PEPTIDE HORMONE WITH ONE OR MORE O-GLYCANS

Information

  • Patent Application
  • 20210171598
  • Publication Number
    20210171598
  • Date Filed
    November 30, 2018
    6 years ago
  • Date Published
    June 10, 2021
    4 years ago
Abstract
The present invention relates to a peptide hormone with one or more O-glycans attached at specific amino acid residues as well as to formulations comprising the same.
Description
FIELD OF THE INVENTION

The present invention relates to a peptide hormone with one or more O-glycans attached at specific amino acid residues. The present invention also relates to formulations, in particular pharmaceutical formulations comprising these peptide hormones.


BACKGROUND OF THE INVENTION

Peptide hormones, including neuropeptides and other biologically active peptides (here designated peptide hormones) are synthesized as precursor proteins that travel through the secretory pathway where they undergo limited proteolytic processing for activation (by e.g. proprotein convertases (PCs), carboxypeptidases, Corin)1, C-terminal α-amidation2 and a number of other PTMs like tyrosine sulfation3, N-terminal acetylation4 and serine phosphorylation5, during their biosynthesis and packaging into secretory vesicles, ready for secretion. Under appropriate physiological conditions, the mature peptide hormones are released from the cell, where they exert a multitude of functions regulating complex physiological processes. For this and other reasons, analogues of peptide hormones are emerging as major drug targets in neurological and metabolic disorders where they are tested as agonists or antagonists for their cognate receptors.


Once secreted most peptide hormones are prone to specific proteolytic degradation and have short half-lifes6-8, making them very difficult to isolate and characterize with respect to naturally occurring variants and PTMs. Recently, however, mass spectrometry based studies have identified peptide hormone PTMs like C-terminal amidation, N-terminal acetylation and serine phosphorylation.


Mucin-type (GalNAc-type) O-glycosylation (hereafter simply O-glycosylation) is an abundant PTM found on many proteins trafficking the secretory pathway, but the presence of O-glycans on peptide hormones have only been found in a few high-throughout mass spectrometry driven studies listed in large supplementary files9-12. Just recently, glycosylation was described on insulin and calcitonin in more directed studies analysing pancreatic beta-cells and small cell lung cancer cell line, respectively13,14. O-glycosylation of proteins is a non-template driven PTM initiated in the Golgi where up to 20 polypeptide GalNAc-transferase (GalNAc-T) isoenzymes initiate the transfer of α-GalNAc to the hydroxyl group of Ser and Thr (and possibly Tyr) residues15. The large number of 20 GalNAc-T isoenzymes have different albeit partly overlapping substrate specificities and the enzymes are differentially expressed in cells and tissues, which leaves this type of protein glycosylation the only one with high degree of differential and potentially dynamic regulation in eukaryotic cells compared to other PTMs.


Our understanding of the biosynthesis and genetic regulation of O-glycosylation is incomplete, partly because there are seemingly no simple primary peptide sequence motifs that guide us to the functions of GalNAc-T isoenzymes and their contributions to O-glycosylation, and partly because of overlap in functions as well as interdependent sequential functions among the many isoenzymes. The first congenital deficiencies in GALNT genes demonstrate that despite this, individual GalNAc-Ts serve highly specific regulatory roles of important body functions including phosphate homeostasis and lipoprotein metabolism. These fundamental functions are directed by non-redundant site-specific O-glycosylation11,16-18.


Here, the present inventors used a novel strategy for exploring potential O-glycosylation of peptide hormones in mammalian neuronal and endocrine tissues as well as cerebrospinal fluid and plasma using sensitive mass spectrometry, and surprisingly identified wide occurrence of O-glycans on peptide hormones. The present inventors identified these O-glycans in the receptor ligand binding domains of mammalian native mature peptide hormones, and demonstrate that these O-glycans serve to modulate receptor signalling and peptide hormone stability.

  • U.S. Pat. No. 8,183,340 B2 relates to GLP-1 pegylated compounds
  • EP 1105409 B1 Protection of endogenous therapeutic peptides from peptidase activity through conjugation to blood components
  • WO 2006082517 A1 relates to Pyy agonists and uses thereof
  • WO 2015071355 A1 relates to selective pyy compounds and uses thereof
  • WO 2015177572 A1 relates to Peptide yy (pyy) analogues
  • WO 2006077035 A1 relates to Peptides with neuropeptide-2 receptor (y2r) agonist activity


OBJECT OF THE INVENTION

An object of the present invention relates to a peptide hormone comprising one or more O-linked glycans at specific sites. The modified, that means the O-linked glycan bearing peptide hormone has different and/or improved stability and/or pharmacokinetic properties.


It is an object of embodiments of the invention to provide methods for preparing peptide hormones, wherein one or more O-linked glycan are placed at predetermined sites. Yet another object of embodiments of the invention is to provide formulations, in particular pharmaceutical formulations, which comprise said peptide hormones.


SUMMARY OF THE INVENTION

Peptide hormones including neuropeptides and certain prohormones (here peptide hormones) encompass a large class of biologically active small peptides that have crucial biological functions. Peptide hormones are produced in a long preproform and undergo limited proteolytic cleavage to produce the final active peptides. Peptide hormones function as signaling molecules by binding to specific receptors and mediate intracellular signaling and stimuli. Peptide hormones can be classified into approximately 46 families where members undergo differential processing and give rise to approximately 279 known active peptide hormones. This invention relates to the identification of O-glycans in specific positions on proforms and mature active peptide hormones, and more specifically the presence of O-glycans in receptor-binding regions of peptide hormones that is demonstrated to modify the activity of such peptide hormones. The invention discloses multiple examples of such peptide hormones with O-glycans attached that have increased stability and lower bioactivity in receptor signaling and thus represent improved peptide hormone designs with altered drug effects.


This invention relates primarily to the Neuropeptide Y family (NPY, PPY and PYY), the Glucagon/Secretin family (GIP, Glucagon, GLP-1, GLP-2, PACAP, Secretin, Somatoliberin, PHM-27/PHV-42 and VIP), and the Natriuretic peptide family (ANP, BNP and CNP). Members of the neuropeptide Y family are well-known regulators of appetite and energy balance, and members of the Secretin family regulate glucose homeostasis (Glucagon, GLP-1, GLP-2, GIP), smooth muscle cell relaxation (VIP, PACAP), secretion of pancreatic juice (Secretin) and growth hormone release (Somatoliberin). Natriuretic peptides regulate the blood pressure through cardiorenal homeostasis.


It has been found by the present inventor(s) that 92 peptide hormones are O-glycosylated and it has been demonstrated for selected examples that the O-glycosylated proteoforms comprise a minor fraction of the total pool of the given peptide hormone in vivo.


As illustrative examples of this invention, the present inventors demonstrate that peptide hormones ANP, VIP, Secretin, GLP-1, Glucagon, NPY, PPY, PYY and Galanin with O-glycans in specific amino acid positions in the receptor-binding region require more than 28 fold higher concentrations in appropriate receptor stimulation assays to induce signaling compared to peptides without O-glycans. Furthermore, the present inventors demonstrate that the stability of peptide hormones ANP, VIP, Secretin, GLP-1, Glucagon, NPY, PYY and Galanin with O-glycans in specific amino acid positions is greater than the peptides without O-glycans in vitro using IDE/NEP/DPP-IV proteases as well as ex vivo using plasma and in vivo using rodent animal models.


Throughout the description, the term “peptide hormone species” is frequently used to refer to specific types of peptide hormones. For example, a peptide hormone with a given amino acid sequence may comprise more than one amino acid residue that serves as a site for O-linked glycan attachment. A peptide hormone with two such amino acid residues can have three different O-linked glycan patterns, because either one of the two or both amino acid residue may carry an O-linked glycan. As used herein, each pattern corresponds to one peptide hormone species.


It is generally challenging to use peptide hormones as therapeutic drugs due to their extremely short circulatory half-life and in some cases extreme potency.


So, in a first aspect the present invention relates to peptide hormones (or “peptide hormone species”) with different O-glycans attached at specific amino acids and the use of these to increase stability and circulatory half-life of drugs as well as to modulate the potency and receptor selectivity of peptide hormone drugs. These peptide hormones may have wide applications for the treatment of many common human diseases including hypertension, heart disease, metabolic syndromes and psychological disorders. In embodiments of the first aspect, the present invention relates to formulations, particularly pharmaceutical formulations, which comprise a peptide hormone, i.e. at least one molecule of a “peptide hormone species”, exhibiting a specific, determined glycosylation pattern of one or more O-linked glycan at a predetermined specific site of said peptide hormone, wherein specific, determined glycosylation pattern means that each molecule of said peptide hormone in said formulation, particularly in said pharmaceutical formulation, displays structural homogeneity with respect to the site of the glycan attachment and/or with respect to the glycan attachment. In further embodiments of the first aspect, the present invention relates also to mixtures of peptide hormones (“peptide hormone species”) as described above that are present in the formulations, particularly the pharmaceutical formulations according to the invention. A formulation mixture, particularly the pharmaceutical formulation mixture, comprises at least two or more, e.g., three, four, five, six, seven, eight, nine, ten, or even more peptide hormones (“peptide hormone species”) exhibiting each a specific, determined glycosylation pattern of one or more O-linked glycan at a predetermined specific site of said peptide hormone, wherein specific, determined glycosylation pattern means that each molecule of said peptide hormones in said formulation, particularly in said pharmaceutical formulation, displays structural homogeneity with respect to the site of the glycan attachment and/or with respect to the glycan attachment.


In a second aspect the present invention relates to an isolated peptide hormone, such as recombinant, such as a peptide hormone comprising one or more O-linked glycan at a predetermined specific site, such as in the receptor-binding region. In embodiments of the second aspect, the invention relates to the above mentioned formulations, particularly pharmaceutical formulations, and to mixtures of peptide hormones (“peptide hormone species”) as described above that are present in the formulations, particularly the pharmaceutical formulations according to the invention.


In a third aspect the present invention relates to a host cell comprising one or more glycosyltransferase genes that have been inactivated such that

    • a) Homogenous Tn (GalNAc) glycosylation is obtained (COSMC/C1GALT1);
    • b) Homogenous T (Gal/GalNAc) glycosylation is obtained (ST6GALNAC1-6/ST3GAL1/GCNT3/GCNT4/B3GNT6);
    • c) Homogenous ST or STn glycosylation is obtained (GCNT3/GCNT4/B3GNT6).


