELRVKFSRSADAPAYKQGQNQLYNELNLGRR





EEYDVLDKRRGRDPEMGGKPRRKNPQEGLYNELQKDKMAEAYSE





IGMKGERRRGKGHDGLYQGLSTATKDTYDALHMQALPPRGS*







OT-001905 (CD8a leader;
MALPVTALLLPLALLLHAARPDIQMTQTTSSLSASLGDRVTISCRAS
8930
8981


CD19 scFv; CD8a Hinge and
QDISKYLNWYQQKPDGTVKLLIYHTSRLHSGVPSRFSGSGSGTDYS




Transmembrane Domain; 4-
LTISNLEQEDIATYFCQQGNTLPYTFGGGTKLEITGGGGSGGGGSG




1BB intracellular domain
GGGSEVKLQESGPGLVAPSQSLSVTCTVSGVSLPDYGVSWIRQPPR




(CD28 co-stimulatory
KGLEWLGVIWGSETTYYNSALKSRLTIIKDNSKSQVFLKMNSLQTD




domain); CD3 zeta
DTAIYYCAKHYYYGGSYAMDYWGQGTSVTVSSTTTPAPRPPTPAP




intracellular domain; Linker
TIASQPLSLRPEACRPAAGGAVHTRGLDFACDIYIWAPLAGTCGVL




(GS); enhanced Green
LLSLVITLYCKRGRKKLLYIFKQPFMRPVQTTQEEDGCSCRFPEEEE




Fluorescent Protein (A206K);
GGCELRVKFSRSADAPAYKQGQNQLYNELNLGRREEYDVLDKRR




Linker (GS); stop)
GRDPEMGGKPRRKNPQEGLYNELQKDKMAEAYSEIGMKGERRRG





KGHDGLYQGLSTATKDTYDALHMQALPPRGSMVSKGEELFTGVV





PILVELDGDVNGHKFSVSGEGEGDATYGKLTLKFICTTGKLPVPWP





TLVTTLTYGVQCFSRYPDEMKQHDFFKSAMPEGYVQERTIFFKDD





GNYKTRAEVKFEGDTLVNRIELKGIDFKEDGNILGHKLEYNYNSH





NVYIMADKQKNGIKVNFKIRHNIEDGSVQLADHYQQNTPIGDGPV





LLPDNHYLSTQSKLSKDPNEKRDHMVLLEFVTAAGITLGMDELYK






GS*








OT-001904 (CD8a leader;
MALPVTALLLPLALLLHAARPDIQMTQTTSSLSASLGDRVTISCRAS
8931
8982


CD19 scFv; CD8a Hinge and
QDISKYLNWYQQKPDGTVKLLIYHTSRLHSGVPSRFSGSGSGTDYS




Transmembrane Domain; 4-
LTISNLEQEDIATYFCQQGNTLPYTFGGGTKLEITGGGGSGGGGSG




1BB intracellular domain
GGGSEVKLQESGPGLVAPSQSLSVTCTVSGVSLPDYGVSWIRQPPR




(CD28 co-stimulatory
KGLEWLGVIWGSETTYYNSALKSRLTIIKDNSKSQVFLKMNSLQTD




domain); CD3 zeta
DTAIYYCAKHYYYGGSYAMDYWGQGTSVTVSSTTTPAPRPPTPAP




intracellular domain; Linker
TIASQPLSLRPEACRPAAGGAVHTRGLDFACDIYIWAPLAGTCGVL




(GS); enhanced Green
LLSLVITLYCKRGRKKLLYIFKQPFMRPVQTTQEEDGCSCRFPEEEE




Fluorescent Protein (A206K);
GGCELRVKFSRSADAPAYKQGQNQLYNELNLGRREEYDVLDKRR




Linker (GS); hPDE5 AA 535-
GRDPEMGGKPRRKNPQEGLYNELQKDKMAEAYSEIGMKGERRRG




860 of WT (H653A, R732L);
KGHDGLYQGLSTATKDTYDALHMQALPPRGSMVSKGEELFTGVV




stop)
PILVELDGDVNGHKESVSGEGEGDATYGKLTLKFICTTGKLPVPWP





TLVTTLTYGVQCFSRYPDEMKQHDFFKSAMPEGYVQERTIFFKDD





GNYKTRAEVKFEGDTLVNRIELKGIDFKEDGNILGHKLEYNYNSH





NVYIMADKQKNGIKVNFKIRHNIEDGSVQLADHYQQNTPIGDGPV





LLPDNHYLSTQSKLSKDPNEKRDHMVLLEFVTAAGITLGMDELYK






GSEETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFT






DLNLVQNFQMKHEVLCRWILSVKKNYRKNVAYHNWRHAFNTAQ





CMFAALKAGKIQNKLTDLEILALLIAALSADLDHRGVNNSYIQRSE





HPLAQLYCHSIMEHHHFDQCLMILNSPGNQILSGLSIEEYKTTLKIIK





QAILATDLALYIKRLGEFFELIRKNQFNLEDPHQKELFLAMLMTAC





DLSAITKPWPIQQRIAELVATEFFDQGDRERKELNIEPTDLMNREKK





NKIPSMQVGFIDAICLQLYEALTHVSEDCFPLLDGCRKNRQKWQAL





AEQQ*







OT-001902 (CD8a leader;
MALPVTALLLPLALLLHAARPDIQMTQTTSSLSASLGDRVTISCRAS
8932
8983


CD19 scFv; CD8a Hinge and
QDISKYLNWYQQKPDGTVKLLIYHTSRLHSGVPSRFSGSGSGTDYS




Transmembrane Domain; 4-
LTISNLEQEDIATYFCQQGNTLPYTFGGGTKLEITGGGGSGGGGSG




1BB intracellular domain
GGGSEVKLQESGPGLVAPSQSLSVTCTVSGVSLPDYGVSWIRQPPR




(CD28 co-stimulatory
KGLEWLGVIWGSETTYYNSALKSRLTIIKDNSKSQVFLKMNSLQTD




domain); CD3 zeta
DTAIYYCAKHYYYGGSYAMDYWGQGTSVTVSSTTTPAPRPPTPAP




intracellular domain; Linker
TIASQPLSLRPEACRPAAGGAVHTRGLDFACDIYIWAPLAGTCGVL




(GS); hPDE5 AA 535-860 of
LLSLVITLYCKRGRKKLLYIFKQPFMRPVQTTQEEDGCSCRFPEEEE




WT (H653A, R732L); Linker
GGCELRVKFSRSADAPAYKQGQNQLYNELNLGRREEYDVLDKRR




(GSG); P2A Cleavage
GRDPEMGGKPRRKNPQEGLYNELQKDKMAEAYSEIGMKGERRRG




peptide; Firefly Luciferase
KGHDGLYQGLSTATKDTYDALHMQALPPRGSEETRELQSLAAAV




(N50D, N119G, S548I,
VPSAQTLKITDFSFSDFELSDLETALCTIRMFTDLNLVQNFQMKHEV




K549A, L550V); stop)
LCRWILSVKKNYRKNVAYHNWRHAFNTAQCMFAALKAGKIQNK





LTDLEILALLIAALSADLDHRGVNNSYIQRSEHPLAQLYCHSIMEHH





HFDQCLMILNSPGNQILSGLSIEEYKTTLKIIKQAILATDLALYIKRL





GEFFELIRKNQFNLEDPHQKELFLAMLMTACDLSAITKPWPIQQRIA





ELVATEFFDQGDRERKELNIEPTDLMNREKKNKIPSMQVGFIDAICL





QLYEALTHVSEDCFPLLDGCRKNRQKWQALAEQQGSGATNFSLLK





QAGDVEENPGPMEDAKNIKKGPAPFYPLEDGTAGEQLHKAMKRY





ALVPGTIAFTDAHIEVDITYAEYFEMSVRLAEAMKRYGLNTNHRIV





VCSENSLQFFMPVLGALFIGVAVAPANDIYNERELLNSMGISQPTV





VFVSKKGLQKILNVQKKLPIIQKIIIMDSKTDYQGFQSMYTFVTSHL





PPGFNEYDFVPESFDRDKTIALIMNSSGSTGLPKGVALPHRTACVRF





SHARDPIFGNQIIPDTAILSVVPFHHGFGMFTTLGYLICGFRVVLMY





RFEEELFLRSLQDYKIQSALLVPTLFSFFAKSTLIDKYDLSNLHEIAS





GGAPLSKEVGEAVAKRFHLPGIRQGYGLTETTSAILITPEGDDKPGA





VGKVVPFFEAKVVDLDTGKTLGVNQRGELCVRGPMIMSGYVNNP





EATNALIDKDGWLHSGDIAYWDEDERFFIVDRLKSLIKYKGYQVA





PAELESILLQHPNIFDAGVAGLPDDDAGELPAAVVVLEHGKTMTEK





EIVDYVASQVTTAKKLRGGVVFVDEVPKGLTGKLDARKIREILIKA





KKGGKIAV*







OT-001901 (CD8a leader;
MALPVTALLLPLALLLHAARPDIQMTQTTSSLSASLGDRVTISCRAS
8933
8984


CD19 scFv; CD8a Hinge and
QDISKYLNWYQQKPDGTVKLLIYHTSRLHSGVPSRFSGSGSGTDYS




Transmembrane Domain; 4-
LTISNLEQEDIATYFCQQGNTLPYTFGGGTKLEITGGGGSGGGGSG




1BB intracellular domain
GGGSEVKLQESGPGLVAPSQSLSVTCTVSGVSLPDYGVSWIRQPPR




(CD28 co-stimulatory
KGLEWLGVIWGSETTYYNSALKSRLTIIKDNSKSQVFLKMNSLQTD




domain); CD3 zeta
DTAIYYCAKHYYYGGSYAMDYWGQGTSVTVSSTTTPAPRPPTPAP




intracellular domain; Linker
TIASQPLSLRPEACRPAAGGAVHTRGLDFACDIYIWAPLAGTCGVL




(GS); hPDE5 (535-860 of
LLSLVITLYCKRGRKKLLYIFKQPFMRPVQTTQEEDGCSCRFPEEEE




WT); Linker (GSG); P2A
GGCELRVKFSRSADAPAYKQGQNQLYNELNLGRREEYDVLDKRR




Cleavage Site; Firefly
GRDPEMGGKPRRKNPQEGLYNELQKDKMAEAYSEIGMKGERRRG




Luciferase (N50D, N119G,
KGHDGLYQGLSTATKDTYDALHMQALPPRGSEETRELQSLAAAV




S548I, K549A, L550V); stop)
VPSAQTLKITDFSFSDFELSDLETALCTIRMFTDLNLVQNFQMKHEV





LCRWILSVKKNYRKNVAYHNWRHAFNTAQCMFAALKAGKIQNK





LTDLEILALLIAALSHDLDHRGVNNSYIQRSEHPLAQLYCHSIMEHH





HFDQCLMILNSPGNQILSGLSIEEYKTTLKIIKQAILATDLALYIKRR





GEFFELIRKNQFNLEDPHQKELFLAMLMTACDLSAITKPWPIQQRIA





ELVATEFFDQGDRERKELNIEPTDLMNREKKNKIPSMQVGFIDAICL





QLYEALTHVSEDCFPLLDGCRKNRQKWQALAEQQGSGATNFSLLK





QAGDVEENPGPMEDAKNIKKGPAPFYPLEDGTAGEQLHKAMKRY





ALVPGTIAFTDAHIEVDITYAEYFEMSVRLAEAMKRYGLNTNHRIV





VCSENSLQFFMPVLGALFIGVAVAPANDIYNERELLNSMGISQPTV





VFVSKKGLQKILNVQKKLPIIQKIIIMDSKTDYQGFQSMYTFVTSHL





PPGFNEYDFVPESFDRDKTIALIMNSSGSTGLPKGVALPHRTACVRF





SHARDPIFGNQIIPDTAILSVVPFHHGFGMFTTLGYLICGFRVVLMY





RFEEELFLRSLQDYKIQSALLVPTLFSFFAKSTLIDKYDLSNLHEIAS





GGAPLSKEVGEAVAKRFHLPGIRQGYGLTETTSAILITPEGDDKPGA





VGKVVPFFEAKVVDLDTGKTLGVNQRGELCVRGPMIMSGYVNNP





EATNALIDKDGWLHSGDIAYWDEDEHFFIVDRLKSLIKYKGYQVA





PAELESILLQHPNIFDAGVAGLPDDDAGELPAAVVVLEHGKTMTEK





EIVDYVASQVTTAKKLRGGVVFVDEVPKGLTGKLDARKIREILIKA





KKGGKIAV*







OT-001900 (CD8a leader;
MALPVTALLLPLALLLHAARPDIQMTQTTSSLSASLGDRVTISCRAS
8934
8985


CD19 scFv; CD8a Hinge and
QDISKYLNWYQQKPDGTVKLLIYHTSRLHSGVPSRFSGSGSGTDYS




Transmembrane Domain; 4-
LTISNLEQEDIATYFCQQGNTLPYTFGGGTKLEITGGGGSGGGGSG




1BB intracellular domain
GGGSEVKLQESGPGLVAPSQSLSVTCTVSGVSLPDYGVSWIRQPPR




(CD28 co-stimulatory
KGLEWLGVIWGSETTYYNSALKSRLTIIKDNSKSQVFLKMNSLQTD




domain); CD3 zeta
DTAIYYCAKHYYYGGSYAMDYWGQGTSVTVSSTTTPAPRPPTPAP




intracellular domain; Linker
TIASQPLSLRPEACRPAAGGAVHTRGLDFACDIYIWAPLAGTCGVL




(GS); hPDE5 AA 535-860 of
LLSLVITLYCKRGRKKLLYIFKQPFMRPVQTTQEEDGCSCRFPEEEE




WT (H653A, R732L); Linker
GGCELRVKFSRSADAPAYKQGQNQLYNELNLGRREEYDVLDKRR




(GSG); P2A Cleavage Site;
GRDPEMGGKPRRKNPQEGLYNELQKDKMAEAYSEIGMKGERRRG




enhanced Green Fluorescent
KGHDGLYQGLSTATKDTYDALHMQALPPRGSEETRELQSLAAAV




Protein (M1del); stop)
VPSAQTLKITDFSFSDFELSDLETALCTIRMFTDLNLVQNFQMKHEV





LCRWILSVKKNYRKNVAYHNWRHAFNTAQCMFAALKAGKIQNK





LTDLEILALLIAALSADLDHRGVNNSYIQRSEHPLAQLYCHSIMEHH





HFDQCLMILNSPGNQILSGLSIEEYKTTLKIIKQAILATDLALYIKRL





GEFFELIRKNQFNLEDPHQKELFLAMLMTACDLSAITKPWPIQQRIA





ELVATEFFDQGDRERKELNIEPTDLMNREKKNKIPSMQVGFIDAICL





QLYEALTHVSEDCFPLLDGCRKNRQKWQALAEQQGSGATNFSLLK





QAGDVEENPGPVSKGEELFTGVVPILVELDGDVNGHKFSVSGEGE





GDATYGKLTLKFICTTGKLPVPWPTLVTTLTYGVQCFSRYPDHMK





QHDFFKSAMPEGYVQERTIFFKDDGNYKTRAEVKFEGDTLVNRIEL





KGIDFKEDGNILGHKLEYNYNSHNVYIMADKQKNGIKVNFKIRHNI





EDGSVQLADHYQQNTPIGDGPVLLPDNHYLSTQSALSKDPNEKRD





HMVLLEFVTAAGITLGMDELYK*







OT-001899 (CD8a leader;
MALPVTALLLPLALLLHAARPDIQMTQTTSSLSASLGDRVTISCRAS
8935
8986


CD19 scFv; CD8a Hinge and
QDISKYLNWYQQKPDGTVKLLIYHTSRLHSGVPSRFSGSGSGTDYS




Transmembrane Domain; 4-
LTISNLEQEDIATYFCQQGNTLPYTFGGGTKLEITGGGGSGGGGSG




1BB intracellular domain
GGGSEVKLQESGPGLVAPSQSLSVTCTVSGVSLPDYGVSWIRQPPR




(CD28 co-stimulatory
KGLEWLGVIWGSETTYYNSALKSRLTIIKDNSKSQVFLKMNSLQTD




domain); CD3 zeta
DTAIYYCAKHYYYGGSYAMDYWGQGTSVTVSSTTTPAPRPPTPAP




intracellular domain; Linker
TIASQPLSLRPEACRPAAGGAVHTRGLDFACDIYIWAPLAGTCGVL




(GS); hPDE5 (535-860 of
LLSLVITLYCKRGRKKLLYIFKQPFMRPVQTTQEEDGCSCRFPEEEE




WT); Linker (GSG); P2A
GGCELRVKFSRSADAPAYKQGQNQLYNELNLGRREEYDVLDKRR




Cleavage Site; enhanced
GRDPEMGGKPRRKNPQEGLYNELQKDKMAEAYSEIGMKGERRRG




Green Fluorescent Protein
KGHDGLYQGLSTATKDTYDALHMQALPPRGSEETRELQSLAAAV




(M1del); stop)
VPSAQTLKITDFSFSDFELSDLETALCTIRMFTDLNLVQNFQMKHEV





LCRWILSVKKNYRKNVAYHNWRHAFNTAQCMFAALKAGKIQNK





LTDLEILALLIAALSHDLDHRGVNNSYIQRSEHPLAQLYCHSIMEHH





HFDQCLMILNSPGNQILSGLSIEEYKTTLKIIKQAILATDLALYIKRR





GEFFELIRKNQFNLEDPHQKELFLAMLMTACDLSAITKPWPIQQRIA





ELVATEFFDQGDRERKELNIEPTDLMNREKKNKIPSMQVGFIDAICL





QLYEALTHVSEDCFPLLDGCRKNRQKWQALAEQQGSGATNFSLLK





QAGDVEENPGPVSKGEELFTGVVPILVELDGDVNGHKFSVSGEGE





GDATYGKLTLKFICTTGKLPVPWPTLVTTLTYGVQCFSRYPDHMK





QHDFFKSAMPEGYVQERTIFFKDDGNYKTRAEVKFEGDTLVNRIEL





KGIDFKEDGNILGHKLEYNYNSHNVYIMADKQKNGIKVNFKIRHNI





EDGSVQLADHYQQNTPIGDGPVLLPDNHYLSTQSALSKDPNEKRD





HMVLLEFVTAAGITLGMDELYK*







OT-001898 (CD8a leader;
MALPVTALLLPLALLLHAARPGSEETRELQSLAAAVVPSAQTLKIT
8936
8987


Linker (GS); hPDE5 AA 535-
DFSFSDFELSDLETALCTIRMFTDLNLVQNFQMKHEVLCRWILSVK




860 of WT (H653A, R732L);
KNYRKNVAYHNWRHAFNTAQCMFAALKAGKIQNKLTDLEILALL




Linker (GS); CD19 scFv;
IAALSADLDHRGVNNSYIQRSEHPLAQLYCHSIMEHHHFDQCLMIL




CD8a Hinge and
NSPGNQILSGLSIEEYKTTLKIIKQAILATDLALYIKRLGEFFELIRKN




Transmembrane Domain; 4-
QFNLEDPHQKELFLAMLMTACDLSAITKPWPIQQRIAELVATEFFD




1BB intracellular domain
QGDRERKELNIEPTDLMNREKKNKIPSMQVGFIDAICLQLYEALTH




(CD28 co-stimulatory
VSEDCFPLLDGCRKNRQKWQALAEQQGSDIQMTQTTSSLSASLGD




domain); CD3 zeta
RVTISCRASQDISKYLNWYQQKPDGTVKLLIYHTSRLHSGVPSRFS




intracellular domain; stop)
GSGSGTDYSLTISNLEQEDIATYFCQQGNTLPYTFGGGTKLEITGGG





GSGGGGSGGGGSEVKLQESGPGLVAPSQSLSVTCTVSGVSLPDYG





VSWIRQPPRKGLEWLGVIWGSETTYYNSALKSRLTIIKDNSKSQVF





LKMNSLQTDDTAIYYCAKHYYYGGSYAMDYWGQGTSVTVSSTTT





PAPRPPTPAPTIASQPLSLRPEACRPAAGGAVHTRGLDFACDIYIWA





PLAGTCGVLLLSLVITLYCKRGRKKLLYIFKQPFMRPVQTTQEEDG





CSCRFPEEEEGGCELRVKFSRSADAPAYKQGQNQLYNELNLGRRE





EYDVLDKRRGRDPEMGGKPRRKNPQEGLYNELQKDKMAEAYSEI





GMKGERRRGKGHDGLYQGLSTATKDTYDALHMQALPPR*







OT-001908 (CD8a leader;
MALPVTALLLPLALLLHAARPGSEETRELQSLAAAVVPSAQTLKIT
8937
8988


Linker (GS); hPDE5 AA 535-
DFSFSDFELSDLETALCTIRMFTDLNLVQNFQMKHEVLCRWILSVK




860 of WT (H653A, R732L);
KNYRKNVAYHNWRHAFNTAQCMFAALKAGKIQNKLTDLEILALL




Linker (GS); Modified Furin
IAALSADLDHRGVNNSYIQRSEHPLAQLYCHSIMEHHHFDQCLMIL




Cleavage Site; CD19 scFv;
NSPGNQILSGLSIEEYKTTLKIIKQAILATDLALYIKRLGEFFELIRKN




CD8a Hinge and
QFNLEDPHQKELFLAMLMTACDLSAITKPWPIQQRIAELVATEFFD




Transmembrane Domain; 4-
QGDRERKELNIEPTDLMNREKKNKIPSMQVGFIDAICLQLYEALTH




1BB intracellular domain
VSEDCFPLLDGCRKNRQKWQALAEQQGSESRRVRRNKRSKDIQM




(CD28 co-stimulatory
TQTTSSLSASLGDRVTISCRASQDISKYLNWYQQKPDGTVKLLIYH




domain); CD3 zeta
TSRLHSGVPSRFSGSGSGTDYSLTISNLEQEDIATYFCQQGNTLPYT




intracellular domain; stop)
FGGGTKLEITGGGGSGGGGSGGGGSEVKLQESGPGLVAPSQSLSVT





CTVSGVSLPDYGVSWIRQPPRKGLEWLGVIWGSETTYYNSALKSR





LTIIKDNSKSQVFLKMNSLQTDDTAIYYCAKHYYYGGSYAMDYW





GQGTSVTVSSTTTPAPRPPTPAPTIASQPLSLRPEACRPAAGGAVHT





RGLDFACDIYIWAPLAGTCGVLLLSLVITLYCKRGRKKLLYIFKQPF





MRPVQTTQEEDGCSCRFPEEEEGGCELRVKFSRSADAPAYKQGQN





QLYNELNLGRREEYDVLDKRRGRDPEMGGKPRRKNPQEGLYNEL





QKDKMAEAYSEIGMKGERRRGKGHDGLYQGLSTATKDTYDALH





MQALPPR*







OT-001508 (CD8a leader;
MALPVTALLLPLALLLHAARPDIQMTQTTSSLSASLGDRVTISCRAS
8938
8989


CD19 scFv; Linker (ASFE);
QDISKYLNWYQQKPDGTVKLLIYHTSRLHSGVPSRFSGSGSGTDYS




CD28 transmembrane and
LTISNLEQEDIATYFCQQGNTLPYTFGGGTKLEITGGGGSGGGGSG




signaling domain; CD3 zeta
GGGSEVKLQESGPGLVAPSQSLSVTCTVSGVSLPDYGVSWIRQPPR




intracellular domain; Linker
KGLEWLGVIWGSETTYYNSALKSRLTIIKDNSKSQVFLKMNSLQTD




(GS); hPDE5 AA 535-860 of
DTAIYYCAKHYYYGGSYAMDYWGQGTSVTVSSASFEIEVMYPPPY




WT (H653A, R732L); stop)
LDNEKSNGTIIHVKGKHLCPSPLFPGPSKPFWVLVVVGGVLACYSL





LVTVAFIIFWVRSKRSRLLHSDYMNMTPRRPGPTRKHYQPYAPPRD





FAAYRSRVKFSRSADAPAYKQGQNQLYNELNLGRREEYDVLDKR





RGRDPEMGGKPRRKNPQEGLYNELQKDKMAEAYSEIGMKGERRR





GKGHDGLYQGLSTATKDTYDALHMQALPPRGSEETRELQSLAAA





VVPSAQTLKITDFSFSDFELSDLETALCTIRMFTDLNLVQNFQMKHE





VLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMFAALKAGKIQN





KLTDLEILALLIAALSADLDHRGVNNSYIQRSEHPLAQLYCHSIMEH





HHFDQCLMILNSPGNQILSGLSIEEYKTTLKIIKQAILATDLALYIKR





LGEFFELIRKNQFNLEDPHQKELFLAMLMTACDLSAITKPWPIQQRI





AELVATEFFDQGDRERKELNIEPTDLMNREKKNKIPSMQVGFIDAI





CLQLYEALTHVSEDCFPLLDGCRKNRQKWQALAEQQ*







OT-001511 (CD8a leader;
MALPVTALLLPLALLLHAARPDIQMTQTTSSLSASLGDRVTISCRAS
8939
8990


CD19 scFv; CD8a Hinge and
QDISKYLNWYQQKPDGTVKLLIYHTSRLHSGVPSRFSGSGSGTDYS




Transmembrane Domain; 4-
LTISNLEQEDIATYFCQQGNTLPYTFGGGTKLEITGGGGSGGGGSG




1BB intracellular domain
GGGSEVKLQESGPGLVAPSQSLSVTCTVSGVSLPDYGVSWIRQPPR




(CD28 co-stimulatory
KGLEWLGVIWGSETTYYNSALKSRLTIIKDNSKSQVFLKMNSLQTD




domain); Linker (GS); hPDE5
DTAIYYCAKHYYYGGSYAMDYWGQGTSVTVSSTTTPAPRPPTPAP




AA 535-860 of WT (H653A,
TIASQPLSLRPEACRPAAGGAVHTRGLDFACDIYIWAPLAGTCGVL




R732L); Linker (GS); CD3
LLSLVITLYCKRGRKKLLYIFKQPFMRPVQTTQEEDGCSCRFPEEEE




zeta intracellular domain;
GGCELGSEETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALC




stop)
TIRMFTDLNLVQNFQMKHEVLCRWILSVKKNYRKNVAYHNWRH





AFNTAQCMFAALKAGKIQNKLTDLEILALLIAALSADLDHRGVNN





SYIQRSEHPLAQLYCHSIMEHHHFDQCLMILNSPGNQILSGLSIEEY





KTTLKIIKQAILATDLALYIKRLGEFFELIRKNQFNLEDPHQKELFLA





MLMTACDLSAITKPWPIQQRIAELVATEFFDQGDRERKELNIEPTDL





MNREKKNKIPSMQVGFIDAICLQLYEALTHVSEDCFPLLDGCRKNR





QKWQALAEQQGSRVKFSRSADAPAYKQGQNQLYNELNLGRREEY





DVLDKRRGRDPEMGGKPRRKNPQEGLYNELQKDKMAEAYSEIGM





KGERRRGKGHDGLYQGLSTATKDTYDALHMQALPPR*







OT-001510 (CD8a leader;
MALPVTALLLPLALLLHAARPDIQMTQTTSSLSASLGDRVTISCRAS
8940
8991


CD19 scFv; CD8a Hinge and
QDISKYLNWYQQKPDGTVKLLIYHTSRLHSGVPSRFSGSGSGTDYS




Transmembrane Domain; 4-
LTISNLEQEDIATYFCQQGNTLPYTFGGGTKLEITGGGGSGGGGSG




1BB intracellular domain
GGGSEVKLQESGPGLVAPSQSLSVTCTVSGVSLPDYGVSWIRQPPR




(CD28 co-stimulatory
KGLEWLGVIWGSETTYYNSALKSRLTIIKDNSKSQVFLKMNSLQTD




domain); Linker (GS); hPDE5
DTAIYYCAKHYYYGGSYAMDYWGQGTSVTVSSTTTPAPRPPTPAP




(535-860 of WT); Linker
TIASQPLSLRPEACRPAAGGAVHTRGLDFACDIYIWAPLAGTCGVL




(GS); CD3 zeta intracellular
LLSLVITLYCKRGRKKLLYIFKQPFMRPVQTTQEEDGCSCREPEEEE




domain; stop)
GGCELGSEETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALC





TIRMFTDLNLVQNFQMKHEVLCRWILSVKKNYRKNVAYHNWRH





AFNTAQCMFAALKAGKIQNKLTDLEILALLIAALSHDLDHRGVNN





SYIQRSEHPLAQLYCHSIMEHHHFDQCLMILNSPGNQILSGLSIEEY





KTTLKIIKQAILATDLALYIKRRGEFFELIRKNQFNLEDPHQKELFLA





MLMTACDLSAITKPWPIQQRIAELVATEFFDQGDRERKELNIEPTDL





MNREKKNKIPSMQVGFIDAICLQLYEALTHVSEDCFPLLDGCRKNR





QKWQALAEQQGSRVKFSRSADAPAYKQGQNQLYNELNLGRREEY





DVLDKRRGRDPEMGGKPRRKNPQEGLYNELQKDKMAEAYSEIGM





KGERRRGKGHDGLYQGLSTATKDTYDALHMQALPPR*







OT-001512 (CD8a leader;
MALPVTALLLPLALLLHAARPDIQMTQTTSSLSASLGDRVTISCRAS
8941
8992


CD19 scFv; CD8a Hinge and
QDISKYLNWYQQKPDGTVKLLIYHTSRLHSGVPSRFSGSGSGTDYS




Transmembrane Domain; 4-
LTISNLEQEDIATYFCQQGNTLPYTFGGGTKLEITGGGGSGGGGSG




1BB intracellular domain
GGGSEVKLQESGPGLVAPSQSLSVTCTVSGVSLPDYGVSWIRQPPR




(CD28 co-stimulatory
KGLEWLGVIWGSETTYYNSALKSRLTIIKDNSKSQVFLKMNSLQTD




domain); CD3 zeta
DTAIYYCAKHYYYGGSYAMDYWGQGTSVTVSSTTTPAPRPPTPAP




intracellular domain; Linker
TIASQPLSLRPEACRPAAGGAVHTRGLDFACDIYIWAPLAGTCGVL




(GS); hPDE5 (535-860 of
LLSLVITLYCKRGRKKLLYIFKQPFMRPVQTTQEEDGCSCRFPEEEE




WT); stop)
GGCELRVKFSRSADAPAYKQGQNQLYNELNLGRREEYDVLDKRR





GRDPEMGGKPRRKNPQEGLYNELQKDKMAEAYSEIGMKGERRRG





KGHDGLYQGLSTATKDTYDALHMQALPPRGSEETRELQSLAAAV





VPSAQTLKITDFSFSDFELSDLETALCTIRMFTDLNLVQNFQMKHEV





LCRWILSVKKNYRKNVAYHNWRHAFNTAQCMFAALKAGKIQNK





LTDLEILALLIAALSHDLDHRGVNNSYIQRSEHPLAQLYCHSIMEHH





HFDQCLMILNSPGNQILSGLSIEEYKTTLKIIKQAILATDLALYIKRR





GEFFELIRKNQFNLEDPHQKELFLAMLMTACDLSAITKPWPIQQRIA





ELVATEFFDQGDRERKELNIEPTDLMNREKKNKIPSMQVGFIDAICL





QLYEALTHVSEDCFPLLDGCRKNRQKWQALAEQQ*







OT-001501 (CD8a leader;
MALPVTALLLPLALLLHAARPDIQMTQTTSSLSASLGDRVTISCRAS
8942
8993


CD19 scFv; CD8a Hinge and
QDISKYLNWYQQKPDGTVKLLIYHTSRLHSGVPSRFSGSGSGTDYS




Transmembrane Domain; 4-
LTISNLEQEDIATYFCQQGNTLPYTFGGGTKLEITGGGGSGGGGSG




1BB intracellular domain
GGGSEVKLQESGPGLVAPSQSLSVTCTVSGVSLPDYGVSWIRQPPR




(CD28 co-stimulatory
KGLEWLGVIWGSETTYYNSALKSRLTIIKDNSKSQVFLKMNSLQTD




domain); CD3 zeta
DTAIYYCAKHYYYGGSYAMDYWGQGTSVTVSSTTTPAPRPPTPAP




intracellular domain; Linker
TIASQPLSLRPEACRPAAGGAVHTRGLDFACDIYIWAPLAGTCGVL




(GS); hPDE5 AA 535-860 of
LLSLVITLYCKRGRKKLLYIFKQPFMRPVQTTQEEDGCSCRFPEEEE




WT (R732L, F736A); stop)
GGCELRVKFSRSADAPAYKQGQNQLYNELNLGRREEYDVLDKRR





GRDPEMGGKPRRKNPQEGLYNELQKDKMAEAYSEIGMKGERRRG





KGHDGLYQGLSTATKDTYDALHMQALPPRGSEETRELQSLAAAV





VPSAQTLKITDFSFSDFELSDLETALCTIRMFTDLNLVQNFQMKHEV





LCRWILSVKKNYRKNVAYHNWRHAFNTAQCMFAALKAGKIQNK





LTDLEILALLIAALSHDLDHRGVNNSYIQRSEHPLAQLYCHSIMEHH





HFDQCLMILNSPGNQILSGLSIEEYKTTLKIIKQAILATDLALYIKRL





GEFAELIRKNQFNLEDPHQKELFLAMLMTACDLSAITKPWPIQQRI





AELVATEFFDQGDRERKELNIEPTDLMNREKKNKIPSMQVGFIDAI





CLQLYEALTHVSEDCFPLLDGCRKNRQKWQALAEQQ*







OT-001509 (CD8a leader;
MALPVTALLLPLALLLHAARPDIQMTQTTSSLSASLGDRVTISCRAS
8943
8994


CD19 scFv; CD8a Hinge and
QDISKYLNWYQQKPDGTVKLLIYHTSRLHSGVPSRFSGSGSGTDYS




Transmembrane Domain; 4-
LTISNLEQEDIATYFCQQGNTLPYTFGGGTKLEITGGGGSGGGGSG




1BB intracellular domain
GGGSEVKLQESGPGLVAPSQSLSVTCTVSGVSLPDYGVSWIRQPPR




(CD28 co-stimulatory
KGLEWLGVIWGSETTYYNSALKSRLTIIKDNSKSQVFLKMNSLQTD




domain); Linker (GS); hPDE5
DTAIYYCAKHYYYGGSYAMDYWGQGTSVTVSSTTTPAPRPPTPAP




AA 535-860 of WT (R732L,
TIASQPLSLRPEACRPAAGGAVHTRGLDFACDIYIWAPLAGTCGVL




F736A); Linker (GS); CD3
LLSLVITLYCKRGRKKLLYIFKQPFMRPVQTTQEEDGCSCRFPEEEE




zeta intracellular domain;
GGCELGSEETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALC




stop)
TIRMFTDLNLVQNFQMKHEVLCRWILSVKKNYRKNVAYHNWRH





AFNTAQCMFAALKAGKIQNKLTDLEILALLIAALSHDLDHRGVNN





SYIQRSEHPLAQLYCHSIMEHHHFDQCLMILNSPGNQILSGLSIEEY





KTTLKIIKQAILATDLALYIKRLGEFAELIRKNQFNLEDPHQKELFLA





MLMTACDLSAITKPWPIQQRIAELVATEFFDQGDRERKELNIEPTDL





MNREKKNKIPSMQVGFIDAICLQLYEALTHVSEDCFPLLDGCRKNR





QKWQALAEQQGSRVKFSRSADAPAYKQGQNQLYNELNLGRREEY





DVLDKRRGRDPEMGGKPRRKNPQEGLYNELQKDKMAEAYSEIGM





KGERRRGKGHDGLYQGLSTATKDTYDALHMQALPPR*







OT-001602 (CD8a leader;
MALPVTALLLPLALLLHAARPDIQMTQTTSSLSASLGDRVTISCRAS
8944
8995


CD19 scFv; CD8a Hinge and
QDISKYLNWYQQKPDGTVKLLIYHTSRLHSGVPSRFSGSGSGTDYS




Transmembrane Domain; 4-
LTISNLEQEDIATYFCQQGNTLPYTFGGGTKLEITGGGGSGGGGSG




1BB intracellular domain
GGGSEVKLQESGPGLVAPSQSLSVTCTVSGVSLPDYGVSWIRQPPR




(CD28 co-stimulatory
KGLEWLGVIWGSETTYYNSALKSRLTIIKDNSKSQVFLKMNSLQTD




domain); CD3 zeta
DTAIYYCAKHYYYGGSYAMDYWGQGTSVTVSSTTTPAPRPPTPAP




intracellular domain; Linker
TIASQPLSLRPEACRPAAGGAVHTRGLDFACDIYIWAPLAGTCGVL




(GSG); P2A Cleavage Site;
LLSLVITLYCKRGRKKLLYIFKQPFMRPVQTTQEEDGCSCRFPEEEE




Linker (GSG); enhanced
GGCELRVKFSRSADAPAYKQGQNQLYNELNLGRREEYDVLDKRR




Green Fluorescent Protein
GRDPEMGGKPRRKNPQEGLYNELQKDKMAEAYSEIGMKGERRRG




(M1del); stop)
KGHDGLYQGLSTATKDTYDALHMQALPPRGSGATNFSLLKQAGD





VEENPGPGSGVSKGEELFTGVVPILVELDGDVNGHKFSVSGEGEGD





ATYGKLTLKFICTTGKLPVPWPTLVTTLTYGVQCFSRYPDHMKQH





DFFKSAMPEGYVQERTIFFKDDGNYKTRAEVKFEGDTLVNRIELKG





IDFKEDGNILGHKLEYNYNSHNVYIMADKQKNGIKVNFKIRHNIED





GSVQLADHYQQNTPIGDGPVLLPDNHYLSTQSALSKDPNEKRDHM





VLLEFVTAAGITLGMDELYK*







OT-001598 (CD8a leader;
MALPVTALLLPLALLLHAARPDIQMTQTTSSLSASLGDRVTISCRAS
8945
8996


CD19 scFv; CD8a Hinge and
QDISKYLNWYQQKPDGTVKLLIYHTSRLHSGVPSRFSGSGSGTDYS




Transmembrane Domain; 4-
LTISNLEQEDIATYFCQQGNTLPYTFGGGTKLEITGGGGSGGGGSG




1BB intracellular domain
GGGSEVKLQESGPGLVAPSQSLSVTCTVSGVSLPDYGVSWIRQPPR




(CD28 co-stimulatory
KGLEWLGVIWGSETTYYNSALKSRLTIIKDNSKSQVFLKMNSLQTD




domain); CD3 zeta
DTAIYYCAKHYYYGGSYAMDYWGQGTSVTVSSTTTPAPRPPTPAP




intracellular domain; Linker
TIASQPLSLRPEACRPAAGGAVHTRGLDFACDIYIWAPLAGTCGVL




(GSG); P2A Cleavage Site;
LLSLVITLYCKRGRKKLLYIFKQPFMRPVQTTQEEDGCSCRFPEEEE




Firefly Luciferase (N50D,
GGCELRVKFSRSADAPAYKQGQNQLYNELNLGRREEYDVLDKRR




N119G, S548I, K549A,
GRDPEMGGKPRRKNPQEGLYNELQKDKMAEAYSEIGMKGERRRG




L550V); stop)
KGHDGLYQGLSTATKDTYDALHMQALPPRGSGATNFSLLKQAGD





VEENPGPMEDAKNIKKGPAPFYPLEDGTAGEQLHKAMKRYALVP





GTIAFTDAHIEVDITYAEYFEMSVRLAEAMKRYGLNTNHRIVVCSE





NSLQFFMPVLGALFIGVAVAPANDIYNERELLNSMGISQPTVVFVS





KKGLQKILNVQKKLPIIQKIIIMDSKTDYQGFQSMYTFVTSHLPPGF





NEYDFVPESFDRDKTIALIMNSSGSTGLPKGVALPHRTACVRFSHA





RDPIFGNQHPDTAILSVVPFHHGFGMFTTLGYLICGFRVVLMYRFEE





ELFLRSLQDYKIQSALLVPTLFSFFAKSTLIDKYDLSNLHEIASGGAP





LSKEVGEAVAKRFHLPGIRQGYGLTETTSAILITPEGDDKPGAVGK





VVPFFEAKVVDLDTGKTLGVNQRGELCVRGPMIMSGYVNNPEAT





NALIDKDGWLHSGDIAYWDEDEHFFIVDRLKSLIKYKGYQVAPAE





LESILLQHPNIFDAGVAGLPDDDAGELPAAVVVLEHGKTMTEKEIV





DYVASQVTTAKKLRGGVVFVDEVPKGLTGKLDARKIREILIKAKK





GGKIAV*







OT-001912 (CD8a leader;
MALPVTALLLPLALLLHAARPYPYDVPDYADIQMTQTTSSLSASLG
8946
8997


HA Tag; CD19 scFv; CD8a
DRVTISCRASQDISKYLNWYQQKPDGTVKLLIYHTSRLHSGVPSRF




Hinge and Transmembrane
SGSGSGTDYSLTISNLEQEDIATYFCQQGNTLPYTFGGGTKLEITGG




Domain; 4-1BB intracellular
GGSGGGGSGGGGSEVKLQESGPGLVAPSQSLSVTCTVSGVSLPDY




domain (CD28 co-stimulatory
GVSWIRQPPRKGLEWLGVIWGSETTYYNSALKSRLTIIKDNSKSQV




domain); CD3 zeta
FLKMNSLQTDDTAIYYCAKHYYYGGSYAMDYWGQGTSVTVSSTT




intracellular domain; Linker
TPAPRPPTPAPTIASQPLSLRPEACRPAAGGAVHTRGLDFACDIYIW




(SG); hPDE5 AA 535-860 of
APLAGTCGVLLLSLVITLYCKRGRKKLLYIFKQPFMRPVQTTQEED




WT (M758T); stop)
GCSCRFPEEEEGGCELRVKFSRSADAPAYKQGQNQLYNELNLGRR





EEYDVLDKRRGRDPEMGGKPRRKNPQEGLYNELQKDKMAEAYSE





IGMKGERRRGKGHDGLYQGLSTATKDTYDALHMQALPPRSGEET





RELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFTDLNL





VQNFQMKHEVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMFA





ALKAGKIQNKLTDLEILALLIAALSHDLDHRGVNNSYIQRSEHPLA





QLYCHSIMEHHHFDQCLMILNSPGNQILSGLSIEEYKTTLKIIKQAIL





ATDLALYIKRRGEFFELIRKNQFNLEDPHQKELFLATLMTACDLSAI





TKPWPIQQRIAELVATEFFDQGDRERKELNIEPTDLMNREKKNKIPS





MQVGFIDAICLQLYEALTHVSEDCFPLLDGCRKNRQKWQALAEQQ*







OT-001911 (CD8a leader;
MALPVTALLLPLALLLHAARPYPYDVPDYADIQMTQTTSSLSASLG
8947
8998


HA Tag; CD19 scFv; CD8a
DRVTISCRASQDISKYLNWYQQKPDGTVKLLIYHTSRLHSGVPSRF




Hinge and Transmembrane
SGSGSGTDYSLTISNLEQEDIATYFCQQGNTLPYTEGGGTKLEITGG




Domain; 4-1BB intracellular
GGSGGGGSGGGGSEVKLQESGPGLVAPSQSLSVTCTVSGVSLPDY




domain (CD28 co-stimulatory
GVSWIRQPPRKGLEWLGVIWGSETTYYNSALKSRLTIIKDNSKSQV




domain); CD3 zeta
FLKMNSLQTDDTAIYYCAKHYYYGGSYAMDYWGQGTSVTVSSTT




intracellular domain; Linker
TPAPRPPTPAPTIASQPLSLRPEACRPAAGGAVHTRGLDFACDIYIW




(SG); hPDE5 AA 535-860 of
APLAGTCGVLLLSLVITLYCKRGRIKKLLYIFKQPFMRPVQTTQEED




WT (K752E); stop)
GCSCRFPEEEEGGCELRVIKESRSADAPAYKQGQNQLYNELNLGRR





EEYDVLDKRRGRDPEMGGKPRRKNPQEGLYNELQKDKMAEAYSE





IGMKGERRRGKGHDGLYQGLSTATKDTYDALHMQALPPRSGEET





RELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFTDLNL





VQNFQMKHEVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMFA





ALKAGKIQNKLTDLEILALLIAALSHDLDHRGVNNSYIQRSEHPLA





QLYCHSIMEHHHFDQCLMILNSPGNQUGLSIEEYKTTLKIIKQAIL





ATDLALYIKRRGEFFELIRKNQFNLEDPHQEELFLAMLMTACDLSA





ITKPWPIQQRIAELVATEFFDQGDRERKELNIEPTDLMNREKKNKIP





SMQVGFIDAICLQLYEALTHVSEDCFPLLDGCRKNRQKWQALAEQ





Q*







OT-001918 (CD8a leader;
MALPVTALLLPLALLLHAARPYPYDVPDYADIQMTQTTSSLSASLG
8948
8999


HA Tag; CD19 scFv; CD8a
DRVTISCRASQDISKYLNWYQQKPDGTVKLLIYHTSRLHSGVPSRF




Hinge and Transmembrane
SGSGSGTDYSLTISNLEQEDIATYFCQQGNTLPYTEGGGTKLEITGG




Domain; 4-1BB intracellular
GGSGGGGSGGGGSEVKLQESGPGLVAPSQSLSVTCTVSGVSLPDY




domain (CD28 co-stimulatory
GVSWIRQPPRKGLEWLGVIWGSETTYYNSALKSRLTIIKDNSKSQV




domain); CD3 zeta
FLKMNSLQTDDTAIYYCAKHYYYGGSYAMDYWGQGTSVTVSSTT




intracellular domain; Linker
TPAPRPPTPAPTIASQPLSLRPEACRPAAGGAVHTRGLDFACDIYIW




(SG); hPDE5 AA 535-860 of
APLAGTCGVLLLSLVITLYCKRGRIKKLLYIFKQPFMRPVQTTQEED




WT (C677Y, H685R,
GCSCRFPEEEEGGCELRVIKESRSADAPAYKQGQNQLYNELNLGRR




A722V); stop)
EEYDVLDKRRGRDPEMGGKPRRKNPQEGLYNELQKDKMAEAYSE





IGMKGERRRGKGHDGLYQGLSTATKDTYDALHMQALPPRSGEET





RELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFTDLNL





VQNFQMKHEVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMFA





ALKAGKIQNKLTDLEILALLIAALSHDLDHRGVNNSYIQRSEHPLA





QLYYHSIMEHHRFDQCLMILNSPGNQILSGLSIEEYKTTLKIIKQAIL





VTDLALYIKRRGEFFELIRKNQFNLEDPHQKELFLAMLMTACDLSA





ITKPWPIQQRIAELVATEFFDQGDRERKELNIEPTDLMNREKKNKIP





SMQVGFIDAICLQLYEALTHVSEDCFPLLDGCRKNRQKWQALAEQ





Q*







OT-001920 (CD8a leader;
MALPVTALLLPLALLLHAARPYPYDVPDYADIQMTQTTSSLSASLG
8949
9000


HA Tag; CD19 scFv; CD8a
DRVTISCRASQDISKYLNWYQQKPDGTVKLLIYHTSRLHSGVPSRF




Hinge and Transmembrane
SGSGSGTDYSLTISNLEQEDIATYFCQQGNTLPYTEGGGTKLEITGG




Domain; 4-1BB intracellular
GGSGGGGSGGGGSEVKLQESGPGLVAPSQSLSVTCTVSGVSLPDY




domain (CD28 co-stimulatory
GVSWIRQPPRKGLEWLGVIWGSETTYYNSALKSRLTIIKDNSKSQV




domain); CD3 zeta
FLKMNSLQTDDTAIYYCAKHYYYGGSYAMDYWGQGTSVTVSSTT




intracellular domain; Linker
TPAPRPPTPAPTIASQPLSLRPEACRPAAGGAVHTRGLDFACDIYIW




(SG); hPDE5 AA 535-860 of
APLAGTCGVLLLSLVITLYCKRGRIKKLLYIFKQPFMRPVQTTQEED




WT (T639S, M816R); stop)
GCSCRFPEEEEGGCELRVKFSRSADAPAYKQGQNQLYNELNLGRR





EEYDVLDKRRGRDPEMGGKPRRKNPQEGLYNELQKDKMAEAYSE





IGMKGERRRGKGHDGLYQGLSTATKDTYDALHMQALPPRSGEET





RELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFTDLNL





VQNFQMKHEVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMFA





ALKAGKIQNKLSDLEILALLIAALSHDLDHRGVNNSYIQRSEHPLA





QLYCHSIMEHHHFDQCLMILNSPGNQILSGLSIEEYKTTLKIIKQAIL





ATDLALYIKRRGEFFELIRKNQFNLEDPHQKELFLAMLMTACDLSA





ITKPWPIQQRIAELVATEFFDQGDRERKELNIEPTDLMNREKKNKIP





SRQVGFIDAICLQLYEALTHVSEDCFPLLDGCRKNRQKWQALAEQ





Q*







OT-001910 (CD8a leader;
MALPVTALLLPLALLLHAARPYPYDVPDYADIQMTQTTSSLSASLG
8950
9001


HA Tag; CD19 scFv; CD8a
DRVTISCRASQDISKYLNWYQQKPDGTVKLLIYHTSRLHSGVPSRF




Hinge and Transmembrane
SGSGSGTDYSLTISNLEQEDIATYFCQQGNTLPYTEGGGTKLEITGG




Domain; 4-1BB intracellular
GGSGGGGSGGGGSEVKLQESGPGLVAPSQSLSVTCTVSGVSLPDY




domain (CD28 co-stimulatory
GVSWIRQPPRKGLEWLGVIWGSETTYYNSALKSRLTIIKDNSKSQV




domain); CD3 zeta
FLKMNSLQTDDTAIYYCAKHYYYGGSYAMDYWGQGTSVTVSSTT




intracellular domain; Linker
TPAPRPPTPAPTIASQPLSLRPEACRPAAGGAVHTRGLDFACDIYIW




(SG); hPDE5 AA 535-860 of
APLAGTCGVLLLSLVITLYCKRGRKKLLYIFKQPFMRPVQTTQEED




WT (T537A, D558G, I706T,
GCSCRFPEEEEGGCELRVKFSRSADAPAYKQGQNQLYNELNLGRR




F744L, D764N); stop)
EEYDVLDKRRGRDPEMGGKPRRKNPQEGLYNELQKDKMAEAYSE





IGMKGERRRGKGHDGLYQGLSTATKDTYDALHMQALPPRSGEEA





RELQSLAAAVVPSAQTLKITGFSFSDFELSDLETALCTIRMFTDLNL





VQNFQMKHEVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMFA





ALKAGKIQNKLTDLEILALLIAALSHDLDHRGVNNSYIQRSEHPLA





QLYCHSIMEHHHFDQCLMILNSPGNQUGLSTEEYKTTLKIIKQAIL





ATDLALYIKRRGEFFELIRKNQLNLEDPHQKELFLAMLMTACNLSA





ITKPWPIQQRIAELVATEFFDQGDRERKELNIEPTDLMNREKKNKIP





SMQVGFIDAICLQLYEALTHVSEDCFPLLDGCRKNRQKWQALAEQ





Q*







OT-001913 (CD8a leader;
MALPVTALLLPLALLLHAARPYPYDVPDYADIQMTQTTSSLSASLG
8951
9002


HA Tag; CD19 scFv; CD8a
DRVTISCRASQDISKYLNWYQQKPDGTVKLLIYHTSRLHSGVPSRF




Hinge and Transmembrane
SGSGSGTDYSLTISNLEQEDIATYFCQQGNTLPYTEGGGTKLEITGG




Domain; 4-1BB intracellular
GGSGGGGSGGGGSEVKLQESGPGLVAPSQSLSVTCTVSGVSLPDY




domain (CD28 co-stimulatory
GVSWIRQPPRKGLEWLGVIWGSETTYYNSALKSRLTIIKDNSKSQV




domain); CD3 zeta
FLKMNSLQTDDTAIYYCAKHYYYGGSYAMDYWGQGTSVTVSSTT




intracellular domain; Linker
TPAPRPPTPAPTIASQPLSLRPEACRPAAGGAVHTRGLDFACDIYIW




(SG); hPDE5 AA 535-860 of
APLAGTCGVLLLSLVITLYCKRGRKKLLYIFKQPFMRPVQTTQEED




WT (Q586R, D724G); stop)
GCSCRFPEEEEGGCELRVKESRSADAPAYKQGQNQLYNELNLGRR





EEYDVLDKRRGRDPEMGGKPRRKNPQEGLYNELQKDKMAEAYSE





IGMKGERRRGKGHDGLYQGLSTATKDTYDALHMQALPPRSGEET





RELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFTDLNL





VRNFQMKHEVLCRWILSVKKNYRIKNVAYHNWRHAFNTAQCMFA





ALKAGKIQNKLTDLEILALLIAALSHDLDHRGVNNSYIQRSEHPLA





QLYCHSIMEHHHFDQCLMILNSPGNQILSGLSIEEYKTTLKIIKQAIL





ATGLALYIKRRGEFFELIRKNQFNLEDPHQKELFLAMLMTACDLSA





ITKPWPIQQRIAELVATEFFDQGDRERKELNIEPTDLMNREKKNKIP





SMQVGFIDAICLQLYEALTHVSEDCFPLLDGCRKNRQKWQALAEQ





Q*







OT-001919 (CD8a leader;
MALPVTALLLPLALLLHAARPYPYDVPDYADIQMTQTTSSLSASLG
8952
9003


HA Tag; CD19 scFv; CD8a
DRVTISCRASQDISKYLNWYQQKPDGTVKLLIYHTSRLHSGVPSRF




Hinge and Transmembrane
SGSGSGTDYSLTISNLEQEDIATYFCQQGNTLPYTEGGGTKLEITGG




Domain; 4-1BB intracellular
GGSGGGGSGGGGSEVKLQESGPGLVAPSQSLSVTCTVSGVSLPDY




domain (CD28 co-stimulatory
GVSWIRQPPRKGLEWLGVIWGSETTYYNSALKSRLTIIKDNSKSQV




domain); CD3 zeta
FLKMNSLQTDDTAIYYCAKHYYYGGSYAMDYWGQGTSVTVSSTT




intracellular domain; Linker
TPAPRPPTPAPTIASQPLSLRPEACRPAAGGAVHTRGLDFACDIYIW




(SG); hPDE5 AA 535-860 of
APLAGTCGVLLLSLVITLYCKRGRKKLLYIFKQPFMRPVQTTQEED




WT (F686S); stop)
GCSCREPEEEEGGCELRVIKESRSADAPAYKQGQNQLYNELNLGRR





EEYDVLDKRRGRDPEMGGKPRRKNPQEGLYNELQKDKMAEAYSE





IGMKGERRRGKGHDGLYQGLSTATKDTYDALHMQALPPRSGEET





RELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFTDLNL





VQNFQMKHEVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMFA





ALKAGKIQNKLTDLEILALLIAALSHDLDHRGVNNSYIQRSEHPLA





QLYCHSIMEHHHSDQCLMILNSPGNQILSGLSIEEYKTTLKIIKQAIL





ATDLALYIKRRGEFFELIRKNQFNLEDPHQKELFLAMLMTACDLSA





ITKPWPIQQRIAELVATEFFDQGDRERKELNIEPTDLMNREKKNKIP





SMQVGFIDAICLQLYEALTHVSEDCFPLLDGCRKNRQKWQALAEQ





Q*







OT-001914 (CD8a leader;
MALPVTALLLPLALLLHAARPYPYDVPDYADIQMTQTTSSLSASLG
8953
9004


HA Tag; CD19 scFv; CD8a
DRVTISCRASQDISKYLNWYQQKPDGTVKLLIYHTSRLHSGVPSRF




Hinge and Transmembrane
SGSGSGTDYSLTISNLEQEDIATYFCQQGNTLPYTFGGGTKLEITGG




Domain; 4-1BB intracellular
GGSGGGGSGGGGSEVKLQESGPGLVAPSQSLSVTCTVSGVSLPDY




domain (CD28 co-stimulatory
GVSWIRQPPRKGLEWLGVIWGSETTYYNSALKSRLTIIKDNSKSQV




domain); CD3 zeta
FLKMNSLQTDDTAIYYCAKHYYYGGSYAMDYWGQGTSVTVSSTT




intracellular domain; Linker
TPAPRPPTPAPTIASQPLSLRPEACRPAAGGAVHTRGLDFACDIYIW




(SG); hPDE5 AA 535-860 of
APLAGTCGVLLLSLVITLYCKRGRKKLLYIFKQPFMRPVQTTQEED




WT (E539G, L738I); stop)
GCSCRFPEEEEGGCELRVKFSRSADAPAYKQGQNQLYNELNLGRR





EEYDVLDKRRGRDPEMGGKPRRKNPQEGLYNELQKDKMAEAYSE





IGMKGERRRGKGHDGLYQGLSTATKDTYDALHMQALPPRSGEET





RGLQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFTDLNL





VQNFQMKHEVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMFA





ALKAGKIQNKLTDLEILALLIAALSHDLDHRGVNNSYIQRSEHPLA





QLYCHSIMEHHHFDQCLMILNSPGNQILSGLSIEEYKTTLKIIKQAIL





ATDLALYIKRRGEFFEIIRKNQFNLEDPHQKELFLAMLMTACDLSAI





TKPWPIQQRIAELVATEFFDQGDRERKELNIEPTDLMNREKKNKIPS





MQVGFIDAICLQLYEALTHVSEDCFPLLDGCRKNRQKWQALAEQQ*







OT-001916 (CD8a leader;
MALPVTALLLPLALLLHAARPYPYDVPDYADIQMTQTTSSLSASLG
8954
9005


HA Tag; CD19 scFv; CD8a
DRVTISCRASQDISKYLNWYQQKPDGTVKLLIYHTSRLHSGVPSRF




Hinge and Transmembrane
SGSGSGTDYSLTISNLEQEDIATYFCQQGNTLPYTFGGGTKLEITGG




Domain; 4-1BB intracellular
GGSGGGGSGGGGSEVKLQESGPGLVAPSQSLSVTCTVSGVSLPDY




domain (CD28 co-stimulatory
GVSWIRQPPRKGLEWLGVIWGSETTYYNSALKSRLTIIKDNSKSQV




domain); CD3 zeta
FLKMNSLQTDDTAIYYCAKHYYYGGSYAMDYWGQGTSVTVSSTT




intracellular domain; Linker
TPAPRPPTPAPTIASQPLSLRPEACRPAAGGAVHTRGLDFACDIYIW




(SG); hPDE5 AA 535-860 of
APLAGTCGVLLLSLVITLYCKRGRKKLLYIFKQPFMRPVQTTQEED




WT (Q635R, E753K, I813T);
GCSCRFPEEEEGGCELRVKFSRSADAPAYKQGQNQLYNELNLGRR




stop)
EEYDVLDKRRGRDPEMGGKPRRKNPQEGLYNELQKDKMAEAYSE





IGMKGERRRGKGIIDGLYQGLSTATKDTYDALHMQALPPRSGEET





RELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCDRMFTDLNL





VQNFQMKHEVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMFA





ALKAGKIRNKLTDLEILALLIAALSHDLDHRGVNNSYIQRSEHPLA





QLYCHSIMEHHHFDQCLMILNSPGNQILSGLSIEEYKTTLKIIKQAIL





ATDLALYIKRRGEFFELIRKNQFNLEDPHQKKLFLAMLMTACDLSA





ITKPWPIQQRIAELVATEFFDQGDRERKELNIEPTDLMNREKKNKTP





SMQVGFIDAICLQLYEALTHVSEDCFPLLDGCRKNRQKWQALAEQ





Q*







OT-001915 (CD8a leader;
MALPVTALLLPLALLLHAARPYPYDVPDYADIQMTQTTSSLSASLG
8955
9006


HA Tag; CD19 scFv; CD8a
DRVTISCRASQDISKYLNWYQQKPDGTVKLLIYHTSRLHSGVPSRF




Hinge and Transmembrane
SGSGSGTDYSLTISNLEQEDIATYFCQQGNTLPYTFGGGTKLEITGG




Domain; 4-1BB intracellular
GGSGGGGSGGGGSEVKLQESGPGLVAPSQSLSVTCTVSGVSLPDY




domain (CD28 co-stimulatory
GVSWIRQPPRKGLEWLGVIWGSETTYYNSALKSRLTIIKDNSKSQV




domain); CD3 zeta
FLKMNSLQTDDTAIYYCAKHYYYGGSYAMDYWGQGTSVTVSSTT




intracellular domain; Linker
TPAPRPPTPAPTIASQPLSLRPEACRPAAGGAVHTRGLDFACDIYIW




(SG); hPDE5 AA 535-860 of
APLAGTCGVLLLSLVITLYCKRGRKKLLYIFKQPFMRPVQTTQEED




WT (L672P, S836L); stop)
GCSCRFPEEEEGGCELRVKFSRSADAPAYKQGQNQLYNELNLGRR





EEYDVLDKRRGRDPEMGGKPRRKNPQEGLYNELQKDKMAEAYSE





IGMKGERRRGKGIIDGLYQGLSTATKDTYDALHMQALPPRSGEET





RELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCDRMFTDLNL





VQNFQMKHEVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMFA





ALKAGKIQNKLTDLEILALLIAALSHDLDHRGVNNSYIQRSEHPPA





QLYCHSIMEHHHFDQCLMILNSPGNQUGLSIEEYKTTLKIIKQAIL





ATDLALYIKRRGEFFELIRKNQFNLEDPHQKELFLAMLMTACDLSA





ITKPWPIQQRIAELVATEFFDQGDRERKELNIEPTDLMNREKKNKIP





SMQVGFIDAICLQLYEALTHVLEDCFPLLDGCRKNRQKWQALAEQ





Q*







OT-001917 (CD8a leader;
MALPVTALLLPLALLLHAARPYPYDVPDYADIQMTQTTSSLSASLG
8956
9007


HA Tag; CD19 scFv; CD8a
DRVTISCRASQDISKYLNWYQQKPDGTVKLLIYHTSRLHSGVPSRF




Hinge and Transmembrane
SGSGSGTDYSLTISNLEQEDIATYFCQQGNTLPYTEGGGTKLEITGG




Domain; 4-1BB intracellular
GGSGGGGSGGGGSEVKLQESGPGLVAPSQSLSVTCTVSGVSLPDY




domain (CD28 co-stimulatory
GVSWIRQPPRKGLEWLGVIWGSETTYYNSALKSRLTIIKDNSKSQV




domain); CD3 zeta
FLKMNSLQTDDTAIYYCAKHYYYGGSYAMDYWGQGTSVTVSSTT




intracellular domain; hPDE5
TPAPRPPTPAPTIASQPLSLRPEACRPAAGGAVHTRGLDFACDIYIW




AA 535-860 of WT (M691T,
APLAGTCGVLLLSLVITLYCKRGRIKKLLYIFKQPFMRPVQTTQEED




D764N); stop)
GCSCREPEEEEGGCELRVIKESRSADAPAYKQGQNQLYNELNLGRR





EEYDVLDKRRGRDPEMGGKPRRKNPQEGLYNELQKDKMAEAYSE





IGMKGERRRGKGHDGLYQGLSTATKDTYDALHMQALPPRSGEET





RELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFTDLNL





VQNFQMKHEVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMFA





ALKAGKIQNKLTDLEILALLIAALSHDLDHRGVNNSYIQRSEHPLA





QLYCHSIMEHHHEDQCLTILNSPGNQUGLSIEEYKTTLKIIKQAIL





ATDLALYIKRRGEFFELIRKNQFNLEDPHQKELFLAMLMTACNLSA





ITKPWPIQQRIAELVATEFFDQGDRERKELNIEPTDLMNREKKNKIP





SMQVGFIDAICLQLYEALTHVSEDCFPLLDGCRKNRQKWQALAEQ





Q*







OT-001923 (CD8a leader;
MALPVTALLLPLALLLHAARPYPYDVPDYADIQMTQTTSSLSASLG
8957
9008


HA Tag; CD19 scFv; CD8a
DRVTISCRASQDISKYLNWYQQKPDGTVKLLIYHTSRLHSGVPSRF




Hinge and Transmembrane
SGSGSGTDYSLTISNLEQEDIATYFCQQGNTLPYTEGGGTKLEITGG




Domain; 4-1BB intracellular
GGSGGGGSGGGGSEVKLQESGPGLVAPSQSLSVTCTVSGVSLPDY




domain (CD28 co-stimulatory
GVSWIRQPPRKGLEWLGVIWGSETTYYNSALKSRLTIIKDNSKSQV




domain); CD3 zeta
FLKMNSLQTDDTAIYYCAKHYYYGGSYAMDYWGQGTSVTVSSTT




intracellular domain; Linker
TPAPRPPTPAPTIASQPLSLRPEACRPAAGGAVHTRGLDFACDIYIW




(SG); hPDE5 AA 535-860 of
APLAGTCGVLLLSLVITLYCKRGRIKKLLYIFKQPFMRPVQTTQEED




WT (R807G); stop)
GCSCREPEEEEGGCELRVIKESRSADAPAYKQGQNQLYNELNLGRR





EEYDVLDKRRGRDPEMGGKPRRKNPQEGLYNELQKDKMAEAYSE





IGMKGERRRGKGHDGLYQGLSTATKDTYDALHMQALPPRSGEET





RELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFTDLNL





VQNFQMKHEVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMFA





ALKAGKIQNKLTDLEILALLIAALSHDLDHRGVNNSYIQRSEHPLA





QLYCHSIMEHHHEDQCLMILNSPGNQILSGLSIEEYKTTLKIIKQAIL





ATDLALYIKRRGEFFELIRKNQFNLEDPHQKELFLAMLMTACDLSA





ITKPWPIQQRIAELVATEFFDQGDRERKELNIEPTDLMNREKKNKIP





SMQVGFIDAICLQLYEALTHVSEDCFPLLDGCRKNRQKWQALAEQ





Q*







OT-001922 (CD8a leader;
MALPVTALLLPLALLLHAARPYPYDVPDYADIQMTQTTSSLSASLG
8958
9009


HA Tag; CD19 scFv; CD8a
DRVTISCRASQDISKYLNWYQQKPDGTVKLLIYHTSRLHSGVPSRF




Hinge and Transmembrane
SGSGSGTDYSLTISNLEQEDIATYFCQQGNTLPYTEGGGTKLEITGG




Domain; 4-1BB intracellular
GGSGGGGSGGGGSEVKLQESGPGLVAPSQSLSVTCTVSGVSLPDY




domain (CD28 co-stimulatory
GVSWIRQPPRKGLEWLGVIWGSETTYYNSALKSRLTIIKDNSKSQV




domain); CD3 zeta
FLKMNSLQTDDTAIYYCAKHYYYGGSYAMDYWGQGTSVTVSSTT




intracellular domain; Linker
TPAPRPPTPAPTIASQPLSLRPEACRPAAGGAVHTRGLDFACDIYIW




(SG); hPDE5 AA 535-860 of
APLAGTCGVLLLSLVITLYCKRGRIKKLLYIFKQPFMRPVQTTQEED




WT (R577Q, C596R, V660A,
GCSCREPEEEEGGCELRVIKESRSADAPAYKQGQNQLYNELNLGRR




I715V, E785K, L856P); stop)
EEYDVLDKRRGRDPEMGGKPRRKNPQEGLYNELQKDKMAEAYSE





IGMKGERRRGKGHDGLYQGLSTATKDTYDALHMQALPPRSGEET





RELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIQMFTDLNL





VQNFQMKHEVLRRWILSVKKNYRKNVAYHNWRHAFNTAQCMFA





ALKAGKIQNKLTDLEILALLIAALSHDLDHRGANNSYIQRSEHPLA





QLYCHSIMEHHHFDQCLMILNSPGNQILSGLSIEEYKTTLKVIKQAI





LATDLALYIKRRGEFFELIRKNQFNLEDPHQKELFLAMLMTACDLS





AITKPWPIQQRIAELVATKFFDQGDRERKELNIEPTDLMNREKKNKI





PSMQVGFIDAICLQLYEALTHVSEDCFPLLDGCRKNRQKWQAPAE





QQ*







OT-001921 (CD8a leader;
MALPVTALLLPLALLLHAARPYPYDVPDYADIQMTQTTSSLSASLG
8959
9010


HA Tag; CD19 scFv; CD8a
DRVTISCRASQDISKYLNWYQQKPDGTVKLLIYHTSRLHSGVPSRF




Hinge and Transmembrane
SGSGSGTDYSLTISNLEQEDIATYFCQQGNTLPYTEGGGTKLEITGG




Domain; 4-1BB intracellular
GGSGGGGSGGGGSEVKLQESGPGLVAPSQSLSVTCTVSGVSLPDY




domain (CD28 co-stimulatory
GVSWIRQPPRKGLEWLGVIWGSETTYYNSALKSRLTIIKDNSKSQV




domain); CD3 zeta
FLKMNSLQTDDTAIYYCAKHYYYGGSYAMDYWGQGTSVTVSSTT




intracellular domain; Linker
TPAPRPPTPAPTIASQPLSLRPEACRPAAGGAVHTRGLDFACDIYIW




(SG); hPDE5 AA 535-860 of
APLAGTCGVLLLSLVITLYCKRGRIKKLLYIFKQPFMRPVQTTQEED




WT (I720V, F820S); stop)
GCSCRFPEEEEGGCELRVIKFSRSADAPAYKQGQNQLYNELNLGRR





EEYDVLDKRRGRDPEMGGKPRRKNPQEGLYNELQKDKMAEAYSE





IGMKGERRRGKGHDGLYQGLSTATKDTYDALHMQALPPRSGEET





RELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFTDLNL





VQNFQMKHEVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMFA





ALKAGKIQNKLTDLEILALLIAALSHDLDHRGVNNSYIQRSEHPLA





QLYCHSIMEHHHFDQCLMILNSPGNQILSGLSIEEYKTTLKIIKQAV





LATDLALYIKRRGEFFELIRKNQFNLEDPHQKELFLAMLMTACDLS





AITKPWPIQQRIAELVATEFFDQGDRERKELNIEPTDLMNREKKNKI





PSMQVGSIDAICLQLYEALTHVSEDCFPLLDGCRKNRQKWQALAE





QQ*







OT-001926 (CD8a leader;
MALPVTALLLPLALLLHAARPYPYDVPDYADIQMTQTTSSLSASLG
8960
9011


HA Tag; CD19 scFv; CD8a
DRVTISCRASQDISKYLNWYQQKPDGTVKLLIYHTSRLHSGVPSRF




Hinge and Transmembrane
SGSGSGTDYSLTISNLEQEDIATYFCQQGNTLPYTFGGGTKLEITGG




Domain; 4-1BB intracellular
GGSGGGGSGGGGSEVKLQESGPGLVAPSQSLSVTCTVSGVSLPDY




domain (CD28 co-stimulatory
GVSWIRQPPRKGLEWLGVIWGSETTYYNSALKSRLTIIKDNSKSQV




domain); CD3 zeta
FLKMNSLQTDDTAIYYCAKHYYYGGSYAMDYWGQGTSVTVSSTT




intracellular domain; Linker
TPAPRPPTPAPTIASQPLSLRPEACRPAAGGAVHTRGLDFACDIYIW




(SG); hPDE5 AA 535-860 of
APLAGTCGVLLLSLVITLYCKRGRKKLLYIFKQPFMRPVQTTQEED




WT (S695G, E707K,I739M,
GCSCRFPEEEEGGCELRVKFSRSADAPAYKQGQNQLYNELNLGRR




C763R); stop)
EEYDVLDKRRGRDPEMGGKPRRKNPQEGLYNELQKDKMAEAYSE





IGMKGERRRGKGHDGLYQGLSTATKDTYDALHMQALPPRSGEET





RELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFTDLNL





VQNFQMKHEVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMFA





ALKAGKIQNKLTDLEILALLIAALSHDLDHRGVNNSYIQRSEHPLA





QLYCHSIMEHHHFDQCLMILNGPGNQUGLSIKEYKTTLKIIKQAIL





ATDLALYIKRRGEFFELMRKNQFNLEDPHQKELFLAMLMTARDLS





AITKPWPIQQRIAELVATEFFDQGDRERKELNIEPTDLMNREKKNKI





PSMQVGFIDAICLQLYEALTHVSEDCFPLLDGCRKNRQKWQALAE





QQ*







OT-001924 (CD8a leader;
MALPVTALLLPLALLLHAARPYPYDVPDYADIQMTQTTSSLSASLG
8961
9012


HA Tag; CD19 scFv; CD8a
DRVTISCRASQDISKYLNWYQQKPDGTVKLLIYHTSRLHSGVPSRF




Hinge and Transmembrane
SGSGSGTDYSLTISNLEQEDIATYFCQQGNTLPYTFGGGTKLEITGG




Domain; 4-1BB intracellular
GGSGGGGSGGGGSEVKLQESGPGLVAPSQSLSVTCTVSGVSLPDY




domain (CD28 co-stimulatory
GVSWIRQPPRKGLEWLGVIWGSETTYYNSALKSRLTIIKDNSKSQV




domain); CD3 zeta
FLKMNSLQTDDTAIYYCAKHYYYGGSYAMDYWGQGTSVTVSSTT




intracellular domain; Linker
TPAPRPPTPAPTIASQPLSLRPEACRPAAGGAVHTRGLDFACDIYIW




(SG); hPDE5 AA 535-860 of
APLAGTCGVLLLSLVITLYCKRGRIKKLLYIFKQPFMRPVQTTQEED




WT (Y709H, K812R,
GCSCRFPEEEEGGCELRVKFSRSADAPAYKQGQNQLYNELNLGRR




L832P); stop)
EEYDVLDKRRGRDPEMGGKPRRKNPQEGLYNELQKDKMAEAYSE





IGMKGERRRGKGHDGLYQGLSTATKDTYDALHMQALPPRSGEET





RELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFTDLNL





VQNFQMKHEVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMFA





ALKAGKIQNKLTDLEILALLIAALSHDLDHRGVNNSYIQRSEHPLA





QLYCHSIMEHHHFDQCLMILNSPGNQILSGLSIEERKTTLKIIKQAIL





ATDLALYIKRRGEFFELIRKNQFNLEDPHQKELFLAMLMTACDLSA





ITKPWPIQQRIAELVATEFFDQGDRERKELNIEPTDLMNREKKNRIP





SMQVGFIDAICLQLYEAPTHVSEDCFPLLDGCRKNRQKWQALAEQ





Q*







OT-001925 (CD8a leader;
MALPVTALLLPLALLLHAARPYPYDVPDYADIQMTQTTSSLSASLG
8962
9013


HA Tag; CD19 scFv; CD8a
DRVTISCRASQDISKYLNWYQQKPDGTVKLLIYHTSRLHSGVPSRF




Hinge and Transmembrane
SGSGSGTDYSLTISNLEQEDIATYFCQQGNTLPYTFGGGTKLEITGG




Domain; 4-1BB intracellular
GGSGGGGSGGGGSEVKLQESGPGLVAPSQSLSVTCTVSGVSLPDY




domain (CD28 co-stimulatory
GVSWIRQPPRKGLEWLGVIWGSETTYYNSALKSRLTIIKDNSKSQV




domain); CD3 zeta
FLKMNSLQTDDTAIYYCAKHYYYGGSYAMDYWGQGTSVTVSSTT




intracellular domain; Linker
TPAPRPPTPAPTIASQPLSLRPEACRPAAGGAVHTRGLDFACDIYIW




(SG); hPDE5 AA 535-860 of
APLAGTCGVLLLSLVITLYCKRGRKKLLYIFKQPFMRPVQTTQEED




WT (N583S, K752E, C846S);
GCSCRFPEEEEGGCELRVKFSRSADAPAYKQGQNQLYNELNLGRR




stop)
EEYDVLDKRRGRDPEMGGKPRRKNPQEGLYNELQKDKMAEAYSE





IGMKGERRRGKGHDGLYQGLSTATKDTYDALHMQALPPRSGEET





RELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCDRMFTDLSL





VQNFQMKHEVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMFA





ALKAGKIQNKLTDLEILALLIAALSHDLDHRGVNNSYIQRSEHPLA





QLYCHSIMEHHHFDQCLMILNSPGNMSGLSIEEYKTTLKIIKQAIL





ATDLALYIKRRGEFFELIRKNQFNLEDPHQEELFLAMLMTACDLSA





ITKPWPIQQRIAELVATEFFDQGDRERKELNIEPTDLMNREKKNKIP





SMQVGFIDAICLQLYEALTHVSEDCFPLLDGSRKNRQKWQALAEQ





Q*







OT-001929 (CD8a leader;
MALPVTALLLPLALLLHAARPYPYDVPDYADIQMTQTTSSLSASLG
8963
9014


HA Tag; CD19 scFv; CD8a
DRVTISCRASQDISKYLNWYQQKPDGTVKLLIYHTSRLHSGVPSRF




Hinge and Transmembrane
SGSGSGTDYSLTISNLEQEDIATYFCQQGNTLPYTEGGGTKLEITGG




Domain; 4-1BB intracellular
GGSGGGGSGGGGSEVKLQESGPGLVAPSQSLSVTCTVSGVSLPDY




domain (CD28 co-stimulatory
GVSWIRQPPRKGLEWLGVIWGSETTYYNSALKSRLTIIKDNSKSQV




domain); CD3 zeta
FLKMNSLQTDDTAIYYCAKHYYYGGSYAMDYWGQGTSVTVSSTT




intracellular domain; Linker
TPAPRPPTPAPTIASQPLSLRPEACRPAAGGAVHTRGLDFACDIYIW




(SG); hPDE5 AA 535-860 of
APLAGTCGVLLLSLVITLYCKRGRKKLLYIFKQPFMRPVQTTQEED




WT (E682G, D748N); stop)
GCSCRFPEEEEGGCELRVKFSRSADAPAYKQGQNQLYNELNLGRR





EEYDVLDKRRGRDPEMGGKPRRKNPQEGLYNELQKDKMAEAYSE





IGMKGERRRGKGHDGLYQGLSTATKDTYDALHMQALPPRSGEET





RELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFTDLNL





VQNFQMKHEVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMFA





ALKAGKIQNKLTDLEILALLIAALSHDLDHRGVNNSYIQRSEHPLA





QLYCHSIMGHHHFDQCLMILNSPGNQILSGLSIEEYKTTLKIIKQAIL





ATDLALYIKRRGEFFELIRKNQFNLENPHQKELFLAMLMTACDLSA





ITKPWPIQQRIAELVATEFFDQGDRERKELNIEPTDLMNREKKNKIP





SMQVGFIDAICLQLYEALTHVSEDCFPLLDGCRKNRQKWQALAEQ





Q*







OT-001928 (CD8a leader;
MALPVTALLLPLALLLHAARPYPYDVPDYADIQMTQTTSSLSASLG
8964
9015


HA Tag; CD19 scFv; CD8a
DRVTISCRASQDISKYLNWYQQKPDGTVKLLIYHTSRLHSGVPSRF




Hinge and Transmembrane
SGSGSGTDYSLTISNLEQEDIATYFCQQGNTLPYTFGGGTKLEITGG




Domain; 4-1BB intracellular
GGSGGGGSGGGGSEVKLQESGPGLVAPSQSLSVTCTVSGVSLPDY




domain (CD28 co-stimulatory
GVSWIRQPPRKGLEWLGVIWGSETTYYNSALKSRLTIIKDNSKSQV




domain); CD3 zeta
FLKMNSLQTDDTAIYYCAKHYYYGGSYAMDYWGQGTSVTVSSTT




intracellular domain; Linker
TPAPRPPTPAPTIASQPLSLRPEACRPAAGGAVHTRGLDFACDIYIW




(SG); hPDE5 AA 535-860 of
APLAGTCGVLLLSLVITLYCKRGRKKLLYIFKQPFMRPVQTTQEED




WT (K591R, I643T, L856P);
GCSCRFPEEEEGGCELRVKFSRSADAPAYKQGQNQLYNELNLGRR




stop)
EEYDVLDKRRGRDPEMGGKPRRKNPQEGLYNELQKDKMAEAYSE





IGMKGERRRGKGHDGLYQGLSTATKDTYDALHMQALPPRSGEET





RELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFTDLNL





VQNFQMRHEVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMFA





ALKAGKIQNKLTDLETLALLIAALSHDLDHRGVNNSYIQRSEHPLA





QLYCHSIMEHHHFDQCLMILNSPGNMSGLSIEEYKTTLKIIKQAIL





ATDLALYIKRRGEFFELIRKNQFNLEDPHQKELFLAMLMTACDLSA





ITKPWPIQQRIAELVATEFFDQGDRERKELNIEPTDLMNREKKNKIP





SMQVGFIDAICLQLYEALTHVSEDCFPLLDGCRKNRQKWQAPAEQ





Q*







OT-001930 (CD8a leader;
MALPVTALLLPLALLLHAARPYPYDVPDYADIQMTQTTSSLSASLG
8965
9016


HA Tag; CD19 scFv; CD8a
DRVTISCRASQDISKYLNWYQQKPDGTVKLLIYHTSRLHSGVPSRF




Hinge and Transmembrane
SGSGSGTDYSLTISNLEQEDIATYFCQQGNTLPYTEGGGTKLEITGG




Domain; 4-1BB intracellular
GGSGGGGSGGGGSEVKLQESGPGLVAPSQSLSVTCTVSGVSLPDY




domain (CD28 co-stimulatory
GVSWIRQPPRKGLEWLGVIWGSETTYYNSALKSRLTIIKDNSKSQV




domain); CD3 zeta
FLKMNSLQTDDTAIYYCAKHYYYGGSYAMDYWGQGTSVTVSSTT




intracellular domain; Linker
TPAPRPPTPAPTIASQPLSLRPEACRPAAGGAVHTRGLDFACDIYIW




(SG); hPDE5 AA 535-860 of
APLAGTCGVLLLSLVITLYCKRGRKKLLYIFKQPFMRPVQTTQEED




WT (F619S, V818A,
GCSCRFPEEEEGGCELRVKFSRSADAPAYKQGQNQLYNELNLGRR




Y829C); stop)
EEYDVLDKRRGRDPEMGGKPRRKNPQEGLYNELQKDKMAEAYSE





IGMKGERRRGKGHDGLYQGLSTATKDTYDALHMQALPPRSGEET





RELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFTDLNL





VQNFQMKHEVLCRWILSVKKNYRKNVAYHNWRHASNTAQCMFA





ALKAGKIQNKLTDLEMALLIAALSHDLDHRGVNNSYIQRSEHPLA





QLYCHSIMEHHHEDQCLMILNSPGNMSGLSIEEYKTTLKIIKQAIL





ATDLALYIKRRGEFFELIRKNQFNLEDPHQKELFLAMLMTACDLSA





ITKPWPIQQRIAELVATEFEDQGDRERKELNIEPTDLMNREKKNKIP





SMQAGFIDAICLQLCEALTHVSEDCFPLLDGCRKNRQKWQALAEQ





Q*







OT-001927 (CD8a leader;
MALPVTALLLPLALLLHAARPYPYDVPDYADIQMTQTTSSLSASLG
8966
9017


HA Tag; CD19 scFv; CD8a
DRVTISCRASQDISKYLNWYQQKPDGTVKLLIYHTSRLHSGVPSRF




Hinge and Transmembrane
SGSGSGTDYSLTISNLEQEDIATYECQQGNTLPYTEGGGTKLEITGG




Domain; 4-1BB intracellular
GGSGGGGSGGGGSEVKLQESGPGLVAPSQSLSVTCTVSGVSLPDY




domain (CD28 co-stimulatory
GVSWIRQPPRKGLEWLGVIWGSETTYYNSALKSRLTIIKDNSKSQV




domain); CD3 zeta
FLKMNSLQTDDTAIYYCAKHYYYGGSYAMDYWGQGTSVTVSSTT




intracellular domain; Linker
TPAPRPPTPAPTIASQPLSLRPEACRPAAGGAVHTRGLDFACDIYIW




(SG); hPDE5 AA 535-860 of
APLAGTCGVLLLSLVITLYCKRGRKKLLYIFKQPFMRPVQTTQEED




WT (V548E, Q589L, K633I,
GCSCREPEEEEGGCELRVKESRSADAPAYKQGQNQLYNELNLGRR




M681T, S702I, K752E,
EEYDVLDKRRGRDPEMGGKPRRKNPQEGLYNELQKDKMAEAYSE




L781P, A857T); stop)
IGMKGERRRGKGHDGLYQGLSTATKDTYDALHMQALPPRSGEET





RELQSLAAAVEPSAQTLKITDESESDFELSDLETALCTIRMFTDLNL





VQNFLMKHEVLCRWILSVKKNYRKNVAYHNWRHAENTAQCMFA





ALKAGIIQNKLTDLEILALLIAALSHDLDHRGVNNSYIQRSEHPLAQ





LYCHSITEHHHFDQCLMILNSPGNQILIGLSIEEYKTTLKIIKQAILAT





DLALYIKRRGEFFELIRKNQFNLEDPHQEELFLAMLMTACDLSAIT





KPWPIQQRIAEPVATEFEDQGDRERKELNIEPTDLMNREKKNKIPS





MQVGFIDAICLQLYEALTHVSEDCFPLLDGCRKNRQKWQALTEQQ*







OT-001933 (CD8a leader;
MALPVTALLLPLALLLHAARPYPYDVPDYADIQMTQTTSSLSASLG
8967
9018


HA Tag; CD19 scFv; CD8a
DRVTISCRASQDISKYLNWYQQKPDGTVKLLIYHTSRLHSGVPSRF




Hinge and Transmembrane
SGSGSGTDYSLTISNLEQEDIATYFCQQGNTLPYTFGGGTKLEITGG




Domain; 4-1BB intracellular
GGSGGGGSGGGGSEVKLQESGPGLVAPSQSLSVTCTVSGVSLPDY




domain (CD28 co-stimulatory
GVSWIRQPPRKGLEWLGVIWGSETTYYNSALKSRLTIIKDNSKSQV




domain); CD3 zeta
FLKMNSLQTDDTAIYYCAKHYYYGGSYAMDYWGQGTSVTVSSTT




intracellular domain; Linker
TPAPRPPTPAPTIASQPLSLRPEACRPAAGGAVHTRGLDFACDIYIW




(SG); hPDE5 AA 535-860 of
APLAGTCGVLLLSLVITLYCKRGRKKLLYIFKQPFMRPVQTTQEED




WT (S652G, Q688R); stop)
GCSCRFPEEEEGGCELRVKESRSADAPAYKQGQNQLYNELNLGRR





EEYDVLDKRRGRDPEMGGKPRRKNPQEGLYNELQKDKMAEAYSE





IGMKGERRRGKGHDGLYQGLSTATKDTYDALHMQALPPRSGEET





RELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFTDLNL





VQNFQMKHEVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMFA





ALKAGKIQNKLTDLEMALLIAALGHDLDHRGVNNSYIQRSEHPLA





QLYCHSIMEHHHFDRCLMILNSPGNQISGLSIEEYKTTLKIIKQAIL





ATDLALYIKRRGEFFELIRKNQFNLEDPHQKELFLAMLMTACDLSA





ITKPWPIQQRIAELVATEFEDQGDRERKELNIEPTDLMNREKKNKIP





SMQVGFIDAICLQLYEALTHVSEDCFPLLDGCRKNRQKWQALAEQ





Q*







OT-001931 (CD8a leader;
MALPVTALLLPLALLLHAARPYPYDVPDYADIQMTQTTSSLSASLG
8968
9019


HA Tag; CD19 scFv; CD8a
DRVTISCRASQDISKYLNWYQQKPDGTVKLLIYHTSRLHSGVPSRF




Hinge and Transmembrane
SGSGSGTDYSLTISNLEQEDIATYECQQGNTLPYTEGGGTKLEITGG




Domain; 4-1BB intracellular
GGSGGGGSGGGGSEVKLQESGPGLVAPSQSLSVTCTVSGVSLPDY




domain (CD28 co-stimulatory
GVSWIRQPPRKGLEWLGVIWGSETTYYNSALKSRLTIIKDNSKSQV




domain); CD3 zeta
FLKMNSLQTDDTAIYYCAKHYYYGGSYAMDYWGQGTSVTVSSTT




intracellular domain; Linker
TPAPRPPTPAPTIASQPLSLRPEACRPAAGGAVHTRGLDFACDIYIW




(SG); hPDE5 AA 535-860 of
APLAGTCGVLLLSLVITLYCKRGRKKLLYIFKQPFMRPVQTTQEED




WT (E565G); stop)
GCSCREPEEEEGGCELRVKESRSADAPAYKQGQNQLYNELNLGRR





EEYDVLDKRRGRDPEMGGKPRRKNPQEGLYNELQKDKMAEAYSE





IGMKGERRRGKGHDGLYQGLSTATKDTYDALHMQALPPRSGEET





RELQSLAAAVVPSAQTLKITDFSFSDFGLSDLETALCTIRMFTDLNL





VQNFQMKHEVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMFA





ALKAGKIQNKLTDLEILALLIAALSHDLDHRGVNNSYIQRSEHPLA





QLYCHSIMEHHHFDQCLMILNSPGNQILSGLSIEEYKTTLKIIKQAIL





ATDLALYIKRRGEFFELIRKNQFNLEDPHQKELFLAMLMTACDLSA





ITKPWPIQQRIAELVATEFEDQGDRERKELNIEPTDLMNREKKNKIP





SMQVGFIDAICLQLYEALTHVSEDCFPLLDGCRKNRQKWQALAEQ





Q*







OT-001932 (CD8a leader;
MALPVTALLLPLALLLHAARPYPYDVPDYADIQMTQTTSSLSASLG
8969
9020


HA Tag; CD19 scFv; CD8a
DRVTISCRASQDISKYLNWYQQKPDGTVKLLIYHTSRLHSGVPSRF




Hinge and Transmembrane
SGSGSGTDYSLTISNLEQEDIATYFCQQGNTLPYTFGGGTKLEITGG




Domain; 4-1BB intracellular
GGSGGGGSGGGGSEVKLQESGPGLVAPSQSLSVTCTVSGVSLPDY




domain (CD28 co-stimulatory
GVSWIRQPPRKGLEWLGVIWGSETTYYNSALKSRLTIIKDNSKSQV




domain); CD3 zeta
FLKMNSLQTDDTAIYYCAKHYYYGGSYAMDYWGQGTSVTVSSTT




intracellular domain; Linker
TPAPRPPTPAPTIASQPLSLRPEACRPAAGGAVHTRGLDFACDIYIW




(SG); hPDE5 AA 535-860 of
APLAGTCGVLLLSLVITLYCKRGRKKLLYIFKQPFMRPVQTTQEED




WT (I774V); stop)
GCSCRFPEEEEGGCELRVKESRSADAPAYKQGQNQLYNELNLGRR





EEYDVLDKRRGRDPEMGGKPRRKNPQEGLYNELQKDKMAEAYSE





IGMKGERRRGKGHDGLYQGLSTATKDTYDALHMQALPPRSGEET





RELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFTDLNL





VQNFQMKHEVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMFA





ALKAGKIQNKLTDLEILALLIAALSHDLDHRGVNNSYIQRSEHPLA





QLYCHSIMEHHHFDQCLMILNSPGNQILSGLSIEEYKTTLKIIKQAIL





ATDLALYIKRRGEFFELIRKNQFNLEDPHQKELFLAMLMTACDLSA





ITKPWPVQQRIAELVATEFFDQGDRERKELNIEPTDLMNREKKNKI





PSMQVGFIDAICLQLYEALTHVSEDCFPLLDGCRKNRQKWQALAE





QQ*







OT-001935 (CD8a leader;
MALPVTALLLPLALLLHAARPYPYDVPDYADIQMTQTTSSLSASLG
8970
9021


HA Tag; CD19 scFv; CD8a
DRVTISCRASQDISKYLNWYQQKPDGTVKLLIYHTSRLHSGVPSRF




Hinge and Transmembrane
SGSGSGTDYSLTISNLEQEDIATYECQQGNTLPYTEGGGTKLEITGG




Domain; 4-1BB intracellular
GGSGGGGSGGGGSEVKLQESGPGLVAPSQSLSVTCTVSGVSLPDY




domain (CD28 co-stimulatory
GVSWIRQPPRKGLEWLGVIWGSETTYYNSALKSRLTIIKDNSKSQV




domain); CD3 zeta
FLKMNSLQTDDTAIYYCAKHYYYGGSYAMDYWGQGTSVTVSSTT




intracellular domain; Linker
TPAPRPPTPAPTIASQPLSLRPEACRPAAGGAVHTRGLDFACDIYIW




(SG); hPDE5 AA 535-860 of
APLAGTCGVLLLSLVITLYCKRGRKKLLYIFKQPFMRPVQTTQEED




WT (K591R); stop)
GCSCRFPEEEEGGCELRVKESRSADAPAYKQGQNQLYNELNLGRR





EEYDVLDKRRGRDPEMGGKPRRKNPQEGLYNELQKDKMAEAYSE





IGMKGERRRGKGHDGLYQGLSTATKDTYDALHMQALPPRSGEET





RELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFTDLNL





VQNFQMRHEVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMFA





ALKAGKIQNKLTDLEILALLIAALSHDLDHRGVNNSYIQRSEHPLA





QLYCHSIMEHHHFDQCLMILNSPGNQILSGLSIEEYKTTLKIIKQAIL





ATDLALYIKRRGEFFELIRKNQFNLEDPHQKELFLAMLMTACDLSA





ITKPWPIQQRIAELVATEFFDQGDRERKELNIEPTDLMNREKKNKIP





SMQVGFIDAICLQLYEALTHVSEDCFPLLDGCRKNRQKWQALAEQ





Q*







OT-001934 (CD8a leader;
MALPVTALLLPLALLLHAARPYPYDVPDYADIQMTQTTSSLSASLG
8971
9022


HA Tag; CD19 scFv; CD8a
DRVTISCRASQDISKYLNWYQQKPDGTVKLLIYHTSRLHSGVPSRF




Hinge and Transmembrane
SGSGSGTDYSLTISNLEQEDIATYFCQQGNTLPYTEGGGTKLEITGG




Domain; 4-1BB intracellular
GGSGGGGSGGGGSEVKLQESGPGLVAPSQSLSVTCTVSGVSLPDY




domain (CD28 co-stimulatory
GVSWIRQPPRKGLEWLGVIWGSETTYYNSALKSRLTIIKDNSKSQV




domain); CD3 zeta
FLKMNSLQTDDTAIYYCAKHYYYGGSYAMDYWGQGTSVTVSSTT




intracellular domain; Linker
TPAPRPPTPAPTIASQPLSLRPEACRPAAGGAVHTRGLDFACDIYIW




(SG); hPDE5 AA 535-860 of
APLAGTCGVLLLSLVITLYCKRGRKKLLYIFKQPFMRPVQTTQEED




WT (F559S, Y709C,
GCSCRFPEEEEGGCELRVKESRSADAPAYKQGQNQLYNELNLGRR




M760T); stop)
EEYDVLDKRRGRDPEMGGKPRRKNPQEGLYNELQKDKMAEAYSE





IGMKGERRRGKGHDGLYQGLSTATKDTYDALHMQALPPRSGEET





RELQSLAAAVVPSAQTLKITDSSFSDFELSDLETALCTIRMFTDLNL





VQNFQMKHEVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMFA





ALKAGKIQNKLTDLEILALLIAALSHDLDHRGVNNSYIQRSEHPLA





QLYCHSIMEHHHFDQCLMILNSPGNQILSGLSIEECKTTLKIIKQAIL





ATDLALYIKRRGEFFELIRKNQFNLEDPHQKELFLAMLTTACDLSAI





TKPWPIQQRIAELVATEFFDQGDRERIKELNIEPTDLMNREKKNKIPS





MQVGFIDAICLQLYEALTHVSEDCFPLLDGCRKNRQKWQALAEQQ*







OT-001937 (CD8a leader;
MALPVTALLLPLALLLHAARPYPYDVPDYADIQMTQTTSSLSASLG
8972
9023


HA Tag; CD19 scFv; CD8a
DRVTISCRASQDISKYLNWYQQKPDGTVKLLIYHTSRLHSGVPSRF




Hinge and Transmembrane
SGSGSGTDYSLTISNLEQEDIATYFCQQGNTLPYTFGGGTKLEITGG




Domain; 4-1BB intracellular
GGSGGGGSGGGGSEVKLQESGPGLVAPSQSLSVTCTVSGVSLPDY




domain (CD28 co-stimulatory
GVSWIRQPPRKGLEWLGVIWGSETTYYNSALKSRLTIIKDNSKSQV




domain); CD3 zeta
FLKMNSLQTDDTAIYYCAKHYYYGGSYAMDYWGQGTSVTVSSTT




intracellular domain; Linker
TPAPRPPTPAPTIASQPLSLRPEACRPAAGGAVHTRGLDFACDIYIW




(SG); hPDE5 AA 535-860 of
APLAGTCGVLLLSLVITLYCKRGRIKKLLYIFKQPFMRPVQTTQEED




WT (A649V, A650T, K730E,
GCSCRFPEEEEGGCELRVKFSRSADAPAYKQGQNQLYNELNLGRR




E830K); stop)
EEYDVLDKRRGRDPEMGGKPRRKNPQEGLYNELQKDKMAEAYSE





IGMKGERRRGKGHDGLYQGLSTATKDTYDALHMQALPPRSGEET





RELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFTDLNL





VQNFQMKHEVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMFA





ALKAGKIQNKLTDLEILALLIVTLSHDLDHRGVNNSYIQRSEHPLAQ





LYCHSIMEHHHFDQCLMILNSPGNQILSGLSIEEYKTTLKIIKQAILA





TDLALYIERRGEFFELIRKNQFNLEDPHQKELFLAMLMTACDLSAIT





KPWPIQQRIAELVATEFFDQGDRERKELNIEPTDLMNREKKNKIPS





MQVGFIDAICLQLYKALTHVSEDCFPLLDGCRKNRQKWQALAEQQ*







OT-001936 (CD8a leader;
MALPVTALLLPLALLLHAARPYPYDVPDYADIQMTQTTSSLSASLG
8973
9024


HA Tag; CD19 scFv; CD8a
DRVTISCRASQDISKYLNWYQQKPDGTVKLLIYHTSRLHSGVPSRF




Hinge and Transmembrane
SGSGSGTDYSLTISNLEQEDIATYFCQQGNTLPYTEGGGTKLEITGG




Domain; 4-1BB intracellular
GGSGGGGSGGGGSEVKLQESGPGLVAPSQSLSVTCTVSGVSLPDY




domain (CD28 co-stimulatory
GVSWIRQPPRKGLEWLGVIWGSETTYYNSALKSRLTIIKDNSKSQV




domain); CD3 zeta
FLKMNSLQTDDTAIYYCAKHYYYGGSYAMDYWGQGTSVTVSSTT




intracellular domain; Linker
TPAPRPPTPAPTIASQPLSLRPEACRPAAGGAVHTRGLDFACDIYIW




(SG); hPDE5 AA 535-860 of
APLAGTCGVLLLSLVITLYCKRGRKKLLYIFKQPFMRPVQTTQEED




WT (Y728C, Q817R); stop)
GCSCREPEEEEGGCELRVKESRSADAPAYKQGQNQLYNELNLGRR





EEYDVLDKRRGRDPEMGGKPRRKNPQEGLYNELQKDKMAEAYSE





IGMKGERRRGKGHDGLYQGLSTATKDTYDALHMQALPPRSGEET





RELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFTDLNL





VQNFQMKHEVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMFA





ALKAGKIQNKLTDLEILALLIAALSHDLDHRGVNNSYIQRSEHPLA





QLYCHSIMEHHHFDQCLMILNSPGNQILSGLSIEEYKTTLKIIKQAIL





ATDLALCIKRRGEFFELIRKNQFNLEDPHQKELFLAMLMTACDLSA





ITKPWPIQQRIAELVATEFFDQGDRERKELNIEPTDLMNREKKNKIP





SMRVGFIDAICLQLYEALTHVSEDCFPLLDGCRKNRQKWQALAEQ





Q*







OT-001938 (CD8a leader;
MALPVTALLLPLALLLHAARPYPYDVPDYADIQMTQTTSSLSASLG
8974
9025


HA Tag; CD19 scFv; CD8a
DRVTISCRASQDISKYLNWYQQKPDGTVKLLIYHTSRLHSGVPSRF




Hinge and Transmembrane
SGSGSGTDYSLTISNLEQEDIATYFCQQGNTLPYTEGGGTKLEITGG




Domain; 4-1BB intracellular
GGSGGGGSGGGGSEVKLQESGPGLVAPSQSLSVTCTVSGVSLPDY




domain (CD28 co-stimulatory
GVSWIRQPPRKGLEWLGVIWGSETTYYNSALKSRLTIIKDNSKSQV




domain); CD3 zeta
FLKMNSLQTDDTAIYYCAKHYYYGGSYAMDYWGQGTSVTVSSTT




intracellular domain; Linker
TPAPRPPTPAPTIASQPLSLRPEACRPAAGGAVHTRGLDFACDIYIW




(SG); hPDE5 AA 535-860 of
APLAGTCGVLLLSLVITLYCKRGRIKKLLYIFKQPFMRPVQTTQEED




WT (L595P, K741R); stop)
GCSCRFPEEEEGGCELRVKESRSADAPAYKQGQNQLYNELNLGRR





EEYDVLDKRRGRDPEMGGKPRRKNPQEGLYNELQKDKMAEAYSE





IGMKGERRRGKGHDGLYQGLSTATKDTYDALHMQALPPRSGEET





RELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFTDLNL





VQNFQMKHEVPCRWILSVKKNYRKNVAYHNWRHAFNTAQCMFA





ALKAGKIQNKLTDLEILALLIAALSHDLDHRGVNNSYIQRSEHPLA





QLYCHSIMEHHHFDQCLMILNSPGNQILSGLSIEEYKTTLKIIKQAIL





ATDLALYIKRRGEFFELIRRNQFNLEDPHQKELFLAMLMTACDLSA





ITKPWPIQQRIAELVATEFFDQGDRERKELNIEPTDLMNREKKNKIP





SMQVGFIDAICLQLYEALTHVSEDCFPLLDGCRKNRQKWQALAEQ





Q*







OT-001909 (CD8a leader;
MALPVTALLLPLALLLHAARPYPYDVPDYADIQMTQTTSSLSASLG
8975
9026


HA Tag; CD19 scFv; CD8a
DRVTISCRASQDISKYLNWYQQKPDGTVKLLIYHTSRLHSGVPSRF




Hinge and Transmembrane
SGSGSGTDYSLTISNLEQEDIATYFCQQGNTLPYTFGGGTKLEITGG




Domain; 4-1BB intracellular
GGSGGGGSGGGGSEVKLQESGPGLVAPSQSLSVTCTVSGVSLPDY




domain (CD28 co-stimulatory
GVSWIRQPPRKGLEWLGVIWGSETTYYNSALKSRLTIIKDNSKSQV




domain); CD3 zeta
FLKMNSLQTDDTAIYYCAKHYYYGGSYAMDYWGQGTSVTVSSTT




intracellular domain; Linker
TPAPRPPTPAPTIASQPLSLRPEACRPAAGGAVHTRGLDFACDIYIW




(SG); hPDE5 AA 535-860 of
APLAGTCGVLLLSLVITLYCKRGRKKLLYIFKQPFMRPVQTTQEED




WT (R577W, W615R,
GCSCRFPEEEEGGCELRVKFSRSADAPAYKQGQNQLYNELNLGRR




M805T, I821V); stop)
EEYDVLDKRRGRDPEMGGKPRRKNPQEGLYNELQKDKMAEAYSE





IGMKGERRRGKGHDGLYQGLSTATKDTYDALHMQALPPRSGEET





RELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIWMFTDLNL





VQNFQMKHEVLCRWILSVKKNYRKNVAYHNRRHAFNTAQCMFA





ALKAGKIQNKLTDLEILALLIAALSHDLDHRGVNNSYIQRSEHPLA





QLYCHSIMEHHHFDQCLMILNSPGNQILSGLSIEEYKTTLKIIKQAIL





ATDLALYIKRRGEFFELIRKNQFNLEDPHQKELFLAMLMTACDLSA





ITKPWPIQQRIAELVATEFFDQGDRERKELNIEPTDLTNREKKNKIPS





MQVGFVDAICLQLYEALTHVSEDCFPLLDGCRKNRQKWQALAEQ





Q*









Tandem CAR (TanCAR)

In some embodiments, the CAR of the present disclosure may be a tandem chimeric antigen receptor (TanCAR) which is able to target two, three, four, or more tumor specific antigens. In some aspects, the CAR is a bispecific TanCAR including two targeting domains which recognize two different TSAs on tumor cells. The bispecific CAR may be further defined as comprising an extracellular region comprising a targeting domain (e.g., an antigen recognition domain) specific for a first tumor antigen and a targeting domain (e.g., an antigen recognition domain) specific for a second tumor antigen. In other aspects, the CAR is a multispecific TanCAR that includes three or more targeting domains configured in a tandem arrangement. The space between the targeting domains in the TanCAR may be between about 5 and about 30 amino acids in length, for example, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29 and 30 amino acids.


Split CAR

In some embodiments, the components including the targeting moiety, transmembrane domain and intracellular signaling domains of the present disclosure may be split into two or more parts such that it is dependent on multiple inputs that promote assembly of the intact functional receptor. In one embodiment, the split synthetic CAR system can be constructed in which the assembly of an activated CAR receptor is dependent on the binding of a ligand to the SRE (e.g. a small molecule) and a specific antigen to the targeting moiety. As a non-limiting example, the split CAR consists of two parts that assemble in a small molecule-dependent manner; one part of the receptor features an extracellular antigen binding domain (e.g. scFv) and the other part has the intracellular signaling domains, such as the CD3ζ intracellular domain.


In other aspects, the split parts of the CAR system can be further modified to increase signal. In one example, the second part of cytoplasmic fragment may be anchored to the plasma membrane by incorporating a transmembrane domain (e.g., CD8a transmembrane domain) to the construct. An additional extracellular domain may also be added to the second part of the CAR system, for instance an extracellular domain that mediates homo-dimerization. These modifications may increase receptor output activity, i.e., T cell activation.


In some aspects, the two parts of the split CAR system contain heterodimerization domains that conditionally interact upon binding of a heterodimerizing small molecule. As such, the receptor components are assembled in the presence of the small molecule, to form an intact system which can then be activated by antigen engagement. Any known heterodimerizing components can be incorporated into a split CAR system. Other small molecule dependent heterodimerization domains may also be used, including, but not limited to, gibberellin-induced dimerization system (GID1-GAI), trimethoprim-SLF induced ecDHFR and FKBP dimerization (Czlapinski et al., J Am Chem Soc., 2008, 130(40): 13186-13187) and ABA (abscisic acid) induced dimerization of PP2C and PYL domains (Cutler et al., Annu Rev Plant Biol. 2010, 61: 651-679). The dual regulation using inducible assembly (e.g., ligand dependent dimerization) and degradation (e.g., destabilizing domain induced CAR degradation) of the split CAR system may provide more flexibility to control the activity of the CAR modified T cells.


Switchable CAR

In some embodiments, the CAR of the disclosure may be a switchable CAR. Juilerat et al (Juilerat et al., Sci. Rep., 2016, 6: 18950; the contents of which are incorporated herein by reference in their entirety) recently reported controllable CARs that can be transiently switched on in response to a stimulus (e.g. a small molecule). In this CAR design, a system is directly integrated in the hinge domain that separate the scFv domain from the cell membrane domain in the CAR. Such system is possible to split or combine different key functions of a CAR such as activation and co-stimulation within different chains of a receptor complex, mimicking the complexity of the TCR native architecture. This integrated system can switch the scFv and antigen interaction between on/off states controlled by the absence/presence of the stimulus.


Reversible CAR

In other embodiments, the CAR of the disclosure may be a reversible CAR system. In this CAR architecture, a LID domain (ligand-induced degradation) is incorporated into the CAR system. The CAR can be temporarily down-regulated by adding a ligand of the LID domain. The combination of LID and DD mediated regulation provides tunable control of continuingly activated CAR T cells, thereby reducing CAR mediated tissue toxicity.


Inhibitory CAR (iCAR)


In some embodiments, payloads of the present disclosure may be inhibitory CARs. Inhibitory CAR (iCAR) refers to a bispecific CAR design wherein a negative signal is used to enhance the tumor specificity and limit normal tissue toxicity. This design incorporates a second CAR having a surface antigen recognition domain combined with an inhibitory signal domain to limit T cell responsiveness even with concurrent engagement of an activating receptor. This antigen recognition domain is directed towards a normal tissue specific antigen such that the T cell can be activated in the presence of first target protein, but if the second protein that binds to the iCAR is present, the T cell activation is inhibited.


As a non-limiting example, iCARs against Prostate specific membrane antigen (PMSA) based on CTLA4 and PD1 inhibitory domains demonstrated the ability to selectively limit cytokine secretion, cytotoxicity and proliferation induced by T cell activation (Fedorov V. D, et al., 2013, Sci Transl Med, 11; 5(215):215ra172; the contents of which are incorporated herein in their entirety).


Chimeric Switch Receptor

In some embodiments, payloads of the disclosure may be chimeric switch receptors which can switch a negative signal to a positive signal. As used herein, the term “chimeric switch receptor” refers to a fusion protein comprising a first extracellular domain and a second transmembrane and intracellular domain, wherein the first domain includes a negative signal region and the second domain includes a positive intracellular signaling region. In some aspects, the fusion protein is a chimeric switch receptor that contains the extracellular domain of an inhibitory receptor on T cell fused to the transmembrane and cytoplasmic domain of a co-stimulatory receptor. This chimeric switch receptor may convert a T cell inhibitory signal into a T cell stimulatory signal.


As a non-limiting example, the chimeric switch receptor may comprise the extracellular domain of PD-1 fused to the transmembrane and cytoplasmic domain of CD28 as taught by Liu et al. (Liu et al., Cancer Res., 2016, 76(6): 1578-1590; the contents of which are incorporated by reference in their entirety). In some aspects, extracellular domains of other inhibitory receptors such as CTLA-4, LAG-3, TIM-3, KIRs and BTLA may also be fused to the transmembrane and cytoplasmic domain derived from costimulatory receptors such as CD28, 4-1BB, CD27, OX40, CD40, GTIR and ICOS. In the context of the present disclosure, the SRE domain (e.g., DD) may be inserted at the N- or C-terminus of the chimeric switch receptor.


In some embodiments, chimeric switch receptors of the present disclosure may include recombinant receptors comprising the extracellular cytokine-binding domain of an inhibitory cytokine receptor (e.g., IL13 receptor α (IL13Rα1), IL10R, and IL4Rα) fused to an intracellular signaling domain of a stimulatory cytokine receptor such as IL2R (IL2Rα, IL2Rβ and IL2Rgamma) and IL7Rα. One example of such chimeric cytokine receptor is a recombinant receptor containing the cytokine-binding extracellular domain of IL4Rα linked to the intracellular signaling domain of IL7Rα (see, US patent publication NO: 2014/0050709; the contents of which are incorporated herein by reference in their entirety).


In one embodiment, the chimeric switch receptor of the present disclosure may be a chimeric TGFβ receptor. The chimeric TGFβ receptor may comprise an extracellular domain derived from a TGFβ receptor such as TGFβ receptor 1, TGFβ receptor 2, TGFβ receptor 3, or any other TGFβ receptor or variant thereof; and a non-TGFβ receptor intracellular domain. The non-TGFβ receptor intracellular domain may be the intracellular domain or fragment thereof derived from TLR1, TLR2, TLR3, TLR4, TLR5, TLR6, TLR7, TLR8, TLR9, TLR10, CD28, 4-1BB (CD137), OX40 (CD134), CD3zeta, CD40, CD27, or a combination thereof. One example of such chimeric TGFβ receptor is discussed in US patent publication NO.: US2016/0075755; the contents of which are incorporated herein by reference in their entirety.


In some embodiments, payloads of the present disclosure may be bipartite fusion receptors. In one aspect, the bipartite fusion receptor may comprise an antigen-binding domain that binds to a tumor antigen and an activation domain that binds to one or more cell surface molecules. In some aspects, the antigen binding domain of a bipartite receptor is a scFv antibody. In other aspects, the activation domain that binds to a T cell surface stimulatory molecule may be selected from CD3, CD27, CD 28, CD40, OX40(CD134) and 4-1BB(CD137), or a NK cell surface stimulatory molecule selected from CD16, NKG2D and NKp30. The activation domain may also be a scFv specific to a stimulatory molecule on the surface of immune cells (e.g., T cells and NK cells). Immune cells can be genetically modified to express a bipartite molecule comprising at least one antigen binding domain and an activation domain. The antigen binding domain binds to one or more molecules present on target cells such as cancer cells. Immune cells that express the molecule recognized by the activation domain will be activated and attack the recognized cancer cells. As a non-limiting example, a bipartite molecule may be an engager molecule comprising an antigen recognition scFv specific to CD19 or EphA2, as described in US patent publication NO: US2016/0015749; the contents of which are incorporated by reference herein in their entirety.


Activation-Conditional CAR

In some embodiments, payloads of the disclosure may be an activation-conditional chimeric antigen receptor, which is only expressed in an activated immune cell. The expression of the CAR may be coupled to activation conditional control region which refers to one or more nucleic acid sequences that induce the transcription and/or expression of a sequence e.g. a CAR under its control. Such activation conditional control regions may be promoters of genes that are upregulated during the activation of the immune effector cell e.g. IL2 promoter or NFAT binding sites. In some embodiments, activation of the immune cell may be achieved by a constitutively expressed CAR (International Publication No: WO 2016126608; the contents of which are incorporated herein by reference in their entirety).


CAR Targeting to Tumor Cells with Specific Proteoglycan Markers


In some embodiments, payloads of the present disclosure may be a CAR that targets specific types of cancer cells. Human cancer cells and metastasis may express unique and otherwise abnormal proteoglycans, such as polysaccharide chains (e.g., chondroitin sulfate (CS), dermatan sulfate (DS or CSB), heparan sulfate (HS) and heparin). Accordingly, the CAR may be fused with a binding moiety that recognizes cancer associated proteoglycans. In one example, a CAR may be fused with VAR2CSA polypeptide (VAR2-CAR) that binds with high affinity to a specific type of chondroitin sulfate A (CSA) attached to proteoglycans. The extracellular ScFv portion of the CAR may be substituted with VAR2CSA variants comprising at least the minimal CSA binding domain, generating CARs specific to chondroitin sulfate A (CSA) modifications. Alternatively, the CAR may be fused with a split-protein binding system to generate a spy-CAR, in which the scFv portion of the CAR is substituted with one portion of a split-protein binding system such as SpyTag and Spy-catcher and the cancer-recognition molecules (e.g. scFv and or VAR2-CSA) are attached to the CAR through the split-protein binding system (See, e.g., PCT publication No.: WO2016/135291; the contents of which are incorporated by reference in their entirety).


Supra Car

In some embodiments, the payload of the present disclosure may be a Split Universal Programmable (SUPRA) CAR. A SUPRA CAR may be a two-component receptor system comprising of a universal receptor (zip CAR) expressed on T cells and a tumor-targeting scFv adaptor. The zip CAR universal receptor may be generated by the fusion of intracellular signaling domains and a leucine zipper as the extracellular domain The tumor-targeting scFv adaptor molecule or zipFv, may be generated by the fusion of a cognate leucine zipper and an scFv. The scFv of the zipFv may bind to a tumor antigen, and the leucine zipper may bind and activate the zip CAR on the T cells. Unlike the conventional fixed CAR design, the SUPRA CAR modular design allows targeting of multiple antigens without further genetic manipulations of the immune cells. Any of the CAR designs disclosed by Cho et al., 2018, Cell 173, 1-13, may be useful in the present disclosure (the contents of which are incorporated by reference in their entirety).


6. Cytokines, Chemokines and Other Soluble Factors

In accordance with the present disclosure, payloads of the present disclosure may be cytokines, chemokines, growth factors, and soluble proteins produced by immune cells, cancer cells and other cell types, which act as chemical communicators between cells and tissues within the body. These proteins mediate a wide range of physiological functions, from effects on cell growth, differentiation, migration and survival, to a number of effector activities. For example, activated T cells produce a variety of cytokines for cytotoxic function to eliminate tumor cells.


In some embodiments, payloads of the present disclosure may be cytokines, and fragments, variants, analogs and derivatives thereof, including but not limited to interleukins, tumor necrosis factors (TNFs), interferons (IFNs), TGF beta and chemokines. In some embodiments, payloads of the present disclosure may be cytokines that stimulate immune responses. In other embodiments, payloads of the disclosure may be antagonists of cytokines that negatively impact anti-cancer immune responses.


In some embodiments, payloads of the present disclosure may be cytokine receptors, recombinant receptors, variants, analogs and derivatives thereof; or signal components of cytokines.


In some embodiments, cytokines of the present disclosure may be utilized to improve expansion, survival, persistence, and potency of immune cells such as CD8+TEM, natural killer cells and tumor infiltrating lymphocytes (TIL) cells used for immunotherapy. In other embodiments, T cells engineered with two or more DD regulated cytokines are utilized to provide kinetic control of T cell activation and tumor microenvironment remodeling. In one aspect, the present disclosure provides biocircuits and compositions to minimize toxicity related to cytokine therapy. Despite its success in mitigating tumor burden, systemic cytokine therapy often results in the development of severe dose limiting side effects. Two factors contribute to the observed toxicity (a) Pleiotropism, wherein cytokines affect different cells types and sometimes produce opposing effects on the same cells depending on the context (b) Cytokines have short serum half-life and thus need to be administered at high doses to achieve therapeutic effects, which exacerbates the pleiotropic effects. In one aspect, cytokines of the present disclosure may be utilized to modulate cytokine expression in the event of adverse effects. In some embodiments, cytokines of the present disclosure may be designed to have prolonged life span or enhanced specificity to minimize toxicity.


In some embodiments, the payload of the present disclosure may be an interleukin (IL) cytokine. Interleukins (ILs) are a class of glycoproteins produced by leukocytes for regulating immune responses. As used herein, the term “interleukin (IL)” refers to an interleukin polypeptide from any species or source and includes the full-length protein as well as fragments or portions of the protein. In some aspects, the interleukin payload is selected from IL1, IL1alpha (also called hematopoietin-1), IL1beta (catabolic), IL1 delta, IL1epsilon, IL1eta, IL1 zeta, interleukin-1 family member 1 to 11 (IL1F1 to IL1F11), interleukin-1 homolog 1 to 4 (IL1H1 to IL1H4), IL1 related protein 1 to 3 (IL1RP1 to IL1RP3), IL2, IL3, IL4, IL5, IL6, IL7, IL8, IL9, IL10, IL10C, IL10D, IL11, IL11a, IL11b, IL12, IL13, IL14, IL15, IL16, IL17, IL17A, 1117B, IL17C, IL17E, IL17F, IL18, IL19, IL20, IL20 like (IL20L), 1121, IL22, IL23, IL23A, IL23-p19, IL23-p40, IL24, 1125, IL26, IL27, IL28A, IL28B, IL29, IL30, IL31, IL32, IL33, IL34, IL35, IL36 alpha, IL36 beta, IL36 gamma, IL36RN, IL37, IL37a, IL37b, IL37c, IL37d, IL37e and IL38. In other aspects, the payload of the present disclosure may be an interleukin receptor selected from CD121a, CDw121b, IL2Rα/CD25, IL2Rβ/CD122, IL2Rγ/CD132, CDw131, CD124, CD131, CDw125, CD126, CD130, CD127, CDw210, IL8RA, IL11Rα, CD212, CD213α1, CD213α2, IL14R, IL15Rα, CDw217, IL18Rα, IL18Rβ, IL20Rα, and IL20Rβ.


In certain embodiments, a cytokine may be a type I interferons (IFN) including IFN alpha subtypes (IFN α1, IFN α1b, IFN α1c), IFN beta, IFN delta subtypes (IFN delta 1, IFN delta 2, IFN delta 8), IFN gamma, IFN kappa, and IFN epsilon, IFN lambda, IFN omega, IFN tau and IFN zeta. In certain embodiments, a cytokine may be a member of tumor necrosis factor (TNF) superfamily, including TNF-alpha, TNF-beta (also known as lymphotoxin-alpha (LT-α)), lymphotoxin-beta (LT-β), CD40L(CD154), CD27L (CD70), CD30L(CD153), FASL(CD178), 4-1BBL (CD137L), OX40L, TRAIL (TNF-related apoptosis inducing ligand), APRIL (a proliferation-inducing ligand), TWEAK, TRANCE, TALL-1, GITRL, LIGHT and TNFSF1 to TNFSF20 (TNF ligand superfamily member 1 to 20).


In one embodiment, the payload of the disclosure may comprise IL2 (SEQ ID NO: 8299, encoded by SEQ ID NO: 8300 and 8301. In one aspect, the effector module of the disclosure may be a DD-IL2 fusion polypeptide.


In some aspects of the disclosure, an IL2 mutein may be used as a payload. As used herein, the term “mutein” is a construct, molecule or sequence of a mutation, change or alteration in a protein and hence is also known as a mutant, e.g., a protein mutant, mutein. Consequently, an “IL2 mutein” is an IL2 mutant. In some embodiments an IL2 mutein is a variant of wild type IL2 protein, where the wildtype IL2 consists of the amino acid sequence of SEQ ID NO: 8299. In some respects, it refers to an IL2 variant which binds to and activates only cells expressing IL2Rαβγ, but does not significantly bind to or activate cell expressing only IL2Rβγ. In some examples, an IL2 mutein may be an IL2 protein in which residues of IL2 responsible for binding to either IL2Rβ or IL2Rγ are substituted and abolish their interaction. In other examples, an IL2 mutein may be an IL2 protein comprising mutations conferring high affinity for IL2Rα. An IL2 mutein may be an IL2 selective agonist (IL2SA) which can preferentially activate the high affinity IL2 receptor (i.e., IL2Rαβγ) which is necessary to selectively activate T cells with respect to NK cells. In some embodiments, the IL2 mutein may be IL2 protein which preferentially binds to the lower affinity IL2Rβγ but with reduced affinity to CD25.


In some embodiments, IL2 muteins may be used to preferentially expand or stimulate Treg cells. As used herein “preferentially expand or stimulate Treg cells” means the IL2 muteins promote the proliferation, survival, activation and/or function of T regulatory cells.


Exemplary IL2 muteins may include, but are not limited to, N88R substitution (Shanafelt et al., Nature Biotech., 2000, 18:1197-1202), an IL2 with a V91K substitution (e.g., US Patent publication NO. US20140286898); V91K substitution, C125A substitution, an IL2 with three mutations: V69A, N71R, Q74P; an IL2 mutein with high affinity for IL2Rα (N29S, Y31H, K35R, T37A, K48E, V69A, N71R, Q74P); an IL2 mutein with high affinity for IL2Rα and reduced signaling activity (N29S, Y31H, K35R, T37A, K48E, V69A, N71R, Q74P, N88D), and D20H, D20I, N88G, N88I, N88R, and Q126L substitutions as described in PCT application NO. 1999060128; the contents of each of which are incorporated herein by reference in their entirety. In other aspects, IL2 muteins may include those described in U.S. Pat. Nos. 4,518,584; 5,116,943; 5,206,344; 6,955,807; 7,105,653; 7,371,371; 7,803,361; 8,124, 066; 8,349,311; 8,759,486; and 9,206,243; PCT patent publication NOs: WO2005086751 and WO2012088446; EP Pat. NOs: EP0234599 and EP0200280 and Sim, G. C. et al. (2016) Cancer Immunol Res; 4(11):983-994; the contents of each of which are incorporated herein by reference in their entirety.


In some aspects, the IL2 mutein may be fused to a polypeptide that extends the serum half-life of the IL2 mutein, such as an IgG Fc fragment. Preferred Fc regions are derived from human IgG, which includes IgG1, IgG2, IgG3, and IgG4. In other aspects, the payload of the disclosure may be an IL2 fusion protein comparing a second functional polypeptide. In a non-limiting example, an IL2 fusion protein may comprise an IL2 or IL2 mutein polypeptide fused with a pro-apoptotic Bcl-2 family polypeptide (such as Bad, Bik/Nbk, Bid, Bim/Bod, Hrk, Bak or Bax); such fusion protein may be capable of inhibiting cell survival, inhibiting cell proliferation, or enhancing cell death or apoptosis of a target cell expressing an IL2 receptor. Alternatively, an IL2 or IL2 mutein polypeptide may be fused with an anti-apoptotic Bcl-2 family polypeptide (such as Bcl-xL, Bcl-w or Bcl-2). The fusion protein may be capable of enhancing cell survival, enhancing cell proliferation, or inhibiting cell death or apoptosis of a target cell expressing an IL2 receptor. See, e.g., US patent publication NO.: US2016/0229901.


In addition, the IL2 fusion protein may be a IL2-GMCSF fusion protein which can promote cell-cell interaction; therefore, enhances anti-cancer immune responses (Wen et al., J. Translational Med., 2016, 14: 41).


In one embodiment, the payload of the disclosure may comprise IL12. IL12 is a heterodimeric protein of two subunits (p35, p40) that is secreted by antigen presenting cells, such as macrophages and dendritic cells. IL12 is type 1 cytokine that acts on natural killer (NK) cells, macrophages, CD8+ Cytotoxic T cells, and CD4+ T helper cells through STAT4 pathway to induce IFN γ production in these effector immune cells (reviewed by Trinchieri G, Nat Rev Immunol. 2003; 3(2): 133-146). IL12 can promote the cytotoxic activity of NK cells and CD8+ T cells, therefore has anti-tumor function. Intravenous injection of recombinant IL12 exhibited modest clinical efficacy in a handful of patients with advanced melanoma and renal cell carcinoma (Gollob et al., Clin. Cancer Res. 2000; 6(5):1678-1692). IL12 has been used as an adjuvant to enhance cytotoxic immunity using a melanoma antigen vaccine, or using peptide pulsed peripheral blood mononuclear cells; and to promote NK cell activity in breast cancer with trastuzumab treatment. Local delivery of IL12 to the tumor microenvironment promotes tumor regression in several tumor models. These studies all indicate that locally increased IL12 level can promote anti-tumor immunity. One major obstacle of systemic or local administration of recombinant IL12 protein, or through oncolytic viral vectors is the severe side effects when IL12 is presented at high level. Developing a system that tightly controls IL12 level may provide a safe use of IL12 in cancer treatment.


In one aspect, the effector module of the disclosure may be a DD-IL12 fusion polypeptide. This regulatable DD-IL12 fusion polypeptide may be directly used as an immunotherapeutic agent or be transduced into an immune effector cell (T cells and TIL cells) to generate modified T cells with greater in vivo expansion and survival capabilities for adoptive cell transfer. The need for harsh preconditioning regimens in current adoptive cell therapies may be minimized using regulated IL12. DD-IL12 may be utilized to modify tumor microenvironment and increase persistence in solid tumors that are currently refractory to tumor antigen targeted therapy. In some embodiments, CAR expressing T cells may be armored with DD regulated IL12 to relieve immunosuppression without systemic toxicity.


In some embodiments, the IL12 may be a Flexi IL12, wherein both p35 and p40 subunits, are encoded by a single cDNA that produces a single chain polypeptide. In one embodiment, the IL12 may comprise p40 subunit, which includes amino acids 23-328 of wildtype IL12B and comprise the amino acid sequence of SEQ ID NO: 8302 (encoded by SEQ ID NO: 8303-8312) and a p35 subunit, which includes amino acids 57-253 of wildtype IL12A and comprise the amino acid sequence of SEQ ID NO: 8313 (encoded by SEQ ID NO: 8314-8323). Any portion of IL12 that retains one or more functions of full length or mature IL12 may be useful in the present disclosure.


In some embodiments, DD regulated IL12 compositions of the disclosure may be utilized to minimize the cytotoxicity associated with systemic IL12 administration. Treatment with IL12 has been associated with systemic flu-like symptoms (fever, chills, fatigue, erythromelalgia, headache), toxic effects on the bone marrow, and liver. Hematologic toxicity observed most commonly included neutropenia and thrombocytopenia; hepatic dysfunction manifested in transient (dose dependent) increase in transaminases, hyperbilirubinemia and hypoalbuminemia. In some instances, toxicity is also associated with inflammation of the mucus membranes (oral mucositis, stomatitis or colitis). These toxic effects of IL12 were related to the secondary production of IFNγ, TNF alpha, and chemokines such as IP10, and MIG. In certain aspects of the disclosure, DD regulated IL12 may be utilized to prevent the toxic effects associated with elevated production of secondary messengers. In some embodiments, DD regulated Flexi-IL12 constructs may be used to improve the efficacy of the CARs, especially in solid tumor settings, by providing a controlled local signal for tumor microenvironment remodeling and epitope spreading. DD regulation also provides rapid, dose dependent, and local production of Flexi IL12.


The format of the IL12 constructs utilized as payload of the present disclosure may be optimized. In one embodiment, the payload of the disclosure may be a bicistronic IL12 containing p40 and p35 subunits separated by an internal ribosome entry site or a cleavage site such as P2A or Furin to allow independent expression of both subunits from a single vector. This results in a configuration of secreted IL12 that is more akin to the naturally occurring IL12 than the flexi IL12 construct, the payload of the disclosure may be the p40 subunit of the IL12. DD regulated p40 may be co-expressed with constitutive p35 construct to generate “regulatable IL12” expression. Alternatively, the DD regulated p40 may heterodimerize with the endogenous p35. p40 has been shown to stabilize p35 expression and stimulate the export of p35 (Jalah R, et al. (2013). Journal of Biol. Chem. 288, 6763-6776 (the contents of which are incorporated by reference in its entirety).


In some embodiments, modified forms of IL12 may be utilized as the payload. These modified forms of IL12 may be engineered to have shortened half-life in vivo compared to the non-modified form of especially when used in combination with tunable systems described herein.


Human flexi IL12 has a reported half-life of 5-19 hours which, when administered as a therapeutic compound, can result in systemic cytotoxicity (Car et al. (1999) The Toxicology of Interleukin-12: A Review” Toxicologic Path. 27 A, 58-63; Robertson et al. (1999) “Immunological Effects of Interleukin 12 Administered by Bolus Intravenous Injection to Patients with Cancer” Clin. Cancer Res. 5:9-16; Atkins et al. (1997)“Phase I Evaluation of Intravenous Recombinant Human Interleukin 12 in Patients with Advance Malignancies” Clin. Cancer Res. 3:409-417). The ligand inducible control of IL12 can regulate production in a dose dependent fashion, the time from cessation of ligand dosing to cessation of protein synthesis and IL12 clearance may be insufficient to prevent toxic accumulation of IL12 in plasma.


In one embodiment, the modified form of IL12 utilized as the payload may be a Topo-sc IL12 which have the configuration as follows from N to C terminus (i) a first IL12 p40 domain (p40N), (ii) an optional first peptide linker, (iii) an IL12 p35 domain, (iv) an optional second peptide linker, and (v) a second IL12 p40 domain (p40C). In one embodiment, modified topo-sc IL12 polypeptides exhibit increased susceptibility to proteolysis. Topo-sc IL12 is described in International Patent Publication No. WO2016048903; the contents of which are incorporated herein by reference in its entirety.


IL12 polypeptide may also be modified (e.g. genetically, synthetically, or recombinantly engineered) to increase susceptibility to proteinases to reduce the biologically active half-life of the IL12 complex, compared to a corresponding IL12 lacking proteinases susceptibility. Proteinase susceptible forms of IL12 are described in International Patent Publication No. WO2017062953; the contents of which are incorporated by reference in its entirety.


IL12 systemic toxicity may also be limited or tightly controlled via mechanisms involving tethering IL12 to the cell surface to limit its therapeutic efficacy to the tumor site. Membrane tethered IL12 forms have been described previously using Glycosyl phosphatidylinositol (GPI) signal peptide or using CD80 transmembrane domain (Nagarajan S, et al. (2011) J Biomed Mater Res A. 99(3):410-7; Bozeman E N, et al. (2013) Vaccine. 7; 31(20):2449-56; Wen-Yu Pan et al. (2012), Mol. Ther. 20:5, 927-937; the contents of each of which are incorporated by reference in their entirety). In some embodiments, transmembrane domains may be selected from any of those described in Table 13, Table 14, and Table 15 of co-owned U.S. Provisional Patent Application No. 62/683,972, filed Jun. 12, 2018, and the International Patent Application No. PCT/US18/37005 filed on Jun. 12, 2018 (the contents of each of which are incorporated by reference in their entirety).


In some embodiments, the IL12 levels secreted by the immune cells of the disclosure may approximately be comparable to the IL12 levels secreted by human myeloid dendritic cells (mDC1), when activated with TLR agonists. In one embodiment, the TLR agonist may be the combination of lipopolysaccharide administered with R848.


In some embodiments, the IFN gamma secreted by IL12 induced activation of the immune cells is at least 5-fold greater in the presence of ligand, compared to the levels in the absence of ligand.


In some embodiments, regulation of IL12 provides the necessary safety switch. In some embodiments, IL-12 secretion recruit and/or activates effector cells in the tumor microenvironment. In some embodiments, the IL12 regulation provides a benefit to CAR T function without causing toxicity.


In one embodiment, the payload of the disclosure may comprise IL15. Interleukin 15 is a potent immune stimulatory cytokine and an essential survival factor for T cells, and Natural Killer cells. Preclinical studies comparing IL2 and IL15, have shown than IL15 is associated with less toxicity than IL2. In some embodiments, the effector module of the disclosure may be a DD-IL15 fusion polypeptide. IL15 polypeptide may also be modified to increase its binding affinity for the IL15 receptor. For example, the asparagine may be replaced by aspartic acid at position 72 of IL15 (SEQ ID NO: 2 of US patent publication US20140134128A1; the contents of which are incorporated by reference in their entirety). In some aspects, the IL15 comprises amino acid sequence of SEQ ID NO: 8234 (encoded by SEQ ID NO: 8236), which include amino acids 49-162 of wildtype IL15. In some embodiments the IL15 sequence may include a stop codon and may be encoded by the nucleotide sequence of SEQ ID NO: 8235, 8237-8238.


A unique feature of IL15 mediated activation is the mechanism of trans-presentation in which IL15 is presented as a complex with the alpha subunit of IL15 receptor (IL15Ra) that binds to and activates membrane bound IL15 beta/gamma receptor, either on the same cell or a different cell. The IL15/IL15Ra complex is more effective in activating IL15 signaling, than IL15 by itself. Thus, in some embodiments, the effector module of the disclosure may include a DD-IL15/IL15Ra fusion polypeptide. In one embodiment, the payload may be IL15/IL15Ra fusion polypeptide described in US Patent Publication NO.: US20160158285A1 (the contents of which are incorporated herein by reference in their entirety). The IL15 receptor alpha comprises an extracellular domain called the sushi domain which contains most of the structural elements necessary for binding to IL15. Thus, in some embodiments, payload may be the IL15/IL15Ra sushi domain fusion polypeptide described in US Patent Publication NO.: US20090238791A1 (the contents of which are incorporated herein by reference in their entirety).


Regulated IL15/IL15Ra may be used to promote expansion, survival and potency of CD8TEM cell populations without impacting regulatory T cells, NK cells and TIL cells. In one embodiment, DD-IL15/IL15Ra may be utilized to enhance CD19 directed T cell therapies in B cell leukemia and lymphomas. In one aspect, IL15/IL15Ra may be used as payload of the disclosure to reduce the need for pre-conditioning regimens in current CAR-T treatment paradigms.


The effector modules containing DD-IL15, DD-IL15/IL15Ra and/or DD-IL15/IL15Ra sushi domain may be designed to be secreted (using e.g. IL2 signal sequence) or membrane bound (using e.g. IgE or CD8a signal sequence).


In some embodiments, the IFN gamma secreted by IL15 induced activation of the immune cells is at least 10-fold greater in the presence of ligand, compared to the levels in the absence of ligand.


In some embodiments, regulation of IL15-IL15Ra fusion proteins provides a safety switch as compared to constitutively expressed IL15-IL15Ra. In some embodiments, IL-15-IL15Ra leads to better expansion, and/or persistence of CAR T cells.


In one embodiment, regulated cytokines may enable CAR-T in solid tumors to overcome stromal barriers by improving tumor homing, reducing immunosuppression, and reducing tumor promoting conditions. In one embodiment, regulated cytokines may enable CAR-T in solid tumors to overcome Antigen negative escape by promoting epitope spreading, antigen presenting cell trafficking, activation and licensing. In one embodiment, regulated cytokines may enable CAR-T in solid tumors to overcome Antigen positive escape by improving expansion, increasing persistence, reducing exhaustion of T cells. In one embodiment, regulated cytokines enable local, on demand production of cytokines can safely improve efficacy. In one embodiment, regulated cytokines enable pulsatile production that can reduce feedback inhibition of cytokine signaling In one embodiment, regulated cytokines can reduce senescence or exhaustion. In one embodiment, regulated cytokines enable on demand expression in patient which may reduce any effect of cytokine on cell phenotype during product manufacturing.


In some embodiments, the payloads may proteins that induce the expression of IL15 such as proteins in the STING pathway and/or Type I interferons. In one aspect, the payload may be STING agonist. In one aspect, such expressing IL15 directly as a payload or using payloads that induce IL15 expression may use to regulate the tumor-infiltrating lymphocyte numbers in the tumor microenvironment. Any of the payloads described by Carrero et al. to induce IL15 expression may be used herein (Carrero et al. 2019 PNAS January 2019, 116 (2) 599-608; DOI: 10.1073/pnas.1814642116; the contents of which are incorporated herein by reference in their entirety).


In some aspects, the DD-IL115/IL15Ra comprises the amino acid sequences provided in Table 19. In some embodiments, the linker utilized in Table 19 or Table 20 may be SG linker. In Table 19, asterisk indicates the translation of the stop codon. In some embodiments, the DDs described in Table 19 may contain an additional stop codon. As used herein the wildtype (WT) of IL15 refers to Uniprot ID: P40933 and wildtype (WT) of IL15Ra refers to UniProt ID: Q13261.









TABLE 19







IL15/IL15Ra and IL15 constructs










Description/

AA SEQ
NA SEQ


Construct ID
Amino Acid Sequence
ID NO
ID NO





IL15 (49-162 of WT
NWVNVISDLKKIEDLIQSMHIDATLYTESDVHPSCKVTAMKCFLLELQVISLE
8324
8326; 



SGDASIHDTVENLIILANNSLSSNGNVTESGCKECEELEEKNIKEFLQSFVHIV

8344



QMFINTS







IL15Ra (31-267 of 
ITCPPPMSVEHADIWVKSYSLYSRERYICNSGFKRKAGTSSLTECVLNKATN
8329
8345; 


WT)
VAHWTTPSLKCIRDPALVHQRPAPPSTVTTAGVTPQPESLSPSGKEPAASSPS

8346



SNNTAATTAAIVPGSQLMPSKSPSTGTTEISSHESSHGTPSQTTAKNWELTAS





ASHQPPGVYPQGHSDTTVAISTSTVLLCGLSAVSLLACYLKSRQTPPLASVE





MEAMEALPVTWGTSSRDEDLENCSHHL







IgE leader
MDWTWILFLVAAATRVHS
 276
 277





linker (GS)
GS
-
GGATCC;





GGTTCC





Linker (GSG)
GSG

GGATCCG


(BamH1-Gly)


GT





SG3-(SG4)3-SG3-
SGGGSGGGGSGGGGSGGGGSGGGSLQ
 323
 324; 


SLQ linker


8665





SG Linker
SG

AGTGGT





GSGSGS linker
GSGSGS
8330
8347





GSGSGSGS linker
GSGSGSGS
8331
8348





GSGSGGGSGS linker
GSGSGGGSGS
8332
8349





hPDE5 (Amino acid
EETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFTDLNLVQN
   3
 339


535-860 of WT)
FQMKHEVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMFAALKAGKIQN





KLTDLEILALLIAALSHDLDHRGVNNSYIQRSEHPLAQLYCHSIMEHHHFDQ





CLMILNSPGNQILSGLSIEEYKTTLKIIKQAILATDLALYIKRRGEFFELIRKNQ





FNLEDPHQKELFLAMLMTACDLSAITKPWPIQQRIAELVATEFFDQGDRERK





ELNIEPTDLMNREKKNKIPSMQVGFIDAICLQLYEALTHVSEDCFPLLDGCRK





NRQKWQALAEQQ







hPDE5 (Amino acid
EETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFTDLNLVQN
  12
 359


535-860 of WT,
FQMKHEVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMFAALKAGKIQN




R732L)
KLTDLEILALLIAALSHDLDHRGVNNSYIQRSEHPLAQLYCHSIMEHHHEDQ





CLMILNSPGNQILSGLSIEEYKTTLKIIKQAILATDLALYIKRLGEFFELIRKNQ





FNLEDPHQKELFLAMLMTACDLSAITKPWPIQQRIAELVATEFFDQGDRERK





ELNIEPTDLMNREKKNKIPSMQVGFIDAICLQLYEALTHVSEDCFPLLDGCRK





NRQKWQALAEQQ







hPDE5 (Amino acid
EETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFTDLNLVQN
 227
 233


535-860 of WT,
FQMKHEVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMFAALKAGKIQN




R732L, F736A)
KLTDLEILALLIAALSHDLDHRGVNNSYIQRSEHPLAQLYCHSIMEHHHFDQ





CLMILNSPGNQILSGLSIEEYKTTLKIIKQAILATDLALYIKRLGEFAELIRKNQ





FNLEDPHQKELFLAMLMTACDLSAITKPWPIQQRIAELVATEFFDQGDRERK





ELNIEPTDLMNREKKNKIPSMQVGFIDAICLQLYEALTHVSEDCFPLLDGCRK





NRQKWQALAEQQ







hPDE5 (Amino acid
EETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFTDLNLVQN
 227
 233


535-860 of WT,
FQMKHEVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMFAALKAGKIQN




R732L, F736A)
KLTDLEILALLIAALSHDLDHRGVNNSYIQRSEHPLAQLYCHSIMEHHHFDQ





CLMILNSPGNQILSGLSIEEYKTTLKIIKQAILATDLALYIKRLGEFAELIRKNQ





FNLEDPHQKELFLAMLMTACDLSAITKPWPIQQRIAELVATEFFDQGDRERK





ELNIEPTDLMNREKKNKIPSMQVGFIDAICLQLYEALTHVSEDCFPLLDGCRK





NRQKWQALAEQQ







hPDE5 (Amino acid
EETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFTDLNLVQN
   9
 355


535-860 of WT,
FQMKHEVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMFAALKAGKIQN




F736A)
KLTDLEILALLIAALSHDLDHRGVNNSYIQRSEHPLAQLYCHSIMEHHHFDQ





CLMILNSPGNQILSGLSIEEYKTTLKIIKQAILATDLALYIKRRGEFAELIRKNQ





FNLEDPHQKELFLAMLMTACDLSAITKPWPIQQRIAELVATEFFDQGDRERK





ELNIEPTDLMNREKKNKIPSMQVGFIDAICLQLYEALTHVSEDCFPLLDGCRK





NRQKWQALAEQQ







hPDE5 (Amino acid
EETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFTDLNLVQN
 386
8551


535-860 of WT,
FQMKHEVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMFAALKAGKIQN




R732I)
KLTDLEILALLIAALSHDLDHRGVNNSYIQRSEHPLAQLYCHSIMEHHHFDQ





CLMILNSPGNQILSGLSIEEYKTTLKIIKQAILATDLALYIKRIGEFFELIRKNQF





NLEDPHQKELFLAMLMTACDLSAITKPWPIQQRIAELVATEFFDQGDRERKE





LNIEPTDLMNREKKNKIPSMQVGFIDAICLQLYEALTHVSEDCFPLLDGCRK





NRQKWQALAEQQ







hPDE5 (Amino acid
EETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFTDLNLVQN
 383
 402


535-860 of WT,
FQMKHEVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMFAALKAGKIQN




R732G)
KLTDLEILALLIAALSHDLDHRGVNNSYIQRSEHPLAQLYCHSIMEHHHFDQ





CLMILNSPGNQILSGLSIEEYKTTLKIIKQAILATDLALYIKRGGEFFELIRKNQ





FNLEDPHQKELFLAMLMTACDLSAITKPWPIQQRIAELVATEFFDQGDRERK





ELNIEPTDLMNREKKNKIPSMQVGFIDAICLQLYEALTHVSEDCFPLLDGCRK





NRQKWQALAEQQ







AcGFP (Amino acid
VSKGAELFTGIVPILIELNGDVNGHKFSVSGEGEGDATYGKLTLKFICTTGKL
  79
 372


2-239 of WT)
PVPWPTLVTTLSYGVQCFSRYPDHMKQHDFFKSAMPEGYIQERTIFFEDDGN





YKSRAEVKFEGDTLVNRIELTGTDFKEDGNILGNKMEYNYNAHNVYIMTDK





AKNGIKVNFKIRHNIEDGSVQLADHYQQNTPIGDGPVLLPDNHYLSTQSALS





KDPNEKRDHMIYFGFVTAAAITHGMDELYK







mCherry
MSKGEEDNMAIIKEFMRFKVHMEGSVNGHEFEIEGEGEGRPYEGTQTAKLK
8648
8666



VTKGGPLPFAWDILSPQEMYGSKAYVKHPADIPDYLKLSFPEGFKWERVMN





FEDGGVVTVTQDSSLQDGEFIYKVKLRGTNFPSDGPVMQKKTMGWEASSER





MYPEDGALKGEIKQRLKLKDGGHYDAEVKTTYKAKKPVQLPGAYNVNIKL





DITSHNEDYTIVEQYERAEGRHSTGGMDELYK







mCherry (M1L)
LSKGEEDNMAIIKEFMRFKVHMEGSVNGHEFEIEGEGEGRPYEGTQTAKLK
8240
8269



VTKGGPLPFAWDILSPQFMYGSKAYVKHPADIPDYLKLSFPEGFKWERVMN





FEDGGVVTVTQDSSLQDGEFIYKVKLRGTNFPSDGPVMQKKTMGWEASSER





MYPEDGALKGEIKQRLKLKDGGHYDAEVKTTYKAKKPVQLPGAYNVNIKL





DITSHNEDYTIVEQYERAEGRHSTGGMDELYK







FLAG-tag
DYKDDDDK
8333
8350





HA Tag
YPYDVPDYA
8238
8351





Modified Furin
ESRRVRRNKRSK
 288
 291





P2A Cleavable 
GATNFSLLKQAGDVEENPGP
8239
8270


peptide








IRES


8667





Spacer


8668





Spacer


8669





OT-001254 (IgE
MDWTWILFLVAAATRVHSNWVNVISDLKKIEDLIQSMHIDATLYTESDVHP
8334
8352


signal sequence;
SCKVTAMKCFLLELQVISLESGDASIHDTVENLIILANNSLSSNGNVTESGCK




IL15(Amino acid 49-
ECEELEEKNIKEFLQSFVHIVQMFINTSSGGGSGGGGSGGGGSGGGGSGGGS




162 of WT); linker
LQITCPPPMSVEHADIWVKSYSLYSRERYICNSGFKRKAGTSSLTECVLNKAT




(SG3-(SG4)3-SG3-SLQ
NVAHWTTPSLKCIRDPALVHQRPAPPSTVTTAGVTPQPESLSPSGKEPAASSP




(SEQ ID NO: 323));
SSNNTAATTAAIVPGSQLMPSKSPSTGTTEISSHESSHGTPSQTTAKNWELTA




IL15Ra (Amino acid
SASHQPPGVYPQGHSDTTVAISTSTVLLCGLSAVSLLACYLKSRQTPPLASVE




31-267 of WT); linker
MEAMEALPVTWGTSSRDEDLENCSHHLSGEETRELQSLAAAVVPSAQTLKI




(SG); hPDE5 (Amino
TDFSFSDFELSDLETALCTIRMFTDLNLVQNFQMKHEVLCRWILSVKKNYRK




acid 535-860 of WT,
NVAYHNWRHAFNTAQCMFAALKAGKIQNKLTDLEILALLIAALSHDLDHR




R732L, F736A); stop) 
GVNNSYIQRSEHPLAQLYCHSIMEHHHFDQCLMILNSPGNQILSGLSIEEYKT





TLKIIKQAILATDLALYIKRLGEFAELIRKNQFNLEDPHQKELFLAMLMTACD





LSAITKPWPIQQRIAELVATEFFDQGDRERKELNIEPTDLMNREKKNKIPSMQ





VGFIDAICLQLYEALTHVSEDCFPLLDGCRKNRQKWQALAEQQ*







OT-001469 (IgE
MDWTWILFLVAAATRVHSNWVNVISDLKKIEDLIQSMHIDATLYTESDVHP
8335
8353


signal sequence;
SCKVTAMKCFLLELQVISLESGDASIHDTVENLIILANNSLSSNGNVTESGCK




IL15 (Amino acid 49-
ECEELEEKNIKEFLQSFVHIVQMFINTSSGGGSGGGGSGGGGSGGGGSGGGS




162 of WT); linker
LQITCPPPMSVEHADIWVKSYSLYSRERYICNSGFKRKAGTSSLTECVLNKAT




(SG3-(SG4)3-SG3-SLQ
NVAHWTTPSLKCIRDPALVHQRPAPPSTVTTAGVTPQPESLSPSGKEPAASSP




(SEQ ID NO: 323));
SSNNTAATTAAIVPGSQLMPSKSPSTGTTEISSHESSHGTPSQTTAKNWELTA




IL15Ra (Amino acid
SASHQPPGVYPQGHSDTTVAISTSTVLLCGLSAVSLLACYLKSRQTPPLASVE




31-267 of WT); linker
MEAMEALPVTWGTSSRDEDLENCSHHLSGVSKGAELFTGIVPILIELNGDVN




(SG); AcGFP (Amino
GHKFSVSGEGEGDATYGKLTLKFICTTGKLPVPWPTLVTTLSYGVQCFSRYP




acid 2-239 of WT);
DHMKQHDFFKSAMPEGYIQERTIFFEDDGNYKSRAEVKFEGDTLVNRIELTG




linker (SG); hPDE5
TDFKEDGNILGNKMEYNYNAHNVYIMTDKAKNGIKVNFKIRHNIEDGSVQL




(Amino acid 535-860
ADHYQQNTPIGDGPVLLPDNHYLSTQSALSKDPNEKRDHMIYFGFVTAAAIT




of WT, R732L,
HGMDELYKSGEETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIR




F736A); stop)
MFTDLNLVQNFQMKHEVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMF





AALKAGKIQNKLTDLEILALLIAALSHDLDHRGVNNSYIQRSEHPLAQLYCH





SIMEHHHFDQCLMILNSPGNQILSGLSIEEYKTTLKIIKQAILATDLALYIKRL





GEFAELIRKNQFNLEDPHQKELFLAMLMTACDLSAITKPWPIQQRIAELVAT





EFFDQGDRERKELNIEPTDLMNREKKNKIPSMQVGFIDAICLQLYEALTHVSE





DCFPLLDGCRKNRQKWQALAEQQ*







OT-001470 (IgE
MDWTWILFLVAAATRVHSNWVNVISDLKKIEDLIQSMHIDATLYTESDVHP
8336
8354


signal sequence;
SCKVTAMKCFLLELQVISLESGDASIHDTVENLIILANNSLSSNGNVTESGCK




IL15 (Amino acid 49-
ECEELEEKNIKEFLQSFVHIVQMFINTSSGGGSGGGGSGGGGSGGGGSGGGS




162 of WT); linker
LQITCPPPMSVEHADIWVKSYSLYSRERYICNSGFKRKAGTSSLTECVLNKAT




(SG3-(SG4)3-SG3-SLQ
NVAHWTTPSLKCIRDPALVHQRPAPPSTVTTAGVTPQPESLSPSGKEPAASSP




(SEQ ID NO: 323));
SSNNTAATTAAIVPGSQLMPSKSPSTGTTEISSHESSHGTPSQTTAKNWELTA




IL15Ra (Amino acid
SASHQPPGVYPQGHSDTTVAISTSTVLLCGLSAVSLLACYLKSRQTPPLASVE




31-267 of WT); linker
MEAMEALPVTWGTSSRDEDLENCSHHLSGEETRELQSLAAAVVPSAQTLKI




(SG); hPDE5 (Amino
TDFSFSDFELSDLETALCTIRMFTDLNLVQNFQMKHEVLCRWILSVKKNYRK




acid 535-860 of WT,
NVAYHNWRHAFNTAQCMFAALKAGKIQNKLTDLEILALLIAALSHDLDHR




R732L, F736A); linker
GVNNSYIQRSEHPLAQLYCHSIMEHHHFDQCLMILNSPGNQILSGLSIEEYKT




(SG); AcGFP (Amino
TLKIIKQAILATDLALYIKRLGEFAELIRKNQFNLEDPHQKELFLAMLMTACD




acid 2-239 of WT);
LSAITKPWPIQQRIAELVATEFFDQGDRERKELNIEPTDLMNREKKNKIPSMQ




stop)
VGFIDAICLQLYEALTHVSEDCFPLLDGCRKNRQKWQALAEQQSGVSKGAE





LFTGIVPILIELNGDVNGHKFSVSGEGEGDATYGKLTLKFICTTGKLPVPWPT





LVTTLSYGVQCFSRYPDHMKQHDFFKSAMPEGYIQERTIFFEDDGNYKSRAE





VKFEGDTLVNRIELTGTDFKEDGNILGNKMEYNYNAHNVYIMTDKAKNGIK





VNFKIRHNIEDGSVQLADHYQQNTPIGDGPVLLPDNHYLSTQSALSKDPNEK





RDHMIYFGFVTAAAITHGMDELYK*







OT-001315 (IgE
MDWTWILFLVAAATRVHSNWVNVISDLKKIEDLIQSMHIDATLYTESDVHP
8337
8355


signal sequence; 
SCKVTAMKCFLLELQVISLESGDASIHDTVENLIILANNSLSSNGNVTESGCK




IL15 (Amino acid 49-
ECEELEEKNIKEFLQSFVHIVQMFINTSSGGGSGGGGSGGGGSGGGGSGGGS




162 of WT); Linker
LQITCPPPMSVEHADIWVKSYSLYSRERYICNSGFKRKAGTSSLTECVLNKAT




(SG3-(SG4)3-SG3-SLQ
NVAHWTTPSLKCIRDPALVHQRPAPPSTVTTAGVTPQPESLSPSGKEPAASSP




(SEQ ID NO: 323));
SSNNTAATTAAIVPGSQLMPSKSPSTGTTEISSHESSHGTPSQTTAKNWELTA




IL15Ra (Amino acid
SASHQPPGVYPQGHSDTTVAISTSTVLLCGLSAVSLLACYLKSRQTPPLASVE




31-267 of WT); Linker
MEAMEALPVTWGTSSRDEDLENCSHHLSGESRRVRRNKRSKEETRELQSLA




(SG); Furin cleavage 
AAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFTDLNLVQNFQMKHEVLC




site
RWILSVKKNYRKNVAYHNWRHAFNTAQCMFAALKAGKIQNKLTDLEILAL




(ESRRVRRNKRSK);
LIAALSHDLDHRGVNNSYIQRSEHPLAQLYCHSIMEHHHFDQCLMILNSPGN




hPDE5 (Amino acid
QILSGLSIEEYKTTLKIIKQAILATDLALYIKRLGEFFELIRKNQFNLEDPHQKE




535-860 of WT,
LFLAMLMTACDLSAITKPWPIQQRIAELVATEFFDQGDRERKELNIEPTDLM




R732L); stop)
NREKKNKIPSMQVGFIDAICLQLYEALTHVSEDCFPLLDGCRKNRQKWQAL





AEQQ*







OT-001316 (IgE
MDWTWILFLVAAATRVHSNWVNVISDLKKIEDLIQSMHIDATLYTESDVHP
8338
8356


signal sequence; IL15
SCKVTAMKCFLLELQVISLESGDASIHDTVENLIILANNSLSSNGNVTESGCK




(Amino acid 49-162 of
ECEELEEKNIKEFLQSFVHIVQMFINTSSGGGSGGGGSGGGGSGGGGSGGGS




WT); Linker (SG3-
LQITCPPPMSVEHADIWVKSYSLYSRERYICNSGFKRKAGTSSLTECVLNKAT




(SG4)3-SG3-SLQ
NVAHWTTPSLKCIRDPALVHQRPAPPSTVTTAGVTPQPESLSPSGKEPAASSP




(SEQ ID NO: 323));
SSNNTAATTAAIVPGSQLMPSKSPSTGTTEISSHESSHGTPSQTTAKNWELTA




IL15Ra (Amino acid
SASHQPPGVYPQGHSDTTVAISTSTVLLCGLSAVSLLACYLKSRQTPPLASVE




31-267 of WT); Linker
MEAMEALPVTWGTSSRDEDLENCSHHLSGEETRELQSLAAAVVPSAQTLKI




(SG); hPDE5 (Amino
TDFSFSDFELSDLETALCTIRMFTDLNLVQNFQMKHEVLCRWILSVKKNYRK




acid 535-860 of WT,
NVAYHNWRHAFNTAQCMFAALKAGKIQNKLTDLEILALLIAALSHDLDHR




R732L); stop)
GVNNSYIQRSEHPLAQLYCHSIMEHHHFDQCLMILNSPGNQILSGLSIEEYKT





TLKIIKQAILATDLALYIKRLGEFFELIRKNQFNLEDPHQKELFLAMLMTACD





LSAITKPWPIQQRIAELVATEFFDQGDRERKELNIEPTDLMNREKKNKIPSMQ





VGFIDAICLQLYEALTHVSEDCFPLLDGCRKNRQKWQALAEQQ*







OT-001317 (IgE
MDWTWILFLVAAATRVHSNWVNVISDLKKIEDLIQSMHIDATLYTESDVHP
8339
8357


signal sequence; IL15
SCKVTAMKCFLLELQVISLESGDASIHDTVENLIILANNSLSSNGNVTESGCK




(Amino acid 49-162 of
ECEELEEKNIKEFLQSFVHIVQMFINTSSGGGSGGGGSGGGGSGGGGSGGGS




WT); Linker (SG3-
LQITCPPPMSVEHADIWVKSYSLYSRERYICNSGFKRKAGTSSLTECVLNKAT




(SG4)3-SG3-SLQ
NVAHWTTPSLKCIRDPALVHQRPAPPSTVTTAGVTPQPESLSPSGKEPAASSP




(SEQ ID NO: 323));
SSNNTAATTAAIVPGSQLMPSKSPSTGTTEISSHESSHGTPSQTTAKNWELTA




IL15Ra (Amino acid
SASHQPPGVYPQGHSDTTVAISTSTVLLCGLSAVSLLACYLKSRQTPPLASVE




31-267 of WT); linker
MEAMEALPVTWGTSSRDEDLENCSHHLSGEETRELQSLAAAVVPSAQTLKI




(SG); hPDE5 (Amino
TDFSFSDFELSDLETALCTIRMFTDLNLVQNFQMKHEVLCRWILSVKKNYRK




acid 535-860 of WT); 
NVAYHNWRHAFNTAQCMFAALKAGKIQNKLTDLEILALLIAALSHDLDHR




stop)
GVNNSYIQRSEHPLAQLYCHSIMEHHHFDQCLMILNSPGNQILSGLSIEEYKT





TLKIIKQAILATDLALYIKRRGEFFELIRKNQFNLEDPHQKELFLAMLMTACD





LSAITKPWPIQQRIAELVATEFFDQGDRERKELNIEPTDLMNREKKNKIPSMQ





VGFIDAICLQLYEALTHVSEDCFPLLDGCRKNRQKWQALAEQQ*







OT-001499 (IgE
MDWTWILFLVAAATRVHSNWVNVISDLKKIEDLIQSMHIDATLYTESDVHP
8340
8358


signal sequence; IL15
SCKVTAMKCFLLELQVISLESGDASIHDTVENLIILANNSLSSNGNVTESGCK




(Amino acid 49-162 of
ECEELEEKNIKEFLQSFVHIVQMFINTSSGGGSGGGGSGGGGSGGGGSGGGS




WT); Linker (SG3-
LQITCPPPMSVEHADIWVKSYSLYSRERYICNSGFKRKAGTSSLTECVLNKAT




(SG4)3-SG3-SLQ
NVAHWTTPSLKCIRDPALVHQRPAPPSTVTTAGVTPQPESLSPSGKEPAASSP




(SEQ ID NO: 323));
SSNNTAATTAAIVPGSQLMPSKSPSTGTTEISSHESSHGTPSQTTAKNWELTA




IL15Ra (Amino acid
SASHQPPGVYPQGHSDTTVAISTSTVLLCGLSAVSLLACYLKSRQTPPLASVE




31-267 of WT); linker
MEAMEALPVTWGTSSRDEDLENCSHHLSGEETRELQSLAAAVVPSAQTLKI




(SG); hPDE5 (Amino
TDFSFSDFELSDLETALCTIRMFTDLNLVQNFQMKHEVLCRWILSVKKNYRK




acid 535-860 of WT); 
NVAYHNWRHAFNTAQCMFAALKAGKIQNKLTDLEILALLIAALSHDLDHR




stop)
GVNNSYIQRSERPLAQLYCHSIMEHHHFDQCLMILNSPGNQILSGLSIEEYKT





TLKIIKQAILATDLALYIKRRGEFFELIRKNQFNLEDPHQKELFLAMLMTACD





LSAITKPWPIQQRIAELVATEFFDQGDRERKELNIEPTDLMNREKKNKIPSMQ





VGFIDAICLQLYEALTHVSEDCFPLLDGCRKNRQKWQALAEQQ*







OT-001344 (IgE
MDWTWILFLVAAATRVHSDYKDDDDKNWVNVISDLIWEDLIQSMHIDAT
8341
8359


signal sequence; Flag
LYTESDVHPSCKVTAMKCFLLELQVISLESGDASIHDTVENLIILANNSLSSN




tag; IL15 (Amino acid
GNVTESGCKECEELEEKNIKEFLQSFVHIVQMFINTSSGGGSGGGGSGGGGS




49-162 of WT); Linker
GGGGSGGGSLQYPYDVPDYAITCPPPMSVEHADIWVKSYSLYSRERYICNSG




(SG3-(SG4)3-SG3-
FKRKAGTSSLTECVLNKATNVAHWTTPSLKCIRDPALVHQRPAPPSTVTTAG




SLQ (SEQ ID NO:
VTPQPESLSPSGKEPAASSPSSNNTAATTAAIVPGSQLMPSKSPSTGTTEISSH




323)); HA tag; IL15Ra
ESSHGTPSQTTAKNWELTASASHQPPGVYPQGHSDTTVAISTSTVLLCGLSA




(Amino acid 31-267 of
VSLLACYLKSRQTPPLASVEMEAMEALPVTWGTSSRDEDLENCSHHLGSGS




WT); linker (GSGSGS
GSEETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFTDLNLV




(SEQ ID NO: 8330));
QNFQMKHEVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMFAALKAGKI




hPDE5 (Amino acid
QNKLTDLEILALLIAALSHDLDHRGVNNSYIQRSEHPLAQLYCHSIMEHHHF




535-860 of WT,
DQCLMILNSPGNQILSGLSIEEYKTTLKIIKQAILATDLALYIKRLGEFFELIRK




R732L); stop)
NQFNLEDPHQKELFLAMLMTACDLSAITKPWPIQQRIAELVATEFFDQGDRE





RKELNIEPTDLMNREKKNKIPSMQVGFIDAICLQLYEALTHVSEDCFPLLDGC





RKNRQKWQALAEQQ*







OT-001345 (IgE
MDWTWILFLVAAATRVHSDYKDDDDKNWVNVISDLKKIEDLIQSMHIDAT
8342
8360


signal sequence; Flag
LYTESDVHPSCKVTAMKCFLLELQVISLESGDASIHDTVENLIILANNSLSSN




tag; IL15 (Amino acid
GNVTESGCKECEELEEKNIKEFLQSFVHIVQMFINTSSGGGSGGGGSGGGGS




49-162 of WT); Linker
GGGGSGGGSLQYPYDVPDYAITCPPPMSVEHADIWVKSYSLYSRERYICNSG




(SG3-(SG4)3-SG3-
FKRKAGTSSLTECVLNKATNVAHWTTPSLKCIRDPALVHQRPAPPSTVTTAG




SLQ (SEQ ID NO:
VTPQPESLSPSGKEPAASSPSSNNTAATTAAIVPGSQLMPSKSPSTGTTEISSH




323)); HA tag; IL15Ra
ESSHGTPSQTTAKNWELTASASHQPPGVYPQGHSDTTVAISTSTVLLCGLSA




(Amino acid 31-267 of
VSLLACYLKSRQTPPLASVEMEAMEALPVTWGTSSRDEDLENCSHHLGSGS




WT); linker
GSGSEETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFTDLNL




(GSGSGSGS (SEQ ID
VQNFQMKHEVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMFAALKAG




NO: 8331)); hPDE5
KIQNKLTDLEILALLIAALSHDLDHRGVNNSYIQRSEHPLAQLYCHSIMEHHH




(Amino acid 535-860
FDQCLMILNSPGNQILSGLSIEEYKTTLKIIKQAILATDLALYIKRLGEFFELIR




of WT, R732L); stop)
KNQFNLEDPHQKELFLAMLMTACDLSAITKPWPIQQRIAELVATEFFDQGDR





ERKELNIEPTDLMNREKKNKIPSMQVGFIDAICLQLYEALTHVSEDCFPLLDG





CRKNRQKWQALAEQQ*







OT-001346 (IgE
MDWTWILFLVAAATRVHSDYKDDDDKNWVNVISDLKKIEDLIQSMHIDAT
8343
8361


signal sequence; Flag
LYTESDVHPSCKVTAMKCFLLELQVISLESGDASIHDTVENLIILANNSLSSN




tag; IL15 (Amino acid
GNVTESGCKECEELEEKNIKEFLQSFVHIVQMFINTSSGGGSGGGGSGGGGS




49-162 of WT); Linker
GGGGSGGGSLQYPYDVPDYAITCPPPMSVEHADIWVKSYSLYSRERYICNSG




(SG3-(SG4)3-SG3-
FKRKAGTSSLTECVLNKATNVAHWTTPSLKCIRDPALVHQRPAPPSTVTTAG




SLQ (SEQ ID NO:
VTPQPESLSPSGKEPAASSPSSNNTAATTAAIVPGSQLMPSKSPSTGTTEISSH




323)); HA tag; IL15Ra
ESSHGTPSQTTAKNWELTASASHQPPGVYPQGHSDTTVAISTSTVLLCGLSA




(Amino acid 31-267 of
VSLLACYLKSRQTPPLASVEMEAMEALPVTWGTSSRDEDLENCSHHLGSGS




WT); linker
GGGSGSEETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFTD




(GSGSGGGSGS
LNLVQNFQMKHEVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMFAALK




(SEQ ID NO: 8332));
AGKIQNKLTDLEILALLIAALSHDLDHRGVNNSYIQRSEHPLAQLYCHSIMEH




hPDE5 (Amino acid
HHFDQCLMILNSPGNQILSGLSIEEYKTTLKIIKQAILATDLALYIKRLGEFFEL




535-860 of WT,
IRKNQFNLEDPHQKELFLAMLMTACDLSAITKPWPIQQRIAELVATEFFDQG




R732L); stop)
DRERKELNIEPTDLMNREKKNKIPSMQVGFIDAICLQLYEALTHVSEDCFPLL





DGCRKNRQKWQALAEQQ*







OT-001318 (IgE
MDWTWILFLVAAATRVHSYPYDVPDYANWVNVISDLKKIEDLIQSMHIDAT
8649
8670


signal sequence; HA
LYTESDVHPSCKVTAMKCFLLELQVISLESGDASIHDTVENLIILANNSLSSN




Tag; IL15 (Amino acid
GNVTESGCKECEELEEKNIKEFLQSFVHIVQMFINTSSGGGSGGGGSGGGGS




49-162 of WT); Linker
GGGGSGGGSLQITCPPPMSVEHADIWVKSYSLYSRERYICNSGFKRKAGTSS




(SG3-(SG4)3-SG3-
LTECVLNKATNVAHWTTPSLKCIRDPALVHQRPAPPSTVTTAGVTPQPESLS




SLQ (SEQ ID NO:
PSGKEPAASSPSSNNTAATTAAIVPGSQLMPSKSPSTGTTEISSHESSHGTPSQ




323)); IL15Ra (Amino
TTAKNWELTASASHQPPGVYPQGHSDTTVAISTSTVLLCGLSAVSLLACYLK




acid 31-267 of WT);
SRQTPPLASVEMEAMEALPVTWGTSSRDEDLENCSHHLSGEETRELQSLAA




Linker (SG); hPDE5
AVVPSAQTLKITDFSFSDFELSDLETALCTIRMFTDLNLVQNFQMKHEVLCR




(Amino acid 535-860
WILSVKKNYRKNVAYHNWRHAFNTAQCMFAALKAGKIQNKLTDLEILALLI




of WT); stop)
AALSHDLDHRGVNNSYIQRSEHPLAQLYCHSIMEHHHFDQCLMILNSPGNQI





LSGLSIEEYKTTLKIIKQAILATDLALYIKRRGEFFELIRKNQFNLEDPHQKELF





LAMLMTACDLSAITKPWPIQQRIAELVATEFFDQGDRERKELNIEPTDLMNR





EKKNKIPSMQVGFIDAICLQLYEALTHVSEDCFPLLDGCRKNRQKWQALAE





QQ*







OT-001314 (IgE
MDWTWILFLVAAATRVHSNWVNVISDLKKIEDLIQSMHIDATLYTESDVHP
8650
8671


signal sequence; IL15
SCKVTAMKCFLLELQVISLESGDASIHDTVENLIILANNSLSSNGNVTESGCK




(Amino acid 49-162 of
ECEELEEKNIKEFLQSFVHIVQMFINTSSGGGSGGGGSGGGGSGGGGSGGGS




WT); Linker (SG3-
LQITCPPPMSVEHADIWVKSYSLYSRERYICNSGFKRKAGTSSLTECVLNKAT




(SG4)3-SG3-SLQ
NVAHWTTPSLKCIRDPALVHQRPAPPSTVTTAGVTPQPESLSPSGKEPAASSP




(SEQ ID NO: 323));
SSNNTAATTAAIVPGSQLMPSKSPSTGTTEISSHESSHGTPSQTTAKNWELTA




IL15Ra (Amino acid
SASHQPPGVYPQGHSDTTVAISTSTVLLCGLSAVSLLACYLKSRQTPPLASVE




31-267 of WT); Linker
MEAMEALPVTWGTSSRDEDLENCSHHLGSGEETRELQSLAAAVVPSAQTLK




(GSG), hPDE5
ITDFSFSDFELSDLETALCTIRMFTDLNLVQNFQMKHEVLCRWILSVKKNYR




(Amino acid 535-860
KNVAYHNWRHAFNTAQCMFAALKAGKIQNKLTDLEILALLIAALSHDLDH




of WT, F736A), stop)
RGVNNSYIQRSEHPLAQLYCHSIMEHHHFDQCLMILNSPGNQILSGLSIEEYK





TTLKIIKQAILATDLALYIKRRGEFAELIRKNQFNLEDPHQKELFLAMLMTAC





DLSAITKPWPIQQRIAELVATEFFDQGDRERKELNIEPTDLMNREKKNKIPSM





QVGFIDAICLQLYEALTHVSEDCFPLLDGCRKNRQKWQALAEQQ*







OT-001319 (IgE
MDWTWILFLVAAATRVHSNWVNVISDLKKIEDLIQSMHIDATLYTESDVHP
8651
8672


signal sequence; IL15
SCKVTAMKCFLLELQVISLESGDASIHDTVENLIILANNSLSSNGNVTESGCK




(Amino acid 49-162 of
ECEELEEKNIKEFLQSFVHIVQMFINTSSGGGSGGGGSGGGGSGGGGSGGGS




WT); Linker (SG3-
LQITCPPPMSVEHADIWVKSYSLYSRERYICNSGFKRKAGTSSLTECVLNKAT




(SG4)3-SG3-SLQ
NVAHWTTPSLKCIRDPALVHQRPAPPSTVTTAGVTPQPESLSPSGKEPAASSP




(SEQ ID NO: 323));
SSNNTAATTAAIVPGSQLMPSKSPSTGTTEISSHESSHGTPSQTTAKNWELTA




IL15Ra (Amino acid
SASHQPPGVYPQGHSDTTVAISTSTVLLCGLSAVSLLACYLKSRQTPPLASVE




31-267 of WT); Linker
MEAMEALPVTWGTSSRDEDLENCSHHLGSGEETRELQSLAAAVVPSAQTLK




(GSG); hPDE5
ITDFSFSDFELSDLETALCTIRMFTDLNLVQNFQMKHEVLCRWILSVKKNYR




(Amino acid 535-860
KNVAYHNWRHAFNTAQCMFAALKAGKIQNKLTDLEILALLIAALSHDLDH




of WT, R732L,
RGVNNSYIQRSEHPLAQLYCHSIMEHHHFDQCLMILNSPGNQILSGLSIEEYK




F736A); stop)
TTLKIIKQAILATDLALYIKRLGEFAELIRKNQFNLEDPHQKELFLAMLMTAC





DLSAITKPWPIQQRIAELVATEFFDQGDRERKELNIEPTDLMNREKKNKIPSM





QVGFIDAICLQLYEALTHVSEDCFPLLDGCRKNRQKWQALAEQQ*










OT-001320 (IgE
MDWTWILFLVAAATRVHSNWVNVISDLKKIEDLIQSMHIDATLYTESDVHP
8652
8673


signal sequence; IL15
SCKVTAMKCFLLELQVISLESGDASIHDTVENLIILANNSLSSNGNVTESGCK




(Amino acid 49-162 of
ECEELEEKNIKEFLQSFVHIVQMFINTSSGGGSGGGGSGGGGSGGGGSGGGS




WT); Linker (SG3-
LQITCPPPMSVEHADIWVKSYSLYSRERYICNSGFKRKAGTSSLTECVLNKAT




(SG4)3-SG3-SLQ
NVAHWTTPSLKCIRDPALVHQRPAPPSTVTTAGVTPQPESLSPSGKEPAASSP




(SEQ ID NO: 323));
SSNNTAATTAAIVPGSQLMPSKSPSTGTTEISSHESSHGTPSQTTAKNWELTA




IL15Ra (Amino acid
SASHQPPGVYPQGHSDTTVAISTSTVLLCGLSAVSLLACYLKSRQTPPLASVE




31-267 of WT); Linker
MEAMEALPVTWGTSSRDEDLENCSHHLGSGEETRELQSLAAAVVPSAQTLK




(GSG); hPDE5
ITDFSFSDFELSDLETALCTIRMFTDLNLVQNFQMKHEVLCRWILSVKKNYR




(Amino acid 535-860
KNVAYHNWRHAFNTAQCMFAALKAGKIQNKLTDLEILALLIAALSHDLDH




of WT); stop)
RGVNNSYIQRSEHPLAQLYCHSIMEHHHFDQCLMILNSPGNQILSGLSIEEYK





TTLKIIKQAILATDLALYIKRRGEFFELIRKNQFNLEDPHQKELFLAMLMTAC





DLSAITKPWPIQQRIAELVATEFFDQGDRERKELNIEPTDLMNREKKNKIPSM





QVGFIDAICLQLYEALTHVSEDCFPLLDGCRKNRQKWQALAEQQ*







OT-001388 (IgE
MDWTWILFLVAAATRVHSDYKDDDDKNWVNVISDLKKIEDLIQSMHIDAT
8653
8674


signal sequence; IL15
LYTESDVHPSCKVTAMKCFLLELQVISLESGDASIHDTVENLIILANNSLSSN




(Amino acid 49-162 of
GNVTESGCKECEELEEKNIKEFLQSFVHIVQMFINTSSGGGSGGGGSGGGGS




WT); Linker (SG3-
GGGGSGGGSLQYPYDVPDYAITCPPPMSVEHADIWVKSYSLYSRERYICNSG




(SG4)3-SG3-SLQ
FKRKAGTSSLTECVLNKATNVAHWTTPSLKCIRDPALVHQRPAPPSTVTTAG




(SEQ ID NO: 323));
VTPQPESLSPSGKEPAASSPSSNNTAATTAAIVPGSQLMPSKSPSTGTTEISSH




IL15Ra (Amino acid
ESSHGTPSQTTAKNWELTASASHQPPGVYPQGHSDTTVAISTSTVLLCGLSA




31-267 of WT); Linker
VSLLACYLKSRQTPPLASVEMEAMEALPVTWGTSSRDEDLENCSHHLGS*




(GS); stop)








OT-001321 (IgE
MDWTWILFLVAAATRVHSDYKDDDDKNWVNVISDLKKIEDLIQSMHIDAT
8654
8675


signal sequence; Flag
LYTESDVHPSCKVTAMKCFLLELQVISLESGDASIHDTVENLIILANNSLSSN




tag, IL15 (Amino acid
GNVTESGCKECEELEEKNIKEFLQSFVHIVQMFINTSSGGGSGGGGSGGGGS




49-162 of WT); Linker
GGGGSGGGSLQYPYDVPDYAITCPPPMSVEHADIWVKSYSLYSRERYICNSG




(SG3-(SG4)3-SG3-
FKRKAGTSSLTECVLNKATNVAHWTTPSLKCIRDPALVHQRPAPPSTVTTAG




SLQ (SEQ ID NO:
VTPQPESLSPSGKEPAASSPSSNNTAATTAAIVPGSQLMPSKSPSTGTTEISSH




323)); HA tag; IL15Ra
ESSHGTPSQTTAKNWELTASASHQPPGVYPQGHSDTTVAISTSTVLLCGLSA




(Amino acid 31-267 of
VSLLACYLKSRQTPPLASVEMEAMEALPVTWGTSSRDEDLENCSHHLGSGE




WT); Linker (GSG);
ETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFTDLNLVQNF




hPDE5 (Amino acid
QMKHEVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMFAALKAGKIQNK




535-860 of WT); stop)
LTDLEILALLIAALSHDLDHRGVNNSYIQRSEHPLAQLYCHSIMEHHHFDQCL





MILNSPGNQILSGLSIEEYKTTLKIIKQAILATDLALYIKRRGEFFELIRKNQFN





LEDPHQKELFLAMLMTACDLSAITKPWPIQQRIAELVATEFFDQGDRERKEL





NIEPTDLMNREKKNKIPSMQVGFIDAICLQLYEALTHVSEDCFPLLDGCRKN





RQKWQALAEQQ*







OT-001323 (IgE
MDWTWILFLVAAATRVHSDYKDDDDKNWVNVISDLKKIEDLIQSMHIDAT
8655
8676


signal sequence; Flag
LYTESDVHPSCKVTAMKCFLLELQVISLESGDASIHDTVENLIILANNSLSSN




tag; IL15 (Amino acid
GNVTESGCKECEELEEKNIKEFLQSFVHIVQMFINTSSGGGSGGGGSGGGGS




49-162 of WT); Linker
GGGGSGGGSLQYPYDVPDYAITCPPPMSVEHADIWVKSYSLYSRERYICNSG




(SG3-(SG4)3-SG3-
FKRKAGTSSLTECVLNKATNVAHWTTPSLKCIRDPALVHQRPAPPSTVTTAG




SLQ (SEQ ID NO:
VTPQPESLSPSGKEPAASSPSSNNTAATTAAIVPGSQLMPSKSPSTGTTEISSH




323)); HA tag; IL15Ra
ESSHGTPSQTTAKNWELTASASHQPPGVYPQGHSDTTVAISTSTVLLCGLSA




(Amino acid 31-267 of
VSLLACYLKSRQTPPLASVEMEAMEALPVTWGTSSRDEDLENCSHHLGSGE




WT); Linker (GSG);
ETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFTDLNLVQNF




hPDE5 (Amino acid
QMKHEVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMFAALKAGKIQNK




535-860 of WT,
LTDLEILALLIAALSHDLDHRGVNNSYIQRSEHPLAQLYCHSIMEHHHFDQCL




F736A); stop)
MILNSPGNQILSGLSIEEYKTTLKIIKQAILATDLALYIKRRGEFAELIRKNQFN





LEDPHQKELFLAMLMTACDLSAITKPWPIQQRIAELVATEFFDQGDRERKEL





NIEPTDLMNREKKNKIPSMQVGFIDAICLQLYEALTHVSEDCFPLLDGCRKN





RQKWQALAEQQ*







OT-001324 (IgE
MDWTWILFLVAAATRVHSDYKDDDDKNWVNVISDLKKIEDLIQSMHIDAT
8656
8677


signal sequence; Flag
LYTESDVHPSCKVTAMKCFLLELQVISLESGDASIHDTVENLIILANNSLSSN




tag; IL15 (Amino acid
GNVTESGCKECEELEEKNIKEFLQSFVHIVQMFINTSSGGGSGGGGSGGGGS




49-162 of WT); Linker
GGGGSGGGSLQYPYDVPDYAITCPPPMSVEHADIWVKSYSLYSRERYICNSG




(SG3-(SG4)3-SG3-
FKRKAGTSSLTECVLNKATNVAHWTTPSLKCIRDPALVHQRPAPPSTVTTAG




SLQ (SEQ ID NO:
VTPQPESLSPSGKEPAASSPSSNNTAATTAAIVPGSQLMPSKSPSTGTTEISSH




323)); HA tag; IL15Ra
ESSHGTPSQTTAKNWELTASASHQPPGVYPQGHSDTTVAISTSTVLLCGLSA




(Amino acid 31-267 of
VSLLACYLKSRQTPPLASVEMEAMEALPVTWGTSSRDEDLENCSHHLGSGE




WT); Linker (GSG);
ETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFTDLNLVQNF




hPDE5 (Amino acid
QMKHEVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMFAALKAGKIQNK




535-860 of WT,
LTDLEILALLIAALSHDLDHRGVNNSYIQRSEHPLAQLYCHSIMEHHHFDQCL




R732L), stop)
MILNSPGNQILSGLSIEEYKTTLKIIKQAILATDLALYIKRLGEFFELIRKNQFN





LEDPHQKELFLAMLMTACDLSAITKPWPIQQRIAELVATEFFDQGDRERKEL





NIEPTDLMNREKKNKIPSMQVGFIDAICLQLYEALTHVSEDCFPLLDGCRKN





RQKWQALAEQQ*







OT-001325 (IgE
MDWTWILFLVAAATRVHSDYKDDDDKNWVNVISDLKKIEDLIQSMHIDAT
8657
8678


signal sequence; Flag
LYTESDVHPSCKVTAMKCFLLELQVISLESGDASIHDTVENLIILANNSLSSN




tag; IL15 (Amino acid
GNVTESGCKECEELEEKNIKEFLQSFVHIVQMFINTSSGGGSGGGGSGGGGS




49-162 of WT); Linker
GGGGSGGGSLQYPYDVPDYAITCPPPMSVEHADIWVKSYSLYSRERYICNSG




(SG3-(SG4)3-SG3-
FKRKAGTSSLTECVLNKATNVAHWTTPSLKCIRDPALVHQRPAPPSTVTTAG




SLQ (SEQ ID NO:
VTPQPESLSPSGKEPAASSPSSNNTAATTAAIVPGSQLMPSKSPSTGTTEISSH




323)); HA tag; IL15Ra
ESSHGTPSQTTAKNWELTASASHQPPGVYPQGHSDTTVAISTSTVLLCGLSA




(Amino acid 31-267 of
VSLLACYLKSRQTPPLASVEMEAMEALPVTWGTSSRDEDLENCSHHLGSGE




WT); Linker (GSG);
ETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFTDLNLVQNF




hPDE5 (Amino acid
QMKHEVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMFAALKAGKIQNK




535-860 of WT,
LTDLEILALLIAALSHDLDHRGVNNSYIQRSEHPLAQLYCHSIMEHHHFDQCL




R732L, F736A); stop)
MILNSPGNQILSGLSIEEYKTTLKIIKQAILATDLALYIKRLGEFAELIRKNQFN





LEDPHQKELFLAMLMTACDLSAITKPWPIQQRIAELVATEFFDQGDRERKEL





NIEPTDLMNREKKNKIPSMQVGFIDAICLQLYEALTHVSEDCFPLLDGCRKN





RQKWQALAEQQ*







OT-001349 (IgE
MDWTWILFLVAAATRVHSDYKDDDDKNWVNVISDLKKIEDLIQSMHIDAT
8658
8679


signal sequence; Flag
LYTESDVHPSCKVTAMKCFLLELQVISLESGDASIHDTVENLIILANNSLSSN




tag; IL15 (Amino acid
GNVTESGCKECEELEEKNIKEFLQSFVHIVQMFINTSSGGGSGGGGSGGGGS




49-162 of WT); Linker
GGGGSGGGSLQYPYDVPDYAITCPPPMSVEHADIWVKSYSLYSRERYICNSG




(SG3-(SG4)3-SG3-
FKRKAGTSSLTECVLNKATNVAHWTTPSLKCIRDPALVHQRPAPPSTVTTAG




SLQ (SEQ ID NO:
VTPQPESLSPSGKEPAASSPSSNNTAATTAAIVPGSQLMPSKSPSTGTTEISSH




323)); HA tag; IL15Ra
ESSHGTPSQTTAKNWELTASASHQPPGVYPQGHSDTTVAISTSTVLLCGLSA




(Amino acid 31-267 of
VSLLACYLKSRQTPPLASVEMEAMEALPVTWGTSSRDEDLENCSHHLGSGE




WT); Linker (GSG);
ETRELQSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFTDLNLVQNF




hPDE5 (Amino acid
QMKHEVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMFAALKAGKIQNK




535-860 of WT,
LTDLEILALLIAALSHDLDIIRGVNNSYIQRSEHPLAQLYCHSIMEHHHFDQCL




R732L); V5 epitope;
MILNSPGNQILSGLSIEEYKTTLKIIKQAILATDLALYIKRLGEFFELIRKNQFN




stop)
LEDPHQKELFLAMLMTACDLSAITKPWPIQQRIAELVATEFFDQGDRERKEL





NIEPTDLMNREKKNKIPSMQVGFIDAICLQLYEALTHVSEDCFPLLDGCRKN





RQKWQALAEQQGKPIPNPLLGLDST*







OT-001350 (IgE
MDWTWILFLVAAATRVHSNWVNVISDLKKIEDLIQSMHIDATLYTESDVHP
8659
8680


signal sequence; IL15
SCKVTAMKCFLLELQVISLESGDASIHDTVENLIILANNSLSSNGNVTESGCK




(Amino acid 49-162 of
ECEELEEKNIKEFLQSFVHIVQMFINTSSGGGSGGGGSGGGGSGGGGSGGGS




WT); Linker (SG3-
LQITCPPPMSVEHADIWVKSYSLYSRERYICNSGFKRKAGTSSLTECVLNKAT




(SG4)3-SG3-SLQ
NVAHWTTPSLKCIRDPALVHQRPAPPSTVTTAGVTPQPESLSPSGKEPAASSP




(SEQ ID NO: 323));
SSNNTAATTAAIVPGSQLMPSKSPSTGTTEISSHESSHGTPSQTTAKNWELTA




IL15Ra (Amino acid
SASHQPPGVYPQGHSDTTVAISTSTVLLCGLSAVSLLACYLKSRQTPPLASVE




31-267 of WT); Linker
MEAMEALPVTWGTSSRDEDLENCSHHLGSGEETRELQSLAAAVVPSAQTLK




(GSG); hPDE5
ITDFSFSDFELSDLETALCTIRMFTDLNLVQNFQMKHEVLCRWILSVKKNYR




(Amino acid 535-860
KNVAYHNWRHAFNTAQCMFAALKAGKIQNKLTDLEILALLIAALSHDLDH




of WT, R732L);
RGVNNSYIQRSEHPLAQLYCHSIMEHHHFDQCLMILNSPGNQILSGLSIEEYK




Linker (GS), stop)
TTLKIIKQAILATDLALYIKRLGEFFELIRKNQFNLEDPHQKELFLAMLMTAC





DLSAITKPWPIQQRIAELVATEFFDQGDRERKELNIEPTDLMNREKKNKIPSM





QVGFIDAICLQLYEALTHVSEDCFPLLDGCRKNRQKWQALAEQQGS*







OT-001351 (IgE
MDWTWILFLVAAATRVHSNWVNVISDLKKIEDLIQSMHIDATLYTESDVHP
8660
8681


signal sequence; IL15
SCKVTAMKCFLLELQVISLESGDASIHDTVENLIILANNSLSSNGNVTESGCK




(Amino acid 49-162 of
ECEELEEKNIKEFLQSFVHIVQMFINTSSGGGSGGGGSGGGGSGGGGSGGGS




WT); Linker (SG3-
LQITCPPPMSVEHADIWVKSYSLYSRERYICNSGFKRKAGTSSLTECVLNKAT




(SG4)3-SG3-SLQ
NVAHWTTPSLKCIRDPALVHQRPAPPSTVTTAGVTPQPESLSPSGKEPAASSP




(SEQ ID NO: 323));
SSNNTAATTAAIVPGSQLMPSKSPSTGTTEISSHESSHGTPSQTTAKNWELTA




IL15Ra (Amino acid
SASHQPPGVYPQGHSDTTVAISTSTVLLCGLSAVSLLACYLKSRQTPPLASVE




31-267 of WT); Linker
MEAMEALPVTWGTSSRDEDLENCSHHLGSGEETRELQSLAAAVVPSAQTLK




(GSG); hPDE5
ITDFSFSDFELSDLETALCTIRMFTDLNLVQNFQMKHEVLCRWILSVKKNYR




(Amino acid 535-860
KNVAYHNWRHAFNTAQCMFAALKAGKIQNKLTDLEILALLIAALSHDLDH




of WT, R732I); Linker
RGVNNSYIQRSEHPLAQLYCHSIMEHHHFDQCLMILNSPGNQILSGLSIEEYK




(GS); stop)
TTLKIIKQAILATDLALYIKRIGEFFELIRKNQFNLEDPHQKELFLAMLMTACD





LSAITKPWPIQQRIAELVATEFFDQGDRERKELNIEPTDLMNREKKNKIPSMQ





VGFIDAICLQLYEALTHVSEDCFPLLDGCRKNRQKWQALAEQQGS*







OT-001352 (IgE
MDWTWILFLVAAATRVHSNWVNVISDLKKIEDLIQSMHIDATLYTESDVHP
8661
8682


signal sequence; IL15
SCKVTAMKCFLLELQVISLESGDASIHDTVENLIILANNSLSSNGNVTESGCK




(Amino acid 49-162 of
ECEELEEKNIKEFLQSFVHIVQMFINTSSGGGSGGGGSGGGGSGGGGSGGGS




WT); Linker (SG3-
LQITCPPPMSVEHADIWVKSYSLYSRERYICNSGFKRKAGTSSLTECVLNKAT




(SG4)3-SG3-SLQ
NVAHWTTPSLKCIRDPALVHQRPAPPSTVTTAGVTPQPESLSPSGKEPAASSP




(SEQ ID NO: 323));
SSNNTAATTAAIVPGSQLMPSKSPSTGTTEISSHESSHGTPSQTTAKNWELTA




IL15Ra (Amino acid
SASHQPPGVYPQGHSDTTVAISTSTVLLCGLSAVSLLACYLKSRQTPPLASVE




31-267 of WT); Linker
MEAMEALPVTWGTSSRDEDLENCSHHLGSGEETRELQSLAAAVVPSAQTLK




(GSG); hPDE5
ITDFSFSDFELSDLETALCTIRMFTDLNLVQNFQMKHEVLCRWILSVKKNYR




(Amino acid 535-860
KNVAYHNWRHAFNTAQCMFAALKAGKIQNKLTDLEILALLIAALSHDLDH




of WT, R732G);
RGVNNSYIQRSEHPLAQLYCHSIMEHHHEDQCLMILNSPGNQILSGLSIEEYK




Linker (GS); stop)
TTLKIIKQAILATDLALYIKRGGEFFELIRKNQFNLEDPHQKELFLAMLMTAC





DLSAITKPWPIQQRIAELVATEFFDQGDRERKELNIEPTDLMNREKKNKIPSM





QVGFIDAICLQLYEALTHVSEDCFPLLDGCRKNRQKWQALAEQQGS*







OT-001347 (IgE
ORF1:
8662
8683


signal sequence; IL15
MDWTWILFLVAAATRVHSNWVNVISDLKKIEDLIQSMHIDATLYTESDVHP




(Amino acid 49-162 of
SCKVTAMKCFLLELQVISLESGDASIHDTVENLIILANNSLSSNGNVTESGCK




WT); Linker (GS);
ECEELEEKNIKEFLQSFVHIVQMFINTSGSEETRELQSLAAAVVPSAQTLKITD




hPDE5 (Amino acid
FSFSDFELSDLETALCTIRMFTDLNLVQNFQMKHEVLCRWILSVKKNYRKNV




535-860 of WT,
AYHNWRHAFNTAQCMFAALKAGKIQNKLTDLEILALLIAALSHDLDHRGV




R732L, F736A); stop; 
NNSYIQRSEHPLAQLYCHSIMEHHHFDQCLMILNSPGNQILSGLSIEEYKTTL




spacer; IRES; Spacer;
KIIKQAILATDLALYIKRLGEFAELIRKNQFNLEDPHQKELFLAMLMTACDLS




mcherry; stop)
AITKPWPIQQRIAELVATEFFDQGDRERKELNIEPTDLMNREKKNKIPSMQV





GFIDAICLQLYEALTHVSEDCFPLLDGCRKNRQKWQALAEQQ*








ORF2:
8663




MSKGEEDNMAIIKEFMRFKVHMEGSVNGHEFEIEGEGEGRPYEGTQTAKLK





VTKGGPLPFAWDILSPQFMYGSKAYVKHPADIPDYLKLSFPEGFKWERVMN





FEDGGVVTVTQDSSLQDGEFIYKVKLRGTNFPSDGPVMQKKTMGWEASSER





MYPEDGALKGEIKQRLKLKDGGHYDAEVKTTYKAKKPVQLPGAYNVNIKL





DITSHNEDYTIVEQYERAEGRHSTGGMDELYK*







OT-001348 (IgE
MDWTWILFLVAAATRVHSNWVNVISDLKKIEDLIQSMHIDATLYTESDVHP
8664
8684


signal sequence; IL15
SCKVTAMKCFLLELQVISLESGDASIHDTVENLIILANNSLSSNGNVTESGCK




(Amino acid 49-162 of
ECEELEEKNIKEFLQSFVHIVQMFINTSGSEETRELQSLAAAVVPSAQTLKITD




WT); Linker (GS);
FSFSDFELSDLETALCTIRMFTDLNLVQNFQMKHEVLCRWILSVKKNYRKNV




hPDE5 (Amino acid
AYHNWRHAFNTAQCMFAALKAGKIQNKLTDLEILALLIAALSHDLDHRGV




535-860 of WT,
NNSYIQRSEHPLAQLYCHSIMEHHHFDQCLMILNSPGNQILSGLSIEEYKTTL




R732L, F736A);
KIIKQAILATDLALYIKRLGEFAELIRKNQFNLEDPHQKELFLAMLMTACDLS




Linker (GS); P2A
AITKPWPIQQRIAELVATEFFDQGDRERKELNIEPTDLMNREKKNKIPSMQV




peptide; mcherry;
GFIDAICLQLYEALTHVSEDCFPLLDGCRKNRQKWQALAEQQGSGATNFSLL




stop)
KQAGDVEENPGPLSKGEEDNMAIIKEFMRFKVHMEGSVNGHEFEIEGEGEG





RPYEGTQTAKLKVTKGGPLPFAWDILSPQFMYGSKAYVKHPADIPDYLKLSF





PEGFKWERVMNFEDGGVVTVTQDSSLQDGEFIYKVKLRGTNFPSDGPVMQ





KKTMGWEASSERMYPEDGALKGEIKQRLKLKDGGHYDAEVKTTYKAKKP





VQLPGAYNVNIKLDITSHNEDYTIVEQYERAEGRHSTGGMDELYK*









In some embodiments, any of the hPDE5 R732 mutants described in Table 6 may be appended to immunotherapeutic payloads such as IL15, IL15Ra or cytokine-cytokine receptor fusion polypeptides such IL15 fused to IL15Ra. Any of the linkers, cleavage peptides, and tags described in Table 19 may be used to build the generate described in Table 20.