It is to be understood that specific, determined and/or homogenous Tn (GalNAc) glycosylation may be obtained by inactivation and/or downregulation of one or more genes selected from COSMC and C1GALT1; that homogenous T (Gal/GalNAc) glycosylation may be obtained by inactivation and/or downregulation of one or more genes selected from GCNT3, GCNT4, B3GNT6, and that homogenous ST or STn glycosylation may be obtained by inactivation and/or downregulation of one or more genes selected from ST6GALNAC1-6, ST3GAL1, GCNT3, GCNT4, B3GNT6.


In some embodiments, the host cell further comprising a gene encoding an exogenous peptide hormone, such as a peptide hormone according to the invention.


This combinatorial deconstruction of O-glycosylation pathways in cell lines is obtained using precise genetic engineering with Zinc Finger Nucleases or CRISPR/Cas9 to target specific glycosyl transferases in the mammalian O-glycan biosynthetic pathway (FIG. 1).


In a further aspect the present invention relates to a method for producing an isolated peptide hormone comprising one or more O-linked glycan(s) at a predetermined specific site(s), such as in the receptor-binding region, the method comprising; a) inactivation and/or downregulation of one or more glycosyltransferases, and/or endogenous activation or knock in of one or more glycosyltransferases, or any combination hereof in a host cell, and b) expression of said peptide hormone in said host cell. In some embodiments, one or more genes selected from COSMC, C1GALT1, GCNT3, GCNT4, B3GNT6, ST6GALNAC1-6, ST3GAL1 has been inactivated and/or downregulated.


In a further aspect the present invention relates to a method for the production of an isolated peptide hormone, such as a neuropeptide comprising one or more O-linked glycan at a predetermined specific site, such as in the receptor-binding region, said method comprising a) providing a non-O-glycosylated peptide hormone; and b) treating said non-O-glycosylated synthetic peptide hormone with one or more recombinant purified glycosyl transferase, such as a GalNAc-transferase, such as GalNAc-T1, T2, T3, T4, T5, T6, T7, T10, T11, T12, T13, T14, and/or T16, and/or a Galactosyl-transferases (C1GalT1) and/or a sialyl-transferases, such as ST6GalNAc1 and/or ST3Gall under conditions to add one or more specific O-linked glycan to said peptide hormone. In some embodiments, the non-O-glycosylated peptide hormone is provided as a chemically produced peptide hormone produced using solid phase peptide synthesis Fmoc SPPS. In some embodiments, the non-O-glycosylated peptide hormone is provided as a recombinantly produced peptide hormone, such as produced in a production cell line.


In a further aspect the present invention relates to a method for the production of an isolated peptide hormone, such as a neuropeptide comprising one or more O-linked glycan at a predetermined specific site, such as in the receptor-binding region, said method comprising the building of said peptide hormone using solid phase peptide synthesis Fmoc SPPS including the use of glycosylated amino acids building blocks at said predetermined specific site(s).


In a further aspect of the present invention, formulations comprising at least one of the herein disclosed peptide hormones (“peptide hormone species”) are provided. As known to a person skilled in the art, formulation is a mixture comprising an active principle (in the present case at least one of the herein disclosed peptide hormones/“peptide hormone species”) and excipients at specific, defined amounts. A formulation is different from a mere solution of an active principle in a solvent, i.e. without any further excipient. Further, a pharmaceutical formulation usually comprises the active principle, for example at least one of the herein described peptide hormones/“peptide hormone species” in admixture with pharmaceutical excipients, which are known to a person of skill in the art (reference can be made to the European Pharmacopoeia, which may be considered as a representation of the common knowledge of the person of skill in the art). Therefore, in specific aspects of embodiments relating to formulations of the herein disclosed peptide hormones, the formulations of pharmaceutical formulations. Also, encompassed by this disclosure are formulations, particularly pharmaceutical formulations, which comprise a mixture of at least two of the herein disclosed peptide hormones (“peptide hormone species”) in specific, defined (i.e. predetermined) quantities.


In a further aspect the present invention relates to a method for the production of formulations, particularly pharmaceutical compostions, comprising at least one of the herein disclosed peptide hormones (“peptide hormone species”), or mixtures thereof.





LEGENDS TO THE FIGURES


FIG. 1 illustrates the biosynthetic pathways of Mucin-type O-glycosylation. The glycosylation process is initiated by the transfer of UDP-GalNAc to acceptor Ser/Thr/Tyr amino acid residues in the protein or peptide backbone by GalNAc-transferases (20 different isoforms). The O-glycan structure can be further elongated to up to 8 different core structures by a number of glycosyl-transferases. Only 4 core structures are illustrated here.



FIG. 2 illustrates the enrichment process and identification of glycosylated peptide hormones. A) Schematic workflow for analysis of O-glycosylated peptide hormones. The proteins of plasma, neuroendocrine cells (STC-1, N2a) and neuronal as well as endocrine tissues (Brain, Pancreas, Ileum, Heart, Prostate, Cerebellum) were extracted using up to three different extraction procedures pr. sample. Subsequently, The proteins were reduced, alkylated, digested with either trypsin, Glu-C or chymotrypsin followed by de-sialylation using neuraminidase. Glycopeptides were subjected to LWAC using either PNA, Jacalin or VVA lectins. Subsequently, fractionation using either isoelectric focusing or high pH-fractionation was performed before separation and sequencing of the glycopeptides on LC-MS/MS. The resulting O-glycoproteome was matched against the NeuroPeP database, and further realignment of the preproprotein glycopeptides was done against the homologous human proproteins annotated in the same database. B) Overlap of glycosylated peptide hormones or C) Proproteins identified and matched to the human preproproteins with previously published O-glycoproteins or O-glycopeptide hormones. D) The number of identified O-glycosylated peptide hormones in each sample analysed.



FIG. 3 illustrates the prevalence of O-glycosylation in peptide hormone families. Peptide hormones from NeuroPep database (279 peptide hormones) distributed across their respective gene families (46 peptide hormone families). Glycosylated peptide hormones identified in this study that have not previously been reported (red), glycosylated peptide hormones identified in this study and previously published (orange), peptide hormones not identified in this study but previously published (green), peptide hormones not identified in this study but predicted to be glycosylated by NetOGlyc 4.0 (yellow), peptide hormones not identified in this study and not predicted by NetOGlyc (grey).



FIG. 4 illustrates selected peptide hormone families and their identified O-glycosylation sites. Multiple sequence alignment analysis of the A) Secretin/Glucagon, B) Calcitonin, C) Insulin-like growth factor, D) Galanin, E) Neuropeptide Y family and F) Natriuretic peptides family with the identified, predicted and conserved O-glycosylation sites shown. Only the mature peptides are shown. Yellow boxes indicate identified glycosylation sites in this study, grey boxes indicate predicted glycosylation sites by NetOGlyc 4.0, and white boxes indicate conserved glycosylated residues. The sequence conservation of the mature peptides is shown below each peptide family. Dark grey: completely conserved sites; medium and light grey: less conserved sites; white: non-conserved sites. The peptide sequence shown in the alignments are A) secretin, B) calcitonin, C) insulin, D) galanin E) NPY and F) ANP.



FIG. 5 illustrates receptor activating capability of non-glycosylated and glycosylated peptide hormones. Secondary messenger accumulation assay for naked and Tn/T/ST-glycosylated peptide agonists for A) VPAC1, B) VPAC2, C) SCTR, D) GLP1R, E) GCGR, F & G) NPY1R, H-J) NPY2R, K&L) NPY4R, M&N) NPY5R. For VPAC1&2, GLP1R, GCGR and SCTR accumulation of cAMP was measured upon stimulation with increasing concentrations of the ligand whereas for NPY1R, NPY2R, NPY4R and NPY5R accumulation of IP-1 was measured upon stimulation with ligand after co-transfection with Gqo5. O) naked and ANP-19 and ANP-25 glycosylated variants receptor binding and activation measured as % cGMP generated.



FIG. 6 illustrates neprilysin (A) and insulin-degrading enzyme (B) proteolytic degradation of ANP and glycosylated proteoforms (monoglycosylated ANP-Ser19/Tn, ANP-Ser 25/Tn and double glycosylated ANP-Ser19+25/Tn in an time course from t=0 to t=24 hr monitored by MALDI-TOF analysis. Masses corresponding to intact peptide or glycopeptide are labelled “uncleaved” in green and indicated by arrows.



FIG. 7 illustrates Neprilysin, DPP-IV and IDE degradation pattern of non-glycosylated and glycosylated peptide hormones monitored by MALDI-TOF analysis. Peptides were incubated at 37 degrees in the presence of recombinant peptidase or 20% plasma. Aliquots were taken at 0, 15, 30, 60, 120 min for peptidase studies and 0 h, 1 h, 3 h, 6 h and 24 h for plasma studies and monitored by MALDI-TOF mass spectrometry. A) An illustrative example of peptidase digest with Neprilysin (NEP) on secretin and its glycoforms. The m/z of the degraded forms correlate with the N-terminal fragments shown in the sequence of secretin in panel B. B) Summary of cleavage sites and protection state of the glycans. a: DPPIV cleavage site, b: NEP cleavage site, c: plasma cleavage site. Nomenclature for protection: −: no protection, +: Partial protection, non-digested peak is present at least one timepoint after full degradation of the naked peptide has been observed. ++: full protection, no degradation products are observed within the timeframe of full degradation of the non-glycosylated peptide. In the example in panel A, partial protection is observed at the Tn form and the T form and full protection from the ST-form. *no protection in the N-terminus at the DPIV cleavage site, however, full protection was observed at C-terminal cleavage site already at the incorporation of Tn. C) summary of neprilysin, DPP-IV and plasma degradation assays. Nomenclature for protection: −: no protection, P: Partial protection, F: full protection, NT: Not tested, NC: No degradation of non-glycosylated peptide within timeframe. *Only the C-terminal inactivating cleavage of PYY is fully protected by glycans. The two N-terminal amino acids are removed and partial protected by only the ST-glycoform.



FIG. 8 illustrates a table summary of secondary messenger accumulation assay for naked and Tn/T/ST-glycosylated peptide for members of the glucagon- (VIP, GLP-1, Glucagon) and NPY (NPY, PYY)-families. For glucagon family members, cAMP accumulation was measured. For NPY family members, IP1-accumulation was measured. EC50-values are defined as concentration of peptide hormone needed to elicit 50% maximal response (Maximal achievable accumulation of either cAMP or IP1). The confidence interval is calculated from log-transformed data of at least 3 experiments.