TABLE 20







IL15/IL15Ra-hPDE5 R732 constructs












AA
NA




SEQ
SEQ


Construct ID (Description)
Amino Acid Sequence
ID NO
ID NO





OT-001327 (IgE signal 
MDWTWILFLVAAATRVHSDYKDDDDKNWVNVISDLKKIEDLIQSM
8685
8702


sequence; Flag tag; 
HIDATLYTESDVIIPSCKVTAMKCFLLELQVISLESGDASIHDTVENLI




IL15 (Amino acid 49-
ILANNSLSSNGNVTESGCKECEELEEKNIKEFLQSFVHIVQMFINTSS




162 of WT); Linker (SG3-
GGGSGGGGSGGGGSGGGGSGGGSLQYPYDVPDYAITCPPPMSVEH




(SG4)3-SG3-SLQ (SEQ ID NO:
ADIWVKSYSLYSRERYICNSGFKRKAGTSSLTECVLNKATNVAHWT




323)); HA tag; IL15Ra (Amino
TPSLKCIRDPALVHQRPAPPSTVTTAGVTPQPESLSPSGKEPAASSPSS




acid 31-267 of WT); Linker
NNTAATTAAIVPGSQLMPSKSPSTGTTEISSHESSHGTPSQTTAKNWE




(GSG); hPDE5 (Amino acid 535-
LTASASHQPPGVYPQGHSDTTVAISTSTVLLCGLSAVSLLACYLKSR




860 of WT, R732I); stop)
QTPPLASVEMEAMEALPVTWGTSSRDEDLENCSHHLGSGEETRELQ





SLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFTDLNLVQNFQ





MKREVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMFAALKAG





KIQNKLTDLEILALLIAALSHDLDHRGVNNSYIQRSEHPLAQLYCHSI





MEHHHFDQCLMILNSPGNQILSGLSIEEYKTTLKIIKQAILATDLALYI





KRIGEFFELIRKNQFNLEDPHQKELFLAMLMTACDLSAITKPWPIQQ





RIAELVATEFFDQGDRERKELNIEPTDLMNREKKNKIPSMQVGFIDAI





CLQLYEALTHVSEDCFPLLDGCRKNRQKWQALAEQQ*







OT-001328 (IgE signal 
MDWTWILFLVAAATRVHSDYKDDDDKNWVNVISDLKKIEDLIQSM
8686
8703


sequence; Flag tag; IL15
HIDATLYTESDVHPSCKVTAMKCFLLELQVISLESGDASIHDTVENLI




(Amino acid 49-
ILANNSLSSNGNVTESGCKECEELEEKNIKEFLQSFVHIVQMFINTSS




162 of WT); Linker (SG3-
GGGSGGGGSGGGGSGGGGSGGGSLQYPYDVPDYAITCPPPMSVEH




(SG4)3-SG3-SLQ (SEQ ID NO:
ADIWVKSYSLYSRERYICNSGFKRKAGTSSLTECVLNKATNVAHWT




323)); HA tag; IL15Ra (Amino
TPSLKCIRDPALVHQRPAPPSTVTTAGVTPQPESLSPSGKEPAASSPSS




acid 31-267 of WT); Linker
NNTAATTAAIVPGSQLMPSKSPSTGTTEISSHESSHGTPSQTTAKNWE




(GSG); hPDE5 (Amino acid 535-
LTASASHQPPGVYPQGHSDTTVAISTSTVLLCGLSAVSLLACYLKSR




860 of WT, R732M); stop)
QTPPLASVEMEAMEALPVTWGTSSRDEDLENCSHHLGSGEETRELQ





SLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFTDLNLVQNFQ





MKHEVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMFAALKAG





KIQNKLTDLEILALLIAALSHDLDHRGVNNSYIQRSEHPLAQLYCHSI





MEHHHFDQCLMILNSPGNQILSGLSIEEYKTTLKIIKQAILATDLALYI





KRMGEFFELIRKNQFNLEDPHQKELFLAMLMTACDLSAITKPWPIQQ





RIAELVATEFFDQGDRERKELNIEPTDLMNREKKNKIPSMQVGFIDAI





CLQLYEALTHVSEDCFPLLDGCRKNRQKWQALAEQQ*







OT-001329 (IgE signal sequence;
MDWTWILFLVAAATRVHSDYKDDDDKNWVNVISDLKKIEDLIQSM
8687
8704


Flag tag; IL15 (Amino acid 49-
HIDATLYTESDVHPSCKVTAMKCFLLELQVISLESGDASIHDTVENLI




162 of WT); Linker (SG3-
ILANNSLSSNGNVTESGCKECEELEEKNIKEFLQSFVHIVQMFINTSS




(SG4)3-SG3-SLQ (SEQ ID NO:
GGGSGGGGSGGGGSGGGGSGGGSLQYPYDVPDYAITCPPPMSVEH




323)); HA tag; IL15Ra (Amino
ADIWVKSYSLYSRERVICNSGFKRKAGTSSLTECVLNKATNVAHWT




acid 31-267 of WT); Linker
TPSLKCIRDPALVHQRPAPPSTVTTAGVTPQPESLSPSGKEPAASSPSS




(GSG); hPDE5 (Amino acid 535-
NNTAATTAAIVPGSQLMPSKSPSTGTTEISSHESSHGTPSQTTAKNWE




860 of WT, R732V); stop)
LTASASHQPPGVYPQGHSDTTVAISTSTVLLCGLSAVSLLACYLKSR





QTPPLASVEMEAMEALPVTWGTSSRDEDLENCSHHLGSGEETRELQ





SLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFTDLNLVQNFQ





MKHEVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMFAALKAG





KIQNKLTDLEILALLIAALSHDLDHRGVNNSYIQRSEHPLAQLYCHSI





MEHHHFDQCLMILNSPGNQILSGLSIEEYKTTLKIIKQAILATDLALYI





KRVGEFFELIRKNQFNLEDPHQKELFLAMLMTACDLSAITKPWPIQQ





RIAELVATEFFDQGDRERKELNIEPTDLMNREKKNKIPSMQVGFIDAI





CLQLYEALTHVSEDCFPLLDGCRKNRQKWQALAEQQ*







OT-001330 (IgE signal sequence;
MDWTWILFLVAAATRVHSDYKDDDDKNWVNVISDLKKIEDLIQSM
8688
8705


Flag tag; IL15 (Amino acid 49-
HIDATLYTESDVHPSCKVTAMKCFLLELQVISLESGDASIHDTVENLI




162 of WT); Linker (SG3-
ILANNSLSSNGNVTESGCKECEELEEKNIKEFLQSFVHIVQMFINTSS




(SG4)3-SG3-SLQ (SEQ ID NO:
GGGSGGGGSGGGGSGGGGSGGGSLQYPYDVPDYAITCPPPMSVEH




323)); HA tag; IL15Ra (Amino
ADIWVKSYSLYSRERYICNSGFKRKAGTSSLTECVLNKATNVAHWT




acid 31-267 of WT); Linker
TPSLKCIRDPALVHQRPAPPSTVTTAGVTPQPESLSPSGKEPAASSPSS




(GSG); hPDE5 (Amino acid 535-
NNTAATTAAIVPGSQLMPSKSPSTGTTEISSHESSHGTPSQTTAKNWE




860 of WT, R732S); stop)
LTASASHQPPGVYPQGHSDTTVAISTSTVLLCGLSAVSLLACYLKSR





QTPPLASVEMEAMEALPVTWGTSSRDEDLENCSHHLGSGEETRELQ





SLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFTDLNLVQNFQ





MKHEVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMFAALKAG





KIQNKLTDLEILALLIAALSHDLDHRGVNNSYIQRSEHPLAQLYCHSI





MEHHHFDQCLMILNSPGNQILSGLSIEEYKTTLKIIKQAILATDLALYI





KRSGEFFELIRKNQFNLEDPHQKELFLAMLMTACDLSAITKPWPIQQ





RIAELVATEFFDQGDRERKELNIEPTDLMNREKKNKIPSMQVGFIDAI





CLQLYEALTHVSEDCFPLLDGCRKNRQKWQALAEQQ*







OT-001331 (IgE signal sequence;
MDWTWILFLVAAATRVHSDYKDDDDKNWVNVISDLKKIEDLIQSM
8689
8706


Flag tag; IL15 (Amino acid 49-
HIDATLYTESDVHPSCKVTAMKCFLLELQVISLESGDASIHDTVENLI




162 of WT); Linker (SG3-
ILANNSLSSNGNVTESGCKECEELEEKNIKEFLQSFVHIVQMFINTSS




(SG4)3-SG3-SLQ (SEQ ID NO:
GGGSGGGGSGGGGSGGGGSGGGSLQYPYDVPDYAITCPPPMSVEH




323)); HA tag; IL15Ra (Amino
ADIWVKSYSLYSRERYICNSGFKRKAGTSSLTECVLNKATNVAHWT




acid 31-267 of WT); Linker
TPSLKCIRDPALVHQRPAPPSTVTTAGVTPQPESLSPSGKEPAASSPSS




(GSG); hPDE5 (Amino acid 535-
NNTAATTAAIVPGSQLMPSKSPSTGTTEISSHESSHGTPSQTTAKNWE




860 of WT, R732P); stop)
LTASASHQPPGVYPQGHSDTTVAISTSTVLLCGLSAVSLLACYLKSR





QTPPLASVEMEAMEALPVTWGTSSRDEDLENCSHHLGSGEETRELQ





SLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFTDLNLVQNFQ





MKHEVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMFAALKAG





KIQNKLTDLEILALLIAALSHDLDHRGVNNSYIQRSEHPLAQLYCHSI





MEHHHFDQCLMILNSPGNQILSGLSIEEYKTTLKIIKQAILATDLALYI





KRPGEFFELIRKNQFNLEDPHQKELFLAMLMTACDLSAITKPWPIQQ





RIAELVATEFFDQGDRERKELNIEPTDLMNREKKNKIPSMQVGFIDAI





CLQLYEALTHVSEDCFPLLDGCRKNRQKWQALAEQQ*







OT-001332 (IgE signal sequence;
MDWTWILFLVAAATRVHSDYKDDDDKNWVNVISDLKKIEDLIQSM
8690
8707


Flag tag; IL15 (Amino acid 49-
HIDATLYTESDVHPSCKVTAMKCFLLELQVISLESGDASIHDTVENLI




162 of WT); Linker (SG3-
ILANNSLSSNGNVTESGCKECEELEEKNIKEFLQSFVHIVQMFINTSS




(SG4)3-SG3-SLQ (SEQ ID NO:
GGGSGGGGSGGGGSGGGGSGGGSLQYPYDVPDYAITCPPPMSVEH




323)); HA tag; IL15Ra (Amino
ADIWVKSYSLYSRERYICNSGFKRKAGTSSLTECVLNKATNVAHWT




acid 31-267 of WT); Linker
TPSLKCIRDPALVHQRPAPPSTVTTAGVTPQPESLSPSGKEPAASSPSS




(GSG); hPDE5 (Amino acid 535-
NNTAATTAAIVPGSQLMPSKSPSTGTTEISSHESSHGTPSQTTAKNWE




860 of WT, R732A); stop)
LTASASHQPPGVYPQGHSDTTVAISTSTVLLCGLSAVSLLACYLKSR





QTPPLASVEMEAMEALPVTWGTSSRDEDLENCSHHLGSGEETRELQ





SLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFTDLNLVQNFQ





MKHEVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMFAALKAG





KIQNKLTDLEILALLIAALSHDLDHRGVNNSYIQRSEHPLAQLYCHSI





MEHHHFDQCLMILNSPGNQILSGLSIEEYKTTLKIIKQAILATDLALYI





KRAGEFFEURKNQFNLEDPHQKELFLAMLMTACDLSAITKPWPIQQ





RIAELVATEFFDQGDRERKELNIEPTDLMNREKKNKIPSMQVGFIDAI





CLQLYEALTHVSEDCFPLLDGCRKNRQKWQALAEQQ*







OT-001333 (IgE signal sequence;
MDWTWILFLVAAATRVHSDYKDDDDKNWVNVISDLKKIEDLIQSM
8691
8708


Flag tag; IL15 (Amino acid 49-
HIDATLYTESDVHPSCKVTAMKCFLLELQVISLESGDASIHDTVENLI




162 of WT); Linker (SG3-
ILANNSLSSNGNVTESGCKECEELEEKNIKEFLQSFVHIVQMFINTSS




(SG4)3-SG3-SLQ (SEQ ID NO:
GGGSGGGGSGGGGSGGGGSGGGSLQYPYDVPDYAITCPPPMSVEH




323)); HA tag; IL15Ra (Amino
ADIWVKSYSLYSRERYICNSGFKRKAGTSSLTECVLNKATNVAHWT




acid 31-267 of WT); Linker
TPSLKCIRDPALVHQRPAPPSTVTTAGVTPQPESLSPSGKEPAASSPSS




(GSG); hPDE5 (Amino acid 535- 
NNTAATTAAIVPGSQLMPSKSPSTGTTEISSHESSHGTPSQTTAKNWE




860 of WT, R732Y); stop)
LTASASHQPPGVYPQGHSDTTVAISTSTVLLCGLSAVSLLACYLKSR





QTPPLASVEMEAMEALPVTWGTSSRDEDLENCSHHLGSGEETRELQ





SLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFTDLNLVQNFQ





MKHEVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMFAALKAG





KIQNKLTDLEILALLIAALSHDLDHRGVNNSYIQRSEHPLAQLYCHSI





MEHHHFDQCLMILNSPGNQILSGLSIEEYKTTLKIIKQAILATDLALYI





KRYGEFFELIRKNQFNLEDPHQKELFLAMLMTACDLSAITKPWPIQQ





RIAELVATEFFDQGDRERKELNIEPTDLMNREKKNKIPSMQVGFIDAI





CLQLYEALTHVSEDCFPLLDGCRKNRQKWQALAEQQ*







OT-001334 (IgE signal sequence;
MDWTWILFLVAAATRVHSDYKDDDDKNWVNVISDLKKIEDLIQSM
8692
8709


Flag tag; IL15 (Amino acid 49-
HIDATLYTESDVHPSCKVTAMKCFLLELQVISLESGDASIHDTVENLI




162 of WT); Linker (SG3-
ILANNSLSSNGNVTESGCKECEELEEKNIKEFLQSFVHIVQMFINTSS




(SG4)3-SG3-SLQ (SEQ ID NO:
GGGSGGGGSGGGGSGGGGSGGGSLQYPYDVPDYAITCPPPMSVEH




323)); HA tag; IL15Ra (Amino
ADIWVKSYSLYSRERYICNSGFKRKAGTSSLTECVLNKATNVAHWT




acid 31-267 of WT); Linker
TPSLKCIRDPALVHQRPAPPSTVTTAGVTPQPESLSPSGKEPAASSPSS




(GSG); hPDE5 (Amino acid 535-
NNTAATTAAIVPGSQLMPSKSPSTGTTEISSHESSHGTPSQTTAKNWE




860 of WT, R732H); stop)
LTASASHQPPGVYPQGHSDTTVAISTSTVLLCGLSAVSLLACYLKSR





QTPPLASVEMEAMEALPVTWGTSSRDEDLENCSHHLGSGEETRELQ





SLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFTDLNLVQNFQ





MKHEVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMFAALKAG





KIQNKLTDLEILALLIAALSHDLDHRGVNNSYIQRSEHPLAQLYCHSI





MEHHHFDQCLMILNSPGNQILSGLSIEEYKTTLKIIKQAILATDLALYI





KRHGEFFELIRKNQFNLEDPHQKELFLAMLMTACDLSAITKPWPIQQ





RIAELVATEFFDQGDRERKELNIEPTDLMNREKKNKIPSMQVGFIDAI





CLQLYEALTHVSEDCFPLLDGCRKNRQKWQALAEQQ*







OT-001335 (IgE signal sequence;
MDWTWILFLVAAATRVHSDYKDDDDKNWVNVISDLKKIEDLIQSM
8693
8710


Flag tag; IL15 (Amino acid 49-
HIDATLYTESDVHPSCKVTAMKCFLLELQVISLESGDASIHDTVENLI




162 of WT); Linker (SG3-
ILANNSLSSNGNVTESGCKECEELEEKNIKEFLQSFVHIVQMFINTSS




(SG4)3-SG3-SLQ (SEQ ID NO:
GGGSGGGGSGGGGSGGGGSGGGSLQYPYDVPDYAITCPPPMSVEH




323)); HA tag; IL15Ra (Amino
ADIWVKSYSLYSRERYICNSGFKRKAGTSSLTECVLNKATNVAHWT




acid 31-267 of WT); Linker
TPSLKCIRDPALVHQRPAPPSTVTTAGVTPQPESLSPSGKEPAASSPSS




(GSG); hPDE5 (Amino acid 535-
NNTAATTAAIVPGSQLMPSKSPSTGTTEISSHESSHGTPSQTTAKNWE




860 of WT, R732Q); stop)
LTASASHQPPGVYPQGHSDTTVAISTSTVLLCGLSAVSLLACYLKSR





QTPPLASVEMEAMEALPVTWGTSSRDEDLENCSHHLGSGEETRELQ





SLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFTDLNLVQNFQ





MKHEVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMFAALKAG





KIQNKLTDLEILALLIAALSHDLDHRGVNNSYIQRSEHPLAQLYCHSI





MEHHHFDQCLMILNSPGNQILSGLSIEEYKTTLKIIKQAILATDLALYI





KRQGEFFELIRKNQFNLEDPHQKELFLAMLMTACDLSAITKPWPIQQ





RIAELVATEFFDQGDRERKELNIEPTDLMNREKKNKIPSMQVGFIDAI





CLQLYEALTHVSEDCFPLLDGCRKNRQKWQALAEQQ*







OT-001336 (IgE signal sequence;
MDWTWILFLVAAATRVHSDYKDDDDKNWVNVISDLKKIEDLIQSM
8694
8711


Flag tag; IL15 (Amino acid 49-
HIDATLYTESDVHPSCKVTAMKCFLLELQVISLESGDASIHDTVENLI




162 of WT); Linker (SG3-
ILANNSLSSNGNVTESGCKECEELEEKNIKEFLQSFVHIVQMFINTSS




(SG4)3-SG3-SLQ (SEQ ID NO:
GGGSGGGGSGGGGSGGGGSGGGSLQYPYDVPDYAITCPPPMSVEH




323)); HA tag; IL15Ra (Amino
ADIWVKSYSLYSRERYICNSGFKRKAGTSSLTECVLNKATNVAHWT




acid 31-267 of WT); Linker
TPSLKCIRDPALVHQRPAPPSTVTTAGVTPQPESLSPSGKEPAASSPSS




(GSG); hPDE5 (Amino acid 535-
NNTAATTAAIVPGSQLMPSKSPSTGTTEISSHESSHGTPSQTTAKNWE




860 of WT, R732N); stop)
LTASASHQPPGVYPQGHSDTTVAISTSTVLLCGLSAVSLLACYLKSR





QTPPLASVEMEAMEALPVTWGTSSRDEDLENCSHHLGSGEETRELQ





SLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFTDLNLVQNFQ





MKHEVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMFAALKAG





KIQNKLTDLEILALLIAALSHDLDHRGVNNSYIQRSEHPLAQLYCHSI





MEHHHFDQCLMILNSPGNQILSGLSIEEYKTTLKIIKQAILATDLALYI





KRNGEFFELIRKNQFNLEDPHQKELFLAMLMTACDLSAITKPWPIQQ





RIAELVATEFFDQGDRERKELNIEPTDLMNREKKNKIPSMQVGFIDAI





CLQLYEALTHVSEDCFPLLDGCRKNRQKWQALAEQQ*







OT-001337 (IgE signal sequence;
MDWTWILFLVAAATRVHSDYKDDDDKNWVNVISDLKKIEDLIQSM
8695
8712


Flag tag; IL15 (Amino acid 49-
HIDATLYTESDVHPSCKVTAMKCFLLELQVISLESGDASIHDTVENLI




162 of WT); Linker (SG3-
ILANNSLSSNGNVTESGCKECEELEEKNIKEFLQSFVHIVQMFINTSS




(SG4)3-SG3-SLQ (SEQ ID NO:
GGGSGGGGSGGGGSGGGGSGGGSLQYPYDVPDYAITCPPPMSVEH




323)); HA tag; IL15Ra (Amino
ADIWVKSYSLYSRERYICNSGFKRKAGTSSLTECVLNKATNVAHWT




acid 31-267 of WT); Linker
TPSLKCIRDPALVHQRPAPPSTVTTAGVTPQPESLSPSGKEPAASSPSS




(GSG); hPDE5 (Amino acid 535-
NNTAATTAAIVPGSQLMPSKSPSTGTTEISSHESSHGTPSQTTAKNWE




860 of WT, R732K); stop)
LTASASHQPPGVYPQGHSDTTVAISTSTVLLCGLSAVSLLACYLKSR





QTPPLASVEMEAMEALPVTWGTSSRDEDLENCSHHLGSGEETRELQ





SLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFTDLNLVQNFQ





MKHEVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMFAALKAG





KIQNKLTDLEILALLIAALSHDLDHRGVNNSYIQRSEHPLAQLYCHSI





MEHHHFDQCLMILNSPGNQILSGLSIEEYKTTLKIIKQAILATDLALYI





KRKGEFFELIRKNQFNLEDPHQKELFLAMLMTACDLSAITKPWPIQQ





RIAELVATEFFDQGDRERKELNIEPTDLMNREKKNKIPSMQVGFIDAI





CLQLYEALTHVSEDCFPLLDGCRKNRQKWQALAEQQ*







OT-001338 (IgE signal sequence;
MDWTWILFLVAAATRVHSDYKDDDDKNWVNVISDLKKIEDLIQSM
8696
8713


Flag tag; IL15 (Amino acid 49-
HIDATLYTESDVHPSCKVTAMKCFLLELQVISLESGDASIHDTVENLI




162 of WT); Linker (SG3-
ILANNSLSSNGNVTESGCKECEELEEKNIKEFLQSFVHIVQMFINTSS




(SG4)3-SG3-SLQ (SEQ ID NO:
GGGSGGGGSGGGGSGGGGSGGGSLQYPYDVPDYAITCPPPMSVEH




323)); HA tag; IL15Ra (Amino
ADIWVKSYSLYSRERYICNSGFKRKAGTSSLTECVLNKATNVAHWT




acid 31-267 of WT); Linker
TPSLKCIRDPALVHQRPAPPSTVTTAGVTPQPESLSPSGKEPAASSPSS




(GSG); hPDE5 (Amino acid 535-
NNTAATTAAIVPGSQLMPSKSPSTGTTEISSHESSHGTPSQTTAKNWE




860 of WT, R732D); stop)
LTASASHQPPGVYPQGHSDTTVAISTSTVLLCGLSAVSLLACYLKSR





QTPPLASVEMEAMEALPVTWGTSSRDEDLENCSHHLGSGEETRELQ





SLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFTDLNLVQNFQ





MKHEVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMFAALKAG





KIQNKLTDLEILALLIAALSHDLDHRGVNNSYIQRSEHPLAQLYCHSI





MEHHHFDQCLMILNSPGNQILSGLSIEEYKTTLKIIKQAILATDLALYI





KRDGEFFELIRKNQFNLEDPHQKELFLAMLMTACDLSAITKPWPIQQ





RIAELVATEFFDQGDRERKELNIEPTDLMNREKKNKIPSMQVGFIDAI





CLQLYEALTHVSEDCFPLLDGCRKNRQKWQALAEQQ*







OT-001339 (IgE signal sequence;
MDWTWILFLVAAATRVHSDYKDDDDKNWVNVISDLKKIEDLIQSM
8697
8714


Flag tag; IL15 (Amino acid 49-
HIDATLYTESDVHPSCKVTAMKCFLLELQVISLESGDASIHDTVENLI




162 of WT); Linker (SG3-
ILANNSLSSNGNVTESGCKECEELEEKNIKEFLQSFVHIVQMFINTSS




(SG4)3-SG3-SLQ (SEQ ID NO:
GGGSGGGGSGGGGSGGGGSGGGSLQYPYDVPDYAITCPPPMSVEH




323)); HA tag; IL15Ra (Amino
ADIWVKSYSLYSRERYICNSGFKRKAGTSSLTECVLNKATNVAHWT




acid 31-267 of WT); Linker
TPSLKCIRDPALVHQRPAPPSTVTTAGVTPQPESLSPSGKEPAASSPSS




(GSG); hPDE5 (Amino acid 535-
NNTAATTAAIVPGSQLMPSKSPSTGTTEISSHESSHGTPSQTTAKNWE




860 of WT, R732E); stop)
LTASASHQPPGVYPQGHSDTTVAISTSTVLLCGLSAVSLLACYLKSR





QTPPLASVEMEAMEALPVTWGTSSRDEDLENCSHHLGSGEETRELQ





SLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFTDLNLVQNFQ





MKHEVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMFAALKAG





KIQNKLTDLEILALLIAALSHDLDHRGVNNSYIQRSEHPLAQLYCHSI





MEHHHFDQCLMILNSPGNQILSGLSIEEYKTTLKIIKQAILATDLALYI





KREGEFFELIRKNQFNLEDPHQKELFLAMLMTACDLSAITKPWPIQQ





RIAELVATEFFDQGDRERKELNIEPTDLMNREKKNKIPSMQVGFIDAI





CLQLYEALTHVSEDCFPLLDGCRKNRQKWQALAEQQ*







OT-001340 (IgE signal sequence;
MDWTWILFLVAAATRVHSDYKDDDDKNWVNVISDLKKIEDLIQSM
8698
8715


Flag tag; IL15 (Amino acid 49-
HIDATLYTESDVHPSCKVTAMKCFLLELQVISLESGDASIHDTVENLI




162 of WT); Linker (SG3-
ILANNSLSSNGNVTESGCKECEELEEKNIKEFLQSFVHIVQMFINTSS




(SG4)3-SG3-SLQ (SEQ ID NO:
GGGSGGGGSGGGGSGGGGSGGGSLQYPYDVPDYAITCPPPMSVEH




323)); HA tag; IL15Ra (Amino
ADIWVKSYSLYSRERYICNSGFKRKAGTSSLTECVLNKATNVAHWT




acid 31-267 of WT); Linker
TPSLKCIRDPALVHQRPAPPSTVTTAGVTPQPESLSPSGKEPAASSPSS




(GSG); hPDE5 (Amino acid 535-
NNTAATTAAIVPGSQLMPSKSPSTGTTEISSHESSHGTPSQTTAKNWE




860 of WT, R732C); stop)
LTASASHQPPGVYPQGHSDTTVAISTSTVLLCGLSAVSLLACYLKSR





QTPPLASVEMEAMEALPVTWGTSSRDEDLENCSHHLGSGEETRELQ





SLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFTDLNLVQNFQ





MKHEVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMFAALKAG





KIQNKLTDLEILALLIAALSHDLDHRGVNNSYIQRSEHPLAQLYCHSI





MEHHHFDQCLMILNSPGNQILSGLSIEEYKTTLKIIKQAILATDLALYI





KRCGEFFELIRKNQFNLEDPHQKELFLAMLMTACDLSAITKPWPIQQ





RIAELVATEFFDQGDRERKELNIEPTDLMNREKKNKIPSMQVGFIDAI





CLQLYEALTHVSEDCFPLLDGCRKNRQKWQALAEQQ*







OT-001341 (IgE signal sequence;
MDWTWILFLVAAATRVHSDYKDDDDKNWVNVISDLKKIEDLIQSM
8699
8716


Flag tag; IL15 (Amino acid 49-
HIDATLYTESDVHPSCKVTAMKCFLLELQVISLESGDASIHDTVENLI




162 of WT); Linker (SG3-
ILANNSLSSNGNVTESGCKECEELEEKNIKEFLQSFVHIVQMFINTSS




(SG4)3-SG3-SLQ (SEQ ID NO:
GGGSGGGGSGGGGSGGGGSGGGSLQYPYDVPDYAITCPPPMSVEH




323)); HA tag; IL15Ra (Amino
ADIWVKSYSLYSRERYICNSGFKRKAGTSSLTECVLNKATNVAHWT




acid 31-267 of WT); Linker
TPSLKCIRDPALVHQRPAPPSTVTTAGVTPQPESLSPSGKEPAASSPSS




(GSG); hPDE5 (Amino acid 535-
NNTAATTAAIVPGSQLMPSKSPSTGTTEISSHESSHGTPSQTTAKNWE




860 of WT, R732G); stop)
LTASASHQPPGVYPQGHSDTTVAISTSTVLLCGLSAVSLLACYLKSR





QTPPLASVEMEAMEALPVTWGTSSRDEDLENCSHHLGSGEETRELQ





SLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFTDLNLVQNFQ





MKHEVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMFAALKAG





KIQNKLTDLEILALLIAALSHDLDHRGVNNSYIQRSEHPLAQLYCHSI





MEHHHFDQCLMILNSPGNQILSGLSIEEYKTTLKIIKQAILATDLALYI





KRGGEFFELIRKNQFNLEDPHQKELFLAMLMTACDLSAITKPWPIQQ





RIAELVATEFFDQGDRERKELNIEPTDLMNREKKNKIPSMQVGFIDAI





CLQLYEALTHVSEDCFPLLDGCRKNRQKWQALAEQQ*







OT-001342 (IgE signal sequence;
MDWTWILFLVAAATRVHSDYKDDDDKNWVNVISDLKKIEDLIQSM
8700
8717


Flag tag; IL15 (Amino acid 49-
HIDATLYTESDVHPSCKVTAMKCFLLELQVISLESGDASIHDTVENLI




162 of WT); Linker (SG3-
ILANNSLSSNGNVTESGCKECEELEEKNIKEFLQSFVHIVQMFINTSS




(SG4)3-SG3-SLQ (SEQ ID NO:
GGGSGGGGSGGGGSGGGGSGGGSLQYPYDVPDYAITCPPPMSVEH




323)); HA tag; IL15Ra (Amino
ADIWVKSYSLYSRERYICNSGFKRKAGTSSLTECVLNKATNVAHWT




acid 31-267 of WT); Linker
TPSLKCIRDPALVHQRPAPPSTVTTAGVTPQPESLSPSGKEPAASSPSS




(GSG); hPDE5 (Amino acid 535-
NNTAATTAAIVPGSQLMPSKSPSTGTTEISSHESSHGTPSQTTAKNWE




860 of WT, R732W); stop)
LTASASHQPPGVYPQGHSDTTVAISTSTVLLCGLSAVSLLACYLKSR





QTPPLASVEMEAMEALPVTWGTSSRDEDLENCSHHLGSGEETRELQ





SLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFTDLNLVQNFQ





MKHEVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMFAALKAG





KIQNKLTDLEILALLIAALSHDLDHRGVNNSYIQRSEHPLAQLYCHSI





MEHHHFDQCLMILNSPGNQILSGLSIEEYKTTLKIIKQAILATDLALYI





KRWGEFFELIRKNQFNLEDPHQKELFLAMLMTACDLSAITKPWPIQQ





RIAELVATEFFDQGDRERKELNIEPTDLMNREKKNKIPSMQVGFIDAI





CLQLYEALTHVSEDCFPLLDGCRKNRQKWQALAEQQ*







OT-001343 (IgE signal sequence;
MDWTWILFLVAAATRVHSDYKDDDDKNWVNVISDLKKIEDLIQSM
8701
8718


Flag tag; IL15 (Amino acid 49-
HIDATLYTESDVHPSCKVTAMKCFLLELQVISLESGDASIHDTVENLI




162 of WT); Linker (SG3-
ILANNSLSSNGNVTESGCKECEELEEKNIKEFLQSFVHIVQMFINTSS




(SG4)3-SG3-SLQ (SEQ ID NO:
GGGSGGGGSGGGGSGGGGSGGGSLQYPYDVPDYAITCPPPMSVEH




323)); HA tag; IL15Ra (Amino
ADIWVKSYSLYSRERYICNSGFKRKAGTSSLTECVLNKATNVAHWT




acid 31-267 of WT); Linker
TPSLKCIRDPALVHQRPAPPSTVTTAGVTPQPESLSPSGKEPAASSPSS




(GSG); hPDE5 (Amino acid 535-
NNTAATTAAIVPGSQLMPSKSPSTGTTEISSHESSHGTPSQTTAKNWE




860 of WT, R732T); stop)
LTASASHQPPGVYPQGHSDTTVAISTSTVLLCGLSAVSLLACYLKSR





QTPPLASVEMEAMEALPVTWGTSSRDEDLENCSHHLGSGEETRELQ





SLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFTDLNLVQNFQ





MKHEVLCRWILSVKKNYRKNVAYHNWRHAFNTAQCMFAALKAG





KIQNKLTDLEILALLIAALSHDLDHRGVNNSYIQRSEHPLAQLYCHSI





MEHHHFDQCLMILNSPGNQILSGLSIEEYKTTLKIIKQAILATDLALYI





KRTGEFFELIRKNQFNLEDPHQKELFLAMLMTACDLSAITKPWPIQQ





RIAELVATEFFDQGDRERKELNIEPTDLMNREKKNKIPSMQVGFIDAI





CLQLYEALTHVSEDCFPLLDGCRKNRQKWQALAEQQ*









In some embodiments, the sequences described in Table 19, may contain an additional stop codon. For example, the construct “hPDE5 (Amino acid 535-860 of WT, R732L); stop” may be encoded by the nucleotide sequence of SEQ ID NO: 8362, and the construct “hPDE5 (Amino acid 535-860 of WT, R732L, F736A); stop” may be encoded by the nucleotide sequence of SEQ ID NO: 8363.


In one embodiment, the payload of the present disclosure may comprise IL18. IL18 is a proinflammatory and immune regulatory cytokine that promotes IFN γ production by T and NK cells. IL18 belongs to the IL1 family. Secreted IL18 binds to a heterodimer receptor complex, consisting of IL18Rα and β-chains and initiates signal transduction. IL18 acts in concert with other cytokines to modulate immune system functions, including induction of IFN γ production, Th1 responses, and NK cell activation in response to pathogen products. IL18 showed anti-cancer effects in several tumors. Administration of recombinant IL18 protein or IL18 transgene induces melanoma or sarcoma regression through the activation of CD4+ T and/or NK cell-mediated responses (reviewed by Srivastava et al., Curr. Med. Chem., 2010, 17: 3353-3357). The combination of IL18 with other cytokines, such as IL12 or co-stimulatory molecules (e.g., CD80) increases IL18 anti-tumor effects. For example, IL18 and IL12A/B or CD80 genes have been integrated successfully in the genome of oncolytic viruses, with the aim to trigger synergistically T cell-mediated anti-tumor immune responses (Choi et al., Gene Ther., 2011, 18: 898-909). IL2/IL18 fusion proteins also display enhanced anti-tumor properties relative to either cytokine alone and low toxicity in preclinical models (Acres et al., Cancer Res., 2005, 65:9536-9546).


IL18 alone, or in combination of IL12 and IL15, activates NK cells. Preclinical studies have demonstrated that adoptively transferred IL12, IL15 and IL18 pre-activated NK cells display enhanced effector function against established tumors in vivo (Ni et al., J Exp Med. 2012, 209: 2351-2365; and Romee et al., Blood. 2012, 120:4751-4760). Human IL12/IL15/IL18 activated NK cells also display memory-like features and secrete more IFN yin response to cytokines (e.g., low concentration of IL2). In one embodiment, the effector module of the present disclosure may be a DD-IL18 fusion polypeptide.


In one embodiment, the payload of the present disclosure may comprise IL21. IL21 is another pleiotropic type I cytokine that is produced mainly by T cells and natural killer T (NKT) cells. IL21 has diverse effects on a variety of cell types including but not limited to CD4+ and CD8+ T cells, B cells, macrophages, monocytes, and dendritic cells (DCs). The functional receptor for IL21 is composed of IL21 receptor (IL21R) and the common cytokine receptor gamma chain, which is also a subunit of the receptors for IL2, IL4, IL7, IL9 and IL15. Studies provide compelling evidence that IL21 is a promising immunotherapeutic agent for cancer immunotherapy. IL21 promotes maturation, enhances cytotoxicity, and induces production of IFN γ and perforin by NK cells. These effector functions inhibit the growth of B16 melanoma (Kasaian et al., Immunity. 2002, 16(4):559-569; and Brady et al., J Immunol. 2004, 172(4):2048-2058). IL21 together with IL15 expands antigen-specific CD8+ T-cell numbers and their effector function, resulting in tumor regression (Zeng et al., J Exp Med. 2005, 201(1):139-148). IL21 may also be used to rejuvenate multiple immune effector cells in the tumor microenvironment. IL21 may also directly induce apoptosis in certain types of lymphoma such as diffuse large B-cell lymphoma, mantle cell lymphoma, and chronic lymphocytic leukemia cells, via activation of STAT3 or STAT1 signal pathway. IL21, alone or in combination with anti-CD20 mAb (rituximab) can activate NK cell-dependent cytotoxic effects. Interestingly, discovery of the immunosuppressive actions of IL21 suggests that this cytokine is a “double-edged sword”-IL21 stimulation may lead to either the induction or suppression of immune responses. Both stimulatory and suppressive effects of IL21 must be considered when using IL21-related immunotherapeutic agents. The level of IL21 needs to be tightly controlled by regulatory elements. In one aspect, the effector module of the present disclosure may be a DD-IL21 fusion polypeptide.


In some embodiments, payloads of the present disclosure may comprise type I interferons. Type I interferons (IFNs-I) are soluble proteins important for fighting viral infection in humans IFNs-I include IFN alpha subtypes (IFN α1, IFN α1b, IFN α1c), IFN beta, IFN delta subtypes (IFN delta 1, IFN delta 2, IFN delta 8), IFN gamma, IFN kappa, and IFN epsilon, IFN lambda, IFN omega, IFN tau and IFN zeta. IFN α and IFN β are the main IFN I subtypes in immune responses. All subtypes of IFN I signal through a unique heterodimeric receptor, interferon alpha receptor (IFNAR), composed of 2 subunits, IFNAR1 and IFNAR2. IFNR activation regulates the host response to viral infections and in adaptive immunity Several signaling cascades can be activated by IFNR, including the Janus activated kinase-signal transducer and activation of transcription (JAK-STAT) pathway, the mitogen activated protein kinase (MAPK) pathway, the phosphoinositide 3-kinase (PI3K) pathway, the v-crk sarcoma virus CT10 oncogene homolog (avian)-like (CRKL) pathway, and NF-κB cascade. It has long been established that type I IFNs directly inhibit the proliferation of tumor cells and virus-infected cells, and increase MHC class I expression, enhancing antigen recognition. IFNs-I have also proven to be involved in immune system regulation. IFNs can either directly, through interferon receptor (IFNR), or indirectly by the induction of chemokines and cytokines, regulate the immune system. Type I IFNs enhance NK cell functions and promote survival of NK cells. Type I IFNs also affect monocytes, supporting the differentiation of monocytes into DC with high capacity for antigen presentation, and stimulate macrophage function and differentiation. Several studies also demonstrate that IFNs-I promote CD8+ T cell survival and functions. In some instances, it may be desirable to tune the expression of Type I IFNs using biocircuits of the present disclosure to avoid immunosuppression caused by long-term treatment with IFNs.


New anticancer immunotherapies are being developed that use recombinant type I IFN proteins, type I IFN transgene, type I IFN encoding vectors and type I IFN expressing cells. For example, IFN α has received approval for treatment of several neoplastic diseases, such as melanoma, RCC and multiple myeloma. Though type I IFNs are powerful tools to directly and indirectly modulate the functions of the immune system, side effects of systemic long-term treatments and lack of sufficiently high efficacy have dampened the interest of IFN α for clinical use in oncology. It is believed that if IFN levels are tightly regulated at the malignant tissues, type I IFNs are likely more efficacious. Approaches for intermittent delivery are proposed according to the observation that intermittency at an optimized pace may help to avoid signaling desensitizing mechanisms (negative feedback mechanisms) induced by IFNs-I (i.e., because of SOCS1 induction) in the responding immune cells. In accordance with the present disclosure, the effector module may comprise a DD-IFN fusion polypeptide. The DD and its ligand control the expression of IFN to induce an antiviral and antitumor immune responses and in the meantime, to minimize the side effects caused by long-term exposure of IFN.


In some embodiments, payloads of the present disclosure may comprise members of tumor necrosis factor (TNF) superfamily. The term “TNF superfamily” as used herein refers to a group of cytokines that can induce apoptosis. Members of TNF family include TNF-alpha, TNF-beta (also known as lymphotoxin-alpha (LT-α)), lymphotoxin-beta (LT-β), CD40L(CD154), CD27L (CD70), CD30L(CD153), FASL(CD178), 4-1BBL (CD137L), OX40L, TRAIL (TNF-related apoptosis inducing ligand), APRIL (a proliferation-inducing ligand), TWEAK, TRANCE, TALL-1, GITRL, LIGHT and TNFSF1 to TNFSF20 (TNF ligand superfamily member 1 to 20). In one embodiment, the payload of the disclosure may be TNF-alpha. TNF-alpha can cause cytolysis of tumor cells, and induce cell proliferation differentiation as well. In one aspect, the effector module of the present disclosure may comprise a DD-TNF alpha fusion polypeptide.


In one embodiment, the payloads of the present disclosure may be cytokines fused to TNF alpha ectodomain. Such payloads are produced as membrane associated cytokines fused to the TNF ectodomain. In one embodiment, the cytokine may be shed from the cell surface by the action of membrane associated proteases, and/or proteases in the extracellular space e.g. MMP9. Any of the cytokines described herein may be useful in the present disclosure. Such cytokine-TNF scaffold constructs may be used to preserve the native sequence of the processed cytokine while preserving regulation.


In some embodiments, payloads of the present disclosure may comprise inhibitory molecules that block inhibitory cytokines. The inhibitors may be blocking antibodies specific to an inhibitory cytokine, and antagonists against an inhibitory cytokine, or the like.


In some aspects, payloads of the present disclosure may comprise an inhibitor of a secondary cytokine IL35. IL35 belongs to the interleukin-12 (IL12) cytokine family, and is a heterodimer composed of the IL27 β chain Ebi3 and the IL12 α chain p35. Secretion of bioactive IL35 has been described only in forkhead box protein 3 (Foxp3)+ regulatory T cells (Tregs) (resting and activated Tregs). Unlike other membranes in the family, IL35 appears to function solely in an anti-inflammatory fashion by inhibiting effector T cell proliferation and perhaps other parameters (Collison et al., Nature, 2007, 450(7169): 566-569).


In some embodiments, payloads of the present disclosure may comprise inhibitors that block the transforming growth factor beta (TGF-β) subtypes (TGF-β1, TGF-β2 and TGF-β3). TGF-β is secreted by many cell types, including macrophages and is often complexed with two proteins LTBP and LAP. Serum proteinases such as plasmin catalyze the release of active TGF-β from the complex from the activated macrophages. It has been shown that an increase in expression of TGF-β correlates with the malignancy of many cancers. The immunosuppressive activity of TGF-β in the tumor microenvironment contributes to oncogenesis.


In some embodiments, payloads of the present disclosure may comprise inhibitors of IDO enzyme. In some embodiments, payloads fused to the DDs of the disclosure may be an inhibitor of an immunosuppressive molecule such as TGF-beta and IDO.


In some embodiments, payloads of the present disclosure may comprise chemokines and chemokine receptors. Chemokines are a family of secreted small cytokines, or signaling proteins that can induce directed chemotaxis in nearby responsive cells. The chemokine may be a SCY (small cytokine) selected from the group consisting of SCYA1-28 (CCL1-28), SCYB1-16 (CXCL1-16), SCYC1-2 (XCL1-2), SCYD-1 and SCYE-1; or a C chemokine selected from XCL1 and XCL2; or a CC chemokine selected from CCL1, CCL2, CCL3, CCL4, CCLS, CCL6, CCL7, CCL8, CCL9, CCL10, CCL11, CCL12, CCL13, CCL14, CCL15, CCL16, CCL17, CCL18, CCL19, CCL20, CCL21, CCL22, CCL23, CCL24, CCL25, CCL26, CCL27 and CCL28; or a CXC chemokine selected from CXCL1, CXCL2, CXCL3, CXCL4, CXCL5, CXCL6, CXCL7, CXCL8, CXCL9, CXCL10, CXCL11, CXCL12, CXCL13, CXCL14, CXCL15, CXCL16 and CXCL17; or a CX3C chemokine CX3CL1. In some aspects, the chemokine receptor may be a receptor for the C chemokines including XCR1; or a receptor for the CC chemokines including CCR1, CCR2, CCR3, CCR4, CCR5, CCR6, CCR7, CCR8, CCR9 and CCR10; or a receptor for the CXC chemokines including CXCR1, CXCR2, CXCR3, CXCR4 and CXCR5; or a CX3C chemokine receptor CX3CR1.


In some embodiments, payloads of the present disclosure may comprise other immunomodulators that play a critical role in immunotherapy, such as GM-CSF (Granulocyte-macrophage colony stimulating factor), erythropoietin (EPO), MIP3a, monocyte chemotactic protein (MCP)-1, intracellular adhesion molecule (ICAM), macrophage colony stimulating factor (M-CSF), Interleukin-1 receptor activating kinase (iRAK-1), lactotransferrin, and granulocyte colony stimulating factor (G-CSF).


In some embodiments, the payload of the present disclosure may comprise Amphiregulin. Amphiregulin (AREG) is an EGF-like growth factor which binds to the EGFR receptor and enhances CD4+ regulatory T cells (Tregs) function. AREG promotes immune suppression in the tumor environment. Thus, in some embodiment, the payloads of the present disclosure may comprise Amphiregulin to dampen immune response during immunotherapy.


In some embodiments, payloads of the present disclosure may comprise fusion proteins wherein a cytokine, chemokine and/or other soluble factor may be fused to other biological molecules such as antibodies and or ligands for a receptor. Such fusion molecules may increase the half-life of the cytokines, reduce systemic toxicity, and increase local concentration of the cytokines at the tumor site. Fusion proteins containing two or more cytokines, chemokines and or other soluble factors may be utilized to obtain synergistic therapeutic benefits. In one embodiment, payload may be a GM-CSF/IL2 fusion protein.


In some embodiments, any of the hinge and transmembrane domains described herein may be used as a scaffold for soluble cytokine presentation. The cytokine may be operably linked to the CD8 hinge and transmembrane domain by a protease cleavage site. Cleavage at the cleavage site releases the cytokine from the cell surface membrane. In some aspects, the cytokine may be in a precursor form. Generation of the active form of the cytokine from the precursor form occurs via cleavage at the cleavage site. Any of the cytokines described herein may be engineered using the any of the hinge and transmembrane domains described herein as a scaffold.


7. Immune Regulators

In some embodiments, payloads of the present disclosure may comprise inhibitors (antagonists) of co-inhibitory molecules (e.g., immune checkpoint), including without limitation, PD-1, PD-L1, PD-L2, CTLA-4, TIM-3, VISTA, BTLA, TIGIT, LAIRA, CD160, 2B4 and TGFR. In some aspects, the inhibitor may be a blocking/antagonistic antibody or fragment thereof, as discussed previously, or a ligand of the co-inhibitory receptor.


In some embodiments, payloads of the present disclosure may comprise agonists of co-stimulatory molecules, including without limitation, CD27, CD28, CD30, CD40, OX40 (CD134), 4-1BB (CD137), CDS, ICAM-1, LFA-1 (CD11a/CD18), ICOS (CD278), GITR, BAFFR, HVEM, CD7, LIGHT, NKG2C, SLAMF7, NKp80, CD160, B7-H3 and CD83. As a non-limiting example, agonists of co-stimulatory molecule ICOS (CD278) may be an ICOS binding protein comprising an amino acid sequence of SEQ ID NOs: 1, 2, 3, 4, 5 and 6 disclosed in International Patent Publication NO: WO2016120789; the contents of which are incorporated by reference herein in their entirety.


In some aspects, the agonist of a co-stimulatory molecule may be an agonistic antibody or fragment thereof, as discussed previously; or a ligand of the co-stimulatory receptor; or any binding molecules that can enhance the biological activity of its target. For example, an agonistic ligand of OX40 may be OX40L (CD252). The OX40 ligand as used herein, includes the intact OX40 ligand, soluble OX40 ligand, fusion proteins including a functionally active portion of OX40 ligand covalently linked to a second moiety, e.g., a protein domain, and variants may be which vary in amino acid sequence from naturally occurring OX4L but which retain the ability to specifically bind to the OX40 receptor or even enhance the biological activity of OX40L.


In general, an agonist of a co-stimulatory molecule substantially enhances the biological activity of its target molecule, such as T cell activation. Desirably, the biological activity is enhanced by 10, 20, 30, 50, 70, 80, 90, 95, or even 100.


In some embodiments, payloads of the present disclosure may comprise immunomodulators including stress proteins and heat shock proteins (HSPs) that can integrate both innate and adaptive immune responses. They may also be other chaperones and adaptors that stimulate immune responses. As a non-limiting example, the payload of the present disclosure may be a fusion protein comprising an NF-KB-activating domain of Flagellin fused with an ATP-binding domain truncated glucose regulated protein 170 (Grp170) (See. US patent publication NO.: US2015/0315255; the contents of which are incorporated herein by reference in their entirety). The fusion construct forms a secretable Grp170-Flagellin hybrid chaperone (Flagrp170) which can be used to stimulate anti-cancer immune responses.


In other embodiments, the payload of the present disclosure may comprise a STING (stimulator of interferon gene) protein, an adaptor molecule in the cytoplasm which, as a component of the host cytosolic surveillance pathway, activates the TANK binding kinase (TBK1)-IRF3 signaling axis, resulting in the induction of IFN β and other IRF-3 dependent gene products that strongly activate innate immunity, leading to the development of an adaptive immune response consisting of both antigen-specific CD4+ and CD8+ T cells as well as pathogen-specific antibodies.


Demaria et al. reported that enforced activation of a STING protein by intratumoral injection of cyclic dinucleotide GMP-AMP (cGAMP), an agonist of STING, can enhance antitumor CD8+ T cell responses leading to growth control of injected and contralateral tumors in mouse models of melanoma and colon cancer. The STING-dependent antitumor immunity was dependent on type I IFNs produced by endothelial cells in the tumor microenvironment (Demaria et al., Proc. Natl. Acad. Sci. USA, 2015, 112(5): 15408-15413). These studies demonstrate that STING contributes to anti-tumor immune responses via enhancement of type I IFN signaling in the tumor microenvironment. Biocircuits, effector modules comprising STING may be applied to the tumor microenvironment to enhance anti-tumor responses either alone or in combination with other immunotherapeutic agents of the disclosure.


In addition to STING proteins, payloads of the present disclosure may comprise PRRs (pattern recognition receptors) that are involved in sensing the infection of cells by viruses and microorganisms to activate innate immune inflammatory responses. Such PRRs include Toll like receptors (TLRs), RIG-I-like receptors (RLRs), NOD-like receptors (NLRs), and C-type lectin receptors (CLRs). The RLR family is a RNA sensing system that is comprised of retinoic acid inducible gene-like-I (RIG-1), melanoma differentiation-associated gene 5 (MDAS), and laboratory of genetics and physiology 2 (LGP2). RIG-1 recognizes relatively short dsRNA (up to 1 kb) whereas MDAS detects long dsRNA (more than 2 kb) to activate synthesis of type I IFNs, including IFN α and IFN β (Wilkins et al., Curr Opin Immunol., 2010, 22: 41-47). RLRs activate downstream signaling proteins evoking type I IFN production. TLRs recognize distinct structures in microbes; often referred to as “PAMPs” (pathogen associated molecular patterns). Ligand binding to TLRs invokes a cascade of intra-cellular signaling pathways that induce the production of factors involved in inflammation and immunity such as pro-inflammatory cytokines, and chemokines, as well as CD4+ and CD8+ T cell activation. Among ten TLRs identified in human, TLRs-1, 2, 4, 5 and 6 are expressed in the cell surface, while TLR-3, -7/8, and -9 are expressed with the ER compartment. In some embodiments, payloads of the disclosure may be one of the PRRs, or agonists of PRRs.


8. Metabolic Factors/Metabolic Checkpoint

In some embodiments, immune cells such as T cells used for immunotherapy may be metabolically reprogrammed to enhance anti-tumor T cell responses. Metabolic activities are necessary to support immune cells, specifically T cells growth, expansion, differentiation and effector functions, upon activation through T cell receptor or CAR and co-stimulatory signals. Metabolic competition between cancer cells and infiltrating immune effector cells leads to T cell energy and dysfunction.


In some embodiments, payloads of the present disclosure may be modulators of glycolysis. The Warburg effect in cancer cells leads to the massive generation of lactic acid that can suppress T cell cytotoxic and effector functions. As a non-limiting example, immune cells for adoptive transfer may be modified to overexpress phosphoenolpyruvate carboxykinase 1 (PCK1), which increases PEP production in T cells. Increased production of the glycolytic metabolite phosphoenolpyruvate (PEP) can repress sarco/ER Ca (2+)-ATPase (SERCA) activity, therefore sustaining T cell receptor-mediated Ca (2+)-NFAT signaling and effector functions (Ho et al, Cell, 2015, 162(6): 1217-1228).


In some embodiments, the payloads of the present disclosure may comprise of proteins involved in the OXPHOS pathway. For example, LEM (lymphocyte expansion molecule), a protein that can promote cytotoxic CD8+ T cell proliferation and effector function, and memory T cell generation in response to infection with lymphocyte choriomeningitis (CMV). LEM is part of a complex of CRIF1 (CR6 interacting factor 1) that mediates the translation and insertion of OXPHOS (Oxidative phosphorylation) proteins into mitochondrial inner membrane, thereby regulates OXPHOS activity. Thus, LEM is a positive modulator of T cell metabolism (mitochondria respiratory levels) and expansion (Okoye et al., Science, 2015, 348(6238): 995-1001).


In some embodiments, the payloads of the present disclosure may be inhibitors of metabolic enzymes involved in amino acid regulation. Metabolic competition for between immune cells and tumor cells can lead to establishing and maintaining an immunosuppressive tumor microenvironment due to T cell energy. Non-limiting examples include inhibitors of nitric oxide synthase and arginase I that can degrade extracellular arginine, or Indoleamine 2,3-dioxygenase (IDO) that degrades tryptophan. Abrogation of these enzymes secreted by tumor cells and immune suppressive cells can promote antitumor immunity.


In other embodiments, payloads of the present disclosure may comprise proteins critical for de novo fatty acid and cholesterol biosynthesis. This may include proteins such as SREBP1 (also known as SREBF1), SREBP2 (SREBF2), HMGCR, HMGC5, FASN, ACACA and SQLE, and transport pathways, such as LDLR.


Modulating cholesterol metabolism of cytotoxic CD8+ T cells may potentiate their anti-tumor effector function and proliferation. Cholesterol is a key component of membrane lipids, and has been shown that the increase in the plasma membrane cholesterol level of CD8+ T cells, enhances T-cell receptor clustering and signaling as well as more efficient formation of the immunological synapse (Molnar et al., J Biol Chem. 2012, 287:42664-42674). T cells used for adoptive transfer (e.g., anti-tumor CART cells) may be further engineered to express a protein that enhances cholesterol biosynthesis and/or transportation.


9. Safety Switch

In some embodiments, payloads of the present disclosure may comprise SRE regulated safety switches that can eliminate adoptively transferred cells in the case of severe toxicity, thereby mitigating the adverse effects of T cell therapy. Adoptively transferred T cells in immunotherapy may attack normal cells in response to normal tissue expression of TAA. Even on-tumor target activity of adoptively transferred T cells can result in toxicities such as tumor lysis syndrome, cytokine release syndrome and the related macrophage activation syndrome.


In one embodiment, the payloads of the present disclosure may eliminate the inappropriately activated cells by induction of apoptosis or by immunosurveillance have been developed in the art.


In some embodiments, payloads of the present disclosure may comprise inducible killer/suicide genes that acts as a safety switch. The killer/suicide gene when introduced into adoptively transferred immune cells, could control their alloreactivity. The killer/suicide gene may be an apoptotic gene (e.g., a caspase) which allows conditional apoptosis of the transduced cells by administration of a non-therapeutic ligand of the SRE (e.g., DD).


In some embodiments, the payload of the present disclosure may include Caspase 9. In some instances, Caspase 9 may be modified to have low basal expression and lacking the caspase recruitment domain (CARD) (SEQ ID NO:: 26 and SEQ ID NO:: 28 of U.S. Pat. No. 9,434,935B2; the contents of which are incorporated by reference in their entirety).


In one embodiment, the payload of the present disclosure is a suicide gene system, iCasp9/Chemical induced dimerization (CID) system which consists of a polypeptide derived from the Caspase9 gene fused to a drug binding domain derived from the human FK506 protein. Administration of bioinert, small molecule AP1903 (rimiducid), induces cross linking of the drug binding domains and dimerization of the fusion protein and in turn the dimerization of Caspase 9. This results in the activation of downstream effector Caspase 3 and subsequent induction of cellular apoptosis (Straathof et al., Blood, 2005, 105: 4247-4254; incorporated herein by reference in its entirety). Preclinical trials using CART including an iCasp9 gene have shown effective elimination of CAR T cells in vivo in mouse models and demonstrate the potential efficacy of this approach. (Budde et al, Plos One, 2013, 8: e82742.10.1371; Hoyos et al., Leukemia, 2010; 24(6):1160-1170). In one embodiment, the payload of the disclosure may comprise Caspase9. In one aspect, the effector module of the disclosure may be a DD-Caspase9 fusion polypeptide. In some embodiments, the payload of the disclosure may be full length Caspase 9 (SEQ ID NO: 8364, encoded by SEQ ID No. 8365, 8366) or caspase 9 delta CD (SEQ ID NO: 8367), encoded by SEQ ID No. 8368. The Caspases 9 sequences described herein may optionally include a stop codon at the C terminal of the sequence.


In some instances, the iCasp9/CID system has been shown to have a basal rate of dimerization even in the absence of rimiducid, resulting in unintended cell death. Regulating the expression levels of iCasp9/CID is critical for maximizing the efficacy of iCasp9/CID system. Biocircuits of the present disclosure and/or any of their components may be utilized in regulating or tuning the iCasp9/CID system in order to optimize its utility. Other examples of proteins used in dimerization-induced apoptosis paradigm may include, but are not limited to Fas receptor, the death effector domain of Fas-associated protein, FADD, Caspase 1, Caspase 3, Caspase 7 and Caspase 8. (Belshaw P. J. et al, Chem Biol., 996, 3:731-738; MacCorkle R. A. et al, Proc Natl Acad Sci, 1998, 95:3655-3660; Spencer, D. M. et al., Curr Biol. 1996; 6:839-847; the contents of each of which are incorporated herein by reference in their entirety).


In some embodiments, the safety switch of the present disclosure may comprise a metabolic enzyme, such as herpes simplex virus thymidine kinase (HSV-TK) and cytosine deaminase (CD). HSV-TK phosphorylates nucleoside analogs, including acyclovir and ganciclovir (GCV) to generate triphosphate form of nucleosides. When incorporated into DNA, it leads to chain termination and cell death. Unlike the mammalian thymidine kinase, HSV-TK is characterized by 1000-fold higher affinity to nucleoside analogs such as GCV, making it suitable for use as a suicide gene in mammalian cells. Cytosine deaminase (CD) can converts 5-fluorocytosine (5-FC) into the cytotoxic 5-fluorouracil (5-FU) (Tiraby et al., FEMS Lett., 1998, 167: 41-49).


In some embodiments, the safety switch of the present disclosure may comprise a CYP4B1 mutant (as suicide gene), which may be co-expressed in a CAR engineered T cells (Roellecker et al., Gen Ther., 2016, May 19, doi: 10.1038/gt.2016.38.).


In some embodiments, the payload of the present disclosure may comprise a fusion construct that can induce cell death, for example, a polypeptide with the formula of St-R1-S1-Q-S2-R2, wherein the St is a stalk sequence, R1/2 and Q are different epitopes; and S1/2 are optional spacer sequences (See, International patent publication NO.: WO2013/153391; the content of which are incorporated herein by reference in their entirety).


In some embodiments, safety switch may be mediated by therapeutic antibodies which specifically bind to an antigen that is expressed in the plasma membrane of adoptively transferred cells. The antigen-antibody interaction allows cell removal after administration of a specific monoclonal antibody against the antigen. As non-limiting examples, payloads of the present disclosure may comprise the antigen and antibody pair used to mediate safety switch such as CD20 and anti-CD20 antibody (Griffioen et al., Haematologica, 2009, 94:1316-1320), a protein tag and anti-tag antibody (Kieback et al., Natl. Acad. Sci. U.S.A., 2008, 105: 623-628), a compact suicide gene (RQR8) combining epitopes from CD34 (as a marker moiety) and CD20 (as a suicide moiety) which enables CD34 selection, cell tracking, as well as cell deletion after anti-CD20 monoclonal antibody administration (Philip et al., Blood, 2014, 124: 1277-1287); truncated human EGFR polypeptide and anti-EGFR monoclonal antibody (Wang et al., Blood, 2011, 118:1255-1263); and a compact polypeptide safety switch having a structural formula as discussed in U.S Patent Application Publication NO: 2015/0093401; the contents of each of which are incorporated herein by reference in their entirety.


10. Regulatory Switch

The utility of adoptive cell therapy (ACT) has been limited by the high incidence of graft versus host disease (GVHD). GVHD occurs when adoptively transferred T cells elicit an immune response resulting in host tissue damage. Recognition of host antigens by the graft cells triggers a proinflammatory cytokine storm cascade that signifies acute GVHD. GVHD is characterized as an imbalance between the effector and the regulatory arms of the immune system. In some embodiments, the payloads of the present disclosure may be used as regulatory switches. As used herein “regulatory switch” refers proteins, which when expressed in target cells increase tolerance to the graft by enhancing the regulatory arm of the immune system.


In one embodiment, regulatory switches may include payloads that preferentially promote the expansion of regulatory T (Treg cells). Tregs are a distinct population of cells that are positively selected on high affinity ligands in the thymus and play an important role in the tolerance to self-antigens. In addition, T regs have also been shown to play a role in peripheral tolerance to foreign antigens. Since Tregs promote immune tolerance, expansion of Tregs with the compositions of the disclosure may be desirable to limit GVHD.


In some embodiments, the regulatory switch may include, but is not limited to T regs activation factors such NFκB, FOXO, nuclear receptor Nr4a, Retinoic acid receptor alpha, NFAT, AP-1 and SMAD. Such factors can result in the expression of Fork headbox P3 (FOXP3) in T cells resulting in the activation of the regulatory T cell program and the expansion of T cells.


In one embodiment, the regulatory switch may be FOXP3, a transcriptional regulator in T cells. A function of FOXP3 is to suppress the function of NFAT, which leads to the suppression of expression of many genes including IL2 and effector T-cell cytokines. FOXP3 acts also as a transcription activator for genes such as CD2S, Cytotoxic T-Lymphocyte Antigen Cytotoxic T-Lymphocyte Antigen 4 (CTLA4), glucocorticoid-induced TNF receptor family gene (GITR) and folate receptor 4. FOXP3 also inhibits the differentiation of IL17 producing helper T-cells (Th17) by antagonizing RORC (RAR related orphan receptor C). Isoforms of FOXP3 lacking exon2 (FOXP3 delta 2), or exon 7 (FOXP3 delta 7) may also be used as regulatory switches. In one aspect, the effector module of the disclosure may be a DD-FOXP3 fusion polypeptide. FOXP3 may be a full length FOXP3 (SEQ ID NO: 8369, encoded by SEQ ID NO: 8370); or FOXP3 (amino acid 2-431 of WT) (SEQ ID NO: 8371, encoded by SEQ ID NO: 8372), a delta 2 FOXP3 (SEQ ID NO: 8373, encoded by SEQ ID NO:8374); or FOXP3 delta (amino acid 2-396 of WT) (SEQ ID NO: 8375, encoded by SEQ ID NO:8376).


11. Homing Receptors

In some embodiments, payloads of the present disclosure may comprise homing receptors that guide immunotherapeutic cells to different anatomical compartments, such as designated tumor sites. For example, T cells expressing a chimeric antigen receptor may be further modified to express a homing receptor that is not normally expressed by the T cell. As used herein, the term “homing receptor” is a receptor that guides a cell expressing the receptor to a designated organ, a particular tissue, or a particular type of cell. Such trafficking receptors favor T cell accumulation in certain target organs. In some embodiments, the homing receptors of the present disclosure may be adhesion molecules. In other embodiments, the homing receptors of the disclosure may be chemokine receptors which mediate chemotaxis to chemokines. As non-limiting examples, a homing receptor may be a B cell zone homing receptor such as CXCR5; T cell zone homing receptor such as CXCR7; a gastrointestinal homing receptor such as CCR9 and integrin α4β7 (also known as lymphocyte Peyer patch adhesion molecule); a skin homing receptor such as CLA (cutaneous lymphocyte-associated antigen receptor), CCR4, CCR8 and CCR10 (See, e.g., International Patent Publication NO.: WO2016025454; the contents of which are incorporated herein by reference in their entirety). Other homing receptors include, without limitation, CXCR2 and CXCR1 which redirect chemokine receptor modified tumor-infiltrating lymphocytes to melanoma tumor (Idorn et al., Methods Mol. Biol., 2016, 1428: 261-276; and Sapoznik et al., Cancer Immunol Immunother., 2012, 61(10): 1833-1847); CCR2 which, when expressed by CD8+ T cells, can home modified CD8+ T cells to the site of prostate cancer in which the CCL2 (a CCR2 ligand) expression is increased (Garetto et al., Oncotarget, 2016, May 10. doi: 10.18632/oncotarget.9280); and CD103 as an intestinal homing receptor.


12. Immune Signaling

Treatment with immunotherapeutic agents may induce immune cell signaling, leading to the activation of cell-type specific immune activities, ultimately resulting in an immune response. In some embodiments, payloads of the present disclosure may be immune signaling biomolecules used to achieve exogenous control of signaling pathways. Exemplary immune signaling biomolecules include transcription factors such as Nuclear factor of activated T-cells (NFAT) (e.g., NFAT, NFAT2, NFAT3 and NFAT 4), Nuclear Factor Kappa B (NFκB), Signal transducer and activator of transcription (STAT), Activator protein-1 (AP-1), Rel, Fos, and Jun; kinases such as Janus Kinase (JAK), Extracellular signal-regulated kinases (ERK), Mitogen-Activated Protein Kinases (MAPK), Mammalian target of rapamycin (mTOR), Phsophoinositide-dependent kinase (PDK), Protein kinase B (PKB), IkB kinase (IKK), Calcium/Calmodulin dependent kinase(CaMK); and other signaling molecules such as Ras, Cbl, Calmodulin (CaM), Calpain, and IkkB kinase.


In one embodiment, the payloads of the present disclosure may be administered in conjunction with inhibitors of SHP-1 and/or SHP-2. The tyrosine-protein phosphatase SHP1 (also known as PTPN6) and SHP2 (also known as PTPN11) are involved in the Programmed Cell Death (PD1) inhibitory signaling pathway. The intracellular domain of PD1 contains an immunoreceptor tyrosine based inhibitory motif (ITIM) and an immunoreceptor tyrosine-based switch motif (ITSM). ITSM has been shown to recruit SHP-1 and 2. This generates negative costimulatory micro clusters that induce the dephosphorylation of the proximal TCR signaling molecules, thereby resulting in suppression of T cell activation, which can lead to T cell exhaustion. In one embodiment, inhibitors of SHP-1 and 2 may include expressing dominant negative versions of the proteins in T cells, TILs or other cell types to relieve exhaustion. Such mutants can bind to the endogenous, catalytically active proteins, and inhibit their function. In one embodiment, the dominant negative mutant of SHP-1 and/or SHP-2 lack the phosphatase domain required for catalytic activity. In some embodiments, any of the dominant negative SHP-1 mutants taught Bergeron S et al. (2011). Endocrinology. 2011 December; 152(12):4581-8.; Dustin J B et al. (1999) J Immunol. March 1; 162(5):2717-24.; Berchtold S (1998) Mol Endocrinol. April; 12(4):556-67 and Schram et al. (2012) Am J Physiol Heart Circ Physiol. 1; 302(1):H231-43.; may be useful in the disclosure (the contents of each of which are incorporated by reference in their entirety).


13. Oncolytic Viruses

In some embodiments, payloads of the present disclosure may comprise oncolytic viruses or any components of oncolytic viruses. In some embodiments, the payload may be oncolytic viruses or components that have been genetically modified oncolytic viruses for use in oncolytic virotherapy. As used herein, the term “virotherapy” refers to a therapeutic use of oncolytic viruses (replication competent viruses) to attack and destroy cancer cells. Oncolytic viruses refer to those viruses that are able to eliminate malignancies by direct targeting and killing of cancer cells within the tumor, without causing harm to normal tissues. Exemplary oncolytic viruses and genetically engineered oncolytic viruses with cancer specific tropism may include Arvoviruses, Adenoviruses, Coxsackie viruses, Herpes Simplex Viruses (HSVs), Measles, Mumps viruses, Moloney leukemia viruses, Myxovirus, Newcastle Disease Viruses, Reoviruses, Rhabdovirus, Vesticular Stomatic Viruses, and Vaccinia Viruses (VV). It may also be chimeric viruses with increased oncolytic potential such as an adeno-parvovirus chimera in U.S. Pat. No. 9,441,246. The oncolytic viruses may be modified to be less susceptible to immune suppression while more specifically targeting particular classes of cancer cells, or be modified to insert and express cancer-suppressing transgenes. Modifications to the oncolytic virus may also be made to improve replicative potential of the virus, increase viral titers, and/or enhance the range cancer cells that can be infected by the virus. Examples of modified oncolytic viruses that may be used as payload include US Patent NO.: US8282917B2, International Patent Publication NO.: WO2011070440, WO2004078206A1, WO2016144564, WO2016119052, WO2009111892; the contents of each of which are incorporated herein by reference in their entirety.


In some embodiments, payloads of the present disclosure may be one or more coat proteins of the viruses, inserted transgenes, other factors that can increase intratumoral virus replication and the combinations.


In some instance, two or more oncolytic viruses may also be used as payload within the same SRE or in two or more SREs to achieve synergistic killing of target cancer cells as described in International Patent Publication NO.: WO2010020056 (the contents of which are incorporated herein by reference in their entirety).


14. Genomic Editing Systems

In some embodiments, payloads of the present disclosure may be components of gene editing systems including a CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats), CRISPR enzyme (Cas9), CRISPR-Cas9 or CRISPR system and CRISPR-CAS9 complex. It may also be other genomic editing systems, such as Zinc finger nucleases, TALEN (Transcription activator-like effector-based nucleases) and meganucleases.


Additional Features

The effector module of the present disclosure may further comprise a signal sequence which regulates the distribution of the payload, a cleavage and/or processing feature which facilitate cleavage of the payload from the effector module construct, a targeting and/or penetrating signal which can regulate the cellular localization of the effector module, and/or one or more linker sequences which link different components (e.g. a DD and a payload) of the effector module. In some embodiments, the effector module may further comprise of one or more additional features such as linker sequences (with specific sequences and lengths), cleavage sites, regulatory elements (that regulate expression of the protein of interest such as microRNA targeting sites), signal sequences that lead the effector module to a specific cellular or subcellular location, penetrating sequences, or tags and biomarkers for tracking the effector module.


1. Signal Sequences

In addition to the SRE (e.g., DD) and payload region, effector modules of the disclosure may further comprise one or more signal sequences. Signal sequences (sometimes referred to as signal peptides, targeting signals, target peptides, localization sequences, transit peptides, leader sequences or leader peptides) direct proteins (e.g., the effector module of the present disclosure) to their designated cellular and/or extracellular locations. Protein signal sequences play a central role in the targeting and translocation of nearly all secreted proteins and many integral membrane proteins.


A signal sequence is a short (5-30 amino acids long) peptide present at the N-terminus of the majority of newly synthesized proteins that are destined towards a particular location. Signal sequences can be recognized by signal recognition particles (SRPs) and cleaved using type I and type II signal peptide peptidases. Signal sequences derived from human proteins can be incorporated as a regulatory module of the effector module to direct the effector module to a particular cellular and/or extracellular location. These signal sequences are experimentally verified and can be cleaved (Zhang et al., Protein Sci. 2004, 13:2819-2824).


In some embodiments, a signal sequence may be, although not necessarily, located at the N-terminus or C-terminus of the effector module, and may be, although not necessarily, cleaved off the desired effector module to yield a “mature” payload, i.e., an immunotherapeutic agent as discussed herein.


In some examples, a signal sequence may be a secreted signal sequence derived from a naturally secreted protein, and its variant thereof. In some instances, the secreted signal sequences may be cytokine signal sequences such as, but not limited to, IL2 signal sequence comprising amino acid of SEQ ID NO: 261 (encoded by the nucleotide sequence of SEQ ID NO: 262-265), and/or p40 signal sequence comprising the amino acid sequence of SEQ ID NO: 266, (encoded by the nucleotide sequence of SEQ ID NO: 267-275).


In some instances, signal sequences directing the payload to the surface membrane of the target cell may be used. Expression of the payload on the surface of the target cell may be useful to limit the diffusion of the payload to non-target in vivo environments, thereby potentially improving the safety profile of the payloads. Additionally, the membrane presentation of the payload may allow for physiologically and qualitative signaling as well as stabilization and recycling of the payload for a longer half-life. Membrane sequences may be the endogenous signal sequence of the N terminal component of the payload. Optionally, it may be desirable to exchange this sequence for a different signal sequence. Signal sequences may be selected based on their compatibility with the secretory pathway of the cell type of interest so that the payload is presented on the surface of the T cell. In some embodiments, the signal sequence may be IgE signal sequence comprising amino acid of SEQ ID NO: 276 (encoded by the nucleotide sequence of SEQ ID NO: 277) or CD8a signal sequence comprising amino acid SEQ ID NO: 278 (encoded by the nucleotide sequence of SEQ ID NO: 279-283).


Other examples of signal sequences include, a variant may be a modified signal sequence discussed in U.S. Pat. Nos. 8,148,494, 8,258,102, 9,133,265, 9,279,007, and U.S. patent application publication NO. 2007/0141666; and International patent application publication NO. WO1993/018181; the contents of each of which are incorporated herein by reference in their entirety. In other examples, a signal sequence may be a heterogeneous signal sequence from other organisms such as virus, yeast and bacteria, which can direct an effector module to a particular cellular site, such as a nucleus (e.g., EP 1209450). Other examples may include Aspartic Protease (NSP24) signal sequences from Trichoderma that can increase secretion of fused protein such as enzymes (e.g., U.S. Pat. No. 8,093,016 to Cervin and Kim), bacterial lipoprotein signal sequences (e.g., PCT application publication NO. 1991/09952 to Lau and Rioux), E. coli enterotoxin II signal peptides (e.g., U.S. Pat. No. 6,605,697 to Kwon et al.), E. coli secretion signal sequence (e.g., U.S. patent publication NO. 2016/090404 to Malley et al.), a lipase signal sequence from a methylotrophic yeast (e.g., U.S. Pat. No. 8,975,041), and signal peptides for DNases derived from Coryneform bacteria (e.g., U.S. Pat. No. 4,965,197); the contents of each of which are incorporated herein by reference in their entirety.


Signal sequences may also include nuclear localization signals (NLSs), nuclear export signals (NESs), polarized cell tubulo-vesicular structure localization signals (See, e.g., U.S. Pat. No. 8,993,742; Cour et al., Nucleic Acids Res. 2003, 31(1): 393-396; the contents of each of which are incorporated herein by reference in their entirety), extracellular localization signals, signals to subcellular locations (e.g. lysosome, endoplasmic reticulum, golgi, mitochondria, plasma membrane and peroxisomes, etc.) (See, e.g., U.S. Pat. No. 7,396,811; and Negi et al., Database, 2015, 1-7; the contents of each of which are incorporated herein by reference in their entirety).


2. Cleavage Sites

In some embodiments, the effector module comprises a cleavage and/or processing feature. The effector module of the present disclosure may include at least one protein cleavage signal/site. The protein cleavage signal/site may be located at the N-terminus, the C-terminus, at any space between the N- and the C-termini such as, but not limited to, half-way between the N- and C-termini, between the N-terminus and the half-way point, between the half-way point and the C-terminus, and combinations thereof.


The effector module may include one or more cleavage signal(s)/site(s) of any proteinases. The proteinases may be a serine proteinase, a cysteine proteinase, an endopeptidase, a dipeptidase, a metalloproteinase, a glutamic proteinase, a threonine proteinase and an aspartic proteinase. In some aspects, the cleavage site may be a signal sequence of furin, actinidain, calpain-1, carboxypeptidase A, carboxypeptidase P, carboxypeptidase Y, caspase-1, caspase-2, caspase-3, caspase-4, caspase-5, caspase-6, caspase-7, caspase-8, caspase-9, caspase-10, cathepsin B, cathepsin C, cathepsin 0, cathepsin H, cathepsin K, cathepsin L, cathepsin S, cathepsin V, clostripain, chymase, chymotrypsin, elastase, endoproteinase, enterokinase, factor Xa, formic acid, granzyme B, Matrix metallopeptidase-2, Matrix metallopeptidase-3, pepsin, proteinase K, SUMO protease, subtilisin, TEV protease, thermolysin, thrombin, trypsin and TAGZyme.


In one embodiment, the cleavage site is a furin cleavage site comprising the amino acid sequence SARNRQKRS (SEQ ID NO: 284, encoded by the nucleotide sequence of SEQ ID NO: 285), or a revised furin cleavage site comprising the amino acid sequence ARNRQKRS (SEQ ID NO: 286, encoded by the nucleotide sequence of SEQ ID NO: 287), or a modified furin site comprising the amino acid sequence ESRRVRRNKRSK (SEQ ID NO: 288, encoded by the nucleotide sequence of SEQ ID NO: 289-291).


3. Protein Tags

In some embodiments, the effector module of the disclosure may comprise a protein tag. The protein tag may be used for detecting and monitoring the process of the effector module. The effector module may include one or more tags such as an epitope tag (e.g., a FLAG or hemagglutinin (HA) tag). A large number of protein tags may be used for the present effector modules. They include, but are not limited to, self-labeling polypeptide tags (e.g., haloalkane dehalogenase (halotag2 or halotag7), ACP tag, clip tag, MCP tag, snap tag), epitope tags (e.g., FLAG, HA, His, and Myc), fluorescent tags (e.g., green fluorescent protein (GFP), red fluorescent protein (RFP), yellow fluorescent protein (YFP), and its variants), bioluminescent tags (e.g. luciferase and its variants), affinity tags (e.g., maltose binding protein (MBP) tag, glutathione-S-transferase (GST) tag), immunogenic affinity tags (e.g., protein A/G, IRS, AU1, AUS, glu-glu, KT3, S-tag, HSV, VSV-G, Xpress and V5), and other tags (e.g., biotin (small molecule), StrepTag (StrepII), SBP, biotin carboxyl carrier protein (BCCP), eXact, CBP, CYD, HPC, CBD intein-chitin binding domain, Trx, NorpA, and NusA.


In other embodiments, a tag may also be selected from those disclosed in U.S. Pat. Nos. 8,999,897; 8,357,511; 7,094,568; 5,011,912; 4,851,341; and 4,703,004; U.S patent application publication NOs.: 2013/115635 and 2013/012687; and International application publication NO.: WO2013/091661; the contents of each of which are incorporated herein by reference in their entirety.


In some aspects, a multiplicity of protein tags, either the same or different tags, may be used; each of the tags may be located at the same N- or C-terminus, whereas in other cases these tags may be located at each terminus.


4. Targeting Peptides

In some embodiments, the effector module of the disclosure may further comprise a targeting and/or penetrating peptide. Small targeting and/or penetrating peptides that selectively recognize cell surface markers (e.g. receptors, trans-membrane proteins, and extra-cellular matrix molecules) can be employed to target the effector module to the desired organs, tissues or cells. Short peptides (5-50 amino acid residues) synthesized in vitro and naturally occurring peptides, or analogs, variants, derivatives thereof, may be incorporated into the effector module for homing the effector module to the desired organs, tissues and cells, and/or subcellular locations inside the cells.


In some embodiments, a targeting sequence and/or penetrating peptide may be included in the effector module to drive the effector module to a target organ, or a tissue, or a cell (e.g., a cancer cell). In other embodiments, a targeting and/or penetrating peptide may direct the effector module to a specific subcellular location inside a cell.


A targeting peptide has any number of amino acids from about 6 to about 30 inclusive. The peptide may have 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29 or 30 amino acids. Generally, a targeting peptide may have 25 or fewer amino acids, for example, 20 or fewer, for example 15 or fewer.


Exemplary targeting peptides may include, but are not limited to, those disclosed in the art, e.g., U.S. Pat. Nos. 9,206,231, 9,110,059, 8,706,219; and 8,772,449, and U.S. application publication NOs. 2016/089447, 2016/060296, 2016/060314, 2016/060312, 2016/060311, 2016/009772, 2016/002613, 2015/314011 and 2015/166621. and International application publication NOs. WO2015/179691 and WO2015/183044; the contents of each of which are incorporated herein by reference in their entirety.


5. Linkers

In some embodiments, the effector module of the disclosure may further comprise a linker sequence. The linker region serves primarily as a spacer between two or more polypeptides within the effector module. A “linker” or “spacer”, as used herein, refers to a molecule or group of molecules that connects two molecules, or two parts of a molecule such as two domains of a recombinant protein.


In some embodiments, “Linker” (L) or “linker domain” or “linker region” or “linker module” or “peptide linker” as used herein refers to an oligo- or polypeptide region of from about 1 to 100 amino acids in length, which links together any of the domains/regions of the effector module (also called peptide linker). The peptide linker may be 1-40 amino acids in length, or 2-30 amino acids in length, or 20-80 amino acids in length, or 50-100 amino acids in length. Linker length may also be optimized depending on the type of payload utilized and based on the crystal structure of the payload. In some instances, a shorter linker length may be preferably selected. In some aspects, the peptide linker is made up of amino acids linked together by peptide bonds, preferably from 1 to 20 amino acids linked by peptide bonds, wherein the amino acids are selected from the 20 naturally occurring amino acids: Glycine (0), Alanine (A), Valine (V), Leucine (L), Isoleucine (I), Serine (S), Cysteine (C), Threonine (T), Methionine (M), Proline (P), Phenylalanine (F), Tyrosine (Y), Tryptophan (W), Histidine (H), Lysine (K), Arginine (R), Aspartate (D), Glutamic acid (E), Asparagine (N), and Glutamine (Q). One or more of these amino acids may be glycosylated, as is understood by those in the art. In some aspects, amino acids of a peptide linker may be selected from Alanine (A), Glycine (G), Proline (P), Asparagine (R), Serine (S), Glutamine (Q) and Lysine (K).


In one example, an artificially designed peptide linker may preferably be composed of a polymer of flexible residues like Glycine (G) and Serine (S) so that the adjacent protein domains are free to move relative to one another. Longer linkers may be used when it is desirable to ensure that two adjacent domains do not interfere with one another. The choice of a particular linker sequence may concern if it affects biological activity, stability, folding, targeting and/or pharmacokinetic features of the fusion construct. Examples of peptide linkers include, but are not limited to: SG, MH, GGSG (SEQ ID NO: 292, encoded by the nucleotide sequence of SEQ ID NO: 293; GGSGG (SEQ ID NO: 294), encoded by the nucleotide sequence of SEQ ID NOs. 295-299; GGSGGG (SEQ ID NO: 78), encoded by the nucleotide sequence of SEQ ID NO: 93 and 300; SGGGS (SEQ ID NO: 301), encoded by the nucleotide sequence of SEQ ID NO: 302-303; GGSGGGSGG (SEQ ID NO: 77), encoded by the nucleotide sequence of SEQ ID NO: 92; GGGGG (SEQ ID NO: 304), 0000S (SEQ ID NO: 305) or (GGGGS)n (n=2 (SEQ ID NO: 306), 3 (SEQ ID NO: 307; encoded by SEQ ID NO: 308-313), 4 (SEQ ID NO: 314), 5 (SEQ ID NO: 315), or 6 (SEQ ID NO: 316)), SSSSG (SEQ ID NO: 317) or (SSSSG)n (n=2 (SEQ ID NO: 318), 3 (SEQ ID NO: 319), 4 (SEQ ID NO: 320), 5 (SEQ ID NO: 321), or 6 (SEQ ID NO: 322)), SGGGSGGGGSGGGGSGGGGSGGGSLQ (SEQ ID NO: 323), encoded by the nucleotide sequence of SEQ ID NO: 324 or SEQ ID NO: 8665; EFSTEF (SEQ ID NO: 325), encoded by the nucleotide sequence of SEQ ID NOs. 326-327; GKSSGSGSESKS (SEQ ID NO: 328), GGSTSGSGKSSEGKG (SEQ ID NO: 329), GSTSGSGKSSSEGSGSTKG (SEQ ID NO: 330), GSTSGSGKPGSGEGSTKG (SEQ ID NO: 331), VDYPYDVPDYALD (SEQ ID NO: 332), encoded by the nucleotide sequence of SEQ ID NO: 333; or EGKSSGSGSESKEF (SEQ ID NO: 334); or GSGSGS (SEQ ID NO: 8330), encoded by the nucleotide sequence of SEQ ID NO: 8347; or GSGSGSGS (SEQ ID NO: 8331), encoded by the nucleotide sequence of SEQ ID NO: 8348; or GSGSGGGSGS (SEQ ID NO: 8332), encoded by the nucleotide sequence of SEQ ID NO: 8349; SGSGSGS linker (SEQ ID NO: 8382), or SG linker, encoded by AGTGGT; or an LD Linker comprising Lysine Aspartic acid, encoded by CTAGAT; GGSGGG (SEQ ID NO: 8630), encoded by the nucleotide sequence of SEQ ID NO: 8631. Linkers may also be DNA restriction enzyme recognition sites or modifications thereof such as flexible GS or G/S rich linker; BamH1 Site encoded by GGATCC; flexible G/S rich linker or BamH1 Site; SR/Xba I site, encoded by TCTAGA; or a GSG linker (BamH1-Gly) linker, encoded by GGATCCGGA.


In other examples, a peptide linker may be made up of a majority of amino acids that are sterically unhindered, such as Glycine (0) and Alanine (A). Exemplary linkers are polyglycines (such as (G)4 (SEQ ID NO: 8378), (G)5 (SEQ ID NO: 8379), (G)8 (SEQ ID NO: 8380)), poly(GA), and polyalanines. The linkers described herein are exemplary, and linkers that are much longer and which include other residues are contemplated by the present disclosure.


In some embodiments, the linker may be a spacer comprising the nucleotide sequence of SEQ ID NO: 8668-8669. In one embodiment, the spacer is a nucleotide sequence that is not translated into an amino acid sequence.


A linker sequence may be a natural linker derived from a multi-domain protein. A natural linker is a short peptide sequence that separates two different domains or motifs within a protein.


In some aspects, linkers may be flexible or rigid. In other aspects, linkers may be cleavable or non-cleavable. As used herein, the terms “cleavable linker domain or region” or “cleavable peptide linker” are used interchangeably. In some embodiments, the linker sequence may be cleaved enzymatically and/or chemically. Examples of enzymes (e.g., proteinase/peptidase) useful for cleaving the peptide linker include, but are not limited, to Arg-C proteinase, Asp-N endopeptidase, chymotrypsin, clostripain, enterokinase, Factor Xa, glutamyl endopeptidase, Granzyme B, Achromobacter proteinase I, pepsin, proline endopeptidase, proteinase K, Staphylococcal peptidase I, thermolysin, thrombin, trypsin, and members of the Caspase family of proteolytic enzymes (e.g. Caspases 1-10). Chemical sensitive cleavage sites may also be included in a linker sequence. Examples of chemical cleavage reagents include, but are not limited to, cyanogen bromide, which cleaves methionine residues; N-chloro succinimide, iodobenzoic acid or BNPS-skatole [2-(2-nitrophenylsulfenyl)-3-methylindole], which cleaves tryptophan residues; dilute acids, which cleave at aspartyl-prolyl bonds; and e aspartic acid-proline acid cleavable recognition sites (i.e., a cleavable peptide linker comprising one or more D-P dipeptide moieties). The fusion module may include multiple regions encoding peptides of interest separated by one or more cleavable peptide linkers.