FIG. 9 illustrates how natural o-glycans on ANP attenuate the acute renal and cardiovascular actions in vivo. A) schematic overview of the acute study protocol. B) Graph of changes in mean arterial pressure (MAP) overtime during the 60 minutes infusion period with ANP, ST-ANP19 and ST-ANP25 and after the 30 minutes clearance period. C) Urine flow (UV) was calculated as urine volume clearance per min. Values are plotted in a bar-graph displaying volume (uL) urine produced per minute in the 60-minutes infusion period and after the 30 minutes clearance period D) Urinary sodium excretion (UNaV) was calculated as urine sodium clearance per minute and values for ANP, ST-ANP19 and ST-ANP25 are plotted in a scatter-plot. E) Plasma ANP was measured after 90 minutes using a radioimmuneassay and values in pg/mL was plotted for ANP, ST-ANP19 and ST-ANP25. F) Urine ANP was measured after 90 minutes using a radioimmuneassay and values in pg/mL was plotted for ANP, ST-ANP19 and ST-ANP25.





DETAILED DISCLOSURE OF THE INVENTION

O-glycosylation is emerging as an important regulator of protein stability and function. In this study, for the first time, the present inventors identify protein O-glycosylation as a common post translational modification of peptide hormones, present a detailed comprehensive map of O-glycosylation sites and suggest a biological function of site-specific O-linked glycosylation on peptide hormones.


Peptide hormones are produced by cells of the endocrine, neuronal or neuroendocrine tissues and are secreted in response to stimulus to bind to their cognate receptors and regulate complex physiological processes like appetite, blood pressure and anxiety. During biosynthesis peptide hormones undergo a range of PTMs. Besides a common complex proprotein convertase activation19, peptide hormones can undergo C-terminal amidation, N-terminal acetylation, tyrosine sulfation and serine phosphorylation20 that may change the biochemical properties of the peptides. Furthermore, peptide hormones circulate in minute amounts and are inherently prone to proteolytic degradation. Thus, as a result of their instable nature, low abundance and complex post translational modifications peptide hormones have been difficult to isolate and characterize.


Now with the advantage of sensitive mass spectrometry the present inventors explore the occurrence of O-glycans on peptide hormones and show that approximately one third of all classified (NeuroPeP) peptide hormones are O-glycosylated (FIG. 2B and table 6), report the specific sites and demonstrate that the majority of sites resides within important structural or functional regions of the mature peptide hormones (FIG. 4 and table 6). Tables 6A to 6D disclose specific embodiments of the present invention, and table 6E discloses all of the herein disclosed peptide hormones with the respective sequence identity numbers (SEQ ID NOs).


GalNAc O-glycosylation is an exceptional PTM in that there are 20 differentially expressed isoforms with partly overlapping specificities conducting the addition of the initial GalNAc residue to the protein backbone Ser/Thr/Tyr residues. This leaves ample room for regulating the addition of site-specific O-glycosylation and the findings presented here may have revealed a novel regulatory level in peptide hormone biosynthesis and function.


It is becoming increasingly clear that site-specific O-glycosylation fine-tune the biological function of proteins21-32. Previously the present inventors have demonstrated that O-glycosylation protects proproteins from PC processing24,33,34, that O-glycans increase the stability of GPCR N-termini32 and modulates ectodomain shedding26 and most recently the present inventors have shown that loss of site-specific O-glycosylation impair ligand binding and uptake of the LDLR related receptor family35,36.


Here the present inventors demonstrate that O-glycosylation of VIP, Secretin, NPY, PYY and PPY in specific well conserved amino acid positions lowers receptor affinity and signalling, reducing EC50 more than 28-fold where the size of the glycan correlates with signal reduction (FIG. 5). Between the selected examples presented here, a similar effect was seen with ANP/NPRA, Secretin/SCTR, Glucagon/GCGR, GLP1/GLP1R, VIP/VPAC1, VIP/VPAC2, NPY/NPY1R, NPY/NPY2R, NPY/NPY4R, NPY/NPY5R, PYY/NPY1R, PYY/NPY2R, PYY/NPY4R and PYY/NPY5R.


Our data indicates that the presence of glycan structures somehow alters the interaction between peptide hormone ligand and cognate receptor. Well in line with these data, especially well-studied in the Neuropeptide Y family, it has been demonstrated that other bulky chemical modifications of amino acids in the receptor binding domain alter receptor sub-class selectivity of the ligand37. Such a sub-class receptor selectivity was observed for Thr32-Tn modified NPY that retained activity at the NPY2R and NPY5R receptors with a 118-fold and 37-fold decrease in potency (FIGS. 5H&J), respectively, whereas activity at the NPY1R and NPY4R receptors was almost abolished in the assayed range (FIGS. 5F&L). Thus glycosylation of NPY changes NPY's receptor sub-class selectivity from NPY2R>NPY1R>NPY5R>NPY4R to NPY2R>NPY5R>>NPY1R>NPY4R (FIG. 8). Thr32PYY-Tn showed same retained activity at NPY2R and NPY5R with 61-fold and 37-fold reduction in potency, respectively (FIGS. 5I&K), but minimal activity at the NPY1R and NPY4R in the assayed range (FIGS. 5G&K). Thus glycosylation of PYY changes NPY's receptor-subtype selectivity from NPY1R>NPY2R>NPY5R>NPY4R to NPY2R>NPY5R>>NPY1R>NPY4R (FIG. 8).


Peptide hormones are inherently unstable and circulate only in minute amounts. Here, it is demonstrated that site-specific O-glycosylation on Secretin, VIP, Galanin, PYY, GLP-1 and ANP protects the peptide hormones from proteolytic degradation in vivo using a rat model, ex vivo using plasma degradation assays and in vitro using recombinant proteases (FIG. 6 & FIG. 7). Most prominent is the stability of the naturally occurring sialylated structures where e.g. Thr-32 ST-PYY remained partially in its biologically active form even after prolonged incubation time with plasma and Ser-23 ST-Galanin remained partially intact after overnight incubation with neprilysin. Even though the sialylated structures of VIP and PYY were also protected from DPP-IV degradation, the Tn-glycosylated structures were in some cases somewhat faster degraded compared to non-glycosylated, perhaps related to the unphysiological nature of the Tn structure that is primarily observed in cancer cells.


The Neuropeptide Y family members are ubiquitously expressed in the body and act as neurotransmitters to regulate a vast array of physiological processes via binding and signalling through the Gi coupled NPY receptors (YR1, YR2, YR4 or YR5).


The main function of GLP-1 is to increase insulin secretion, i.e. to act as an “incretin”, but it also inhibits gastrointestinal motility and function as a physiological regulator of appetite. Recently it was demonstrated that GLP-1, Oxyntomodullin and PYY in combination injected subcutaneously using a pump device into obese volunteers reduced their mean caloric intake with 32%38.


ANP is classically released from secretory granules from the atria in a regulated fashion which makes it able to rapidly regulate hemodynamics in response to increased pressure. Glycosylated ANP was protected from degradation in vitro by IDE and NEP which suggest that glycosylated ANP may have increased half-life. The combined effects of glycosylated ANP, i.e decreased potency and increased stability, could render a positive effect in the treatment of acute decompensated heart failure and hypertension, where ANP and BNP are already introduced as infusion therapy39-41.


Thus, there is a need to identify selective peptide hormone receptor agonists or antagonists with good biostability to pursue as potential therapeutic candidates for treating e.g. cardiovascular diseases, anxiety, depression, obesity, epilepsy, alcoholism.


Peptide based design of therapeutics is attractive in many ways since biological active peptides have the potential to regulate specific functions of GPCRs and ion-channels and in general in vivo based drug design is favourable due to lower toxicity and immunogenicity and higher selectivity and predictable in vivo behaviour. However, probing the function and efficacy of what was thought of as “naturally occurring” unmodified peptides have demonstrated low biostability and circulation time and therefore low efficacy42,43 and a number of strategies have been taken to chemically alter the biochemical properties of peptide hormones or synthetic analogues and improve these parameters44. It is generally found that large N-glycans on proteins may enhance circulatory half-life, although mainly by increase of the size and hydrodynamic size of proteins. However, introduction of O-glycans into smaller peptides have also been used to enhance circulatory half-life especially when combined with the GlycoPegylation strategy45. In one relevant example an O-glycosylation sequon was introduced in the C-terminus of the GLP-1 receptor antagonist Exendin (9-39) increasing functional half-life46. Other studies have explored the chemical synthesis of peptide hormones with glycans46-52, e.g. O-linked galactose on vasopressin, PYY and VIP, glucose on Leu-enkephalin and PYY, N-linked GlcNAc on GLP-1 and N-terminal chemical glycation of GIP, GLP-1(7-36) and Insulin. Interestingly all studies, except one describing O-linked galactose on Vasopressin, find, very much in line with what the present inventors show here for the naturally occurring O-GalNAc glycans, that the chemically modified glycosylated analogues are less or equally potent in in vitro receptor activation assays, yet these other studies demonstrate higher stability and potency in vivo.


Naturally occurring O-glycans positioned within the receptor-interaction region of peptide hormones have not been demonstrated previously, and we hypothesize that such naturally occurring glycans selectively affect function and biostability as our preliminary studies suggest.


The inventors of the present invention also identified O-glycosylation on the pro-part of peptide hormones. Here, sequestered from the bioactive part, the sugars might regulate PC processing and activation and furthermore coincidentally mask antibody binding epitopes9,24,53-56. One such well-studied example is proBNP which is synthesized in the ventricles of the failing heart and undergo limited proteolysis by PCs releasing the C-terminal peptide hormone BNP that regulate natriuresis and blood pressure. ProBNP is O-glycosylated in the N-terminal proprotein (NT-proBNP) close to the PC processing site and amino acid substitution experiments have validated that Thr71 protects proBNP from processing by Corin or Furin53. The present inventors identified O-glycans on proBNP, POMC, Kininogen-1, Chromogranin A (Table 6). NT-proBNP is an important biomarker for heart failure and commercial immunoassays are being used in the clinic to quantify NT-proBNP in heart related diseases. However some variability among the assays have been noted and caution raised against O-glycans potentially masking antibody binding epitopes57. As POMC58, Kininogen-159 and chromogranin A60 are also used as biomarkers it is particular important to note the degree of glycosylation identified in this study.


In summary the present inventors show that O-glycans in conserved residues in various peptide hormone families, are far more abundant than previously recognized, and that glycans change peptide hormone induced receptor activity and furthermore alter recognition by proteolytic enzymes that otherwise inactivate the peptide hormones.


EXAMPLES

The purpose of the following examples are given as an illustration of various embodiments of the invention and are thus not meant to limit the present invention in any way. Along with the present examples the methods described herein are presently representative of preferred embodiments, are exemplary, and are not intended as limitations on the scope of the invention. Changes therein and other uses which are encompassed within the spirit of the invention as defined by the scope of the claims will occur to those skilled in the art.


Biological samples were prepared as follows:


Tissue Extraction: Porcine brain, cerebellum, ileum and a pool of human prostate gland tissue61 was isolated according to standard protocols. Proteins were extracted by crushing the frozen tissue using a CryoPrep tissue extractor (Covaris, Woburn, Mass.), boiled in water for 20 minutes, and homogenized with an Ultra-Turrax (IKA, Staufen, Germany). For ileum tissue, instead of boiling in water, the tissue was homogenized and rotated at 4° C. for 4 hours in 0.18 M HCl/70% ethanol. After 30 minutes centrifugation at 13,000 g, the supernatants were collected and pooled, and protein concentration was determined by BCA assay (Pierce). Prostate gland samples were further processed as crude water extract, acetone precipitated extract and acetone precipitated extract after acidification. Brain and cerebellum extracts were either crude extracts or acetone precipitated extracts after acidification. For precipitation of insoluble proteins samples in water or adjusted to 0.5 M CH3COOH were added icecold acetone (67%), incubated for 1 h at −20° C., and centrifuged at 16.000 g for 30 min. Subsequently the supernatant was lyophilized and reconstituted in water.


Plasma extraction: Plasma for O-glycoproteomic analyses was collected and pooled from two healthy volunteers into EDTA-treated tubes (K2E K2EDTA Vacuette) followed by centrifugation at 5,000×g for 10 min and stored at −20° C. until use.


Both crude and low molecular weight fraction (LMWF) enriched plasma was subjected to the O-glycoproteome strategy. For LMWF enrichment a volume of plasma containing approximately 60 mg of protein (measured by BCA assay (Pierce)) was precipitated by adding two parts of 96% ethanol followed by incubation at RT for 30 min. Supernatant and pellet was separated by centrifugation at 10.000×g for 10 minutes, and the supernatant was lyophilized and resuspended in 0.05% rapigest. 50 mM sodium acetate buffer and desialylated with 0.1 U/mL neuraminidase (Clostridium perfringens neuramidase type VI, Sigma). The LMWF-enriched sample was further enriched for O-glycopeptides by capture on a short (300 ml contained in 1 ml syringe) PNA agarose column. Glycoproteins were eluted by heating the lectin (2×90° C., 10 min) with 0.05% RapiGest (as previous described11). The LMWF-enriched plasma sample was 0.2 μm filtered prior to the glycoprotein enrichment. In parallel, 5 mg of total protein (as determined by BCA assay (Pierce)) from non-LMWF-enriched biofluid samples was desialylated by the same procedure as described above, before enzymatic degradation omitting the glycoprotein enrichment.


Cell protein extraction: Conditioned media cleared from dead cells and debris obtained from 2×T175 flasks cultured for 48-72 h were dialyzed, neuraminidase treated and enriched for glycoprotein as done for the the LMWF-enriched plasma. Total cell lysates (TCL) were obtained by washing a monolayer of cells in icecold PBS, scrabing off the cells and adding 2 ml 0.05% RapiGest to solubilize the cell pellet. The resulting homogenate was sonicated and cleared by centrifugation.


Mass Spectrometry Workflow

Enzyme digestion and desialylation: The extracted samples from the various neuronal and endocrine sources were adjusted to 50 mM ammonium bicarbonate, heated for 10 min at 80° C., followed by reduction with 5 mM dithiothreitol (DTT) (60° C., 30 min) and alkylation with 10 mM iodoacetamide (30 min, room temperature, kept dark). Subsequently, the samples were incubated with trypsin, Glu-C or chymotrypsin (Roche) (37° C., overnight, 1 μg enzyme pr 100 μg protein). The following day, the enzyme reaction was quenched and RapiGest, if present in the sample, was precipitated by acidifying with trifluoroacetic acid (TFA). The solution was cleared by centrifugation (10,000×g, 10 min.) and peptides were purified on C18 Sep-Pak columns (Waters), and dried down using SpeedVac. If not already desialylated, the dried peptides were resuspended in 1 mL 50 mM Sodium acetate (pH 5.5) containing 0.1 U/mL Neuraminidase followed by incubation at 37° C. for 1 h, purified by Sep-Pak and dried down.


LWAC O-glycopeptide enrichment: Dried samples were reconstituted in 2 mL PNA/Jacalin/VVA buffer (PNA-binding buffer 10 mM HEPES (pH 7.4), 150 mM NaCl, 0.1 mM CaCl2, and 0.01 mM MnCl2; Jacalin-binding buffer 175 mM Tris (pH 7.5); VVA-binding buffer 20 mM Tris-HCl (pH 7.4), 150 mM NaCl, 1 mM CaCl2/MgCl2/MnCl2/ZnCl2, and 1 M urea), 0.45 μm filtered and injected onto a pre-equilibrated 2.6-m long column packed with lectin-bound (PNA, Jacalin or VVA, Vector Laboratories) agarose beads at a constant flow-rate of 0.1 mL/min. For VVA the column was first washed for 3×CV in 0.4 M glucose and then eluted with 2 CV 0.2 M GalNAc and 1×CV 0.4 M GalNAc. For PNA and Jacalin LWAC, the column was washed 2×CV in lectin-binding buffer, and then eluted with 2×1 column volume 0.5 M galactose and 1×1 column volume 1 M galactose, respectively. The elution fractions were concentrated and glycopeptides were purified using Stage tips and submitted for nLCMS/MS analysis.


nLC/MS/MS Analysis: Liquid chromatography-tandem mass spectrometry was performed on a system composed of an EASY-nLC 1000 (Thermo Fisher Scientific) interfaced via a nanoSpray Flex ion source to an LTQ-Orbitrap Velos pro hybrid spectrometer or Orbitrap Fusion Tribrid (Thermo Fisher Scientific), equipped for both higher energy collisional dissociation (HCD) and electron transfer dissociation (ETD) modes, enabling peptide sequence analysis without and with retention of glycan site-specific fragments, respectively. The nLC was operated in a one-column set up with an analytical column (20 cm length, 75 μm inner diameter) packed with C18 reverse phase material (1.9-μm particle size, ReproSil-Pur, Dr. Maisch). Each sample dissolved in 0.1% formic acid was injected onto the column and eluted in a gradient from 2 to 30% B in 105 min, from 30% to 100% B in 5 min and 100% B for 10 min at 200 nl min-1 (solvent A, 100% H2O; solvent B, 100% acetonitrile; both containing 0.1% (v/v) formic acid). A data-dependent mass spectral acquisition routine, HCD triggering of subsequent ETD scan, was used for all runs. Briefly, a precursor MS1 scan (m/z 350-1,700) of intact peptides was acquired in the Orbitrap at a resolution setting of 30,000 (Velos Pro) or 120,000 (Fusion), followed by Orbitrap HCD-MS2 (m/z of 100-2,000) of the five most abundant multiply charged precursors in the MS1 spectrum; this event was followed up by an ETD-MS2 fragmentation for the same precursor ion. In cases where preliminary screening of fractions for glycopeptide enrichment was carried out prior to IEF, the ETD-MS2 step was omitted, and HCD-MS2 (m/z 100-2,000) of the five most abundant multiply charged precursors was acquired (“top five method”). These HCD-MS2 spectra were simply screened for the appearance of the HexNAc fragment at m/z 204.086.


Data analysis: The raw data were processed using Proteome Discoverer 1.4 software (Thermo Fisher Scientific) and searched against the human, porcine, mouse or rat-specific Uniprot database downloaded on January 2013. The Sequest HT search node was used for HCD and ETD data. In all cases the precursor mass tolerance was set to 15 p.p.m. and fragment ion mass tolerance to 20 millimass units (mmu). Carbamidomethylation on cysteine residues was used as a fixed modification. Methionine oxidation, C-terminal amidation (plasma and pancreas), and HexNAc or HexHexNAc attachment to serine, threonine or tyrosine were used as variable modifications. As an additional preprocessing procedure, all HCD data showing the presence of fragment ions at m/z 204.08 were extracted into a single .mgf file, and the exact mass of 1×, 2×, 3× and 4× HexNAc or HexHexNAc units was subtracted from the corresponding precursor ion mass, generating four distinct files. These preprocessed data files were submitted to a Sequest HT node under the same conditions mentioned above, except considering a HexNAc or HexHexNAc attachment. All spectra were searched against a decoy database using a target false discovery rate of 1%; unassigned spectra were submitted to a second Sequest HT node using the same parameters as above with the exception of performing the search using semi-specific trypsin cleavage. The final list was filtered to include only peptide hormones.


Multiple sequence alignment: All alignments were performed in ClustalW using the peptide sequences of H. sapiens, M. musculus, and R. Norvegicus.


In some aspects of the present application, mammalian host cells are modified to inactivate or downregulate certain glycosyltransferase genes. Details for for modifying or adding all subtypes of O-GalNAc linked mucin-type O-glycans are described in WO 2017/194699, which reference is hereby incorporated by reference.


In brief the present invention may incorporate the use of mammalian host cells with individual and combinatorial knock out of one or more of the GALNT1-T20 glycogenes (listed in Table 1 below). Determining changes in interactions with a plurality of mammalian cells with knock out of GALNT1 and/or GALNT2 and/or GALNT3 and/or GALNT4 and/or GALNT5 and/or GALNT6 and/or GALNT7 and/or GALNT9 and/or GALNT10 and/or GALNT11 and/or GALNT12 and/or GALNT13 and/or GALNT14 and/or GALNT16 and/or GALNT18 and/or GALNT19 is used to identify if said interaction occurs through subsets of O-GalNAc glycoproteins controlled by one or more of the 20 GALNTs, respectively, such that loss or reduction in measured interactions with mammalian cells with knock out of one or more of the named gene(s) confer that the O-glycoprotein(s) responsible for the interaction requires glycosylation by the corresponding GALNT(s).