In other embodiments, a cleavable linker may be a “self-cleaving” linker peptide, such as 2A linkers (for example T2A), 2A-like linkers or functional equivalents thereof and combinations thereof. In some embodiments, the linkers include the picornaviral 2A-like linker, CHYSEL sequences of porcine teschovirus (P2A), Thosea asigna virus (T2A) or combinations, variants and functional equivalents thereof. In some embodiments, the biocircuits of the present disclosure may include 2A peptides. The 2A peptide is a sequence of about 20 amino acid residues from a virus that is recognized by a protease (2A peptidases) endogenous to the cell. The 2A peptide was identified among picornaviruses, a typical example of which is the Foot- and Mouth disease virus (Robertson B H, et. al., J Virol 1985, 54:651-660). 2A-like sequences have also been found in Picornaviridae like equine rhinitis A virus, as well as unrelated viruses such as porcine teschovirus-1 and the insect Thosea asigna virus (TaV). In such viruses, multiple proteins are derived from a large polyprotein encoded by an open reading frame. The 2A peptide mediates the co-translational cleavage of this polyprotein at a single site that forms the junction between the virus capsid and replication polyprotein domains The 2A sequences contain the consensus motif D-V/I-E-X-N-P-G-P (SEQ ID NO: 8381). These sequences are thought to act co-translationally, preventing the formation of a normal peptide bond between the glycine and last proline, resulting in the ribosome skipping of the next codon (Donnelly M L et al. (2001). J Gen Virol, 82:1013-1025). After cleavage, the short peptide remains fused to the C-terminus of the protein upstream of the cleavage site, while the proline is added to the N-terminus of the protein downstream of the cleavage site. Of the 2A peptides identified, four have been widely used namely FMDV 2A (abbreviated herein as F2A); equine rhinitis A virus (ERAV) 2A (E2A); porcine teschovirus-1 2A (P2A) and Thoseaasigna virus 2A (T2A). In some embodiments, the 2A peptide sequences useful in the present disclosure are selected from SEQ ID NO: 8-11 of International Patent Publication WO2010042490, the contents of which are incorporated by reference in its entirety. In some embodiments, the cleavage site may be a P2A cleavable peptide (SEQ ID NO: 8239), encoded by the nucleotide sequence of SEQ ID NO: 8269.


Other linkers will be apparent to those skilled in the art and may be used in connection with alternate embodiments of the disclosure.


The linkers of the present disclosure may also be non-peptide linkers. For example, alkyl linkers such as —NH—(CH2) a-C(O)—, wherein a=2-20 can be used. These alkyl linkers may further be substituted by any non-sterically hindering group such as lower alkyl (e.g., C1-C6) lower acyl, halogen (e.g., Cl, Br), CN, NH2, phenyl, etc.


In some aspects, the linker may be an artificial linker from U.S. Pat. Nos. 4,946,778, 5,525,491, 5,856,456, and International patent publication NO. WO2012/083424; the contents of each of which are incorporated herein by reference in their entirety.


6. Embedded Stimulus, Signals and Other Regulatory Features

microRNAs (or miRNA) are 19-25 nucleotide long noncoding RNAs that bind to the 3′UTR of nucleic acid molecules and down-regulate gene expression either by reducing nucleic acid molecule stability or by inhibiting translation. The polynucleotides of the disclosure may comprise one or more microRNA target sequences, microRNA sequences, or microRNA seeds. Such sequences may correspond to any known microRNA such as those taught in US Publication No. US2005/0261218 and US Publication No. US2005/0059005, the contents of which are incorporated herein by reference in their entirety. As a non-limiting embodiment, known microRNAs, their sequences and their binding site sequences in the human genome are listed Table 14 of the co-owned U.S. Provisional Patent Application No. 62/320,864 filed Apr. 11, 2016, 62/466,596 filed Mar. 3, 2017 and the International Publication WO2017/180587 (the contents of each of which are herein incorporated by reference in their entirety).


A microRNA sequence comprises a “seed” region, i.e., a sequence in the region of positions 2-8 of the mature microRNA, which sequence has perfect Watson-Crick complementarity to the miRNA target sequence. A microRNA seed may comprise positions 2-8 or 2-7 of the mature microRNA. In some embodiments, a microRNA seed may comprise 7 nucleotides (e.g., nucleotides 2-8 of the mature microRNA), wherein the seed-complemental), site in the corresponding miRNA target is flanked by an adenine (A) opposed to microRNA position 1. In some embodiments, a microRNA seed may comprise 6 nucleotides (e.g., nucleotides 2-7 of the mature microRNA), wherein the seed-complementary site in the corresponding miRNA target is flanked by an adenine (A) opposed to microRNA position 1. See for example, Crimson A, Farh K K, Johnston W K, Garrett-Engele P, Lim L P, Bartel D P; Mol Cell. 2007 Jul. 6; 27(1):91-105. The bases of the microRNA seed have complete complementarity with the target sequence. By engineering microRNA target sequences into the polynucleotides encoding the biocircuit components, effector modules, SREs or payloads of the disclosure one can target the molecule for degradation or reduced translation, provided the microRNA in question is available. This process will reduce the hazard of off target effects upon nucleic acid molecule delivery.


Identification of microRNA, microRNA target regions, and their expression patterns and role in biology have been reported (Bonauer et al., Curr Drug Targets 2010 11:943-949; Anand and Cheresh Curr Opin Hematol 2011 18:171-176; Contreras and Rao Leukemia 2012 26:404-413 (2011 Dec. 20. doi: 10.1038/leu.2011.356); Bartel Cell 2009 136:215-233; Landgraf et al, Cell, 2007 129:1401-1414; Gentner and Naldini, Tissue Antigens. 2012 80:393-403 and all references therein; each of which is herein incorporated by reference in its entirety).


For example, if the polynucleotide is not intended to be delivered to the liver but ends up there, then miR-122, a microRNA abundant in liver, can inhibit the expression of the polynucleotide if one or multiple target sites of miR-122 are engineered into the polynucleotide. Introduction of one or multiple binding sites for different microRNA can be engineered to further decrease the longevity, stability, and protein translation of a polynucleotide hence providing an additional layer of tenability beyond the stimulus selection, SRE design and payload variation.


As used herein, the term “microRNA site” refers to a microRNA target site or a microRNA recognition site, or any nucleotide sequence to which a microRNA binds or associates. It should be understood that “binding” may follow traditional Watson-Crick hybridization rules or may reflect any stable association of the microRNA with the target sequence at or adjacent to the microRNA site.


Conversely, for the purposes of the polynucleotides of the present disclosure, microRNA binding sites can be engineered out of (i.e. removed from) sequences in which they naturally occur in order to increase protein expression in specific tissues. For example, miR-122 binding sites may be removed to improve protein expression in the liver.


Regulation of expression in multiple tissues can be accomplished through introduction or removal or one or several microRNA binding sites.


Specifically, microRNAs are known to be differentially expressed in immune cells (also called hematopoietic cells), such as antigen presenting cells (APCs) (e.g. dendritic cells and macrophages), macrophages, monocytes, B lymphocytes, T lymphocytes, granulocytes, natural killer cells, etc. Immune cell specific microRNAs are involved in immunogenicity, autoimmunity, the immune-response to infection, inflammation, as well as unwanted immune response after gene therapy and tissue/organ transplantation. Immune cells specific microRNAs also regulate many aspects of development, proliferation, differentiation and apoptosis of hematopoietic cells (immune cells). For example, miR-142 and miR-146 are exclusively expressed in the immune cells, particularly abundant in myeloid dendritic cells. Introducing the miR-142 binding site into the 3′-UTR of a polypeptide of the present disclosure can selectively suppress the gene expression in the antigen presenting cells through miR-142 mediated mRNA degradation, limiting antigen presentation in professional APCs (e.g. dendritic cells) and thereby preventing antigen-mediated immune response after gene delivery (see, Annoni A et al., blood, 2009, 114, 5152-5161, the content of which is herein incorporated by reference in its entirety.)


In one embodiment, microRNAs binding sites that are known to be expressed in immune cells, in particular, the antigen presenting cells, can be engineered into the polynucleotides to suppress the expression of the polynucleotide in APCs through microRNA mediated RNA degradation, subduing the antigen-mediated immune response, while the expression of the polynucleotide is maintained in non-immune cells where the immune cell specific microRNAs are not expressed.


Many microRNA expression studies have been conducted, and are described in the art, to profile the differential expression of microRNAs in various cancer cells/tissues and other diseases. Some microRNAs are abnormally over-expressed in certain cancer cells and others are under-expressed. For example, microRNAs are differentially expressed in cancer cells (WO2008/154098, US2013/0059015, US2013/0042333, WO2011/157294); cancer stem cells (US2012/0053224); pancreatic cancers and diseases (US2009/0131348, US2011/0171646, US2010/0286232, US8389210); asthma and inflammation (US8415096); prostate cancer (US2013/0053264); hepatocellular carcinoma (WO2012/151212, US2012/0329672, WO2008/054828, US8252538); lung cancer cells (WO2011/076143, WO2013/033640, WO2009/070653, US2010/0323357); cutaneous T cell lymphoma (WO2013/011378); colorectal cancer cells (WO2011/0281756, WO2011/076142); cancer positive lymph nodes (WO2009/100430, US2009/0263803); nasopharyngeal carcinoma (EP2112235); chronic obstructive pulmonary disease (US2012/0264626, US2013/0053263); thyroid cancer (WO2013/066678); ovarian cancer cells US2012/0309645, WO2011/095623); breast cancer cells (WO2008/154098, WO2007/081740, US2012/0214699), leukemia and lymphoma (WO2008/073915, US2009/0092974, US2012/0316081, US2012/0283310, WO2010/018563, the content of each of which is incorporated herein by reference in their entirety).


In one embodiment, microRNA may be used as described herein in support of the creation of tunable biocircuits.


In some embodiments, effector modules may be designed to encode (as a DNA or RNA or mRNA) one or more payloads, SREs and/or regulatory sequence such as a microRNA or microRNA binding site. In some embodiments, any of the encoded payloads or SREs may be stabilized or de-stabilized by mutation and then combined with one or more regulatory sequences to generate a dual or multi-tuned effector module or biocircuit system.


Each aspect or tuned modality may bring to the effector module or biocircuit a differentially tuned feature. For example, an SRE may represent a destabilizing domain, while mutations in the protein payload may alter its cleavage sites or dimerization properties or half-life and the inclusion of one or more microRNA or microRNA binding site may impart cellular detargeting or trafficking features. Consequently, the present disclosure embraces biocircuits which are multifactorial in their tenability.


In some embodiments, compositions of the disclosure may include optional proteasome adaptors. As used herein, the term “proteasome adaptor” refers to any nucleotide/amino acid sequence that targets the appended payload for degradation. In some aspects, the adaptors target the payload for degradation directly thereby circumventing the need for ubiquitination reactions. Proteasome adaptors may be used in conjunction with destabilizing domains to reduce the basal expression of the payload. Exemplary proteasome adaptors include the UbL domain of Rad23 or hHR23b, HPV E7 which binds to both the target protein Rb and the S4 subunit of the proteasome with high affinity, which allows direct proteasome targeting, bypassing the ubiquitination machinery; the protein gankyrin which binds to Rb and the proteasome subunit S6.


Such biocircuits may be engineered to contain one, two, three, four or more tuned features.


Polynucleotides

The present disclosure provides polynucleotides encoding novel hPDE5 DDs, effector modules comprising payloads and associated DDs, biocircuit systems comprising DDs and effector modules, and other components of the present disclosure.


The disclosure provides isolated biocircuit polypeptides, effector modules, stimulus response elements (SREs) and payloads, as well as polynucleotides encoding any of the foregoing; vectors comprising polynucleotides of the disclosure; and cells expressing polypeptides, polynucleotides and vectors of the disclosure. The polypeptides, polynucleotides, viral vectors and cells are useful for inducing anti-tumor immune responses in a subject.


The term “polynucleotide” or “nucleic acid molecule” in its broadest sense, includes any compound and/or substance that comprise a polymer of nucleotides, e.g., linked nucleosides. These polymers are often referred to as polynucleotides. Exemplary nucleic acids or polynucleotides of the disclosure include, but are not limited to, ribonucleic acids (RNAs), deoxyribonucleic acids (DNAs), threose nucleic acids (TNAs), glycol nucleic acids (GNAs), peptide nucleic acids (PNAs), locked nucleic acids (LNAs, including LNA having a β-D-ribo configuration, α-LNA having an α-L-ribo configuration (a diastereomer of LNA), 2′-amino-LNA having a 2′-amino functionalization, and 2′-amino-α-LNA having a 2′-amino functionalization) or hybrids thereof.


In some embodiments, polynucleotides of the disclosure may be a messenger RNA (mRNA) or any nucleic acid molecule and may or may not be chemically modified. In one aspect, the nucleic acid molecule is a mRNA. As used herein, the term “messenger RNA (mRNA)” refers to any polynucleotide which encodes a polypeptide of interest and which is capable of being translated to produce the encoded polypeptide of interest in vitro, in vivo, in situ or ex vivo.


Traditionally, the basic components of an mRNA molecule include at least a coding region, a 5′UTR, a 3′UTR, a 5′ cap and a poly-A tail. Building on this wild type modular structure, the present disclosure expands the scope of functionality of traditional mRNA molecules by providing payload constructs which maintain a modular organization, but which comprise one or more structural and/or chemical modifications or alterations which impart useful properties to the polynucleotide, for example tenability of function. As used herein, a “structural” feature or modification is one in which two or more linked nucleosides are inserted, deleted, duplicated, inverted or randomized in a polynucleotide without significant chemical modification to the nucleosides themselves. Because chemical bonds will necessarily be broken and reformed to effect a structural modification, structural modifications are of a chemical nature and hence are chemical modifications. However, structural modifications will result in a different sequence of nucleotides. For example, the polynucleotide “ATCG” may be chemically modified to “AT-5meC-G”. The same polynucleotide may be structurally modified from “ATCG” to “ATCCCG”. Here, the dinucleotide “CC” has been inserted, resulting in a structural modification to the polynucleotide.


In some embodiments, polynucleotides of the present disclosure may harbor 5′UTR sequences which play a role in translation initiation. 5′UTR sequences may include features such as Kozak sequences which are commonly known to be involved in the process by which the ribosome initiates translation of genes, Kozak sequences have the consensus XCCR(A/G) CCAUG, where R is a purine (adenine or guanine) three bases upstream of the start codon (AUG) and X is any nucleotide. In one embodiment, the Kozak sequence is ACCGCC. By engineering the features that are typically found in abundantly expressed genes of target cells or tissues, the stability and protein production of the polynucleotides of the disclosure can be enhanced.


Further provided are polynucleotides, which may contain an internal ribosome entry site (IRES) which play an important role in initiating protein synthesis in the absence of 5′ cap structure in the polynucleotide. An IRES may act as the sole ribosome binding site, or may serve as one of the multiple binding sites. Polynucleotides of the disclosure containing more than one functional ribosome binding site may encode several peptides or polypeptides that are translated independently by the ribosomes giving rise to bicistronic and/or multicistronic nucleic acid molecules. In one embodiment, the IRES may be SEQ ID NO: 8667.


In some embodiments, polynucleotides encoding biocircuits, effector modules, DDs and payloads may include from about 30 to about 100,000 nucleotides (e.g., from 30 to 50, from 30 to 100, from 30 to 250, from 30 to 500, from 30 to 1,000, from 30 to 1,500, from 30 to 3,000, from 30 to 5,000, from 30 to 7,000, from 30 to 10,000, from 30 to 25,000, from 30 to 50,000, from 30 to 70,000, from 100 to 250, from 100 to 500, from 100 to 1,000, from 100 to 1,500, from 100 to 3,000, from 100 to 5,000, from 100 to 7,000, from 100 to 10,000, from 100 to 25,000, from 100 to 50,000, from 100 to 70,000, from 100 to 100,000, from 500 to 1,000, from 500 to 1,500, from 500 to 2,000, from 500 to 3,000, from 500 to 5,000, from 500 to 7,000, from 500 to 10,000, from 500 to 25,000, from 500 to 50,000, from 500 to 70,000, from 500 to 100,000, from 1,000 to 1,500, from 1,000 to 2,000, from 1,000 to 3,000, from 1,000 to 5,000, from 1,000 to 7,000, from 1,000 to 10,000, from 1,000 to 25,000, from 1,000 to 50,000, from 1,000 to 70,000, from 1,000 to 100,000, from 1,500 to 3,000, from 1,500 to 5,000, from 1,500 to 7,000, from 1,500 to 10,000, from 1,500 to 25,000, from 1,500 to 50,000, from 1,500 to 70,000, from 1,500 to 100,000, from 2,000 to 3,000, from 2,000 to 5,000, from 2,000 to 7,000, from 2,000 to 10,000, from 2,000 to 25,000, from 2,000 to 50,000, from 2,000 to 70,000, and from 2,000 to 100,000 nucleotides). In some aspects, polynucleotides of the disclosure may include more than 10,000 nucleotides.


Regions of the polynucleotides which encode certain features such as cleavage sites, linkers, trafficking signals, tags or other features may range independently from 10-1,000 nucleotides in length (e.g., greater than 20, 30, 40, 45, 50, 55, 60, 70, 80, 90, 100, 120, 140, 160, 180, 200, 250, 300, 350, 400, 450, 500, 600, 700, 800, and 900 nucleotides or at least 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 70, 80, 90, 100, 120, 140, 160, 180, 200, 250, 300, 350, 400, 450, 500, 600, 700, 800, 900, and 1,000 nucleotides).


In some embodiments, polynucleotides of the present disclosure may further comprise embedded regulatory moieties such as microRNA binding sites within the 3′UTR of nucleic acid molecules which when bind to microRNA molecules, down-regulate gene expression either by reducing nucleic acid molecule stability or by inhibiting translation. Conversely, for the purposes of the polynucleotides of the present disclosure, microRNA binding sites can be engineered out of (i.e. removed from) sequences in which they naturally occur in order to increase protein expression in specific tissues. For example, miR-142 and miR-146 binding sites may be removed to improve protein expression in the immune cells. In some embodiments, any of the encoded payloads may be regulated by an SRE and then combined with one or more regulatory sequences to generate a dual or multi-tuned effector module or biocircuit system.


In some embodiments, polynucleotides of the present disclosure may encode fragments, variants, derivatives of polypeptides of the disclosures. In some aspects, the variant sequence may keep the same or a similar activity. Alternatively, the variant may have an altered activity (e.g., increased or decreased) relative to the start sequence. Generally, variants of a particular polynucleotide or polypeptide of the disclosure will have at least about 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% but less than 100% sequence identity to that particular reference polynucleotide or polypeptide as determined by sequence alignment programs and parameters described herein and known to those skilled in the art. Such tools for alignment include those of the BLAST suite (Stephen et al., Gapped BLAST and PSI-BLAST: a new generation of protein database search programs, Nucleic Acids Res., 1997, 25:3389-3402.)


In some embodiments, polynucleotides of the present disclosure may be modified. As used herein, the terms “modified”, or as appropriate, “modification” refers to chemical modification with respect to A, G, U (T in DNA) or C nucleotides. Modifications may be on the nucleoside base and/or sugar portion of the nucleosides which comprise the polynucleotide. In some embodiments, multiple modifications are included in the modified nucleic acid or in one or more individual nucleoside or nucleotide. For example, modifications to a nucleoside may include one or more modifications to the nucleobase and the sugar. Modifications to the polynucleotides of the present disclosure may include any of those taught in, for example, International Publication NO. WO2013/052523, the contents of which are incorporated herein by reference in its entirety.


As described herein “nucleoside” is defined as a compound containing a sugar molecule (e.g., a pentose or ribose) or a derivative thereof in combination with an organic base (e.g., a purine or pyrimidine) or a derivative thereof (also referred to herein as “nucleobase”). As described herein, “nucleotide” is defined as a nucleoside including a phosphate group.


In some embodiments, the modification may be on the internucleoside linkage (e.g., phosphate backbone). Herein, in the context of the polynucleotide backbone, the phrases “phosphate” and “phosphodiester” are used interchangeably. Backbone phosphate groups can be modified by replacing one or more of the oxygen atoms with a different substituent. Further, the modified nucleosides and nucleotides can include the wholesale replacement of an unmodified phosphate moiety with another internucleoside linkage. Examples of modified phosphate groups include, but are not limited to, phosphorothioate, phosphonoselenoates, boranophosphates, boranophosphate esters, hydrogen phosphonates, phosphoramidates, phosphonodiamidites, alkyl or aryl phosphonates, and phosphotriesters. Phosphorodithioates have both non-linking oxygens replaced by sulfur. The phosphate linker can also be modified by the replacement of a linking oxygen with nitrogen (bridged phosphoramidates), sulfur (bridged phosphorothioates), and carbon (bridged methylene-phosphonates). Other modifications which may be used are taught in, for example, International Application NO.: WO2013/052523, the contents of which are incorporated herein by reference in their entirety.


Chemical modifications and/or substitution of the nucleotides or nucleobases of the polynucleotides of the disclosure which are useful in the present disclosure include any modified substitutes known in the art, for example, (±)1-(2-Hydroxypropyl)pseudouridine TP, (2R)-1-(2-Hydroxypropyl)pseudouridine TP, 1-(4-Methoxy-phenyl)pseudo-UTP-2′-O-dimethyladenosine, 1,2′-O-dimethylguanosine, 1,2′-O-dimethylinosine, 1-Hexyl-pseudo-UTP, 1-Homoallylpseudouridine TP, 1-Hydroxymethylpseudouridine TP, 1-iso-propyl-pseudo-UTP, 1-Me-2-thio-pseudo-UTP, 1-Me-4-thio-pseudo-UTP, 1-Me-alpha-thio-pseudo-UTP, 1-Me-GTP, 2′-Amino-2′-deoxy-ATP, 2′-Amino-2′-deoxy-CTP, 2′-Amino-2′-deoxy-GTP, 2′-Amino-2′-deoxy-UTP, 2′-Azido-2′-deoxy-ATP, tubercidine, undermodified hydroxywybutosine, uridine 5-oxyacetic acid, uridine 5-oxyacetic acid methyl ester, wybutosine, wyosine, xanthine, Xanthosine-5′-TP, xylo-adenosine, zebularine, α-thio-adenosine, α-thio-cytidine, α-thio-guanosine, and/or α-thio-uridine.


Polynucleotides of the present disclosure may comprise one or more of the modifications taught herein. Different sugar modifications, base modifications, nucleotide modifications, and/or internucleoside linkages (e.g., backbone structures) may exist at various positions in the polynucleotide of the disclosure. One of ordinary skill in the art will appreciate that the nucleotide analogs or other modification(s) may be located at any position(s) of a polynucleotide such that the function of the polynucleotide is not substantially decreased. A modification may also be a 5′ or 3′ terminal modification. The polynucleotide may contain from about 1% to about 100% modified nucleotides (either in relation to overall nucleotide content, or in relation to one or more types of nucleotide, i.e. any one or more of A, G, U or C) or any intervening percentage (e.g., from 1% to 20%, from 1% to 25%, from 1% to 50%, from 1% to 60%, from 1% to 70%, from 1% to 80%, from 1% to 90%, from 1% to 95%, from 10% to 20%, from 10% to 25%, from 10% to 50%, from 10% to 60%, from 10% to 70%, from 10% to 80%, from 10% to 90%, from 10% to 95%, from 10% to 100%, from 20% to 25%, from 20% to 50%, from 20% to 60%, from 20% to 70%, from 20% to 80%, from 20% to 90%, from 20% to 95%, from 20% to 100%, from 50% to 60%, from 50% to 70%, from 50% to 80%, from 50% to 90%, from 50% to 95%, from 50% to 100%, from 70% to 80%, from 70% to 90%, from 70% to 95%, from 70% to 100%, from 80% to 90%, from 80% to 95%, from 80% to 100%, from 90% to 95%, from 90% to 100%, and from 95% to 100%).


In some embodiments, one or more codons of the polynucleotides of the present disclosure may be replaced with other codons encoding the native amino acid sequence to tune the expression of the SREs, through a process referred to as codon selection. Since mRNA codon, and tRNA anticodon pools tend to vary among organisms, cell types, sub cellular locations and over time, the codon selection described herein is a spatiotemporal (ST) codon selection.


In some embodiments of the disclosure, certain polynucleotide features may be codon optimized. Codon optimization refers to a process of modifying a nucleic acid sequence for enhanced expression in the host cell by replacing at least 1, 2, 3, 4, 5, 10, 15, 20, 25, 50 or more codons of the native sequence with codons that are most frequently used in the genes of that host cell while maintaining the native amino acid sequence. Codon usage may be measured using the Codon Adaptation Index (CAI) which measures the deviation of a coding polynucleotide sequence from a reference gene set. Codon usage tables are available at the Codon Usage Database (www.kazusa.or.jp/codon/) and the CAI can be calculated by EMBOSS CAI program (emboss.sourceforge.net/). Codon optimization methods are known in the art and may be useful in efforts to achieve one or more of several goals. These goals include to match codon frequencies in target and host organisms to ensure proper folding, bias nucleotide content to alter stability or reduce secondary structures, minimize tandem repeat codons or base runs that may impair gene construction or expression, customize transcriptional and translational control regions, insert or remove protein signaling sequences, remove/add post translation modification sites in encoded protein (e.g. glycosylation sites), add, remove or shuffle protein domains, insert or delete restriction sites, modify ribosome binding sites and degradation sites, to adjust translational rates to allow the various domains of the protein to fold properly, or to reduce or eliminate problem secondary structures within the polynucleotide. Codon optimization tools, algorithms and services are known in the art, and non-limiting examples include services from GeneArt (Life Technologies), DNA2.0 (Menlo Park Calif.), OptimumGene (GenScript, Piscataway, N.J.), algorithms such as but not limited to, DNAWorks v3.2.3, and/or proprietary methods. In one embodiment, a polynucleotide sequence or portion thereof is codon optimized using optimization algorithms. Codon options for each amino acid are well-known in the art as are various species table for optimizing for expression in that particular species.


In some embodiments of the disclosure, certain polynucleotide features may be codon optimized. For example, a preferred region for codon optimization may be upstream (5′) or downstream (3′) to a region which encodes a polypeptide. These regions may be incorporated into the polynucleotide before and/or after codon optimization of the payload encoding region or open reading frame (ORF).


After optimization (if desired), the polynucleotide components are reconstituted and transformed into a vector such as, but not limited to, plasmids, viruses, cosmids, and artificial chromosomes.


Spatiotemporal codon selection may impact the expression of the polynucleotides of the disclosure, since codon composition determines the rate of translation of the mRNA species and its stability. For example, tRNA anticodons to optimized codons are abundant, and thus translation may be enhanced. In contrast, tRNA anticodons to less common codons are fewer and thus translation may proceed at a slower rate. Presnyak et al. have shown that the stability of an mRNA species is dependent on the codon content, and higher stability and thus higher protein expression may be achieved by utilizing optimized codons (Presnyak et al. (2015) Cell 160, 1111-1124; the contents of which are incorporated herein by reference in their entirety). Thus, in some embodiments, ST codon selection may include the selection of optimized codons to enhance the expression of the SRES, effector modules and biocircuits of the disclosure. In other embodiments, spatiotemporal codon selection may involve the selection of codons that are less commonly used in the genes of the host cell to decrease the expression of the compositions of the disclosure. The ratio of optimized codons to codons less commonly used in the genes of the host cell may also be varied to tune expression.


In some embodiments, certain regions of the polynucleotide may be modified using codon selection methods. For example, a preferred region for codon selection may be upstream (5′) or downstream (3′) to a region which encodes a polypeptide. These regions may be incorporated into the polynucleotide before and/or after codon selection of the payload encoding region or open reading frame (ORF).


The stop codon of the polynucleotides of the present disclosure may be modified to include sequences and motifs to alter the expression levels of the SREs, payloads and effector modules of the present disclosure. Such sequences may be incorporated to induce stop codon readthrough, wherein the stop codon may specify amino acids e.g. selenocysteine or pyrrolysine. In other instances, stop codons may be skipped altogether to resume translation through an alternate open reading frame. Stop codon read through may be utilized to tune the expression of components of the effector modules at a specific ratio (e.g. as dictated by the stop codon context). Examples of preferred stop codon motifs include UGAN, UAAN, and UAGN, where N is either C or U.


Suppression of termination occurs during translation of many viral mRNAs as a means of generating a second protein with extended carboxy terminus. In retroviruses, gag and pol genes are encoded by a single mRNA and separated by an amber termination codon UAG. Translational suppression of the amber codon allows synthesis of the gag pol precursor. Translation suppression is mediated by suppressor tRNAs that can recognize termination codons and insert a specific amino acid. In some embodiments, effector modules described herein may incorporate amber termination codons. Such codons may be used in lieu of or in addition to IRES and p2A sequences in bicistronic constructs. Stop codon read through may be combined with P2A to obtain low level expression of downstream gene (e.g. IL12). In some embodiments, the amber stop codons may be combined with tRNA expression or amino-acyl tRNA synthetase for further control. In one aspect, the payload may be a regulated tRNA synthetase.


Polynucleotide modifications and manipulations can be accomplished by methods known in the art such as, but not limited to, site directed mutagenesis and recombinant technology. The resulting modified molecules may then be tested for activity using in vitro or in vivo assays such as those described herein or any other suitable screening assay known in the art.


In some embodiments, polynucleotides of the disclosure may comprise two or more effector module sequences, or two or more payload sequences, which are in a pattern such as ABABAB or AABBAABBAABB or ABCABCABC or variants thereof repeated once, twice, or more than three times. In these patterns, each letter, A, B, or C represent a different effector module component.


In yet another embodiment, polynucleotides of the disclosure may comprise two or more effector module component sequences with each component having one or more SRE sequences (DD sequences), or two or more payload sequences. As a non-limiting example, the sequences may be in a pattern such as ABABAB or AABBAABBAABB or ABCABCABC or variants thereof repeated once, twice, or more than three times in each of the regions. As another non-limiting example, the sequences may be in a pattern such as ABABAB or AABBAABBAABB or ABCABCABC or variants thereof repeated once, twice, or more than three times across the entire polynucleotide. In these patterns, each letter, A, B, or C represent a different sequence or component.


According to the present disclosure, polynucleotides encoding distinct biocircuits, effector modules, SREs and payload constructs may be linked together through the 3′-end using nucleotides which are modified at the 3′-terminus. Chemical conjugation may be used to control the stoichiometry of delivery into cells. Polynucleotides can be designed to be conjugated to other polynucleotides, dyes, intercalating agents (e.g. acridines), cross-linkers (e.g. psoralen, mitomycin C), porphyrins (TPPC4, texaphyrin, Sapphyrin), polycyclic aromatic hydrocarbons (e.g., phenazine, dihydrophenazine), artificial endonucleases (e.g. EDTA), alkylating agents, phosphate, amino, mercapto, PEG (e.g., PEG-40K), MPEG, [MPEG]2, polyamino, alkyl, substituted alkyl, radiolabeled markers, enzymes, haptens (e.g. biotin), transport/absorption facilitators (e.g., aspirin, vitamin E, folic acid), synthetic ribonucleases, proteins, e.g., glycoproteins, or peptides, e.g., molecules having a specific affinity for a co-ligand, or antibodies e.g., an antibody, that binds to a specified cell type such as a cancer cell, endothelial cell, or bone cell, hormones and hormone receptors, non-peptidic species, such as lipids, lectins, carbohydrates, vitamins, cofactors, or a drug. As non-limiting examples, they may be conjugates with other immune conjugates.


In some embodiments, the compositions of the polynucleotides of the disclosure may generated by combining the various components of the effector modules using the Gibson assembly method. The Gibson assembly reaction consists of three isothermal reactions, each relying on a different enzymatic activity including a 5′ exonuclease which generates long overhangs, a polymerase which fills in the gaps of the annealed single strand regions and a DNA ligase which seals the nicks of the annealed and filled-in gaps. Polymerase chain reactions are performed prior to Gibson assembly which may be used to generate PCR products with overlapping sequence. These methods can be repeated sequentially, to assemble larger and larger molecules. For example, the method can comprise repeating a method as above to join a second set of two or more DNA molecules of interest to one another, and then repeating the method again to join the first and second set DNA molecules of interest, and so on. At any stage during these multiple rounds of assembly, the assembled DNA can be amplified by transforming it into a suitable microorganism, or it can be amplified in vitro (e.g., with PCR).


In some embodiments, polynucleotides of the disclosure may encode effector modules comprising a destabilizing domain (DD) and at least one payload taught herein. The DD domain may be a hPDE5 mutant comprising one, two, three, four, five or more mutations


In some embodiments, the effector module may be a PDE5-GFP fusion encoded by SEQ ID NO: 95-106; 205-222; 234-236; 256-260; 378-379; 469-503; 526-533; 8521-8550; 8644-8647; and 8611-8629. In some embodiments, the effector module may be hPDE5-CAR constructs, encoded by SEQ ID NO: 8285-8298 or a hPDE5-IL15-IL15Ra constructs, encoded by SEQ ID NO: 8352-8361; 8670-8684 or 8702-8718.


Cells

In accordance with the present disclosure, cells genetically modified to express at least one biocircuit, SRE (e. g, DD), effector module and immunotherapeutic agent of the disclosure, are provided. Cells of the disclosure may include, without limitation, immune cells, stem cells and tumor cells. In some embodiments, immune cells are immune effector cells, including, but not limiting to, T cells such as CD8+ T cells and CD4+ T cells (e.g., Th1, Th2, Th17, Foxp3+ cells), memory T cells such as T memory stem cells, central T memory cells, and effector memory T cells, terminally differentiated effector T cells, natural killer (NK) cells, NK T cells, tumor infiltrating lymphocytes (TILs), cytotoxic T lymphocytes (CTLs), regulatory T cells (Tregs), and dendritic cells (DCs), other immune cells that can elicit an effector function, or the mixture thereof. T cells may be Tαβ cells and Tγδ cells. In some embodiments, stem cells may be from human embryonic stem cells, mesenchymal stem cells, and neural stem cells. In some embodiments, T cells may be depleted endogenous T cell receptors (See U.S. Pat. Nos. 9,273,283; 9,181,527; and 9,028,812; the contents of each of which are incorporated herein by reference in their entirety).


In some embodiments, cells of the disclosure may be autologous, allogeneic, syngeneic, or xenogeneic in relation to a particular individual subject.


In some embodiments, cells of the disclosure may be mammalian cells, particularly human cells. Cells of the disclosure may be primary cells or immortalized cell lines.


In some embodiments, cells of the disclosure may include expansion factors as payload to trigger proliferation and expansion of the cells. Exemplary payloads include RAS such as KRAS, NRAS, RRAS, RRAS2, MRAS, ERAS, and HRAS, DIRAS such as DIRAS1, DIRAS2, and DIRAS3, NKIRAS such as NKIRAS1, and NKIRAS2, RAL such as RALA, and RALB, RAP such as RAP1A, RAP1B, RAP2A, RAP2B, and RAP2C, RASD such as RASD1, and RASD2, RASL such as RASL10A, RASL10B, RASL11A, RASL11B, and RASL12, REM such as REM1, and REM2, GEM, RERG, RERGL, and RRAD.


Engineered immune cells can be accomplished by transducing a cell with a polypeptide of a biocircuit, an effector module, a SRE and/or a payload of interest (i.e., immunotherapeutic agent), or a polynucleotide encoding said polypeptide, or a vector comprising said polynucleotide. The vector may be a viral vector such as a lentiviral vector, a gamma-retroviral vector, a recombinant AAV, an adenoviral vector and an oncolytic viral vector. In other aspects, non-viral vectors for example, nanoparticles and liposomes may also be used. In some embodiments, immune cells of the disclosure are genetically modified to express at least one immunotherapeutic agent of the disclosure which is tunable using a stimulus. In some examples, two, three or more immunotherapeutic agents constructed in the same biocircuit and effector module are introduced into a cell. In other examples, two, three, or more biocircuits, effector modules, each of which comprises an immunotherapeutic agent, may be introduced into a cell.


In some embodiments, immune cells of the disclosure may be T cells modified to express an antigen-specific T cell receptor (TCR), or an antigen specific chimeric antigen receptor (CAR) taught herein (known as CAR T cells). Accordingly, at least one polynucleotide encoding a CAR system (or a TCR) described herein, or a vector comprising the polynucleotide is introduced into a T cell. The T cell expressing the CAR or TCR binds to a specific antigen via the extracellular targeting moiety of the CAR or TCR, thereby a signal via the intracellular signaling domain (s) is transmitted into the T cell, and as a result, the T cell is activated. The activated CAR T cell changes its behavior including release of a cytotoxic cytokine (e.g., a tumor necrosis factor, and lymphotoxin, etc.), improvement of a cell proliferation rate, change in a cell surface molecule, or the like. Such changes cause destruction of a target cell expressing the antigen recognized by the CAR or TCR. In addition, release of a cytokine or change in a cell surface molecule stimulates other immune cells, for example, a B cell, a dendritic cell, a NK cell, and a macrophage.


The CAR introduced into a T cell may be a first-generation CAR including only the intracellular signaling domain from TCR CD3zeta, or a second-generation CAR including the intracellular signaling domain from TCR CD3zeta and a costimulatory signaling domain, or a third-generation CAR including the intracellular signaling domain from TCR CD3zeta and two or more costimulatory signaling domains, or a split CAR system, or an on/off switch CAR system. In one example, the expression of the CAR or TCR is controlled by a destabilizing domain (DD) such as a hDHFR mutant, in the effector module of the disclosure. The presence or absence of hDHFR binding ligand such as TMP is used to tune the CAR or TCR expression in transduced T cells or NK cells.


In some embodiments, CAR T cells of the disclosure may be further modified to express another one, two, three or more immunotherapeutic agents. The immunotherapeutic agents may be another CAR or TCR specific to a different target molecule; a cytokine such as IL2, IL12, IL15 and IL18, or a cytokine receptor such as IL15Ra; a chimeric switch receptor that converts an inhibitory signal to a stimulatory signal; a homing receptor that guides adoptively transferred cells to a target site such as the tumor tissue; an agent that optimizes the metabolism of the immune cell; or a safety switch gene (e.g., a suicide gene) that kills activated T cells when a severe event is observed after adoptive cell transfer or when the transferred immune cells are no-longer needed. These molecules may be included in the same effector module or in separate effector modules.


In one embodiment, the CAR T cell (including TCR T cell) of the disclosure may be an “armed” CAR T cell which is transformed with an effector module comprising a CAR and an effector module comprising a cytokine. The inducible or constitutively secrete active cytokines further armor CAR T cells to improve efficacy and persistence. In this context, such CAR T cell is also referred to as “armored CAR T cell”. The “armor” molecule may be selected based on the tumor microenvironment and other elements of the innate and adaptive immune systems. In some embodiments, the molecule may be a stimulatory factor such as IL2, IL12, IL15, IL18, type I IFN, CD40L and 4-1BBL which have been shown to further enhance CART cell efficacy and persistence in the face of a hostile tumor microenvironment via different mechanisms (Yeku et al., Biochem Soc Trans., 2016, 44(2): 412-418).


In some aspects, the armed CART cell of the disclosure is modified to express a CD19 CAR and IL12. Such T cells, after CAR mediated activation in the tumor, release inducible IL12 which augments T-cell activation and attracts and activates innate immune cells to eliminate CD19-negative cancer cells.


In one embodiment, T cells of the disclosure may be modified to express an effector module comprising a CAR and an effector module comprising a suicide gene.


In one embodiment, the CAR T cell (including TCR T cell) of the disclosure may be transformed with effector modules comprising a cytokine and a safety switch gene (e.g., suicide gene). The suicide gene may be an inducible caspase such as caspase 9 which induces apoptosis, when activated by an extracellular stimulus of a biocircuit system. Such induced apoptosis eliminates transferred cell as required to decrease the risk of direct toxicity and uncontrolled cell proliferation.


In some embodiments, immune cells of the disclosure may be NK cells modified to express an antigen-specific T cell receptor (TCR), or an antigen specific chimeric antigen receptor (CAR) taught herein.


Natural killer (NK) cells are members of the innate lymphoid cell family and characterized in humans by expression of the phenotypic marker CD56 (neural cell adhesion molecule) in the absence of CD3 (T-cell co-receptor). NK cells are potent effector cells of the innate immune system which mediate cytotoxic attack without the requirement of prior antigen priming, forming the first line of defense against diseases including cancer malignancies and viral infection.


Several pre-clinical and clinical trials have demonstrated that adoptive transfer of NK cells is a promising treatment approach against cancers such as acute myeloid leukemia (Ruggeri et al., Science; 2002, 295: 2097-2100; and Geller et al., Immunotherapy, 2011, 3: 1445-1459). Adoptive transfer of NK cells expressing CAR such as DAP12-Based Activating CAR revealed improved eradication of tumor cells (Topfer et al., J Immunol. 2015; 194:3201-3212). NK cell engineered to express a CS-1 specific CAR also displayed enhanced cytolysis and interferon-γ (IFN γ) production in multiple myeloma (Chu et al., Leukemia, 2014, 28(4): 917-927).


NK cell activation is characterized by an array of receptors with activating and inhibitory functions. The important activation receptors on NK cells include CD94/NKG2C and NKG2D (the C-type lectin-like receptors), and the natural cytotoxicity receptors (NCR) NKp30, NKp44 and NKp46, which recognize ligands on tumor cells or virally infected cells. NK cell inhibition is essentially mediated by interactions of the polymorphic inhibitory killer cell immunoglobulin-like receptors (KIRs) with their cognate human-leukocyte-antigen (HLA) ligands via the alpha-1 helix of the HLA molecule. The balance between signals that are generated from activating receptors and inhibitory receptors mainly determines the immediate cytotoxic activation.


NK cells may be isolated from peripheral blood mononuclear cells (PBMCs), or derived from human embryonic stem (ES) cells and induced pluripotent stem cells (iPSCs). The primary NK cells isolated from PBMCs may be further expanded for adoptive immunotherapy. Strategies and protocols useful for the expansion of NK cells may include interleukin 2 (IL2) stimulation and the use of autologous feeder cells, or the use of genetically modified allogeneic feeder cells. In some aspects, NK cells can be selectively expanded with a combination of stimulating ligands including IL15, IL21, IL2, 4-1BBL, IL12, IL18, MICA, 2B4, LFA-1, and BCM1/SLAMF2 (e.g., US patent publication NO: US20150190471).


Immune cells expressing effector modules comprising a CAR and/or other immunotherapeutic agents can be used as cancer immunotherapy. The immunotherapy comprises the cells expressing a CAR and/or other immunotherapeutic agents as an active ingredient, and may further comprise a suitable excipient. Examples of the excipient may include the pharmaceutically acceptable excipients, including various cell culture media, and isotonic sodium chloride.


In some embodiments, cells of the present disclosure may be dendritic cells that are genetically modified to express the compositions of the disclosure. Such cells may be used as cancer vaccines.


III. Pharmaceutical Compositions and Formulations

The present disclosure further provides pharmaceutical compositions comprising one or more biocircuits, effector modules, SREs (e.g., DDs), stimuli and payloads of interest (i.e., immunotherapeutic agents), vectors, cells and other components of the disclosure, and optionally at least one pharmaceutically acceptable excipient or inert ingredient.


As used herein the term “pharmaceutical composition” refers to a preparation of biocircuits, SREs, stimuli and payloads of interest (i.e., immunotherapeutic agents), other components, vectors, cells and described herein, or pharmaceutically acceptable salts thereof, optionally with other chemical components such as physiologically suitable carriers and excipients. The pharmaceutical compositions of the disclosure comprise an effective amount of one or more active compositions of the disclosure. The preparation of a pharmaceutical composition that contains at least one composition of the present disclosure and/or an additional active ingredient will be known to those skilled in the art considering the present disclosure, as exemplified by Remington's Pharmaceutical Sciences, 18th Ed. Mack Printing Company, 1990, incorporated herein by reference.


The term “excipient” or “inert ingredient” refers to an inactive substance added to a pharmaceutical composition and formulation to further facilitate administration of an active ingredient. For the purposes of the present disclosure, the phrase “active ingredient” generally refers to any one or more biocircuits, effector modules, SREs, stimuli and payloads of interest (i.e., immunotherapeutic agents), other components, vectors, and cells to be delivered as described herein. The phrases “pharmaceutically acceptable” refers to molecular entities and compositions that do not produce an adverse, allergic or other untoward reaction when administered to an animal, such as, for example, a human, as appropriate.


In some embodiments, pharmaceutical compositions and formulations are administered to humans, human patients or subjects. Although the descriptions of pharmaceutical compositions provided herein are principally directed to pharmaceutical compositions which are suitable for administration to humans, it will be understood by the skilled artisan that such compositions are generally suitable for administration to any other animal, e.g., to non-human animals, e.g. non-human mammals Subjects to which administration of the pharmaceutical compositions is contemplated include, but are not limited to, non-human mammals, including agricultural animals such as cattle, horses, chickens and pigs, domestic animals such as cats, dogs, or research animals such as mice, rats, rabbits, dogs and non-human primates. It will be understood that, for human administration, preparations should meet sterility, pyrogenicity, general safety and purity standards as required by FDA Office of Biological Standards.


A pharmaceutical composition and formulation in accordance with the disclosure may be prepared, packaged, and/or sold in bulk, as a single unit dose, and/or as a plurality of single unit doses. As used herein, a “unit dose” is discrete amount of the pharmaceutical composition comprising a predetermined amount of the active ingredient. The amount of the active ingredient is generally equal to the dosage of the active ingredient which would be administered to a subject and/or a convenient fraction of such a dosage such as, for example, one-half or one-third of such a dosage.


The compositions of the present disclosure may be formulated in any manner suitable for delivery. The formulation may be, but is not limited to, nanoparticles, poly (lactic-co-glycolic acid) (PLGA) microspheres, lipidoids, lipoplex, liposome, polymers, carbohydrates (including simple sugars), cationic lipids and combinations thereof.


In one embodiment, the formulation is a nanoparticle which may comprise at least one lipid. The lipid may be selected from, but is not limited to, DLin-DMA, DLin-K-DMA, 98N12-5, C12-200, DLin-MC3-DMA, DLin-KC2-DMA, DODMA, PLGA, PEG, PEG-DMG and PEGylated lipids. In another aspect, the lipid may be a cationic lipid such as, but not limited to, DLin-DMA, DLin-D-DMA, DLin-MC3-DMA, DLin-KC2-DMA and DODMA.


For polynucleotides of the disclosure, the formulation may be selected from any of those taught, for example, in International Application PCT/US2012/069610, the contents of which are incorporated herein by reference in its entirety.


Relative amounts of the active ingredient, the pharmaceutically acceptable excipient or inert ingredient, and/or any additional ingredients in a pharmaceutical composition in accordance with the disclosure will vary, depending upon the identity, size, and/or condition of the subject treated and further depending upon the route by which the composition is to be administered. By way of example, the composition may comprise between 0.1 and 100, e.g., between 0.5 and 50, between 1-30, between 5-80, at least 80 (w/w) active ingredient.


Efficacy of treatment or amelioration of disease can be assessed, for example by measuring disease progression, disease remission, symptom severity, reduction in pain, quality of life, dose of a medication required to sustain a treatment effect, level of a disease marker or any other measurable parameter appropriate for a given disease being treated or targeted for prevention. It is well within the ability of one skilled in the art to monitor efficacy of treatment or prevention by measuring any one of such parameters, or any combination of parameters. In connection with the administration of compositions of the present disclosure, “effective against” for example a cancer, indicates that administration in a clinically appropriate manner results in a beneficial effect for at least a statistically significant fraction of patients, such as an improvement of symptoms, a cure, a reduction in disease load, reduction in tumor mass or cell numbers, extension of life, improvement in quality of life, or other effect generally recognized as positive by medical doctors familiar with treating the particular type of cancer.


A treatment or preventive effect is evident when there is a statistically significant improvement in one or more parameters of disease status, or by a failure to worsen or to develop symptoms where they would otherwise be anticipated. As an example, a favorable change of at least 10 in a measurable parameter of disease, and preferably at least 20, 30, 40, 50 or more can be indicative of effective treatment. Efficacy for a given composition or formulation of the present disclosure can also be judged using an experimental animal model for the given disease as known in the art. When using an experimental animal model, efficacy of treatment is evidenced when a statistically significant change is observed.


IV. Delivery Modalities and/or Vectors
Vectors

The present disclosure also provides vectors that package polynucleotides of the disclosure encoding biocircuits, effector modules, SREs (DDs) and payload constructs, and combinations thereof. In some embodiments, polynucleotides encoding destabilizing domains, effector modules and biocircuit systems, are provided. Vectors comprising polynucleotides of the disclosure are provided. In some aspects, the vector may be a non-viral vector, or a viral vector. In some embodiments, the vector of the disclosure is a viral vector. The viral vector may include, but is not limited to a retroviral vector, an adenoviral vector, an adeno-associated viral vector, or a lentiviral vector. In some embodiments, the vector of the disclosure may be a non-viral vector, such as a nanoparticles and liposomes.


Vectors of the present disclosure may also be used to deliver the packaged polynucleotides to a cell, a local tissue site or a subject. These vectors may be of any kind, including DNA vectors, RNA vectors, plasmids, viral vectors and particles. Viral vector technology is well known and described in Sambrook et al. (2001, Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory, New York). Viruses, which are useful as vectors include, but are not limited to lentiviral vectors, adenoviral vectors, adeno-associated viral (AAV) vectors, herpes simplex viral vectors, retroviral vectors, oncolytic viruses, and the like.


In general, vectors contain an origin of replication functional in at least one organism, a promoter sequence and convenient restriction endonuclease site, and one or more selectable markers e.g. a drug resistance gene.


As used herein a promoter is defined as a DNA sequence recognized by transcription machinery of the cell, required to initiate specific transcription of the polynucleotide sequence of the present disclosure. Vectors can comprise native or non-native promoters operably linked to the polynucleotides of the disclosure. The promoters selected may be strong, weak, constitutive, inducible, tissue specific, development stage-specific, and/or organism specific. One example of a suitable promoter is the immediate early cytomegalovirus (CMV) promoter sequence. This promoter sequence is a strong constitutive promoter sequence capable of driving high levels of expression of polynucleotide sequence that is operatively linked to it. Another example of a preferred promoter is Elongation Growth Factor-1. Alpha (EF-1. alpha). Other constitutive promoters may also be used, including, but not limited to simian virus 40 (SV40), mouse mammary tumor virus (MMTV), human immunodeficiency virus (HIV), long terminal repeat (LTR), promoter, an avian leukemia virus promoter, an Epstein-Barr virus immediate early promoter, a Rous sarcoma virus promoter as well as human gene promoters including, but not limited to the phosphoglycerate kinase (PGK) promoter, actin promoter, the myosin promoter, the hemoglobin promoter, the Ubiquitin C (Ubc) promoter, the human U6 small nuclear protein promoter and the creatine kinase promoter. In some instances, inducible promoters such as but not limited to metallothionine promoter, glucocorticoid promoter, a progesterone promoter, and a tetracycline promoter may be used. In some embodiments, the promoter may be selected from the following a CMV promoter, comprising a nucleotide sequence of SEQ ID NO: 335, an EF1a promoter, comprising a nucleotide sequence of SEQ ID NOs. 336-337, and a PGK promoter, comprising a nucleotide sequence of SEQ ID NO: 338.


In some embodiments, the optimal promoter may be selected based on its ability to achieve minimal expression of the SREs and payloads of the disclosure in the absence of the ligand and detectable expression in the presence of the ligand.


Additional promoter elements e.g. enhancers may be used to regulate the frequency of transcriptional initiation. Such regions may be located 10-100 base pairs upstream or downstream of the start site. In some instances, two or more promoter elements may be used to cooperatively or independently activate transcription.


In some embodiments, the recombinant expression vector may comprise regulatory sequences, such as transcription and translation initiation and termination codons, which are specific to the type of host cell into which the vector is to be introduced.


1. Lentiviral Vectors

In some embodiments, lentiviral vectors/particles may be used as vehicles and delivery modalities. Lentiviruses are subgroup of the Retroviridae family of viruses, named because reverse transcription of viral RNA genomes to DNA is required before integration into the host genome. As such, the most important features of lentiviral vehicles/particles are the integration of their genetic material into the genome of a target/host cell. Some examples of lentivirus include the Human Immunodeficiency Viruses: HIV-1 and HIV-2, the Simian Immunodeficiency Virus (SIV), feline immunodeficiency virus (FIV), bovine immunodeficiency virus (BIV), Jembrana Disease Virus (JDV), equine infectious anemia virus (EIAV), equine infectious anemia virus. visna-maedi and caprine arthritis encephalitis virus (CAEV).


Typically, lentiviral particles making up the gene delivery vehicle are replication defective on their own (also referred to as “self-inactivating”). Lentiviruses can infect both dividing and non-dividing cells by virtue of the entry mechanism through the intact host nuclear envelope (Naldini L et al., Curr. Opin. Biotechnol, 1998, 9: 457-463). Recombinant lentiviral vehicles/particles have been generated by multiply attenuating the HIV virulence genes, for example, the genes Env, Vif, Vpr, Vpu, Nef and Tat are deleted making the vector biologically safe. Correspondingly, lentiviral vehicles, for example, derived from HIV-1/HIV-2 can mediate the efficient delivery, integration and long-term expression of transgenes into non-dividing cells. As used herein, the term “recombinant” refers to a vector or other nucleic acid containing both lentiviral sequences and non-lentiviral retroviral sequences.


Lentiviral particles may be generated by co-expressing the virus packaging elements and the vector genome itself in a producer cell such as human HEK293T cells. These elements are usually provided in three (in second generation lentiviral systems) or four separate plasmids (in third generation lentiviral systems). The producer cells are co-transfected with plasmids that encode lentiviral components including the core (i.e. structural proteins) and enzymatic components of the virus, and the envelope protein(s) (referred to as the packaging systems), and a plasmid that encodes the genome including a foreign transgene, to be transferred to the target cell, the vehicle itself (also referred to as the transfer vector). In general, the plasmids or vectors are included in a producer cell line. The plasmids/vectors are introduced via transfection, transduction or infection into the producer cell line. Methods for transfection, transduction or infection are well known by those of skill in the art. As non-limiting example, the packaging and transfer constructs can be introduced into producer cell lines by calcium phosphate transfection, lipofection or electroporation, generally together with a dominant selectable marker, such as neo, DHFR, Gln synthetase or ADA, followed by selection in the presence of the appropriate drug and isolation of clones.


The producer cell produces recombinant viral particles that contain the foreign gene, for example, the effector module of the present disclosure. The recombinant viral particles are recovered from the culture media and titrated by standard methods used by those of skill in the art. The recombinant lentiviral vehicles can be used to infect target cells.


Cells that can be used to produce high-titer lentiviral particles may include, but are not limited to, HEK293T cells, 2936 cells, STAR cells (Relander et al., Mol. Ther 2005, 11: 452-459), FreeStyle™ 293 Expression System (ThermoFisher, Waltham, Mass.), and other HEK293T-based producer cell lines (e.g., Stewart et al., Hum Gene Ther. 2011, 22(3):357-369; Lee et al., Biotechnol Bioeng, 2012, 10996): 1551-1560; Throm et al., Blood. 2009, 113(21): 5104-5110; the contents of each of which are incorporated herein by reference in their entirety).


In some aspects, the envelope proteins may be heterologous envelop proteins from other viruses, such as the G protein of vesicular stomatitis virus (VSV G) or baculoviral gp64 envelop proteins. The VSV-G glycoprotein may especially be chosen among species classified in the vesiculovirus genus: Carajas virus (CJSV), Chandipura virus (CHPV), Cocal virus (COCV), Isfahan virus (ISFV), Maraba virus (MARAV), Piry virus (PIRYV), Vesicular stomatitis Alagoas virus (VSAV), Vesicular stomatitis Indiana virus (VSIV) and Vesicular stomatitis New Jersey virus (VSNJV) and/or stains provisionally classified in the vesiculovirus genus as Grass carp rhabdovirus, BeAn 157575 virus (BeAn 157575), Boteke virus (BTKV), Calchaqui virus (CQIV), Eel virus American (EVA), Gray Lodge virus (GLOV), Jurona virus (JURY), Klamath virus (KLAV), Kwatta virus (KWAV), La Joya virus (LJV), Malpais Spring virus (MSPV), Mount Elgon bat virus (MEBV), Perinet virus (PERV), Pike fry rhabdovirus (PFRV), Porton virus (PORV), Radi virus (RADIV), Spring viremia of carp virus (SVCV), Tupaia virus (TUPV), Ulcerative disease rhabdovirus (UDRV) and Yug Bogdanovac virus (YBV). The gp64 or other baculoviral env protein can be derived from Autographa californica nucleopolyhedrovirus (AcMNPV), Anagrapha falcifera nuclear polyhedrosis virus, Bombyx mori nuclear polyhedrosis virus, Ghoristoneura fumiferana nucleopolyhedrovirus, Orgyia pseudotsugata single capsid nuclear polyhedrosis virus, Epiphyas postvittana nucleopolyhedrovirus, Hyphantria cunea nucleopolyhedrovirus, Galleria mellonella nuclear polyhedrosis virus, Dhori virus, Thogoto virus, Antheraea pemyi nucleopolyhedrovirus or Batken virus.


Additional elements provided in lentiviral particles may comprise retroviral LTR (long-terminal repeat) at either 5′ or 3′ terminus, a retroviral export element, optionally a lentiviral reverse response element (RRE), a promoter or active portion thereof, and a locus control region (LCR) or active portion thereof. Other elements include central polypurine tract (cPPT) sequence to improve transduction efficiency in non-dividing cells, Woodchuck Hepatitis Virus (WHP) Posttranscriptional Regulatory Element (WPRE) which enhances the expression of the transgene, and increases titer. The effector module is linked to the vector.


Methods for generating recombinant lentiviral particles are discussed in the art, for example, U.S. Pat. Nos. 8,846,385; 7,745,179; 7,629,153; 7,575,924; 7,179,903; and 6,808,905; the contents of each of which are incorporated herein by reference in their entirety.


Lentivirus vectors used may be selected from, but are not limited to pLVX, pLenti, pLenti6, pLJM1, FUGW, pWPXL, pWPI, pLenti CMV puro DEST, pLJM1-EGFP, pULTRA, pInducer20, pHIV-EGFP, pCW57.1, pTRPE, pELPS, pRRL, and pLionII.


Lentiviral vehicles known in the art may also be used (See, U.S. Pat. Nos. 9,260,725; 9,068,199; 9,023,646; 8,900,858; 8,748,169; 8,709,799; 8,420,104; 8,329,462; 8,076,106; 6,013,516; and 5,994,136; International Patent Publication NO.: WO2012079000; the contents of each of which are incorporated herein by reference in their entirety).


Lentiviral Vectors and Cell Engineering

Lentiviral vectors are used for introducing transgenes into T cells (e.g., primary human T cells or Jurkat cells) for preclinical research and clinical applications, including recently approved products such as Tisagenlecleucel (KYMRIAH®) for relapsed/refractory B-cell lymphoma. VSV-G pseudotyped 3rd generation lentiviral vectors offer high titers, high transduction efficiency and safety, and have become the vectors of choice for T cell engineering. While not wishing to be bound by theory, T cell engineering usually involves T cell activation by CD3/CD28 antibodies, followed by lentivirus transduction, and then cell expansion which can last from 5 to 30 days (e.g., 9 to 14 days or 9 to 15 days). In general, lentivirus transgene integration may take over 7 days to fully stabilize in T cells (e.g., primary human T cells or Jurkat cells). While longer cultures can increase the cell numbers, the longer cultures can also change the T cell phenotype to a more differentiated state. Therefore, the duration of ex vivo culture can impact the persistence and efficacy of CAR T cells. For example, cells cultured for shorter duration may display a less differentiated phenotype and can be highly efficacious in preclinical models.


While not wishing to be bound by theory, the state of T cell differentiation may influence the engraftment and persistence of T cells following adoptive transfer. Ghassemi et al (Reducing Ex Vivo Culture Improves the Antileukemic Activity of Chimeric Antigen Receptor (CAR) T Cells. Cancer Immunol Res; 6(9) September 2018; the contents of which are herein incorporated by reference in their entirety) describe primary human T cell differentiation over time and saw that early harvested CAR T cells exhibited enhanced effector function and proliferation, as well as enhanced potency and persistence in vivo.


Lentivirus dynamics such as transduction, integration and/or expression kinetics of lentivirally introduced transgenes in T cells (e.g., primal), human T cells or Jurkat cells) ex vivo may impact the efficacy and durability of in vivo anti-tumor responses. Some type of T cells may produce different results. For example, the Jurkat cell line may not provide the dynamic range of expression as primary human T cells. Methods to evaluate these lentivirus dynamics are known in the art and are described herein.


In some embodiment, to determine the transgene expression kinetics CD3/CD28 activated primary human T cells can be transduced with lentivirus carrying a transgene (e.g., a regulated transgene or constitutive transgene such as CD19 CAR, IL12, fluorescent protein or any transgene (e.g., payload) described herein). The cells may be analyzed by methods described herein and/or known in the art for viability, viral genomic integration (e.g., by using quantitative PCR), transcript levels (e.g., by using quantitative RT-PCR), and cell surface expression of the transgene if applicable (e.g., if the transgene is or includes CD19 CAR then the surface expression of the CD19 CAR can be evaluated). The cells may be analyzed prior to transduction and/or after transduction such as 1 day, 2 days, 3 days, 4 days, 5 days, 6 days, 7 days, 8 days, 9 days, 10 days, 11 days, 12 days, 13 days, 14 days, 15 days, 16 days, 17 days, 18 days, 19 days, 20 days, 21 days, 22 days, 23 days, 24 days, 25 days, 26 days, 27 days, 28 days, 29 days, 30 or more than 30 days after transduction. As a non-limiting example, the cells may be analyzed at various time points between 3 to 14 days after transduction (e.g., 3 days, 4 days, 5 days, 6 days, 7 days, 8 days, 9 days, 10 days, 11 days, 12 days, 13 days, and/or 14 days). As a non-limiting example, the cells may be analyzed 3 to 15 days after transduction. As a non-limiting example, the cells may be analyzed 9 to 15 days after transduction.


In some embodiments, the CD3/CD28 activated primary human T cells can be reactivated with CD3/CD28 beads after transduction. The cells may be reactivated 5 days, 6 days, 7 days, 8 days, 9 days, 10 days, 11 days, 12 days, 13 days, 14 days, 15 days, 16 days, 17 days, 18 days, 19 days, 20 days, 21 days, 22 days, 23 days, 24 days, 25 days, 26 days, 27 days, 28 days, 29 days, 30 or more than 30 days after transduction. The cells may be analyzed by methods described herein and/or known in the art for viability, viral genomic integration (e.g., by using quantitative PCR), transcript levels (e.g., by using quantitative RT-PCR), cell surface expression of the transgene if applicable (e.g., if the transgene is or includes CD19 CAR then the surface expression of the CD19 CAR can be evaluated), copy number, and/or mRNA levels.


In some embodiments, the cell viability of activated primary human T cells transduced with lentivirus carrying a transgene is greater than 65%, 70%, 75%, 80%, 85%, 90%, 95%, 97%, or 99%. As a non-limiting example, the cell viability is greater than 90%. As a non-limiting example, the cell viability is greater than 85%.


In some embodiments, the cell viability of Jurkat cells transduced with lentivirus carrying a transgene is greater than 65%, 70%, 75%, 80%, 85%, 90%, 95%, 97%, or 99%. As a non-limiting example, the cell viability is greater than 90%. As a non-limiting example, the cell viability is greater than 85%.


In some embodiments, the integration of the transgene into the genome of the cell may be at or above the saturation point. As a non-limiting example, the saturation point may be 3 copies per cell.


In some embodiments, the integration of the transgene into the genome may be high in the initial timepoints evaluated and then decline to a lower integration value before becoming stable for the remainder of the culture. As a non-limiting example, the integration may be up to 20 copies per cell of the transgene into the genome during the early timepoints before declining to 2 copies per cell and being stable throughout the remainder of the culture.


In some embodiments, the transduction of ability of T cells may be evaluated. T cells from at least one donor may be transduced with a lentivirus containing a transgene at a dose that is predicted to reach the saturating levels (e.g., enough virus that each cell should contain a copy if a Poisson distribution is expected) and a higher lentivirus dose that exceeds saturation 5 times. Copies per cell, percentage and MFI of cells (or concentration in media of transgene) may be detected in order to determine if all cells are expressing transgene. As a non-limiting example, T cells from two distinct donors may be transduced with lentivirus which includes a transgene. The transduction may be at two doses, saturation and 5× saturation, and show that 5-10 days after transduction that all groups may reach or exceed a predicted saturating level of integrated transgene and similar expression intensity across groups but not all cells are expressing the transgene. Not all T cells may have equal transduction susceptibility, even when sourced from the same donor. The fraction of total cells that express GFP (above the detection threshold) may vary between donors, lots and/or viral dose. The percent of total cells that express GFP from a single donor may be between 70% and 95%, such as, but not limited to, 70%, 70.1%, 70.2%, 70.3%, 70.4%, 70.5%, 70.6%, 70.7%, 70.8%, 70.9%, 71%, 71.1%, 71.2%, 71.3%, 71.4%, 71.5%, 71.6%, 71.7%, 71.8%, 71.9%, 72%, 72.1%, 72.2%, 72.3%, 72.4%, 72.5%, 72.6%, 72.7%, 72.8%, 72.9%, 73%, 73.1%, 73.2%, 73.3%, 73.4%, 73.5%, 73.6%, 73.7%, 73.8%, 73.9%, 74%, 74.1%, 74.2%, 74.3%, 74.4%, 74.5%, 74.6%, 74.7%, 74.8%, 74.9%, 75%, 75.1%, 75.2%, 75.3%, 75.4%, 75.5%, 75.6%, 75.7%, 75.8%, 75.9%, 76%, 76.1%, 76.2%, 76.3%, 76.4%, 76.5%, 76.6%, 76.7%, 76.8%, 76.9%, 77%, 77.1%, 77.2%, 77.3%, 77.4%, 77.5%, 77.6%, 77.7%, 77.8%, 77.9%, 78%, 78.1%, 78.2%, 78.3%, 78.4%, 78.5%, 78.6%, 78.7%, 78.8%, 78.9%, 79%, 79.1%, 79.2%, 79.3%, 79.4%, 79.5%, 79.6%, 79.7%, 79.8%, 79.9%, 80%, 80.1%, 80.2%, 80.3%, 80.4%, 80.5%, 80.6%, 80.7%, 80.8%, 80.9%, 81%, 81.1%, 81.2%, 81.3%, 81.4%, 81.5%, 81.6%, 81.7%, 81.8%, 81.9%, 82%, 82.1%, 82.2%, 82.3%, 82.4%, 82.5%, 82.6%, 82.7%, 82.8%, 82.9%, 83%, 83.1%, 83.2%, 83.3%, 83.4%, 83.5%, 83.6%, 83.7%, 83.8%, 83.9%, 84%, 84.1%, 84.2%, 84.3%, 84.4%, 84.5%, 84.6%, 84.7%, 84.8%, 84.9%, 85%, 85.1%, 85.2%, 85.3%, 85.4%, 85.5%, 85.6%, 85.7%, 85.8%, 85.9%, 86%, 86.1%, 86.2%, 86.3%, 86.4%, 86.5%, 86.6%, 86.7%, 86.8%, 86.9%, 87%, 87.1%, 87.2%, 87.3%, 87.4%, 87.5%, 87.6%, 87.7%, 87.8%, 87.9%, 88%, 88.1%, 88.2%, 88.3%, 88.4%, 88.5%, 88.6%, 88.7%, 88.8%, 88.9%, 89%, 89.1%, 89.2%, 89.3%, 89.4%, 89.5%, 89.6%, 89.7%, 89.8%, 89.9%, 90%, 90.1%, 90.2%, 90.3%, 90.4%, 90.5%, 90.6%, 90.7%, 90.8%, 90.9%, 91%, 91.1%, 91.2%, 91.3%, 91.4%, 91.5%, 91.6%, 91.7%, 91.8%, 91.9%, 92%, 92.1%, 92.2%, 92.3%, 92.4%, 92.5%, 92.6%, 92.7%, 92.8%, 92.9%, 93%, 93.1%, 93.2%, 93.3%, 93.4%, 93.5%, 93.6%, 93.7%, 93.8%, 93.9%, 94%, 94.1%, 94.2%, 94.3%, 94.4%, 94.5%, 94.6%, 94.7%, 94.8%, 94.9%, or 95%. As a non-limiting example, the percent of total cells expressing GFP in cells from one donor may be 83.8% for a dose of 1 uL and 83.7% or 78.8% for a dose of 5 uL. As another non-limiting example, the percent of total cells expressing GFP in cells from one donor may be 80.6%, 89.1%, or 91.2% fora dose of 1 uL and 75.1%, 89.6% or 91.7% fora dose of 5 uL.


In some embodiments, a percentage of the cultured T cells (e.g., primary human T cells and/or Jurkat cells) may express the transgene. The percentage of culture T cells expressing the transgene may be, but is not limited to, 5%, 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, 97%, 99% or greater than 99%. As a non-limiting example, the percentage may be greater than 70%. As a non-limiting example, the percentage may be greater than 75%. As a non-limiting example, the percentage may be greater than 80%. As a non-limiting example, the percentage may be greater than 85%. As a non-limiting example, the percentage may be greater than 90%. As a non-limiting example, the percentage may be greater than 95%.


In some embodiments, the mRNA levels from the culture may decline over the duration of the study. The decline may not be limited to a specific transgene and the trend may be seen across multiple classes of expressed proteins. In order to increase the mRNA levels, the cells may be reactivated after the mRNA levels decrease from the initial levels. The cells may be reactivated 5 days, 6 days, 7 days, 8 days, 9 days, 10 days, 11 days, 12 days, 13 days, 14 days, 15 days, 16 days, 17 days, 18 days, 19 days, 20 days, 21 days, 22 days, 23 days, 24 days, 25 days, 26 days, 27 days, 28 days, 29 days, 30 or more than 30 days after transduction. As a non-limiting example, in order to increase mRNA levels in the culture, the cells may be reactivated with CD3/CD28 beads 13 days after transduction. As a non-limiting example, in order to increase mRNA levels in the culture, the cells may be reactivated with CD3/CD28 beads 14 days after transduction. As a non-limiting example, in order to increase mRNA levels in the culture, the cells may be reactivated with CD3/CD28 beads 15 days after transduction


In some embodiments, the surface expression from the culture may decline over the duration of the study. For example, the surface expression may decline between days 3 to 13 days, 3 to 14 days, or 3 to 15 days after transduction. In order to increase the surface expression, the cells may be reactivated after the surface expression decrease from the initial levels. The cells may be reactivated 5 days, 6 days, 7 days, 8 days, 9 days, 10 days, 11 days, 12 days, 13 days, 14 days, 15 days, 16 days, 17 days, 18 days, 19 days, 20 days, 21 days, 22 days, 23 days, 24 days, 25 days, 26 days, 27 days, 28 days, 29 days, 30 or more than 30 days after transduction. As a non-limiting example, in order to increase surface expression in the culture, the cells may be reactivated with CD3/CD28 beads 13 days after transduction. As a non-limiting example, in order to increase surface expression in the culture, the cells may be reactivated with CD3/CD28 beads 14 days after transduction. As a non-limiting example, in order to increase surface expression in the culture, the cells may be reactivated with CD3/CD28 beads 15 days after transduction.


In some embodiments, the transgene is a CAR such as, but not limited to, CD19 CAR. As a non-limiting example, the CAR is CD19 CAR. The cell viability may be greater than 90% in cells transduced with a CD19 CAR. The cell viability may be greater than 85% in cells transduced with a CD19 CAR. If the cells are primary T cells transduced with a CD19 CAR, then number of viable cells may increase over the initial timepoints before decreasing. If the cells are Jurkat cells transduced with a CD19 CAR, then the number of viable cells may increase for at least 10 days. The number of copies per cell for CD19 CAR transduced cells may be higher for the initial timepoints before decreasing by 50% or more for the later timepoints. The cell surface expression of CD19 CAR may decrease during the course of the study from about 20000 CAR MFI to less than 5000 CAR MFI over a period of 10 days (e.g., day 3 to day 13). After restimulation on day 15 the MFI may increase to above 5000 CAR MR. The percentage of primary human T cells expressing CAR may be between 40% and 60% for 3-13 days after transduction. The percentage of Jurkat cells expressing CAR may be between 30% and 70% for 3-13 days after transduction. An initial decline of about 20% may be seen between days 3 and 6 after transduction. Restimulation of the T cells may increase the percent of CAR positive cells back to initial percentage levels (e.g., around 60%).


In some embodiments, the transgene is an interleukin such as, but not limited to, IL12 (e.g., membrane bound IL12 or secreted cytokine IL12), IL15 (e.g., membrane bound IL15), and IL15Ra. As a non-limiting example, the interleukin is IL12. The cell viability may be greater than 90% in cells transduced with IL12. The cell viability may be greater than 85% in cells transduced with IL12. If the cells are primary T cells transduced with IL12, the number of viable cells may increase over the initial timepoints before decreasing. If the cells are Jurkat cells transduced with IL12, the number of viable cells may increase for at least 10 days. The number of copies per cell for IL12 transduced cells may be higher for the initial timepoints before decreasing by 50% or more for the later timepoints. For IL12 transduced primary human T cells, the level of soluble IL12 in the media may drop steadily over the time course of the study with a slight increase visible in the restimulated group. For IL12 transduced Jurkat cells, the level of soluble IL12 in the media may have a drop in IL12 secretion in the first half of the culture with the levels remaining low through the second half of the culture time.


In some embodiments, the transgene encodes a fluorescent protein such as, but not limited to cytosolic green fluorescence protein (GFP), luciferase, and mCherry. As a non-limiting example, the fluorescent protein is GFP. The cell viability may be greater than 90% in cells transduced with GFP. The cell viability may be greater than 85% in cells transduced with GFP. If the cells are primary T cells transduced with GFP, then the number of viable cells may increase over the initial timepoints before decreasing. If the cells are Jurkat cells transduced with GFP, then the number of viable cells may increase for at least 10 days. The number of copies per cell for GFP transduced cells may be higher for the initial timepoints before decreasing by 50% or more for the later timepoints. The surface expression of the cells may have a steady and rapid decline bottoming out at day 10 with a slight increase if restimulated. The highest level of cell surface expression of GFP in Jurkat cells may be at day 10 (about 35000 GFP MFI) before decreasing for the rest of the study. The percentage of primary human T cells expressing GFP may be around 80% for 3-13 days after transduction. The percentage of Jurkat cells expressing GFP may be around 90% for 3-13 days after transduction.


In some embodiments, lentivirally engineered cells described herein have genomic DNA integration that stabilizes after an initial decline of copy number, decreasing RNA and surface expression levels over time, and an increase in RNA and surface expression after re-stimulation.


In some embodiments, lentivirally engineering cells may be evaluated using the following 14-day method where samples are collected 5 times throughout the culture. On day −1 the T cells (e.g., primary human T cells or Jurkat cells) may be thawed and the CD3/CD28 beads are added. On day 0, the lentivirus for each of the conditions is added (e.g., 4 mL of cells at 0.5e6/mL) and there is a control of non-transduced cells. Double media to 8 mL on day 1 and then double the media to 16 mL on day 2. On day 3, harvest 4 mL and then double media to 24 mL on day 4. Harvest 4 mL on day 6 before doubling media to 40 mL. The cells can be split (e.g., 14 mL 0.5e6 cells/mL) on day 8 and then on day 6 harvest 4 mL before doubling media to 40 mL. 4 mL may be harvested on day 10 before the media is doubled to 20 mL. On day 13, 4 mL are harvested before doubling the media to 32 mL. The culture is split in half and half of the culture is activated (CD3/CD28 activation beads 1:1) and stimulated overnight. On day 14, 4 mL of each stimulated and non-stimulated cells are harvested and the culture is ended. Transgene copy number per cell are assayed by harvesting cells and extracting genomic DNA then quantifying with standard curve qPCR against the endogenous genome and against the transgene sequence, then converting the detected quantities to a ratio. Mean Fluorescence Intensity (MFI) is assayed by FLO on an Attune with appropriate staining for each group. Percent expressing may also be assayed by FLO on an attune quantifying the percent of cells fluorescing above threshold. Soluble payloads can be quantified by harvesting culture supernatant at each marked timepoint and running MesoScale Discovery plate assay (MSD) then normalizing for cell density.


2. Retroviral Vectors (γ-Retroviral Vectors)

In some embodiments, retroviral vectors may be used to package and deliver the biocircuits, biocircuit components, effector modules, SREs or payload constructs of the present disclosure. Retroviral vectors (RVs) allow the permanent integration of a transgene in target cells. In addition to lentiviral vectors based on complex HIV-1/2, retroviral vectors based on simple gamma-retroviruses have been widely used to deliver therapeutic genes and demonstrated clinically as one of the most efficient and powerful gene delivery systems capable of transducing a broad range of cell types. Example species of Gamma retroviruses include the murine leukemia viruses (MLVs) and the feline leukemia viruses (FeLV).


In some embodiments, gamma-retroviral vectors derived from a mammalian gamma-retrovirus such as murine leukemia viruses (MLVs), are recombinant. The MLV families of gamma retroviruses include the ecotropic, amphotropic, xenotropic and polytropic subfamilies. Ecotropic viruses are able to infect only murine cells using mCAT-1 receptor. Examples of ecotropic viruses are Moloney MLV and AKV. Amphotropic viruses infect murine, human and other species through the Pit-2 receptor. One example of an amphotropic virus is the 4070A virus. Xenotropic and polytropic viruses utilize the same (Xpr1) receptor, but differ in their species tropism. Xenotropic viruses such as NZB-9-1 infect human and other species but not murine species, whereas polytropic viruses such as focus-forming viruses (MCF) infect murine, human and other species.


Gamma-retroviral vectors may be produced in packaging cells by co-transfecting the cells with several plasmids including one encoding the retroviral structural and enzymatic (gag-pol) polyprotein, one encoding the envelope (env) protein, and one encoding the vector mRNA comprising polynucleotide encoding the compositions of the present disclosure that is to be packaged in newly formed viral particles.


In some aspects, the recombinant gamma-retroviral vectors are pseudotyped with envelope proteins from other viruses. Envelope glycoproteins are incorporated in the outer lipid layer of the viral particles which can increase/alter the cell tropism. Exemplary envelop proteins include the gibbon ape leukemia virus envelope protein (GALV) or vesicular stomatitis virus G protein (VSV-G), or Simian endogenous retrovirus envelop protein, or Measles Virus H and F proteins, or Human immunodeficiency virus gp120 envelope protein, or cocal vesiculovirus envelop protein (See, e.g., U.S. application publication NO.: 2012/164118; the contents of which are incorporated herein by reference in its entirety). In other aspects, envelope glycoproteins may be genetically modified to incorporate targeting/binding ligands into gamma-retroviral vectors, binding ligands including, but not limited to, peptide ligands, single chain antibodies and growth factors (Waehler et al., Nat. Rev. Genet. 2007, 8(8):573-587; the contents of which are incorporated herein by reference in its entirety). These engineered glycoproteins can retarget vectors to cells expressing their corresponding target moieties. In other aspects, a “molecular bridge” may be introduced to direct vectors to specific cells. The molecular bridge has dual specificities: one end can recognize viral glycoproteins, and the other end can bind to the molecular determinant on the target cell. Such molecular bridges, for example ligand-receptor, avidin-biotin, and chemical conjugations, monoclonal antibodies and engineered fusogenic proteins, can direct the attachment of viral vectors to target cells for transduction (Yang et al., Biotechnol. Bioeng., 2008, 101(2): 357-368; and Maetzig et al., Viruses, 2011, 3, 677-713; the contents of each of which are incorporated herein by reference in their entirety).


In some embodiments, the recombinant gamma-retroviral vectors are self-inactivating (SIN) gammaretroviral vectors. The vectors are replication incompetent. SIN vectors may harbor a deletion within the 3′ U3 region initially comprising enhancer/promoter activity. Furthermore, the 5′ U3 region may be replaced with strong promoters (needed in the packaging cell line) derived from Cytomegalovirus or RSV, or an internal promoter of choice, and/or an enhancer element. The choice of the internal promoters may be made according to specific requirements of gene expression needed for a particular purpose of the disclosure.


In some embodiments, polynucleotides encoding the biocircuit, biocircuit components, effector module, SRE are inserted within the recombinant viral genome. The other components of the viral mRNA of a recombinant gamma-retroviral vector may be modified by insertion or removal of naturally occurring sequences (e.g., insertion of an IRES, insertion of a heterologous polynucleotide encoding a polypeptide or inhibitory nucleic acid of interest, shuffling of a more effective promoter from a different retrovirus or virus in place of the wild-type promoter and the like). In some examples, the recombinant gamma-retroviral vectors may comprise modified packaging signal, and/or primer binding site (PBS), and/or 5′-enhancer/promoter elements in the U3-region of the 5′-long terminal repeat (LTR), and/or 3′-SIN elements modified in the U3-region of the 3′-LTR. These modifications may increase the titers and the ability of infection.


Gamma retroviral vectors suitable for delivering biocircuit components, effector modules, SREs or payload constructs of the present disclosure may be selected from those disclosed in U.S. Pat. Nos. 8,828,718; 7,585,676; 7,351,585; U.S. application publication NO.: 2007/048285; PCT application publication NOs.: WO2010/113037; WO2014/121005; WO2015/056014; and EP Pat. NOs.: EP1757702; EP1757703 (the contents of each of which are incorporated herein by reference in their entirety).


3. Adeno-Associated Viral Vectors (AAV)

In some embodiments, polynucleotides of present disclosure may be packaged into recombinant adeno-associated viral (rAAV) vectors. Such vectors or viral particles may be designed to utilize any of the known serotype capsids or combinations of serotype capsids. The serotype capsids may include capsids from any identified AAV serotypes and variants thereof, for example, AAV1, AAV2, AAV2G9, AAV3, AAV4, AAV4-4, AAV5, AAV6, AAV7, AAV8, AAV9, AAV10, AAV11, AAV12 and AAVrh10.


In one embodiment, the AAV serotype may be or have a sequence as described in United States Publication No. US20030138772, herein incorporated by reference in its entirety, such as, but not limited to, AAV1 (SEQ ID NO: 6 and 64 of US20030138772), AAV2 (SEQ ID NO: 7 and 70 of US20030138772), AAV3 (SEQ ID NO: 8 and 71 of US20030138772), AAV4 (SEQ ID NO: 63 of US20030138772), AAV5 (SEQ ID NO: 114 of US20030138772), AAV6 (SEQ ID NO: 65 of US20030138772), AAV7 (SEQ ID NO: 1-3 of US20030138772), AAV8 (SEQ ID NO: 4 and 95 of US20030138772), AAV9 (SEQ ID NO: 5 and 100 of US20030138772), AAV10 (SEQ ID NO: 117 of US20030138772), AAV11 (SEQ ID NO: 118 of US20030138772), AAV12 (SEQ ID NO: 119 of US20030138772), AAVrh10 (amino acids 1 to 738 of SEQ ID NO: 81 of US20030138772) or variants thereof. Non-limiting examples of variants include SEQ ID NOs: 9, 27-45, 47-62, 66-69, 73-81, 84-94, 96, 97, 99, 101-113 of US20030138772, the contents of which are herein incorporated by reference in their entirety.


In one embodiment, the AAV serotype may have a sequence as described in Pulicherla et al. (Molecular Therapy, 2011, 19(6):1070-1078), U.S. Pat. Nos. 6,156,303; 7,198,951; U.S. Patent Publication NOs.: US2015/0159173 and US2014/0359799; and International Patent Publication NOs.: WO1998/011244, WO2005/033321 and WO2014/14422; the contents of each of which are incorporated herein by reference in their entirety.


AAV vectors include not only single stranded vectors but self-complementary AAV vectors (scAAVs). scAAV vectors contain DNA which anneals together to form double stranded vector genome. By skipping second strand synthesis, scAAVs allow for rapid expression in the cell.


The rAAV vectors may be manufactured by standard methods in the art such as by triple transfection, in sf9 insect cells or in suspension cell cultures of human cells such as HEK293 cells.


The biocircuits, biocircuit components, effector modules, SREs or payload constructs may be encoded in one or more viral genomes to be packaged in the AAV capsids taught herein.


Such vectors or viral genomes may also include, in addition to at least one or two ITRs (inverted terminal repeats), certain regulatory elements necessary for expression from the vector or viral genome. Such regulatory elements are well known in the art and include for example promoters, introns, spacers, stuffer sequences, and the like.


In some embodiments, more than one effector module or SRE (e.g. DD) may be encoded in a viral genome.


4. Oncolytic Viral Vector

In some embodiments, polynucleotides of present disclosure may be packaged into oncolytic viruses, such as vaccine viruses. Oncolytic vaccine viruses may include viral particles of a thymidine kinase (TK)-deficient, granulocyte macrophage (GM)-colony stimulating factor (CSF)-expressing, replication-competent vaccinia virus vector sufficient to induce oncolysis of cells in the tumor (e.g., U.S. Pat. No. 9,226,977).


In some embodiments, the viral vector of the disclosure may comprise two or more immunotherapeutic agents taught herein, wherein the two or more immunotherapeutic agents may be included in one effector module under the regulation of the same DD. In this case, the two or more immunotherapeutic agents are tuned by the same stimulus simultaneously. In other embodiments, the viral vector of the disclosure may comprise two or more effector modules, wherein each effector module comprises a different immunotherapeutic agent. In this case, the two or more effector modules and immunotherapeutic agents are tuned by different stimuli, providing separately independent regulation of the two or more components.


5. Messenger RNA (mRNA)


In some embodiments, the effector modules of the disclosure may be designed as a messenger RNA (mRNA). As used herein, the term “messenger RNA” (mRNA) refers to any polynucleotide which encodes a polypeptide of interest and which is capable of being translated to produce the encoded polypeptide of interest in vitro, in vivo, in situ or ex vivo. Such mRNA molecules may have the structural components or features of any of those taught in International Application number PCT/US2013/030062, the contents of which are incorporated herein by reference in its entirety.


Polynucleotides of the disclosure may also be designed as taught in, for example, Ribostem Limited in United Kingdom patent application serial number 0316089.2 filed on Jul. 9, 2003 now abandoned, PCT application number PCT/GB2004/002981 filed on Jul. 9, 2004 published as WO2005005622, U.S. patent application Ser. No. 10/563,897 filed on Jun. 8, 2006 published as US20060247195 now abandoned, and European patent application national phase entry serial number EP2004743322 filed on Jul. 9, 2004 published as EP1646714 now withdrawn; Novozymes, Inc. in PCT application number PCT/US2007/88060 filed on Dec. 19, 2007 published as WO2008140615, U.S. patent application Ser. No. 12/520,072 filed on Jul. 2, 2009 published as US20100028943 and European patent application national phase entry serial number EP2007874376 filed on Jul. 7, 2009 published as EP2104739; University of Rochester in PCT application number PCT/US2006/46120 filed on Dec. 4, 2006 published as WO2007064952 and U.S. patent application Ser. No. 11/606,995 filed on Dec. 1, 2006 published as US20070141030; BioNTech AG in European patent application serial number EP2007024312 filed Dec. 14, 2007 now abandoned, PCT application number PCT/EP2008/01059 filed on Dec. 12, 2008 published as WO2009077134, European patent application national phase entry serial number EP2008861423 filed on Jun. 2, 2010 published as EP2240572, U.S. patent application Ser. No. 12/735,060 filed Nov. 24, 2010 published as US20110065103, German patent application serial number DE 10 2005 046 490 filed Sep. 28, 2005, PCT application PCT/EP2006/0448 filed Sep. 28, 2006 published as WO2007036366, national phase European patent EP1934345 published Mar. 21, 2012 and national phase U.S. patent application Ser. No. 11/992,638 filed Aug. 14, 2009 published as 20100129877; Immune Disease Institute Inc. in U.S. patent application Ser. No. 13/088,009 filed Apr. 15, 2011 published as US20120046346 and PCT application PCT/US2011/32679 filed Apr. 15, 2011 published as WO20110130624; Shire Human Genetic Therapeutics in U.S. patent application Ser. No. 12/957,340 filed on Nov. 20, 2010 published as US20110244026; Sequitur Inc. in PCT application PCT/US1998/019492 filed on Sep. 18, 1998 published as WO1999014346; The Scripps Research Institute in PCT application number PCT/US2010/00567 filed on Feb. 24, 2010 published as WO2010098861, and U.S. patent application Ser. No. 13/203,229 filed Nov. 3, 2011 published as US20120053333; Ludwig-Maximillians University in PCT application number PCT/EP2010/004681 filed on Jul. 30, 2010 published as WO2011012316; Cellscript Inc. in U.S. Pat. No. 8,039,214 filed Jun. 30, 2008 and granted Oct. 18, 2011, U.S. patent application Ser. No. 12/962,498 filed on Dec. 7, 2010 published as US20110143436, Ser. No. 12/962,468 filed on Dec. 7, 2010 published as US20110143397, Ser. No. 13/237,451 filed on Sep. 20, 2011 published as US20120009649, and PCT applications PCT/US2010/59305 filed Dec. 7, 2010 published as WO2011071931 and PCT/US2010/59317 filed on Dec. 7, 2010 published as WO2011071936; The Trustees of the University of Pennsylvania in PCT application number PCT/US2006/32372 filed on Aug. 21, 2006 published as WO2007024708, and U.S. patent application Ser. No. 11/990,646 filed on Mar. 27, 2009 published as US20090286852; Curevac GMBH in German patent application serial numbers DE10 2001 027 283.9 filed Jun. 5, 2001, DE10 2001 062 480.8 filed Dec. 19, 2001, and DE 20 2006 051 516 filed Oct. 31, 2006 all abandoned, European patent numbers EP1392341 granted Mar. 30, 2005 and EP1458410 granted Jan. 2, 2008, PCT application numbers PCT/EP2002/06180 filed Jun. 5, 2002 published as WO2002098443, PCT/EP2002/14577 filed on Dec. 19, 2002 published as WO2003051401, PCT/EP2007/09469 filed on Dec. 31, 2007 published as WO2008052770, PCT/EP2008/03033 filed on Apr. 16, 2008 published as WO2009127230, PCT/EP2006/004784 filed on May 19, 2005 published as WO2006122828, PCT/EP2008/00081 filed on Jan. 9, 2007 published as WO2008083949, and U.S. patent application Ser. No. 10/729,830 filed on Dec. 5, 2003 published as US20050032730, Ser. No. 10/870,110 filed on Jun. 18, 2004 published as US20050059624, Ser. No. 11/914,945 filed on Jul. 7, 2008 published as US20080267873, Ser. No. 12/446,912 filed on Oct. 27, 2009 published as US2010047261 now abandoned, Ser. No. 12/522,214 filed on Jan. 4, 2010 published as US20100189729, Ser. No. 12/787,566 filed on May 26, 2010 published as US20110077287, Ser. No. 12/787,755 filed on May 26, 2010 published as US20100239608, Ser. No. 13/185,119 filed on Jul. 18, 2011 published as US20110269950, and Ser. No. 13/106,548 filed on May 12, 2011 published as US20110311472 all of which are herein incorporated by reference in their entirety.


In some embodiments, the effector modules may be designed as self-amplifying RNA. “Self-amplifying RNA” as used herein refers to RNA molecules that can replicate in the host resulting in the increase in the amount of the RNA and the protein encoded by the RNA. Such self-amplifying RNA may have structural features or components of any of those taught in International Patent Application Publication No. WO2011005799 (the contents of which are incorporated herein by reference in their entirety.)


V. Dosing, Delivery and Administrations

The compositions of the disclosure may be delivered to a cell or a subject through one or more routes and modalities. The viral vectors containing one or more effector modules, SREs, immunotherapeutic agents and other components described herein may be used to deliver them to a cell and/or a subject. Other modalities may also be used such as mRNAs, plasmids, and as recombinant proteins.


1. Delivery to Cells

In another aspect of the disclosure, polynucleotides encoding biocircuits, effector modules, SREs (e.g., DDs), payloads of interest (immunotherapeutic agents) and compositions of the disclosure and vectors comprising said polynucleotides may be introduced into cells such as immune effector cells.


In one aspect of the disclosure, polynucleotides encoding biocircuits, effector modules, SREs (e.g., DDs), payloads of interest (immunotherapeutic agents) and compositions of the disclosure, may be packaged into viral vectors or integrated into viral genomes allowing transient or stable expression of the polynucleotides. Preferable viral vectors are retroviral vectors including lentiviral vectors. In order to construct a retroviral vector, a polynucleotide molecule encoding a biocircuit, an effector module, a DD or a payload of interest (i.e. an immunotherapeutic agent) is inserted into the viral genome in the place of certain viral sequences to produce a virus that is replication-defective. The recombinant viral vector is then introduced into a packaging cell line containing the gag, pol, and env genes, but without the LTR and packaging components. The recombinant retroviral particles are secreted into the culture media, then collected, optionally concentrated, and used for gene transfer. Lentiviral vectors are especially preferred as they are capable of infecting both dividing and non-dividing cells.


Vectors may also be transferred to cells by non-viral methods by physical methods such as needles, electroporation, sonoporation, hyrdoporation; chemical carriers such as inorganic particles (e.g. calcium phosphate, silica, gold) and/or chemical methods. In some embodiments, synthetic or natural biodegradable agents may be used for delivery such as cationic lipids, lipid nano emulsions, nanoparticles, peptide based vectors, or polymer based vectors.


In some embodiments, the polypeptides of the disclosure may be delivered to the cell directly. In one embodiment, the polypeptides of the disclosure may be delivered using synthetic peptides comprising an endosomal leakage domain (ELD) fused to a cell penetration domain (CLD). The polypeptides of the disclosure are co introduced into the cell with the ELD-CLD-synthetic peptide. ELDs facilitate the escape of proteins that are trapped in the endosome, into the cytosol. Such domains are derived proteins of microbial and viral origin and have been described in the art. CPDs allow the transport of proteins across the plasma membrane and have also been described in the art. The ELD-CLD fusion proteins synergistically increase the transduction efficiency when compared to the co-transduction with either domain alone. In some embodiments, a histidine rich domain may optionally be added to the shuttle construct as an additional method of allowing the escape of the cargo from the endosome into the cytosol. The shuttle may also include a cysteine residue at the N or C terminus to generate multimers of the fusion peptide. Multimers of the ELD-CLD fusion peptides generated by the addition of cysteine residue to the terminus of the peptide show even greater transduction efficiency when compared to the single fusion peptide constructs. The polypeptides of the disclosure may also be appended to appropriate localization signals to direct the cargo to the appropriate sub-cellular location e.g. nucleus. In some embodiments any of the ELDs, CLDs or the fusion ELD-CLD synthetic peptides taught in the International Patent Publication, WO2016161516 and WO2017175072 may be useful in the present disclosure (the contents of each of which are herein incorporated by reference in their entirety).


2. Dosing

The present disclosure provides methods comprising administering any one or more compositions for immunotherapy to a subject in need thereof. These may be administered to a subject using any amount and any route of administration effective for preventing or treating a clinical condition such as cancer, infection diseases and other immunodeficient diseases.


Compositions in accordance with the disclosure are typically formulated in dosage unit form for ease of administration and uniformity of dosage. It will be understood, however, that the total daily usage of the compositions of the present disclosure may be decided by the attending physician within the scope of sound medical judgment. The specific therapeutically effective, or prophylactically effective dose level for any particular patient will depend upon a variety of factors including the disorder being treated and the severity of the disorder; the activity of the specific compound employed; the specific composition employed; the age, body weight, general health, sex and diet of the patient; the time of administration, route of administration, previous or concurrent therapeutic interventions and rate of excretion of the specific compound employed; the duration of the treatment; drugs used in combination or coincidental with the specific compound employed; and like factors well known in the medical arts.


Compositions of the disclosure may be used in varying doses to avoid T cell anergy, prevent cytokine release syndrome and minimize toxicity associated with immunotherapy. For example, low doses of the compositions of the present disclosure may be used to initially treat patients with high tumor burden, while patients with low tumor burden may be treated with high and repeated doses of the compositions of the disclosure to ensure recognition of a minimal tumor antigen load. In another instance, the compositions of the present disclosure may be delivered in a pulsatile fashion to reduce tonic T cell signaling and enhance persistence in vivo. In some aspects, toxicity may be minimized by initially using low doses of the compositions of the disclosure, prior to administering high doses. Dosing may be modified if serum markers such as ferritin, serum C-reactive protein, IL6, IFN γ, and TNF-α are elevated.


In one embodiment, polypeptides and/or polynucleotides expressing the compositions described herein e.g. effector modules, are administered to a subject in need thereof to treat cancer. In one embodiment, a population of cells comprising the biocircuits, effector modules and/or the SREs described herein is administered to a subject in need thereof to treat cancer.


In one embodiment, the cells expressing the compositions described herein is administered at a dose and/or dosing schedule described herein.


In one embodiment, compositions are introduced into immune cells (e.g., T cells, NK cells). The compositions may be introduced into the immune cells by methods including but not limited to viral transduction, transfection and/or in vitro transcription. In some embodiments, the immune cells are transduced with retroviruses. In one aspect, the retrovirus may be a lentivirus. In some aspects, the titer of the lentiviruses may be used to tune the expression of the payload. In some embodiments, the titer of the lentivirus may have a multiplicity of infection (MOI) ranging from 0.001-0.01, 0.01-0.1, 0.1-1, or 1-10. In some embodiments, the MOI may be 1, 2, 3, 4, 5, 6, 7, 8, 9, or 10.


In some embodiments, the subject (e.g., human) receives an initial administration of immune cells comprising the compositions described herein e.g. SREs, and one or more subsequent administrations of cells. In some embodiments, a therapeutically effective amount of the compositions and/or cells described herein may be administered to the subject. In some embodiments, the therapeutically effective amount may indicate the precise amount required to tumor inhibition, tumor prevalence and/or tumor burden. The therapeutically effective amount may be determined with consideration of the subject's age, weight, tumor size, sex, extent of infection or metastasis. In some embodiments, the cells expressing the compositions described herein may be administered at a dosage of 104 to 109 cells/kg body weight of the subject. The cells can be administered by using infusion techniques that are commonly known in immunotherapy (see, e.g., Rosenberg et al., New Eng. J. of Med. 319: 1676, 1988; the contents of which are incorporated herein by reference in their entirety).


In some aspects, subjects may undergo leukapheresis, wherein leukocytes are collected, enriched, or depleted ex vivo to select and/or isolate the cells of interest, e.g., T cells. These T cell isolates may be expanded by methods known in the art and treated such that the compositions of the disclosure may be introduced into the cell. Subjects in need thereof may subsequently undergo standard treatment with high dose chemotherapy followed by peripheral blood stem cell transplantation. In certain aspects, following or concurrent with the transplant, subjects receive an infusion of the immune cells of the present disclosure. In an additional aspect, expanded cells are administered before or following surgery.


The dosage of the above treatments to be administered to a patient will vary with the precise nature of the condition being treated and the recipient of the treatment. The scaling of dosages for human administration can be performed according to art-accepted practices.


In one embodiment, the compositions are introduced into immune cells (e.g., T cells, NK cells), e.g., using in vitro transcription, and the subject (e.g., human) receives an initial administration of immune cells (e.g., T cells, NK cells) of the disclosure, and one or more subsequent administrations of the immune cells (e.g., T cells, NK cells) of the disclosure, wherein the one or more subsequent administrations are administered less than 15 days, e.g., 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, or 2 days after the previous administration. In one embodiment, more than one administration of the immune cells (e.g., T cells, NK cells) of the disclosure are administered to the subject (e.g., human) per week, e.g., 2, 3, or 4 administrations of the immune cells (e.g., T cells, NK cells) of the disclosure are administered per week. In one embodiment, the subject (e.g., human subject) receives more than one administration of the immune cells (e.g., T cells, NK cells) per week (e.g., 2, 3 or 4 administrations per week) (also referred to herein as a cycle), followed by a week of no immune cells (e.g., T cells, NK cells) administrations, and then one or more additional administration of the immune cells (e.g., T cells, NK cells) (e.g., more than one administration of the immune cells (e.g., T cells, NK cells) per week) is administered to the subject. In another embodiment, the subject (e.g., human subject) receives more than one cycle of immune cells (e.g., T cells, NK cells), and the time between each cycle is less than 10, 9, 8, 7, 6, 5, 4, or 3 days. In one embodiment, the immune cells (e.g., T cells, NK cells) are administered every other day for 3 administrations per week. In one embodiment, the immune cells (e.g., T cells, NK cells) of the disclosure are administered for at least two, three, four, five, six, seven, eight or more weeks. In some embodiments, a dose of immune cells expressing compositions of the disclosure described herein comprises about 1×106, 1.1×106, 2×106, 3.6×106, 5×106, 1×107, 1.8×107, 2×107, 5×107, 1×108, 2×108, 3×108, or 5×108 cells/kg. In some embodiments, a dose of immune cells comprises at least about 1×106, 1.1×106, 2×106, 3.6×106, 5×106, 1×107, 1.8×107, 2×107, 5×107, 1×108, 2×108, 3×108, or 5×108 cells/kg. In some embodiments, a dose of immune cells comprises up to about 1×106, 1.1×106, 2×106, 3.6×106, 5×106, 1×107, 1.8×107, 2×107, 5×107, 1×108, 2×108, 3×108, or 5×108 cells/kg. In some embodiments, a dose of immune cells comprises about 1.1×106-1.8×107 cells/kg. In some embodiments, a dose of immune cells comprises about 1×107, 2×107, 5×107, 1×108, 2×108, 3×108, 5×108, 1×109, 2×109, or 5×109 cells. In some embodiments, a dose of the immune cells comprises at least about 1×107, 2×107, 5×107, 1×108, 2×108, 3×108, 5×108, 1×109, 2×109, or 5×109 cells. In some embodiments, a dose of immune cells comprises up to about 1×107, 2×107, 5×107, 1×108, 2×108, 3×108, 5×108, 1×109, 2×109, or 5×109 cells. In some embodiments, a dose of the immune cells comprises up to about 1×107, 1.5×107, 2×107, 2.5×107, 3×107, 3.5×107, 4×107, 5×107, 1×108, 1.5×108, 2×108, 2.5×108, 3×108, 3.5×108, 4×108, 5×108, 1×109, 2×109, or 5×109 cells. In some embodiments, a dose of immune cells comprises up to about 1-3×107 to 1-3×108 cells.


In one embodiment, the cells expressing the compositions described herein, are administered as a first line treatment for the disease, e.g., the cancer, e.g., the cancer described herein. In another embodiment, the cells expressing the compositions described herein, are administered as a second, third, fourth line treatment for the disease, e.g., the cancer, e.g., the cancer described herein. In some embodiments, the subject may undergo preconditioning prior to the administration of the cells.


Also provided herein are methods of administering ligands in accordance with the disclosure to a subject in need thereof. The ligand may be administered to a subject or to cells, using any amount and any route of administration effective for tuning the biocircuits of the disclosure. The exact amount required will vary from subject to subject, depending on the species, age, and general condition of the subject, the severity of the disease, the particular composition, its mode of administration, its mode of activity, and the like. The subject may be a human, a mammal, or an animal. Compositions in accordance with the disclosure are typically formulated in unit dosage form for ease of administration and uniformity of dosage. It will be understood, however, that the total daily usage of the compositions of the present disclosure may be decided by the attending physician within the scope of sound medical judgment. In certain embodiments, the ligands in accordance with the present disclosure may be administered at dosage levels sufficient to deliver from about 0.0001 mg/kg to about 100 mg/kg, from about 0.001 mg/kg to about 0.05 mg/kg, from about 0.005 mg/kg to about 0.05 mg/kg, from about 0.001 mg/kg to about 0.005 mg/kg, from about 0.05 mg/kg to about 0.5 mg/kg, from about 0.01 mg/kg to about 50 mg/kg, from about 0.1 mg/kg to about 40 mg/kg, from about 0.5 mg/kg to about 30 mg/kg, from about 0.01 mg/kg to about 10 mg/kg, from about 0.1 mg/kg to about 10 mg/kg, or from about 1 mg/kg to about 25 mg/kg, from about 10 mg/kg to about 100 mg/kg, from about 1 mg/kg to about 1000 mg/kg, from about 50 mg/kg to about 500 mg/kg, from about 100 mg/kg to about 1000 mg/kg, of subject body weight per day, one or more times a day, to obtain the desired effect. In some embodiments, the dosage levels may be 1 mg/kg, 5 mg/kg, 10 mg/kg, 20 mg/kg, 30 mg/kg, 40 mg/kg, 50 mg/kg, 60 mg/kg, 70 mg/kg, 80 mg/kg, 90 mg/kg, 100 mg/kg, 100 mg/kg, 110 mg/kg, 120 mg/kg, 130 mg/kg, 140 mg/kg, 150 mg/kg, 160 mg/kg, 170 mg/kg, 180 mg/kg, 190 mg/kg or mg/kg of subject body weight per day, or more times a day, to obtain the desired effect. In one embodiment, the dose of the ligand may be 10 mg/kg. In one embodiment, the dose of the ligand may be 30 mg/kg. In one aspect, the dose of the ligand may be 100 mg/kg.


The present disclosure provides methods for delivering to a cell or tissue any of the ligands described herein, comprising contacting the cell or tissue with said ligand and can be accomplished in vitro, ex vivo, or in vivo. In certain embodiments, the ligands in accordance with the present disclosure may be administered to cells at dosage levels sufficient to deliver from about 1 nM to about 10 nM, from about 5 nM to about 50 nM, from about 10 nM to about 100 nM, from about 50 nM to about 500 nM, from about 100 nM to about 1000 nM, from about 1 μM to about 10 μM, from about 5 μM to about 50 μM, from about 10 μM to about 100 μM from about 25 μM to about 250 μM, from about 50 μM to about 500 μM. In some embodiments, the ligand may be administered to cells at doses selected from but not limited to 0.0064 μM, 0.0034M, 0.016 μM, 0.08 μM, 0.4 μM, 1 μM, 2 μM, 5 μM, 10 μM, 25 μM, 50 μM, 75 μM, 100 μM, 150 μM, 200 μM, 250 μM.


The desired dosage of the ligands of the present disclosure may be delivered only once, three times a day, two times a day, once a day, every other day, every third day, every week, every two weeks, every three weeks, or every four weeks. In certain embodiments, the desired dosage may be delivered using multiple administrations (e.g., two, three, four, five, six, seven, eight, nine, ten, eleven, twelve, thirteen, fourteen, or more administrations). When multiple administrations are employed, split dosing regimens such as those described herein may be used. As used herein, a “split dose” is the division of “single unit dose” or total daily dose into two or more doses, e.g., two or more administrations of the “single unit dose”. As used herein, a “single unit dose” is a dose of any therapeutic administered in one dose/at one time/single route/single point of contact, i.e., single administration event. The desired dosage of the ligand of the present disclosure may be administered as a “pulse dose” or as a “continuous flow”. As used herein, a “pulse dose” is a series of single unit doses of any therapeutic administered with a set frequency over a period of time. As used herein, a “continuous flow” is a dose of therapeutic administered continuously for a period of time in a single route/single point of contact, i.e., continuous administration event. A total daily dose, an amount given or prescribed in 24-hour period, may be administered by any of these methods, or as a combination of these methods, or by any other methods suitable for a pharmaceutical administration.


3. Administration

In some embodiments, the compositions for immunotherapy may be administered to cells ex vivo and subsequently administered to the subject. Immune cells can be isolated and expanded ex vivo using a variety of methods known in the art. For example, methods of isolating cytotoxic T cells are described in U.S. Pat. Nos. 6,805,861 and 6,531,451; the contents of each of which are incorporated herein by reference in their entirety. Isolation of NK cells is described in U.S. Pat. No. 7,435,596; the contents of which are incorporated by reference herein in its entirety.


In some embodiments, depending upon the nature of the cells, the cells may be introduced into a host organism e.g. a mammal, in a wide variety of ways including by injection, transfusion, infusion, local instillation or implantation. In some aspects, the cells of the disclosure may be introduced at the site of the tumor. The number of cells that are employed will depend upon a number of circumstances, the purpose for the introduction, the lifetime of the cells, the protocol to be used, for example, the number of administrations, the ability of the cells to multiply, or the like. The cells may be in a physiologically-acceptable medium.


In some embodiments, the cells of the disclosure may be administrated in multiple doses to subjects having a disease or condition. The administrations generally effect an improvement in one or more symptoms of cancer or a clinical condition and/or treat or prevent cancer or clinical condition or symptom thereof.


In some embodiments, the compositions for immunotherapy may be administered in vivo. In some embodiments, polypeptides of the present disclosure comprising biocircuits, effector molecules, SREs, payloads of interest (immunotherapeutic agents) and compositions of the disclosure may be delivered in vivo to the subject. In vivo delivery of immunotherapeutic agents is well described in the art. For example, methods of delivery of cytokines are described in the E.P. Pat. No.: EP0930892 A1, the contents of which are incorporated herein by reference.


Routes of Delivery

The pharmaceutical compositions, biocircuits, biocircuit components, effector modules including their SREs (e.g., DDs), payloads (i.e. immunotherapeutic agents), vectors and cells of the present disclosure may be administered by any route to achieve a therapeutically effective outcome.


These include, but are not limited to enteral (into the intestine), gastroenteral, epidural (into the dura matter), oral (by way of the mouth), transdermal, peridural, intracerebral (into the cerebrum), intracerebroventricular (into the cerebral ventricles), epicutaneous (application onto the skin), intradermal, (into the skin itself), subcutaneous (under the skin), nasal administration (through the nose), intravenous (into a vein), intravenous bolus, intravenous drip, intra-arterial (into an artery), intramuscular (into a muscle), intracranial (into the heart), intraosseous infusion (into the bone marrow), intrathecal (into the spinal canal), intraperitoneal, (infusion or injection into the peritoneum), intrasinal infusion, intravitreal, (through the eye), intravenous injection (into a pathologic cavity) intracavitary (into the base of the penis), intravaginal administration, intrauterine, extra-amniotic administration, transdermal (diffusion through the intact skin for systemic distribution), transmucosal (diffusion through a mucous membrane), transvaginal, insufflation (snorting), sublingual, sublabial, enema, eye drops (onto the conjunctiva), in ear drops, auricular (in or by way of the ear), buccal (directed toward the cheek), conjunctival, cutaneous, dental (to a tooth or teeth), electro-osmosis, endocervical, endosinusial, endotracheal, extracorporeal, hemodialysis, infiltration, interstitial, intra-abdominal, intra-amniotic, intra-articular, intrabiliary, intrabronchial, intrabursal, intracartilaginous (within a cartilage), intracaudal (within the cauda equine), intracisternal (within the cisterna magna cerebellomedularis), intracorneal (within the cornea), dental intracornal, intracoronary (within the coronary arteries), intracorporus cavernosum (within the dilatable spaces of the corporus cavernosa of the penis), intradiscal (within a disc), intraductal (within a duct of a gland), intraduodenal (within the duodenum), intradural (within or beneath the dura), intraepidermal (to the epidermis), intraesophageal (to the esophagus), intragastric (within the stomach), intragingival (within the gingivae), intraileal (within the distal portion of the small intestine), intralesional (within or introduced directly to a localized lesion), intraluminal (within a lumen of a tube), intralymphatic (within the lymph), intramedullary (within the marrow cavity of a bone), intrameningeal (within the meninges), intramyocardial (within the myocardium), intraocular (within the eye), intraovarian (within the ovary), intrapericardial (within the pericardium), intrapleural (within the pleura), intraprostatic (within the prostate gland), intrapulmonary (within the lungs or its bronchi), intrasinal (within the nasal or periorbital sinuses), intraspinal (within the vertebral column), intrasynovial (within the synovial cavity of a joint), intratendinous (within a tendon), intratesticular (within the testicle), intrathecal (within the cerebrospinal fluid at any level of the cerebrospinal axis), intrathoracic (within the thorax), intratubular (within the tubules of an organ), intratumor (within a tumor), intratympanic (within the auras media), intravascular (within a vessel or vessels), intraventricular (within a ventricle), iontophoresis (by means of electric current where ions of soluble salts migrate into the tissues of the body), irrigation (to bathe or flush open wounds or body cavities), laryngeal (directly upon the larynx), nasogastric (through the nose and into the stomach), occlusive dressing technique (topical route administration which is then covered by a dressing which occludes the area), ophthalmic (to the external eye), oropharyngeal (directly to the mouth and pharynx), parenteral, percutaneous, periarticular, peridural, perineural, periodontal, rectal, respiratory (within the respiratory tract by inhaling orally or nasally for local or systemic effect), retrobulbar (behind the pons or behind the eyeball), intramyocardial (entering the myocardium), soft tissue, subarachnoid, subconjunctival, submucosal, topical, transplacental (through or across the placenta), transtracheal (through the wall of the trachea), transtympanic (across or through the tympanic cavity), ureteral (to the ureter), urethral (to the urethra), vaginal, caudal block, diagnostic, nerve block, biliary perfusion, cardiac perfusion, photopheresis or spinal.


Kits

The also provides a kit comprising any of the polynucleotides or expression vectors described herein.


The present disclosure includes a variety of kits for conveniently and/or effectively carrying out methods of the present disclosure. Typically, kits will comprise sufficient amounts and/or numbers of components to allow a user to perform one or multiple treatments of a subject(s) and/or to perform one or multiple experiments.


In one embodiment, the present disclosure provides kits for inhibiting genes in vitro or in vivo, comprising a biocircuit of the present disclosure or a combination of biocircuits of the present disclosure, optionally in combination with any other suitable active agents.


The kit may further comprise packaging and instructions and/or a delivery agent to form a formulation composition. The delivery agent may comprise, for example, saline, a buffered solution.


In additional embodiments, assay screening kits are provided. The kit includes a container for the screening assay. An instruction for the use of the assay and the information about the screening method are to be included in the kit.


In some embodiments, the DDs, effector modules and biocircuit system and compositions of the disclosure may be used as research tools to investigate protein activity in a biological system such a cell and a subject. In other embodiments, the DDs, effector modules and biocircuit system and compositions of the disclosure may be used for treating a disease such as a cancer and a genetic disorder.


VI. Applications

In one aspect of the present disclosure, methods for reducing a tumor volume or burden are provided. The methods comprise administering a pharmaceutically effective amount of a pharmaceutical composition comprising at least one biocircuit system, effector module, DD, and/or payload of interest (i.e., an immunotherapeutic agent), at least one vector, or cells to a subject having a tumor. The biocircuit system and effector module having any immunotherapeutic agent as described herein may be in forms of a polypeptide, or a polynucleotide such as mRNA, or a viral vector comprising the polynucleotide, or a cell modified to express the biocircuit, effector module, DD, and payload of interest (i.e., immunotherapeutic agent).


In another aspect of the present disclosure, methods for inducing an anti-tumor immune response in a subject are provided. The methods comprise administering a pharmaceutically effective amount of a pharmaceutical composition comprising at least one biocircuit system, effector module, DD, and/or payload of interest (i.e., an immunotherapeutic agent), at least one vector, or cells to a subject having a tumor. The biocircuit and effector module having any immunotherapeutic agent as described herein may be in forms of a polypeptide, or a polynucleotide such as mRNA, or a viral vector comprising the polynucleotide, or a cell modified to express the biocircuit, effector module, DD, and payload of interest (i.e., immunotherapeutic agent).


The methods, per the present disclosure, may be adoptive cell transfer (ACT) using genetically engineered cells such as immune effector cells of the disclosure, cancer vaccines comprising biocircuit systems, effector modules, DDs, payloads of interest (i.e., immunotherapeutic agents) of the disclosure, or compositions that manipulate the tumor immunosuppressive microenvironment, or the combination thereof. These treatments may be further employed with other cancer treatment such as chemotherapy and radiotherapy.


1. Adoptive Cell Transfer (Adoptive Immunotherapy)

Recent progress in the field of cancer immunology has allowed the development of several approaches to help the immune system keep the cancer at bay. Such immunotherapy approaches include the targeting of cancer antigens through monoclonal antibodies or through adoptive transfer of ex vivo engineered T cells (e.g., which contain chimeric antigen receptors or engineered T cell receptors). The present disclosure also provides methods for inducing immune responses in a subject using the compositions of the disclosure. Also provided are methods for reducing a tumor burden in a subject using the compositions of the disclosure. The present disclosure also provides immune cells engineered to include one or more polypeptides, polynucleotides, or vectors of the present disclosure. The cells may be immune effector cells, including T cells such as cytotoxic T cells, helper T cells, memory T cells, regulatory T cells, natural killer (NK) cells, NK T cells, cytokine-induced killer (CIK) cells, cytotoxic T lymphocytes (CTLs), and tumor infiltrating lymphocytes (TILs). The engineered cell may be used for adoptive cell transfer for treating a disease (e.g., a cancer).


In some embodiments, pharmaceutical compositions, biocircuits, biocircuit components, effector modules including their SREs or payloads of the present disclosure may be used in the modulation or alteration or exploitation of the immune system to target one or more cancers. This approach may also be considered with other such biological approaches, e.g., immune response modifying therapies such as the administration of interferons, interleukins, colony-stimulating factors, other monoclonal antibodies, vaccines, gene therapy, and nonspecific immunomodulating agents are also envisioned as anti-cancer therapies to be combined with the pharmaceutical compositions, biocircuits, biocircuit components, effector modules including their SREs or payloads of the present disclosure.


Cancer immunotherapy refers to a diverse set of therapeutic strategies designed to induce the patient's own immune system to fight the cancer. In some embodiments, pharmaceutical compositions, biocircuits, biocircuit components, effector modules including their SREs or payloads of the present disclosure are designed as immune-oncology therapeutics.


In some embodiments, cells which are genetically modified to express at least one biocircuit system, effector module, DD, and/or payload of interest (immunotherapeutic agent) may be used for adoptive cell therapy (ACT). As used herein, Adoptive cell transfer refers to the administration of immune cells (from autologous, allogenic or genetically modified hosts) with direct anticancer activity. ACT has shown promise in clinical application against malignant and infectious disease. For example, T cells genetically engineered to recognize CD19 have been used to treat follicular B cell lymphoma (Kochenderfer et al., Blood, 2010, 116:4099-4102; and Kochenderfer and Rosenberg, Nat Rev Clin Oncol., 2013, 10(5): 267-276) and ACT using autologous lymphocytes genetically-modified to express anti-tumor T cell receptors has been used to treat metastatic melanoma (Rosenberg and Dudley, Curr. Opin. Immunol. 2009, 21: 233-240).


Immune cells for adoptive cell therapy may be selected from but not limited to selected from a CD8+ T cell, a CD4+ T cell, a helper T cell, a natural killer (NK) cell, a NKT cell, a cytotoxic T lymphocyte (CTL), a tumor infiltrating lymphocyte (TIL), a memory T cell, a regulatory T (Treg) cell, a cytokine-induced killer (CIK) cell, a dendritic cell, a human embryonic stem cell, a mesenchymal stem cell, a hematopoietic stem cell, or a mixture thereof.


There are several types of cellular immunotherapies, including tumor infiltrating lymphocyte (TIL) therapy, genetically engineered T cells bearing chimeric antigen receptors (CARs), and recombinant TCR technology. In some embodiments, the compositions of the present disclosure may be utilized to alter TIL (tumor infiltrating lymphocyte) populations in a subject. In one embodiment, any of the payloads described herein may be utilized to change the ratio of CD4 positive cells to CD8 positive populations. In some embodiments, TILs may be sorted ex vivo and engineered to express any of the cytokines described herein. Payloads of the disclosure may be used to expand CD4 and/or CD8 populations of TILs to enhance TIL mediated immune response.


In one embodiment, the chimeric antigen receptor (CAR) of the present disclosure may be a conditionally active CAR. A wild type protein or domain thereof, such as those described herein may be used to generate a conditionally active biologic protein which are reversibly or irreversibly inactivated at the wild type normal physiological conditions as well as to such conditionally active biologic proteins and domains and uses of such conditional active biologic proteins and domains are provided. Such methods and conditionally active proteins are taught in, for example, International Publication No. WO2016033331, the contents of which are incorporated herein by reference in their entirety. As a non-limiting example, the CAR comprises at least one antigen specific targeting region evolved from a wild type protein or a domain thereof and one or more of a decrease in activity in the assay at the normal physiological condition compared to the antigen specific targeting region of the wild-type protein or a domain thereof, and an increase in activity in the assay under the aberrant condition compared to the antigen specific targeting region of the wild-type protein or a domain thereof.


According to the present disclosure, the biocircuits and systems may be used in the development and implementation of cell therapies such as adoptive cell therapy. Certain effector modules useful in cell therapy are given in FIGS. 7-12. The biocircuits, their components, effector modules and their SREs and payloads may be used in cell therapies to effect TCR removal-TCR gene disruption, TCR engineering, to regulate epitope tagged receptors, in APC platforms for stimulating T cells, as a tool to enhance ex vivo APC stimulation, to improve methods of T cell expansion, in ex vivo stimulation with antigen, in TCR/CAR combinations, in the manipulation or regulation of TILs, in allogeneic cell therapy, in combination T cell therapy with other treatment lines (e.g. radiation, cytokines), to encode engineered TCRs, or modified TCRs, or to enhance T cells other than TCRs (e.g. by introducing cytokine genes, genes for the checkpoint inhibitors PD1, CTLA4).


In some embodiments, improved response rates are obtained in support of cell therapies.


Expansion and persistence of cell populations may be achieved through regulation or fine tuning of the payloads, e.g., the receptors or pathway components in T cells, NK cells or other immune-related cells. In some embodiments, biocircuits, their components, SREs or effector modules are designed to spatially and/or temporally control the expression of proteins which enhance T-cell or NK cell response. In some embodiments, biocircuits, their components, SREs or effector modules are designed to spatially and/or temporally control the expression of proteins which inhibit T-cell or NK cell response.


Provided herein are methods for use in adoptive cell therapy. The methods involve preconditioning a subject in need thereof, modulating immune cells with SRE, biocircuits and compositions of the present disclosure, administering to a subject, engineered immune cells expressing compositions of the disclosure and the successful engraftment of engineered cells within the subject.


In some embodiments, SREs, biocircuits and compositions of the present disclosure may be used to minimize preconditioning regimens associated with adoptive cell therapy. As used herein “preconditioning” refers to any therapeutic regimen administered to a subject in order to improve the outcome of adoptive cell therapy. Preconditioning strategies include, but are not limited to total body irradiation and/or lymphodepleting chemotherapy. Adoptive therapy clinical trials without preconditioning have failed to demonstrate any clinical benefit, indicating its importance in ACT. Yet, preconditioning is associated with significant toxicity and limits the subject cohort that is suitable for ACT. In some instances, immune cells for ACT may be engineered to express cytokines such as IL12 and IL15 as payload using SREs of the present disclosure to reduce the need for preconditioning (Pengram et al. (2012) Blood 119 (18): 4133-41; the contents of which are incorporated by reference in their entirety).


In some embodiments, the neurotoxicity may be associated with CAR or TIL therapy. Such neurotoxicity may be associated CD19-CARs. Toxicity may be due to excessive T cell infiltration into the brain. In some embodiments, neurotoxicity may be alleviated by preventing the passage of T cells through the blood brain barrier. This can be achieved by the targeted gene deletion of the endogenous alpha-4 integrin inhibitors such as tysabri/natalizumab may also be useful in the present disclosure.


In some embodiments, the effector modules may encode one or more cytokines. In some embodiments, the cytokine is IL15. Effector modules encoding IL15 may be designed to induce proliferation in cytotoxic populations and avoid stimulation of T regs. In other cases, the effector modules which induce proliferation in cytotoxic populations may also stimulate NK and NKT cells.


In some embodiments, effector modules may encode, or be tuned or induced to produce, one or more cytokines for expansion of cells in the biocircuits of the disclosure. In such cases the cells may be tested for actual expansion. Expansion may be at least 5%, 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90% or more.


In some embodiments, the tumor microenvironment may be remodeled using a biocircuit containing an effector module encoding IL17.


In some embodiments, biocircuits, their components, SREs or effector modules are designed to modulate Tregs to attenuate autoimmune disorders. In such a case, IL2 may be regulated using a singly tuned module or one having multiple tuned features as described herein.


In some embodiments, immune cells for ACT may be dendritic cells, T cells such as CD8+ T cells and CD4+ T cells, natural killer (NK) cells, NK T cells, Cytotoxic T lymphocytes (CTLs), tumor infiltrating lymphocytes (TILs), lymphokine activated killer (LAK) cells, memory T cells, regulatory T cells (Tregs), helper T cells, cytokine-induced killer (CIK) cells, and any combination thereof. In other embodiments, immune stimulatory cells for ACT may be generated from embryonic stem cell (ESC) and induced pluripotent stem cell (iPSC). In some embodiments, autologous or allogeneic immune cells are used for ACT.


In some embodiments, cells used for ACT may be T cells engineered to express T cell receptors (TCRs) with new specificities or CARs comprising an antigen-binding domain specific to an antigen on tumor cells of interest. In other embodiments, cells used for ACT may be NK cells engineered to express CARs comprising an antigen-binding domain specific to an antigen on tumor cells of interest. In addition to adoptive transfer of genetically modified T cells (e.g., CAR T cells) for immunotherapy, alternate types of CAR-expressing leukocytes, either alone, or in combination with CAR T cells may be used for adoptive immunotherapy. In one example, a mixture of T cells and NK cells may be used for ACT. The expression level of CARs in T cells and NK cells, according to the present disclosure, is tuned and controlled by a small molecule that binds to the DD(s) operably linked to the CAR in the effector module.


In some embodiments, NK cells engineered to express the present compositions may be used for ACT. NK cell activation induces perforin/granzyme-dependent apoptosis in target cells. NK cell activation also induces cytokine secretion such as IFN γ, TNF-α and GM-CSF. These cytokines enhance the phagocytic function of macrophages and their antimicrobial activity, and augment the adaptive immune response via up-regulation of antigen presentation by antigen presenting cells such as dendritic cells (DCs) (Reviewed by Vivier et al., Nat. Immunol., 2008, 9(5): 503-510).


Other examples of genetic modification may include the introduction of chimeric antigen receptors (CARs) and the down-regulation of inhibitory NK cell receptors such as NKG2A. Examples of CARs include, but are not limited to, CD19 and CD20 specific CARs against B cell malignancies, CARs targeting CD33 on leukemia cells, CS1 CAR and CD138 CAR on myeloma cells, GD2 CAR on neuroblastoma cells, Her2/Neu and erbB2 on breast cancer cells, carcinoembryonic antigen (CEA) on colon cancers, EpCAM on epithelial tumors, GPA7 on melanoma, NKG2D ligand on leukemia and solid tumors, and TRAIL R1 on various tumor targets. The CARs may be POIs of the effector modules and regulated by the binding of the DD with its corresponding ligand.


In another example, NK cells for ACT may be modified to express an effector module comprising the high-affinity CD16-158V polymorphism (HA-CD16) which augments NK cell mediated antibody dependent cell cytotoxicity (ADCC) against tumors. Infusion of NK cells genetically modified to express HA-CD16 could be used as a strategy to improve the efficacy of antibody-based therapies for cancer patients.


NK cells may also be genetically reprogrammed to circumvent NK cell inhibitory signals upon interaction with tumor cells. For example, using CRISPR, ZFN, or TALEN to genetically modify NK cells to silence their inhibitory receptors may enhance the anti-tumor capacity of NK cells.


Immune cells can be isolated and expanded ex vivo using a variety of methods known in the art. For example, methods of isolating and expanding cytotoxic T cells are described in U.S. Pat. Nos. 6,805,861 and 6,531,451; US Patent Publication No.: US20160348072A1 and International Patent Publication NO: WO2016168595A1; the contents of each of which are incorporated herein by reference in their entirety. Isolation and expansion of NK cells is described in US Patent Publication NO.: US20150152387A1, U.S. Pat. No. 7,435,596; and Oyer, J. L. (2016). Cytotherapy. 18(5):653-63; the contents of each of which are incorporated by reference herein in its entirety. Specifically, human primary NK cells may be expanded in the presence of feeder cells e.g. a myeloid cell line that has been genetically modified to express membrane bound IL15, IL21, IL12 and 4-1BBL.


In some instances, sub populations of immune cells may be enriched for ACT. Methods for immune cell enrichment are taught in International Patent Publication NO.: WO2015039100A1. In another example, T cells positive for B and T lymphocyte attenuator marker BTLA) may be used to enrich for T cells that are anti-cancer reactive as described in U.S. Pat. No. 9,512,401 (the content of each of which are incorporated herein by reference in their entirety).


In some embodiments, immune cells for ACT may be depleted of select sub populations to enhance T cell expansion. For example, immune cells may be depleted of Foxp3+T lymphocytes to minimize the ant-tumor immune response using methods taught in US Patent Publication NO.: US 20160298081A1; the contents of which are incorporated by reference herein in their entirety.


In some embodiments, activation and expansion of T cells for ACT is achieved antigenic stimulation of a transiently expressed Chimeric Antigen Receptor (CAR) on the cell surface. Such activation methods are taught in International Patent NO.: WO2017015427, the content of which are incorporated herein by reference in their entirety.


In some embodiments, immune cells may be activated by antigens associated with antigen presenting cells (APCs). In some embodiments, the APCs may be dendritic cells, macrophages or B cells that antigen specific or nonspecific. The APCs may autologous or homologous in their organ. In some embodiments the APCs may be artificial antigen presenting cells (aAPCs) such as cell based aAPCs or acellular aAPCs. Cell based aAPCs are may be selected from either genetically modified allogeneic cells such as human erythroleukemia cells or xenogeneic cells such as murine fibroblasts and Drosophila cells. Alternatively, the APCs maybe be acellular wherein the antigens or costimulatory domains are presented on synthetic surfaces such as latex beads, polystyrene beads, lipid vesicles or exosomes.


In some embodiments, adoptive cell therapy is carried out by autologous transfer, wherein the cells are derived from a subject in need of a treatment and the cells, following isolation and processing are administered to the same subject. In other instances, ACT may involve allogenic transfer wherein the cells are isolated and/or prepared from a donor subject other than the recipient subject who ultimately receives cell therapy. The donor and recipient subject may be genetically identical, or similar or may express the same HLA class or subtype.


In some embodiments, the multiple immunotherapeutic agents introduced into the immune cells for ACT (e.g., T cells and NK cells) may be controlled by the same biocircuit system. In one example, a cytokine such as IL12 and a CAR construct such as CD19 CAR are linked to the same hDHFR destabilizing domain The expression of IL12 and CD19 CAR is tuned using TMP simultaneously. In other embodiments, the multiple immunotherapeutic agents introduced into the immune cells for ACT (e.g., T cells and NK cells) may be controlled by different biocircuit systems. In one example, a cytokine such as IL12 and a CAR construct such as CD19 CAR are linked to different DDs in two separate effector modules, thereby can be tuned separately using different stimuli. In another example, a suicide gene and a CAR construct may be linked to two separate effector modules.


Following genetic modulation using SREs, biocircuits and compositions of the disclosure, cells are administered to the subject in need thereof. Methods for administration of cells for adoptive cell therapy are known and may be used in connection with the provided methods and compositions. For example, adoptive T cell therapy methods are described, e.g., in US Patent Application Publication No. 2003/0170238 to Gruenberg et al; U.S. Pat. No. 4,690,915 to Rosenberg; Rosenberg (2011) Nat Rev Clin Oncol. 8(10):577-85). See, e.g., Themeli et al. (2013) Nat Biotechnol. 31(10): 928-933; Tsukahara et al. (2013) Biochem Biophys Res Commun 438(1): 84-9; Davila et al. (2013) PLoS ONE 8(4): e61338; the contents of each of which are incorporated herein by reference in their entirety.


In some embodiments, immune cells for ACT may be modified to express one or more immunotherapeutic agents which facilitate immune cells activation, infiltration, expansion, survival and anti-tumor functions. The immunotherapeutic agents may be a second CAR or TCR specific to a different target molecule; a cytokine or a cytokine receptor; a chimeric switch receptor that converts an inhibitory signal to a stimulatory signal; a homing receptor that guides adoptively transferred cells to a target site such as the tumor tissue; an agent that optimizes the metabolism of the immune cell; or a safety switch gene (e.g., a suicide gene) that kills activated T cells when a severe event is observed after adoptive cell transfer or when the transferred immune cells are no-longer needed.


In some embodiments, immune cells used for adoptive cell transfer can be genetically manipulated to improve their persistence, cytotoxicity, tumor targeting capacity, and ability to home to disease sites in vivo, with the overall aim of further improving upon their capacity to kill tumors in cancer patients. One example is to introduce effector modules of the disclosure comprising cytokines such as gamma-cytokines (IL2 and IL15) into immune cells to promote immune cell proliferation and survival. Transduction of cytokine genes (e.g., gamma-cytokines IL2 and IL15) into cells will be able to propagate immune cells without addition of exogenous cytokines and cytokine expressing NK cells have enhanced tumor cytotoxicity.


Another example includes the use of genetic modification for directing the infused NK cells to proper tumor tissues. NK cells may be genetically engineered with an effector module that encodes the CCR7 receptor to improve their migration toward one of its ligands CCL19. Other strategies may involve utilizing chemokine receptors, such as CXCR3 to improve NK cell migration to inflamed tissues, such as those infiltrated with metastatic tumors.


NK cells may be modified to become insensitive to suppressive cytokines such as TGF-β, thereby preserving their cytotoxicity. For example, NK cells can be genetically modified to express the dominant negative mutant form of TGF-β type II receptor (DNTβRII) on their surface that render NK cells resistant to the suppressive effects of TGF-β.


In some embodiments, biocircuits, their components, SREs or effector modules are designed to be significantly less immunogenic than other biocircuits or switches in the art.


As used herein, “significantly less immunogenic” refers to a detectable decrease in immunogenicity. In another embodiment, the term refers to a fold decrease in immunogenicity. In another embodiment, the term refers to a decrease such that an effective amount of the biocircuits, their components, SREs or effector modules which can be administered without triggering a detectable immune response. In another embodiment, the term refers to a decrease such that the biocircuits, their components, SREs or effector modules can be repeatedly administered without eliciting an immune response. In another embodiment, the decrease is such that the biocircuits, their components, SREs or effector modules can be repeatedly administered without eliciting an immune response.


In another embodiment, the biocircuits, their components, SREs or effector modules is 2-fold less immunogenic than its unmodified counterpart or reference compound. In another embodiment, immunogenicity is reduced by a 3-fold factor. In another embodiment, immunogenicity is reduced by a 5-fold factor. In another embodiment, immunogenicity is reduced by a 7-fold factor. In another embodiment, immunogenicity is reduced by a 10-fold factor. In another embodiment, immunogenicity is reduced by a 15-fold factor. In another embodiment, immunogenicity is reduced by a fold factor. In another embodiment, immunogenicity is reduced by a 50-fold factor. In another embodiment, immunogenicity is reduced by a 100-fold factor. In another embodiment, immunogenicity is reduced by a 200-fold factor. In another embodiment, immunogenicity is reduced by a 500-fold factor. In another embodiment, immunogenicity is reduced by a 1000-fold factor. In another embodiment, immunogenicity is reduced by a 2000-fold factor. In another embodiment, immunogenicity is reduced by another fold difference.


Methods of determining immunogenicity are well known in the art, and include, e.g. measuring secretion of cytokines (e.g. IL12, IFNalpha, TNF-alpha, RANTES, MIP-1alpha or beta, IL6, IFN beta, or IL8), measuring expression of DC activation markers (e.g. CD83, HLA-DR, CD80 and CD86), or measuring ability to act as an adjuvant for an adaptive immune response.


The present disclosure provides method of inducing an immune response in a cell. As used herein the term “immune response” refers to the activity of the cells of the immune system in response to stimulus, or an antigen. In some embodiments, the antigen may be a cancer antigen. In some aspects, the methods of inducing an immune response may involve administering to the cell, a therapeutically effective amount of any of the compositions described herein. In one aspect, the method may involve administering the pharmaceutical compositions described herein. In one aspect, the method may involve administering the polynucleotides, vectors. In some embodiments, induction of the immune response occurs due to the expression and or function of the immunotherapeutic agents described herein. Methods of inducing immune response further may involve administering to the cell, an effective amount of the stimulus to tune the expression of the immunotherapeutic agent. In some embodiments, the immunotherapeutic agent is capable of inducing an immune response in response to the stimulus. The induction of the immune response may occur in a cell within a subject i.e. in vivo, ex vivo or in vitro. The induction of an immune response may be evaluated by measuring the release of cytokine such as IL2 and IFNγ from the cells. In some embodiments, the induction of an immune response may be measured by evaluating the cell surface markers such as but not limited to CD3, CD4, CD8, CD 14, CD20, CD11b, CD16, CD45 and HLA-DR, CD 69, CD28, CD44, IFNgamma. Examples of cell surface markers for antigen presenting cells include, but are not limited to, MK class I, MHC Class II, CD40, CD45, B7-1, B7-2, IFN γ receptor and IL2 receptor, ICAM-1 and/or Fcγ receptor. Examples of cell surface markers for dendritic cells include, but are not limited to, MHC class I, MHC Class II, B7-2, CD18, CD29, CD31, CD43, CD44, CD45, CD54, CD58, CD83, CD86, CMRF-44, CMRF-56, DCIR and/or Dectin-1 and the like; while in some cases also having the absence of CD2, CD3, CD4, CD8, CD14, CD15, CD16, CD 19, CD20, CD56, and/or CD57. Examples of cell surface markers for NK cells include, but are not limited to, CCL3, CCL4, CCL5, Granulysin, Granzyme B, Granzyme K, IL10, IL22, IFNg, LAP, Perforin, and TNFa.


Parameters for improving CAR-T therapy outcome are described in Finney et al. JCI. 2019; 129(5):2123-2132 (the contents of which are herein incorporated by reference in their entirety). The levels of biomarker LAG3 (high)/TNF-α (low) in peripheral blood CD8+ T cells at the time of apheresis may also predict a subsequent dysfunctional response in subjects with high antigen load who do not achieve complete response that is durable for more than a few weeks. T cell-intrinsic features that are a consequence of the starting T cell repertoire and the effects of the manufacturing process converge with CD19 antigen-induced activation following adoptive transfer may also play a role in the outcome of CAR-T therapy. The starting T cell repertoire may in part be affected by the timing of the apheresis. In one embodiment, the apheresis may be performed prior to chemotherapy. Cumulative burden of CD19 expressing leukemic and normal B cells, as evaluated in the bone marrow prior to lymphodepleting chemotherapy may be important for determining CAR-T therapy outcome. According to Finney et al., increase antigen burden improves CAR-T therapy outcome. To increase CD19 antigen burden in vivo, subjects may also be infused with expanded subject derived T cells genetically modified to express CD19 (also referred to as T-APCs).


2. Cancer Vaccines

In some embodiments, biocircuits, effector modules, payloads of interest (immunotherapeutic agents), vectors, cells and compositions of the present disclosure may be used for cancer vaccines. In one aspect, dendritic cells are modified to express the compositions of the disclosure and used as cancer vaccines.


In some embodiments, cancer vaccine may comprise peptides and/or proteins derived from tumor associated antigen (TAA). Such strategies may be utilized to evoke an immune response in a subject, which in some instances may be a cytotoxic T lymphocyte (CTL) response. Peptides used for cancer vaccines may also modified to match the mutation profile of a subject. For example, EGFR derived peptides with mutations matched to the mutations found in the subject in need of therapy have been successfully used in patients with lung cancer (Li F et al. (2016) Oncoimmunology. October 7; 5(12): e1238539; the contents of which are incorporated herein by reference in their entirety).


In one embodiment, cancer vaccines of the present disclosure may superagonist altered peptide ligands (APL) derived from TAAs. These are mutant peptide ligands deviate from the native peptide sequence by one or more amino acids, which activate specific CTL clones more effectively than native epitopes. These alterations may allow the peptide to bind better to the restricting Class I MHC molecule or interact more favorably with the TCR of a given tumor-specific CTL subset. APLs may be selected using methods taught in US Patent Publication NO.: US20160317633A1, the contents of which are incorporated herein by reference in their entirety.


3. Tumor Microenvironment (TME)

In some embodiments, biocircuits, their components, SREs or effector modules are designed to reshape the tumor microenvironment in order to extend utility of the biocircuit or a pharmaceutical composition beyond direct cell killing


In some embodiments, biocircuits, their components, SREs or effector modules are designed to reduce, mitigate or eliminate the CAR cytokine storm. In some embodiments, such reduction, mitigation and/or elimination occurs in solid tumors or tumor microenvironments.


In some embodiments, biocircuits, effector modules, payloads of interest (immunotherapeutic agents), vectors, cells and pharmaceutical compositions of the present disclosure may be used to convert the immunosuppressive microenvironment to increase immune responses.


In some embodiments, the disclosure provides methods for converting the inhibitory immunoregulatory signals from immunosuppressive cytokines secreted by cancer cells or the surrounding tumor stroma into stimulatory signals using compositions of the disclosure. Immunosuppressive cytokines include without limitation, IL13, IL4, TGF-beta, IL6, IL8, and IL10. In one aspect, the genetically modified tumor-specific T cells (e.g., CART cells) or T cells with native tumor specificity may be further engineered to express an effector module comprising a chimeric switch receptor that binds to inhibitory/suppressive cytokines and converts their intracellular consequences to an immunostimulatory/activating signal, thus improving the efficacy of tumor-specific T cells. The chimeric switch receptor is composed of the extracellular domains of an inhibitory cytokine receptor (e.g., IL13R, IL4R, IL10R, TGFβR1/ALK5, TGFβR2, and TGFβR3/β-glycan) fused with the intracellular signal transducing domains derived from stimulatory cytokine receptors such as IL2R (i.e., IL2Rα/CD25, IL2Rβ/CD122, and common γ chain receptor/CD132 which is shared by various cytokine receptors) and/or IL7R (IL7Rα/CD127, common γ chain receptor/CD132). These manipulations render tumor specific T cells or CART cells resistant to the suppressive tumor microenvironment.


In some embodiments, the present disclosure provides methods to abrogate the immunosuppressive effects produced by myeloid derived suppressor cells (MDSCs). Tumor cells secrete indoleamine 2,3-dioxygenase (IDO) which promotes immunosuppression through the recruitment of MDSCs. The immunosuppressive environment is further promoted by the MDSCs through nitric oxide synthase (NOS) and arginase 1 (ARG1) which can degrade extracellular arginine. Amino acid deprivation within the tumor microenvironment suppresses T cell anti-tumor activity. In some embodiments, payloads of the present disclosure may comprise inhibitors of NOS, ARG1 and tryptophan metabolism pathway such as IDO. In one embodiment, the payload may include inhibitors of colony stimulating factor receptor 1 (CSFR1) which required for the proliferation and function of MDSCs.


In some embodiments, dominant negative mutants of inhibitory co receptor such as PD-1, CTLA-4, LAG-3, TIM-3, KIRs, or BTLA may be utilized as payloads of the disclosure to overcome inhibitory signals in the tumor microenvironment.


4. Combination Treatments

In some embodiments, it is desirable to combine compositions, vectors and cells of the disclosure for administration to a subject. Compositions of the disclosure comprising different immunotherapeutic agents may be used in combination for enhancement of immunotherapy.


Immunotherapeutic Agents

In some embodiments, it is desirable to combine compositions of the disclosure with adjuvants, that can enhance the potency and longevity of antigen-specific immune responses. Adjuvants used as immunostimulants in combination therapy include biological molecules or delivery carriers that deliver antigens. As non-limiting examples, the compositions of the disclosure may be combined with biological adjuvants such as cytokines, Toll Like Receptors, bacterial toxins, and/or saponins. In other embodiments, the compositions of the present disclosure may be combined with delivery carriers. Exemplary delivery carriers include, polymer microspheres, immune stimulating complexes, emulsions (oil-in-water or water-in-oil), aluminum salts, liposomes or virosomes.


In some embodiments, immune effector cells modified to express biocircuits, effector modules, DDs and payloads of the disclosure may be combined with the biological adjuvants described herein. Dual regulation of CAR and cytokines and ligands to segregate the kinetic control of target-mediated activation from intrinsic cell T cell expansion. Such dual regulation also minimizes the need for pre-conditioning regimens in patients. As a non-limiting example, DD regulated CAR e.g. CD19 CAR may be combined with cytokines e.g. IL12 to enhance the anti-tumor efficacy of the CAR (Pegram H. J., et al. Tumor-targeted T cells modified to secrete IL12 eradicate systemic tumors without need for prior conditioning. Blood. 2012; 119:4133-41; the contents of each of which are incorporated herein by reference in their entirety). As another non-limiting example, Merchant et al. combined dendritic cell-based vaccinations with recombinant human IL7 to improve outcome in high-risk pediatric sarcomas patients (Merchant, M. S. et. al. Adjuvant immunotherapy to Improve Outcome in High-Risk Pediatric Sarcomas. Clin Cancer Res. 2016. 22(13):3182-91; the contents of each of which are incorporated herein by reference in their entirety).


In some embodiments, immune effector cells modified to express one or more antigen-specific TCRs or CARs may be combined with compositions of the disclosure comprising immunotherapeutic agents that convert the immunosuppressive tumor microenvironment.


In one aspect, effector immune cells modified to express CARs specific to different target molecules on the same cell may be combined. In another aspect, different immune cells modified to express the same CAR construct such as NK cells and T cells may be used in combination for a tumor treatment, for instance, a T cell modified to express a CD19 CAR may be combined with a NK cell modified to express the same CD19 CAR to treat B cell malignancy


In other embodiments, immune cells modified to express CARs may be combined with checkpoint blockade agents.


In some embodiments, immune effector cells modified to expressed biocircuits, effector modules, DDs and payloads of the disclosure may be combined with cancer vaccines of the disclosure.


In some embodiments, an effector module comprising a CAR may be used in combination with an effector module comprising a cytokine, or an effector module comprising a safety switch, or an effector module comprising a metabolic factor, or an effector module comprising a homing receptor.


In one embodiment, an effector module comprising a CD19 CAR may be used in combination with amino pyrimidine derivatives such as the Burkit's tyrosine receptor kinase (BTK) inhibitor using methods taught in International Patent Application NO.: WO2016164580, the contents of which are incorporated herein by reference in their entirety.


Cancer

In some embodiments, methods of the disclosure may include combination of the compositions of the disclosure with other agents effective in the treatment of cancers, infection diseases and other immunodeficient disorders, such as anti-cancer agents. As used herein, the term “anti-cancer agent” refers to any agent which is capable of negatively affecting cancer in a subject, for example, by killing cancer cells, inducing apoptosis in cancer cells, reducing the growth rate of cancer cells, reducing the incidence or number of metastases, reducing tumor size, inhibiting tumor growth, reducing the blood supply to a tumor or cancer cells, promoting an immune response against cancer cells or a tumor, preventing or inhibiting the progression of cancer, or increasing the lifespan of a subject with cancer.


In some embodiments, anti-cancer agent or therapy may be a chemotherapeutic agent, or radiotherapy, immunotherapeutic agent, surgery, or any other therapeutic agent which, in combination with the present disclosure, improves the therapeutic efficacy of treatment.


In some embodiments, compositions of the present disclosure may be used in combination with immunotherapeutics other than the inventive therapy described herein, such as antibodies specific to some target molecules on the surface of a tumor cell.


Exemplary chemotherapies include, without limitation, Acivicin; Aclarubicin; Acodazole hydrochloride; Acronine; Adozelesin; Aldesleukin; Altretamine; Ambomycin; Ametantrone acetate; Amsacrine; Anastrozole; Anthramycin; Asparaginase; Asperrin, Sulindac, Curcumin, alkylating agents including: Nitrogen mustards such as mechlor-ethamine, cyclophosphamide, ifosfamide, melphalan and chlorambucil; nitrosoureas such as carmustine (BC U), lomustine (CCNU), and semustine (methyl-CC U); thylenimines/methylmelamine such as thriethylenemelamine (TEM), triethylene, thiophosphoramide (thiotepa), hexamethylmelamine (HMM, altretamine); alkyl sulfonates such as busulfan; triazines such as dacarbazine (DTIC); antimetabolites including folic acid analogs such as methotrexate and trimetrexate, pyrrolidine analogs such as 5-fluorouracil, fluorodeoxyuridine, gemcitabine, cytosine arabinoside (AraC, cytarabine), 5-azacytidine, 2,2′-difluorodeoxycytidine, purine analogs such as 6-mercaptopurine, 6-thioguanine, azathioprine, 2′-deoxycoformycin (pentostatin), erythrohydroxynonyladenine (EHNA), fludarabine phosphate, and 2-chlorodeoxyadenosine (cladribine, 2-CdA); natural products including antimitotic drugs such as paclitaxel, vinca alkaloids including vinblastine (VLB), vincristine, and vinorelbine, taxotere, estramustine, and estramustine phosphate; epipodophylotoxins such as etoposide and teniposide; antibiotics, such as actimomycin D, daunomycin (rubidomycin), doxorubicin, mitoxantrone, idarubicin, bleomycins, plicamycin (mithramycin), mitomycinC, and actinomycin; enzymes such as L-asparaginase, cytokines such as interferon (IFN)-gamma, tumor necrosis factor (TNF)-alpha, TNF-beta and GM-CSF, anti-angiogenic factors, such as angiostatin and endostatin, inhibitors of FGF or VEGF such as soluble forms of receptors for angiogenic factors, including soluble VGF/VEGF receptors, platinum coordination complexes such as cisplatin and carboplatin, anthracenediones such as mitoxantrone, substituted urea such as hydroxyurea, methylhydrazine derivatives including N-methylhydrazine (MIFf) and procarbazine, adrenocortical suppressants such as mitotane (o,ρ′-DDD) and aminoglutethimide; hormones and antagonists including adrenocorticosteroid antagonists such as prednisone and equivalents, dexamethasone and aminoglutethimide; progestin such as hydroxyprogesterone caproate, medroxyprogesterone acetate and megestrol acetate; estrogen such as diethylstilbestrol and ethinyl estradiol equivalents; antiestrogen such as tamoxifen; androgens including testosterone propionate and fluoxymesterone/equivalents; antiandrogens such as flutamide, gonadotropin-releasing hormone analogs and leuprolide; non-steroidal antiandrogens such as flutamide; kinase inhibitors, histone deacetylase inhibitors, methylation inhibitors, proteasome inhibitors, monoclonal antibodies, oxidants, anti-oxidants, telomerase inhibitors, BH3 mimetics, ubiquitin ligase inhibitors, stat inhibitors and receptor tyrosin kinase inhibitors such as imatinib mesylate (marketed as Gleevac or Glivac) and erlotinib (an EGF receptor inhibitor) now marketed as Tarveca; anti-virals such as oseltamivir phosphate, Amphotericin B, and palivizumab; Sdi 1 mimetics; Semustine; Senescence derived inhibitor 1; Sparfosic acid; Spicamycin D; Spiromustine; Splenopentin; Spongistatin 1; Squalamine; Stipiamide; Stromelysin inhibitors; Sulfinosine; Superactive vasoactive intestinal peptide antagonist; Velaresol; Veramine; Verdins; Verteporfin; Vinorelbine; Vinxaltine; Vitaxin; Vorozole; Zanoterone; Zeniplatin; Zilascorb; and Zinostatin stimalamer; PI3Kβ small-molecule inhibitor, GSK2636771; pan-PI3K inhibitor (BKM120); BRAF inhibitors. Vemurafenib (Zelboraf) and dabrafenib (Tafinlar); or any analog or derivative and variant of the foregoing.


In one embodiment, the disclosure further relates to the use of pharmaceutical compositions, biocircuits, biocircuit components, effector modules including their SREs or payloads of the present disclosure for treating one or more forms of cancer, in combination with other pharmaceuticals and/or other therapeutic methods, e.g., with known pharmaceuticals and/or known therapeutic methods, such as, for example, those which are currently employed for treating these disorders. For example, the pharmaceutical compositions, biocircuits, biocircuit components, effector modules including their SREs or payloads of the present disclosure can also be administered in conjunction with one or more additional anti-cancer treatments, such as biological, chemotherapy and radiotherapy. Accordingly, a treatment can include, for example, imatinib (Gleevac), all-trans-retinoic acid, a monoclonal antibody treatment (gemtuzumab, ozogamicin), chemotherapy (for example, chlorambucil, prednisone, prednisolone, vincristine, cytarabine, clofarabine, farnesyl transferase inhibitors, decitabine, inhibitors of MDR1), rituximab, interferon-α, anthracycline drugs (such as daunorubicin or idarubicin), L-asparaginase, doxorubicin, cyclophosphamide, doxorubicin, bleomycin, fludarabine, etoposide, pentostatin, or cladribine), bone marrow transplant, stem cell transplant, radiation therapy, anti-metabolite drugs (methotrexate and 6-mercaptopurine), or any of the antibodies taught herein such as those in Table 6 of the co-owned U.S. Provisional Patent Application No. 62/320,864 filed Apr. 11, 2016, 62/466,596 filed Mar. 3, 2017 and the International Publication WO2017/180587 (the contents of each of which are herein incorporated by reference in their entirety), or combinations thereof.


The present disclosure provides methods for increasing the survival of a subject with cancer. Such methods may include (a) administering to the subject, an effective amount of an immune cell. The immune cell may express an effector module which includes a stimulus response element (SRE) derived from a region or a portion of PDE5 (SEQ ID NO:1) operably linked to a payload. In one embodiment, the payload may be a chimeric antigen receptor (CAR). The SRE described herein may be responsive to and/or interact with at least one stimulus. The methods for increasing survival may also include administering the stimulus to the subject. The stimulus may cause the expression of the CAR to be modulated. The modulation of CAR expression may induce an anti-cancer immune response, which may increase the survival of the subject. The stimulus useful in the methods for promoting survival may be a small molecule. The small molecule may be Tadalafil, Vardenafil or Vardenafil. In one embodiment, the small molecule is Tadalafil. The small molecule may be administered to the subject at a dose of from about 1 mg/kg to about 1000 mg/kg body weight of the subject. In one embodiment, the small molecule may be administered at a dose of 100 mg/kg. In one aspect, the small molecule is administered at a dose of 30 mg/kg. The method of increasing the survival in the subject with cancer may involve administering the small molecule to the subject at least once a day. In one embodiment, the survival in the subject may be increased by a survival ratio of at least 1.3. The SRE described herein may be derived from a region or portion of PDE5 (SEQ ID NO:1) may include at least one mutation selected from the group comprising S542L, V548M, P549S, S550F, L554R, I556S, S562G, F564I, L569M, T571S, T571I, L573M, C574Y, V585M, Q586L, Q586P, Q589E, H592R, V594I, K604R, N605D, N605Y, R607W, R607Q, N609Y, A611T, Y612F, Y612W, Y612A, H613L, H613R, W615R, H617L, N620S, M625I, K633E, H653A, D656L, R658H, G659A, N662Y, S663Y, Q666H, L675P, I680S, E682A, D687A, H685L, M691I, L693P, I700F, I706N, E708V, Y709H, K710N, T712M, I715K, A722V, T723S, T723R, D724Y, D724A, D7240, L727P, Y728L, K730E, R732L, R732G, R732A, R732V, R732I, R732P, R732F, R732W, R732Y, R732H, R732S, R732T, R732D, R732E, R732Q, R732N, R732M, R732C, R732K, F735L, F736A, F7360, F736L, F736M, F736R, F736W, F736K, F736Q, F736E, F736S, F736P, F736V, F736C, F736Y, F736H, F736I, F736N, F736D, F736T, Q743L, F755Y, M758I, M760I, A762T, D764A, A767E, I768N, K770Q, W772C, A779T, L781P, T784I, F787V, F787A, E795R, K795N, E796G, E796D, I799L, D803N, E808G, M816A, F820I, I821A, A823T, Y829A, T833S, R847G, R847T, K848N, W853F, E858V, and Q859R.


Also provided herein are methods of reducing tumor burden in a subject. Such methods may include (a) administering to the subject, an effective amount of an immune cell. The immune cell may express an effector module which includes a stimulus response element (SRE) derived from a region or a portion of PDE5 (SEQ ID NO:1) operably linked to a payload. In one embodiment, the payload may be a chimeric antigen receptor (CAR). The SRE described herein may be responsive to and/or interact with at least one stimulus. The methods for increasing survival may also include administering the stimulus to the subject. The stimulus may cause the expression of the CAR to be modulated. The modulation of CAR expression may induce an anti-tumor immune response in the subject. The stimulus useful in the methods for reducing tumor burden may be a small molecule. The small molecule may be Tadalafil, Vardenafil or Vardenafil. In one embodiment, the small molecule is Tadalafil. The small molecule may be administered to the subject at a dose of from about 1 mg/kg to about 1000 mg/kg body weight of the subject. In one embodiment, the small molecule may be administered at a dose of 100 mg/kg. In one aspect, the small molecule is administered at a dose of 30 mg/kg. The methods reducing tumor burden in the subject may involve administering the small molecule to the subject at least once a day. In one embodiment, the small molecule may be administered twice a day. The SRE described herein may be derived from a region or portion of PDE5 (SEQ ID NO:1) may include at least one mutation selected from the group comprising S542L, V548M, P549S, S550F, L554R, I556S, S562G, F564I, L569M, T571S, T571I, L573M, C574Y, V585M, Q586L, Q586P, Q589E, H592R, V594I, K604R, N605D, N605Y, R607W, R607Q, N609Y, A611T, Y612F, Y612W, Y612A, H613L, H613R, W615R, H617L, N620S, M625I, K633E, H653A, D656L, R658H, G659A, N662Y, S663Y, Q666H, L675P, I680S, E682A, D687A, H685L, M691I, L693P, I700F, I706N, E708V, Y709H, K710N, T712M, I715K, A722V, T723S, T723R, D724Y, D724A, D7240, L727P, Y728L, K730E, R732L, R7320, R732A, R732V, R732I, R732P, R732F, R732W, R732Y, R732H, R732S, R732T, R732D, R732E, R732Q, R732N, R732M, R732C, R732K, F735L, F736A, F736G, F736L, F736M, F736R, F736W, F736K, F736Q, F736E, F736S, F736P, F736V, F736C, F736Y, F736H, F736I, F736N, F736D, F736T, Q743L, F755Y, M758I, M760I, A762T, D764A, A767E, I768N, K770Q, W772C, A779T, L781P, T784I, F787V, F787A, E795R, K795N, E796G, E796D, I799L, D803N, E808G, M816A, F820I, I821A, A823T, Y829A, T833S, R847G, R847T, K848N, W853F, E858V, and Q859R.


Radiotherapeutic agents and factors include radiation and waves that induce DNA damage for example, γ-irradiation, X-rays, UV-irradiation, microwaves, electronic emissions, radioisotopes, and the like. Therapy may be achieved by irradiating the localized tumor site with the above described forms of radiations. It is most likely that all of these factors effect a broad range of damage DNA, on the precursors of DNA, the replication and repair of DNA, and the assembly and maintenance of chromosomes. Dosage ranges for X-rays range from daily doses of 50 to 200 roentgens for prolonged periods of time (3 to 4 weeks), to single doses of 2000 to 6000 roentgens. Dosage ranges for radioisotopes vary widely, and depend on the half-life of the isotope, the strength and type of radiation emitted, and the uptake by the neoplastic cells.


Radiation therapy (also called radiotherapy, X-ray therapy, or irradiation) is the use of ionizing radiation to kill cancer cells and shrink tumors. Radiation therapy can be administered externally via external beam radiotherapy (EBRT) or internally via brachytherapy. The effects of radiation therapy are localized and confined to the region being treated. Radiation therapy may be used to treat almost every type of solid tumor, including cancers of the brain, breast, cervix, larynx, lung, pancreas, prostate, skin, stomach, uterus, or soft tissue sarcomas. Radiation is also used to treat leukemia and lymphoma.


In some embodiments, the chemotherapeutic agent may be an immunomodulatory agent such as lenalidomide (LEN). Recent studies have demonstrated that lenalidomide can enhance antitumor functions of CAR modified T cells (Otahal et al., Oncoimmunology, 2015, 5(4): e1115940). Some examples of anti-tumor antibodies include tocilizumab, siltuximab.


Chemotherapy is the treatment of cancer with drugs that can destroy cancer cells. In current usage, the term “chemotherapy” usually refers to cytotoxic drugs which affect rapidly dividing cells in general, in contrast with targeted therapy. Chemotherapy drugs interfere with cell division in various possible ways, e.g. with the duplication of DNA or the separation of newly formed chromosomes. Most forms of chemotherapy target all rapidly dividing cells and are not specific to cancer cells, although some degree of specificity may come from the inability of many cancer cells to repair DNA damage, while normal cells generally can.


Most chemotherapy regimens are given in combination. Exemplary chemotherapeutic agents include, but are not limited to, 5-FU Enhancer, 9-AC, AG2037, AG3340, Aggrecanase Inhibitor, Aminoglutethimide, Amsacrine (m-AMSA), Asparaginase, Azacitidine, Batimastat (BB94), BAY 12-9566, BCH-4556, Bis-Naphthalimide, Busulfan, Capecitabine, Carboplatin, Carmustaine+Polifepr Osan, cdk4/cdk2 inhibitors, Chlorambucil, CI-994, Cisplatin, Cladribine, CS-682, Cytarabine HCl, D2163, Dactinomycin, Daunorubicin HCl, DepoCyt, Dexifosamide, Docetaxel, Dolastain, Doxifluridine, Doxorubicin, DX8951f, E 7070, EGFR, Epirubicin, Erythropoietin, Estramustine phosphate sodium, Etoposide (VP16-213), Farnesyl Transferase Inhibitor, FK 317, Flavopiridol, Floxuridine, Fludarabine, Fluorouracil (5-FU), Flutamide, Fragyline, Gemcitabine, Hexamethylmelamine (HMM), Hydroxyurea (hydroxycarbamide), Ifosfamide, Interferon Alfa-2a, Interferon Alfa-2b, Interleukin-2, Irinotecan, ISI 641, Krestin, Lemonal DP 2202, Leuprolide acetate (LHRH-releasing factor analogue), Levamisole, LiGLA (lithium-gamma linolenate), Lodine Seeds, Lometexol, Lomustine (CCNU), Marimistat, Mechlorethamine HCl (nitrogen mustard), Megestrol acetate, Meglamine GLA, Mercaptopurine, Mesna, Mitoguazone (methyl-GAG; methyl glyoxal bis-guanylhydrazone; MGBG), Mitotane (o.p′-DDD), Mitoxantrone, Mitoxantrone HCl, MMI 270, MMP, MTA/LY 231514, Octreotide, ODN 698, OK-432, Oral Platinum, Oral Taxoid, Paclitaxel (TAXOL®), PARP Inhibitors, PD 183805, Pentostatin (2′ deoxycoformycin), PKC 412, Plicamycin, Procarbazine HCl, PSC 833, Ralitrexed, RAS Farnesyl Transferase Inhibitor, RAS Oncogene Inhibitor, Semustine (methyl-CCNU), Streptozocin, Suramin, Tamoxifen citrate, Taxane Analog, Temozolomide, Teniposide (VM-26), Thioguanine, Thiotepa, Topotecan, Tyrosine Kinase, UFT (Tegafur/Uracil), Valrubicin, Vinblastine sulfate, Vindesine sulfate, VX-710, VX-853, YM 116, ZD 0101, ZD 0473/Anormed, ZD 1839, ZD 9331.


Other agents may be used in combination with compositions of the disclosure may also include, but not limited to, agents that affect the upregulation of cell surface receptors and their ligands such as Fas/Fas ligand, DR4 or DR5/TRAIL and GAP junctions, cytostatic and differentiation agents, inhibitors of cell adhesion such as focal adhesion kinase (FAKs) inhibitors and Lovastatin, or agents that increase the sensitivity of the hyper proliferative cells to apoptotic inducers such as the antibody C225.


The combinations may include administering the compositions of the disclosure and other agents at the same time or separately. Alternatively, the present immunotherapy may precede or follow the other agent/therapy by intervals ranging from minutes, days, weeks to months.


5. Therapeutic Uses

Provided in the present disclosure is a method of reducing a tumor volume or burden in a subject in need, the method comprising introducing into the subject a composition of the disclosure.


Also provided herein are methods of increasing the survival in a subject with cancer. The methods may comprise introducing into the subject, any of the compositions described herein. The subject may be administered at least one stimulus described herein. In one embodiment the stimulus may be a ligand. In one embodiment, administration of the ligand may result in the modulation of the payload. Payloads such as but not limited to CARs when expressed in response to the ligand, may trigger an anti-cancer immune response. Such anti-cancer immune responses may result in reduction of tumor burden which in turn may increase the survival of the subject with cancer. Ligand may be administered prior to, during or after the introduction of the compositions into the subject. Survival may be measured and quantified using any of the methods known in the art. In some embodiment, survival may be quantified using Kaplan Meier analysis and/or the log rank test. In some embodiments, survival may be quantified using the survival ratio, which may be defined as the ratio of the median survival observed in a group to the median survival of the untransduced-vehicle treatment group. In some embodiments, the survival ratio is at least 1. In some embodiments, the survival ratio is at least 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7 1.8, 1.9, 2, 3, 4, 5, 6, 7, 8, 9, or 10.


The present disclosure also provides methods for treating a cancer in a subject, comprising administering to the subject an effective amount of an immune effector cell genetically modified to express at least one effector module of the disclosure.


Cancer

Various cancers may be treated with pharmaceutical compositions, biocircuits, biocircuit components, effector modules including their SREs or payloads of the present disclosure. As used herein, the term “cancer” refers to any of various malignant neoplasms characterized by the proliferation of anaplastic cells that tend to invade surrounding tissue and metastasize to new body sites and refers to the pathological condition characterized by such malignant neoplastic growths. Cancers may be tumors or hematological malignancies, and include but are not limited to, all types of lymphomas/leukemias, carcinomas and sarcomas, such as those cancers or tumors found in the anus, bladder, bile duct, bone, brain, breast, cervix, colon/rectum, endometrium, esophagus, eye, gallbladder, head and neck, liver, kidney, larynx, lung, mediastinum (chest), mouth, ovaries, pancreas, penis, prostate, skin, small intestine, stomach, spinal marrow, tailbone, testicles, thyroid and uterus.


Types of carcinomas which may be treated with the compositions of the present disclosure include, but are not limited to, papilloma/carcinoma, choriocarcinoma, endodermal sinus tumor, teratoma, adenoma/adenocarcinoma, melanoma, fibroma, lipoma, leiomyoma, rhabdomyoma, mesothelioma, angioma, osteoma, chondroma, glioma, lymphoma/leukemia, squamous cell carcinoma, small cell carcinoma, large cell undifferentiated carcinomas, basal cell carcinoma and sinonasal undifferentiated carcinoma.


Types of carcinomas which may be treated with the compositions of the present disclosure include, but are not limited to, soft tissue sarcoma such as alveolar soft part sarcoma, angiosarcoma, dermatofibrosarcoma, desmoid tumor, desmoplastic small round cell tumor, extraskeletal chondrosarcoma, extraskeletal osteosarcoma, fibrosarcoma, hemangiopericytoma, hemangiosarcoma, Kaposi's sarcoma, leiomyosarcoma, liposarcoma, lymphangiosarcoma, lymphosarcoma, malignant fibrous histiocytoma, neurofibrosarcoma, rhabdomyosarcoma, synovial sarcoma, and Askin's tumor, Ewing's sarcoma (primitive neuroectodermal tumor), malignant hemangioendothelioma, malignant schwannoma, osteosarcoma, and chondrosarcoma.


As a non-limiting example, the carcinoma which may be treated may be Acute granulocytic leukemia, Acute lymphocytic leukemia, Acute myelogenous leukemia, Adenocarcinoma, Adenosarcoma, Adrenal cancer, Adrenocortical carcinoma, Anal cancer, Anaplastic astrocytoma, Angiosarcoma, Appendix cancer, Astrocytoma, Basal cell carcinoma, B-Cell lymphoma), Bile duct cancer, Bladder cancer, Bone cancer, Bowel cancer, Brain cancer, Brain stem glioma, Brain tumor, Breast cancer, Carcinoid tumors, Cervical cancer, Cholangiocarcinoma, Chondrosarcoma, Chronic lymphocytic leukemia, Chronic myelogenous leukemia, Colon cancer, Colorectal cancer, Craniopharyngioma, Cutaneous lymphoma, Cutaneous melanoma, Diffuse astrocytoma, Ductal carcinoma in situ, Endometrial cancer, Ependymoma, Epithelioid sarcoma, Esophageal cancer, Ewing sarcoma, Extrahepatic bile duct cancer, Eye cancer, Fallopian tube cancer, Fibrosarcoma, Gallbladder cancer, Gastric cancer, Gastrointestinal cancer, Gastrointestinal carcinoid cancer, Gastrointestinal stromal tumors, General, Germ cell tumor, Glioblastoma multiforme, Glioma, Hairy cell leukemia, Head and neck cancer, Hemangioendothelioma, Hodgkin lymphoma, Hodgkin's disease, Hodgkin's lymphoma, Hypopharyngeal cancer, Infiltrating ductal carcinoma, Infiltrating lobular carcinoma, Inflammatory breast cancer, Intestinal Cancer, Intrahepatic bile duct cancer, Invasive/infiltrating breast cancer, Islet cell cancer, Jaw cancer, Kaposi sarcoma, Kidney cancer, Laryngeal cancer, Leiomyosarcoma, Leptomeningeal metastases, Leukemia, Lip cancer, Liposarcoma, Liver cancer, Lobular carcinoma in situ, Low-grade astrocytoma, Lung cancer, Lymph node cancer, Lymphoma, Male breast cancer, Medullary carcinoma, Medulloblastoma, Melanoma, Meningioma, Merkel cell carcinoma, Mesenchymal chondrosarcoma, Mesenchymous, Mesothelioma, Metastatic breast cancer, Metastatic melanoma, Metastatic squamous neck cancer, Mixed gliomas, Mouth cancer, Mucinous carcinoma, Mucosal melanoma, Multiple myeloma, Nasal cavity cancer, Nasopharyngeal cancer, Neck cancer, Neuroblastoma, Neuroendocrine tumors, Non-Hodgkin lymphoma, Non-Hodgkin's lymphoma, Non-small cell lung cancer, Oat cell cancer, Ocular cancer, Ocular melanoma, Oligodendroglioma, Oral cancer, Oral cavity cancer, Oropharyngeal cancer, Osteogenic sarcoma, Osteosarcoma, Ovarian cancer, Ovarian epithelial cancer, Ovarian germ cell tumor, Ovarian primary peritoneal carcinoma, Ovarian sex cord stromal tumor, Paget's disease, Pancreatic cancer, Papillary carcinoma, Paranasal sinus cancer, Parathyroid cancer, Pelvic cancer, Penile cancer, Peripheral nerve cancer, Peritoneal cancer, Pharyngeal cancer, Pheochromocytoma, Pilocytic astrocytoma, Pineal region tumor, Pineoblastoma, Pituitary gland cancer, Primary central nervous system lymphoma, Prostate cancer, Rectal cancer, Renal cell cancer, Renal pelvis cancer, Rhabdomyosarcoma, Salivary gland cancer, Sarcoma, Sarcoma, bone, Sarcoma, soft tissue, Sarcoma, uterine, Sinus cancer, Skin cancer, Small cell lung cancer, Small intestine cancer, Soft tissue sarcoma, Spinal cancer, Spinal column cancer, Spinal cord cancer, Spinal tumor, Squamous cell carcinoma, Stomach cancer, Synovial sarcoma, T-cell lymphoma), Testicular cancer, Throat cancer, Thymoma/thymic carcinoma, Thyroid cancer, Tongue cancer, Tonsil cancer, Transitional cell cancer, Transitional cell cancer, Transitional cell cancer, Triple-negative breast cancer, Tubal cancer, Tubular carcinoma, Ureteral cancer, Ureteral cancer, Urethral cancer, Uterine adenocarcinoma, Uterine cancer, Uterine sarcoma, Vaginal cancer, and Vulvar cancer.


In some embodiments, the CARs of the present disclosure may be a CAR useful in the treatment of multiple myeloma such as a CS1 CAR, a CD38 CAR, a CD138 CAR, and a BCMA CAR. In some embodiments, the CARs of the present disclosure may be a CAR useful in the treatment of acute myeloid leukemia such as a CD33 CAR, a CD123 CAR, and a CLL1 CAR. In some embodiments, the CARs of the present disclosure may be a CAR useful in the treatment of T cell leukemia such as a CD5 CAR, and a CD7 CAR. In some embodiments, the CARs of the present disclosure may be a CAR useful in the treatment of solid tumors such a mesothelin CAR, a GD2 CAR, a GPC3 CAR, a Her2 CAR, an EGFR CAR, a Muc1 CAR, an EpCAM CAR, a PD-L1 CAR, a CEA CAR, a Muc16 CAR, a CD133 CAR, a CD171 CAR, a CD70 CAR, a CLD18 CAR, a cMET CAR, a EphA2 CAR, a FAP CAR, a Folate Receptor CAR, an IL13Ra2 CAR, an MG7 CAR, a PSMA CAR, a ROR1 CAR, and a VEGFR2 CAR.


The present disclosure also provides methods of reducing tumor burden in a subject. In some embodiments. As used herein, “tumor burden” refers to the number of cancer cells, or the amount of cancer in a subject. In some aspects tumor burden also refers to tumor load. In some embodiments, the tumor may be disseminated throughout the body of the subject. In one aspect, the tumor may be a liquid tumor such as leukemia or a lymphoma. The methods of reducing tumor burden may involve administering to the subject, a therapeutically effective amount of the immune cells. Immune cells may be engineered to express the compositions described herein. In some embodiments, the immune cells expressing the compositions of the disclosure may be administered to the subject via any of the routes of delivery described herein. Also provided herein are dosing regimens for administering the immune cells. In some embodiments, the subject may also be administered a therapeutically effective amount of the stimulus to tune the expression of the immunotherapeutic agent. In some aspects, the immunotherapeutic agents may be capable of reducing the tumor burden. Regimens for ligand/stimulus dosing are also provided. Reduction in tumor burden may be measured by any of the methods known in the art including tumor imaging, and measurement of marker proteins. In some aspects, bioluminescent imaging may be used to measure tumor burden. Bioluminescence imaging utilizes native light emission from bioluminescent proteins such as luciferase. Such bioluminescent proteins can participate in chemical reactions that release photons by the addition of suitable substrates. The release of photons can be captured by sensitive detection methods and quantified. Tumor cells may be engineered to express luciferase and the efficacy of the compositions described herein to reduce tumor burden may quantified by imaging In some aspects, the tumor burden may be measured by the flux of photons (photons per sec). In some embodiments, photon flux positively correlates with tumor burden.


Diseases and Toxins

Various infectious diseases may be treated with pharmaceutical compositions, biocircuits, biocircuit components, effector modules including their SREs or payloads of the present disclosure. As used herein, the term “infectious disease” refers to any disorders caused by organisms such as bacteria, viruses, fungi or parasites. As a non-limiting example, the infectious disease may be Acute bacterial rhinosinusitis, 14-day measles, Acne, Acrodermatitis chronica atrophicans (ACA)-(late skin manifestation of latent Lyme disease), Acute hemorrhagic conjunctivitis, Acute hemorrhagic cystitis, Acute rhinosinusitis, Adult T-cell Leukemia-Lymphoma (ATLL), African Sleeping Sickness, AIDS (Acquired Immunodeficiency Syndrome), Alveolar hydatid, Amebiasis, Amebic meningoencephalitis, Anaplasmosis, Anthrax, Arboviral or parainfectious, Ascariasis—(Roundworm infections), Aseptic meningitis, Athlete's foot (Tinea pedis), Australian tick typhus, Avian Influenza, Babesiosis, Bacillary angiomatosis, Bacterial meningitis, Bacterial vaginosis, Balanitis, Balantidiasis, Bang's disease, Barmah Forest virus infection, Bartonellosis (Verruga peruana; Carrion's disease; Oroya fever), Bat Lyssavirus Infection, Bay sore (Chiclero's ulcer), Baylisascaris infection (Racoon roundworm infection), Beaver fever, Beef tapeworm, Bejel (endemic syphilis), Biphasic meningoencephalitis, Black Bane, Black death, Black piedra, Blackwater Fever, Blastomycosis, Blennorrhea of the newborn, Blepharitis, Boils, Bornholm disease (pleurodynia), Borrelia miyamotoi Disease, Botulism, Boutonneuse fever, Brazilian purpuric fever, Break Bone fever, Brill, Bronchiolitis, Bronchitis, Brucellosis (Bang's disease), Bubonic plague, Bullous impetigo, Burkholderia mallei (Glanders), Burkholderia pseudomallei (Melioidosis), Buruli ulcers (also Mycoburuli ulcers), Busse, Busse-Buschke disease (Cryptococcosis), California group encephalitis, Campylobacteriosis, Candidiasis, Canefield fever (Canicola fever; 7-day fever; Weil's disease; leptospirosis; canefield fever), Canicola fever, Capillariasis, Carate, Carbapenem-resistant Enterobacteriaceae (CRE), Carbuncle, Carrion's disease, Cat Scratch fever, Cave disease, Central Asian hemorrhagic fever, Central European tick, Cervical cancer, Chagas disease, Chancroid (Soft chancre), Chicago disease, Chickenpox (Varicella), Chiclero's ulcer, Chikungunya fever, Chlamydial infection, Cholera, Chromoblastomycosis, Ciguatera, Clap, Clonorchiasis (Liver fluke infection), Clostridium Difficile Infection, Clostridium Perfringens (Epsilon Toxin), Coccidioidomycosis fungal infection (Valley fever; desert rheumatism), Coenurosis, Colorado tick fever, Condyloma accuminata, Condyloma accuminata(Warts), Condyloma lata, Congo fever, Congo hemorrhagic fever virus, Conjunctivitis, cowpox, Crabs, Crimean, Croup, Cryptococcosis, Cryptosporidiosis (Crypto), Cutaneous Larval Migrans, Cyclosporiasis, Cystic hydatid, Cysticercosis, Cystitis, Czechoslovak tick, D68 (EV-D68), Dacryocytitis, Dandy fever, Darling's Disease, Deer fly fever, Dengue fever (1, 2, 3 and 4), Desert rheumatism, Devil's grip, Diphasic milk fever, Diphtheria, Disseminated Intravascular Coagulation, Dog tapeworm, Donovanosis, Donovanosis (Granuloma inguinale), Dracontiasis, Dracunculosis, Duke's disease, Dum Dum Disease, Durand-Nicholas-Favre disease, Dwarf tapeworm, E. Coli infection (E. coli), Eastern equine encephalitis, Ebola Hemorrhagic Fever (Ebola virus disease EVD), Ectothrix, Ehrlichiosis (Sennetsu fever), Encephalitis, Endemic Relapsing fever, Endemic syphilis, Endophthalmitis, Endothrix, Enterobiasis (Pinworm infection), Enterotoxin-B Poisoning (Staph Food Poisoning), Enterovirus Infection, Epidemic Keratoconjunctivitis, Epidemic Relapsing fever, Epidemic typhus, Epiglottitis, Erysipelis, Erysipeloid (Erysipelothricosis), Erythema chronicum migrans, Erythema infectiosum, Erythema marginatum, Erythema multiforme, Erythema nodosum, Erythema nodosum leprosum, Erythrasma, Espundia, Eumycotic mycetoma, European blastomycosis, Exanthem subitum (Sixth disease), Eyeworm, Far Eastern tick, Fascioliasis, Fievre boutonneuse (Tick typhus), Fifth Disease (erythema infectiosum), Filatow-Dukes' Disease (Scalded Skin Syndrome; Ritter's Disease), Fish tapeworm, Fitz-Hugh-Curtis syndrome-Perihepatitis, Flinders Island Spotted Fever, Flu (Influenza), Folliculitis, Four Corners Disease, Four Corners Disease (Human Pulmonary Syndrome (HPS)), Frambesia, Francis disease, Furunculosis, Gas gangrene, Gastroenteritis, Genital Herpes, Genital Warts, German measles, Gerstmann-Straussler-Scheinker (GSS), Giardiasis, Gilchrist's disease, Gingivitis, Gingivostomatitis, Glanders, Glandular fever (infectious mononucleosis), Gnathostomiasis, Gonococcal Infection (Gonorrhea), Gonorrhea, Granuloma inguinale (Donovanosis), Guinea Worm, Haemophilus Influenza disease, Hamburger disease, Hansen's disease—leprosy, Hantaan disease, Hantaan-Korean hemorrhagic fever, Hantavirus Pulmonary Syndrome, Hantavirus Pulmonary Syndrome (HPS), Hard chancre, Hard measles, Haverhill fever—Rat bite fever, Head and Body Lice, Heartland fever, Helicobacterosis, Hemolytic Uremic Syndrome (HUS), Hepatitis A, Hepatitis B, Hepatitis C, Hepatitis D, Hepatitis E, Herpangina, Herpes—genital, Herpes labialis, Herpes—neonatal, Hidradenitis, Histoplasmosis, Histoplasmosis infection (Histoplasmosis), His-Werner disease, HIV infection, Hookworm infections, Hordeola, Hordeola (Stye), HTLV, HTLV-associated myelopathy (HAM), Human granulocytic ehrlichiosis, Human monocytic ehrlichiosis, Human Papillomavirus (HPV), Human Pulmonary Syndrome, Hydatid cyst, Hydrophobia, Impetigo, Including congenital (German Measles), Inclusion conjunctivitis, Inclusion conjunctivitis—Swimming Pool conjunctivitis—Pannus, Infantile diarrhea, Infectious Mononucleosis, Infectious myocarditis, Infectious pericarditis, Influenza, Isosporiasis, Israeli spotted fever, Japanese Encephalitis, Jock itch, Jorge Lobo disease—lobomycosis, Jungle yellow fever, Junin Argentinian hemorrhagic fever, Kala Azar, Kaposi's sarcoma, Keloidal blastomycosis, Keratoconjunctivitis, Kuru, Kyasanur forest disease, LaCrosse encephalitis, Lassa hemorrhagic fever, Legionellosis (Legionnaires Disease), Legionnaire's pneumonia, Lemierre's Syndrome (Postanginal septicemia), Lemming fever, Leprosy, Leptospirosis (Nanukayami fever; Weil's disease), Listeriosis (Listeria), Liver fluke infection, Lobo's mycosis, Lockjaw, Loiasis, Louping III, Ludwig's angina, Lung fluke infection, Lung fluke infection (Paragonimiasis), Lyme disease, Lymphogranuloma venereum infection (LGV), Machupo Bolivian hemorrhagic fever, Madura foot, Mal del pinto, Malaria, Malignant pustule, Malta fever, Marburg hemorrhagic fever, Masters disease, Maternal Sepsis (Puerperal fever), Measles, Mediterranean spotted fever, Melioidosis (Whitmore's disease), Meningitis, Meningococcal Disease, MERS, Milker's nodule, Molluscum contagiosum, Moniliasis, monkeypox, Mononucleosis, Mononucleosis-like syndrome, Montezuma's Revenge, Morbilli, MRSA (methicillin-resistant Staphylococcus aureus) infection, Mucormycosis—Zygomycosis, Multiple Organ Dysfunction Syndrome or MODS, Multiple-system atrophy (MSA), Mumps, Murine typhus, Murray Valley Encephalitis(MVE), Mycoburuli ulcers, Mycoburuli ulcers—Buruli ulcers, Mycotic vulvovaginitis, Myositis, Nanukayami fever, Necrotizing fasciitis, Necrotizing fasciitis—Type 1, Necrotizing fasciitis—Type 2, Negishi, New world spotted fever, Nocardiosis, Nongonococcal urethritis, Non-Polio (Non-Polio Enterovirus), Norovirus infection, North American blastomycosis, North Asian tick typhus, Norwalk virus infection, Norwegian itch, O'Hara disease, Omsk hemorrhagic fever, Onchoceriasis, Onychomycosis, Opisthorchiasis, Opthalmia neonatorium, Oral hairy leukoplakia, Orf, Oriental Sore, Oriental Spotted Fever, Ornithosis (Parrot fever; Psittacosis), Oroya fever, Otitis externa, Otitis media, Pannus, Paracoccidioidomycosis, Paragonimiasis, Paralytic Shellfish Poisoning (Paralytic Shellfish Poisoning), Paronychia (Whitlow), Parotitis, PCP pneumonia, Pediculosis, Peliosis hepatica, Pelvic Inflammatory Disease, Pertussis (also called Whooping cough), Phaeohyphomycosis, Pharyngoconjunctival fever, Piedra (White Piedra), Piedra(Black Piedra), Pigbel, Pink eye conjunctivitis, Pinta, Pinworm infection, Pitted Keratolysis, Pityriasis versicolor (Tinea versicolor), Plague; Bubonic, Pleurodynia, Pneumococcal Disease, Pneumocystosis, Pneumonia, Pneumonic (Plague), Polio or Poliomyelitis, Polycystic hydatid, Pontiac fever, Pork tapeworm, Posada-Wernicke disease, Postanginal septicemia, Powassan, Progressive multifocal leukoencephalopathy, Progressive Rubella Panencephalitis, Prostatitis, Pseudomembranous colitis, Psittacosis, Puerperal fever, Pustular Rash diseases (Small pox), Pyelonephritis, Pylephlebitis, Q-Fever, Quinsy, Quintana fever (5-day fever), Rabbit fever, Rabies, Racoon roundworm infection, Rat bite fever, Rat tapeworm, Reiter Syndrome, Relapsing fever, Respiratory syncytial virus (RSV) infection, Rheumatic fever, Rhodotorulosis, Ricin Poisoning, Rickettsialpox, Rickettsiosis, Rift Valley Fever, Ringworm, Ritter's Disease, River Blindness, Rocky Mountain spotted fever, Rose Handler's disease (Sporotrichosis), Rose rash of infants, Roseola, Ross River fever, Rotavirus infection, Roundworm infections, Rubella, Rubeola, Russian spring, Salmonellosis gastroenteritis, San Joaquin Valley fever, Sao Paulo Encephalitis, Sao Paulo fever, SARS, Scabies Infestation (Scabies) (Norwegian itch), Scalded Skin Syndrome, Scarlet fever (Scarlatina), Schistosomiasis, Scombroid, Scrub typhus, Sennetsu fever, Sepsis (Septic shock), Severe Acute Respiratory Syndrome, Severe Acute Respiratory Syndrome (SARS), Shiga Toxigenic Escherichia coli (STEC/VTEC), Shigellosis gastroenteritis (Shigella), Shinbone fever, Shingles, Shipping fever, Siberian tick typhus, Sinusitis, Sixth disease, Slapped cheek disease, Sleeping sickness, Smallpox (Variola), Snail Fever, Soft chancre, Southern tick associated rash illness, Sparganosis, Spelunker's disease, Sporadic typhus, Sporotrichosis, Spotted fever, Spring, St. Louis encephalitis, Staphylococcal Food Poisoning, Staphylococcal Infection, Strep. throat, Streptococcal Disease, Streptococcal Toxic-Shock Syndrome, Strongyloiciasis, Stye, Subacute Sclerosing Panencephalitis, Subacute Sclerosing Panencephalitis (SSPE), Sudden Acute Respiratory Syndrome, Sudden Rash, Swimmer's ear, Swimmer's Itch, Swimming Pool conjunctivitis, Sylvatic yellow fever, Syphilis, Systemic Inflammatory Response Syndrome (SIRS), Tabes dorsalis (tertiary syphilis), Taeniasis, Taiga encephalitis, Tanner's disease, Tapeworm infections, Temporal lobe encephalitis, Temporal lobe encephalitis, tetani (Lock Jaw), Tetanus Infection, Threadworm infections, Thrush, Tick, Tick typhus, Tinea barbae, Tinea capitis, Tinea corporis, Tinea cruris, Tinea manuum, Tinea nigra, Tinea pedis, Tinea unguium, Tinea versicolor, Torulopsosis, Torulosis, Toxic Shock Syndrome, Toxoplasmosis, transmissible spongioform (CJD), Traveler's diarrhea, Trench fever 5, Trichinellosis, Trichomoniasis, Trichomycosis axillaris, Trichuriasis, Tropical Spastic Paraparesis (TSP), Trypanosomiasis, Tuberculosis (TB), Tuberculosis, Tularemia, Typhoid Fever, Typhus fever, Ulcus molle, Undulant fever, Urban yellow fever, Urethritis, Vaginitis, Vaginosis, Vancomycin Intermediate (VISA), Vancomycin Resistant (VRSA), Varicella, Venezuelan Equine encephalitis, Verruga peruana, Vibrio cholerae (Cholera), Vibriosis (Vibrio), Vincent's disease or Trench mouth, Viral conjunctivitis, Viral Meningitis, Viral meningoencephalitis, Viral rash, Visceral Larval Migrans, Vomito negro, Vulvovaginitis, Warts, Waterhouse, Weil's disease, West Nile Fever, Western equine encephalitis, Whipple's disease, Whipworm infection, White Piedra, Whitlow, Whitmore's disease, Winter diarrhea, Wolhynia fever, Wool sorters' disease, Yaws, Yellow Fever, Yersinosis, Yersinosis (Yersinia), Zahorsky's disease, Zika virus disease, Zoster, Zygomycosis, John Cunningham Virus (JCV), Human immunodeficiency virus (HIV), Influenza virus, Hepatitis B, Hepatitis C, Hepatitis D, Respiratory syncytial virus (RSV), Herpes simplex virus 1 and 2, Human Cytomegalovirus, Epstein-Barr virus, Varicella zoster virus, Coronaviruses, Poxviruses, Enterovirus 71, Rubella virus, Human papilloma virus, Streptococcus pneumoniae, Streptococcus viridans, Staphylococcus aureus (S. aureus), Methicillin-resistant Staphylococcus aureus (MRSA), Vancomycin-intermediate Staphylococcus aureus (VISA), Vancomycin-resistant Staphylococcus aureus (VRSA), Staphylococcus epidermidis (S. epidermidis), Clostridium Tetani, Bordetella pertussis, Bordetella paratussis, Mycobacterium, Francisella tularensis, Toxoplasma gondii, Candida (C. albicans, C. glabrata, C. parapsilosis, C. tropicalis, C. krusei and C. lusitaniae) and/or any other infectious diseases, disorders or syndromes.