TABLE 1







O-Gly (Ser/Thr/Tyr)
GALNT1-T20 (O-GalNAc)









O-Glycan Branching

The present invention may incorporate the use of mammalian host cells with individual and combinatorial knock out of C1GalT1, GCNT1, GCNT2, GCNT3, GCNT4, GCNT6, GCNT7, B3GNT6 or B3GNT2 glycogenes (listed in Table 2 below) suitable for determining O-linked branching in Core2, Core3 and Core4 structures (FIG. 1), involved in observed interactions. Determining changes in interactions with a plurality of mammalian cells with knock out of GCNT1 and/or GCNT2 and/or GCNT3 and/or GCNT4 and/or GCNT6 and/or GCNT7 and/or B3GNT6 and/or B3GNT6 is used to identify if said interaction occurs through O-linked branched structures by one or a plurality of the branching enzymes, such that loss or reduction in measured interactions with mammalian cells with knock out of one or more of the named gene(s) confer that the O-linked branched structure is responsible for the interaction as indicated.










TABLE 2







O-Gly
C1GALT1, B3GNT6 (O-GalNAc)



GCNT1/T2/T3/T4/T6/T7 (O-GalNAc)



B3GALNT1/T2 (O-Gly)



B3GNT2/T3/T4/T7/T8/T9 (O-Gly)



B4GALT1/T2/T3/T4 (O-Gly)



B4GALNT3/T4 (O-Gly)









The present invention may incorporate the use of mammalian host cells with individual and combinatorial knock out of genes involved in N and O-glycan and glycolipid capping (sialylation); ST3GAL1/2/3/4/5/6 (α2,3NeuAc capping/sialylation) and/or ST6GAL1/2 (α2,6NeuAc capping/sialylation) and/or ST8SIA1/2/3/4/5/6 (capping by poly-sialylation) and/or ST6GALNAC1/2/3/4/5/6 (α2,6NeuAc capping/sialylation) (glycogenes listed in table 3 below) suitable for determining the capped (sialylated or fucosylated) glycan structure involved in observed interactions. Determining changes in interactions with a plurality of mammalian cells with knock out of ST3GAL1/2/3/4/5/6 and/or ST6GAL1/2 and/or ST8SIA1/2/3/4/5/6 and/or ST6GALNAC1/2/3/4/5/6 is used to identify if said interaction occurs through the type of capping indicated in parenthesis, such that loss or reduction in measured interactions with mammalian cells with knock out of one or more of the named groups of genes confer that the type of capping is responsible for the interaction as indicated.










TABLE 3







N-Gly,
FUT1/2/3/4/5/6/7/8/9/10/11


O-Gly,
ST3GAL1/2/3/4/5/6


Glycolipids
ST6GAL1/2



ST6GALNAC1/2/3/4/5/6



ST8SIA1/2/3/4/5/6



B3GAT1/T2



ABO



A4GNT









Engineering GTfs in Cells

Only little information exists as to the effects of knock out of glycosyltransferase genes in mammalian cell lines. For human cell lines only a few spontaneous mutants of glycosyltransferase genes have been identified. For example the colon cancer cell line LSC derived from LS174T has a mutation in the COSMC chaperone that leads to misfolded and non-functional Core1 synthase C1GalT62. The COSMC gene is also mutated in the human lymphoblastoid Jurkat cell line62,63.


Knock Out of Glycosylation Genes in Cell Lines

The limited information of effects of knock out of glycosyltransferase genes in cell lines is partly due to past difficulties with making knock outs in cell lines before the recent advent of precise gene editing technologies64. Thus, until recently essentially only one glycosyltransferase gene, FUT8, had been knocked out in a directed approach using two rounds of homologous recombination including massive clone screening efforts. The conventional gene disruption by homologous recombination is typically a very laborious process as evidenced by this knock out of Fut8 in CHO, as over 100,000 clonal cell lines were screened to identify a few growing Fut8−/− clones65 (U.S. Pat. No. 7,214,775). With the advent of the Zinc finger nuclease (ZFN) gene targeting strategy it became less laborious to disrupt genes, which was first demonstrated by knock out of the Fut8 gene in a CHO cell line, where additional two other genes unrelated to glycosylation were also effectively targeted66. More recently, TALENs and the CRISPR/Cas9 editing strategies have emerged, and the latter editing strategy was used to knock out the Fut8 gene67.


It is thus clear that targeted genetic engineering is now a tool the skilled person may use but editing of the glycosylation genes in mammalian cells and animals are prone to substantial uncertainty, and thus identifying the optimal engineering targets for display of a given glycan structure will require extensive experimental efforts. Therefore a random type approach involving testing of a multiplicity of different glycogene and glycoform variations may be beneficial.


Overexpression of Glycosylation Genes in Cell Lines

It is noteworthy that transient or stable overexpression of a glycosyltransferase gene in a cell most often result in only partial changes in the glycosylation pathways in which the encoded enzyme is involved. A number of studies have attempted to overexpress e.g. the core2 C2GnT1 enzyme in CHO to produce core2 branched O-glycans, the ST6GAL1 sialyltransferase to produce α2,6linked sialic acid capping on N-glycoproteins68, and the ST6GALNAC1 sialyltransferase to produce α2,6linked sialic acid on O-glycoproteins forming the cancer-associated glycan STn69. However, in all these studies heterogeneous and often unstable glycosylation characteristics in transfected cell lines have been obtained. This is presumably partly due to competing endogenous glycosyltransferase activities whether acting with the same substrates or diverging pathway substrates. Other factors may also explain the heterogeneous glycosylation characteristics.


Definitions

Before disclosing the subject-matter in greater detail, definitions of terms/expressions used herein are provided.


Unless otherwise defined, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. Although methods and materials similar to those described herein can be used in the practice or testing of the present invention, suitable methods and materials are described below. In addition, the materials, methods, and examples are illustrative only and not intended to be limiting.


Each of the patents, applications and articles cited herein, and each document cited or referenced therein, including during the prosecution of any of the patents and/or applications cited herein (“patent cited documents”), and any manufacturer's instructions or catalogues for any products cited herein or mentioned in any of the references and in any of the patent cited documents, are hereby incorporated herein by reference. Documents incorporated by reference into this text or any teachings therein may be used in the practice of this invention.


Documents incorporated by reference into this text are not admitted to be prior art. As used herein, the words “may” and “may be” are to be interpreted in an open-ended, non-restrictive manner. At minimum, “may” and “may be” are to be interpreted as definitively including structure or acts recited.


The articles “a” and “an” are used herein to refer to one or to more than one (i.e. to at least one) of the grammatical object of the article.


Throughout this specification, unless the context requires otherwise, the words “comprise”, “comprises” and “comprising” will be understood to imply the inclusion of a stated step or element or group of steps or elements but not the exclusion of any other step or element or group of steps or elements.


By “therapeutically effective amount or dose” or “sufficient amount or dose” herein is meant a dose that produces effects for which it is administered. The exact dose will depend on the purpose of the treatment, and will be ascertainable by one skilled in the art using known techniques.


The terms “pharmaceutically effective”, “therapeutically effective”, “pharmaceutically active”, or “therapeutically active” means that a synthetic compound of the invention so described is determined to have activity that affects a medical parameter or disease state.


“Patient” as that term is used herein, refers to the recipient of the treatment. In a specific embodiment, the patient is a mammal, such as a human, canine, murine, feline, bovine, ovine, swine or caprine. In a particular embodiment, the patient is a human.


As used herein, the terms “function” or “functional activity” refer to a biological, e.g., enzymatic function.


By “isolated” is meant material that is substantially or essentially free or purified from components that normally accompany it in its native state. For example, the compound according to the invention may be modified subsequent to isolation from their natural or laboratory-produced environment, or they may be used in isolated form in vitro, or as components of devices, compositions, etc.


By “obtained from” is meant that a sample such as, for example, a polypeptide (peptide hormone) is isolated from, or derived from, a particular source of the host or cells cultured in vitro. For example, the extract can be obtained from a tissue or a biological fluid sample isolated directly from the host. Therefore, the compounds of the present invention may be recombinantly produced or obtained from biological sources and be purified before further use in vitro and/or in vivo.


By “pharmaceutically acceptable carrier” is meant a solid or liquid filler, stabilizer, diluent or encapsulating substance that can be safely used in administration routes when applied to an animal, e.g. a mammal, including humans.


“Therapeutic treatment”, and “treatment”, refers any type of therapy.


The terms “peptide hormone”, “polypeptide,” “peptide” and “protein” are used interchangeably herein to refer to a polymer of amino acid residues. The terms apply also to amino acid polymers in which one or more amino acid residue is an artificial chemical mimetic of a corresponding naturally occurring amino acid, as well as to naturally occurring amino acid polymers and non-naturally occurring amino acid polymer.


The term “amino acid” refers to naturally occurring and synthetic amino acids, as well as amino acid analogs and amino acid mimetics that function in a manner similar to the naturally occurring amino acids. Naturally occurring amino acids are those encoded by the genetic code, as well as those amino acids that are later modified, e.g., hydroxyproline, γ-carboxyglutamate, and O-phosphoserine. Amino acid analogs refers to compounds that have the same basic chemical structure as a naturally occurring amino acid, i.e., an a carbon that is bound to a hydrogen, a carboxyl group, an amino group, and an R group, e.g., homoserine, norleucine, methionine sulfoxide, methionine methyl sulfonium. Such analogs have modified R groups (e.g., norleucine) or modified peptide backbones, but retain the same basic chemical structure as a naturally occurring amino acid. Amino acid mimetics refers to chemical compounds that have a structure that is different from the general chemical structure of an amino acid, but that functions in a manner similar to a naturally occurring amino acid. Amino acids may be referred to herein by either their commonly known three letter symbols or by the one-letter symbols recommended by the IUPAC-IUB Biochemical Nomenclature Commission.


As to amino acid sequences, one of skill will recognize that individual substitutions, deletions or additions to a nucleic acid, peptide, polypeptide, or protein sequence which alters, adds or deletes a single amino acid or a small percentage of amino acids in the encoded sequence is a “conservatively modified variant” or “derivative” where the alteration results in the substitution of an amino acid, e.g., with a chemically similar amino acid. Conservative substitution tables providing functionally similar amino acids are well known in the art. According to the present invention, modified variants of the peptide hormones of the invention functionally retain their specific hormone activity when analyzed in a suitable model to determine said activity.