Various toxins may be treated with pharmaceutical compositions, biocircuits, biocircuit components, effector modules including their SREs or payloads of the present disclosure. Non-limited examples of toxins include Ricin, Bacillus anthracis, Shiga toxin and Shiga-like toxin, Botulinum toxins.


Various tropical diseases may be treated with pharmaceutical compositions, biocircuits, biocircuit components, effector modules including their SREs or payloads of the present disclosure. Non-limited examples of tropical diseases include Chikungunya fever, Dengue fever, Chagas disease, Rabies, Malaria, Ebola virus, Marburg virus, West Nile Virus, Yellow Fever, Japanese encephalitis virus, St. Louis encephalitis virus.


Various foodborne illnesses and gastroenteritis may be treated with pharmaceutical compositions, biocircuits, biocircuit components, effector modules including their SREs or payloads of the present disclosure. Non-limited examples of foodborne illnesses and gastroenteritis include Rotavirus, Norwalk virus (Norovirus), Campylobacter jejuni, Clostridium difficile, Entamoeba histolytica, Helicobacter pylori, Enterotoxin B of Staphylococcus aureus, Hepatitis A virus (HAV), Hepatitis E, Listeria monocytogenes, Salmonella, Clostridium perfringens, and Salmonella.


Various infectious agents may be treated with pharmaceutical compositions, biocircuits, biocircuit components, effector modules including their SREs or payloads of the present disclosure. Non-limited examples of infectious agents include adenoviruses, Anaplasma phagocytophilium, Ascaris lumbricoides, Bacillus anthracis, Bacillus cereus, Bacteroides sp, Barmah Forest virus, Bartonella bacilliformis, Bartonella henselae, Bartonella quintana, beta-toxin of Clostridium perfringens, Bordetella pertussis, Bordetella parapertussis, Borrelia burgdorferi, Borrelia miyamotoi, Borrelia recurrentis, Borrelia sp., Botulinum toxin, Brucella sp., Burkholderia pseudomallei, California encephalitis virus, Campylobacter, Candida albicans, chikungunya virus, Chlamydia psittaci, Chlamydia trachomatis, Clonorchis sinensis, Clostridium difficile bacteria, Clostridium tetani, Colorado tick fever virus, Corynebacterium diphtheriae, Corynebacterium minutissimum, Coxiella burnetii, coxsackie A, coxsackie B, Crimean-Congo hemorrhagic fever virus, cytomegalovirus, dengue virus, Eastern Equine encephalitis virus, Ebola viruses, echovirus, Ehrlichia chaffeensis, Ehrlichia equi, Ehrlichia sp., Entamoeba histolytica, Enterobacter sp., Enterococcus faecalis, Enterovirus 71, Epstein-Barr virus (EBV), Erysipelothrix rhusiopathiae, Escherichia coli, Flavivirus, Fusobacterium necrophorum, Gardnerella vaginalis, Group B streptococcus, Haemophilus aegyptius, Haemophilus ducreyi, Haemophilus influenzae, hantavirus, Helicobacter pylori, Hepatitis A, Hepatitis B, Hepatitis C, Hepatitis D, Hepatitis E, herpes simplex virus 1 and 2-human herpes virus 6, human herpes Virus 8, human immunodeficiency virus 1 and 2, human T-cell leukemia viruses I and II, influenza viruses (A, B, C), Jamestown Canyon virus, Japanese encephalitis antigenic, Japanese encephalitis virus, John Cunninham virus, juninvirus, Kaposi's Sarcoma-associated Herpes Virus (KSHV), Klebsiella granulomatis, Klebsiella sp., Kyasanur Forest Disease virus, La Crosse virus, Lassavirus, Legionella pneumophila, Leptospira interrogans, Listeria monocytogenes, lymphocytic choriomeningitis virus, lyssavirus, Machupovirus, Marburg virus, measles virus, MERS coronavirus (MERS-CoV), Micrococcus sedentarius, Mobiluncus sp., Molluscipoxvirus, Moraxella catarrhalis, Morbilli—Rubeola virus, Mumps virus, Mycobacterium leprae, Mycobacterium tuberculosis, Mycobacterium ulcerans, Mycoplasma genitalium, Mycoplasma sp, Nairovirus, Neisseria gonorrhoeae, Neisseria meningitidis, Nocardia, Norwalk virus, norovirus, Omsk hemorrhagic fever virus, papilloma virus, parainfluenza viruses 1-3, parapoxvirus, parvovirus B19, Peptostreptococccus sp., Plasmodium sp., polioviruses types I, II, and III, Proteus sp., Pseudomonas aeruginosa, Pseudomonas pseudomallei, Pseudomonas sp., rabies virus, respiratory syncytial virus, ricin toxin, Rickettsia australis, Rickettsia conori, Rickettsia honei, Rickettsia prowazekii, Ross River Virus, rotavirus, rubellavirus, Saint Louis encephalitis, Salmonella typhi, Sarcoptes scabiei, SARS-associated coronavirus (SARS-CoV), Serratia sp., Shiga toxin and Shiga-like toxin, Shigella sp., Sin Nombre Virus, Snowshoe hare virus, Staphylococcus aureus, Staphylococcus epidermidis, Streptobacillus moniliformis, Streptococcus pneumoniae, Streptococcus agalactiae, Streptococcus agalactiae, Streptococcus group A-H, Streptococcus pneumoniae, Streptococcus pyogenes, Treponema pallidum subsp. Pallidum, Treponema pallidum var. carateum, Treponema pallidum var. endemicum, Tropheryma whippelii, Ureaplasma urealyticum, Varicella-Zoster virus, variola virus, Vibrio cholerae, West Nile virus, yellow fever virus, Yersinia enterocolitica, Yersinia pestis, and Zika virus.


Various rare diseases may be treated with pharmaceutical compositions, biocircuits, biocircuit components, effector modules including their SREs or payloads of the present disclosure. As used herein, the term “rare disease” refers to any disease that affects a small percentage of the population. As a non-limiting example, the rare disease may be Acrocephalosyndactylia, Acrodermatitis, Addison Disease, Adie Syndrome, Alagille Syndrome, Amylose, Amyotrophic Lateral Sclerosis, Angelman Syndrome, Angiolymphoid Hyperplasia with Eosinophilia, Arnold-Chiari Malformation, Arthritis, Juvenile Rheumatoid, Asperger Syndrome, Bardet-Biedl Syndrome, Barrett Esophagus, Beckwith-Wiedemann Syndrome, Behcet Syndrome, Bloom Syndrome, Bowen's Disease, Brachial Plexus Neuropathies, Brown-Sequard Syndrome, Budd-Chiari Syndrome, Burkitt Lymphoma, Carcinoma 256, Walker, Caroli Disease, Charcot-Marie-Tooth Disease, Chediak-Higashi Syndrome, Chiari-Frommel Syndrome, Chondrodysplasia Punctata, Colonic Pseudo-Obstruction, Colorectal Neoplasms, Hereditary Nonpolyposis, Craniofacial Dysostosis, Creutzfeldt-Jakob Syndrome, Crohn Disease, Cushing Syndrome, Cystic Fibrosis, Dandy-Walker Syndrome, De Lange Syndrome, Dementia, Vascular, Dermatitis Herpetiformis, DiGeorge Syndrome, Diffuse Cerebral Sclerosis of Schilder, Duane Retraction Syndrome, Dupuytren Contracture, Ebstein Anomaly, Eisenmenger Complex, Ellis-Van Creveld Syndrome, Encephalitis, Enchondromatosis, Epidermal Necrolysis, Toxic, Facial Hemiatrophy, Factor XII Deficiency, Fanconi Anemia, Felty's Syndrome, Fibrous Dysplasia, Polyostotic, Fox-Fordyce Disease, Friedreich Ataxia, Fusobacterium, Gardner Syndrome, Gaucher Disease, Gerstmann Syndrome, Giant Lymph Node Hyperplasia, Glycogen Storage Disease Type I, Glycogen Storage Disease Type II, Glycogen Storage Disease Type IV, Glycogen Storage Disease Type V, Glycogen Storage Disease Type VII, Goldenhar Syndrome, Guillain-Barre Syndrome, Hallermann's Syndrome, Hamartoma Syndrome, Multiple, Hartnup Disease, Hepatolenticular Degeneration, Hepatolenticular Degeneration, Hereditary Sensory and Motor Neuropathy, Hirschsprung Disease, Histiocytic Necrotizing Lymphadenitis, Histiocytosis, Langerhans-Cell, Hodgkin Disease, Horner Syndrome, Huntington Disease, Hyperaldosteronism, Hyperhidrosis, Hyperostosis, Diffuse Idiopathic Skeletal, Hypopituitarism, Inappropriate ADH Syndrome, Intestinal Polyps, Isaacs Syndrome, Kartagener Syndrome, Kearns-Sayre Syndrome, Klippel-Feil Syndrome, Klippel-Trenaunay-Weber Syndrome, Kluver-Bucy Syndrome, Korsakoff Syndrome, Lafora Disease, Lambert-Eaton Myasthenic Syndrome, Landau-Kleffner Syndrome, Langer-Giedion Syndrome, Leigh Disease, Lesch-Nyhan Syndrome, Leukodystrophy, Globoid Cell, Li-Fraumeni Syndrome, Long QT Syndrome, Machado-Joseph Disease, Mallory-Weiss Syndrome, Marek Disease, Marfan Syndrome, Meckel Diverticulum, Meige Syndrome, Melkersson-Rosenthal Syndrome, Meniere Disease, Mikulicz's Disease, Miller Fisher Syndrome, Mobius Syndrome, Moyamoya Disease, Mucocutaneous Lymph Node Syndrome, Mucopolysaccharidosis I, Mucopolysaccharidosis II, Mucopolysaccharidosis III, Mucopolysaccharidosis IV, Mucopolysaccharidosis VI, Multiple Endocrine Neoplasia Type 1, Munchausen Syndrome by Proxy, Muscular Atrophy, Spinal, Narcolepsy, Neuroaxonal Dystrophies, Neuromyelitis Optica, Neuronal Ceroid-Lipofuscinoses, Niemann-Pick Diseases, Noonan Syndrome, Optic Atrophies, Hereditary, Osteitis Deformans, Osteochondritis, Osteochondrodysplasias, Osteolysis, Essential, Paget Disease Extramammary, Paget's Disease, Mammary, Panniculitis, Nodular Nonsuppurative, Papillon-Lefevre Disease, Paralysis, Pelizaeus-Merzbacher Disease, Pemphigus, Benign Familial, Penile Induration, Pericarditis, Constrictive, Peroxisomal Disorders, Peutz-Jeghers Syndrome, Pick Disease of the Brain, Pierre Robin Syndrome, Pigmentation Disorders, Pityriasis Lichenoides, Polycystic Ovary Syndrome, Polyendocrinopathies, Autoimmune, Prader-Willi Syndrome, Pupil Disorders, Rett Syndrome, Reye Syndrome, Rubinstein-Taybi Syndrome, Sandhoff Disease, Sarcoma, Ewing's, Schnitzler Syndrome, Sjogren's Syndrome, Sjogren-Larsson Syndrome, Smith-Lemli-Opitz Syndrome, Spinal Muscular Atrophies of Childhood, Sturge-Weber Syndrome, Sweating, Gustatory, Takayasu Arteritis, Tangier Disease, Tay-Sachs Disease, Thromboangiitis Obliterans, Thyroiditis, Autoimmune, Tietze's Syndrome, Togaviridae Infections, Tolosa-Hunt Syndrome, Tourette Syndrome, Uveomeningoencephalitic Syndrome, Waardenburg's Syndrome, Wegener Granulomatosis, Weil Disease, Werner Syndrome, Williams Syndrome, Wilms Tumor, Wolff-Parkinson-White Syndrome, Wolfram Syndrome, Wolman Disease, Zellweger Syndrome, Zollinger-Ellison Syndrome, and von Willebrand Diseases.


Various autoimmune diseases and autoimmune-related diseases may be treated with pharmaceutical compositions, biocircuits, biocircuit components, effector modules including their SREs or payloads of the present disclosure. As used herein, the term “autoimmune disease” refers to a disease in which the body produces antibodies that attack its own tissues. As a non-limiting example, the autoimmune disease may be Acute Disseminated Encephalomyelitis (ADEM), Acute necrotizing hemorrhagic leukoencephalitis, Addison's disease, Agammaglobulinemia, Alopecia areata, Amyloidosis, Ankylosing spondylitis, Anti-GBM/Anti-TBM nephritis, Antiphospholipid syndrome (APS), Autoimmune angioedema, Autoimmune aplastic anemia, Autoimmune dysautonomia, Autoimmune hepatitis, Autoimmune hyperlipidemia, Autoimmune immunodeficiency, Autoimmune inner ear disease (AIED), Autoimmune myocarditis, Autoimmune oophoritis, Autoimmune pancreatitis, Autoimmune retinopathy, Autoimmune thrombocytopenic purpura (ATP), Autoimmune thyroid disease, Autoimmune urticaria, Axonal & neuronal neuropathies, Balo disease, Behcet's disease, Bullous pemphigoid, Cardiomyopathy, Castleman disease, Celiac disease, Chagas disease, Chronic fatigue syndrome, Chronic inflammatory demyelinating polyneuropathy (CIDP), Chronic recurrent multifocal ostomyelitis (CRMO), Churg-Strauss syndrome, Cicatricial pemphigoid/benign mucosal pemphigoid, Crohn's disease, Cogans syndrome, Cold agglutinin disease, Congenital heart block, Coxsackie myocarditis, CREST disease, Essential mixed cryoglobulinemia, Demyelinating neuropathies, Dermatitis herpetiformis, Dermatomyositis, Devic's disease (neuromyelitis optica), Discoid lupus, Dressler's syndrome, Endometriosis, Eosinophilic esophagitis, Eosinophilic fasciitis, Erythema nodosum, Experimental allergic encephalomyelitis, Evans syndrome, Fibromyalgia**, Fibrosing alveolitis, Giant cell arteritis (temporal arteritis), Giant cell myocarditis, Glomerulonephritis, Goodpasture's syndrome, Granulomatosis with Polyangiitis (GPA) (formerly called Wegener's Granulomatosis), Graves' disease, Guillain-Barre syndrome, Hashimoto's encephalitis, Hashimoto's thyroiditis, Hemolytic anemia, Henoch-Schonlein purpura, Herpes gestationis, Hypogammaglobulinemia, Idiopathic thrombocytopenic purpura (ITP), IgA nephropathy, IgG4-related sclerosing disease, Immunoregulatory lipoproteins, Inclusion body myositis, Interstitial cystitis, Juvenile arthritis, Juvenile diabetes (Type 1 diabetes), Juvenile myositis, Kawasaki syndrome, Lambert-Eaton syndrome, Leukocytoclastic vasculitis, Lichen planus, Lichen sclerosis, Ligneous conjunctivitis, Linear IgA disease (LAD), Lupus (SLE), Lyme disease, chronic, Meniere's disease, Microscopic polyangiitis, Mixed connective tissue disease (MCTD), Mooren's ulcer, Mucha-Habermann disease, Multiple sclerosis, Myasthenia gravis, Myositis, Narcolepsy, Neuromyelitis optica (Devic's), Neutropenia, Ocular cicatricial pemphigoid, Optic neuritis, Palindromic rheumatism, PANDAS (Pediatric Autoimmune Neuropsychiatric Disorders Associated with Streptococcus), Paraneoplastic cerebellar degeneration, Paroxysmal nocturnal hemoglobinuria (PNH), Parry Romberg syndrome, Parsonnage-Turner syndrome, Pars planitis (peripheral uveitis), Pemphigus, Peripheral neuropathy, Perivenous encephalomyelitis, Pernicious anemia, POEMS syndrome, Polyarteritis nodosa, Type I, II, & III autoimmune polyglandular syndromes, Polymyalgia rheumatica, Polymyositis, Postmyocardial infarction syndrome, Postpericardiotomy syndrome, Progesterone dermatitis, Primary biliary cirrhosis, Primary sclerosing cholangitis, Psoriasis, Psoriatic arthritis, Idiopathic pulmonary fibrosis, Pyoderma gangrenosum, Pure red cell aplasia, Raynauds phenomenon, Reactive Arthritis, Reflex sympathetic dystrophy, Reiter's syndrome, Relapsing polychondritis, Restless legs syndrome, Retroperitoneal fibrosis, Rheumatic fever, Rheumatoid arthritis, Sarcoidosis, Schmidt syndrome, Scleritis, Scleroderma, Sjogren's syndrome, Sperm & testicular autoimmunity, Stiff person syndrome, Subacute bacterial endocarditis (SBE), Susac's syndrome, Sympathetic ophthalmia, Takayasu's arteritis, Temporal arteritis/Giant cell arteritis, Thrombocytopenic purpura (TTP), Tolosa-Hunt syndrome, Transverse myelitis, Ulcerative colitis, Undifferentiated connective tissue disease (UCTD), Uveitis, Vasculitis, Vesiculobullous dermatosis, Vitiligo, and Wegener's granulomatosis (now termed Granulomatosis with Polyangiitis (GPA).


Various kidney diseases may be treated with pharmaceutical compositions, biocircuits, biocircuit components, effector modules including their SREs or payloads of the present disclosure. As a non-limiting example, the kidney disease Abderhalden-Kaufmann-Lignac syndrome (Nephropathic Cystinosis), Abdominal Compartment Syndrome, Acute Kidney Failure/Acute Kidney Injury, Acute Lobar Nephronia, Acute Phosphate Nephropathy, Acute Tubular Necrosis, Adenine Phosphoribosyltransferase Deficiency, Adenovirus Nephritis, Alport Syndrome, Amyloidosis, ANCA Vasculitis Related to Endocarditis and Other Infections, Angiomyolipoma, Analgesic Nephropathy, Anorexia Nervosa and Kidney Disease, Angiotensin Antibodies and Focal Segmental Glomerulosclerosis, Antiphospholipid Syndrome, Anti-TNF-α Therapy-related Glomerulonephritis, APOL1 Mutations, Apparent Mineralocorticoid Excess Syndrome, Aristolochic Acid Nephropathy, Chinese Herbal Nephropathy, Balkan Endemic Nephropathy, Bartter Syndrome, Beeturia, βThalassemia Renal Disease, Bile Cast Nephropathy, BK Polyoma Virus Nephropathy in the Native Kidney, Bladder Rupture, Bladder Sphincter Dyssynergia, Bladder Tamponade, Border-Crossers' Nephropathy, Bourbon Virus and Acute Kidney Injury, Burnt Sugarcane Harvesting and Acute Renal Dysfunction, Byetta and Renal Failure, C1q Nephropathy, Cannabinoid Hyperemesis Acute Renal Failure, Cardiorenal syndrome, Carfilzomib-Indiced Renal Injury, CFHR5 nephropathy, Charcot-Marie-Tooth Disease with Glomerulopathy, Cherry Concentrate and Acute Kidney Injury, Cholesterol Emboli, Churg-Strauss syndrome, Chyluria, Colistin Nephrotoxicity, Collagenofibrotic Glomerulopathy, Collapsing Glomerulopathy, Collapsing Glomerulopathy Related to CMV, Congenital Nephrotic Syndrome, Conorenal syndrome (Mainzer-Saldino Syndrome or Saldino-Mainzer Disease), Contrast Nephropathy, Copper Sulfate Intoxication, Cortical Necrosis, Crizotinib-related Acute Kidney Injury, Cryoglobuinemia, Crystalglobulin-Induced Nephropathy, Crystal-Induced Acute Kidney injury, Cystic Kidney Disease, Acquired, Cystinuria, Dasatinib-Induced Nephrotic-Range Proteinuria, Dense Deposit Disease (MPGN Type 2), Dent Disease (X-linked Recessive Nephrolithiasis), Dialysis Disequilibrium Syndrome, Diabetes and Diabetic Kidney Disease, Diabetes Insipidus, Dietary Supplements and Renal Failure, Drugs of Abuse and Kidney Disease, Duplicated Ureter, EAST syndrome, Ebola and the Kidney, Ectopic Kidney, Ectopic Ureter, Edema, Swelling, Erdheim-Chester Disease, Fabry's Disease, Familial Hypocalciuric Hypercalcemia, Fanconi Syndrome, Fraser syndrome, Fibronectin Glomerulopathy, Fibrillary Glomerulonephritis and Immunotactoid Glomerulopathy, Fraley syndrome, Focal Segmental Glomerulosclerosis, Focal Sclerosis, Focal Glomerulosclerosis, Galloway Mowat syndrome, Giant Cell (Temporal) Arteritis with Kidney Involvement, Gestational Hypertension, Gitelman Syndrome, Glomerular Diseases, Glomerular Tubular Reflux, Glycosuria, Goodpasture Syndrome, Hair Dye Ingestion and Acute Kidney Injury, Hantavirus Infection Podocytopathy, Hematuria (Blood in Urine), Hemolytic Uremic Syndrome (HUS), Atypical Hemolytic Uremic Syndrome (aHUS), Hemophagocytic Syndrome, Hemorrhagic Cystitis, Hemorrhagic Fever with Renal Syndrome (HFRS, Hantavirus Renal Disease, Korean Hemorrhagic Fever, Epidemic Hemorrhagic Fever, Nephropathis Epidemica), Hemosiderosis related to Paroxysmal Nocturnal Hemoglobinuria and Hemolytic Anemia, Hepatic Glomerulopathy, Hepatic Veno-Occlusive Disease, Sinusoidal Obstruction Syndrome, Hepatitis C-Associated Renal Disease, Hepatorenal Syndrome, Herbal Supplements and Kidney Disease, High Blood Pressure and Kidney Disease, HIV-Associated Nephropathy (HIVAN), Horseshoe Kidney (Renal Fusion), Hunner's Ulcer, Hyperaldosteronism, Hypercalcemia, Hyperkalemia, Hypermagnesemia, Hypernatremia, Hyperoxaluria, Hyperphosphatemia, Hypocalcemia, Hypokalemia, Hypokalemia-induced renal dysfunction, Hypokalemic Periodic Paralysis, Hypomagnesemia, Hyponatremia, Hypophosphatemia, IgA Nephropathy, IgG4 Nephropathy, Interstitial Cystitis, Painful Bladder Syndrome (Questionnaire), Interstitial Nephritis, Ivemark's syndrome, Ketamine-Associated Bladder Dysfunction, Kidney Stones, Nephrolithiasis, Kombucha Tea Toxicity, Lead Nephropathy and Lead-Related Nephrotoxicity, Leptospirosis Renal Disease, Light Chain Deposition Disease, Monoclonal Immunoglobulin Deposition Disease, Liddle Syndrome, Lightwood-Albright Syndrome, Lipoprotein Glomerulopathy, Lithium Nephrotoxicity, LMX1B Mutations Cause Hereditary FSGS, Loin Pain Hematuria, Lupus, Systemic Lupus Erythematosis, Lupus Kidney Disease, Lupus Nephritis, Lupus Nephritis with Antineutrophil Cytoplasmic Antibody Seropositivity, Lyme Disease-Associated Glomerulonephritis, Malarial Nephropathy, Malignancy-Associated Renal Disease, Malignant Hypertension, Malakoplakia, Meatal Stenosis, Medullary Cystic Kidney Disease, Medullary Sponge Kidney, Megaureter, Melamine Toxicity and the Kidney, Membranoproliferative Glomerulonephritis, Membranous Nephropathy, MesoAmerican Nephropathy, Metabolic Acidosis, Metabolic Alkalosis, Methotrexate-related Renal Failure, Microscopic Polyangiitis, Milk-alkalai syndrome, Minimal Change Disease, MDMA (Molly; Ecstacy; 3,4-Methylenedioxymethamphetamine) and Kidney Failure, Multicystic dysplastic kidney, Multiple Myeloma, Myeloproliferative Neoplasms and Glomerulopathy, Nail-patella Syndrome, Nephrocalcinosis, Nephrogenic Systemic Fibrosis, Nephroptosis (Floating Kidney, Renal Ptosis), Nephrotic Syndrome, Neurogenic Bladder, Nodular Glomerulosclerosis, Non-Gonococcal Urethritis, Nutcracker syndrome, Orofaciodigital Syndrome, Orotic Aciduria, Orthostatic Hypotension, Orthostatic Proteinuria, Osmotic Diuresis, Ovarian Hyperstimulation Syndrome, Page Kidney, Papillary Necrosis, Papillorenal Syndrome (Renal-Coloboma Syndrome, Isolated Renal Hypoplasia), Parvovirus B19 and the Kidney, The Peritoneal-Renal Syndrome, Posterior Urethral Valve, Post-infectious Glomerulonephritis, Post-streptococcal Glomerulonephritis, Polyarteritis Nodosa, Polycystic Kidney Disease, Posterior Urethral Valves, Preeclampsia, Propofol infusion syndrome, Proliferative Glomerulonephritis with Monoclonal IgG Deposits (Nasr Disease), Propolis (Honeybee Resin) Related Renal Failure, Proteinuria (Protein in Urine), Pseudohyperaldosteronism, Pseudohypobicarbonatemia, Pseudohypoparathyroidism, Pulmonary-Renal Syndrome, Pyelonephritis (Kidney Infection), Pyonephrosis, Radiation Nephropathy, Ranolazine and the Kidney, Refeeding syndrome, Reflux Nephropathy, Rapidly Progressive Glomerulonephritis, Renal Abscess, Perinephric Abscess, Renal Agenesis, Renal Arcuate Vein Microthrombi-Associated Acute Kidney Injury, Renal Artery Aneurysm, Renal Artery Stenosis, Renal Cell Cancer, Renal Cyst, Renal Hypouricemia with Exercise-induced Acute Renal Failure, Renal Infarction, Renal Osteodystrophy, Renal Tubular Acidosis, Renin Secreting Tumors (Juxtaglomerular Cell Tumor), Reset Osmostat, Retrocaval Ureter, Retroperitoneal Fibrosis, Rhabdomyolysis, Rhabdomyolysis related to Bariatric Surgery, Rheumatoid Arthritis-Associated Renal Disease, Sarcoidosis Renal Disease, Salt Wasting, Renal and Cerebral, Schistosomiasis and Glomerular Disease, Schimke immuno-osseous dysplasia, Scleroderma Renal Crisis, Serpentine Fibula-Polycystic Kidney Syndrome, Exner Syndrome, Sickle Cell Nephropathy, Silica Exposure and Chronic Kidney Disease, Sri Lankan Farmers' Kidney Disease, Sjögren's Syndrome and Renal Disease, Synthetic Cannabinoid Use and Acute Kidney Injury, Kidney Disease Following Hematopoietic Cell Transplantation, Kidney Disease Related to Stem Cell Transplantation, Thin Basement Membrane Disease, Benign Familial Hematuria, Trigonitis, Tuberculosis, Genitourinary, Tuberous Sclerosis, Tubular Dysgenesis, Immune Complex Tubulointerstitial Nephritis Due to Autoantibodies to the Proximal Tubule Brush Border, Tumor Lysis Syndrome, Uremia, Uremic Optic Neuropathy, Ureteritis Cystica, Ureterocele, Urethral Caruncle, Urethral Stricture, Urinary Incontinence, Urinary Tract Infection, Urinary Tract Obstruction, Vesicointestinal Fistula, Vesicoureteral Reflux, Volatile Anesthetics and Acute Kidney Injury, Von Hippel-Lindau Disease, Waldenstrom's Macroglobulinemic Glomerulonephritis, Warfarin-Related Nephropathy, Wasp Stings and Acute Kidney Injury, Wegener's Granulomatosis, Granulomatosis with Polyangiitis, West Nile Virus and Chronic Kidney Disease, and Wunderlich syndrome.


Various cardiovascular diseases may be treated with pharmaceutical compositions, biocircuits, biocircuit components, effector modules including their SREs or payloads of the present disclosure. As a non-limiting example, the cardiovascular disease may be Ischemic heart disease also known as coronary artery disease, Cerebrovascular disease (Stroke), Peripheral vascular disease, Heart failure, Rheumatic heart disease, and Congenital heart disease.


Various antibody deficiencies may be treated with pharmaceutical compositions, biocircuits, biocircuit components, effector modules including their SREs or payloads of the present disclosure. As a non-limiting example, the antibody deficiencies may be X-Linked Agammaglobulinemia (XLA), Autosomal Recessive Agammaglobulinemia (ARA), Common Variable Immune Deficiency (CVID), IgG (IgG1, IgG2, IgG3 and IgG4) Subclass Deficiency, Selective IgA Deficiency, Specific Antibody Deficiency (SAD), Transient Hypogammaglobulinemia of Infancy, Antibody Deficiency with Normal or Elevated Immunoglobulins, Selective IgM Deficiency, Immunodeficiency with Thymoma (Good's Syndrome), Transcobalamin II Deficiency, Warts, Hypogammaglobulinemia, Infection, Myelokathexis (WHIM) Syndrome, Drug-Induced Antibody Deficiency, Kappa Chain Deficiency, Heavy Chain Deficiencies, Post-Meiotic Segregation (PMS2) Disorder, and Unspecified Hypogammaglobulinemia.


Various ocular diseases may be treated with pharmaceutical compositions, biocircuits, biocircuit components, effector modules including their SREs or payloads of the present disclosure. As a non-limiting example, the ocular disease may be thyroid eye disease (TED), Graves' disease (GD) and orbitopathy, Retina Degeneration, Cataract, optic atrophy, macular degeneration, Leber congenital amaurosis, retinal degeneration, cone-rod dystrophy, Usher syndrome, leopard syndrome, photophobia, and photoaversion.


Various neurological diseases may be treated with pharmaceutical compositions, biocircuits, biocircuit components, effector modules including their SREs or payloads of the present disclosure. As a non-limiting example, the neurological disease may be Absence of the Septum Pellucidum, Acid Lipase Disease, Acid Maltase Deficiency, Acquired Epileptiform Aphasia, Acute Disseminated Encephalomyelitis, Attention Deficit-Hyperactivity Disorder (ADHD), Adie's Pupil, Adie's Syndrome, Adrenoleukodystrophy, Agenesis of the Corpus Callosum, Agnosia, Aicardi Syndrome, Aicardi-Goutieres Syndrome Disorder, AIDS—Neurological Complications, Alexander Disease, Alpers' Disease, Alternating Hemiplegia, Alzheimer's Disease, Amyotrophic Lateral Sclerosis (ALS), Anencephaly, Aneurysm, Angelman Syndrome, Angiomatosis, Anoxia, Antiphospholipid Syndrome, Aphasia, Apraxia, Arachnoid Cysts, Arachnoiditis, Arnold-Chiari Malformation, Arteriovenous Malformation, Asperger Syndrome, Ataxia, Ataxia Telangiectasia, Ataxias and Cerebellar or Spinocerebellar Degeneration, Atrial Fibrillation and Stroke, Attention Deficit-Hyperactivity Disorder, Autism Spectrum Disorder, Autonomic Dysfunction, Back Pain, Barth Syndrome, Batten Disease, Becker's Myotonia, Behcet's Disease, Bell's Palsy, Benign Essential Blepharospasm, Benign Focal Amyotrophy, Benign Intracranial Hypertension, Bernhardt-Roth Syndrome, Binswanger's Disease, Blepharospasm, Bloch-Sulzberger Syndrome, Brachial Plexus Birth Injuries, Brachial Plexus Injuries, Bradbury-Eggleston Syndrome, Brain and Spinal Tumors, Brain Aneurysm, Brain Injury, Brown-Sequard Syndrome, Bulbospinal Muscular Atrophy, Cerebral Autosomal Dominant Arteriopathy with Sub-cortical Infarcts and Leukoencephalopathy (CADASIL), Canavan Disease, Carpal Tunnel Syndrome, Causalgia, Cavernomas, Cavernous Angioma, Cavernous Malformation, Central Cervical Cord Syndrome, Central Cord Syndrome, Central Pain Syndrome, Central Pontine Myelinolysis, Cephalic Disorders, Ceramidase Deficiency, Cerebellar Degeneration, Cerebellar Hypoplasia, Cerebral Aneurysms, Cerebral Arteriosclerosis, Cerebral Atrophy, Cerebral Beriberi, Cerebral Cavernous Malformation, Cerebral Gigantism, Cerebral Hypoxia, Cerebral Palsy, Cerebro-Oculo-Facio-Skeletal Syndrome (COFS), Charcot-Marie-Tooth Disease, Chiari Malformation, Cholesterol Ester Storage Disease, Chorea, Choreoacanthocytosis, Chronic Inflammatory Demyelinating Polyneuropathy (CIDP), Chronic Orthostatic Intolerance, Chronic Pain, Cockayne Syndrome Type II, Coffin Lowry Syndrome, Colpocephaly, Coma, Complex Regional Pain Syndrome, Congenital Facial Diplegia, Congenital Myasthenia, Congenital Myopathy, Congenital Vascular Cavernous Malformations, Corticobasal Degeneration, Cranial Arteritis, Craniosynostosis, Cree encephalitis, Creutzfeldt-Jakob Disease, Cumulative Trauma Disorders, Cushing's Syndrome, Cytomegalic Inclusion Body Disease, Cytomegalovirus Infection, Dancing Eyes-Dancing Feet Syndrome, Dandy-Walker Syndrome, Dawson Disease, De Morsier's Syndrome, Dejerine-Klumpke Palsy, Dementia, Dementia—Multi-Infarct, Dementia—Semantic, Dementia—Subcortical, Dementia With Lewy Bodies, Dentate Cerebellar Ataxia, Dentatorubral Atrophy, Dermatomyositis, Developmental Dyspraxia, Devic's Syndrome, Diabetic Neuropathy, Diffuse Sclerosis, Dravet Syndrome, Dysautonomia, Dysgraphia, Dyslexia, Dysphagia, Dyspraxia, Dyssynergia Cerebellaris Myoclonica, Dyssynergia Cerebellaris Progressiva, Dystonias, Early Infantile Epileptic Encephalopathy, Empty Sella Syndrome, Encephalitis, Encephalitis Lethargica, Encephaloceles, Encephalopathy, Encephalopathy (familial infantile), Encephalotrigeminal Angiomatosis, Epilepsy, Epileptic Hemiplegia, Erb's Palsy, Erb-Duchenne and Dejerine-Klumpke Palsies, Essential Tremor, Extrapontine Myelinolysis, Fabry Disease, Fahr's Syndrome, Fainting, Familial Dysautonomia, Familial Hemangioma, Familial Idiopathic Basal Ganglia Calcification, Familial Periodic Paralyses, Familial Spastic Paralysis, Farber's Disease, Febrile Seizures, Fibromuscular Dysplasia, Fisher Syndrome, Floppy Infant Syndrome, Foot Drop, Friedreich's Ataxia, Frontotemporal Dementia, Gaucher Disease, Generalized Gangliosidoses, Gerstmann's Syndrome, Gerstmann-Straussler-Scheinker Disease, Giant Axonal Neuropathy, Giant Cell Arteritis, Giant Cell Inclusion Disease, Globoid Cell Leukodystrophy, Glossopharyngeal Neuralgia, Glycogen Storage Disease, Guillain-Barr-Syndrome, Hallervorden-Spatz Disease, Head Injury, Headache, Hemicrania Continua, Hemifacial Spasm, Hemiplegia Alterans, Hereditary Neuropathies, Hereditary Spastic Paraplegia, Heredopathia Atactica Polyneuritiformis, Herpes Zoster, Herpes Zoster Oticus, Hirayama Syndrome, Holmes-Adie syndrome, Holoprosencephaly, HTLV-1 Associated Myelopathy, Hughes Syndrome, Huntington's Disease, Hydranencephaly, Hydrocephalus, Hydrocephalus—Normal Pressure, Hydromyelia, Hypercortisolism, Hypersomnia, Hypertonia, Hypotonia, Hypoxia, Immune-Mediated Encephalomyelitis, Inclusion Body Myositis, Incontinentia Pigmenti, Infantile Hypotonia, Infantile Neuroaxonal Dystrophy, Infantile Phytanic Acid Storage Disease, Infantile Refsum Disease, Infantile Spasms, Inflammatory Myopathies, Iniencephaly, Intestinal Lipodystrophy, Intracranial Cysts, Intracranial Hypertension, Isaacs' Syndrome, Joubert Syndrome, Kearns-Sayre Syndrome, Kennedy's Disease, Kinsbourne syndrome, Kleine-Levin Syndrome, Klippel-Feil Syndrome, Klippel-Trenaunay Syndrome (KTS), Klüver-Bucy Syndrome, Korsakoff's Amnesic Syndrome, Krabbe Disease, Kugelberg-Welander Disease, Kuru, Lambert-Eaton Myasthenic Syndrome, Landau-Kleffner Syndrome, Lateral Femoral Cutaneous Nerve Entrapment, Lateral Medullary Syndrome, Learning Disabilities, Leigh's Disease, Lennox-Gastaut Syndrome, Lesch-Nyhan Syndrome, Leukodystrophy, Levine-Critchley Syndrome, Lewy Body Dementia, Lipid Storage Diseases, Lipoid Proteinosis, Lissencephaly, Locked-In Syndrome, Lou Gehrig's Disease, Lupus—Neurological Sequelae, Lyme Disease—Neurological Complications, Machado-Joseph Disease, Macrocephaly, Megalocephaly, Melkersson-Rosenthal Syndrome, Meningitis, Meningitis and Encephalitis, Menkes Disease, Meralgia Paresthetica, Metachromatic Leukodystrophy, Microcephaly, Migraine, Miller Fisher Syndrome, Mini Stroke, Mitochondrial Myopathy, Moebius Syndrome, Monomelic Amyotrophy, Motor Neuron Diseases, Moyamoya Disease, Mucolipidoses, Mucopolysaccharidosis, Multi-Infarct Dementia, Multifocal Motor Neuropathy, Multiple Sclerosis, Multiple System Atrophy, Multiple System Atrophy with Orthostatic Hypotension, Muscular Dystrophy, Myasthenia—Congenital, Myasthenia Gravis, Myelinoclastic Diffuse Sclerosis, Myoclonic Encephalopathy of Infants, Myoclonus, Myopathy, Myopathy—Congenital, Myopathy—Thyrotoxic, Myotonia, Myotonia Congenita, Narcolepsy, Neuroacanthocytosis, Neurodegeneration with Brain Iron Accumulation, Neurofibromatosis, Neuroleptic Malignant Syndrome, Neurological Complications of AIDS, Neurological Complications of Lyme Disease, Neurological Consequences of Cytomegalovirus Infection, Neurological Manifestations of Pompe Disease, Neurological Sequelae Of Lupus, Neuromyelitis Optica, Neuromyotonia, Neuronal Ceroid Lipofuscinosis, Neuronal Migration Disorders, Neuropathy—Hereditary, Neurosarcoidosis, Neurosyphilis, Neurotoxicity, Nevus Cavernosus, Niemann-Pick Disease, O'Sullivan-McLeod Syndrome, Occipital Neuralgia, Ohtahara Syndrome, Olivopontocerebellar Atrophy, Opsoclonus Myoclonus, Orthostatic Hypotension, Overuse Syndrome, Pain—Chronic, Pantothenate Kinase-Associated Neurodegeneration, Paraneoplastic Syndromes, Paresthesia, Parkinson's Disease, Paroxysmal Choreoathetosis, Paroxysmal Hemicrania, Parry-Romberg, Pelizaeus-Merzbacher Disease, Pena Shokeir II Syndrome, Perineural Cysts, Periodic Paralyses, Peripheral Neuropathy, Periventricular Leukomalacia, Persistent Vegetative State, Pervasive Developmental Disorders, Phytanic Acid Storage Disease, Pick's Disease, Pinched Nerve, Piriformis Syndrome, Pituitary Tumors, Polymyositis, Pompe Disease, Porencephaly, Post-Polio Syndrome, Postherpetic Neuralgia, Post infectious Encephalomyelitis, Postural Hypotension, Postural Orthostatic Tachycardia Syndrome, Postural Tachycardia Syndrome, Primary Dentatum Atrophy, Primary Lateral Sclerosis, Primary Progressive Aphasia, Prion Diseases, Progressive Hemifacial Atrophy, Progressive Locomotor Ataxia, Progressive Multifocal Leukoencephalopathy, Progressive Sclerosing Poliodystrophy, Progressive Supranuclear Palsy, Prosopagnosia, Pseudo-Torch syndrome, Pseudotoxoplasmosis syndrome, Pseudotumor Cerebri, Psychogenic Movement, Ramsay Hunt Syndrome I, Ramsay Hunt Syndrome II, Rasmussen's Encephalitis, Reflex Sympathetic Dystrophy Syndrome, Refsum Disease, Refsum Disease—Infantile, Repetitive Motion Disorders, Repetitive Stress Injuries, Restless Legs Syndrome, Retrovirus-Associated Myelopathy, Rett Syndrome, Reye's Syndrome, Rheumatic Encephalitis, Riley-Day Syndrome, Sacral Nerve Root Cysts, Saint Vitus Dance, Salivary Gland Disease, Sandhoff Disease, Schilder's Disease, Schizencephaly, Seitelberger Disease, Seizure Disorder, Semantic Dementia, Septo-Optic Dysplasia, Severe Myoclonic Epilepsy of Infancy (SMEI), Shaken Baby Syndrome, Shingles, Shy-Drager Syndrome, Sjögren's Syndrome, Sleep Apnea, Sleeping Sickness, Sotos Syndrome, Spasticity, Spina Bifida, Spinal Cord Infarction, Spinal Cord Injury, Spinal Cord Tumors, Spinal Muscular Atrophy, Spinocerebellar Atrophy, Spinocerebellar Degeneration, Steele-Richardson-Olszewski Syndrome, Stiff-Person Syndrome, Striatonigral Degeneration, Stroke, Sturge-Weber Syndrome, Subacute Sclerosing Panencephalitis, Subcortical Arteriosclerotic Encephalopathy, Short-lasting, Unilateral, Neuralgiform (SUNCT) Headache, Swallowing Disorders, Sydenham Chorea, Syncope, Syphilitic Spinal Sclerosis, Syringohydromyelia, Syringomyelia, Systemic Lupus Erythematosus, Tabes Dorsalis, Tardive Dyskinesia, Tarlov Cysts, Tay-Sachs Disease, Temporal Arteritis, Tethered Spinal Cord Syndrome, Thomsen's Myotonia, Thoracic Outlet Syndrome, Thyrotoxic Myopathy, Tic Douloureux, Todd's Paralysis, Tourette Syndrome, Transient Ischemic Attack, Transmissible Spongiform Encephalopathies, Transverse Myelitis, Traumatic Brain Injury, Tremor, Trigeminal Neuralgia, Tropical Spastic Paraparesis, Troyer Syndrome, Tuberous Sclerosis, Vascular Erectile Tumor, Vasculitis Syndromes of the Central and Peripheral Nervous Systems, Von Economo's Disease, Von Hippel-Lindau Disease (VHL), Von Recklinghausen's Disease, Wallenberg's Syndrome, Werdnig-Hoffman Disease, Wernicke-Korsakoff Syndrome, West Syndrome, Whiplash, Whipple's Disease, Williams Syndrome, Wilson Disease, Wolman's Disease, X-Linked Spinal and Bulbar Muscular Atrophy.


Various psychological disorders may be treated with pharmaceutical compositions, biocircuits, biocircuit components, effector modules including their SREs or payloads of the present disclosure. As a non-limiting example, the psychological disorders may be Aboulia, Absence epilepsy, Acute stress Disorder, Adjustment Disorders, Adverse effects of medication NOS, Age related cognitive decline, Agoraphobia, Alcohol Addiction, Alzheimer's Disease, Amnesia (also known as Amnestic Disorder), Amphetamine Addiction, Anorexia Nervosa, Anterograde amnesia, Antisocial personality disorder (also known as Sociopathy), Anxiety Disorder (Also known as Generalized Anxiety Disorder), Anxiolytic related disorders, Asperger's Syndrome (now part of Autism Spectrum Disorder), Attention Deficit Disorder (Also known as ADD), Attention Deficit Hyperactivity Disorder (Also known as ADHD), Autism Spectrum Disorder (also known as Autism), Autophagia, Avoidant Personality Disorder, Barbiturate related disorders, Benzodiazepine related disorders, Bereavement, Bibliomania, Binge Eating Disorder, Bipolar disorder (also known as Manic Depression, includes Bipolar I and Bipolar II), Body Dysmorphic Disorder, Borderline intellectual functioning, Borderline Personality Disorder, Breathing-Related Sleep Disorder, Brief Psychotic Disorder, Bruxism, Bulimia Nervosa, Caffeine Addiction, Cannabis Addiction, Catatonic disorder, Catatonic schizophrenia, Childhood amnesia, Childhood Disintegrative Disorder (now part of Autism Spectrum Disorder), Childhood Onset Fluency Disorder (formerly known as Stuttering), Circadian Rhythm Disorders, Claustrophobia, Cocaine related disorders, Communication disorder, Conduct Disorder, Conversion Disorder, Cotard delusion, Cyclothymia (also known as Cyclothymic Disorder), Delerium, Delusional Disorder, dementia, Dependent Personality Disorder (also known as Asthenic Personality Disorder), Depersonalization disorder (now known as Depersonalization/Derealization Disorder), Depression (also known as Major Depressive Disorder), Depressive personality disorder, Derealization disorder (now known as Depersonalization/Derealization Disorder), Dermotillomania, Desynchronosis, Developmental coordination disorder, Diogenes Syndrome, Disorder of written expression, Dispareunia, Dissocial Personality Disorder, Dissociative Amnesia, Dissociative Fugue, Dissociative Identity Disorder (formerly known as Multiple Personality Disorder), Down syndrome, Dyslexia, Dyspareunia, Dysthymia (now known as Persistent Depressive Disorder), Eating disorder NOS, Ekbom's Syndrome (Delusional Parasitosis), Emotionally unstable personality disorder, Encopresis, Enuresis (bedwetting), Erotomania, Exhibitionistic Disorder, Expressive language disorder, Factitious Disorder, Female Sexual Disorders, Fetishistic Disorder, Folie à deux, Fregoli delusion, Frotteuristic Disorder, Fugue State, Ganser syndrome, Gambling Addiction, Gender Dysphoria (formerly known as Gender Identity Disorder), Generalized Anxiety Disorder, General adaptation syndrome, Grandiose delusions, Hallucinogen Addiction, Haltlose personality disorder, Histrionic Personality Disorder, Primary hypersomnia, Huntington's Disease, Hypoactive sexual desire disorder, Hypochondriasis, Hypomania, Hyperkinetic syndrome, Hypersomnia, Hysteria, Impulse control disorder, Impulse control disorder NOS, Inhalant Addiction, Insomnia, Intellectual Development Disorder, Intermittent Explosive Disorder, Joubert syndrome, Kleptomania, Korsakoff's syndrome, Lacunar amnesia, Language Disorder, Learning Disorders, Major Depression (also known as Major Depressive Disorder), major depressive disorder, Male Sexual Disorders, Malingering, Mathematics disorder, Medication-related disorder, Melancholia, Mental Retardation (now known as Intellectual Development Disorder), Misophonia, Morbid jealousy, Multiple Personality Disorder (now known as Dissociative Identity Disorder), Munchausen Syndrome, Munchausen by Proxy, Narcissistic Personality Disorder, Narcolepsy, Neglect of child, Neurocognitive Disorder (formerly known as Dementia), Neuroleptic-related disorder, Nightmare Disorder, Non Rapid Eye Movement, Obsessive-Compulsive Disorder, Obsessive-Compulsive Personality Disorder (also known as Anankastic Personality Disorder), Oneirophrenia, Onychophagia, Opioid Addiction, Oppositional Defiant Disorder, Orthorexia (ON), Pain disorder, Panic attacks, Panic Disorder, Paranoid Personality Disorder, Parkinson's Disease, Partner relational problem, Passive-aggressive personality disorder, Pathological gambling, Pedophilic Disorder, Perfectionism, Persecutory delusion, Persistent Depressive Disorder (also known as Dysthymia), Personality change due to a general medical condition, Personality disorder, Pervasive developmental disorder (PDD), Phencyclidine related disorder, Phobic disorder, Phonological disorder, Physical abuse, Pica, Polysubstance related disorder, Postpartum Depression, Post-traumatic embitterment disorder (PTED), Post-Traumatic Stress Disorder, Premature ejaculation, Premenstrual Dysphoric Disorder, Psychogenic amnesia, Psychological factor affecting medical condition, Psychoneurotic personality disorder, Psychotic disorder, not otherwise specified, Pyromania, Reactive Attachment Disorder, Reading disorder, Recurrent brief depression, Relational disorder, REM Sleep Behavior Disorder, Restless Leg Syndrome, Retrograde amnesia, Retts Disorder (now part of Autism Spectrum Disorder), Rumination syndrome, Sadistic personality disorder, Schizoaffective Disorder, Schizoid Personality Disorder, Schizophrenia, Schizophreniform disorder, Schizotypal Personality Disorder, Seasonal Affective Disorder, Sedative, Hypnotic, or Anxiolytic Addiction, Selective Mutism, Self-defeating personality disorder, Separation Anxiety Disorder, Sexual Disorders Female, Sexual Disorders Male, Sexual Addiction, Sexual Masochism Disorder, Sexual Sadism Disorder, Shared Psychotic Disorder, Sleep Arousal Disorders, Sleep Paralysis, Sleep Terror Disorder (now part of Nightmare Disorder, Social Anxiety Disorder, Somatization Disorder, Specific Phobias, Stendhal syndrome, Stereotypic movement disorder, Stimulant Addiction, Stuttering (now known as Childhood Onset Fluency Disorder), Substance related disorder, Tardive dyskinesia, Tobacco Addiction, Tourettes Syndrome, Transient tic disorder, Transient global amnesia, Transvestic Disorder, Trichotillomania, Undifferentiated Somatoform Disorder, Vaginismus, and Voyeuristic Disorder.


Various lung diseases may be treated with pharmaceutical compositions, biocircuits, biocircuit components, effector modules including their SREs or payloads of the present disclosure. As a non-limiting example, the lung diseases may be Asbestosis, Asthma, Bronchiectasis, Bronchitis, Chronic Cough, Chronic Obstructive Pulmonary Disease (COPD), Croup, Cystic Fibrosis, Hantavirus, Idiopathic Pulmonary Fibrosis, Pertussis, Pleurisy, Pneumonia, Pulmonary Embolism, Pulmonary Hypertension, Sarcoidosis, Sleep Apnea, Spirometry, Sudden Infant Death Syndrome (SIDS), Tuberculosis, Alagille Syndrome, Autoimmune Hepatitis, Mai)/Atresia, Cirrhosis, ERCP (Endoscopic Retrograde Cholangiopancreatography), and Hemochromatosis. Nonalcoholic Steatohepatitis, Porphyria, Primary Mai)/Cirrhosis, Primary Sclerosing Cholangitis.


Various bone diseases may be treated with pharmaceutical compositions, biocircuits, biocircuit components, effector modules including their SREs or payloads of the present disclosure. As a non-limiting example, the bone diseases may be osteoporosis, neurofibromatosis, osteogenesis imperfecta (OI), rickets, osteosarcoma, achondroplasia, fracture, osteomyelitis, Ewing tumor of bone, osteomalacia, hip dysplasia, Paget disease of bone, marble bone disease, osteochondroma, bone cancer, bone disease, osteochondrosis, osteoma, fibrous dysplasia, cleidocranial dysostosis, osteoclastoma, bone cyst, metabolic bone disease, melorheostosis, callus, Caffey syndrome, and mandibulofacial dysostosis.


Various blood diseases may be treated with pharmaceutical compositions, biocircuits, biocircuit components, effector modules including their SREs or payloads of the present disclosure. As a non-limiting example, the blood diseases may be Anemia and CKD (for health care professionals), Aplastic Anemia and Myelodysplastic Syndromes, Deep Vein Thrombosis, Hemochromatosis, Hemophilia, Henoch-Schonlein Purpura, Idiopathic Thrombocytopenic Purpura, Iron-Deficiency Anemia, Pernicious Anemia, Pulmonary Embolism, Sickle Cell Anemia, Sickle Cell Trait and Other Hemoglobinopathies, Thalassemia, Thrombotic Thrombocytopenic Purpura, and Von Willebrand Disease.


In some embodiment, biocircuits of the disclosure may be used for the treatment of infectious diseases. Biocircuits of the disclosure may be introduced in cells suitable for adoptive cell transfer such as macrophages, dendritic cells, natural killer cells, and or T cells. Infectious diseases treated by the biocircuits of the disclosure may be diseases caused by viruses, bacteria, fungi, and/or parasites. IL15-IL15Ra payloads of the disclosure may be used to increase immune cell proliferation and/or persistence of the immune cells useful in treating infectious diseases.


6. Microbiome

Alterations in the composition of the microbiome may impact the action of anti-cancer therapies. A diverse community of symbiotic, commensal and pathogenic microorganisms exist in all environmentally exposed sites in the body and is herein referred to as the “Microbiome.” Environmentally exposed sites of the body that may be inhabited by a microbiome include the skin, nasopharynx, the oral cavity, respiratory tract, gastrointestinal tract, and the reproductive tract.


In some embodiments, microbiome engineered with the biocircuits of the present disclosure may be used to improve the efficacy of the anti-cancer immunotherapies. Sivan et al., found that mice with Bifidobacterium in their gut microbiome were more responsive to immune check point blockage e.g. anti PD-L1 immunotherapy in subcutaneous melanoma tumor model (Sivan A., et al. Commensal Bifidobacterium promotes antitumor immunity and facilitates anti-PD-L1 efficacy. Science 2015; 350:1084-9; the contents of which are incorporated herein by reference in their entirety). In one embodiment, protein, RNA and/or other biomolecules derived from the microbiome may be used as a payload to influence the efficacy of the anti-cancer immunotherapies. In other embodiments, the microorganisms may be delivered along with immunotherapeutic compositions of the present disclosure to improve the efficacy of immunotherapy.


7. Tools and Agents for Making Therapeutics

Provided in the present disclosure are tools and agents that may be used in generating immunotherapeutics for reducing a tumor volume or burden in a subject in need. A considerable number of variables are involved in producing a therapeutic agent, such as structure of the payload, type of cells, method of gene transfers, method and time of ex vivo expansion, pre-conditioning and the amount and type of tumor burden in the subject. Such parameters may be optimized using tools and agents described herein.


Cell Lines

The present disclosure provides a mammalian cell that has been genetically modified with the compositions of the disclosure. Suitable mammalian cells include primary cells and immortalized cell lines. Suitable mammalian cell lines include, but are not limited to Human embryonic kidney cell line 293, fibroblast cell line NIB 3T3, human colorectal carcinoma cell line HCT116, ovarian carcinoma cell line SKOV-3, immortalized T cell lines Jurkat cells, lymphoma cell line Raji cells, NALM-6 cells, K562 cells, HeLa cells, PC12 cells, HL-60 cells, NK cell lines (e.g. NKL. NK962, and YTS), and the like. In some instances, the cell is not an immortalized cell line, but instead a cell obtained from an individual and is herein referred to as a primary cell. For example, the cell is a T lymphocyte obtained from an individual. Other examples include, but are not limited to cytotoxic cells, stem cells, peripheral blood mononuclear cells or progenitor cells obtained from an individual.


Tracking SREs, Biocircuits and Cell Lines

In some embodiments, it may be desirable to track the compositions of the disclosure or the cells modified by the compositions of the disclosure. Tracking may be achieved by using payloads such as reporter moieties, which, as used herein, refers to any protein capable of creating a detectable signal, in response to an input. Examples include alkaline phosphatase, β-galactosidase, chloramphenicol acetyltransferase, β-glucuronidase, peroxidase, β-lactamase, catalytic antibodies, bioluminescent proteins e.g. luciferase, and fluorescent proteins such as Green fluorescent protein (GFP).


Reporter moieties may be used to monitor the response of the DD upon addition of the ligand corresponding to the DD. In other instances, reporter moieties may be used to track cell survival, persistence, cell growth, and/or localization in vitro, in vivo, or ex vivo.


In some embodiments, the preferred reporter moiety may be luciferase proteins. In one embodiment, the reporter moiety is the Renilla luciferase, or a firefly luciferase.


Animal Models

The utility and efficacy of the compositions of the present disclosure may be tested in vivo animal models, preferably mouse models. Mouse models used to may be syngeneic mouse models wherein mouse cells are modified with compositions of the disclosure and tested in mice of the same genetic background. Examples include pMEL-1 and 4T1 mouse models. Alternatively, xenograft models where human cells such as tumor cells and immune cells are introduced into immunodeficient mice may also be utilized in such studies. Immunodeficient mice used may be CByJ.Cg-Foxn1nu/J, B6; 129S7-Rag1tm1Mom/J, B6.129S7-Rag1tm1Mom/J, B6. CB17-Prkdcscid/SzJ, NOD.129S7(B6)-Rag1tm1Mom/J, NOD.CgRag1tm1MomPrf1tm1Sdz/Sz, NOD.CB17-Prkdcscid/SzJ, NOD.Cg-PrkdcscidB2tm1Unc/J, NOD-scid IL2Rgnull, Nude (nu)mice, SCID mice, NOD mice, RAG1/RAG2 mice, NOD-Scid mice, IL2rgnull mice, b2mnull mice, NOD-scid IL2rγnull mice, NOD-scid-B2mnull mice, and HLA transgenic mice.


Cellular Assays

In some embodiments, the effectiveness of the compositions of the disclosures as immunotherapeutic agents may be evaluated using cellular assays. Levels of expression and/or identity of the compositions of the disclosure may be determined according to any methods known in the art for identifying proteins and/or quantitating proteins levels. In some embodiments, such methods may include Western Blotting, flow cytometry, and immunoprecipitation.


Provided herein are methods for functionally characterizing cells expressing SRE, biocircuits and compositions of the disclosure. In some embodiments, functional characterization is carried out in primary immune cells or immortalized immune cell lines and may be determined by expression of cell surface markers. Examples of cell surface markers for T cells include, but are not limited to, CD3, CD4, CD8, CD 14, CD20, CD11b, CD16, CD45 and HLA-DR, CD 69, CD28, CD44, IFNgamma. Examples of cell surface markers for antigen presenting cells include, but are not limited to, MHC class I, MHC Class II, CD40, CD45, B7-1, B7-2, IFN γ receptor and IL2 receptor, ICAM-1 and/or Fcγ receptor. Examples of cell surface markers for dendritic cells include, but are not limited to, MHC class I, MHC Class II, B7-2, CD18, CD29, CD31, CD43, CD44, CD45, CD54, CD58, CD83, CD86, CMRF-44, CMRF-56, DCIR and/or Dectin-1 and the like; while in some cases also having the absence of CD2, CD3, CD4, CD8, CD14, CD15, CD16, CD 19, CD20, CD56, and/or CD57. Examples of cell surface markers for NK cells include, but are not limited to, CCL3, CCL4, CCLS, Granulysin, Granzyme B, Granzyme K, IL10, IL22, IFNg, LAP, Perforin, and TNFa.


8. Gene Editing

The CRISPR-Cas9 system is a novel genome editing system which has been rapidly developed and implemented in a multitude of model organisms and cell types, and supplants other genome editing technologies, such as TALENs and ZFNs. CRISPRs are sequence motifs are present in bacterial and archaeal genomes, and are composed of short (about 24-48 nucleotide) direct repeats separated by similarly sized, unique spacers (Grissa et al. BMC Bioinformatics 8, 172 (2007). They are generally flanked by a set of CRISPR-associated (Cas) protein-coding genes that are required for CRISPR maintenance and function (Barrangou et al., Science 315, 1709 (2007), Brouns et al., Science 321, 960 (2008), Haft et al. PLoS Comput Biol 1, e60 (2005)). CRISPR-Cas systems provide adaptive immunity against invasive genetic elements (e.g., viruses, phages and plasmids) (Horvath and Barrangou, Science, 2010, 327: 167-170; Bhaya et al., Annu. Rev. Genet., 2011, 45: 273-297; and Brrangou R, RNA, 2013, 4: 267-278). Three different types of CRISPR-Cas systems have been classified in bacteria and the type II CRISPR-Cas system is most studied. In the bacterial Type II CRISPR-Cas system, small CRISPR RNAs (crRNAs) processed from the pre-repeat-spacer transcript (pre-crRNA) in the presence of a trans-activating RNA (tracrRNA)/Cas9 can form a duplex with the tracrRNA/Cas9 complex. The mature complex is recruited to a target double strand DNA sequence that is complementary to the spacer sequence in the tracrRNA: crRNA duplex to cleave the target DNA by Cas9 endonuclease (Garneau et al., Nature, 2010, 468: 67-71; Jinek et al., Science, 2012, 337: 816-821; Gasiunas et al., Proc. Natl Acad. Sci. USA., 109: E2579-2586; and Haurwitz et al., Science, 2010, 329: 1355-1358). Target recognition and cleavage by the crRNA: tracrRNA/Cas9 complex in the type II CRISPR-CAS system not only requires a sequence in the tracrRNA: crRNA duplex that is a complementary to the target sequence (also called “protospacer” sequence) but also requires a protospacer adjacent motif (PAM) sequence located 3′end of the protospacer sequence of a target polynucleotide. The PAM motif can vary between different CRISPR-Cas systems.


CRISPR-Cas9 systems have been developed and modified for use in genetic editing and prove to be a high effective and specific technology for editing a nucleic acid sequence even in eukaryotic cells. Many researchers disclosed various modifications to the bacterial CRISPR-Cas systems and demonstrated that CRISPR-Cas systems can be used to manipulate a nucleic acid in a cell, such as in a mammalian cell and in a plant cell. Representative references include U.S. Pat. Nos. 8,993,233; 8,999,641; 8,945,839; 8,932,814; 8,906, 616; 8,895,308; 8,889,418; 8,889,356; 8,871,445; 8,865,406; 8,771,945; and 8,697,359; US patent publication NOs.: 20150031134; 20150203872; 20150218253; 20150176013; 20150191744; 20150071889; 20150067922; and 20150167000; each of which is incorporated herein by reference in their entirety.


However, controlling the effects and activity of the CRISPR-Cas system (e.g., guide RNA and nuclease) has been challenging and often can be problematic.


The biocircuits of the present disclosure and/or any of their components may be utilized in regulating or tuning the CRISPR/Cas9 system to optimize its utility.


In some embodiments, the payloads of the effector modules of the disclosure may include alternative isoforms or orthologs of the Cas9 enzyme.


The most commonly used Cas9 is derived from Streptococcus pyogenes and the RuvC domain can be inactivated by a D10A mutation and the HNH domain can be inactivated by an H840A mutation.


In addition to Cas9 derived from S. pyogenes, other RNA guided endonucleases (RGEN) may also be used for programmable genome editing. Cas9 sequences have been identified in more than 600 bacterial strains. Though Cas9 family shows high diversity of amino acid sequences and protein sizes, All Cas9 proteins share a common architecture with a central HNH nuclease domain and a split RuvC/RHase H domain Examples of Cas9 orthologs from other bacterial strains including but not limited to, Cas proteins identified in Acaryochloris marina MBIC11017; Acetohalobium arabaticum DSM 5501; Acidithiobacillus caldus; Acidithiobacillus ferrooxidans ATCC 23270; Alicyclobacillus acidocaldarius LAA1; Alicyclobacillus acidocaldarius subsp. acidocaldarius DSM 446; Allochromatium vinosum DSM 180; Ammonifex degensii KC4; Anabaena variabilis ATCC 29413; Arthrospira maxima CS-328; Arthrospira platensis str. Paraca; Arthrospira sp. PCC 8005; Bacillus pseudomycoides DSM 12442; Bacillus selenitireducens MLS10; Burkholderiales bacterium 1_1_47; Caldicelulosiruptor becscii DSM 6725; Candidatus Desulforudis audaxviator MP104C; Caldicellulosiruptor hydrothermalis_108; Clostridium phage c-st; Clostridium botulinum A3 str. Loch Maree; Clostridium botulinum Ba4 str. 657; Clostridium difficile QCD-63q42; Crocosphaera watsonii WH 8501; Cyanothece sp. ATCC 51142; Cyanothece sp. CCY0110; Cyanothece sp. PCC 7424; Cyanothece sp. PCC 7822; Exiguobacterium sibiricum 255-15; Finegoldia magna ATCC 29328; Ktedonobacter racemifer DSM 44963; Lactobacillus delbrueckii subsp. bulgaricus PB2003/044-T3-4; Lactobacillus salivarius ATCC 11741; Listeria innocua; Lyngbya sp. PCC 8106; Marinobacter sp. ELB17; Methanohalobium evestigatum Z-7303; Microcystis phage Ma-LMM01; Microcystis aeruginosa NIES-843; Microscilla marina ATCC 23134; Microcoleus chthonoplastes PCC 7420; Neisseria meningitidis; Nitrosococcus halophilus Nc4; Nocardiopsis dassonvillei subsp. dassonvillei DSM 43111; Nodularia spumigena CCY9414; Nostoc sp. PCC 7120; Oscillatoria sp. PCC 6506; Pelotomaculum thermopropionicum SI; Petrotoga mobilis SJ95; Polaromonas naphthalenivorans CJ2; Polaromonas sp. J5666; Pseudoalteromonas haloplanktis TAC125; Streptomyces pristinaespiralis ATCC 25486; Streptomyces pristinaespiralis ATCC 25486; Streptococcus thermophiles; Streptomyces viridochromogenes DSM 40736; Streptosporangium roseum DSM 43021; Synechococcus sp. PCC 7335; and Thermosipho africanus TCF52B (Chylinski et al., RNA Biol., 2013; 10(5): 726-737).


In addition to Cas9 orthologs, other Cas9 variants such as fusion proteins of inactive dCas9 and effector domains with different functions may be served as a platform for genetic modulation. Any of the foregoing enzymes may be useful in the present disclosure.


9. Stem Cell Applications

The biocircuits of the present disclosure and/or any of their components may be utilized in the regulated reprogramming of cells, stem cell engraftment or other application where controlled or tunable expression of such reprogramming factors are useful.


The biocircuits of the present disclosure may be used in reprogramming cells including stem cells or induced stem cells. Induction of induced pluripotent stem cells (iPSC) was first achieved by Takahashi and Yamanaka (Cell, 2006. 126(4):663-76; herein incorporated by reference in its entirety) using viral vectors to express KLF4, c-MYC, OCT4 and SOX2 otherwise collectively known as KMOS.


Excisable lentiviral and transposon vectors, repeated application of transient plasmid, episomal and adenovirus vectors have also been used to try to derive iPSC (Chang, C.-W., et al., Stem Cells, 2009. 27(5):1042-1049; Kaji, K., et al., Nature, 2009. 458(7239):771-5; Okita, K., et al., Science, 2008. 322(5903):949-53; Stadtfeld, M., et al., Science, 2008. 322(5903):945-9; Woltjen, K., et al., Nature, 2009; Yu, J., et al., Science, 2009:1172482; Fusaki, N., et al., Proc Jpn Acad Ser B Phys Biol Sci, 2009. 85(8):348-62; each of which is herein incorporated by reference in its entirety).


DNA-free methods to generate human iPSC has also been derived using serial protein transduction with recombinant proteins incorporating cell-penetrating peptide moieties (Kim, D., et al., Cell Stem Cell, 2009. 4(6): 472-476; Zhou, H., et al., Cell Stem Cell, 2009. 4(5):381-4; each of which is herein incorporated by reference in its entirety), and infectious transgene delivery using the Sendai virus (Fusaki, N., et al., Proc Jpn Acad Ser B Phys Biol Sci, 2009. 85(8): p. 348-62; herein incorporated by reference in its entirety).


The effector modules of the present disclosure may include a payload comprising any of the genes including, but not limited to, OCT such as OCT4, SOX such as SOX1, SOX2, SOX3, SOX15 and SOX18, NANOG, KLF such as KLF1, KLF2, KLF4 and KLFS, MYC such as c-MYC and n-MYC, REM2, TERT and LIN28 and variants thereof in support of reprogramming cells. Sequences of such reprogramming factors are taught in for example International Application PCT/US2013/074560, the contents of which are incorporated herein by reference in their entirety.


In some embodiments, the payload of the present disclosure may be cardiac lineage specification factors such as eomesodermin (EOMES), a T-box transcription factor; WNT signaling pathway components such as WNT3 and WNT 3A. EOMES is crucially required for the development of the heart. Cardiomyocyte programming by EOMES involves autocrine activation of the canonical WNT signaling pathway and vice versa. Under conditions that are conducive to promoting cardiac lineage, WNT signaling activates EOMES and EOMES in turn promotes WNT signaling creating a self-sustaining loop that promotes the cardiac lineage. An activation loop that is too weak or too strong promotes non-cardiac fates such as endodermal and other mesodermal fates respectively. The DDs of the present disclosure may be used to tune EOMES and WNT payload levels to generate an activation loop that initiate and/or sustain cardiac specification during gastrulation.


VII. Definitions

At various places in the present specification, features or functions of the compositions of the present disclosure are disclosed in groups or in ranges. It is specifically intended that the present disclosure include each and every individual sub-combination of the members of such groups and ranges. The following is a non-limiting list of term definitions.


Activity: As used herein, the term “activity” refers to the condition in which things are happening or being done. Compositions of the disclosure may have activity and this activity may involve one or more biological events. In some embodiments, biological events may include cell signaling events. In some embodiments, biological events may include cell signaling events associated protein interactions with one or more corresponding proteins, receptors, small molecules or any of the biocircuit components described herein.


Adoptive cell therapy (ACT): The terms “Adoptive cell therapy” or “Adoptive cell transfer”, as used herein, refer to a cell therapy involving in the transfer of cells into a patient, wherein cells may have originated from the patient, or from another individual, and are engineered (altered) before being transferred back into the patient. The therapeutic cells may be derived from the immune system, such as Immune effector cells: CD4+ T cell; CD8+ T cell, Natural Killer cell (NK cell); and B cells and tumor infiltrating lymphocytes (TILs) derived from the resected tumors. Most commonly transferred cells are autologous anti-tumor T cells after ex vivo expansion or manipulation. For example, autologous peripheral blood lymphocytes can be genetically engineered to recognize specific tumor antigens by expressing T-cell receptors (TCR) or chimeric antigen receptor (CAR).


Agent: As used herein, the term “agent” refers to a biological, pharmaceutical, or chemical compound. Non-limiting examples include simple or complex organic or inorganic molecule, a peptide, a protein, an oligonucleotide, an antibody, an antibody derivative, antibody fragment, a receptor, and soluble factor.


Agonist: the term “agonist” as used herein, refers to a compound that, in combination with a receptor, can produce a cellular response. An agonist may be a ligand that directly binds to the receptor. Alternatively, an agonist may combine with a receptor indirectly by, for example, (a) forming a complex with another molecule that directly binds to the receptor, or (b) otherwise resulting in the modification of another compound so that the other compound directly binds to the receptor. An agonist may be referred to as an agonist of a particular receptor or family of receptors, e.g., agonist of a co-stimulatory receptor.


Antagonist: the term “antagonist” as used herein refers to any agent that inhibits or reduces the biological activity of the target(s) it binds.


Antigen: the term “antigen” as used herein is defined as a molecule that provokes an immune response when it is introduced into a subject or produced by a subject such as tumor antigens which arise by the cancer development itself. This immune response may involve either antibody production, or the activation of specific immunologically-competent cells such as cytotoxic T lymphocytes and T helper cells, or both. An antigen can be derived from organisms, subunits of proteins/antigens, killed or inactivated whole cells or lysates. In the context of the disclosure, the terms “antigens of interest” or “desired antigens” refers to those proteins and/or other biomolecules provided herein that are immunospecifically bound or interact with antibodies of the present disclosure and/or fragments, mutants, variants, and/or alterations thereof described herein. In some embodiments, antigens of interest may comprise any of the polypeptides or payloads or proteins described herein, or fragments or portions thereof.


Approximately: As used herein, the term “approximately” or “about,” as applied to one or more values of interest, refers to a value that is similar to a stated reference value. In certain embodiments, the term “approximately” or “about” refers to a range of values that fall within 25%, 20%, 19%, 18%, 17%, 16%, 15%, 14%, 13%, 12%, 11%, 10%, 9%, 8%, 7%, 6%, 5%, 4%, 3%, 2%, 1%, or less in either direction (greater than or less than) of the stated reference value unless otherwise stated or otherwise evident from the context (except where such number would exceed 100% of a possible value).


Alkyl: The terms “alkyl”, “alkoxy”, “hydroxyalkyl”, “alkoxyalkyl”, and “alkoxycarbonyl”, as used herein, include both straight and branched chains containing one to twelve carbon atoms, and/or which may or may not be substituted.


Alkenyl: The terms “alkenyl” and “alkynyl” as used herein alone or as part of a larger moiety shall include both straight and branched chains containing two to twelve carbon atoms.


Aryl: The term “aryl” as used herein alone or as part of a larger moiety as in “aralkyl”, “aralkoxy”, or “aryloxyalkyl”, refers to monocyclic, bicyclic and tricyclic carbocyclic ring systems having a total of five to fourteen ring members, wherein at least one ring is aromatic and wherein each ring in the system contains 3 to 8 ring members. The term “aryl” may be used interchangeably with the term “aryl ring.”


Aromatic: The term “aromatic” as used herein, refers to an unsaturated hydrocarbon ring structure with delocalized pi electrons. As used herein “aromatic” may refer to monocyclic, bicyclic or polycyclic aromatic compounds.


Aliphatic: The term “aliphatic” or “aliphatic group” as used herein, refers to a straight or branched C1-C8 hydrocarbon chain or a monocyclic C3-C8hydrocarbon or bicyclic C8-C12 hydrocarbon which are fully saturated or that contains one or more units of unsaturation, that is completely saturated or that contains one or more units of unsaturation, but which is not aromatic (also referred to herein as “carbocycle” or “cycloalkyl”), and that has a single point of attachment to the rest of the molecule wherein any individual ring in said bicyclic ring system has 3-7 members.


Associated with: As used herein, the terms “associated with,” “conjugated,” “linked,” “attached,” and “tethered,” when used with respect to two or more moieties, mean that the moieties are physically associated or connected with one another, either directly or via one or more additional moieties that serve as linking agents, to form a structure that is sufficiently stable so that the moieties remain physically associated under the conditions in which the structure is used, e.g., physiological conditions. An “association” need not be strictly through direct covalent chemical bonding. It may also suggest ionic or hydrogen bonding or a hybridization based connectivity sufficiently stable such that the “associated” entities remain physically associated.


Autologous: the term “autologous” as used herein is meant to refer to any material derived from the same individual to which it is later to be re-introduced into the individual.


Barcode: the term “barcode” as used herein refers to polynucleotide or amino acid sequence that distinguishes one polynucleotide or amino acid from another.


Biocircuit system: As used herein, a “biocircuit” or “biocircuit system” is defined as a circuit within or useful in biologic systems comprising a stimulus and at least one effector module responsive to a stimulus, where the response to the stimulus produces at least one signal or outcome within, between, as an indicator of, or on a biologic system. Biologic systems are generally understood to be any cell, tissue, organ, organ system or organism, whether animal, plant, fungi, bacterial, or viral. It is also understood that biocircuits may be artificial circuits which employ the stimuli or effector modules taught by the present disclosure and effect signals or outcomes in acellular environments such as with diagnostic, reporter systems, devices, assays or kits. The artificial circuits may be associated with one or more electronic, magnetic, or radioactive components or parts. In the context of the present disclosure, a biocircuit includes a destabilizing domain (DD) biocircuit system.


Checkpoint factor: As used herein, a checkpoint factor is any moiety or molecule whose function acts at the junction of a process. For example, a checkpoint protein, ligand or receptor may function to stall or accelerate the cell cycle.


Co-stimulatory molecule: As used herein, in accordance with its meaning in immune T cell activation, refers to a group of immune cell surface receptor/ligands which engage between T cells and APCs and generate a stimulatory signal in T cells which combines with the stimulatory signal in T cells that results from T cell receptor (TCR) recognition of antigen/MHC complex (pMHC) on APCs


Cytokines: the term “cytokines”, as used herein, refers to a family of small soluble factors with pleiotropic functions that are produced by many cell types that can influence and regulate the function of the immune system.


Delivery: the term “delivery” as used herein refers to the act or manner of delivering a compound, substance, entity, moiety, cargo or payload. A “delivery agent” refers to any agent which facilitates, at least in part, the in vivo delivery of one or more substances (including, but not limited to compounds and/or compositions of the present disclosure) to a cell, subject or other biological system cells.


Destabilized: As used herein, the term “destable,” “destabilize,” “destabilizing region” or “destabilizing domain” means a region or molecule that is less stable than a starting, reference, wild-type or native form of the same region or molecule.


Engineered: As used herein, embodiments of the disclosure are “engineered” when they are designed to have a feature or property, whether structural or chemical, that varies from a starting point, wild type or native molecule.


Expression: As used herein, “expression” of a nucleic acid sequence refers to one or more of the following events: (1) production of an RNA template from a DNA sequence (e.g., by transcription); (2) processing of an RNA transcript (e.g., by splicing, editing, 5′ cap formation, and/or 3′ end processing); (3) translation of an RNA into a polypeptide or protein; (4) folding of a polypeptide or protein; and (5) post-translational modification of a polypeptide or protein.


Feature: As used herein, a “feature” refers to a characteristic, a property, or a distinctive element.


Formulation: As used herein, a “formulation” includes at least a compound and/or composition of the present disclosure and a delivery agent.


Fragment: A “fragment,” as used herein, refers to a portion. For example, fragments of proteins may comprise polypeptides obtained by digesting full-length protein. In some embodiments, a fragment of a protein includes at least 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100, 150, 200, 250 or more amino acids. In some embodiments, fragments of an antibody include portions of an antibody.


Functional: As used herein, a “functional” biological molecule is a biological entity with a structure and in a form in which it exhibits a property and/or activity by which it is characterized.


Heterocycle: The term “heterocycle”, “heterocyclyl”, or “heterocyclic” as used herein refers to monocyclic, bicyclic or tricyclic ring systems having three to fourteen ring members in which one or more ring members is a heteroatom, wherein each ring in the system contains 3 to 7 ring members and is non-aromatic.


Hotspot: As used herein, a “hotspot” or a “mutational hotspot” refers to an amino acid position in a protein coding gene that is mutated (by substitutions) more frequently relative to elsewhere within the same gene.


Hydrophilic: As used herein, “hydrophilic” refers to a molecule that interacts with or has affinity for water.


Hydrophobic: As used herein, “hydrophobic” refers to a molecule that does not interact or have affinity for water.


Immune cells: the term “an immune cell”, as used herein, refers to any cell of the immune system that originates from a hematopoietic stem cell in the bone marrow, which gives rise to two major lineages, a myeloid progenitor cell (which give rise to myeloid cells such as monocytes, macrophages, dendritic cells, megakaryocytes and granulocytes) and a lymphoid progenitor cell (which give rise to lymphoid cells such as T cells, B cells and natural killer (NK) cells). Exemplary immune system cells include a CD4+ T cell, a CD8+ T cell, a CD4− CD8− double negative T cell, a T γδ cell, a Tαβ cell, a regulatory T cell, a natural killer cell, and a dendritic cell. Macrophages and dendritic cells may be referred to as “antigen presenting cells” or “APCs,” which are specialized cells that can activate T cells when a major histocompatibility complex (MHC) receptor on the surface of the APC complexed with a peptide interacts with a TCR on the surface of a T cell.


Immunotherapy: the term “immunotherapy” as used herein, refers to a type of treatment of a disease that uses immunological tools, such as monoclonal antibodies, receptor-immunoglobulin fusion proteins, vaccines and/or immune cells.


In vitro: As used herein, the term “in vitro” refers to events that occur in an artificial environment, e.g., in a test tube or reaction vessel, in cell culture, in a Petri dish, etc., rather than within an organism (e.g., animal, plant, or microbe).


In vivo: As used herein, the term “in vivo” refers to events that occur within an organism (e.g., animal, plant, or microbe or cell or tissue thereof).


Linker: As used herein, a linker refers to a moiety that connects two or more domains, moieties or entities. In one embodiment, a linker may comprise 10 or more atoms. In a further embodiment, a linker may comprise a group of atoms, e.g., 10-1,000 atoms, and can be comprised of the atoms or groups such as, but not limited to, carbon, amino, alkylamino, oxygen, sulfur, sulfoxide, sulfonyl, carbonyl, and imine. In some embodiments, a linker may comprise one or more nucleic acids comprising one or more nucleotides. In some embodiments, the linker may comprise an amino acid, peptide, polypeptide or protein. In some embodiments, a moiety bound by a linker may include, but is not limited to an atom, a chemical group, a nucleoside, a nucleotide, a nucleobase, a sugar, a nucleic acid, an amino acid, a peptide, a polypeptide, a protein, a protein complex, a payload (e.g., a therapeutic agent), or a marker (including, but not limited to a chemical, fluorescent, radioactive or bioluminescent marker). The linker can be used for any useful purpose, such as to form multimers or conjugates, as well as to administer a payload, as described herein. Examples of chemical groups that can be incorporated into the linker include, but are not limited to, alkyl, alkenyl, alkynyl, amido, amino, ether, thioether, ester, alkylene, heteroalkylene, aryl, or heterocyclyl, each of which can be optionally substituted, as described herein. Examples of linkers include, but are not limited to, unsaturated alkanes, polyethylene glycols (e.g., ethylene or propylene glycol monomeric units, e.g., diethylene glycol, dipropylene glycol, triethylene glycol, tripropylene glycol, tetraethylene glycol, or tetraethylene glycol), and dextran polymers, Other examples include, but are not limited to, cleavable moieties within the linker, such as, for example, a disulfide bond (—S—S—) or an azo bond (—N═N—), which can be cleaved using a reducing agent or photolysis. Non-limiting examples of a selectively cleavable bonds include an amido bond which may be cleaved for example by the use of tris(2-carboxyethyl) phosphine (TCEP), or other reducing agents, and/or photolysis, as well as an ester bond which may be cleaved for example by acidic or basic hydrolysis.


Lipophilic: As used herein, the term “lipophilic” refers to an affinity for lipids or fats.


Metabolite: Metabolites are the intermediate products of metabolic reactions catalyzed by enzymes that naturally occur within cells. This term is usually used to describe small molecules, fragments of larger biomolecules or processed products.


Modified: As used herein, the term “modified” refers to a changed state or structure of a molecule or entity as compared with a parent or reference molecule or entity. Molecules may be modified in many ways including chemically, structurally, and functionally. In some embodiments, compounds and/or compositions of the present disclosure are modified by the introduction of non-natural amino acids.


Mutation: As used herein, the term “mutation” refers to a change and/or alteration. In some embodiments, mutations may be changes and/or alterations to proteins (including peptides and polypeptides) and/or nucleic acids (including polynucleic acids). In some embodiments, mutations comprise changes and/or alterations to a protein and/or nucleic acid sequence. Such changes and/or alterations may comprise the addition, substitution and or deletion of one or more amino acids (in the case of proteins and/or peptides) and/or nucleotides (in the case of nucleic acids and or polynucleic acids). In some embodiments, wherein mutations comprise the addition and/or substitution of amino acids and/or nucleotides, such additions and/or substitutions may comprise 1 or more amino acid and/or nucleotide residues and may include modified amino acids and/or nucleotides. The resulting construct, molecule or sequence of a mutation, change or alteration may be referred to herein as a mutant.


Neoantigen: the term “neoantigen”, as used herein, refers to a tumor antigen that is present in tumor cells but not normal cells and do not induce deletion of their cognate antigen specific T cells in thymus (i.e., central tolerance). These tumor neoantigens may provide a “foreign” signal, similar to pathogens, to induce an effective immune response needed for cancer immunotherapy. A neoantigen may be restricted to a specific tumor. A neoantigen be a peptide/protein with a missense mutation (missense neoantigen), or a new peptide with long, completely novel stretches of amino acids from novel open reading frames (neoORFs). The neoORFs can be generated in some tumors by out-of-frame insertions or deletions (due to defects in DNA mismatch repair causing microsatellite instability), gene-fusion, read-through mutations in stop codons, or translation of improperly spliced RNA (e.g., Saeterdal et al., Proc Natl Acad Sci USA, 2001, 98: 13255-13260).


Off-target: As used herein, “off target” refers to any unintended effect on any one or more target, gene, cellular transcript, cell, and/or tissue.


Operably linked: As used herein, the phrase “operably linked” refers to a functional connection between two or more molecules, constructs, transcripts, entities, moieties or the like.


Phenyl: As used herein, “phenyl” refers to a cyclic group of atoms with a formula C6H5.


Payload or payload of interest (POI): the terms “payload” and “payload of interest (POI)”, as used herein, are used interchangeable. A payload of interest (POI) refers to any protein or compound whose function is to be altered. In the context of the present disclosure, the POI is a component in the immune system, including both innate and adaptive immune systems. Payloads of interest may be a protein, a fusion construct encoding a fusion protein, or non-coding gene, or variant and fragment thereof. Payload of interest may, when amino acid based, may be referred to as a protein of interest.


Pharmaceutically acceptable excipients: the term “pharmaceutically acceptable excipient,” as used herein, refers to any ingredient other than active agents (e.g., as described herein) present in pharmaceutical compositions and having the properties of being substantially nontoxic and non-inflammatory in subjects. In some embodiments, pharmaceutically acceptable excipients are vehicles capable of suspending and/or dissolving active agents. Excipients may include, for example: antiadherents, antioxidants, binders, coatings, compression aids, disintegrants, dyes (colors), emollients, emulsifiers, fillers (diluents), film formers or coatings, flavors, fragrances, glidants (flow enhancers), lubricants, preservatives, printing inks, sorbents, suspending or dispersing agents, sweeteners, and waters of hydration. Exemplary excipients include, but are not limited to: butylated hydroxytoluene (BHT), calcium carbonate, calcium phosphate (dibasic), calcium stearate, croscarmellose, crosslinked polyvinyl pyrrolidone, citric acid, crospovidone, cysteine, ethylcellulose, gelatin, hydroxypropyl cellulose, hydroxypropyl methylcellulose, lactose, magnesium stearate, maltitol, mannitol, methionine, methylcellulose, methyl paraben, microcrystalline cellulose, polyethylene glycol, polyvinyl pyrrolidone, povidone, pregelatinized starch, propyl paraben, retinyl palmitate, shellac, silicon dioxide, sodium carboxymethyl cellulose, sodium citrate, sodium starch glycolate, sorbitol, starch (corn), stearic acid, sucrose, talc, titanium dioxide, vitamin A, vitamin E, vitamin C, and xylitol.


Pharmaceutically acceptable salts: Pharmaceutically acceptable salts of the compounds described herein are forms of the disclosed compounds wherein the acid or base moiety is in its salt form (e.g., as generated by reacting a free base group with a suitable organic acid). Examples of pharmaceutically acceptable salts include, but are not limited to, mineral or organic acid salts of basic residues such as amines; alkali or organic salts of acidic residues such as carboxylic acids; and the like. Representative acid addition salts include acetate, adipate, alginate, ascorbate, aspartate, benzenesulfonate, benzoate, bisulfate, borate, butyrate, camphorate, camphorsulfonate, citrate, cyclopentanepropionate, digluconate, dodecylsulfate, ethanesulfonate, fumarate, glucoheptonate, glycerophosphate, hemisulfate, heptonate, hexanoate, hydrobromide, hydrochloride, hydroiodide, 2-hydroxy-ethanesulfonate, lactobionate, lactate, laurate, lauryl sulfate, malate, maleate, malonate, methanesulfonate, 2-naphthalenesulfonate, nicotinate, nitrate, oleate, oxalate, palmitate, pamoate, pectinate, persulfate, 3-phenylpropionate, phosphate, picrate, pivalate, propionate, stearate, succinate, sulfate, tartrate, thiocyanate, toluenesulfonate, undecanoate, valerate salts, and the like. Representative alkali or alkaline earth metal salts include sodium, lithium, potassium, calcium, magnesium, and the like, as well as nontoxic ammonium, quaternary ammonium, and amine cations, including, but not limited to ammonium, tetramethylammonium, tetraethylammonium, methylamine, dimethylamine, trimethylamine, triethylamine, ethylamine, and the like. Pharmaceutically acceptable salts include the conventional non-toxic salts, for example, from non-toxic inorganic or organic acids. In some embodiments, a pharmaceutically acceptable salt is prepared from a parent compound which contains a basic or acidic moiety by conventional chemical methods. Generally, such salts can be prepared by reacting the free acid or base forms of these compounds with a stoichiometric amount of the appropriate base or acid in water or in an organic solvent, or in a mixture of the two; generally, nonaqueous media like ether, ethyl acetate, ethanol, isopropanol, or acetonitrile are preferred. Lists of suitable salts are found in Remington's Pharmaceutical Sciences, 17th ed., Mack Publishing Company, Easton, Pa., 1985, p. 1418, Pharmaceutical Salts: Properties, Selection, and Use, P. H. Stahl and C. G. Wermuth (eds.), Wiley-VCH, 2008, and Berge et al., Journal of Pharmaceutical Science, 66, 1-19 (1977), each of which is incorporated herein by reference in its entirety. Pharmaceutically acceptable solvate: The term “pharmaceutically acceptable solvate,” as used herein, refers to a crystalline form of a compound wherein molecules of a suitable solvent are incorporated in the crystal lattice. For example, solvates may be prepared by crystallization, recrystallization, or precipitation from a solution that includes organic solvents, water, or a mixture thereof. Examples of suitable solvents are ethanol, water (for example, mono-, di-, and tri-hydrates), N-methylpyrrolidinone (NMP), dimethyl sulfoxide (DMSO), N, N′-dimethylformamide (DMF), N, N′-dimethylacetamide (DMAC), 1,3-dimethyl-2-imidazolidinone (DMEU), 1,3-dimethyl-3,4,5,6-tetrahydro-2-(1H)-pyrimidinone (DMPU), acetonitrile (ACN), propylene glycol, ethyl acetate, benzyl alcohol, 2-pyrrolidone, benzyl benzoate, and the like. When water is the solvent, the solvate is referred to as a “hydrate.” In some embodiments, the solvent incorporated into a solvate is of a type or at a level that is physiologically tolerable to an organism to which the solvate is administered (e.g., in a unit dosage form of a pharmaceutical composition).


Piperazine: As used herein, “piperazine” refers to a six-membered ring containing two nitrogen atoms at opposite positions in the ring.


Protein of interest: As used herein, the terms “proteins of interest” or “desired proteins” include those provided herein and fragments, mutants, variants, and alterations thereof.


Purine: As used herein, “purine” refers to an aromatic heterocyclic structure, wherein one of the heterocycles is an imidazole ring and one of the heterocycles is a pyrimidine ring.


Pyrimidine: As used herein, “pyrimidine” refers to an aromatic heterocyclic structure similar to benzene, but wherein two of the carbon atoms are replaced by nitrogen atoms.


Pyridopyrimidine: As used herein, “Pyridopyrimidine” refers to an aromatic heterocyclic structure, wherein one of the heterocycles is a purine ring and one of the heterocycles is a pyrimidine ring.


Quinazoline: As used herein, the term, “Quinazoline” refers to an aromatic heterocyclic structure, wherein one of the heterocycles is a benzene ring and one of the heterocycles is a pyrimidine ring.


Stable: As used herein “stable” refers to a compound or entity that is sufficiently robust to survive isolation to a useful degree of purity from a reaction mixture, and preferably capable of formulation into an efficacious therapeutic agent.


Stabilized: As used herein, the term “stabilize”, “stabilized,” “stabilized region” means to make or become stable. In some embodiments, stability is measured relative to an absolute value. In some embodiments, stability is measured relative to a secondary status or state or to a reference compound or entity.


Standard CAR: As used herein, the term “standard CAR” refers to the standard design of a chimeric antigen receptor. The components of a CAR fusion protein including the extracellular scFv fragment, transmembrane domain and one or more intracellular domains are linearly constructed as a single fusion protein.


Stimulus response element (SRE): the term “stimulus response element (SRE), as used herein, is a component of an effector module which is joined, attached, linked to or associated with one or more payloads of the effector module and in some instances, is responsible for the responsive nature of the effector module to one or more stimuli. As used herein, the “responsive” nature of an SRE to a stimulus may be characterized by a covalent or non-covalent interaction, a direct or indirect association or a structural or chemical reaction to the stimulus. Further, the response of any SRE to a stimulus may be a matter of degree or kind. The response may be a partial response. The response may be a reversible response. The response may ultimately lead to a regulated signal or output. Such output signal may be of a relative nature to the stimulus, e.g., producing a modulatory effect of between 1 and 100 or a factored increase or decrease such as 2-fold, 3-fold, 4-fold, 5-fold, 10-fold or more. One non-limiting example of an SRE is a destabilizing domain (DD).


Subject: As used herein, the term “subject” or “patient” refers to any organism to which a composition in accordance with the disclosure may be administered, e.g., for experimental, diagnostic, prophylactic, and/or therapeutic purposes. Typical subjects include animals (e g, mammals such as mice, rats, rabbits, non-human primates, and humans) and/or plants.


T cell: A T cell is an immune cell that produces T cell receptors (TCRs). T cells can be naïve (not exposed to antigen; increased expression of CD62L, CCR7, CD28, CD3, CD127, and CD45RA, and decreased expression of CD45RO as compared to TCM), memory T cells (TM) (antigen-experienced and long-lived), and effector cells (antigen-experienced, cytotoxic). TM can be further divided into subsets of central memory T cells (TCM, increased expression of CD62L, CCR7, CD28, CD127, CD45RO, and CD95, and decreased expression of CD54RA as compared to naïve T cell and effector memory T cells (TEM, decreased expression of CD62L, CCR7, CD28, CD45RA, and increased expression of CD127 as compared to naïve T cells or TCM). Effector T cells (TE) refers to antigen-experienced CD8+ cytotoxic T lymphocytes that have decreased expression of CD62L, CCR7, CD28, and are positive for granzyme and perform as compared to TCM. Other exemplary T cells include regulatory T cells, such as CD4+CD25+(Foxp3+) regulatory T cells and Treg17 cells, as well as Tr1, Th3, CD8+CD28−, and Qa-1 restricted T cells.


T cell receptor: T cell receptor (TCR) refers to an immunoglobulin superfamily member having a variable antigen binding domain, a constant domain, a transmembrane region, and a short cytoplasmic tail, which is capable of specifically binding to an antigen peptide bound to a MHC receptor. A TCR can be found on the surface of a cell or in soluble form and generally is comprised of a heterodimer having α and β chains (also known as TCRα and TCRβ, respectively), or γ and δ chains (also known as TCRγ and TCRδ, respectively). The extracellular portion of TCR chains (e.g., α-chain, β-chain) contains two immunoglobulin domains, a variable domain (e.g., α-chain variable domain or Vα, β-chain variable domain or Vβ) at the N-terminus, and one constant domain (e.g., α-chain constant domain or Cα and β-chain constant domain or Cβ) adjacent to the cell membrane Similar to immunoglobulin, the variable domains contain complementary determining regions (CDRs) separated by framework regions (FRs). A TCR is usually associated with the CD3 complex to form a TCR complex. As used herein, the term “TCR complex” refers to a complex formed by the association of CD3 with TCR. For example, a TCR complex can be composed of a CD3γ chain, a CD3δ chain, two CD3ε chains, a homodimer of CD3ζ chains, a TCRα chain, and a TCRβ chain. Alternatively, a TCR complex can be composed of a CD3γ chain, a CD3δ chain, two CD3ε chains, a homodimer of CD3ζ chains, a TCRγ chain, and a TCRδ chain. A “component of a TCR complex,” as used herein, refers to a TCR chain (i.e., TCRα, TCRβ, TCRγ or TCRδ), a CD3 chain (i.e., CD3γ, CD3δ, CD3ε or CD3ζ) or a complex formed by two or more TCR chains or CD3 chains (e.g., a complex of TCRα and TCRβ, a complex of TCRγ and TCRδ, a complex of CD3ε and CD3δ, a complex of CD3γ and CD3ε, or a sub-TCR complex of TCRα, TCRβ, CD3γ, CD3δ, and two CD3ε chains.


Therapeutic Agent: The term “therapeutic agent” refers to any agent that, when administered to a subject, has a therapeutic, diagnostic, and/or prophylactic effect and/or elicits a desired biological and/or pharmacological effect. Therapeutic agents of the present disclosure include any of the biocircuit components taught herein either alone or in combination with other therapeutic agents.


Therapeutically effective amount: As used herein, the term “therapeutically effective amount” means an amount of an agent to be delivered (e.g., nucleic acid, drug, therapeutic agent, diagnostic agent, prophylactic agent, etc.) that is sufficient, when administered to a subject suffering from or susceptible to an infection, disease, disorder, and/or condition, to treat, improve symptoms of, diagnose, prevent, and/or delay the onset of the infection, disease, disorder, and/or condition. In some embodiments, a therapeutically effective amount is provided in a single dose. In some embodiments, a therapeutically effective amount is administered in a dosage regimen comprising a plurality of doses. Those skilled in the art will appreciate that in some embodiments, a unit dosage form may be considered to comprise a therapeutically effective amount of a particular agent or entity if it comprises an amount that is effective when administered as part of such a dosage regimen.


Triazine: As used herein, “triazine” is a class of nitrogen containing heterocycles with a structure similar to benzene, but wherein three carbon atoms are replaced by nitrogen atoms.


Treatment or treating: As used herein, the terms “treatment” or “treating” denote an approach for obtaining a beneficial or desired result including and preferably a beneficial or desired clinical result. Such beneficial or desired clinical results include, but are not limited to, one or more of the following: reducing the proliferation of (or destroying) cancerous cells or other diseased, reducing metastasis of cancerous cells found in cancers, shrinking the size of the tumor, decreasing symptoms resulting from the disease, increasing the quality of life of those suffering from the disease, decreasing the dose of other medications required to treat the disease, delaying the progression of the disease, and/or prolonging survival of individuals.


Survival: As used herein, the term “survival” may be used to denote that a subject is alive at a particular point in time. In some embodiments, the subject may have been diagnosed with cancer. In one aspect, the subject may be an animal model, in which case the subject may be injected with cancer prior to the analysis of survival. Survival may be denoted as median survival which refers to how long patients survive with a disease in general or after a certain treatment. Survival may also be measured using survival ratio.


Tune: As used herein, the term “tune” means to adjust, balance or adapt one thing in response to a stimulus or toward a particular outcome. In one non-limiting example, the SREs and/or DDs of the present disclosure adjust, balance or adapt the function or structure of compositions to which they are appended, attached or associated with in response to particular stimuli and/or environments.


Variant: As used herein, the term “variant” refers to a first composition (e.g., a first DD or payload), that is related to a second composition (e.g., a second DD or payload, also termed a “parent” molecule). The variant molecule can be derived from, isolated from, based on or homologous to the parent molecule. The term variant can be used to describe either polynucleotides or polypeptides.


VIII. Equivalents and Scope

Those skilled in the art will recognize, or be able to ascertain using no more than routine experimentation, many equivalents to the specific embodiments in accordance with the disclosure described herein. The scope of the present disclosure is not intended to be limited to the above Description, but rather is as set forth in the appended claims.


In the claims, articles such as “a,” “an,” and “the” may mean one or more than one unless indicated to the contrary or otherwise evident from the context. Claims or descriptions that include “or” between one or more members of a group are considered satisfied if one, more than one, or all of the group members are present in, employed in, or otherwise relevant to a given product or process unless indicated to the contrary or otherwise evident from the context. The disclosure includes embodiments in which exactly one member of the group is present in, employed in, or otherwise relevant to a given product or process. The disclosure includes embodiments in which more than one, or the entire group members are present in, employed in, or otherwise relevant to a given product or process.


It is also noted that the term “comprising” is intended to be open and permits but does not require the inclusion of additional elements or steps. When the term “comprising” is used herein, the term “consisting of” is thus also encompassed and disclosed.


Where ranges are given, endpoints are included. Furthermore, it is to be understood that unless otherwise indicated or otherwise evident from the context and understanding of one of ordinal), skill in the art, values that are expressed as ranges can assume any specific value or subrange within the stated ranges in different embodiments of the disclosure, to the tenth of the unit of the lower limit of the range, unless the context clearly dictates otherwise.


In addition, it is to be understood that any particular embodiment of the present disclosure that falls within the prior art may be explicitly excluded from any one or more of the claims. Since such embodiments are deemed to be known to one of ordinal), skill in the art, they may be excluded even if the exclusion is not set forth explicitly herein. Any particular embodiment of the compositions of the disclosure (e.g., any antibiotic, therapeutic or active ingredient; any method of production; any method of use; etc.) can be excluded from any one or more claims, for any reason, whether or not related to the existence of prior art.


It is to be understood that the words which have been used are words of description rather than limitation, and that changes may be made within the purview of the appended claims without departing from the true scope and spirit of the disclosure in its broader aspects.


While the present disclosure has been described at some length and with some particularity with respect to the several described embodiments, it is not intended that it should be limited to any such particulars or embodiments or any particular embodiment, but it is to be construed with references to the appended claims so as to provide the broadest possible interpretation of such claims in view of the prior art and, therefore, to effectively encompass the intended scope of the disclosure. The present disclosure is further illustrated by the following nonlimiting examples.


EXAMPLES

In the examples below, constructs and DDs are referred to by their identifiers (e.g., OT-001075). Additional information regarding the constructs and DDs may be found throughout the specification.


Example 1. Generation of Novel Ligand Responsive DDs by Mutagenesis Screening
Study Design

To engineer constructs that display ligand dependent stability, a candidate ligand binding domain (LBD) is selected and a cell-based screen using yellow fluorescent protein (YFP) as a reporter for protein stability is designed to identify mutants of the candidate LBD possessing the desired characteristics of a destabilizing domain: low protein levels in the absence of a ligand of the LBD, (i.e., low basal stability), large dynamic range, robust and predictable dose-response behavior, and rapid kinetics of degradation (Banaszynski, et al., (2006) Cell; 126(5): 995-1004). The candidate LBD binds to a desired ligand but not endogenous signaling molecules.


The candidate LBD sequence (as a template) is first mutated using a combination of nucleotide analog mutagenesis and error-prone PCR, to generate libraries of mutants based on the template candidate domain sequence. The libraries generated are cloned in-frame at either the 5′- or 3′-ends of the YFP gene, and a retroviral expression system is used to stably transduce the libraries of YFP fusions into NIH3T3 fibroblasts.


The transduced NIH3T3 cells are subjected to three to four rounds of sorting using fluorescence-activated cell sorting (FACS) to screen the libraries of candidate DDs. Transduced NIH3T3 cells are cultured in the absence of the high affinity ligand of the ligand binding domain (LBD), and cells that exhibit low levels of YFP expression are selected through FACS.


Screening Strategy I

The selected cell population is cultured in the presence of the high affinity ligand of the ligand binding domain for a period of time (e.g., 24 hours), at which point cells are sorted again by FACS. Cells that exhibit high levels of YFP expression are selected through FACS and the selected cell population is split into two groups and treated again with the high affinity ligand of the ligand binding domain at different concentrations; one group is treated with the lower concentration of the ligand and the other is treated with a high concentration of the ligand, for a period of time (e.g., 24 hours), at which point cells are sorted again by FACS. Cells expressing mutants that are responsive to lower concentrations of the ligand are isolated.


The isolated cells responsive to the lower concentration of the ligand are treated with the ligand again and cells exhibiting low fluorescence levels are collected 4 hours following removal of the ligand from the media. This fourth sorting is designed to enrich cells that exhibit fast kinetics of degradation (Iwamoto et al., Chem Biol. 2010 Sep. 24; 17(9): 981-988).


Screening Strategy II

The selected cell population is subject to additional one or more sorts by FACS in the absence of high affinity ligand of LBD and cells that exhibit low levels of YFP expression are selected for further analysis. Cells are treated with high affinity ligand of the ligand binding domain, for a period of time (e.g. 24 hours), and sorted again by FACS. Cells expressing high levels of YFP are selected for through FACS. Cells with high expression of YFP are treated with ligand again and cells exhibiting low fluorescence levels are collected 4 hours following removal of the ligand from the media to enrich cells that exhibit fast kinetics of degradation. Any of the sorting steps may be repeated to identify DDs with ligand dependent stability.


The cells are recovered after sorting. The identified candidate cells are harvested and the genomic DNA is extracted. The candidate DDs are amplified by PCR and isolated. The candidate DDs are sequenced and compared to the LBD template to identify the mutations in candidate DDs.


Example 2. Novel DDs Derived from Human PDE5 by Site Directed Mutagenesis

To identify novel destabilizing domain mutations, mutagenic PCR was performed on the open reading frame of human PDE5 catalytic domain (SEQ ID NO: 3) using non-natural nucleotides. The mutant library was ligated in frame with an AcGFP reporter at C-terminus and cloned into pLVX-IRES—Puro vectors. The lentivirus library was then used to infect HEK 293T cells. Cells were selected with puromycin and the library was screened using screening strategies described in Example 1. DNA was extracted from the cell pool, cloned into vectors, and transformed into E. coli. Individual clones were sequenced and cloned in frame with a linker GGSGGGSGG (SEQ ID NO: 77) and AcGFP at C terminus into pLVX.IRES puro. The catalytic domain of wildtype hPDE5 was also cloned into pLVX.IRES. Puro and used as a control. HEK293 cells were transduced with individual clones and selected with puromycin.


HEK293 cells expressing OT-hPDE5 N terminus constructs were incubated with 10 μM Sildenafil or vehicle control, DMSO for 48 hours and the stability of hPDE5 mutants was evaluated at the protein level. Cell lysates obtained from hPDE5N construct expressing cells were immunoblotted using the AcGFP antibody (Clonetech, Mountain View, Calif.). Samples were also immunoblotted with the GAPDH antibody to ensure uniform protein loading. The immunoblot demonstrated that OT-001078, OT-001080, OT-001076, OT-001083, OT-001084, OT-001070 showed an increase in PDE5-GFP protein levels with Sildenafil treatment when compared to DMSO treatment suggesting a Sildenafil dependent stabilization of the construct. Further, the hPDE5-GFP levels with DMSO treatment in OT-001078, OT-001080, and OT-001076 was lower than in the wildtype hPDE5 construct, OT-001075, indicating that these constructs are destabilized in the absence of ligand.


The GFP expression in cells expressing hPDE5 constructs was measured by FACS. HEK293 cells expressing OT-001075 to OT-001070 were incubated with 10 μM Sildenafil or vehicle control, DMSO for 48 hours and the mean fluorescence intensity (MFI) was calculated. The stabilization ratio was calculated as the fold change in GFP intensity in Sildenafil treated samples compared to treatment with DMSO (i.e. in the absence of ligand) with the same construct. The destabilizing mutation co-efficient was calculated as the fold change in GFP intensity in the hPDE5 mutant constructs (OT-001078 to OT-001070) compared to the hPDE5 wildtype construct (OT-001075) in the absence of the ligand. Destabilizing mutation co-efficient less than 1 and stabilization ratios greater than 1 are desired in DDs. The results and ratios are presented in Table 21.









TABLE 21







GFP expression in hPDE5 derived DDs









Destabilizing











MFI
Stabilization
mutation











Constructs
DMSO
Sildenafil
ratio
coefficient














OT-001075
11064
25789
2.33



OT-001078
1649
12285
7.45
0.15


OT-001080
1184
7303
6.17
0.11


OT-001081
795
1065
1.34
0.07


OT-001074
6924
29491
4.26
0.63


OT-001076
1542
19211
12.46
0.14


OT-001082
3038
7078
2.33
0.27


OT-001083
1134
13189
11.63
0.10


OT-001084
744
15587
20.95
0.07


OT-001070
5053
21755
4.31
0.46









As shown in Table 21, all constructs demonstrated a stabilization ratio greater than one, indicating that all constructs show ligand (Sildenafil) dependent stabilization. The stabilization ratios of OT-001076, OT-001083, and OT-001084 was greater than 10 indicating strong ligand dependent stabilization. Constructs OT-001078, OT-001080, OT-001074, and OT-001070 showed stabilization ratio in the range of 2 to 10 indicating modest ligand dependent stabilization. The destabilizing mutation coefficient observed with all constructs was less than 1 indicating that all hPDE5 mutants are destabilized as compared to the wildtype hPDE5. Notably, constructs OT-001078, OT-001080, OT-001081, OT-001076, OT-001083, and OT-001084 demonstrated destabilizing mutation coefficients less than 0.2 indicating strong destabilizing in the absence of ligand. OT-001076, OT-001083, and OT-001084 were identified as mutants with desirable characteristics of a DD i.e., low basal expression in the absence of ligand and high expression in the presence of ligand.


Example 3. Sildenafil Dependent Stabilization of hPDE5 Mutants

HEK293 cells expressing OT-001076, OT-001083, or OT-001084 constructs were incubated with varying concentrations of Sildenafil ranging from 0.005 μM to 10 μM, or vehicle control (DMSO) for 48 hours. The stability of hPDE5 mutants was measured using FACS and mean fluorescence intensity (MFI) of GFP was calculated. The stabilization ratio was calculated as the fold change in GFP intensity in Sildenafil treated samples compared to treatment with DMSO (i.e. absence of ligand) with the same construct. Stabilization ratio greater than 1 is desired in DDs. The MFI and stabilization ratios are presented in Table 22.









TABLE 22







Sildenafil Dose titration











OT-001076
OT-001083
OT-001084















Stabi-

Stabi-

Stabi-


Sildenafil

lization

lization

lization


dose (μM)
MFI
ratio
MFI
ratio
MFI
ratio
















Untreated
7036

4388

3506



0.0005
6848
0.97
4422
1.01
3513
1.00


0.0015
7239
1.03
4557
1.04
3473
0.99


0.0046
7218
1.03
4397
1.00
3539
1.01


0.0137
7127
1.01
4274
0.97
3683
1.05


0.041
8097
1.15
4395
1.00
4171
1.19


0.123
12248
1.74
4875
1.11
6463
1.84


0.37
22018
3.13
6753
1.54
13076
3.73


1.11
34171
4.86
10495
2.39
23468
6.69


3.33
49220
7.00
17960
4.09
34615
9.87


10
67084
9.53
32480
7.40
47793
13.63









As shown in Table 22, all three constructs showed an increase in stabilization ratio with increasing doses of Sildenafil indicating a ligand dose-dependent stabilization of hPDE5 mutants. The half maximal effective concentration or EC50 was approximately 1 μM.


Sildenafil dependent stabilization of hPDE5 mutants was also measured over a period of time. HEK293 cells expressing OT-001076, OT-001083, and OT-001084 were treated with 10 μM of Sildenafil for 2, 4, 6, 16, 24, and 48 hours. The stability of hPDE5 mutants was measured using FACS and mean fluorescence intensity (MFI) of GFP was calculated. The stabilization ratio was calculated as the fold change in GFP intensity in Sildenafil treated samples compared to treatment with DMSO (i.e. absence of ligand) with the same construct. Stabilization ratio greater than 1 is desired in DDs. The MFI and stabilization ratios are presented in Table 23.









TABLE 23







Time course of Sildenafil treatment











OT-001076
OT-001083
OT-001084















Stabi-

Stabi-

Stabi-


Time

lization

lization

lization


(h)
MFI
ratio
MFI
ratio
MFI
ratio
















Parental
675

667

673



0
7921

5304

4195



2
12088
1.54
7290
1.37
6337
1.51


4
14046
1.77
8675
1.64
8159
1.95


6
16710
2.11
10929
2.06
10203
2.43


16
39029
4.93
19034
3.59
26279
6.26


24
51534
6.51
27246
5.14
36516
8.71


48
70811
8.94
34796
6.56
47407
11.30 









As shown in Table 23, all three constructs showed an increase in stabilization ratio with increasing duration of treatment with Sildenafil indicating a time-dependent increase in stabilization of hPDE5 mutants.


Example 4. Vardenafil Dependent Stabilization of hPDE5 DDs

Vardenafil has an IC so of 0.7 nM and is a more potent inhibitor of hPDE5 than Sildenafil which has an IC50 of 3.9 nM (Doggrell S, et al. (2007) Int J Impot. Res 19(3):281-95). To test if Vardenafil is capable of stabilizing hPDE5 DDs, HEK293 cells expressing OT-001076, OT-001083, and OT-001084 were treated with Vardenafil at concentrations ranging from 0.0005 μM to 10 μM for 48 hours. The stability of hPDE5 mutants was measured using FACS and mean fluorescence intensity (MFI) of GFP was calculated. The stabilization ratio was calculated as the fold change in GFP intensity in Vardenafil treated samples compared to treatment with DMSO (i.e. absence of ligand) with the same construct. Stabilization ratio greater than 1 is desired in DDs. The MFI and stabilization ratios are presented in Table 24.









TABLE 24







Vardenafil Dose Titration











OT-001076
OT-001083
OT-001084















Stabi-

Stabi-

Stabi-


Vardenafil

lization

lization

lization


dose (μM)
MFI
ratio
MFI
ratio
MFI
ratio
















Parental
988

999

980



0
11287

7971

5841



0.0005
11770
1.04
7894
0.99
5954
1.02


0.0015
12965
1.15
8099
1.02
6601
1.13


0.0046
18739
1.66
8897
1.12
9946
1.70


0.0137
36940
3.27
12440
1.56
21894
3.75


0.041
58755
5.21
18527
2.32
39580
6.78


0.123
91994
8.15
33614
4.22
63622
10.89


0.37
125140
11.09
61010
7.65
86481
14.81


1.11
144927
12.84
95149
11.94
105930
18.14


3.33
172990
15.33
134306
16.85
123757
21.19


10
188068
16.66
166236
20.86
139165
23.83









As shown in Table 24, all three constructs showed an increase in stabilization ratio with increasing doses of Vardenafil indicating a Vardenafil dose-dependent stabilization of hPDE5 DDs. The half maximal effective concentration or EC50 was approximately 0.1-0.3 μM which was less than the EC50 observed with sildenafil (−1 μM) indicating that Vardenafil may stabilize hPDE5 DDs more potently than sildenafil.


The ability of Vardenafil to stabilize hPDE5 derived DDs was measured in cell lines stably transduced with hPDE5 DDs e.g. HEK293 cells, HCT-116 cells, and SKOV-3 cells. Cells were transduced with OT-001076, OT-001083, and OT-001084 constructs and incubated with 1 μM or 10 μM Vardenafil or with DMSO for 48 hours. The stability of hPDE5 mutants was measured using FACS and mean fluorescence intensity (MFI) of GFP was calculated. The stabilization ratio was calculated as the fold change in GFP intensity in Vardenafil treated samples compared to treatment with DMSO (i.e. absence of ligand) with the same construct. Stabilization ratio greater than 1 is desired in DDs. The MFI and stabilization ratios are presented in Table 25.









TABLE 25







Vardenafil Dose Titration











OT-001076
OT-001083
OT-001084



(hPDE5-
(hPDE5-
(hPDE5-



F736A)
Y728L)
R732L)















Stabi-

Stabi-

Stabi-




lization

lization

lization


Dose
MFI
ratio
MFI
ratio
MFI
ratio
















DMSO
9604

5191

3605



Vardenafil
110603
11.52
68816
13.26
81484
22.60


(1 μM)


Vardenafil
143351
14.93
123150
23.72
106403
29.52


(10 μM)









As shown in Table 25, all three constructs showed an increase in stabilization ratio with both doses of Vardenafil indicating a ligand dose-dependent stabilization of hPDE5 DDs. These data are consistent with the results observed with the dose response of Vardenafil observed in Table 24.


Example 5. Characterization of hPDE5 Combination Mutants

Single destabilizing mutants identified were combined to test if the combining two or more mutations generates domains with greater destabilizing potential either additively or synergistically. Desirable qualities of a DD include, low expression of the SRE in the absence of ligand and ligand dependent stabilization of the SRE. Constructs were generated using DDs linked to GFP using an SG linker. HCT-116 cells were stably transduced with the constructs described above and treated with 10 μM stabilizing ligands, Sildenafil, or Vardenafil or DMSO for 48 hours. As a control, parental untransduced cells and cells expressing OT-001075, or OT-001224 were also included in the analysis. The mean fluorescence intensity (MFI) of GFP was analyzed by FACS. The stabilization ratio was calculated as the fold change in GFP intensity in Sildenafil treated samples compared to treatment with DMSO (i.e. in the absence of ligand) with the same construct. The destabilizing mutation coefficient was calculated as the fold change in GFP intensity in the hPDE5 mutant constructs compared to the hPDE5 wildtype construct (OT-001216) in the absence of the ligand. Destabilizing mutation coefficient less than 1 are desirable. Stabilization ratios greater than 1 are desired in DDs. The results and ratios are presented in Table 26.









TABLE 26







Expression of hPDE5 combination mutants











Sildenafil
Vardenafil
Destabilizing












MFI
Stabilization
Stabilization
mutation













Construct
DMSO
Sildenafil
Vardenafil
ratio
ratio
coefficient
















Parental
2093
3735
3200
1.78
1.53



OT-001075
42973
53736
49344
1.25
1.15



OT-001224
150356
187845
170129
1.25
1.13



OT-001216
64942
66860
67388
1.03
1.04



OT-001222
12633
13862
53848
1.10
4.26
0.19


OT-001223
8625
48592
109667
5.63
12.72
0.13









As shown in Table 26, only the OT-001223 construct with R732L and D764N mutations showed Sildenafil dependent stabilization with a ratio of 5.63. Similar results were obtained with OT-001223 upon treatment with Vardenafil. OT-001222 however only showed Vardenafil dependent stabilization with a ratio of 4.26. Both constructs were destabilized in the absence of ligand. As expected, hPDE5 wildtype constructs did not show any significant ligand dependent stabilization. These data suggest that the strategy of combining mutations may be used to identify improved DDs as well as DDs that are stabilized by specific ligands.


Protein expression analysis of the combination mutants was performed in parallel via western blot. HCT 116 cells expressing OT-001222, and OT-001223 were treated with 10 μM Vardenafil for 24 hours and immunoblotted for AcGFP using anti AcGFP antibodies (catalog no. 63277, Clonetech, Mountain View, Calif.). GAPDH levels were also analyzed to ensure even protein loading. OT-001222 with hPDE5 (F736A, D764N) and OT-001223 with hPDE5 (R732L, D764N) constructs consisting showed Vardenafil dependent stabilization of AcGFP protein levels as measured via western blotting. This result is consistent with the FACS analysis.


The response of hPDE5 combination mutants to increasing doses of sildenafil was tested. HCT116 cells transduced with hPDE5 constructs were treated with Sildenafil for 24 hours at doses ranging from 0.04 μM to 30 μM. Mean fluorescence intensity (MFI) was measured by FACS. Parental HCT116 and cells expressing OT-001216 wildtype construct were also included as controls. The response of the combination mutants to Sildenafil was compared to the response of the single mutant construct OT-001217. The stabilization ratio was calculated as the fold change in GFP intensity in Sildenafil treated samples compared to treatment with DMSO (i.e. in the absence of ligand) with the same construct. The destabilizing mutation coefficient ratio was calculated as the fold change in GFP intensity in the hPDE5 mutant constructs compared to the hPDE5 wildtype construct (OT-001216) in the absence of the ligand. Destabilizing mutation coefficient ratios less than 1 are desirable. Stabilization ratios greater than 1 are desired in DDs. The results and stabilization ratios are presented in Table 27.









TABLE 27







Sildenafil dose response of combination mutants












OT-001216
OT-001217
OT-001222
OT-001223

















Stabi-

Stabi-

Stabi-

Stabi-


Dose (μM

lization

lization

lization

lization


Sildenafil)
MFI
ratio
MFI
ratio
MFI
ratio
MFI
ratio


















DMSO
62116

6172

10736

7093



30
75478
1.22
47992
7.78
26837
2.50
69864
9.85


10


27693
4.49
13263
1.24
34587
4.88


3.33


23549
3.82
10384
0.97
22392
3.16


1.11


15952
2.58
9636
0.90
10353
1.46


0.37


12739
2.06
9802
0.91
6961
0.98


0.12


6441
1.04
8619
0.80
6603
0.93


0.04


5299
0.86
8688
0.81
5948
0.84









As shown in Table 27, the stabilization ratios for OT-001223 construct obtained across multiple doses of sildenafil were higher than the single mutant OT-001217 construct. The combination mutant 025, achieved stabilization ratios much lower than the OT-001223 construct for any given ligand dose. The destabilizing mutation co-efficient ratios obtained for the OT-001217 (ratio=0.1), OT-001222 (ratio=0.17), and OT-001223 (ratio=0.1) indicate that all constructs are destabilized in the absence of the ligand. These data indicate that the combination mutant OT-001223 is strong DD candidate when the stabilizing ligand is Sildenafil.


The response of hPDE5 combination mutants to increasing doses of Vardenafil was tested. HCT116 cells transduced with hPDE5 constructs were treated with Vardenafil for 24 hours at doses ranging from 0.04 μM to 30 μM. Mean fluorescence intensity (MFI) was measured by FACS. Parental HCT116 and cells expressing OT-001216 comprising hPDE5 wildtype construct were also included as controls. The response of the combination mutants to Vardenafil was compared to the response of the single mutant construct OT-001217. The stabilization ratio was calculated as the fold change in GFP intensity in Vardenafil treated samples compared to treatment with DMSO (i.e. in the absence of ligand) with the same construct. The destabilizing mutation coefficient ratio was calculated as the fold change in GFP intensity in the hPDE5 mutant constructs compared to the hPDE5 wildtype construct (OT-001216) in the absence of the ligand. Destabilizing mutation co-efficient ratios less than 1 are desirable. Stabilization ratios greater than 1 are desired in DDs. The results and stabilization ratios are presented in Table 28.









TABLE 28







Vardenafil dose response of combination mutants












OT-001216
OT-001217
OT-001222
OT-001223

















Stabi-

Stabi-

Stabi-

Stabi-


Dose (μM

lization

lization

lization

lization


Vardenafil)
MFI
ratio
MFI
ratio
MFI
ratio
MFI
ratio


















DMSO
62116

7829

7694

5156



30
70898
1.14
75323
9.62
46109
5.99
55843
10.83


10


39089
4.99
29971
3.90
35191
6.83


3.33


35564
4.54
29520
3.84
40408
7.84


1.11


30879
3.94
12634
1.64
32868
6.37


0.37


24847
3.17
6667
0.87
14543
2.82


0.12


16866
2.15
7314
0.95
10676
2.07


0.04


14745
1.88
6174
0.80
5497
1.07









As shown in Table 28, the stabilization ratios for OT-001223 construct obtained across multiple doses of Vardenafil were higher than the single mutant OT-001217 construct. The combination mutant 025, achieved stabilization ratios much lower than the OT-001223 construct for any given ligand dose. The destabilizing mutation coefficient obtained for the OT-001217 (ratio=0.13), OT-001222 (ratio=0.12), and OT-001223 (ratio=0.08) indicate that all constructs are destabilized in the absence of the ligand. These data indicate that the combination mutant OT-001223 is strong DD candidate when the stabilizing ligand is Vardenafil.


The response of hPDE5 combination mutants to increasing doses of Tadalafil was tested. HCT116 cells transduced with hPDE5 constructs were treated with Tadalafil for 24 hours at doses ranging from 0.14 to 100 μM. Mean fluorescence intensity (MFI) was measured by FACS. Parental HCT116 and cells expressing OT-001216 comprising hPDE5 wildtype construct were also included as controls. The response of the combination mutants to Tadalafil was compared to the response of the single mutant construct OT-001217. The stabilization ratio was calculated as the fold change in GFP intensity in Tadalafil treated samples compared to treatment with DMSO (i.e. in the absence of ligand) with the same construct. The destabilizing mutation coefficient was calculated as the fold change in GFP intensity in the hPDE5 mutant constructs compared to the hPDE5 wildtype construct (OT-001216) in the absence of the ligand. Destabilizing mutation coefficient less than 1 are desirable. Stabilization ratios greater than 1 are desired in DDs. The results and stabilization ratios are presented in Table 29.









TABLE 29







Tadalafil dose response of combination mutants












OT-001216
OT-001217
OT-001222
OT-001223

















Stabi-

Stabi-

Stabi-

Stabi-


Dose (μM

lization

lization

lization

lization


Vardenafil)
MFI
ratio
MFI
ratio
MFI
ratio
MFI
ratio


















DMSO
36453

3806

6043

3746



100
58468
1.60
34041
8.94
23542
3.90
30029
8.02


33.33


44713
11.75 
20464
3.39
30028
8.02


11.11


30641
8.05
13789
2.28
24499
6.54


3.7


26480
6.96
9515
1.57
17317
4.62


1.23


20458
5.38
8634
1.43
9283
2.48


0.41


13206
3.47
6141
1.02
6044
1.61


0.14


8512
2.24
5768
0.95
4682
1.25









As shown in Table 29, the stabilization ratios for OT-001223 construct obtained across multiple doses of Tadalafil were higher than the single mutant OT-001217 construct, except at the 100 μM concentration of the drug. The combination mutant OT-001222, achieved stabilization ratios much lower than the OT-001223 construct for any given ligand dose. The destabilizing mutation coefficient obtained for the OT-001217 (ratio=0.1), OT-001222 (ratio=0.17), and OT-001223 (ratio=0.1) indicate that all constructs are destabilized in the absence of the ligand. These data indicate that the combination mutant OT-001223 is strong DD candidate when the stabilizing ligand is Tadalafil.


The stabilization ratios obtained for the highest concentrations of all three ligands, Sildenafil, Vardenafil and Tadalafil for each of the constructs were compared and are shown Table 30.









TABLE 30







Comparative analysis of hPDE5 ligands









Stabilization ratio











Ligand
OT-001216
OT-001217
OT-001222
OT-001223














Sildenafil
1.22
7.78
2.5
9.85


(30 μM)


Vardenafil
1.14
9.62
5.99
10.83


(30 μM)


Tadalafil
1.60
8.94
3.9
8.02


(100 μM)









As shown in Table 30, based on the stabilization ratios it was evident that OT-001223 was effectively stabilized by all three ligands, in comparison to both the single mutant construct as well as the other combination mutant construct (OT-001222). Both combination mutants were most effectively stabilized by Vardenafil, which is the most potent inhibitor of hPDE5. Construct OT-001222 was stabilized more effectively by Tadalafil than Sildenafil, although only by a small margin—this observation is noteworthy as Sildenafil is a much stronger inhibitor of hPDE5 than Tadalafil


The response of hPDE5 combination mutants to increasing duration treatment with sildenafil was tested. HCT116 cells transduced with hPDE5 constructs were treated with Sildenafil at 0.5 or 5 μM for 0-72 hours. Mean fluorescence intensity (MFI) was measured by FACS. The response of the combination mutants to Sildenafil was compared to the response of the single mutant construct OT-001217. The stabilization ratio was calculated as the fold change in GFP intensity in Sildenafil treated samples compared to treatment with DMSO (i.e. in the absence of ligand) with the same construct. The destabilizing mutation coefficient was calculated as the fold change in GFP intensity in the hPDE5 mutant constructs compared to the hPDE5 wildtype construct (OT-001216) in the absence of the ligand. Destabilizing mutation coefficient less than 1 are desirable. Stabilization ratios greater than 1 are desired in DDs. The results and stabilization ratios for time course experiments with 5 or 0.5 μM are presented in Table 31 and Table 32 respectively.









TABLE 31







Response to Sildenafil (5 μM) over time











OT-001217
OT-001222
OT-001223















Stabi-

Stabi-

Stabi-


Time

lization

lization

lization


(hours)
MFI
ratio
MFI
ratio
MFI
ratio
















0
2668

3364

2769



72
58479
21.92
26995
8.02
90413
32.65


48
46604
17.47
22061
6.56
65233
23.56


24
20955
7.85
16705
4.97
27962
10.10


20
15529
5.82
13280
3.95
21603
7.80


16
14855
5.57
12280
3.65
17600
6.36


12
9097
3.41
9199
2.73
10451
3.77


8
5672
2.13
7021
2.09
6179
2.23


4
4236
1.59
6314
1.88
4266
1.54
















TABLE 32







Response to Sildenafil (0.5 μM) over time











OT-001217
OT-001222
OT-001223















Stabi-

Stabi-

Stabi-


Time

lization

lization

lization


(hours)
MFI
ratio
MFI
ratio
MFI
ratio
















0
2727

3245

2611



72
58786
21.56
6906
2.13
31835
12.19


48
45754
16.78
6682
2.06
27231
10.43


24
20524
7.53
6144
1.89
17848
6.84


20
16142
5.92
6003
1.85
13318
5.10


16
14469
5.31
5600
1.73
11390
4.36


12
9058
3.32
5122
1.58
8126
3.11


8
5461
2.00
5083
1.57
5742
2.20


4
4127
1.51
5322
1.64
3870
1.48









As shown in Table 31 and Table 32, the stabilization ratios for OT-001223 construct obtained over time at 5 μM dose of Sildenafil were higher than the single mutant OT-001217 construct. However, this pattern was reversed at lower dose of 0.5 μM where the single mutant construct showed greater stabilization. The combination mutant OT-001222, achieved stabilization ratios much lower than the OT-001223 construct for both ligand doses at any given time. These data indicate that the choice of a suitable DD may sometime depend on the duration of the ligand treatment desired as well as the concentration of the ligand that is available for use in a system.


Example 6. Vardenafil Dose Response Curve in hPDE5 Mutants

Combination mutants were generated as described in Example 9. The response of hPDE5 combination mutants to increasing doses of Vardenafil was tested in HCT116 cells transduced with hPDE5 constructs were treated with Vardenafil for 48 hours at doses ranging from 0.1 to 10 μM or vehicle control (DMSO). Mean fluorescence intensity (MFI) of GFP was measured by FACS. The response of the combination mutants to Vardenafil was compared to the response of the single mutant construct OT-001217. The fold change in MFI over DMSO is presented in Table 33.









TABLE 33







Vardenafil dose response












Sildenafil (μM)
OT-001217
OT-001222
OT-001223
















0.01
4026
4444
3815



0.04
6970
4934
3839



0.12
14832
5133
4870



0.37
26429
5007
8107



1.11
34932
5751
21857



3.33
49739
10516
49105



10.00
51306
24927
64734










As shown in Table 33, the ligand dependent stabilization obtained for OT-001217 construct was observed at lower doses i.e. 0.1 and 0.3 micro molar concentrations of Vardenafil compared to the other two constructs, indicating that very low doses of the ligand are sufficient to stabilize this hPDE5 mutant. The OT-001223 construct did not show ligand dependent stabilization at similar doses. However, at the highest dose of Vardenafil the GFP expression obtained was much higher than OT-001217. In contrast, OT-001222 showed very little expression of GFP at lower doses and only modest GFP expression compared to the other two constructs at the higher doses. These experiments indicate that combination of single hPDE5 DD mutations produces synergistic effects not predicted by the properties of the single mutants. Thus, based on the properties of the payload of interest and the expression levels desired, suitable hPDE5 DDs may be selected.


Example 7. Sildenafil and Tadalafil Dose Response Curve in hPDE5 Mutants

Combination mutations were generated as previously described in Example 9. The response of HCT 116 cells expressing hPDE5 combination mutants to increasing doses ranging from 0.1 μM to 100 μM of Tadalafil and Sildenafil for 48 hours or vehicle control (DMSO) was tested. Mean fluorescence intensity (MFI) was measured by FACS. The response of the combination mutants to ligand treatment was compared to the single mutant construct, OT-001217. The MFI with ligand treatment is shown in Table 34 and Table 35.









TABLE 34







Tadalafil dose response












Tadalafil (μM)
OT-001217
OT-001222
OT-001223
















0.14
3616
4328
3720



0.41
5811
5002
3804



1.23
11694
5503
4810



3.70
24185
5744
7893



11.11
40380
8299
24617



33.33
57233
15831
52927



100.00
72587
31020
84334

















TABLE 35







Sildenafil dose response












Sildenafil (μM)
OT-001217
OT-001222
OT-001223
















0.14
3771
4398
3401



0.41
5463
4832
3681



1.23
10479
5031
4477



3.70
22441
4974
7625



11.11
35561
5675
24104



33.33
52029
9677
51416



100.00
101226
37494
136010










As shown in Table 34 and 35, ligand dose dependent stabilization was obtained with all three constructs. The dose dependent stabilization at lower doses (e.g., up to 11 μM of Sildenafil and Tadalafil) is more evident in the single mutant construct, OT-001217, compared to the other two constructs. At higher concentrations of ligand, both OT-001222 and OT-001223 showed ligand dependent stabilization. In fact, OT-001223 construct demonstrated much higher MFI values at 33 and 100 μM, compared to both OT-001217 and OT-001222. These experiments indicate that combination of single hPDE5 DD mutations produces synergistic effects not predicted by the properties of the single mutants. Thus, suitable hPDE5 DDs may be selected based on the properties of the payload of interest and the expression levels desired,


Example 8. Kinetics of hPDE5 Mutants

The off kinetics of hPDE5 mutants, OT-001217 and OT-001223 was tested by treating HCT 116 cells expressing these constructs or the wild type control construct OT-001216. Cells were treated with ligand for 48 hours. The media containing the ligand was removed and fresh media without the ligand was added. MFI was analyzed by FACS at 0 hours (i.e., prior to the beginning of the experiment), 48 hours after ligand treatment, as well as at several time points after the ligand washout, up until 96 hours. The stabilization ratio was calculated as the fold change in GFP intensity in ligand treated samples compared to the GFP intensity in the absence of ligand with the same construct. The results are shown in Table 36.









TABLE 36







Off-Kinetics











OT-001217
OT-001223
OT-001216 (WT)















Stabi-

Stabi-

Stabi-


Time

lization

lization

lization


(hrs)
MFI
ratio
MFI
ratio
MFI
ratio
















0
3675

3648

45512



48
71538
19.47
57105
15.65
102137
2.24


50
63832
17.37
41074
11.26
97225
2.14


52
51544
14.03
26926
7.38
96264
2.12


54
41800
11.37
16391
4.49
95410
2.10


56
25521
6.94
7700
2.11
81733
1.80


60
19598
5.33
5635
1.54
84323
1.85


72
8062
2.19
4062
1.11
70151
1.54


80
6427
1.75
3587
0.98
63208
1.39


96
4319
1.18
3443
0.94
55918
1.23









As shown in Table 36, the stabilization ratio of hPDE5 mutants decreased following removal of the ligand. The stabilization ratio values decreased more quickly in the combination mutant OT-001223 compared to OT-001217 construct suggesting the destabilization of the DD is achieved more quickly in the OT-001223 construct. The ligand dependent stabilization as indicated by the stabilization ratio, achieved with OT-001223 construct is lower than OT-001217 construct, which may also contribute to the superior off kinetics seen with the OT-001223 construct.


Example 9. Behavior of hPDE5 C Terminal Mutants

The ability of hPDE5 mutants to tune the expression of payloads when appended to the C terminal of the payload was tested. OT-001226 was compared to OT-001232. NIH 3T3 cells were incubated with varying doses of Sildenafil or Vardenafil for 48 hours and MFIs were analyzed by FACS. The stabilization ratio was calculated as the fold change in GFP intensity in ligand treated samples compared to the GFP intensity in the absence of ligand with the same construct. The results are shown in Table 37.









TABLE 37







hPDES C-terminal mutant's response to Sildenafil and Vardenafil










OT-001226
OT-001232












Sildenafil
Vardenafil
Sildenafil
Vardenafil















Ligand

Stabi-

Stabi-

Stabi-

Stabi-


concentration

lization

lization

lization

lization


(nM)
MFI
ratio
MFI
ratio
MFI
ratio
MFI
ratio


















0
102



1476

1410



100
278
2.73
971
 9.34
1639
1.11
1614
1.14


300
562
5.51
1165
11.20
1648
1.12
1656
1.03


1000
1039
10.19
1235
11.88
1780
1.21
1686
1.02


3000
1276
12.51
1299
12.49
1784
1.21
1721
1.02


10000
1442
14.14
1309
12.59
1888
1.28
1721
1.00









As shown in Table 37, OT-001226 construct showed stabilization ratios greater than one, indicating that both Vardenafil and Tadalafil ligand could stabilize GFP expression. As expected, the wildtype construct, OT-001232 did not stabilization much greater than one, indicating that virtually no stabilization was achieved with the wildtype construct.


GFP expression was also measured at 24 and 48 hours to monitor the dependence of hPDE5-DD GFP constructs on the duration of ligand exposure. The results are shown in Table 38 and Table 39.









TABLE 38







Dose response of hPDE5 C-terminal mutants with Sildenafil treatment










OT-001226
OT-001232












24 hours
48 hours
24 hours
48 hours















Sildenafil

Stabi-

Stabi-

Stabi-

Stabi-


concentration

lization

lization

lization

lization


(nM)
MFI
ratio
MFI
ratio
MFI
ratio
MFI
ratio


















0
108

102

1385

1476



100
243
2.25
278
2.73
1495
1.08
1639
1.11


300
380
3.52
562
5.51
1565
1.13
1648
1.12


1000
575
5.32
1039
10.19
1669
1.21
1780
1.21


3000
666
6.17
1276
12.51
1831
1.32
1784
1.21


10000


1442
14.14


1888
1.28
















TABLE 39







Dose response of hPDES C-terminal mutants with Vardenafil treatment










OT-001226
OT-001232












24 hours
48 hours
24 hours
48 hours















Vardenafil

Stabi-

Stabi-

Stabi-

Stabi-


concentration

lization

lization

lization

lization


(nM)
MFI
ratio
MFI
ratio
MFI
ratio
MFI
ratio


















0
108

104

1360

1410



100
684
6.33
971
 9.34
1439
1.06
1614
1.14


300
761
7.05
1165
11.20
1730
1.27
1656
1.17


1000
863
7.99
1235
11.88
1721
1.27
1666
1.18


3000
856
7.93
1299
12.49
1606
1.18
1721
1.22


10000
889
8.23
1309
12.59
1678
1.23
1721
1.22









Consistent with the responses measured at 48 hours, the responses measured at 24 hours showed that the hPDE5 mutant construct stabilized GFP expression as evidenced by the stabilization ratios greater than one, while the wildtype construct, OT-001232 showed stabilization ratios around 1, indicating no ligand dependent stabilization. Results were consistent between Sildenafil and Vardenafil treatment. It was noted that the stabilization ratios obtained at 48 hours was much greater than the values obtained at 24 hours suggesting, a time dependent stabilization of GFP expression. Similar results were obtained by western blot analysis using a GFP antibody. At 0.1 μM sildenafil, modest stabilization of GFP protein levels was observed via western blot. The stabilization of GFP increased when the cells were treated with 1 μM sildenafil Both 0.1 μM and 1 μM dose of vardenafil showed stabilization of GFP levels. These trends were observed both at 24 hours and 48 hours. All comparisons were made against cells that were not treated with either ligand.


The response of hPDE5C terminal mutants to lower doses of Vardenafil was also tested and is shown in Table 40.









TABLE 40







Low dose response of hPDE5 C-terminal


mutants with Vardenafil treatment











Stabilization


Vardenafil (nM)
MFI
ratio












0
137



1
163
1.19


3
230
1.68


10
477
3.48


30
909
6.64


100
1417
10.34


1000
1789
13.06









As shown in Table 40, the hPDE5C terminal mutant showed a dose dependent stabilization even at lower doses of Vardenafil as indicated by the increase in the stabilization ratio. Thus, even low nano molar doses of Vardenafil are sufficient to induce ligand dependent stabilization of hPDE5 DD.


Example 10. Behavior of hPDE5 Luciferase Constructs

PDE5 derived DDs were appended to reporter payload such as luciferase to generate constructs OT-001227, OT-001228, OT-001229, and OT-001231 constructs. Such constructs may be useful to study in the dynamics of destabilization and stabilization of DDs in vivo. These constructs were transduced into HCT116 cells. Cells were seeded into 96 well plates at 2000 cells per well and incubated with 1 μM or DMSO Vardenafil for 48 hours. The luciferase activity was then measured using a plate reader assay. Parental untransduced cells were used as a control to measure the background fluorescence levels. The results are shown in Table 41. In Table 41, the stabilization ratio was calculated as the fold change in luciferase signal in Vardenafil treated samples compared to treatment with DMSO (i.e. in the absence of ligand) with the same construct. The destabilizing mutation coefficient was calculated as the fold change in GFP intensity in the hPDE5 mutant constructs compared to the hPDE5 wildtype construct (OT-001227) in the absence of the ligand. Destabilizing mutation coefficients less than 1 are desirable. Stabilization ratios greater than 1 are desired in DDs.









TABLE 41







Stability of Luciferase constructs














Destabilizing




Control

mutation
Stabilization


Construct
(DMSO)
Vardenafil
coefficient
ratio














Parental cells
1367.47
3824.04




OT-001227
85429.26
127499.78

1.49


OT-001228
88881.46
174814.64
1.04
1.97


OT-001229
53239.88
88918.04
0.62
1.67


OT-001231
96460.45
269718.66
1.13
2.80









The luciferase signal intensity observed in parental cells that did not express the construct indicated that some of the signal was likely background noise. Construct, OT-001229 showed the lowest destabilizing mutation coefficient indicating the construct is destabilized. Increase in stabilization ratios was observed with all constructs including the wildtype hPDE5 construct, OT-001227. Construct OT-001231 showed the highest stabilization ratio indicating the strongest ligand dependent stabilization. Among the constructs tested, OT-001229 showed destabilization in the absence of ligand and stabilization in the presence of ligand.


Example 11. Mutagenesis of the Amino Acid 732 of hPDE5

The analysis of mutants identified by site directed mutagenesis identified amino acid hotspots whose mutation confers destabilization and ligand dependent stabilization properties to hPDE5. The amino acid at position 732 was chosen for the further analysis since the hPDE5 (R732L) mutation possessed the properties described above. To improve the DD characteristics of this DD, the amino acid at the position 732 was mutated to any of the known amino acids, including, but not limited to, aspartic acid, glutamic acid, glutamine, asparagine, histidine, serine, threonine, tyrosine, cysteine, methionine, tryptophan, alanine, isoleucine, leucine, phenylalanine, valine, proline, and glycine. The library of mutations was generated by site directed mutagenesis and each of the mutants in the library was fused to a reporter protein e.g. AcGFP via a linker and transduced into HCT116 cells. The properties of the DDs were analyzed in the presence and absence of ligands via FACS as previously described. Ligands that were evaluated included, but not limited Sildenafil, and Vardenafil. The results are shown in Table 42 and Table 43.









TABLE 42







Ligand responsive behavior of hotspot constructs










Vardenafil
Sildenafil














0 μM

0 μM



Construct
Mutation
(DMSO)
1 μM
(DMSO)
10 μM





OT-001075

161
294
989
219


OT-001084
R732L
182
173
143
122


OT-001186
R732G
176
854
298
288


OT-001187
R732A
175
853
288
348


OT-001188
R732V
150
507
189
113


OT-001189
R732I
151
587
201
170


OT-001190
R732P
355
310
379
361


OT-001191
R732F
189
943
233
351


OT-001192
R732W
301
179
248
158


OT-001193
R732Y
302
345
397
648


OT-001195
R732H
308
328
352
710


OT-001196
R732S
566
399
760
746


OT-001197
R732T
235
270
276
546


OT-001198
R732D
294
422
298
394


OT-001199
R732E
276
212
295
316


OT-001200
R732Q
305
289
353
553


OT-001201
R732N
313
290
315
516


OT-001202
R732M
316
337
285
503


OT-001203
R732C
526
349
499
707


OT-001204
R732K
113
423
165
765
















TABLE 43







Stabilization ratio and Destabilizing mutation


coefficient of hotspot constructs










Vardenafil
Sildenafil














Destabilizing
Stabi-
Destabilizing
Stabi-




mutation
lization
mutation
lization


Construct
Mutation
coefficient
ratio
coefficient
ratio















OT-001075


1.83

0.22


OT-001084
R732L
1.13
0.95
0.14
0.85


OT-001231
R732G
1.09
4.85
0.3
0.97


OT-001187
R732A
1.09
4.87
0.29
1.21


OT-001188
R732V
0.93
3.38
0.19
0.6


OT-001189
R732I
0.94
3.89
0.2
0.85


OT-001190
R732P
2.2
0.87
0.38
0.95


OT-001191
R732F
1.17
4.99
0.24
1.51


OT-001192
R732W
1.87
0.59
0.25
0.64


OT-001193
R732Y
1.88
1.14
0.4
1.63


OT-001195
R732H
1.91
1.06
0.36
2.02


OT-001196
R732S
3.52
0.7
0.77
0.98


OT-001197
R732T
1.46
1.15
0.28
1.98


OT-001198
R732D
1.83
1.44
0.3
1.32


OT-001199
R732E
1.71
0.77
0.3
1.07


OT-001200
R732Q
1.89
0.95
0.36
1.57


OT-001201
R732N
1.94
0.93
0.32
1.64


OT-001202
R732M
1.96
1.07
0.29
1.76


OT-001203
R732C
3.27
0.66
0.5
1.42


OT-001204
R732K
0.7
3.74
0.17
4.64









The destabilizing mutation coefficients and stabilization ratios obtained for each construct with the indicated ligands were analyzed to identify constructs which possessed the lowest destabilizing mutation coefficient ratio and a second sort of the data was then performed to identify constructs with the highest stabilization ratio. This analysis allowed the identification of constructs with both the lowest destabilizing mutation coefficient that also possessed the highest stabilization ratios. Based on this analysis, it was identified that virtually all mutants tested showed destabilizing mutation coefficients less than one for the DMSO control of Sildenafil treatment, indicating that all constructs are destabilized in the absence of sildenafil. In the presence of Sildenafil, OT-001204 construct with arginine to lysine substitution showed high sildenafil dependent stabilization ratio Similar analysis of the constructs with Vardenafil identified OT-001204, OT-001188, OT-001189, and OT-001187 as having a low destabilizing mutation coefficient and high-ligand dependent stabilization ratios. Other constructs with low destabilizing mutation coefficients and high stabilization ratios include OT-001189, OT-001187, OT-001191, OT-001197, and OT-001198.


The response of select mutants to increasing doses of Sildenafil, Vardenafil and Tadalafil was also tested in HCT 116 cells treated with the ligand for 48 hours. The MFI values obtained with each ligand treatment are shown in Table 44, Table 45 and Table 46.









TABLE 44







Vardenafil Dose Response












Vardenafil (μM)
OT-001187
OT-001189
OT-001191
OT-001197
OT-001198















0
2551
1810
2188
2854
4336


0.01
2551
1810
2188
2854
4336


0.04
8345
3356
8468
6862
7350


0.12
10946
4874
10941
13187
15637


0.37
13850
7855
12987
28895
25047


1.11
15202
11777
13754
33075
37828


3.33
16783
14531
14705
41788
44499


10
18945
17645
17021
48946
50822


30
22548
24322
20693
67364
70645


1000
22548
24322
20693
67364
70645
















TABLE 45







Sildenafil Dose Response












Sildenafil (μM)
OT-001187
OT-001189
OT-001191
OT-001197
OT-001198















0.01
808
579
688
856
1192


0.04
1025
612
916
1041
1270


0.12
1270
592
1205
1113
1337


0.37
1931
771
2002
1835
1867


1.11
2655
1040
2711
3355
3108


3.33
3769
1709
3555
6896
6171


10
4716
2733
4427
12407
13971


30
5694
4197
5449
21258
21120


1000
5694
4197
5449
21258
21120
















TABLE 46







Tadalafil Dose Response












Tadalafil (μM)
OT-001187
OT-001189
OT-001191
OT-001197
OT-001198















0.01
752
498
631
825
1163


0.14
1259
540
1193
1068
1361


0.41
2066
712
2075
1655
1548


1.23
3412
1041
3134
3433
2504


3.7
4690
1745
4294
6697
4821


11.11
5126
2746
4734
12843
10583


33.33
6264
3970
5293
17164
16956


100
6301
5487
5867
21113
22630


1000
6301
5487
5867
21113
22630









OT-001197 with an arginine to threonine substitution showed the strongest increase in GFP expression at the highest dose, with all three ligands tested. At doses lower than 1 μM of Vardenafil, all constructs showed ligand dependent stabilization. At doses of Sildenafil lower than 1 μM, OT-001191, OT-001197 and OT-001198 showed ligand dependent stabilization. With doses of Tadalafil lower than 1 μM, OT-001187, OT-001191 and OT-001197 showed ligand dependent stabilization. By mutagenesis of the R732 locus, DDs with a variety of properties were obtained. The selection of a particular DD may be made based on the payload utilized and the extent of expression desired with the payload. The EC50 values for each of the constructs with each of the ligands is shown in Table 47.









TABLE 47







EC50 for Hotspot Mutants












Ligand
OT-001187
OT-00U89
OT-001191
OT-00U97
OT-00U98















Vardenafil
0.30
2.20
0.28
1.47
1.44


Sildenafil
2.08
6.90
1.76
7.50
7.04


Tadalafil
1.45
14.28
1.33
8.64
14.54









These results are consistent with the western blot analysis of GFP protein levels in HCT 116 cells stably transduced with these mutants. The following constructs showed a strong stabilization of GFP levels in the presence of vardenafil and when compared to DMSO controls: OT-001084, OT-001231, OT-001187, OT-001190, OT-001192, OT-001193, OT-001195, OT-001196, OT-001197, OT-001198, OT-001199, OT-001200, OT-001201, OT-001202, and OT-001203. Modest ligand dependent stabilization of GFP levels was observed with OT-001188, OT-001189, OT-001191, and OT-001204. All samples showed equal protein loading as measured by GAPDH protein levels.


Example 12: Dynamic Range of hPDE5 Regulation

HCT116 cells were transduced with hPDE5-GFP constructs, OT-001205, OT-001206, OT-001207, and OT-001253 and incubated with the indicated concentrations of ligand for 48 hours. GFP fluorescence was measured by FACS. The fold change in GFP expression over untreated DMSO control is shown in Table 48, Table 49 and Table 50 for vardenafil, sildenafil and tadalafil respectively.









TABLE 48







Vardenafil dose response











Vardenafil (log)
OT-001205
OT-001206
OT-001207
OT-001253














1.477
20.664
13.612
4.507
16.171


1.000
18.207
12.030
2.178
13.462


0.523
18.327
10.260
1.277
13.230


0.046
17.229
7.465
1.078
12.550


−0.431
16.143
4.374
1.022
11.992


−0.908
13.764
2.258
1.025
9.770


−1.386
10.108
1.323
1.015
5.477


−1.863
4.673
0.834
1.030
2.303


−2.340
2.575
0.741
1.034
1.412


−2.817
1.744
0.725
1.047
1.105
















TABLE 49







Sildenafil dose response











Sildenafil (log)
OT-001205
OT-001206
OT-001207
OT-001253














2.000
11.370
14.212
1.909
11.290


1.523
12.925
15.247
1.509
13.091


1.046
12.066
10.028
1.212
12.344


0.569
10.587
5.408
1.091
10.615


0.092
9.190
2.822
0.995
8.165


−0.386
6.849
1.640
1.040
5.536


−0.863
4.225
1.249
0.993
2.540


−1.340
2.295
1.106
1.007
1.397


−1.817
1.434
1.025
1.013
1.134


−2.294
1.136
1.024
0.966
0.997
















TABLE 50







Tadalafil dose response











Tadalafil (log)
OT-001205
OT-001206
OT-001207
OT-001253














2.000
12.074
14.919
1.498
12.606


1.523
11.481
13.740
1.224
11.910


1.046
9.897
8.083
1.011
11.144


0.569
8.403
4.360
0.945
9.902


0.092
5.445
2.312
0.973
7.992


−0.386
2.725
1.472
0.907
5.049


−0.863
1.563
1.225
0.946
2.887


−1.340
1.121
1.034
0.938
1.402


−1.817
1.095
1.013
0.976
1.077


−2.294
1.045
0.985
0.942
1.064









As shown in Table 48, Table 49 and Table 50, dynamic regulation of hPDE5 DDs was observed with OT-001205, OT-001206, and OT-001207. The hPDE5 wildtype construct shown little to no ligand dependent stabilization with all three ligands. The stabilization concentration 50 or (SC50), which is the concentration of ligand required to achieve 50% stabilization, was also calculated for all four constructs with each of the ligands and the results are shown Table 51.









TABLE 51







Stabilization Concentration 50 (SC50) of hPDE5 DPs











Ligand
OT-001205
OT-001206
OT-001207
OT-001253














Vardenafil
0.04
1.15
>30
0.07


Sildenafil
0.38
6.82
>30
0.67


Tadalafil
1.97
9.54
>100
0.77









Taken together these results indicate that structure-guided mutagenesis of ligand-binding site in PDE5 generates 23 nM ligand-DD interaction. OT-001205 with Y612F, R732L, was able to bind to Vardenafil with SC50, of 23 nM suggesting potent DD-ligand interaction.


Example 13. DD Regulated CD19 CAR Expression and Function

Immunotherapeutic payloads of the disclosure such as CD19 CAR were fused to any of the DDs described herein and cloned into expression vectors pLVX and pELNS vectors. In this manner, OT-001300 (hPDE5 (WT)) and OT-001301 (hPDE5(R732L)). The HA tag was added to enable the easy detection of the chimeric proteins.


To test ligand dependent CD19 CAR production, NIB 3T3 cells were transiently transfected with the constructs. Cells were then plated in a growth media e.g. DMEM with 10% FBS and incubated overnight at 37° C., 5% CO2. The growth media was exchanged for media containing ligand, at various concentrations of Vardenafil ranging from 30 nM to 10,000 nM. Following 48-hour incubation with ligand, cells were analyzed by FACS using the HA antibody and the mean fluorescence intensity (MEI) was calculated. The results are shown in Table 52, where the stabilization ratio was defined as the ratio of expression, function or level of a protein of interest, i.e. CD19 CAR in response to the stimulus, i.e. Vardenafil; to the expression, of the CD19 CAR in the absence of the stimulus, i.e. DMSO control. Stabilization ratios greater than one are desired.









TABLE 52







CD19 CAR expression











OT-001300
OT-001301 (R732L)













Vardenafil
(WT)

Stabilization



(nM)
MFI
MFI
ratio
















0
0
1336




30
9125
3066
2.29



100
9592
4674
3.50



300
10509
5732
4.29



1000
10328
6738
5.04



10000
9285
3931
2.94










As shown in Table 52, a stabilization ration greater than 1 was observed with all doses of Vardenafil, and even with the lowest concentration of Vardenafil (30 nM) suggesting that low doses of ligand may be sufficient to achieve ligand dependent stabilization. It was also noted that the stabilization ratio obtained at the highest concentration of ligand i.e. 10,000 nM was lower than the ratio obtained with 1000 nM ligand suggesting a bimodal pattern of stabilization.


The dose dependent regulation of OT-001300 and OT-001301 was measured in HEK 293 cells transfected with 2 ug DNA and stably selected using 2 ug/ml puromycin. CAR surface expression was detected using Protein L staining following 24 hours of ligand treatment at the indicated concentrations. The median Protein L fluorescence is shown in Table 53.









TABLE 53







Ligand dose dependent CAR expression











Tadalafil
Sildenafil
Vardenafil



















Empty


Empty


Empty


Ligand
OT-
OT-
Vector
OT-
OT-
Vector
OT-
OT-
Vector


(nM)
001300
001301
(pLVX)
001300
001301
(pLVX)
001300
001301
(pLVX)



















0.15
21122
4064
77
14703
2848
89.8
17946
4202
87.9


0.46
15335
3501
75.8
15335
3304
87
17746
4064
92


1.39
14662
3501
78.8
13143
3250
83.9
16175
4604
89.8


4.22
14377
3341
77
13901
2810
85.7
16450
5977
93.9


12.79
10773
3599
78.8
9419
2976
81.8
17646
9210
92


38.74
14098
4042
80
12083
3268
84.8
16175
13329
94.8


117.41
18354
6302
77
15037
3589
83
19856
20594
93.9


355.78
13785
11235
72.9
13901
5274
83.9
22406
23175
95.8


1078.11
18200
15640
80
13708
8054
88.8
22343
31138
97.7


3267.00
15950
21301
75.8
14337
13291
84.8
24933
31226
100


9900.00
21421
24654
75.8
17746
23371
84.8
26824
36249
110


30000.00
27902
33691
77
25003
25215
84.8
30617
35945
140









As shown in Table 54, Table 55 and Table 56, only OT-001301 responded to increasing doses of ligand with increase surface CAR expression, but not the WT construct OT-001300. This was observed with all three ligands. However, the highest levels of CAR expression were observed with increasing doses of vardenafil. The EC50 for vardenafil, tadalafil and sildenafil were determined to 25 nM, 380 nM, and 1500 nM respectively.


Cells were also treated with ligand for varying durations of time with ligand concentrations shown in Table 54 and Protein L expression was measured using FACS. The results are shown in Table 55 and Table 56. Stabilization ratios are shown in Table 58.









TABLE 54







Time dependent increase in CAR expression with Vardenafil











Vardenafil 10 μM
Vardenafil
DMSO















Empty


1 uM


Empty



Vector
OT-
OT-
OT-
OT-
OT-
Vector


Hours
(pLVX)
001300
001301
001301
001300
001301
(pLVX)

















0
1412
5188
1486
65.9
5060
1386
71.9


2
2863
11643
2918
78.7
5545
1270
71


4
3654
11258
3526
76.8
5408
1274
71.9


24
6624
10439
8005
83.7
5845
1241
71


48
7764
8118
8489
93.8
6128
1287
71


72
9282
7961
9788
92.8
6442
1329
65.9
















TABLE 55







Time dependent increase in CAR expression with Tadalafil and Sildenafil












Tadalafil 10 μM
Tadalafil
Sildenafil 10 μM
Sildenafil
















Empty


1 μM
Empty


1 μM



Vector
OT-
OT-
OT-
Vector
OT-
OT-
OT-


Hours
(pLVX)
001300
001301
001301
(pLVX)
001300
001301
001301


















0
65
4909
1336
1368
62.8
5469
1534
1372


2
65
5911
2778
2451
65
8536
2801
2278


4
65
6196
3032
2950
63.7
8560
3256
2617


24
65
8608
6606
4346
62.8
8118
5499
3159


48
62.8
8827
7384
4683
62.8
7404
5927
3283


72
58.7
8118
8050
6027
58.7
6111
5188
3506
















TABLE 56







Time dependent increase in CAR expression















Tadalafil

Sildenafil
Vardenafil




Tadalafil 10 μM
1 μM
Sildenafil 10 μM
1 μM
10 μM
Vardenafil 1 μM
















Time
OT-
OT-
OT-
OT-
OT-
OT-
OT-
OT-
OT-


(hrs)
001300
001301
001301
001300
001301
001301
001300
001301
001301



















0
0.97
0.96
0.99
1.08
1.11
0.99
1.03
1.07
0.05


2
1.07
2.19
1.93
1.54
2.21
1.79
2.10
2.30
0.06


4
1.15
2.38
2.32
1.58
2.56
2.05
2.08
2.77
0.06


24
1.47
5.32
3.50
1.39
4.43
2.55
1.79
6.45
0.07


48
1.44
5.74
3.64
1.21
4.61
2.55
1.32
6.60
0.07


72
1.26
6.06
4.53
0.95
3.90
2.64
1.24
7.36
0.07









The analysis of the stabilization ratios indicated that OT-001301 is stabilized by all three ligands with increased duration of incubation time with ligand. As expected, 10 μM dose of ligand showed much greater expression of CAR than the 1 μM dose. Regulation was evident even at the lower doses.


Constructs OT-001455, OT-001456 and OT-001457 were cloned into pELNS vectors and transduced into T cells. Three different volumes of lentiviral supernatant were tested on cells i.e. 1 μl, 10 μl and 20 μl. Following transduction, cells were treated with 10 μA4 Vardenafil or left untreated for 24 hours beginning on day 4. Untransduced cells were also included as negative control. On day 5, the percentage CAR positive cells were measured by FACS using 1 μg/ml CD19 Fc. The results are shown in FIG. 7A.


As shown in FIG. 7A, all three constructs showed a viral dose dependent increase in the percentage of CAR positive cells, in the presence of Vardenafil. Although similar trends were observed in untreated controls, the percentage of CAR positive cells observed with no vardenafil treatment was substantially lesser than the vardenafil treated controls. Among the three constructs, OT-001457 showed lowest basal expression of the CAR in the absence of ligand and the highest percentage of CAR positive cells in the presence of vardenafil. Similar observations were made when comparing the percentage CAR positive cells obtained with different constructs using 20 μl of virus as shown in FIG. 7B, where a shift in the number of cells that are CAR positive was observed in vardenafil treated cells (labelled treatment) compared to untransduced as well as untreated cells.


T cells maintained in culture for over 10 days reach quiescence and accordingly T cells transduced with OT-001456 did not show vardenafil dependent CAR expression at day 11. However, restimulation of the same T cells on day 11 with CD3/CD28 beads (at 3:1 bead: cell ratio, for 24 hours concomitant with ligand treatment) restored vardenafil dependent CAR expression in T cells transduced with 20 μl of virus (FIG. 7C). The effect of restimulation on the expression of the CAR was evident at all concentrations of the virus tested FIG. 7D. Taken together, these data show that CD19 CARs operably linked to hPDE5 DDs demonstrate ligand dependent CAR expression. Further, ligand responsiveness and subsequent CAR expression may be restored in quiescent T cells by restimulation with CD3/CD28 beads.


To test the effect on different ligands on hPDE5-CAR constructs, the constructs were packaged into plasmids and transduced into T cells using 10 μl of virus. On day 9, T cells expressing either OT-001454, OT-001455, OT-001456 or OT-001457 were treated with varying doses of ligand ranging from 0.1 nM to 10 μM for 24 hours. The constitutive construct OT-001407 was included as the positive control, and the cells transduced with the empty vector (pELNS) served as the negative control. Three different ligands for hPDE5 were tested including, Sildenafil, Tadalafil and Vardenafil. Cells were analyzed by FACS and sorted for singlets/live CAR positive cells. The results are shown in FIG. 7E. Among the three ligands tested, all constructs were most responsive to Vardenafil, followed by Tadalafil and Sildenafil. As seen previously, the OT-001456 and OT-001457 showed lower basal expression, and had the higher EC50 values than the other constructs. The experiments were repeated with the OT-001456 construct by transducing T cells with different volumes of virus transduced into T cells using 10 μL, 2∞L, 0.4 μL, or 0.08 μL of virus and the CAR expression was measured by FACS, both in the presence of all three ligands and in the absence of the ligands. The results are shown in Table 57, where “basal % CAR+” indicates the percentage of CAR positive cells in the absence of ligand, and the “Max % CAR+,” indicates the maximum expression of the CAR in the presence of ligand. The EC50 is defined as the concentration of a drug/ligand that gives half-maximal response. The response herein refers to the expression of the chimeric antigen receptor.









TABLE 57







hPDE5 regulation of CD19-CAR














Virus
Basal %
Max %
Vardenafil
Tadalafil
Sildenafil


Construct
Volume (uL)
CAR+
CAR+
EC50 (nM)
EC50 (nM)
EC50 (nM)
















Empty vector (pELNS)
1
0.2
0.2





OT-001407
1
30.0
30.0





OT-001456
10
3.6
37.5
140.0
1312.2
>10000.0


OT-001456
2
2.0
29
157.0
1402.8
>10000.0


OT-001456
0.4
0.9
16.1
197.7
2511.9
>10000.0


OT-001456
0.08
0.4
5.0
220.8
1857.8
>10000.0









Among the three ligands tested, higher transduction volume increased the maximum CAR expression level achieved, but did not alter ligand EC50 values.


To test how rapidly hPDE5-CAR can be stabilized with ligand, the indicated constructs were tested in T cells. T cells from donor were thawed and activated overnight in the presence of CD3/CD28 Dynabeads at a 3:1 bead: cell ratio. The following day, cells were transduced with 10 μL lentivirus prepared from OT-001407, OT-001454, OT-001455, OT-001456, and OT-001457 constructs. Cells were expanded by addition of fresh media over the course of 10 days, maintaining cells around 0.5×10{circumflex over ( )}6 cells/mL, then frozen. Expanded T cells were thawed and restimulated with CD3/CD28 beads for 48 hours. Cells were treated with 10 μM Tadalafil or Vardenafil at various times such that all conditions received 48 hr of bead stimulation with either 0, 2, 4, 6, 24, or 48 hours of ligand treatment. CAR surface expression was measured with 1 μg/mL CD19-Fc. The results are shown in FIG. 7F. In activated T cells, CAR surface expression occurred at nearly maximum levels by 2 hours after ligand addition.


To test whether CD19-CARs showing regulated expression also show regulated cytotoxicity, transduced T cells were tested in a cytotoxicity assay against the CD19-expressing Nalm6 tumor cell line, T cells from a human donor were thawed and activated overnight in the presence of CD3/CD28 Dynabeads at a 3:1 bead: cell ratio. The following day, cells were transduced with 10 μL lentivirus from OT-001407, OT-001454, OT-001455, OT-001456, and OT-001457. Cells were expanded by addition of fresh media over the course of 10 days, maintaining cells around 0.5×10{circumflex over ( )}6 cells/mL, then frozen. Expanded T cells were thawed and cocultured with CD19 expressing target cells, Nalm6-Katushka, at effector: target cell ratio of 10:1 for 6 days, in the absence or presence of Tadalafil. Images captured on the Incucyte Zoom were analyzed for proliferation of target cells by measuring red fluorescence over time (Total NucRed® Area). In the absence of ligand, i.e. DMSO, OT-001456 and OT-001457 showed target cell proliferation as measured by the increase in total NucRed area (red fluorescence). Constructs, OT-001455, OT-001454 showed very low levels of red fluorescence indicating basal activity that was comparable to the constitutively expressed CAR construct OT-001407. All constructs tested showed a reduction in red fluorescence when treated with either 3 μM Tadalafil or 10 μM Tadalafil that was comparable to the red fluorescence levels observed with the constitutively expressed CAR. As expected, the untransduced cells showed high levels of red fluorescence both in the presence and absence of ligand.


Constructs showing higher basal CAR expression in T cells, OT-001454 and OT-001455, inhibited target cell growth in the absence of tadalafil. T cells transduced with OT-001457, which had the highest Tadalafil EC50 in terms of CAR expression, required higher concentrations of ligand to generate an in vitro functional response.


To measure cytokine levels in T cells, supernatants from the previous coculture assay were harvested at 48 hours and analyzed for IFNγ and IL2 levels by MSD assay (Meso Scale Discovery's ELISA). The results are shown in FIG. 7G. The cytokine levels at the following effector to target cell rations: 10:1, 3:1, 1:1, 0.3:1, and 0.1:1. High levels of both IFNγ and IL2 are produced by OT-001456 transduced T cells when co-cultured with Nalm6 targets only in the presence of 3 μM Tadalafil, correlating with the cytotoxicity observed.


To confirm the cytotoxicity and cytokine secretion is directly related to CAR expression, OT-001456 transduced T cells were cocultured with Nalm6-Katushka target cells at 10:1 effector: target cell ratio for 6 days in the presence of a dose titration of Tadalafil from 10 μM to 10 nM. The fluorescence of Nalm6 cells was measured over a period of 6 days in response to the following doses of tadalafil: 0.01 μM, 0.04 μM, 0.12 μM, 0.37 μM, 1.11 μM, 3.33 μM, 10 μM. Tadalafil doses at 0.37 μM, 1.11 μM, 3.33 μM, 10 μM showed a reduction in Nalm6 proliferation over 6 days. Lower concentrations (<0.37 μM) tadalafil did not cause a reduction in Nalm6 fluorescence, in fact, Nalm6 cells continue to proliferate over the span of 6 days. Significant CAR expression was detected by FACS using CD19-Fc at Tadalafil concentrations at or above 300 nM. This CAR expression corresponded to Tadalafil dose-dependent cytotoxicity (FIG. 7H) and cytokine secretion of IFNγ and IL2 (FIG. 7I).


The functionality of the CAR transduced T cells was also tested in vitro. T cells were transduced with OT-001456 or the constitutive construct OT-001407. Cells were then frozen. Prior to the experiment, T cells were thawed overnight, and cocultured with Nalm6 target cells stably expressing Katushka RFP. Nalm6 cells express high levels of CD19 antigen and are hence ideal target cells in cell killing assay that test CD19 CAR constructs. T cells were mixed with Nalm6 cells at an effector cell to target cell (E: T) ratio of 5:1 for 12 hours in the presence of 10 μM vardenafil or DMSO. Target cell apoptosis was determined by measuring Annexin V fluorescence over time using the Incucyte instrument. Cell killing is measured as the ratio of the total killed target area and to the NALM6-Katushka area (μM2). As shown in FIG. 7J, the total killed target cell area increased when Nalm6 cells were co-cultured with OT-001456 expressing T cells in the presence of vardenafil Similar trend was observed in the proliferation of Nalm6 cells (FIG. 7K). The same cells did not result in significant cell killing in presence of DMSO, showing that the target cell killing by the T cells is specifically in response to the presence of the ligand. As expected, the constitutive construct, OT-001407 showed increased total killed target cell area both in the presence and absence of ligand, with a trend towards more killing in the presence of the ligand. Nalm6 cells co-cultured with untransduced T cells and Nalm6 cells that were not co-cultured with T cells did not show an increase in the total killed target area. Taken together, these data show that the regulated CAR construct, OT-001456 is active on antigen positive cells only in response to ligand.


The cell supernatants were also collected from the T cell/Nalm6 cytotoxicity co-culture assays at 66 hours and Interferon gamma levels were measured by MSD assays. The results are shown in Table 58.









TABLE 58







Interferon gamma production (pg/mL)











Construct
DMSO
Vardenafil 10 μM















OT-001456
443.99
2282.98



OT-001407
3268.72
1980.48



Untransduced
16.57
18.48










As shown in Table 58, the interferon gamma levels showed a five-fold induction in OT-001456 transduced T cells with the addition of vardenafil. Vardenafil treatment did not induce interferon gamma production in OT-001407 transduced T cells or untransduced T cells, indicating that the ligand specific induction of interferon gamma is related to the increased CAR expression and cell killing observed under similar conditions. The interferon gamma levels in DMSO treated OT-001456 was lower than the levels observed with the constitutive construct indicating that the OT-001456 cells have low basal expression of the CD19 CAR.


Example 14. In Vivo Assessment of hPDE5-Regulated CD19 CAR

To test the efficacy of ligand regulated CAR efficacy in a tumor rejection model, 5 million CAR positive T cells (25 million total T cells) were injected in Nalm6 tumor bearing female NSG mice. The Nalm6-Luc is a B-cell precursor leukemia cell line used to generate an intravenous disseminated tumor model for studying blood tumors. Mice were treated daily with vehicle or Tadalafil at the following mg/kg body weight or mpk: 10 mpk, 30 mpk, or 100 mpk. Constitutive OT-001407 transduced T cells served as a positive control and untransduced T cells as a negative control. T cells were injected 7 days after the Nalm6 cells were implanted. Animals in the Tadalafil groups received 2 doses of ligand prior to T cells being injected. The objective of the study was to test the ligand dose response regulation of a hPDE5 DD CD19 CAR-T and its impact on efficacy. Further, the study was also used to address if the presence of antigen was necessary for detection and expression of the CAR. Dose groups included (a) untransduced T cells (b) untransduced vehicle treated cells (c) Un-transduced cells dosed with Tadalafil 100 mg/kg (d) 5.0 Million CD19+OT-001407 CART cells (e) 5.0 Million CD19 positive Nalm6 cells with OT-001407 CAR T cells (Vehicle) (f) 5.0 Million CD19 positive Nalm6 cells with OT-001407 CAR T cells (Tadalafil 100 mg) (g) 5.0 Million CD19 positive Nalm6 cells with OT-001456 CART cells (Vehicle) (h) 5.0 Million CD19 positive Nalm6 cells with OT-001456 (Tadalafil 10 mg/kg) (i) 5.0 Million CD19 positive Nalm6 cells with OT-001456 CART cells (Tadalafil 30 mg/kg (j) 5.0 Million CD19 positive Nalm6 cells with OT-001456 CART cells (Tadalafil 100 mg/kg). All animals were dosed once a day, orally for 25 days. Tumor burden assessments were made biweekly using bio luminescent imaging and the fluorescence intensity of Nalm6 Luc cells was observed over time. Two terminal collections were made to assess bone marrow, blood and spleen cell populations. Reduction in tumor burden/prevalence was measured by decreased luminescence from Nalm6-Luciferase cells, and was observed in Tadalafil treated OT-001456 animals (FIG. 8A). In FIG. 8A, the construct marked “const” is OT-001407 and the construct marked “regulated” is OT-001456. Taken together these data show that daily oral dosing of tadalafil resulted in dose-dependent suppression of tumor growth and/or reduction in tumor burden. Maximal tumor suppression was comparable to constitutive CAR with very low activity in the absence of drug. The percentage of tumor growth inhibition was >98% across all ligand doses tested for recipients of PDE5-DD-regulated CD19-CART (OT-001456) compared to unmodified T cell recipients.


The mortality of the mice was tracked during the course of the study. Kaplan-Meier analysis, and the log rank test were applied to the survival data. A significant survival advantage was observed in mice treated with OT-001456 transduced T cells relative to the mice treated with unmodified T cells (p<0.005) with a 50% increase in median survival. The median survival of the mice is provided in Table 59. In Table 59 * indicates undetermined as the mice in this group survived the duration of the study; TDF indicates Tadalafil; VDF denotes vardenafil and “Veh” denotes vehicle. Survival ratio was calculated as ratio of the median survival observed in a group to the median survival of the untransduced—vehicle treatment group.









TABLE 59







Median survival (days)









Construct











Untransduced
OT-001407
OT-001456









Ligand

















TDF

TDF

TDF
TDF
TDF



Veh
100 mpk
Veh
100 mpk
Veh
10 mpk
30 mpk
100 mpk




















No. of deaths/ events
8
8
8
0
0
8
8
7
8


Median survival
23
26
26
*
*
29
34
39
37


Survival ratio

1
1.13


1.15
1.31
1.5
1.42









The median survival was increased in the OT-001456 group treated with either 30 mpk or 100 mpk TDF as compared to the untransduced or OT-001407 transduced mice in the presence/absence of ligand. The enhanced survival in the OT-001456 TDF treated groups, was also evident in the observed increase in the survival ratio.


Plasma PK was also established in non-tumor-bearing mice of the hPDE5 inhibitors Tadalafil and Vardenafil after a single dose at the indicated dose levels and is shown in FIG. 8B and FIG. 8C. To determine pharmacokinetic profiles of PDE5 inhibitors, CD-1 mice were dosed orally once with Vardenafil, while NSG mice were dose with Tadalafil. Plasma samples collected over time and PDE5 inhibitor concentrations were determined by LC/MS/MS (Table 60). The Vardenafil/Tadalafil levels detected in the plasma declined over time and were commensurate with the initial dose orally administered to the animal.









TABLE 60







Vardenafil/Tadalafil Plasma levels (μM)












Hours
Tadalafil
Tadalafil
Tadalafil
Vardenafil
Vardenafil


post dose
10 mg/kg
30 mg/kg
100 mg/kg
10 mg/kg
100 mg/kg















1
6.8
19.8
53.3
0.16
7.81


2
5.4
17.6
44.7
0.03
3.04


4
3.9
12.1
34.8
0.02
3.32


8
0.9
4.4
13.7

1.18


12
0.1
0.5
5.6

0.04


16
0.0
0.1
1.5




24

0.0
0.1











Example 15. Destabilization Mutant Screening of Human PDE5

To identify destabilizing mutations of human PDE5 that are stabilized upon ligand binding to hPDE5, two rounds of mutant screening were performed, using a lentivirus hPDE5 mutant library (PDE5A-MUT-AcGFP_pLVX-IRES-puro) provided by Genscript (China). These methods were used to generate a library of mutant polypeptides using mutagenesis primers and error prone PCR are described herein.


General Methods

Lentiviral vectors expressing the template, wild-type human PDE5 operably linked to GFP (OT-001075) and hPDE5 (R732L) (OT-001084) were also provided by Genscript along with the hPDE5 mutant library. These constructs were packaged into lentivirus, transduced into NIH3T3 cells and select stable cell pools were derived as described below. Cell pools were selected and treated with sildenafil or vardenafil and subjected to FACS and fluorescence microscopy analyses. Wild-type hPDE5 showed approximately a 1.5-fold increase in mean fluorescence intensity (MFI) after treatment with sildenafil or vardenafil, whereas OT-001084 showed 10 to 20-fold increase in MFI upon treatment with either compound. The hPDE5 mutant library yielded approximately 2-fold increase in MFI with Vardenafil treatment. Vardenafil proved more effective in stabilizing the hPDE5 mutant library and hPDE5 (R732L) mutant than sildenafil and was therefore chosen as the test compound for single-ligand experiments.


For lentiviral production, 293T cells were plated in a 6-well dish (approximately 1×106 cells per well) and allowed to reach around 90% confluence (˜1 day). For transfection, growth medium was removed from each well and replaced with 1.5 mL fresh cell culture medium. A lipofectamine dilution was prepared (13.5 μL lipofectamine 3000 in 125 μL Opti-MEM) and mixed thoroughly with a DNA solution (containing 2 μg lentivector, 2 μg Delta 8.9, 0.5 μg VSV-G in 125 μL OptiMEM and 9 μL P3000) and incubated for 10-15 min at room temperature. Lipid-DNA complex was added drop-wise directly to cells and incubated overnight at 37° C., 5% CO2, the medium was then replaced with 2 mL fresh complete culture medium. Forty-eight hours after transfection, the supernatant (virus) was harvested, filtered and stored in 1 mL aliquots at −80° C.


Lentiviral stocks were used for transduction of NIH3T3 cells and subsequent cell pool selection. The day before transduction, NIH3T3 cells (1.8×106) were seeded in a T-25 flask and allowed to reach 60-70% confluency (˜1 day). The growth medium in the T-25 flask was then replaced with 1 mL virus (quickly thawed in a 37° C. water bath) and 5 μg/mL polybrene. After an 1 hr of incubation, with gentle rocking every 15 min, 3 mL fresh medium (with 5 μg/mL polybrene) was added to the flask and cells incubated overnight. Transduction medium was removed the following day and replaced with 5 mL fresh medium. At 48 hr after transduction, the medium was replaced with media containing 1 μg/mL puromycin. This puromycin medium was replaced every 3-4 days until cell pools were established (˜2 weeks).


To identify cell pools containing destabilizing mutants of hPDE5 that are stabilizing when hPDE5 is bound to ligand vardenafil (Selleck 52515) cells were sorted using a BD FACSJazz™ cell sorter. Cells were treated with either 1 μM or 10 μM vardenafil for 24 hours then harvested for cell sorting (1-2×107 cells needed for sorting). To enrich cell pools, 3 (low-high-low) or 5 (low-high-low-high-low) rounds of cell sorting were completed as follows, i) 5% of cell population of low AcGFP in absence of ligand (ii) 5% of cell population of high Ac-GFP in presence of ligand (iii) 5% of cell population of low AcGFP in absence of ligand (iv) 5% of cell population of high Ac-GFP in presence of ligand. (v) 5% of cell population of low AcGFP in absence of ligand.


In the first experiment, after final sorting (3rd or 5th round), genomic DNA was isolated from cell pools using the Promega Wizard Genomic DNA Purification kit. An approximately 1 kb fragment of hPDE5 was PCR amplified using primers hPDE5A-EI-For (5′ACTAGAGGATCTATTTCCGGTGAATTCATG) (8719) and hPDE5A-BI-Rev (5′ GGATCCTCCACCACTGCCTCCA) (SEQ ID No. 8720) and high fidelity Prime STAR HS DNA Polymerase (Takara, Cat R010B), the product was gel-purified, cloned into pEASY-Blunt simple cloning vector (Transgen Cat CB111) and transformed into DH5a. Clones were picked and sent for sequencing of hPDE5. Sequencing results are summarized in Tables 61, Table 62 and Table 63.









TABLE 61







Mutants from 3rd sorted pool (low-high-low)








Library clone ID
hPDE5 mutation





LibC000009
hPDE5 (Amino acid 535-860 of WT, L573M, F735L)


LibC000010
hPDE5 (Amino acid 535-860 of WT, R658H)


LibC000011
hPDE5 (Amino acid 535-860 of WT, S562G, L727P, R847T)


LibC000012
hPDE5 (Amino acid 535-860 of WT, Q666H)


LibC000013
hPDE5 (Amino acid 535-860 of WT, L781P)


LibC000014
hPDE5 (Amino acid 535-860 of WT, A767E)


LibC000015
hPDE5 (Amino acid 535-860 of WT, T571S, V585M, T723S)


LibC000016
hPDE5 (Amino acid 535-860 of WT, Q743L)


LibC000017
hPDE5 (Amino acid 535-860 of WT, Y709H, F787V)


LibC000018
hPDE5 (Amino acid 535-860 of WT, N605Y, I715K)


LibC000019
hPDE5 (Amino acid 535-860 of WT, F564I, N662Y, H685L, L693P, F736I)


LibC000020
hPDE5 (Amino acid 535-860 of WT, A722V, F755L, M760I)


LibC000021
hPDE5 (Amino acid 535-860 of WT, V594I)


LibC000022
hPDE5 (Amino acid 535-860 of WT, H592R)


LibC000023
hPDE5 (Amino acid 535-860 of WT, E858V)


LibC000024
hPDE5 (Amino acid 535-860 of WT, T784I)
















TABLE 62







Mutants from 5th sorted pool (low-high-low-high-low)








Library clone ID
hPDE5 mutation





LibC000001
hPDE5 (Amino acid 535-860 of WT, S542L, E708V, W772C)


LibC000002
hPDE5 (Amino acid 535-860 of WT, I700F, E796G)


LibC000003
hPDE5 (Amino acid 535-860 of WT, D724G, K848N)


LibC000004
hPDE5 (Amino acid 535-860 of WT, T712M, M758I, Q859R)


LibC000005
hPDE5 (Amino acid 535-860 of WT, I556S, E796D)


LibC000006
hPDE5 (Amino acid 535-860 of WT, I680S)


LibC000007
hPDE5 (Amino acid 535-860 of WT, H613L, D724Y, F755Y)


LibC000008
hPDE5 (Amino acid 535-860 of WT, A611T)









Select clones from the fifth sort were cloned into expression vectors and operably linked to AcGFP to generate the constructs listed in 63.









TABLE 63







Mutant constructs from 5th sorted pool








OT-ID
Mutation





OT-001358
hPDE5 (Amino acid 535-860 of WT; N661S)


OT-001359
hPDE5 (Amino acid 535-830 of WT, L569M, T833S)


OT-001360
hPDE5 (Amino acid 535-860 of WT, I768N)


OT-001361
hPDE5 (Amino acid 535-860 of WT, R607W)


OT-001362
hPDE5 (Amino acid 535-860 of WT, N620S)


OT-001363
hPDE5 (Amino acid 535-860 of WT, L554R, Q589E, M691I)


OT-001364
hPDE5 (Amino acid 535-860 of WT, W615R, T723R, A762T, E808G)


OT-001365
hPDE5 (Amino acid 535-860 of WT, C574Y)









Twenty-five full length hPDE5 mutant clones were also ligated in-frame with AcGFP (Aequorea coerulescens green fluorescent protein) into a pLVX-EF1α vector and are indicated in Table 64 below by “OT” ID. Some of the clones tested are also identified by “Lib” IDs in Table 64, these clones have the same construct build as the clones identified by “OT” ID; however, the entire insert was not sequenced. Virus was produced for each of the hPDE5 mutants and transduced into NIH3T3 cells as described above, with puromycin based selection of stable cell pools, which were then tested by FACS GFP analysis following treatment with 10 μM vardenafil for 24 hr. Destabilizing mutants that provide stability upon binding of hPDE5 and vardenafil were expected to show greater GFP fluorescence by FACS analysis. Results are summarized in Table 64 below. The stabilization ratio was calculated as the fold change in GFP intensity in ligand (vardenafil) treated samples compared to treatment with DMSO (i.e. in the absence of ligand) with the same construct. The destabilizing mutation coefficient was calculated as the fold change in GFP intensity in the PDE5 mutant constructs compared to the PDE5 wildtype construct in the absence of the ligand. Destabilizing mutation coefficients less than 1 are desirable. Stabilization ratios greater than 1 are desired in DDs.











TABLE 64









Destabilizing










Library ID/
MFI
Stabilization
mutation











Construct ID.
DMSO
10 μM VDF
Ratio
co-efficient














LibC000009
510
4485
8.8
0.09


LibC000010
6713
13940
2.1
1.17


LibC000011
57
67
1.2
0.01


LibC000013
498
723
1.5
0.09


LibC000014
2500
6998
2.8
0.44


LibC000015
174
1951
11.2
0.03


LibC000016
2895
6869
2.4
0.51


LibC000017
2244
6530
2.9
0.39


LibC000018
1038
3102
3.0
0.18


LibC000019
320
285
0.9
0.06


LibC000020
332
1459
4.4
0.06


LibC000021
1732
4440
2.6
0.30


LibC000023
4386
6121
1.4
0.77


LibC000024
5039
6905
1.4
0.88


LibC000002
309
981
3.2
0.05


LibC000003
656
1870
2.9
0.11


LibC000005
271
2081
7.7
0.05


LibC000007
234
234
1.0
0.04


OT-001358
5726
7157
1.2
1.00


OT-001359
5065
7544
1.5
0.88


OT-001360
908
1735
1.9
0.16


OT-001362
1283
2303
1.8
0.22


OT-001363
260
1170
4.5
0.05


OT-001364
121
141
1.2
0.02


OT-001084
273
7463
27.3
0.05


OT-001084
163
4127
25.3
0.03


OT-001084
320
6531
20.4
0.06


OT-001075
2003
3298
1.6



OT-001075
8695
13100
1.5



OT-001075
6480
9132
1.4



NIH3T3 control
62





NIH3T3 control
55





NIH3T3 control
72












Six clones. mostly with stabilization ratio >4 and destabilizing mutation co-efficient <0.01 were chosen for further analysis with all three ligands for FACS titration analysis. An 8-concentration, 3-fold dilution titration scheme starting at 100 μM and three ligands: vardenafil, sildenafil (Selleck, 51431) and tadalafil (Selleck, 51512) were used for the analysis. Mean fluorescence intensity (MFI) data for treatment with each of three ligands are shown in Table 65 and Table 66 below. VDF=vardenafil, SDF=sildenafil, TDF=tadalafil.









TABLE 65







GFP FACS analysis (MFI) of ligand-treated clones











Conc.
LibC000013
LibC000015
LibC000020
LibC000005



















(μM)
VDF
SDF
TDF
VDF
SDF
TDF
VDF
SDF
TDF
VDF
SDF
TDF






















100
7207
8260
7614
3069
630
518
2499
513
509
4240
1136
814


33.333
7308
7404
8353
3166
432
463
2144
407
440
3892
734
711


11.111
7393
5539
8085
2315
357
374
1395
373
371
3066
577
551


3.704
7330
3467
6275
1383
331
326
733
376
342
1968
518
453


1.235
6773
2076
3688
756
320
311
399
371
337
1044
479
418


0.412
5735
1459
2083
492
313
301
290
378
326
603
444
385


0.137
4220
1268
1456
385
313
309
266
375
313
449
447
389


0.046
2634
1243
1222
336
316
295
263
367
335
389
464
410


DMSO
854
943
847
373
301
306
238
338
243
376
335
366


NIH3T3
58
40
42



58
40
42
58
40
42
















TABLE 66







GFP FACS analysis (MFI) of ligand -treated pools










Conc.
OT-001363
OT-001084
OT-001075
















(μM)
VDF
SDF
TDF
VDF
SDF
TDF
VDF
SDF
TDF



















100
1397
1356
1132
8608
3103
3428
12000
7082
10100


33.333
1563
994
1077
5866
2654
2832
8854
7025
7688


11.111
1566
725
816
5213
1962
2493
7964
6848
7388


3.704
1390
579
552
4746
1187
1941
7592
6480
7039


1.235
1047
456
405
3938
598
1107
7393
5740
6211


0.412
666
418
328
2662
276
534
7223
4806
5491


0.137
463
404
321
2047
204
222
7059
4245
4745


0.046
387
431
341
1104
139
139
6655
4647
4350


DMSO
327
336
284
357
93.4
316
7545
3140
9511


NIH3T3
58
40
42
58
40
42
58
40
42









The mean fluorescence intensity (MFI) of GFP at 100 μM concentration treatment was set as 100% hPDE5 stabilization effect (HPE), while DMSO treatment was set as 0% effect (ZPE) of hPDE5 stabilization. The effect of the compound on hPDE5 stabilization was calculated based on the following formula: % PDE5 stabilization effect=(MFI-ZPE)/(HPE-ZPE)×100. Calculated % hPDE5 stabilization effects for mutant cell pools are shown in Table 67 and Table 68 below. VDF=vardenafil, SDF=sildenafil, TDF=tadalafil.