As used herein the term “peptide hormone” refers to any protein or peptide with hormonal activity, i.e. a peptide with signaling activity through the binding on its cognate receptor or to the class of peptide hormones involved in neuronal signaling, such as involved in a wide range of brain functions, including analgesia, reward, food intake, metabolism, reproduction, social behaviors, learning and memory. A peptide hormone may also be referred to as a neuropeptide.


The term “O-linked glycan” as used herein refers to the O-linked glycosylation with the addition of N-acetyl-galactosamine (GalNAc) to serine or threonine residues in the peptide hormones of the invention followed by other carbohydrates (such as galactose and sialic acid).


The phrase “at a predetermined specific site, such as in the receptor-binding region” as used herein refers to the addition or selection of peptides with an O-linked glycan at a site specifically selected.


The phrase “a truncated version or a variant as compared to the corresponding wild-type peptide hormone found in nature” is intended to refer to a peptide hormone which has been modified by either truncation or amino acid substitutions as compared with the same peptide hormone found in nature, such as found in vivo in the human body. Typically, the peptide hormone may be genetically engineered and/or chemically synthesized to include 1, 2, 3, 4, 5, 6, or 7 amino acids of the native peptide sequence being substituted with any other amino acid, such as conservative substitutions. Alternatively or in addition to this, 1, 2, 3, 4, 5, 6, or 7 amino acids may have been removed or added to the native peptide sequence. Accordingly, in some embodiments, the peptides hormone according to the present invention comprises 1, 2, 3, 4, 5, 6, or 7 substitutions, additions or deletions relative to the native wild-type peptide hormone. The amino acids used in the amino acid sequences according to the invention may be in both L- and/or D-form. It is to be understood that both L- and D-forms may be used for different amino acids within the same peptide sequence. In some embodiments the amino acids within the peptide sequence are in L-form, such as natural amino acids.


The term “improved stability” as used herein refers to peptides of the invention, which when tested e.g. in an in vitro assays as described in70 exhibit improved stability as compared to the same peptide without this one or more O-linked glycan at a predetermined specific site, such as in the receptor-binding region.


The term “receptor sub-type selectivity switch” as used herein refers to peptides of the invention being receptor sub-type specific.


The term “O-linked glycan” or “O-glycosylation” refers to the attachment of a sugar molecule to an oxygen atom in an amino acid residue in a protein.


Specific Embodiments of the Invention

1. A formulation comprising at least one molecule of a peptide hormone species exhibiting a specific glycosylation pattern of one or more O-linked glycan(s) at a predetermined specific site of said peptide hormone species, wherein specific, defined glycosylation pattern means that the each molecule of said peptide hormone in said pharmaceutical formulation displays structural homogeneity with respect to the site of glycan attachment and/or with respect to the glycan attachment.


2. A formulation comprising at least one molecule of a peptide hormone species according to embodiment 1, wherein said peptide hormone species is selected from the group of sequences comprising SEQ ID NOs: 1, 2, 3, 5, 6, 7, 14, 15, 16, 21, 22, 23, 24, 25, 36, 37, 38, 39, 40, 41, 42, 43, 45, 46, 47, 48, 49, 51, 52, 54, 55, 56, 57, 72, 73, 74, 76, 79, 8, 81, 83, 84, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 106, 107, 108, 109, 113, 116, 117, 118, 119, 120, 130, 131, 135, 136, 143, 144, 147, 163, 164, 167, 168, 170, 184, 185, 186, 188, 189, 190, 191, 192, 204, 215, 217, 219, 222, 227, 229, 230, 231, 233, 234, 236, 252, 260, 262, 267, 272, and/or 279.


3. A formulation comprising at least one molecule of a peptide hormone species according to embodiment 1 or 2, wherein said peptide hormone species is selected from the group of sequences comprising SEQ ID NOs: 6, 7, 21, 22, 23, 24, 72, 74, 92, 95, 97, 99, 106, 107, 108, 116, 117, 118, 147, 163, 167, 185, 186, and/or 188.


4. A formulation comprising at least one molecule of a peptide hormone species according to any one of embodiments 1 to 3, wherein said peptide hormone species is selected from the group of sequences comprising SEQ ID NOs: 72, 95, 97, 106, 108, 147, 185, and/or 188.


5. A formulation comprising at least one molecule of a peptide hormone species according to any one of embodiments 1 to 4, wherein said peptide hormone species is SEQ ID NO: 147.


6. A formulation comprising at least one molecule of a peptide hormone species according to any one of embodiments 1 to 5, wherein said predetermined specific site of said peptide hormone is within the receptor-binding region.


7. A formulation comprising at least one molecule of a peptide hormone species according to any one of embodiments 1 to 6, wherein said peptide hormone exhibiting an specific glycosylation pattern of one or more O-linked glycan(s) at a predetermined specific site of said peptide hormone is obtainable by recombinant production using a host cell in which one or more glycosyltransferase gene(s) is/are inactivated or downregulated by inactivation and/or downregulation of one or more gene(s) selected from COSMC and C1GALT1; and/or by inactivation and/or downregulation of one or more gene(s) selected from GCNT3, GCNT4, B3GNT6, and/or by inactivation and/or downregulation and/or upregulation/activation of one or more gene(s) selected from ST6GALNAC1-6, ST3GAL1, GCNT3, GCNT4, and/or B3GNT6.


8. A formulation comprising comprising at least one molecule of a peptide hormone species according to any of embodiments 1 to 7, wherein said peptide hormone species exhibits a specific glycosylation pattern of one or more O-linked glycan(s) at a predetermined specific site of said peptide hormone and, wherein the one or more O-glycan structures include a glycan structure selected from a Core1, core2, core3, or core4 structure with optional elongation and sialic acid capping, wherein optionally the first monosaccharide attached in the synthesis of O-linked glycans is N-acetyl-galactosamine and wherein a core1 structure may be obtained by the addition of galactose, and wherein a core2 structure may be obtained by the addition of N-acetyl-glucosamine to the N-acetyl-galactosamine of the core1 structure and wherein the core3 structures may be obtained by the addition of a single N-acetyl-glucosamine to the first monosaccharide N-acetyl-galactosamin and core4 structures may be obtained by the addition of a second N-acetyl-glucosamine to the core3 structure.


9. A formulation comprising at least one molecule of a peptide hormone species according to any of embodiments 1 to 8, wherein the one or more O-glycan structures include a Tn (GalNAc) structure.


10. A formulation comprising at least one molecule of a peptide hormone species according to any of embodiments 1 to 9, wherein the one or more O-glycan structures include Tn (GalNAc) structure with one sialic acid capping (alpha2-6).


11. A formulation comprising at least one molecule of a peptide hormone species according to any of embodiments 1 to 10, wherein the one or more O-glycan structures include the core1 structures with one sialic acid capping (alpha2-6).


12. A formulation comprising at least one molecule of a peptide hormone species according to any of embodiments 1 to 11, wherein the one or more O-glycan structures include the core1 structures with one sialic acid capping (alpha 2-3)


13. A formulation comprising at least one molecule of a peptide hormone species according to any of embodiments 1 to 12, wherein the one or more O-glycan structures include the Core1 structures with two sialic acids capping (alpha 2-3 and alpha 2-6).


14. A formulation according to any one of embodiments 1 to 13, wherein said formulation is a pharmaceutical formulation.


15. A formulation comprising at least one molecule of a peptide hormone species as defined in any of the preceding embodiments 1 to 14, wherein said peptide hormone species comprises one or more O-linked glycan at a site indicated in and one of Tables 6A to 6E, particularly, wherein the site is a site in a human peptide hormone, more particularly, wherein the site is a conserved site in a human peptide hormone.


16. A formulation comprising at least one molecule of a peptide hormone species as defined in embodiment 15, wherein said peptide hormone species comprises one or more O-linked glycan at a site indicated in Table 6A or 6B, particularly, wherein the site is a site in a human peptide hormone, more particularly, wherein the site is a conserved site in a human peptide hormone.


17. A formulation comprising at least one molecule of a peptide hormone species as defined in embodiments 15 or 16, wherein said peptide hormone species comprises one or more O-linked glycan at a site of a peptide hormone indicated in Table 6B, particularly, wherein the site is a site in a human peptide hormone, more particularly, wherein the site is a conserved site in a human peptide hormone.


18. A formulation comprising at least one molecule of a peptide hormone species as defined in any one of embodiments 15 to 17, wherein said peptide hormone species comprises one or more O-linked glycan at a site of a peptide hormone indicated in Table 6C, particularly, wherein the site is a site in a human peptide hormone, more particularly, wherein the site is a conserved site in a human peptide hormone.


19. A formulation comprising at least one molecule of a peptide hormone species as defined in any one of embodiments 15 to 17, wherein said peptide hormone species comprises one or more O-linked glycan at a site of a peptide hormone indicated in Table 6C, particularly, wherein the site is a site in a human peptide hormone, more particularly, wherein the site is a conserved site in a human peptide hormone.


20. A formulation comprising at least one molecule of a peptide hormone species as defined in any one of embodiments 15 to 17, wherein said peptide hormone species comprises one or more O-linked glycan at a site of a peptide hormone indicated in Table 6D, particularly, wherein the site is a site in a human peptide hormone, more particularly, wherein the site is a conserved site in a human peptide hormone.


21. A modified peptide hormone comprising one or more O-linked glycan at a predetermined specific site selected from the group comprising the peptide hormones indicated in 6A, particularly, wherein the site is a site in a human peptide hormone, more particularly, wherein the site is a conserved site in a human peptide hormone, and wherein said peptide hormone is selected from the group comprising SEQ ID Nos: 1, 2, 3, 5, 6, 7, 14, 15, 16, 21, 22, 23, 24, 25, 36, 37, 38, 39, 40, 41, 42, 43, 45, 46, 47, 48, 49, 51, 52, 54, 55, 56, 57, 72, 73, 74, 76, 79, 8, 81, 83, 84, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 106, 107, 108, 109, 113, 116, 117, 118, 119, 120, 130, 131, 135, 136, 143, 144, 147, 163, 164, 167, 168, 170, 184, 185, 186, 188, 189, 190, 191, 192, 204, 215, 217, 219, 222, 227, 229, 230, 231, 233, 234, 236, 252, 260, 262, 267, 272, and/or 279.