TABLE 67







Percent stabilization effect for ligand-treated mutant cell pools











Conc.
LibC000009
LibC000015
LibC000020
LibC000005



















(μM)
VDF
SDF
TDF
VDF
SDF
TDF
VDF
SDF
TDF
VDF
SDF
TDF






















100
100
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0


33.333
101.6
88.3
110.9
103.6
39.8
74.1
84.3
39.4
74.1
91.0
49.8
77.0


11.111
102.9
62.8
107.0
72.0
17.0
32.1
51.2
20.0
48.1
69.6
30.2
41.3


3.704
101.9
34.5
80.2
37.5
9.1
9.4
21.9
21.7
37.2
41.2
22.8
19.4


1.235
93.2
15.5
42.0
14.2
5.8
2.4
7.1
18.9
35.3
17.3
18.0
11.6


0.412
76.8
7.1
18.3
4.4
3.6
−2.4
2.3
22.9
31.2
5.9
13.6
4.2


0.137
53.0
4.4
9.0
0.4
3.6
1.4
1.2
21.1
26.3
1.9
14.0
5.1


0.046
28.0
4.1
5.5
−1.4
4.6
−5.2
1.1
16.6
34.6
0.3
16.1
9.8


DMSO
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
















TABLE 68







Percent stabilization effect for ligand-treated mutant cell pools










Conc.
OT-001363
OT-001084
OT-001075
















(μM)
VDF
SDF
TDF
VDF
SDF
TDF
VDF
SDF
TDF



















100
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0


33.333
115.5
64.5
93.5
66.8
85.1
80.8
29.4
98.6
−309.5


11.111
115.8
38.1
62.7
58.9
62.1
70.0
9.4
94.1
−360.4


3.704
99.3
23.8
31.6
53.2
36.3
52.2
1.1
84.7
−419.7


1.235
67.3
11.8
14.3
43.4
16.8
25.4
−3.4
66.0
−560.3


0.412
31.7
8.0
5.2
27.9
6.1
7.0
−7.2
42.3
−682.5


0.137
12.7
6.7
4.4
20.5
3.7
−3.0
−10.9
28.0
−809.2


0.046
5.6
9.3
6.7
9.1
1.5
−5.7
−20.0
38.2
−876.2


DMSO
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0









Plots of the % effect versus concentration were generated with Graphpad Prism 5 and EC50 values were calculated using a four-parameter nonlinear regression model. EC50 data are shown in Table 69. EC50 values were not calculated for HPE/ZPE <3.









TABLE 69







EC50 values











EC50
EC50
EC50


Construct
VDF
SDF
TDF













LibC000009 (hPDE5 (Amino acid 535-860 of WT, L573M, F735L))
0.2
7.9
1.8


LibC000015 (hPDE5 (Amino acid 535-860 of WT, T571S, V585M, T723S))
5.3




LibC000020 (hPDE5 (Amino acid 535-860 of WT, A722V, F755L, M760I))
12.0




LibC000005 (hPDE5 (Amino acid 535-860 of WT, I556S, E796D))
5.7
37.3



OT-001363
0.9
18.9
8.3


OT-001084
0.7
 6.5
2.8









Based on this screening of a human PDE5 library (Experiment 1), several clones were identified with destabilizing mutations, which upon ligand binding to PDE5 serve to stabilize the protein. LibC000009, and OT-001363 were identified as the top destabilizing mutants from this experiment, as they demonstrated HPE/ZPE values of >3 for all three ligands.


In a second experiment, cell pools were enriched by 5 rounds of cell sorting as described above. Genomic DNA was isolated, the product gel-purified, cloned into pEASY-Blunt simple cloning vector and transformed into DH5a. Clones were picked and sent for sequencing of hPDE5. Sequencing results are summarized in Table 70 below.









TABLE 70







Mutants from 5th sorted pool








Construct ID
Mutations





OT-001366
hPDE5 (535-860 of WT, L554R, Q586P, K710N, K730E


OT-001367
hPDE5 (535-860 of WT, H613R


OT-001368
hPDE5 (535-860 of WT, Q586L, S663Y, A762T, E808G)


OT-001369
hPDE5 (535-860 of WT, V548M, D803N)


OT-001370
hPDE5 (535-860 OF WT, L554R, Q589E, A823T)


OT-001371
hPDE5 (535-860 of WT, T571I, K604R, I706N, E795R)


OT-001372
hPDE5 (535-860 of WT, G659A, T784I


OT-001373
hPDE5 (535-860 of WT, Q666H)


OT-001374
hPDE5 (535-860 of WT, H617L, A722V)


OT-001375
hPDE5 (535-860 of WT, N609Y, I799L)


OT-001376
hPDE5 (535-860 of WT, F561L, G659A, T784I)


OT-001377
hPDE5 (535-860 of WT, K795N)


OT-001378
hPDE5 (535-860 of WT, K770Q, K848N)


OT-001379
hPDE5 (535-860 of WT, N605D)


OT-001380
hPDE5 (535-860 of WT, I680S)


OT-001381
hPDE5 (535-860 of WT, V548M, F820I)


OT-001382
hPDE5 (535-860 of WT, I799L)


OT-001383
hPDE5 (535-860 of WT, R607Q)


OT-001384
hPDE5 (535-860 of WT, S550F, L554R)









Twenty hPDE5 mutants were selected and sub cloned in-frame with AcGFP into a pLVX-EF1a vector. Lentiviruses expressing these hPDE5 mutants were produced and used to generate cell pools, which were then treated with 10 μM vardenafil for 24 hr and tested by FACS for GFP expression. Data were analyzed by ACEA Novocyte NovoExpress 1.2.4 software. Results are summarized in Table 71. The stabilization ratio was calculated as the fold change in GFP intensity in ligand (vardenafil) treated samples compared to treatment with DMSO (i.e. in the absence of ligand) with the same construct. The destabilizing mutation coefficient was calculated as the fold change in GFP intensity in the PDE5 mutant constructs compared to the PDE5 wildtype construct in the absence of the ligand. Destabilizing mutation coefficients less than 1 are desirable. Stabilization ratios greater than 1 are desired in DDS.









TABLE 71







GFP FACS analysis (MFD of vardenafil-treated clones











Mean fluorescence intensity

Destabilizing



(MFI)
Stabilization
mutation











Clone No.
DMSO
10 μM VDF
Ratio
co-efficient














OT-001366
1620
5945
3.7
0.05


OT-001367
9396
20753
2.2
0.32


OT-001368
2168
10148
4.7
0.07


OT-001369
6864
14992
2.2
0.23


OT-001370
2717
16617
6.1
0.09


OT-001371
12380
33121
2.7
0.42


OT-001372
36071
46063
1.3
1.21


OT-001373
32358
40657
1.3
1.09


OT-001374
1208
1234
1.0
0.04


OT-001375
10926
34449
3.2
0.37


OT-001376
3574
7332
2.1
0.12


OT-001377
34578
51182
1.5
1.16


OT-001378
2050
31968
15.6
0.07


OT-001379
6293
39197
6.2
0.21


OT-001380
64493
92590
1.4
2.17


OT-001381
1400
1480
1.1
0.05


OT-001382
37015
47513
1.3
1.25


OT-001383
11848
39923
3.4
0.40


OT-001384
3009
8836
2.9
0.10


OT-001385
975
2684
2.8
0.03


OT-001084
1320
36657
27.8
0.04


OT-001084
1535
35653
23.2
0.05


OT-001075
30404
45616
1.5


OT-001075
29006
43134
1.5


NIH3T3
334











Five clones with stabilization ratios >4 and destabilizing mutation co-efficient <0.25 were chosen for further FACS titration analysis with the three PDE5 ligands as described previously. Data were analyzed by ACEA Novocyte NovoExpress 1.2.4 and mean fluorescence intensity (MFI) data are shown in Table 72 and Table 73 below. VDF=vardenafil, SDF=sildenafil, TDF=tadalafil.









TABLE 72







GFP FACS analysis (MFI) of ligand-treated clones











Conc.
OT-001366
OT-001368
OT-001370
OT-001378



















(μM)
VDF
SDF
TDF
VDF
SDF
TDF
VDF
SDF
TDF
VDF
SDF
TDF






















100
10075
3958
5348
16225
6454
8089
22761
17471
25264
47881
29835
56820


33.333
9430
3370
4053
14792
4724
6435
24683
12196
21573
45279
16797
39880


11.111
7787
3033
3280
12476
3827
4822
23517
7761
14127
42089
8273
19260


3.704
5293
2852
2925
9212
3384
4204
20879
5502
8870
34071
4837
9255


1.235
3566
2776
2756
6223
3226
3995
16399
4517
6338
22789
3482
5353


0.412
2657
2753
2961
4285
3290
4029
11704
3959
5497
13317
3079
4077


0.137
2256
2777
2924
3198
3183
3874
7655
3559
5387
6981
2874
3777


0.046
2044
2812
2803
2679
3237
3936
5515
3758
5492
4477
2800
3841


DMSO
2228
2781
2826
2657
3322
3773
3543
4171
5207
2625
3087
4029


NIH3T3
401
397
462
401
397
462
401
397
462
401
397
462
















TABLE 73







GFP FACS analysis (MFI) of ligand treated clones










Conc.
OT-001379
OT-001075
OT-001075
















(μM)
VDF
SDF
TDF
VDF
SDF
TDF
VDF
SDF
TDF



















100
50937
49449
77286
66821
39638
88657
68646
65696
124011


33.333
47373
41359
73260
44931
31873
97813
53578
64475
136420


11.111
47019
29331
55450
39279
20750
89646
50082
62109
143351


3.704
44984
18084
34005
36347
11248
58392
49859
57186
142331


1.235
39930
11933
18589
32753
4647
28605
47543
47748
121306


0.412
32217
9781
12030
25177
2887
12329
45747
37806
102964


0.137
21125
9355
9940
15273
2161
6399
45044
34518
85774


0.046
13855
9188
10204
7877
1983
5246
45287
33102
73045


DMSO
7173
9629
11082
3378
2114
4958
29006
35174
70819


NIH3T3
401
397
462
401
397
462
401
397
462









The stabilization effect was calculated based on the following formula: % PDE5 stabilization effect=(MFI−ZPE)/(HPE−ZPE)×100 and the results are shown in Table 74 and Table 75 below.









TABLE 74







Percent stabilization effect for ligand-treated mutant clones











Conc.
OT-001366
OT-001368
OT-001370
OT-001378



















(μM)
VDF
SDF
TDF
VDF
SDF
TDF
VDF
SDF
TDF
VDF
SDF
TDF






















100
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0


33.333
91.8
50.0
48.7
89.4
44.8
61.7
110.0
60.3
81.6
94.3
51.3
67.9


11.111
70.8
21.4
18.0
72.4
16.1
24.3
103.9
27.0
44.5
87.2
19.4
28.9


3.704
39.1
6.0
3.9
48.3
2.0
10.0
90.2
10.0
18.3
69.5
6.5
9.9


1.235
17.1
−0.4
−2.8
26.3
−3.1
5.1
66.9
2.6
5.6
44.6
1.5
2.5


0.412
5.5
−2.4
5.4
12.0
−1.0
5.9
42.5
−1.6
1.4
23.6
0.0
0.1


0.137
0.4
−0.3
3.9
4.0
−4.4
2.3
21.4
−4.6
0.9
9.6
−0.8
−0.5


0.046
−2.3
2.6
−0.9
0.2
−2.7
3.8
10.3
−3.1
1.4
4.1
−1.1
−0.4


DMSO
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0


NIH3T3




























TABLE 75







Percent stabilization effect for ligand-treated mutant clones










Conc.
OT-001379
OT-001075
OT-001075
















(μM)
VDF
SDF
TDF
VDF
SDF
TDF
VDF
SDF
TDF



















100
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0


33.333
91.9
79.7
93.9
65.5
79.3
110.9
62.0
96.0
123.3


11.111
91.0
49.5
67.0
56.6
49.7
101.2
53.2
88.2
136.4


3.704
86.4
21.2
34.6
52.0
24.3
63.8
52.6
72.1
134.4


1.235
74.8
5.8
11.3
46.3
6.8
28.3
46.8
41.2
94.9


0.412
57.2
0.4
1.4
34.4
2.1
8.8
42.2
8.6
60.4


0.137
31.9
−0.7
−1.7
18.7
0.1
1.7
40.5
−2.1
28.1


0.046
15.3
−1.1
−1.3
7.1
−0.3
0.3
41.1
−6.8
4.2


DMSO
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0


NIH3T3


















Plots of the % effect versus concentration were generated with Graphpad Prism 5 and EC50 values were calculated using a four-parameter nonlinear regression model. EC50 data are shown in Table 76. EC50 values were not calculated for HPE/ZPE <3.









TABLE 76







EC50 values for mutant cell pools











EC50
EC50
EC50


Construct ID (Description)
VDF
SDF
TDF





OT-001366 (hPDE5 (535-860 of WT, L554R, Q586P, K710N, K730E)
5.6




OT-001368 (hPDE5 (535-860 of WT, Q586L, S663Y, A762T, E808G))
4.6




OT-001370 (hPDE5 (535-860 of WT, L554R, Q589E, A823T))
0.8
21.4
14.8


OT-001378 (hPDE5 (535-860 of WT, K770Q, K848N))
1.6
29.4
19.6


OT-001379 (hPDE5 (535-860 of WT, N605D))
0.3
13.6
 6.4


OT-001084
0.4
14.2
 2.7


OT-001075












Based on this screening of a human PDE5 library (Experiment 2), several clones were identified with destabilizing mutations, which upon ligand binding to PDE5 serve to stabilize the protein. OT-001366, OT-001368, OT-001370, OT-001378 and OT-001379 were all identified as destabilizing mutants that may warrant further characterization.


Select PDE5 clones from both experiment 1 and experiment 2 were directly compared. Cells expressing individual clones were then incubated with vehicle, Dimethylsulfoxide (DMSO), 10 μM Vardenafil, Sildenafil or Tadalafil. Median GFP fluorescence was quantified using FACS and the results from the experiment are presented in Table 77. The stabilization ratio was calculated as the fold change in GFP intensity in ligand treated samples compared to treatment with DMSO (i.e. in the absence of ligand) with the same construct. The destabilizing mutation co-efficient was calculated as the fold change in GFP intensity in the DHFR mutant constructs in the absence of the ligand; to the GFP intensity of the wildtype construct in the absence of the ligand and is represented in Table 78. Destabilizing mutation co-efficient ratio less than 1 and stabilization ratios greater than 1 are desired in DDs. The experiments were conducted using the PDE5 (R732L) mutant as a control.









TABLE 77







Fluorescence intensity of PDE5 mutants











Construct






ID/Library






clone ID
DMSO
Vardenafil
Sildenafil
Tadalafil














Parental
46.47





OT-001084
255.47
8608
3103
3428


LibC000020
273
2499
 513
509


OT-001363
315.67
1566
1356
1132


LibC000005
359
4240
1136
814


LibC000009
881.33
7393
8260
8353


OT-001075
6732
12000 
7082
10100
















TABLE 78







Ratio calculations for PDE5 mutants








Construct
Destabilizing









ID/Library
Stabilization ratio
mutation











clone ID
Vardenafil
Sildenafil
Tadalafil
co-efficient





Parental






OT-001075
1.78
1.05
1.50



OT-001084
33.70
12.15 
13.42 
0.04


LibC000020
9.15
1.88
1.86
0.04


OT-001363
4.96
4.30
3.59
0.05


LibC000005
11.81
3.16
2.27
0.05


LibC000009
8.39
9.37
9.48
0.13









As shown in Table 78, all constructs showed destabilizing mutation co-efficient less than one indicating strong destabilization. All constructs also showed ligand dependent stabilization with all three ligands as observed by the stabilization ratios of less than one. It was noted, however, that the ligand dependent stabilization observed for all the mutants generated by random mutagenesis was less than the stabilization ratios observed with the PDE5 (R732L) mutation.


Example 16. Analysis of IL15-PDE5-R732 Constructs

A library of mutations was generated by site directed mutagenesis of amino acid 732 of PDE5. The amino acid at the position 732 was mutated to any of the known amino acids, including, but not limited to, aspartic acid, glutamic acid, glutamine, asparagine, histidine, serine, threonine, tyrosine, cysteine, methionine, tryptophan, alanine, isoleucine, leucine, phenylalanine, valine, proline, and glycine. and each of the mutants was fused to a payload of interest, IL15-IL15Ra fusion protein via a linker. The constructs were transiently transfected into HEK 293T cells and incubated with 1 μM Vardenafil for 48 hours. The properties of the DDs regulated IL15-IL15Ra payloads were analyzed in the presence and absence of ligands via FACS using the HA antibody as previously described. The results are shown in Table 79, where the stabilization ratio was defined as the ratio of expression, function or level of a protein of interest, i.e. IL15-IL15Ra in response to the stimulus, i.e. Vardenafil; to the expression, of the IL15-IL15Ra in the absence of the stimulus, i.e. DMSO control. The constructs were ordered by their stabilization ratio from highest to the lowest. The destabilizing mutation coefficient was calculated as the fold change in GFP intensity in the PDE5 mutant constructs compared to the PDE5 wildtype construct OT-IL15-082) in the absence of the ligand. Destabilizing mutation coefficients less than 1 are desirable. Stabilization ratios greater than 1 are desired in DDs.









TABLE 79







% of HA positive, IL15-IL15Ra positive cells

















Destabilizing





1 μM
Stabilization
mutation


Construct ID
Mutation
DMSO
Vardenafil
ratio
co-efficient















OT-001341
R732G
16
45.5
2.84
0.34


OT-001336
R732N
19
43.5
2.29
0.41


OT-001339
R732E
17.5
40
2.29
0.37


OT-001333
R732Y
20.3
46.4
2.29
0.43


OT-001335
R732Q
19.7
43.9
2.23
0.42


OT-001338
R732D
19.6
43.4
2.21
0.42


OT-001332
R732A
22
47.3
2.15
0.47


OT-001334
R732H
18.9
39.5
2.09
0.40


OT-001328
R732M
21.7
44.9
2.07
0.46


OT-001329
R732V
21.3
43.7
2.05
0.46


OT-001324
R732L
23.7
47
1.98
0.51


OT-001340
R732C
22.9
43.3
1.89
0.49


OT-001342
R732W
23.4
44.2
1.89
0.50


OT-001330
R732S
27.3
51.4
1.88
0.58


OT-001327
R732I
24.3
44.6
1.84
0.52


OT-001337
R732K
27.6
44.7
1.62
0.59


OT-001331
R732P
29.8
40.8
1.37
0.64


OT-001321
WT
46.8
56
1.20










As shown in Table 79, constructs OT-001341, OT-001336, OT-001339, OT-IL15-098, OT-001335, OT-001338, OT-001332, OT-001334, OT-001328, and OT-001329 showed stabilization ratios greater than the initially identified PDE5 DD mutant, R732L indicating superior ligand dependent stabilization. While constructs, OT-001340, OT-001342, OT-001330, OT-001327, OT-001337 and OT-001331 showed ligand dependent stabilization lower than the R723L construct. However, all constructs displayed stabilization ratios greater than wild type construct. Compared to the wildtype control, all constructs tested also showed lower percentage HA positive cells in the absence of ligand and destabilizing mutation co-efficient less than 1 indicating that engineering any of the mutations at position 732 of the full length PDE5, destabilizes the protein. Taken together, mutagenesis of the PDE5-IL15-IL15Ra constructs at R732 of PDE5 identified mutants with reduced basal expression and improved dynamic range.


HA and/or Flag tags were cloned into vectors containing the IL15-IL15Ra fusion constructs to generate constructs OT-001388, OT-001321, OT-001323, OT-001324 and OT-001325. One of the tags was placed in frame with the IL15 sequence while the other was placed in frame with the IL15Ra sequence. The tags were added to facilitate the easy detection of both IL15 and IL15Ra. HEK 293T cells were transiently transfected with the constructs for 24 hours and treated with Vardenafil for 48 hours at 1 μM. The percentage of Flag and HA double positive cells was analyzed by FACS. The results are shown in Table 80. The stabilization ratio was defined as the ratio of expression, function or level of a protein of interest, i.e. IL15-IL15Ra in response to the stimulus, i.e. Vardenafil; to the expression, of the IL15-IL15Ra in the absence of the stimulus, i.e. DMSO control. The destabilization ratio was calculated as the ratio of expression, of IL15Ra in the absence of the stimulus specific to the effector module i.e. Vardenafil to the expression, function or level of the protein of interest, that is expressed constitutively (OT-001388) and in the absence of the stimulus specific to the SRE. The destabilizing mutation co-efficient refers to the expression, function or level or a protein of interest, appended to a particular DD mutant e.g. PDE5 (R732L), in the absence of the stimulus specific to the SRE; to the protein expression, function or level of the protein of interest, appended to the corresponding wildtype sequence from which the particular DD mutant is derived e.g., PDE5 (WT), in the absence of the stimulus. The Stabilization ratios greater than one and destabilization ratio as well as destabilizing mutation co-efficient less than one is desired.









TABLE 80







Percentage HA positive and Flag positive cells



















Destabilizing






Stabilization
Destabilization
mutation


Construct
Mutation
Control
Vardenafil
ratio
ratio
coefficient
















OT-001388
No DD
26
25
0.96




OT-001321
WT
19.6
16.8
0.86
0.75



OT-001323
F736A
8.11
24.9
3.07
0.31
0.41


OT-001324
R723L
9.25
26.4
2.85
0.36
0.47


OT-001325
R732L, F736A
7.44
21.6
2.90
0.29
0.38









As expected, the constitutive construct OT-001388 and the PDE5 wildtype construct, OT-001321 did not show any ligand dependent increase in double positive cells. Ligand dependent increase in double positive cells was observed with constructs 084-086. These data suggest that the tags can be utilized as reliable surrogates to investigate the expression of IL15 and IL15Ra proteins in the constructs. All IL15-IL15Ra constructs appended to a DD mutant showed destabilization ratios and destabilizing mutant co-efficient less than 1, which indicates that the specific mutations engineered can destabilize the protein of interest.


Example 17. Anti-Tumor Efficacy of Tadalafil and Vardenafil

To evaluate PDE5 inhibitor small molecule drugs, human T cells were transduced with lentiviral vectors expressing a human CD19-targeting CAR fused to PDE5-DD. To confirm transduction, T cells were cultured with Tadalafil or Vardenafil (ligand) and analyzed by flow cytometry analysis for CD19 CAR expression. To evaluate anti-tumor activity in vivo, immunodeficient (NOD.Cg PrkdcscidIl2rgtm1Wjl/SzJ, NSG) mice were implanted with luciferase-expressing, CD19+ Nalm6 B cell leukemia cell line (tumor). After tumor implantation, tumor burden was assessed by bioluminescent imaging (BLI) on day 5 and mice were distributed into groups to create equivalent tumor burden across cohorts. T cells were thawed and tumor bearing NSG mice were infused with either: (1) unmodified T cells, (2) PDE5-regulated CD19-CART (OT-001456) cells, or (3) Constitutive CD19-CART (OT-001407). Total T cell dose was adjusted to achieve 5 million CD19-CAR+ T cells and injected into mice on day 5. Ligand treatment was initiated on day 7 and continued till day 28. Mice were dosed orally Q.D (once a day) or B.I.D (twice a day). for 25 days with Tadalafil or Vardenafil at 0 (vehicle, DMSO alone), or 30 mg/kg (mpk). Tumor growth was monitored by bi-weekly bioluminescent imaging (FIG. 9A and FIG. 9B). Increased Tadalafil dose-density from a Q.D. dose regime to a B.I.D dose regime significantly increased DD-CAR T cell anti-tumor efficacy in mice transduced with OT-001456. Dosing with Vardenafil in OT-001456 transduced mice reduced tumor burden compared to mice treated with vehicle controls (OT-001456 transduced or untransduced). However, increasing dose density did not improve Vardenafil dependent anti-tumor efficacy of OT-001456 transduced T cells.


Example 18. Induction of Apoptosis by Regulated CD19 CAR

Donor derived T cells were thawed and activated overnight in the presence of CD3/CD28 Dynabeads at a 3:1 bead: cell ratio. The following day, cells were transduced with lentivirus corresponding to constructs, OT-001407 and OT-001456. Cells were expanded over the course of 9 days by the addition of fresh media, maintaining cells around 0.5×10{circumflex over ( )}6 cells/mL. The cells were then frozen. To confirm that the transduced T cells are functional, they were thawed and cultured with CD19 expressing target cells, Nalm6-Katushka, at effector: target ratios of 10:1, 3:1, 1:1, 0.3:1, 0.1:1, and 0.03:1 for 6 days. Images captured on the Incucyte Zoom were analyzed for proliferation of target cells by measuring red fluorescence over time, and for apoptosis of target cells by measuring Annexin V-Green reagent over time. OT-001407 effector cells were included as a positive control, which effectively killed Nalm6 targets at 1:1 ratio and above. OT-001456 transduced cells demonstrated regulated CAR activity as evidenced by the killing Nalm6 target cells only in the presence of 3 μm Tadalafil at 10:1 effector: target ratio, but had no activity in the presence of DMSO.


Forty-eight hours after co-cultures were started, supernatants were harvested for cytokines, IL2 and IFN gamma analysis by MSD. Data show that inhibition of proliferation and cytokine secretion are proportional to the amount of CAR expression.


Example 19. Regulated CAR Expression and Function with Different Construct Designs

To test regulated CAR expression and function with CD28 costimulatory domain, donor T cells were thawed and activated overnight in the presence of CD3/CD28 Dynabeads at a 3:1 bead: cell ratio. The following day, cells were transduced with lentivirus corresponding to OT-001456 and OT-001508 constructs. Cells were expanded by addition of fresh media over the course of 10 days, maintaining cells around 0.5×10{circumflex over ( )}6 cells/mL. Cells were co-cultured with Nalm6-Katushka cells at T cell: Nalm6 ratios of 10:1, 5:1, and 2.5:1 for 4 days to evaluate CAR function in the presence or absence of 10 μm tadalafil. Images captured on the Incucyte Zoom were analyzed for proliferation of target cells by measuring red fluorescence over time. To confirm CAR expression, FACS was performed with CD19-Fc staining on day 7 and day 10 of the T cell expansion, following an overnight incubation with 10 μM tadalafil. Constructs with CD28 costimulatory domain appeared to lose expression over time, similar to OT-001456. In contrast to OT-001456, construct with CD28 co-stimulatory domains OT-001508 demonstrated high basal killing even in the absence of tadalafil.


Experiments similar to those described in testing CD28 domain were performed to test for regulated CAR expression and function in constructs where the DD domain is placed internally versus at the C terminal domains Constructs utilized included OT-001456 with C terminal PDE5 and OT-001511 with PDE5 placed internally. Regulated CAR expression was maintained when the DD was placed internally within the construct. Tadalafil dependent cell killing was also observed with the internal PDE5 DD construct Similar results were obtained when performed in cells transduced with hPDE5 wildtype with a C terminal PDE5 placement (OT-001512) or an internal PDE5 placement (OT-001510). The wild type hPDE5 constructs demonstrated that the CAR containing the wildtype PDE5 had reduced CAR expression compared to the PDE5 DD regulated constructs. However, the expression of CAR was sufficient to reduce Nalm6 proliferation indicating that the expression levels were functional.


The percentage of CAR positive cells and Median fluorescence intensity of the CAR constructs described in this example are provided in Table 81.









TABLE 81







CAR expression










Day 7
Day 10












DMSO
Tadalafil
DMSO
Tadalafil
















Avg (%
Avg
Avg (%
Avg
Avg (%
Avg
Avg (%
Avg


Construct
CAR+)
(MF)
CAR+)
(MF)
CAR+)
(MF)
CAR+)
(MF)


















OT-001407
66.1
3475
65.3
3736
51
723
51.8
980


OT-001512
67.7
1584
67.4
1811
49.2
459
51.5
547


OT-001456
445
253
74.3
1944
1.7
49
32.5
213


OT-001501
62
591
70.3
1721
12
106
39.6
279


OT-001510
68
1245
66.7
1285
35.9
144
39.8
181


OT-001511
59.5
505
69.7
1591
7.7
84
22.2
121


OT-001509
63.5
658
68.8
1621
14.5
104
29.7
151


OT-001508
23.8
90
44
172
0.6
36
12.6
71


Vector
0.9
18
1
18
0.4
13
0.1
12


Untransduced
0.5
6
0.4
6
0.2
10
0.1
10









U2OS cells were transduced with various volumes of lentivirus for GFP tagged constitutive (OT-001905) or PDE5-DD (OT-001904) CD19 CAR construct, or HA tagged constitutive (OT-001906) or PDE5-DD (OT-001903) and (OT-001907) CD19 CAR construct, or empty vector. Cells were cultured overnight in the presence or absence of 10 μm tadalafil. Expression of CAR was detected by staining cells with 10 ug/mL CD19-Fc. A correlation was observed between (a) CAR expression and the GFP tag/HA tag expression, and (b) the regulated expression of CAR and GFP/HA expression by PDE5-DD.


U2OS cells were transduced with lentivirus corresponding to the constitutive (OT-001906) or PDE5-DD (OT-001903) HA-tagged CD19-CAR constructs, or empty vector. Cells were seeded at 5000 cells/well in 96 well plates and cultured overnight. Expression of CAR was detected using an anti-HA antibody and Incucyte Immunocytochemistry (Ann Arbor, Mich.) with Opti-Green background eliminator and FabFluor488 reagents according to manufacturer's protocol, and quantitated using Incucyte Zoom software to measure green fluorescence (antibody binding per well) normalized to cell confluence to account for growth of cells over time. A negative control mouse IgG1 isotype antibody was included. Antibodies were added 5 hours after the initiation of the experiment and an increase in fluorescence was observed in the cells expressing the constitutive construct or the ligand pretreated regulated construct, but not the regulated construct in the absence of ligand. As expected, the negative control mouse IgG1 isotype resulted in no fluorescent signal. At 24 hours, 5 μM tadalafil was added to the (OT-001903) group and an increase fluorescence was observed which correlated with the stabilization of the DD.


T cells from transduced with OT-001903 or OT-001906 were treated overnight with 10 μM tadalafil or vardenafil or left untreated. Cells were washed 3 times with cell media, then stained for CAR expression using 10 μg/mL CD19-Fc 0, 2, 4, and 24 hr post-washout. CD19 CAR expression on the surface of T cells began to decrease as early as two hours after ligand withdrawal and by 24 hours CAR expression levels were similar to untreated controls.


To test for regulated CAR expression with GFP and Luciferase tagged constructs, T cells were thawed and activated overnight in the presence of CD3/CD28 Dynabeads at a 3:1 bead: cell ratio. The following day, cells were transduced with lentivirus from indicated constructs. Constructs OT-001602, OT-001598, OT-001456, OT-001902, OT-001901, OT-001900, OT-001899, OT-001898, and OT-001908 were tested with increasing volumes of lentivirus. Cells were expanded by addition of fresh media over the course of 10 days, maintaining cells around 0.5×10{circumflex over ( )}6 cells/mL, then co-cultured with Nalm6-iRFP cells to evaluate CAR function in the presence or absence of 10 μM tadalafil. Images captured on the Incucyte Zoom were analyzed for proliferation of target cells by measuring red fluorescence over time. To confirm CAR expression, FACS was performed with CD19-Fc staining on day 7 and day 10 of the T cell expansion, following an overnight incubation with 10 μm tadalafil. For GFP containing constructs, CAR expression correlated with increased GFP fluorescence. For luciferase constructs, luminescence was measured following addition of luciferin substrate for 5 minutes and similar to GFP, luciferase showed an increased signal which correlated with CAR expression. The increase in signal for both GFP and luciferase activity also corresponded to higher transduction amounts.


Example 20. In Vivo Ligand Dosing

An in vivo study was performed to determine if cell dosing and/or various ligand exposure schemas lead to enhanced efficacy against NALM-Luc cells in female NSG mice. The different groups included in the study are provided in Table 82.









TABLE 82







CAR expression














in vitro
in vivo
Dosing
Cell Dose


Group
Construct
treatment
treatment
Schedule
(M = million)















1
Empty Vector
None
Vehicle

5M


2
OT-001407
None
Vehicle

1M


3
OT-001512
None
Vehicle

5M


4
OT-001456
None
Vehicle

5M


5
OT-001456
None
Tadalafil
BID 50 mg/kg
5M


6
OT-001456
None
Tadalafil
BID 100 mg/kg (for
5M






7 days); QD 50 mg/kg



7
OT-001456
None
Tadalafil
BID 100 mg/kg (for
5M






7 days); BID 50 mg/kg



8
OT-001456
Tadalafil 10 μM
Vehicle

5M




(24 hr prior to freeze)





9
OT-001456
Tadalafil 10 μM
Tadalafil
BID 50 mg/kg
5M




(24 hr prior to freeze)





10
OT-001456
None
Vehicle

5M (day 7) and







5M (day 10)


11
OT-001456
None
Tadalafil
BID 50 mg/kg
5M (day7) and







5M (day 10)


12
OT-001456
None
Vehicle

10M 


13
OT-001456
None
Tadalafil
BID 50 mg/kg
10M 


14
OT-001455
None
Vehicle

5M


15
OT-001455
None
Tadalafil
BID 50 mg/kg
5M









The average bioluminescence intensity was measured for all groups until day 31. The results are shown in Table 83.









TABLE 83







Average BLI













Days Post
6
13
19
23
26
31





Empty Vector
5.78E+06
1.42E+09
1.71E+10






2.72E+06
4.63E+08
3.60E+09
4.04E+10



3.89E+06
1.36E+09
1.31E+09
1.19E+10



1.11E+06
9.48E+07
3.16E+09
1.14E+10



3.82E+06
8.06E+08
1.11E+10



2.16E+06
5.71E+08
9.52E+09



2.13E+06
2.60E+08
1.06E+10



2.70E+06
7.32E+08
9.47E+09


OT-001407
1.31E+06
2.86E+07
2.44E+08
1.08E+09
1.03E+10


(1M)
5.72E+06
1.12E+08
1.10E+09
1.73E+09
8.83E+09



3.79E+06
9.43E+07
1.14E+09
5.13E+09



4.03E+06
7.71E+07
9.38E+08
3.65E+09
2.81E+10



2.68E+06
5.10E+07
4.76E+08
1.77E+09
1.04E+10



2.77E+06
1.12E+08
5.20E+08
2.72E+09
1.81E+10



2.12E+06
4.81E+07
7.84E+08
2.69E+09
1.48E+10



2.19E+06
1.09E+08
5.81E+08
1.61E+09
1.02E+10


OT-001512
2.65E+06
8.20E+05
1.17E+06
5.18E+06
1.06E+07
5.03E+07


(5M PDE5
1.51E+06
1.20E+06
1.40E+06
1.94E+06
5.64E+06
9.82E+07


WT)
5.70E+06
1.20E+06
3.06E+06
6.29E+06
1.25E+07
7.62E+06



4.11E+06
1.05E+06
9.67E+05
7.95E+05
1.33E+06
1.11E+06



2.11E+06
9.44E+05
1.00E+06
8.88E+05
9.22E+05
1.49E+06



2.20E+06
9.02E+05
9.11E+05
1.25E+06
2.95E+06
1.35E+07



3.71E+06
4.23E+06
1.00E+07
8.18E+06
1.47E+07
8.09E+07



2.78E+06
9.51E+05
7.60E+05
5.68E+05
5.41E+05
8.20E+05


OT-001456
3.68E+06
4.13E+08
1.24E+10


(Vehicle)
2.05E+06
2.65E+08
4.08E+09



4.13E+06
1.17E+07
1.72E+10



2.64E+06
3.08E+08
8.41E+09



1.54E+06
1.19E+08
2.58E+09
8.37E+09



5.66E+06
9.57E+08
3.24E+09
4.33E+10



2.22E+06
4.19E+08
8.71E+09



2.82E+06
5.02E+08
9.29E+09


OT-001456
5.62E+06
5.33E+06
6.96E+06
6.84E+05
1.01E+06
5.87E+08


(TDF 50 mpk
4.25E+06
2.29E+06
6.91E+06
6.48E+05
2.95E+07
1.58E+06


BID)
1.55E+06
1.11E+06
5.08E+05
1.96E+06
4.37E+06
3.39E+07



2.64E+06
3.75E+06
5.03E+06
5.96E+05
3.62E+07
1.67E+07



2.85E+06
3.61E+06
5.45E+05
2.82E+07
4.12E+07
2.26E+06



3.62E+06
3.32E+06
4.62E+05
6.02E+05
6.84E+05
2.66E+07



2.05E+06
3.07E+06



2.27E+06
2.95E+07


OT-001456
4.35E+06
8.29E+06
8.71E+06
4.15E+07
2.10E+08
3.46E+09


(TDF 100 mpk
2.31E+06
1.39E+06
4.54E+06
1.17E+07
1.10E+06
3.63E+06


BID (7 days)
1.58E+06
1.45E+06
3.38E+06
1.50E+07
5.32E+07
1.61E+08


followed by
5.54E+06
4.62E+06
6.09E+05
3.80E+07
1.84E+08
2.00E+08


50 mpk QD)
2.03E+06
8.08E+05
6.17E+05
4.72E+07
2.46E+06
1.88E+09



2.85E+06
6.72E+05
1.42E+07
1.42E+06
3.70E+08
3.60E+09



3.59E+06
3.27E+06
8.86E+06
5.04E+07
2.05E+08
1.49E+09



2.63E+06
5.69E+05
4.40E+06
1.03E+07
4.85E+07
9.72E+07


OT-001456
2.86E+06
2.89E+06
5.46E+05
7.61E+06
1.06E+07
1.13E+08


(TDF 100 mpk
1.59E+06
5.11E+05
3.47E+06
5.86E+05
1.95E+07
1.66E+07


BID (7 days)
2.00E+06
2.40E+06
6.36E+06
1.72E+07
5.24E+07
3.75E+08


followed by
2.31E+06
1.92E+06
3.08E+06
1.40E+07
1.24E+07
1.10E+07


50 mpk BID)
2.62E+06
3.73E+06
5.78E+05
9.21E+06
2.69E+06
2.76E+08



4.43E+06
5.66E+05
3.14E+06
6.16E+06
1.00E+07
1.90E+07



3.59E+06
9.95E+06
1.53E+07
6.86E+05
1.13E+08
1.89E+09



5.51E+06
7.59E+06
7.38E+06
2.13E+07
1.46E+06
4.44E+08


OT-001456
2.58E+06
1.92E+08
3.52E+07
8.32E+07
3.32E+10


(10 μM in
2.32E+06
1.06E+08
2.97E+09
9.80E+09


Vitro_Vehicle)
2.00E+06
2.32E+06
3.03E+09
1.32E+10



1.59E+06
1.22E+08
3.38E+09
1.28E+10



4.43E+06
4.09E+08
5.16E+09



5.42E+06
5.27E+08
3.35E+07
6.89E+09



2.87E+06
2.07E+08
9.73E+06
6.58E+09



3.55E+06


OT-001456
1.60E+06
1.32E+06
1.85E+06
5.19E+06
1.56E+07
1.37E+07


(10 μM in
1.81E+06
1.80E+06
4.61E+05
9.32E+05
8.50E+05
1.61E+06


Vitro and TDF
2.53E+06
1.97E+06
4.41E+06
4.13E+05
6.08E+05
6.91E+06


50 mpk BID)
3.47E+06
2.58E+06
9.23E+05
4.94E+05
3.08E+07
3.14E+07



2.92E+06
1.78E+06
4.18E+06
1.05E+07
1.60E+07
3.77E+07



5.32E+06
1.45E+07
1.26E+07
4.13E+07
6.03E+07
1.80E+09



4.44E+06
1.35E+07
6.35E+07
1.42E+08
2.89E+08
3.00E+09



2.33E+06
1.18E+06
1.07E+06
2.14E+06
1.17E+06
5.78E+06


OT-001456
1.79E+06
1.30E+08
2.19E+07
1.43E+09
3.14E+07
2.96E+10


(5M (day
2.93E+06
1.85E+08
2.36E+09
1.12E+10


7) + 5M (day
1.60E+06
7.71E+07
4.63E+08
4.20E+09
9.97E+07


10) Vehicle)
4.46E+06
2.89E+08
2.98E+09
6.01E+09



5.26E+06
4.40E+08
5.56E+09



2.53E+06
9.93E+07
2.14E+09
8.57E+09



2.35E+06
1.59E+08
1.54E+07
6.94E+07
1.30E+10



3.47E+06


OT-001456
3.44E+06


(5M (day
4.63E+06
1.69E+06
4.45E+05
4.57E+06
4.72E+06
8.27E+06


7) + 5M (day
5.25E+06
4.46E+05


10) TDF
1.63E+06
5.02E+05
1.05E+06
1.24E+06
1.52E+06
2.16E+06


50 mpk BID
2.49E+06
1.16E+06
5.10E+05
5.34E+05
8.27E+05
4.90E+05



2.93E+06
1.15E+06
5.07E+05
5.13E+05
7.71E+05
4.80E+05



2.37E+06
1.24E+06
1.31E+06
4.30E+05



1.78E+06
9.98E+05
1.30E+06
1.07E+06
1.28E+06
9.16E+05


OT-001456
3.05E+06
1.60E+08
5.34E+09


(10M) Vehicle
2.38E+06
1.06E+08
3.40E+09
1.76E+10



4.65E+06
1.23E+08
2.53E+09
1.42E+10



1.64E+06
2.81E+07
5.84E+08



2.48E+06
1.34E+08
3.02E+09
6.21E+09



1.76E+06
9.03E+07
1.98E+09
4.85E+09
1.90E+10



3.32E+06
1.77E+08
4.17E+09



5.23E+06
3.56E+08
5.38E+09


OT-001456
2.38E+06
2.26E+06
4.76E+06
6.55E+06
8.28E+06
1.35E+07


((10M) TDF
4.65E+06
7.78E+06
9.50E+06
3.19E+07
9.26E+07
1.68E+09


50 mpk BID)
5.08E+06
5.75E+07
2.07E+07



1.65E+06
2.12E+06
3.44E+06
5.48E+05
3.08E+07
6.35E+07



2.45E+06
2.47E+06



3.08E+06
1.22E+06



3.29E+06
1.21E+06
2.15E+06
3.37E+06
4.84E+06
8.80E+06



1.72E+06
1.56E+06
3.71E+06
3.56E+06
1.29E+07
5.89E+05


OT-001455
4.67E+06
2.77E+06
4.84E+06
1.14E+07
1.82E+07
6.04E+06


(Vehicle)
1.71E+06
2.19E+06
4.68E+06
8.10E+06
1.42E+07
5.87E+07



2.39E+06
2.25E+06
5.89E+06
2.67E+07
4.25E+07
3.96E+08



3.26E+06
1.88E+06
4.63E+05
7.64E+05
7.80E+05
4.12E+07



2.43E+06
1.57E+06
5.24E+05
1.39E+07
1.17E+06
1.32E+08



5.06E+06
3.60E+06
1.37E+07
6.52E+07
1.29E+08
1.30E+09



1.65E+06
5.88E+05
4.05E+06
6.82E+06
5.94E+06
3.99E+07



3.10E+06
1.98E+06
6.28E+06
1.35E+07
9.73E+05
3.75E+06


OT-001455
1.71E+06
8.06E+05
1.05E+06
8.46E+05
6.23E+05
6.89E+06


(TDF 50 mpk
3.12E+06
1.11E+06
1.30E+06
9.82E+05
1.10E+06
6.14E+05


BID)
3.14E+06
9.73E+05
6.66E+05
4.92E+05
9.90E+05
5.28E+05



2.41E+06
9.25E+05
1.25E+06
4.45E+05
8.58E+05
1.15E+06



4.92E+06
9.62E+05
1.21E+06
1.29E+06
1.95E+06
2.97E+06



5.01E+06
8.78E+05



2.43E+06
9.71E+05
8.78E+05
4.88E+05
8.45E+05
7.24E+05



1.65E+06









Table 84 provides the median survival for each of the groups in the cohort.









TABLE 84







Median survival








Construct
Median survival (days)





Empty Vector
19


OT-001407 (1M)
26


OT-001512 (5M PDE5 WT)
Undefined


OT-001456 (Vehicle)
20


OT-001456 (TDF 50 mpk BID)
Undefined


OT-001456 (TDF 100 mpk BID > 50 mpk QD)
32


OT-001456 (TDF 100 mpk BID > 50 mpk BID)
Undefined


OT-001456 (10 uM in Vitro_Vehicle)
23


OT-001456 (10 uM in Vitro_TDF 50 mpk BID)
Undefined


OT-001456 ((5M + 5M) Vehicle)
23


OT-001456 ((5M + 5M) TDF 50 mpk BID)
Undefined


OT-001456 ((10M) Vehicle)
22


OT-001456 ((10M) TDF 50 mpk BID)
Undefined


OT-001455(Vehicle)
Undefined


OT-001455 (TDF 50 mpk BID)
Undefined









Example 21. Mutagenesis of the Amino Acid F736 of hPDE5

The analysis of mutants identified by site directed mutagenesis identified amino acid hotspots whose mutation confers destabilization and ligand dependent stabilization properties to hPDE5. The amino acid at position 736 was chosen for the further analysis since the hPDE5 (F736A) mutation possessed the properties described above. To improve the DD characteristics of this DD, the amino acid at the position 736 was mutated to any of the known amino acids, including, but not limited to, aspartic acid, glutamic acid, glutamine, asparagine, histidine, serine, threonine, tyrosine, cysteine, methionine, tryptophan, alanine, isoleucine, leucine, phenylalanine, valine, proline, and glycine. The library of mutations was generated by site directed mutagenesis and each of the mutants in the library was fused to a reporter protein e.g. AcGFP via a linker and transduced into HCT116 cells. The properties of the DDs were analyzed via FACS both in the presence and absence of ligands. Ligands that were evaluated included, but not limited Sildenafil, and Vardenafil. Table 85 shows the MFI of cells treated with 10 μM vardenafil for 48 hours. In Table 85 VDF indicates vardenafil.









TABLE 85







Vardenafil dependent MFIs















Stabilization


Alias
Mutation
Group
MFI
ratio
















Parental
1153



OT-001269
F736P
Control
6690





VDF
144781
21.64 


OT-001264
F736W
Control
32415





VDF
158156
4.88


OT-001272
F736C
Control
44895





VDF
151888
3.38


OT-001276
F736D
Control
25733





VDF
167459
6.51


OT-001266
F736Q
Control
54247





VDF
240810
4.44


OT-001267
F736E
Control
38227





VDF
199986
5.23


OT-001275
F736N
Control
27563





VDF
141843
5.15


OT-001274
F736H
Control
30463





VDF
129332
4.25


OT-001263
F736R
Control
23282





VDF
168331
7.23


OT-001265
F736K
Control
20219





VDF
150258
7.43


OT-001268
F736S
Control
39511





VDF
243585
6.16


OT-001277
F736T
Control
47397





VDF
203516
4.29


OT-001273
F736Y
Control
69893





VDF
193231
2.76


OT-001260
F736A
Control
25583





VDF
124553
4.87


OT-001259
F736G
Control
19279





VDF
144347
7.49


OT-001261
F736L
Control
66857





VDF
169009
2.53


OT-001271
F736I
Control
75543





VDF
221732
2.94


OT-001270
F736V
Control
81977





VDF
333677
4.07


OT-001262
F736M
Control
110217





VDF
353885
3.21









Among the constructs tested, F736P, F736R, F736K, F736A, F736G showed stabilization ratios greater than 7 indicating strong ligand dependent stabilization. These constructs were chosen for further dose response characterization studies. Dose response studies were performed in HCT-116 cells with doses ranging from 0.002 to 30 μM for vardenafil, 0.005 to 100 μM for sildenafil and tadalafil. Cells were treated with the indicated dose for 48 hours and the MFI was measured using FACS. The vardenafil, sildenafil and tadalafil dose responses are shown in Table 86, Table 87 and Table 88.









TABLE 86







Vardenafil dose response in F736 mutants













Vardenafil






Dose

Stabilization


Construct
Mutation
(μM)
MFI
ratio














Parental


1035



OT-001269
F736P
30
158216
21.26




10
144184
19.37




3.333
130695
17.56




1.111
114355
15.36




0.370
92834
12.47




0.123
61401
8.25




0.041
32907
4.42




0.014
16591
2.23




0.005
10071
1.35




0.002
8253
1.11




DMSO
7443



OT-001263
F736R
30
180839
8.45




10
177263
8.28




3.333
165159
7.72




1.111
152487
7.12




0.370
130186
6.08




0.123
103375
4.83




0.041
64283
3.00




0.014
37755
1.76




0.005
25227
1.18




0.002
22913
1.07




DMSO
21406



OT-001265
F736K
30
182761
9.82




10
156978
8.43




3.333
151181
8.12




1.111
141783
7.62




0.370
118662
6.38




0.123
100311
5.39




0.041
56035
3.01




0.014
32977
1.77




0.005
22525
1.21




0.002
19109
1.03




DMSO
18611



OT-001260
F736A
30
140875
5.51




10
127144
4.97




3.333
125782
4.92




1.111
125078
4.89




0.370
115016
4.50




0.123
100026
3.91




0.041
75486
2.95




0.014
46252
1.81




0.005
30287
1.18




0.002
25820
1.01




DMSO
25560



OT-001259
F736G
30
132814
6.44




10
128225
6.22




3.333
120003
5.82




1.111
121525
5.89




0.370
113357
5.50




0.123
91136
4.42




0.041
60953
2.96




0.014
37052
1.80




0.005
25469
1.24




0.002
22445
1.09




DMSO
20615

















TABLE 87







Sildenafil dose resnonse in F736 mutants













Sildenafil






Dose

Stabilization


Construct
Mutation
(μM)
MFI
ratio














Parental


1009



OT-001269
F736P
100
90704
13.86 




33.333
97811
14.95 




11.111
76720
11.73 




3.704
49658
7.59




1.235
26727
4.08




0.412
15073
2.30




0.137
9548
1.46




0.046
6977
1.07




0.015
6836
1.04




0.005
6718
1.03




DMSO
6543



OT-001263
F736R
100
141542
6.77




33.333
158814
7.59




11.111
136805
6.54




3.704
103181
4.93




1.235
69456
3.32




0.412
43588
2.08




0.137
27361
1.31




0.046
22043
1.05




0.015
21600
1.03




0.005
20051
0.96




DMSO
20922



OT-001265
F736K
100
117668
6.24




33.333
132672
7.04




11.111
111812
5.93




3.704
89823
4.76




1.235
61268
3.25




0.412
37507
1.99




0.137
25307
1.34




0.046
19932
1.06




0.015
18778
1.00




0.005
19365
1.03




DMSO
18856



OT-001260
F736A
100
93652
4.12




33.333
110048
4.84




11.111
103954
4.57




3.704
85884
3.78




1.235
67277
2.96




0.412
48774
2.15




0.137
31578
1.39




0.046
25710
1.13




0.015
22537
0.99




0.005
24395
1.07




DMSO
22727



OT-001259
F736G
100
85769
5.03




33.333
93490
5.48




11.111
96630
5.66




3.704
70643
4.14




1.235
49434
2.90




0.412
31138
1.83




0.137
22228
1.30




0.046
17226
1.01




0.015
17591
1.03




0.005
17329
1.02




DMSO
17059

















TABLE 88







Tadalafil dose response in F736 mutants













Tadalafil






Dose

Stabilization


Construct
Mutation
(μM)
MFI
ratio














Parental


1111



OT-001269
F736P
100
130984
19.71 




33.333
108698
16.36 




11.111
87589
13.18 




3.704
53208
8.01




1.235
26467
3.98




0.412
14220
2.14




0.137
9298
1.40




0.046
7795
1.17




0.015
7378
1.11




0.005
6662
1.00




DMSO
6646



OT-001263
F736R
100
175124
8.27




33.333
149164
7.05




11.111
127766
6.03




3.704
97047
4.58




1.235
56547
2.67




0.412
34314
1.62




0.137
25603
1.21




0.046
21049
0.99




0.015
20533
0.97




0.005
21220
1.00




DMSO
21172



OT-001265
F736K
100
162392
8.30




33.333
151730
7.76




11.111
134986
6.90




3.704
102372
5.23




1.235
63261
3.23




0.412
36476
1.87




0.137
26447
1.35




0.046
21404
1.09




0.015
20043
1.02




0.005
19212
0.98




DMSO
19558



OT-001260
F736A
100
131921
5.29




33.333
120132
4.82




11.111
116598
4.67




3.704
108477
4.35




1.235
76753
3.08




0.412
53672
2.15




0.137
34408
1.38




0.046
25447
1.02




0.015
24416
0.98




0.005
24661
0.99




DMSO
24943



OT-001259
F736G
100
136173
6.85




33.333
120303
6.05




11.111
109416
5.50




3.704
89786
4.51




1.235
60600
3.05




0.412
36777
1.85




0.137
25357
1.27




0.046
21222
1.07




0.015
19748
0.99




0.005
19490
0.98




DMSO
19890










Dose dependent increase in GFP expression was observed with all constructs tested and upon treatment with all three ligands. However, OT-001269, OT-001263, and OT-001265 showed stronger ligand dependent stabilization when compared to the other two constructs. EC50 values for each of the constructs is shown in Table 89.









TABLE 89







EC50 (μM) of F736 mutants












Ligand
OT-001269
OT-001263
OT-001265
OT-001260
OT-001259















Sildenafil
3.844
2.066
1.884
0.9580
1.553


Vardenafil
0.2724
0.1202
0.1264
0.04424
0.06552


Tadalafil
7.503
4.825
2.853
1.072
2.519









Example 22. hPDE5 (R732, F736) Selective Library Screen

Mutant library wherein both the amino acid at the position 732 (R732) as well as at position 736 (F736) were mutated to any of the known amino acids, including, but not limited to, aspartic acid, glutamic acid, glutamine, asparagine, histidine, serine, threonine, tyrosine, cysteine, methionine, tryptophan, alanine, isoleucine, leucine, phenylalanine, valine, proline, and glycine were generated. The library of mutations was generated by mutagenesis and the library was fused to a reporter protein e.g. AcGFP via a linker and transduced into NIH3T3 cells. The library expressing cells were selected using the selectable marker, mCherry. The ligand response of the initial library was characterized using different doses (3 or 10 μM) vardenafil or tadalafil. In general, treatment with ligand shifted the GFP expression of the library expressing cells to the right.


A GFP “low” sort was performed where the bottom 5% of the population was sorted out to keep only the lowest basal expressing clones. The library expressing cells were treated with 3 μM Tadalafil for 24 hours and the top 10% and 10-25% library expressing cells were sorted out. The two groups i.e. 10% and 10-25% were characterized using 3 μM Tadalafil. Following characterization, the genomic DNA was extracted from the top 10% library expressing cells' group and inserted into lentiviral vectors by Gibson assembly. Clones were prepared from the library and sequenced. A little under a half of the clones sequenced showed mutations in both R732 and F736. Mutants occurring with a frequency of greater than 5 in the library are described herein. The nature of the R732 mutation and the frequency of occurrence of the mutation in parenthesis are as follows: R732D (24), R732E (12), R732G (8), R732L (11), R732P (10), R732V (15), R732W (17). The nature of F736 mutation and the frequency of occurrence of the mutation in parenthesis are as follows: F736D (12), F736F (6), F736G (22), F736L (6), F736S (23), F736V (12). The frequency of the combination of R732 and F736 mutants is described in Table 90.









TABLE 90







EC50 (μM) of R732, F736 mutants










Mutation Combination




(with respect to




SEQ ID NO: 1)
Frequency













R732D, F736S
22



R732E, F736D
10



R732V, F736G
9



R732W, F736G
7



R732W, F736V
5



R732L, F736W
4



R732P, F736Q
4



R732W, F736L
3



R732G, F736G
2



R732L, F736F
2



R732L, F736V
2



R732L, F736Y
2



R732P, F736D
2



R732T, F736P
2



R732V, F736F
2



R732Y, F736M
2



R732A, F736A
1



R732C, F736V
1



R732D, F736L
1



R732D, F736T
1



R732E, F736C
1



R732E, F736E
1



R732F, F736C
1



R732F, F736V
1



R732G, F736L
1



R732G, F736P
1



R732G, F736R
1



R732G, F736V
1



R732I, F736G
1



R732I, F736V
1



R732L, F736S
1



R732M, F736G
1



R732M, F736H
1



R732M, F736R
1



R732P, F736C
1



R732P, F736F
1



R732P, F736G
1



R732P, F736I
1



R732S, F736G
1



R732V, F736E
1



R732V, F736I
1



R732V, F736R
1



R732V, F736V
1



R732W, F736A
1



R732W, F736F
1



R732Y, F736L
1









Based on this screen, constructs described in Table 12 were prepared for further characterization.


Example 23. PDE5 Mutant Saturation Library

Mutant library wherein every amino acid within position 535 to 860 of SEQ ID NO: 1 was mutated were generated. The library of mutations was fused to a reporter protein e.g. AcGFP via a linker and transduced into Jurkat cells. The library expressing cells were selected using the selectable marker, mCherry. The ligand response of the initial library was characterized using different doses (3 or 10 μM) vardenafil or tadalafil. In general, treatment with ligand shifted the GFP expression of the library expressing cells to the right.


A GFP “low” sort was performed where the bottom 5% and 5-15% of the population was sorted out to keep only the lowest basal expressing clones. The library expressing cells (both 5 and 5-15%) were treated with 10 Tadalafil for 24 hours and the top 30% library expressing cells were sorted out and characterized using 10 μM Tadalafil. Following characterization, the genomic DNA was extracted from the top 10% library expressing cells' group and inserted into vector. Clones were prepared from the library and sequenced. The nature of the mutation and the frequency of occurrence of the mutation in parenthesis are shown in Table 91. In the table * indicates the translation of the stop codon and X indicates any amino acid.









TABLE 91







Frequency of occurrence within saturation library








Mutant
Frequency of occurrence





C574N
6


E536K, I739W
6


R732V, L756H
5


H653N
4


H678F, S702F
4


R732T, R740Y
4


A722E
3


E536N, E708K, E734K, M758I
3


F735N
3


F736P
3


G697F
3


I576K, M625Y
3


Q541P, H678L
3


R732P
3


T712N
3


V602S, F736M
3


A645I, E707K
2


D764N
2


D822V
2


F588N
2


F619H
2


F735P
2


H617K
2


I739F, R850F
2


K604F, R732L
2


L600K, K608I
2


N583L, F736S
2


Q635H, R732S, I739M, R740F
2


R732W, E800K
2


A628T, A722T, E734L
1


C574N, L804I
1


C574N, R732T, R740Y
1


C846N
1


E536V, R732T
1


E539G, R732L
1


F561I
1


F579L, C846N
1


F588K
1


F619Y
1


F735P, Q854K
1


F735Q, K848N
1


F735R
1


F736R, F744R
1


F736S, F744S
1


F736S, N849S
1


F744A, R850Y
1


H617S, I680F
1


H678I, S702F
1


H678Y, F736S
1


H834R, V835G
1


I739W
1


K603F, R732L
1


K608S, P771F
1


K730R, R731G, R732E, G733E, E734N
1


K741P, R850K
1


K741T, P749*, L765F
1


K752N, E753X
1


L554I, P771F
1


L554I, R732L, E785G
1


L582S
1


L651V, V660X, D791X
1


L675H, E708K, N742S
1


N698F, K741I
1


P549F
1


P771L
1


Q718K, E734W
1


R577Y
1


R597G, R732W
1


R732I, R740I
1


R732L, D788Y
1


R732V
1


R740K, P771X
1


R850N
1


T621F
1


V602N, M758I
1









Based on the frequency of occurrence of the mutations, 3 clones were selected for further characterization and inserted into viral vectors namely the C574N bearing (OT-001869), E536K and I739W bearing clone OT-001868 and H678F, and S702F bearing clone OT-001870.


Example 24. PDE5 Cytosolic Screen

The position of hPDE5 in a construct comprising hPDE5 fused to GFP may affect the resultant library of mutants generated by mutagenesis screening. The effect of positioning the DD at the c terminal construct on the identification of DD clones was tested. PDE5 library generated by random mutagenesis fused GFP to generate AcGFP-PDE5-IRES-Puro constructs. The library plasmid was packaged in lentivirus and used to infect 3T3 at a MOI=0.3. The cells were selected with puromycin (2 μg/mL) for 2 weeks. The bottom 10% of cells expressing the lowest GFP in the absence of ligand were collected from the initial sort. In the subsequent sort, 5% of cells expressing the highest GFP levels 48 hours after incubation with 1 μM vardenafil or 10 μM sildenafil were collected. This was followed by the selection of the 5% of cells expressing the lowest GFP level after the removal of ligand. Approximately 50 clones from vardenafil and sildenafil treated libraries were sequenced. The top 10 clones were selected for characterization based on frequency of mutations. Table 92 shows the mutation position, and its frequency.









TABLE 92







Mutation frequency












Point


Ligand



mutation

AA
used in


Clone
number
Frequency
position
screen














OT-001944
1
8
228
Mutations


OT-001941
1
2
102
present in


OT-001947
2
4
135
clones of




8
166
both


OT-001946
4
14 
126
Screens




14 
247
(Vardenafil




15 
260
and




15 
291
Sildenafil)


OT-001943
1
6
106



OT-001939
3
4
107





4
163





4
279



OT-001945
1
1 (STOP)
241
Vardenafil


OT-001942
3
2
89





2
120





3
207



OT-001940
1
4
222
Sildenafil


OT-001948
2
1
98





5
114









Stable cell lines were made with lentivirus transduction of the constructs into 3T3 cells. Cells were treated with ligand (0.1 or 1 μM Vardenafil) for 48 hours, then analyzed by flow cytometry. Ligand dependent and dose dependent regulation was observed with OT-001939, OT-001948, OT-001947 and to a modest extent with OT-001944. Clones OT-001940, OT-001946, OT-001945, OT-001943, and OT-001942 did not show an increase in GFP expression in response to ligand. The median fluorescence intensity (MFI) for mutants OT-001948 and OT-001947 is shown in Table 93. To calculate the stabilization ratio, the MFI of the parental cells was subtracted from the untreated control.









TABLE 93







Mutant MFI
















OT-001232





Ligand
Description
Parental
(Wild Type)
OT-001226
OT-001948
OT-001947
















No Vardenafil
MFI
103
15600
1530
478
308


Vardenafil 0.1 μM
MFI

16200
11700
1363
823



Stabilization ratio

1.04
8.1
3.4
3.5


Vardenafil 1 μM
MFI

16200
13800
4478
2881



Stabilization ratio

1.04
9.6
11.7
13.6









As shown in Table 93, both clones showed ligand dependent stabilization at both 0.1 and 1 μM vardenafil. OT-001948 and OT-001947 clones were characterized by western blot using all three ligands. Cells were treated with Vardenafil (0.3 and 10 μM), sildenafil and tadalafil (3 and 100 μM) for 24 hours and immunoblotted with anti-GFP antibody. Both OT-001948 and OT-001947 showed ligand dose dependent expression with all three ligands. Samples were also immunoblotted with beta actin and showed even protein loading.


OT-001948 and OT-001947 were treated with varying concentration of ligand for 48 hours and then analyzed by flow cytometry (see Table 94, Table 95, Table 96).









TABLE 94







Tadalafil dose response











+Tadalafil
OT-001232





(μM)
(Wild Type)
OT-001226
OT-001947
OT-001947














0
3.05E+04
2627
838
1244


0.001
3.10E+04
2499
807
1201


0.003
3.09E+04
2753
783
1168


0.01
3.04E+04
3.01E+03
870
1168


0.03
3.12E+04
3.42E+03
867
1231


0.1
3.37E+04
7.53E+03
900
1259


0.3
3.55E+04
1.50E+04
1194
1597


1
3.71E+04
2.26E+04
1812
2197


3
3.87E+04
2.62E+04
3237
3476


10
3.64E+04
2.73E+04
6499
6419
















TABLE 95







Vardenafil dose response











Vardenafil
OT-001232





(μM)
(Wild Type)
OT-001226
OT-001947
OT-001947














0
3.09E+04
2345
889
1321


0.001
3.15E+04
3453
983
1362


0.003
3.27E+04
5207
1079
1407


0.01
3.22E+04
1.14E+04
1198
1708


0.03
3.18E+04
1.92E+04
1711
2365


0.1
3.13E+04
2.40E+04
2831
3892


0.3
3.01E+04
2.61E+04
4935
6919


1
2.93E+04
2.64E+04
8232
1.06E+04


3
3.00E+04
2.72E+04
1.04E+04
1.44E+04


10
3.18E+04
2.73E+04
1.21E+04
1.57E+04
















TABLE 96







Sildenafil dose response












OT-001232





Sildenafil (μM)
(Wild Type)
OT-001226
OT-001947
OT-001947














0
3.09E+04
2472
762
1114


0.001
3.04E+04
2401
729
1089


0.003
2.70E+04
2554
739
1099


0.01
2.96E+04
2848
740
1086


0.03
3.07E+04
4053
766
1136


0.1
3.26E+04
8260
860
1285


0.3
3.27E+04
1.54E+04
1074
1630


1
3.44E+04
2.12E+04
1744
2610


3
3.37E+04
2.27E+04
2777
3888


10
3.43E+04
2.34E+04
5259
6788









Ligand dependent regulation was observed with both OT-001947, and OT-001948 clones. The lowest dose of ligand required to achieve detectable expression was higher for clones when compared to OT-001226. The GFP expression in the absence of any of the three ligands tested, was very low indicating low basal expression.


Example 25. PDE5 Regulated CARs

Select PDE5 DDs generated by mutagenesis were cloned into construct OT-001300 and responsiveness to PDE5 ligands was tested. The clones selected for characterization are shown in Table 97.









TABLE 97







PDE5 clone mutation frequency













Number of
Mutation




Construct
mutations
Frequency
AA position
















OT-001922
5
4
251



OT-001910
5
3
230



OT-001926
4
3
229



OT-001929
2
3
214



OT-001924
3
4
175



OT-001925
3
4/8
 49/218



OT-001921
2
5
286



OT-001913
2
4
190



OT-001911
1
8
218



OT-001912
1
4
224



OT-001936
2
2/2
194/283



OT-001935
1
3
57



OT-001914
1
4
5



OT-001937
4
3
116



OT-001917
1
3
230



OT-001909
3
2
43



OT-001938
2
3
207



OT-001915
2
2/2
138/302



OT-001916
2
2
101



OT-001934
3
3
25










CARs appended to PDE5 clones were tested in 3T3 cells. Ligands were tested at the doses indicated for 48 hours in Table 98. CAR expression was measured using FACS performed with CD19-Fc staining or HA staining. In Table 98, MFI indicates Median Fluorescence Intensity and SR indicates stabilization ratio. Dose responses studies were also performed with vardenafil and tadalafil (Table 99 and Table 100).









TABLE 98







Ligand dependent CAR expression













Vardenafil
Sildenafil
Tadalafil



Untreated
(1 μM)
(10 μM)
(10 μM)














Construct
MFI
MFI
SR
MFI
SR
MFI
SR

















OT-001913
700
1700
2.5
1300
2




OT-001912
600
2600
4
2000
3




OT-001911
600
2100
3.5
2100
3.5




OT-001910
180
2000
11
1750
10




OT-001918
80
341
4.3
204
2.6
199
2.5


OT-001920
186
698
3.8
701
3.8
704
3.8


OT-001930
58.2
51.3
0.9
65
1.1
64.2
1.1


OT-001933
234
522
2.2
428
1.8
525
2.2


OT-001927
53.7
78
1.5
65.8
1.2
10.7
0.2


OT-001919
225
774
3.4
693
3.1
645
2.9


OT-001928
60
216
3.6
160
2.7
110
1.8


OT-001914
365
1279
3.5
1260
3.5
1180
3.2


OT-001916
312
911
2.9
757
2.4
487
1.6


OT-001915
198
1156
5.8
933
4.7
490
2.5


OT-001917
249
1062
4.3
1252
5
823
3.3
















TABLE 99







Tadalafil dependent CAR expression















Across:










Tadalafil (μM)

Parental
0
0.3
1
3
10
30


















OT-001920
MFI
8.3
218.0
266.0
330.0
435.0
580.0
688.0


(Sample A)
SR


1.2
1.5
2.0
2.7
3.2


OT-001920
MFI
7.2
527.0
256.0
714.0
519.0
744.0
1142.0


(Sample B)
SR


0.5
1.4
1.0
1.4
2.2


OT-001920
MFI
8.3
218.0
266.0
330.0
435.0
580.0
688.0


(Sample C)
SR


1.2
1.5
2.0
2.7
3.2


OT-001919
MFI
8.3
 93.4
108.0
158.0
236.0
335.0
370.0



SR


1.2
1.7
2.5
3.6
4.0


OT-001911
MFI
12.0 
327.0
371.0
469.0
725.0
1119.0
1311.0


(EC50: 4.6 μM)
SR


1.1
1.4
2.2
3.4
4.0


OT-001912
MFI
11.3 
267.0
707.0
1044.0
1511.0
1611.0
1724.0


(EC50: 800 nM)
SR


2.6
3.9
5.7
6.0
6.5


OT-001919
MFI
7.2
143.0
213.0
370.0
261.0
456.0
448.0


(EC50: 5.82 μM)
SR


1.5
2.6
1.8
3.2
3.1


OT-001918
MFI
7.2
 32.1
74.5
87.9
125.0
186.0
280.0



SR


2.3
2.7
3.9
5.8
8.7


OT-001919
MFI
8.3
 93.4
108.0
158.0
236.0
335.0
370.0



SR


1.2
1.7
2.5
3.6
4.0


OT-001913
MFI
11.3 
110.0
141.0
159.0
193.0
232.0
369.0



SR


1.3
1.4
1.8
2.1
3.4


OT-001914
MFI

215.0
255.0
383.0
511.0
1030.0
1158.0



SR


1.2
1.8
2.4
4.8
5.4


OT-001916
MFI

267.0
325.0
398.0
409.0
758.0
852.0



SR


1.2
1.5
1.5
2.8
3.2


OT-001915
MFI

132.0
95.4
102.0
150.0
253.0
348.0



SR


0.7
0.8
1.1
1.9
2.6


OT-001917
MFI

 73.9
302.0
427.0
748.0
1239.0
1141.0



SR


4.1
5.8
10.1
16.8
15.4
















TABLE 100







Vardenafil dependent CAR expression















Across:










Vardenafil (μM)

Parental
0
0.03
0.1
0.3
1
10


















OT-001920
MFI
12
 61
204
343
680
936
908


(Sample A;
SR


3.34
5.62
11.15
15.34
14.89


EC50: 170 nM)


OT-001910
MFI
12
 61
223
336
764
948
916


(EC50: 1.6 μM)
SR


3.66
5.51
12.52
15.54
15.02


OT-001911
MFI
12
327
430
647
1037
1451
1442


(EC50: 200 nM)
SR


1.31
1.98
3.17
4.44
4.41


OT-001912
MFI
12
267
539
653
969
1299
822


(Sample A)
SR


2.02
2.45
3.63
4.87
3.08


OT-001912
MFI
   7.24
185
645
775
833
883
878


(Sample B)
SR


3.49
4.19
4.50
4.77
4.75


OT-001919
MFI
   7.24
143
271
380
506
544
483


(EC50: 56 nM)
SR


1.90
2.66
3.54
3.80
3.38


V32 (EC50: 398
MFI
   7.24
  32.1
91.4
116
209
308
401


nM)
SR


2.85
3.61
6.51
9.60
12.49


OT-001920
MFI
   7.24
527
496
881
941
1185
1004


(Sample B;
SR


0.94
1.67
1.79
2.25
1.91


EC50: 80 nM)


OT-001913
MFI
12
108
86.5
132
239
331
265



SR


0.80
1.22
2.21
3.06
2.45


OT-001914
MFI

215
467
665
1026
1234
1136



SR


2.17
3.09
4.77
5.74
5.28


OT-001916
MFI

267
380
382
518
955
1095



SR


1.42
1.43
1.94
3.58
4.10


OT-001915
MFI

132
308
514
719
918
960



SR


2.33
3.89
5.45
6.95
7.27


OT-001917
MFI

158
384
624
915
1123
1084



SR


2.43
3.95
5.79
7.11
6.86









Most of the constructs tested in Table 98 showed ligand dependent stabilization with all three ligands. Exceptions include OT-001930, which did not demonstrate ligand dependent stabilization with any of the ligands tested (Stabilization ratio <1.5) and OT-001927 which only showed regulation in the presence of vardenafil with a stabilization ratio >1.5). All of the clones tested in tested in Table 99 and Table 100 showed ligand dependent regulation. The kinetics of the regulation varied between the clones. While some clones e.g. OT-001917, and OT-001910, showed ligand dependent regulation at lower doses, other clones such as OT-001915 and OT-001916 showed ligand dependent regulation only at higher ligand doses. These results were further confirmed by western blot analysis. Stable 3T3 cell lines PDE5 CAR constructs were treated with 0.3 or 10 μm Vardenafil; or Sildenafil and Tadalafil at 1 or 30 μM for 48 hours and immunoblotted for PDE5 or HA tag. Tested clones included OT-001913, OT-001911, OT-001912, OT-001910, OT-001918, OT-001920, OT-001919, OT-001914, OT-001916, OT-001915, OT-001917. All show clones showed ligand dependent regulation with each of the three ligands.


Example 26. CAR Regulation by hPDE5

To test regulated CAR expression by hPDE5 DDs with Tadalafil in vitro, donor T cells were thawed and activated overnight in the presence of CD3/CD28 Dynabeads at a 3:1 bead: cell ratio. The following day, cells were transduced with lentivirus (empty vector), OT-001512, OT-001455, or OT-001456 constructs. Cells were expanded by addition of fresh media over the course of 10 days, maintaining cells around 0.5×106 cells/mL and then they were frozen. As shown in Table 101, CAR expression was confirmed on day 7 of the expansion by culturing with DMSO or 10 uM Tadalafil 24 hours prior to FACS staining with 10 ug/mL CD19-Fc.









TABLE 101







Day 7 Expanded T cells










Day 7













DMSO
Tadalafil



Construct
% CAR+ Cells
% CAR+ Cells















Empty Vector
0
0



OT-001512
48
0



OT-001455
15
53



OT-001456
11
60










Expression was also confirmed in the frozen, expanded T cells by thawing, stimulating with CD3/CD28 Dynabeads (3:1 bead:cell ratio), and treating with DMSO or a dose response of Tadalafil for 24 hours. The results are shown in Table 102.









TABLE 102







Tadalafil Titration










OT-001455
OT-001456


Tadalafil (uM)
% CAR+ Cells
% CAR+ Cells












0
3.1
4.2


0.04
16.6
5.3


0.1
22.2
10.2


0.4
32.9
17.6


1.1
33.8
35.1


3.3
36.5
41.2


10
38.3
47.7


30
38.3
48.7









To confirm that cytotoxicity and cytokine secretion is directly related to CAR expression, transduced T cells were thawed and cocultured with red fluorescent Nalm6 target cells at 10:1, 3:1, and 1:1 effector:target cell ratios for 5 days in the presence or absence of luM Tadalafil. The results are shown in Table 103.









TABLE 103







Nalm6 Proliferation











10:1
3:1
1:1













Construct
DMSO
Tadalafil
DMSO
Tadalafil
DMSO
Tadalafil
















Empty Vector
757794
0
805634
0
977464
0


OT-001512
4485
0
154256
0
422304
0


OT-001455
15351
1658
185756
17319
833197
265637


OT-001456
221126
3004
468664
22179
614952
402447









Coculture supernatants (3:1) were collected after 48 hours and analyzed for IFNg and IL2 levels by MSD. The results are shown in Table 104.









TABLE 104







IFNg and IL2 Levels












IFNg

IL2













DMSO
Tadalafil
DMSO
Tadalafil


Construct
pg/mL
pg/mL
pg/mL
pg/mL














Empty Vector
8.1
0
0.4
0


OT-001512
1023.6
0
394
0


OT-001455
161.9
1094.5
5
42.2


OT-001456
66.8
762.2
3
110.2









As shown in Table 105, Tadalafil regulated CD19 chimeric antigen receptor (OT-001456) controls CD19+ Nalm6-luc tumors in NSG mice.









TABLE 105







Tadalafil regulated CD19 chimeric antigen receptor (OT-001456)













Nalm6
IFNg
IL2


Tadalafil (uM)
% CAR+
cell count
(pg/mL)
(pg/mL)














10
26.7
74442
1048
447


3.333
22.3
19624
1616
394


1.111
13.4
37555
692
298


0.37
6.25
72377
315
105


0.123
3.35
1145929
20
7


0.041
2.92
1117625
12
4


0.013
2.21
1150899
11
2


0.004
1.83
1212262
8
2









Example 27: hPDE5 Regulation in HCT116 Cells

To test regulated expression in HCT116 cells by PDE5 DDs, HCT116 cells were transduced with hPDE5-GFP constructs (OT-001211, OT-001212, OT-001213, and OT-001214) and incubated with the indicated concentrations of ligand for 48 hours. GFP fluorescence was measured by FACS. The normalized GFP MFI is shown in Table 106, Table 107 and Table 108 for vardenafil, sildenafil and tadalafil respectively.









TABLE 106







Vardenafil dose response











Vardenafil






(uM)
OT-001211
OT-001212
OT-001213
OT-001214














10000
107.2
103.2
103.8
101.8


3333.3
101.8
101.3
91.6
99


1111.1
100.5
94.9
67.4
80.1


370.4
102
73.5
43.9
56.6


123.5
87.3
48.6
14.4
33.6


41.2
82.4
14.7
2.8
13.4


13.7
40.6
2.5
0.5
3.7


4.6
14.9
0.2
0.2
1.7


1.5
3.5
0.1
0.2
0.6


0.5
1.3
0
0.3
0.1
















TABLE 107







Sildenafil dose response











Sildenafil (uM)
OT-001211
OT-001212
OT-001213
OT-001214














10000
106.7
73.9
46.8
45.5


3333.3
95.3
42.8
17.7
21.3


1111.1
77.5
10.5
2.9
5.9


370.4
65.4
2.2
0.7
1.7


123.5
29.9
0.1
0
0.7


41.2
7.6
0.1
0.1
0.3


13.7
2.1
−0.1
0
0.5


4.6
1.2
0
0
0.1


1.5
0.4
2.6
0
0.3


0.5
0.2
0
−0.2
0.2
















TABLE 108







Tadalafil dose response











Sildenafil (uM)
OT-001211
OT-001212
OT-001213
OT-001214














10000
106.7
88.7
42.2
42


3333.3
98.3
71.4
12.1
18.9


1111.1
83.7
35.1
3
4.7


370.4
57.4
8.6
0.6
1.3


123.5
29.3
1.9
0.3
0.5


41.2
8.8
0.5
0.1
0


13.7
1.8
−0.2
0.4
−0.2


4.6
0
−0.2
0
−0.1


1.5
−0.3
0
0
0.2


0.5
0
0
0.3
0.3









As shown in Table 106, Table 107 and Table 108, regulation with hPDE5 DDs was observed with OT-001211, OT-001212, OT-001213, and OT-001214 M a dose dependent manner.


Example 28: hPDE5 Regulation in Human T Cells

To test regulated CD19CAR protein expression in human T cells by PDE5 DDs, donor T cells were thawed and activated overnight in the presence of CD3/CD28 Dynabeads at a 3:1 bead: cell ratio. The following day, cells were transduced with hPDE5-CD19CAR constructs (OT-001456, OT-001455, OT-001457, or OT-001454) or empty vector at a virus volume of 10 uL. Cells were expanded by addition of fresh media and then they were frozen. The percent of cells expressing CAR after treatment with vardenafil, sildenafil and tadalafil are shown below. The percentage for the empty vector for each ligand dose was between 0.2 and 0.4%.









TABLE 109







Vardenafil dose response











Vardenafil






(uM)
OT-001456
OT-001455
OT-001457
OT-001454














10000
37
44.7
40.2
53.4


3333.3
34.8
41.2
37.2
52.9


1111.1
35.2
33.7
27.2
52.9


370.4
29.3
24
14.1
52.5


123.5
18.6
16.9
7.8
50


41.2
9.4
14.5
5.5
44.9


13.7
5.6
13.3
3.9
40


4.6
4.4
12.8
3.8
33.5


1.5
3.7
11.7
3.5
30.5


0.5
4
11.1
3.2
30.2


0.2
3.1
10.7
3.1
29.2
















TABLE 110







Sildenafil dose response











Sildenafil (uM)
OT-001456
OT-001455
OT-001457
OT-001454














10000
21.3
45.3
6.9
49.9


3333.3
10
45
4.5
45.7


1111.1
6.2
45.5
3.8
40.1


370.4
5
44.6
3.5
34.1


123.5
4.1
44.1
3.9
31


41.2
3.7
40.9
3.8
29.4


13.7
3.7
33.6
4
28.9


4.6
3.2
23.4
3
28.1


1.5
3.2
17
3.2
28


0.5
3.5
14.1
3.5
28.5


0.2
2.8
12.5
3.1
28.2
















TABLE 111







Tadalafil dose response











Tadalafil (uM)
OT-001456
OT-001455
OT-001457
OT-001454














10000
35.6
48.6
16.1
51.4


3333.3
30.4
48.5
7.2
50


1111.1
19
44.7
4.9
44.8


370.4
9.4
39.9
3.4
40.3


123.5
5.9
28.8
3.7
33


41.2
4.4
19
3.7
28.7


13.7
4
15.7
3.6
29.2


4.6
3.5
12.7
3.7
27.7


1.5
3.4
11.8
3.6
28.2


0.5
3.7
11.5
3
27.6


0.2
3.1
10.6
3.1
27.1









As shown in Table 109, Table 110 and Table 111, regulation with hPDE5 DDs was observed with OT-001456, OT-001455, OT-001457, and OT-001454 M a dose dependent manner.


Example 29: Ligand Exposure Schemes

Effect of pre-freezing treatment of T cells with tadalafil on expression of CD19-CAR was tested. T cells were thawed and activated overnight in the presence of CD3/CD28 Dynabeads at a 3:1 bead:cell ratio. The following day, cells were transduced with OT-001456. Cells were expanded by addition of fresh media over the course of 10 days, maintaining cells around 0.5×10{circumflex over ( )}6 cells/mL. On day 9 of the expansion, cells were treated with 10 uM tadalafil overnight, then frozen. Upon thawing, cells treated with tadalafil prior to freezing had similar CAR expression (37%) to cells that were thawed and treated overnight with 10 uM tadalafil (35%), indicating that CAR expression was maintained during the freezing process.


A Nalm6-luciferase tumor model in female NSG mice was used to determine if various ligand exposure schemes lead to enhanced efficacy in vivo. The experimental setup was as described in Example 20, Table 82. One week after implantation of Nalm6-luciferase tumors, mice were randomized and injected at indicated cell doses with freshly thawed CD19-CAR T cells that had previously been transduced with OT-001455 or OT-001456 and expanded in vitro for 10 days. Groups 8 and 9 CAR T cells had been treated with 10 uM tadalafil overnight prior to cells being frozen so they would express CAR at time of injection. Mice received either tadalafil or vehicle, beginning 12 hours prior to CD19-CAR T injection, then once or twice a day, as indicated, at the listed concentrations. Body weights and tumor BLI measurements were recorded over time, with higher BLI measures indicating high Nalm6-luciferase tumor burden.


As shown in FIG. 10, a high initial dose of tadalafil with later shift to maintenance dosing does not improve efficacy of PDE5-regulated CD19 CAR-mediated cytotoxicity


The effect of pre-exposing cells to tadalafil ligand prior to infusing them was also tested. As shown in FIG. 11, ligand pre-treatment prior to freezing CAR T cells increases basal CAR activity in vehicle treated animals but does not improve efficacy of ligand-regulated CAR-mediated cytotoxicity.


Example 30: CAR T Cell Dose Schemes

A Nalm6-luciferase tumor model in female NSG mice was used to determine if various cell dose schemes lead to enhanced efficacy in vivo. The experimental setup was as described in Example 20 and Example 29. Groups 8 and 9 CAR T cells had been treated with 10 uM tadalafil overnight prior to cells being frozen so they would express CAR at time of injection (see Example 29). Groups 10 and 11 received an additional CD19-CAR T cell dose on day 10 post tumor implantation. Mice received either tadalafil or vehicle, beginning 12 hours prior to CD19-CAR T injection, then once or twice a day, as indicated, at the listed concentrations. Body weights and tumor BLI measurements were recorded over time, with higher BLI measures indicating high Nalm6-luciferase tumor burden.


As shown in FIG. 12, increased cell dose fractionated over 3 days led to increased anti-tumor efficacy as compared to a single cell infusion.


Example 31: Comparison of OT-001455 and OT-001456 In Vivo

A Nalm6-luciferase tumor model in female NSG mice was used to compare PDE5-regulated CD19 CAR OT-001455 and OT-001456 efficacy in vivo. The experimental setup was as described in Example 20, Example 29, and Example 30.


As shown in FIG. 13, OT-001455 showed increased efficacy but higher basal activity as compared to OT-001456.


Example 32: Time Course of CAR Expression

To evaluate expansion time matched dose response and time course of ligand induced CAR expression,


T cells were thawed and activated overnight in the presence of CD3/CD28 Dynabeads at a 3:1 bead:cell ratio. The following day, cells were transduced with OT-001407, OT-001456, and OT-001900, or empty vector. Cells were expanded by addition of fresh media over the course of 10 days, maintaining cells around 0.5×10{circumflex over ( )}6 cells/mL. On day 7 of the expansion, an aliquot of cells was seeded into 96 well plates, the following day treated with a titration of tadalafil or vardenafil, then analyzed for CAR expression after a 24 hr incubation by FACS staining with 10 ug/mL CD19-Fc.


EC50 values were calculated in Spotfire by fitting a 4-parameter curve to the % CAR+ cells in a Singlet Live Cell gate versus the dose of ligand. As shown in Table 112, similar EC50 values were observed for OT-001456 and OT-001900 (PDE5-regulated CD19 CAR with eGFP).









TABLE 112







EC50 values for PDE5-regulated CD19 CAR +/− GFP tag











EC50 (uM)
Tadalafil
Vardenafil







OT-001456
1.08
0.20



OT-001900
0.84
0.13










As shown in FIG. 14A and FIG. 14B, saturating concentrations of ligand (Tadalafil in FIG. 14A and Vardenafil in FIG. 14B) resulted in similar time courses of CAR expression.


To evaluate the time course of reversible CAR expression following ligand removal, T cells were thawed and activated overnight in the presence of CD3/CD28 Dynabeads at a 3:1 bead:cell ratio. The following day, cells were transduced with 10 uL lentivirus from OT-001906 (HA-tagged constitutive CAR) and OT-001903 (HA-tagged PDE5 DD CAR). Cells were expanded by addition of fresh media over the course of 10 days, maintaining cells around 0.5×10{circumflex over ( )}6 cells/mL. T cells on day 6 of transduction/expansion were treated overnight with 10 uM ligand or vehicle control. Cells were washed 3× with T cell media, then stained for CAR expression using 10 ug/mL CD19-Fc 0, 2, 4, and 24 hr post-washout.


As shown in FIG. 15, PDE5-regulated CD19 CAR expression on the surface of T cells drops rapidly following removal of ligand.


In order to demonstrate the reversible nature and ability for multiple rounds of dosing, T cells were thawed and activated overnight in the presence of CD3/CD28 Dynabeads at a 3:1 bead:cell ratio. The following day, cells were transduced with OT-001456. Cells were expanded by addition of fresh media over the course of 10 days, maintaining cells around 0.5×10{circumflex over ( )}6 cells/mL. On day 6 of the expansion, an aliquot of cells was treated with 10 uM tadalafil for 24 hours. The next day this sample was divided into 2 portions: Group 1 stayed in culture with ligand, and Group 2 was washed 3× and cultured in T cell conditioned media without ligand. On day 8 of the expansion, the washed Group 2 cells, along with an aliquot of Group 3 cells that had never been exposed to ligand, were stimulated with 10 uM tadalafil for 24 hours. FACS staining with 1 ug/mL of CD19-Fc was performed daily just prior to ligand addition or wash steps.


The results are shown in FIG. 16, demonstrating that OT-001456 allows reversibility of CAR expression based on ligand exposure time course, along with the ability to perform multiple rounds of pulsed ligand dosing while maintaining equal expression levels.


Example 33: N-Terminal Vs. C-Terminal PDE5 DD Configuration

Human donor T cells were thawed and activated overnight in the presence of 3:1 ratio bead:cell, then transduced with empty vector, OT-001456 (C-terminal PDE5 DD), or OT-001908 (N-terminal PDE5 with furin). Cells were expanded over the course of 10 days with addition of fresh media to maintain cells around 0.5×10{circumflex over ( )}6 cells/mL. On day 9, an aliquot of cells was removed, treated with 10 uM tadalafil overnight, then stained with 10 ug/mL CD19-Fc. The results are provided in Table 113, demonstrating that PDE5 DDs regulated CD19-CAR expression better when placed at the C-terminus.









TABLE 113







% CAR+ Cells with N-terminal vs. C-terminal PDE5 DP










Vehicle (DMSO)
Ligand (10 uM tadalafil)













Vector
0.10



OT-001456 (C-terminal)
3.20
60.8


OT-001908 (N-terminal)
6.80
 6.9








Claims
  • 1. An effector module comprising: (a) a stimulus response element (SRE), wherein the SRE is a DD, said DD comprising at least one mutation relative to cGMP-specific 3′,5′-cyclic phosphodiesterase (hPDE5; SEQ ID NO:1);(b) at least one payload, which is attached, appended or associated with said SRE; andwherein the SRE is responsive to one or more stimuli.
  • 2. The effector module of claim 1, wherein the SRE comprises at least one mutation selected from the group comprising T537A, E539G, V548E, D558G, F559S, E565G, C574N, R577Q, R577W, N583S, Q586R, Q589L, K591R, K591R, L595P, C596R, W615R, F619S, Q623R, K633I, Q635R, N636S, T639S, D640N, E642G, I643T, L646S, A649V, A650T, S652G, H653A, D654G, V660A, V660A, L672P, A673T, C677Y, M681T, E682G, H685R, F686S, Q688R, M691T, S695G, G697D, S702I, I706T, E707K, Y709H, Y709C, I715V, I720V, A722V, D724G, Y728C, K730E, R732L, L738I, I739M, K741N, K741R, F744L, D748N, K752E, K752E, K752E, E753K, L756V, M758T, M760T, A762V, C763R, D764N, D764N, I774V, L781F, L781P, E785K, R794G, M805T, R807G, K812R, I813T, I813T, M816R, Q817R, V818A, F820S, I821V, C825R, Y829C, E830K, L832P, S836L, C846Y, C846S, L856P, L856P, A857T, or E858G.
  • 3. The effector module of claim 2, wherein the SRE comprises two mutations, said two mutations selected from the group consisting of E536K, I739W; H678F, S702F; E669G, I700T; G632S, I648T; T639S, M816R; Q586R, D724G; E539G, L738I; L672P, S836L; M691T, D764N; I720V, F820S; E682G, D748N; S652G, Q688R; Y728C, Q817R; H653A, R732L; and L595P, K741R.
  • 4. The effector module of claim 2, wherein the SRE comprises three mutations, said three mutations selected from the group consisting of Q623R, D654G, K741N; A673T, L756V, C846Y; E642G, G697D, I813T; C677Y, H685R, A722V; Q635R, E753K, I813T; Y709H, K812R, L832P; N583S, K752E, C846S; K591R, I643T, L856P; F619S, V818A, Y829C; and F559S, Y709C, M760T.
  • 5. The effector module of claim 2, wherein the SRE comprises four mutations, said four mutations selected from the group consisting of S695G, E707K, I739M, C763R; A649V, A650T, K730E, E830K; and R577W, W615R, M805T, I821V.
  • 6. The effector module of claim 2, wherein the SRE comprises five mutations, said five mutations selected from the group consisting of V660A, L781F, R794G, C825R, E858G; and T537A, D558G, I706T, F744L, D764N.
  • 7. The effector module of claim 2, wherein the SRE comprises six mutations said six mutations comprising R577Q, C596R, V660A, I715V, E785K, and L856P.
  • 8. The effector module of claim 2, wherein the SRE comprises eight mutations, said eight mutations comprising V548E, Q589L, K633I, M681T, S702I, K752E, L781P, and A857T.
  • 9. The effector module of claim 1, wherein the SRE comprises two mutations, said two mutations selected from the group consisting of R732D, F736S; R732E, F736D; R732V, F736G; R732W, F736G; R732W, F736V; R732L, F736W; R732P, F736Q; R732A, F736A; R732S, F736G; R732T, F736P; R732M, F736H; R732Y, F736M; R732P, F736D; R732P, F736G; R732W, F736L; R732L, F736S; R732D, F736T; R732L, F736V; R732G, F736V; and R732W, F736A.
  • 10. The effector module of claim 1, wherein the at least one payload is a chimeric antigen receptor (CAR).
  • 11. The effector module claim 10, wherein the CAR comprises: (a) an extracellular target moiety;(b) a hinge and transmembrane domain;(c) an intracellular signaling domain; and(d) optionally, one or more co-stimulatory domains.
  • 12. The effector module of claim 11, wherein the SRE comprises the mutation H653A or R732L.
  • 13. The effector module of claim 11, wherein the SRE comprises the mutations H653A and R732L.
  • 14. The effector module of claim 11, wherein the CAR is a CD19 CAR.
  • 15. The effector module of claim 12, wherein the CAR comprises the amino acid sequence of OT-001455, SEQ ID NO: 8282.
  • 16. The effector module of claim 13, wherein the CAR comprises the amino acid sequence of OT-001456, SEQ ID NO: 8283.
  • 17. The effector module of claim 1, wherein the one or more stimuli comprises a small molecule and wherein the small molecule is selected from Tadalafil, Vardenafil, Sildenafil, Avanafil, Lodenafil, Mirodenafil, Udenafil, Benzamidenafil, Dasantafil, and Beminafil.
  • 18. The effector module of claim 17, wherein the small molecule is Vardenafil.
  • 19. The effector module of claim 17, wherein the small molecule is Sildenafil.
  • 20. The effector module of claim 17, wherein the small molecule is Tadalafil.
  • 21. A pharmaceutical composition comprising the effector module of claim 1 and a pharmaceutically acceptable excipient.
  • 22. A polynucleotide encoding the effector module of claim 1.
  • 23. A pharmaceutical composition comprising the polynucleotide of claim 22.
  • 24. A vector comprising a polynucleotide of claim 22.
CROSS REFERENCE TO RELATED APPLICATIONS

This application claims priority to the U.S. Provisional Patent Application No. 62/835,545 filed Apr. 18, 2019 entitled PDE5 DERIVED REGULATORY CONSTRUCTS AND METHODS OF USE IN IMMUNOTHERAPY, the U.S. Provisional Patent Application No. 62/777,893 filed Dec. 11, 2018 entitled PDE5 DERIVED REGULATORY CONSTRUCTS AND METHODS OF USE IN IMMUNOTHERAPY, the U.S. Provisional Patent Application No. 62/756,124 filed Nov. 6, 2018 entitled PDE5 DERIVED REGULATORY CONSTRUCTS AND METHODS OF USE IN IMMUNOTHERAPY, and the U.S. Provisional Patent Application No. 62/683,972 filed Jun. 12, 2018 entitled PDE5 DERIVED REGULATORY CONSTRUCTS AND METHODS OF USE IN IMMUNOTHERAPY, the contents of each of which are herein incorporated by reference in their entirety.

PCT Information
Filing Document Filing Date Country Kind
PCT/US2019/036654 6/12/2019 WO
Provisional Applications (4)
Number Date Country
62835545 Apr 2019 US
62777893 Dec 2018 US
62756124 Nov 2018 US
62683972 Jun 2018 US