22. The modified peptide hormone according to embodiment 21 comprising one or more O-linked glycan at a predetermined specific site selected from the group comprising the peptide hormones indicated in 6B, particularly, wherein the site is a site in a human peptide hormone, more particularly, wherein the site is a conserved site in a human peptide hormone, and wherein said peptide hormone is selected from the group comprising SEQ ID Nos: 6, 7, 21, 22, 23, 24, 72, 74, 92, 95, 97, 99, 106, 107, 108, 116, 117, 118, 147, 163, 167, 185, 186, and/or 188.


23. The modified peptide hormone according to embodiments 21 or 22 comprising one or more O-linked glycan at a predetermined specific site selected from the group comprising the peptide hormones indicated in 6C, particularly, wherein the site is a site in a human peptide hormone, more particularly, wherein the site is a conserved site in a human peptide hormone, and wherein said peptide hormone is selected from the group comprising SEQ ID Nos: 72, 95, 97, 106, 108, 147, 185, and/or 188.


24. The modified peptide hormone according to any one of embodiments 20 to 23 comprising one or more O-linked glycan at a predetermined specific site selected from the group comprising the peptide hormones indicated in 6D, particularly, wherein the site is a site in a human peptide hormone, more particularly, wherein the site is a conserved site in a human peptide hormone, and wherein said peptide hormone is depicted in SEQ ID NO: 147.


25. The modified peptide hormone according to any one of embodiments 20 to 24, wherein the one or more O-glycan structures include a glycan structure selected from a Core1, core2, core3, or core4 structure with sialic acid capping, wherein the one or more O-glycan structures include a glycan structure selected from a core1, core2, core3, or core4 structure with optional elongation and sialic acid capping, wherein optionally the first monosaccharide attached in the synthesis of O-linked glycans is N-acetyl-galactosamine and wherein a core1 structure may be obtained by the addition of galactose, and wherein a core2 structure may be obtained by the addition of N-acetyl-glucosamine to the N-acetyl-galactosamine of the core1 structure and wherein the core3 structures may be obtained by the addition of a single N-acetyl-glucosamine to the first monosaccharide N-acetyl-galactosamin and core4 structures may be obtained by the addition of a second N-acetyl-glucosamine to the core3 structure.


26. The modified peptide hormone according to any of embodiments 21 to 25, wherein the one or more O-glycan structures include a Tn (GalNAc) structure.


27. The modified peptide hormone according to any of embodiments 21 to 26, wherein the one or more O-glycan structures include Tn (GalNAc) structure with one sialic acid capping (alpha2-6).


28. The modified peptide hormone according to any of embodiments 21 to 27, wherein the one or more O-glycan structures include the core1 structures with one sialic acid capping (alpha2-6).


29. The modified peptide hormone according to any of embodiments 21 to 28, wherein the one or more O-glycan structures include the core1 structures with one sialic acid capping (alpha 2-3)


30. The modified peptide hormone according to any of embodiments 21 to 29, wherein the one or more O-glycan structures include the core1 structures with two sialic acids capping (alpha 2-3 and alpha 2-6).


The present invention relates also to an isolated peptide hormone, such as recombinant, such as a neuropeptide comprising one or more O-linked glycan at a predetermined specific site, such as in the receptor-binding region.


In some embodiments according to the present invention, the one or more O-glycan structures include a glycan structure selected from a core1, core2, core3, or core4 structure with sialic acid capping, such as a structure as illustrated in FIG. 1.


In some embodiments according to the present invention, the one or more O-glycan structures include a Tn (GalNAc) structure.


In some embodiments according to the present invention, the one or more O-glycan structures include Tn (GalNAc) structure with one sialic acid capping (alpha2-6).


In some embodiments according to the present invention, the one or more O-glycan structures include the core1 structures with one sialic acid capping (alpha2-6).


In some embodiments according to the present invention, the one or more O-glycan structures include the core1 structures with one sialic acid capping (alpha 2-3)


In some embodiments according to the present invention, the one or more O-glycan structures include the core1 structures with two sialic acids capping (alpha 2-3 and alpha 2-6).


In some embodiments according to the present invention, the peptide hormone has improved, such as increased stability and/or circulatory half-life and/or other pharmacokinetic properties, such as improved stability in in vitro assays, plasma and/or bodyfluids.


In some embodiments according to the present invention, the peptide hormone has lower bioactivity in receptor signalling, such as decreased receptor stimulation in in vitro cell assays and/or in man.


In some embodiments according to the present invention, the peptide hormone exhibits improved receptor stimulation in in vitro cell assays and/or in animal models and/or in man.


In some embodiments according to the present invention, the peptide hormone exhibits altered blood-brain barrier uptake in animals or in man, such as increased blood-brain barrier uptake in animals or in man, or decreased blood-brain barrier uptake in animals or in human.


In some embodiments according to the present invention, the peptide hormone exhibits receptor sub-type selectivity switch.


In some embodiments according to the present invention, the peptide hormone is specific to one or more tissue in human, such as specific to tissue of the nervous system.


In some embodiments according to the present invention, the peptide hormone is selected from any one of tables 4, 5, or 6, such as selected from the list consisting of a peptide of the Neuropeptide Y family, such as NPY, PPY and PYY; a peptide of the Glucagon/Secretin family, such as GIP, Glucagon, GLP-1, GLP-2, PACAP, Secretin, PHM-27/PHV-42, Somatoliberin and VIP; a peptide of the Natriuretic peptide family, such as ANP, BNP and CNP, a peptide of the calcitonin family, such as calcitonin, and a peptide of the insulin family such as amylin.


In some embodiments according to the present invention, the peptide hormone is not found in nature. Accordingly, in some embodiments the peptide hormone according to the invention is not a wild-type hormone found in any species in nature. The peptide hormone according to the invention may be a peptide hormone that is a variant of a wild-type peptide hormone. Such peptide hormone variant may be a peptide that differ from the wild-type version by 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, or 20 amino acid differences, such as amino acid substitutions, additions or deletions. A peptide variant according to the invention may have more than 80%, such as more than 85, 90, 91, 92, 93, 94, 95, 96, 97, 98, or 99% sequence identity with a corresponding wild-type peptide hormone found in nature.


In some embodiments according to the present invention, the peptide hormone is a truncated version or a variant as compared to the corresponding wild-type peptide hormone found in nature.


In some embodiments according to the present invention, the peptide hormone is selected from any one of table 6 comprising one or more O-linked glycan at a site as indicated in table 6, such as at a bold underlined position and/or an italic underlined position.


In some embodiments according to the present invention, the peptide hormone is selected from any one of table 6 comprising at least, not more than, or the exact number of O-linked glycan sites as indicated in table 6.


In some embodiments according to the present invention, the peptide hormone is selected from any one of table 5.


Subject matter of the present invention is also a (pharmaceutical or diagnostic) composition or formulation comprising a compound as defined in any of the preceding embodiments.


Subject matter of the present invention is also a (pharmaceutical or diagnostic) composition or formulation comprising a synthetic compound as defined in any of the preceding embodiments, wherein said (pharmaceutical or diagnostic) composition or formulation is suitable for administration to a patient in need thereof.


Subject matter of the present invention is also a peptide hormone or a pharmaceutical composition or formulation according to any of the above embodiments, wherein said composition or formulation is suitable for the localized or systemic administration, wherein the localized administration is preferably selected from the group of topical administration, including transdermal, ophthalmic, nasal, otologic, enteral, pulmonal and urogenital administration or local or systemic injection, including subcutaneous, intra-articular, intravenous, intracardiac, intramuscular, intraosseous or intraperitoneal administration.


Subject matter of the present invention is also a device according to the previous embodiment, wherein the device is suitable as a delivery system for immediate and/or sustained release of a peptide hormone as defined in anyone of the preceding embodiments, e.g., they may be used as drug (peptide hormone) delivery system or controlled drug (peptide hormone) release systems.


Subject-matter of the invention is also a device comprising a pharmaceutical composition or a pharmaceutical formulation as defined in any of the foregoing embodiments. A device may take any form that is suitable to deliver the synthetic compounds or any one of the compositions or formulations of the present invention. It may comprise biological and/or synthetic materials and may take form of a patch, a stent, an implantable device, hydrogel, etc.


Subject-matter of the invention is also a device as defined in any of the foregoing embodiments, wherein the device is a delivery system for immediate and/or sustained release of the peptide hormone as defined in any of the foregoing embodiments.


Subject-matter of the invention is also a method of treatment of an individual in need thereof and/or the amelioration of and/or the prevention of deterioration of a disease in an individual in need thereof, by administration to said individual of a therapeutically efficient amount of any of the peptide hormones according to the present invention and/or pharmaceutical compositions as defined above.


The administration of the compounds (peptide hormones) according to this invention and pharmaceutical compositions according to the invention may be performed in any of the generally accepted modes of administration available in the art. Illustrative examples of suitable modes of administration include intravenous, oral, nasal, inhalable, parenteral, topical, transdermal and rectal delivery. Parenteral and intravenous delivery forms are preferred. In aspects of the invention injectable formulations comprising a therapeutically effective amount of the compounds (peptide hormones) of the invention are provided, including salts, esters, isomers, solvates, hydrates and polymorphs thereof, at least one vehicle comprising water, aqueous solvents, organic solvents, hydro-alcoholic solvents, oily substances, or mixtures thereof, and optionally one or more pharmaceutically acceptable excipients. Standard knowledge regarding these pharmaceutical ingredients and pharmaceutical formulations/compositions may be found, inter alia, in the ‘Handbook of Pharmaceutical Excipients’; Edited by Raymond C Rowe, Paul J Sheskey, Walter G Cook and Marian E Fenton; May 2012 and/or in Remington: The Science and Practice of Pharmacy, 19th edition. The pharmaceutical compositions/formulations may be formulated in the form of a dosage form fororal, intravenous, nasal, inhalable, parenteral, topical, transdermal and rectal and may thus comprise further pharmaceutically acceptable excipients, such as buffers, solvents, preservatives, disintegrants, stabilizers, carriers, diluents, fillers, binders, lubricants, glidants, colorants, pigments, taste masking agents, sweeteners, flavorants, plasticizers, and any acceptable auxiliary substances such as absorption enhancers, penetration enhancers, surfactants, co-surfactants, and specialized oils.


The proper excipient(s) is (are) selected based in part on the dosage form, the intended mode of administration, the intended release rate, and manufacturing reliability. Examples of common types of excipients include also various polymers, waxes, calcium phosphates, sugars, etc.


Polymers include cellulose and cellulose derivatives such as HPMC, hydroxypropyl cellulose, hydroxyethyl cellulose, microcrystalline cellulose, carboxymethylcellulose, sodium carboxymethylcellulose, calcium carboxymethylcellulose, and ethylcellulose; polyvinylpyrrolidones; polyethylenoxides; polyalkylene glycols such as polyethylene glycol and polypropylene glycol; and polyacrylic acids including their copolymers and crosslinked polymers thereof, e.g., Eudragit® (Rohm), polycarbophil, and chitosan polymers. Waxes include white beeswax, microcrystalline wax, carnauba wax, hydrogenated castor oil, glyceryl behenate, glycerylpalmitol stearate, and saturated polyglycolyzed glycerate. Calcium phosphates include dibasic calcium phosphate, anhydrous dibasic calcium phosphate, and tribasic calcium phosphate. Sugars include simple sugars, such as lactose, maltose, mannitol, fructose, sorbitol, saccharose, xylitol, isomaltose, and glucose, as well as complex sugars (polysaccharides), such as maltodextrin, amylodextrin, starches, and modified starches.


The pharmaceutical compositions/formulations of the present invention may be formulated into various types of dosage forms, for instance as solutions or suspensions, or as tablets, capsules, granules, pellets or sachets for oral administration.


The pharmaceutical composition of the present invention can be manufactured according to standard methods known in the art. Granulates according to the invention can be obtained by dry compaction or wet granulation. These granulates can subsequently be mixed with e.g. suitable disintegrating agents, glidants and lubricants and the mixture can be compressed into tablets or filled into sachets or capsules of suitable size. Tablets can also be obtained by direct compression of a suitable powder mixture, i.e. without any preceding granulation of the excipients. Suitable powder or granulate mixtures according to the invention are also obtainable by spray drying, lyophilization, melt extrusion, pellet layering, coating of the active pharmaceutical ingredient or any other suitable method. The so obtained powders or granulates can be mixed with one or more suitable ingredients and the resulting mixtures can be delivered in sterile primary packaging devices for reconstitution before parenteral administration Injectable compositions of the present invention may contain a buffer (for example, sodium dihydrogen phosphate, disodium hydrogen phosphate and the like), an isotonizing agent (for example, glucose, sodium chloride and the like), a stabilizer (for example, sodium hydrogen sulfite and the like), a soothing agent (for example, glucose, benzyl alcohol, mepivacaine hydrochloride, xylocaine hydrochloride, procaine hydrochloride, carbocaine hydrochloride and the like), a preservative (for example, p-oxybenzoic acid ester such as methyl p-oxybenzoate and the like, thimerosal, chlorobutanol, benzyl alcohol and the like) and the like, if necessary. In addition, the injectable composition of the present invention may contain vitamins and the like. Further, injectable compositions of the present invention may contain an aqueous solvent, if necessary. Examples of the aqueous solvent include purified water for injection, physiological saline solution, and glucose solution. In injectable compositions of the present invention, the pharmaceutical compound (peptide hormone) may be solid. As used herein, the “solid” comprises crystals and amorphous substances which have conventional meanings. The form of the solid component is not particularly limited, but powder is preferred in view of dissolution rate.


Pharmaceutical Formulations

Still another aspect of the present invention relates to the use of the peptide hormones according to the present invention, e.g. as shown in Tables 6A-E) as an active ingredient, together with at least one pharmaceutically acceptable carrier, excipient and/or diluents for the manufacture of a pharmaceutical composition for the treatment and/or prophylaxis of appropriate disorders or diseases.


Administration forms include, for example, pills, tablets, film tablets, coated tablets, capsules, liposomal formulations, micro- and nano-formulations, powders and deposits. Furthermore, the present invention also includes pharmaceutical preparations for parenteral application, including dermal, intradermal, intragastral, intracutan, intravasal, intravenous, intramuscular, intraperitoneal, intranasal, intravaginal, intrabuccal, percutan, rectal, subcutaneous, sublingual, topical, or transdermal application, which preparations in addition to typical vehicles and/or diluents contain the compounds according to the present invention.


The compounds of the invention can also be administered in form of its pharmaceutically active salts. Suitable pharmaceutically active salts comprise acid addition salts and alkali or earth alkali salts. For instance, sodium, potassium, lithium, magnesium or calcium salts can be obtained.


The pharmaceutical compositions/formulations according to the present invention will typically be administered together with suitable carrier materials selected with respect to the intended form of administration, i.e. for oral administration in the form of tablets, capsules (either solid filled, semi-solid filled or liquid filled), powders for constitution, aerosol preparations consistent with conventional pharmaceutical practices. Other suitable formulations are hydrogels, elixirs, dispersible granules, syrups, suspensions, creams, lotions, solutions, emulsions, suspensions, dispersions, and the like. Suitable dosage forms for sustained release include tablets having layers of varying disintegration rates or controlled release polymeric matrices delivered with the active components. The pharmaceutical compositions may be comprised of 0.01 to 95% by weight of the peptide hormones of the invention.


As pharmaceutically acceptable carrier, excipient and/or diluents can be used HSA, lactose, sucrose, cellulose, mannitol.


Suitable binders include starch, gelatin, natural sugars, corn sweeteners, natural and synthetic gums such as acacia, sodium alginate, carboxymethyl-cellulose, polyethylene glycol and waxes. Among the lubricants that may be mentioned for use in these dosage forms, boric acid, sodium benzoate, sodium acetate, sodium chloride, and the like. Disintegrants include starch, methylcellulose, guar gum and the like. Sweetening and flavoring agents and preservatives may also be included where appropriate. Some of the terms noted above, namely disintegrants, diluents, lubricants, binders and the like, are discussed in more detail below. Additionally, the compositions of the present invention may be formulated in sustained release form to provide the rate controlled release of any one or more of the components or active ingredients to optimize the therapeutic effects. Suitable dosage forms for sustained release include controlled release polymeric matrices or hydrogels embedding the active components. Aerosol preparations suitable for inhalation may include solutions and solids in powder form, which may be in combination with a pharmaceutically acceptable carrier such as inert compressed gas, e.g. nitrogen.


For preparing suppositories, a low melting wax such as a mixture of fatty acid glycerides such as cocoa butter is first melted, and the active ingredient is dispersed homogeneously therein by stirring or similar mixing. The molten homogeneous mixture is then poured into convenient sized molds, allowed to cool and thereby solidify.


Also included are solid form preparations which are intended to be converted, shortly before use, to liquid form preparations for parenteral administration. Such liquid forms include solutions, suspensions and emulsions.


The compounds of the present invention may also be deliverable transdermally. The transdermal compositions may take the form of creams, lotions, aerosols and/or emulsions and can be included in a transdermal patch of the matrix or reservoir type as are conventional in the art for this purpose.


The transdermal formulation of the compounds of the invention is understood to increase the bioavailability of said compound into the circulating blood. One problem in the administration of peptidic drugs in general is the loss of bioactivity due to the formation of insolubles in aqueous environments or due to degradation. Therefore, stabilization of compounds for maintaining their fluidity and maintaining their biological activity upon administration to the patients in need thereof needs to be achieved. Prior efforts to provide active agents for medication include incorporating the medication in a polymeric matrix whereby the active ingredient is released into the systemic circulation. Known sustained-release delivery means of active agents are disclosed, for example, in U.S. Pat. Nos. 4,235,988, 4,188,373, 4,100,271, US447471, U.S. Pat. Nos. 4,474,752, 4,474,753, or U.S. Pat. No. 4,478,822 relating to polymeric pharmaceutical vehicles for delivery of pharmaceutically active chemical materials to mucous membranes. The pharmaceutical carriers are aqueous solutions of certain polyoxyethylene-polyoxypropylene condensates. These polymeric pharmaceutical vehicles are described as providing for increased drug absorption by the mucous membrane and prolonged drug action by a factor of two or more. The substituents are block copolymers of polyoxypropylene and polyoxyethylene used for stabilization of drugs such as insulin.


Aqueous solutions of polyoxyethylene-polyoxypropylene block copolymers (poloxamers) are useful as stabilizers for the compounds. Aside from serving as a stabilizer for the compound, poloxamers provide excellent vehicles for the delivery of the compound, and they are physiologically acceptable. Poloxamers, also known by the trade name Pluronics (e.g. Pluronic F127, Pluronic P85, Pluronic F68) have surfactant properties that make them useful in industrial applications. Among other things, they can be used to increase the water solubility of hydrophobic, oily substances or otherwise increase the miscibility of two substances with different hydrophobicities. For this reason, these polymers are commonly used in industrial applications, cosmetics, and pharmaceuticals. They have also been used as model systems for drug delivery applications. In situ gelation of pharmaceutical compositions based on poloxamer that are biologically triggered are known in the art (e.g. U.S. Pat. No. 5,256,396), describing compositions containing poloxamer 407 and water at specified concentrations.


Gels refer to the active ingredients dispersed or solubilized in a hydrophilic semi-solid matrix. Powders for constitution refer to powder blends containing the active ingredients and suitable diluents which can be suspended in water and may contain optionally buffer salts, lactose, amino acids, excipients, sugars and isotonisation reagents.


Recently, increasingly improved and potent protein-based and peptide-based drugs have been developed by the biotech industry. However, the prophylactic and/or therapeutic use of many other protein- or peptide-based compounds has been hampered because of their susceptibility to proteolytic breakdown, rapid plasma clearance, peculiar dose-response curves, immunogenicity, bioincompatibility, and/or the tendency of peptides and proteins to undergo aggregation, adsorption, and/or denaturation. These characteristics often render traditional methods of drug delivery ineffective or sub-optimal when applied to protein or peptide based drugs. Therefore, an immense amount of interest has been increasingly placed on controlled and/or sustained release drug delivery systems to maintain the therapeutic efficacy or diagnostic value of these important classes of biologically active agents. One of the primary goals of sustained delivery systems is to maintain the levels of an active agent within an effective range and ideally at a constant level. One approach for sustained delivery of an active agent is by microencapsulation, in which the active agent is enclosed within a polymeric matrix. The importance of biocompatible and/or biodegradable polymers as carriers for parenteral drug delivery systems is now well established. Biocompatible, biodegradable, and relatively inert substances such as poly(lactide) (PLA) or poly(lactide-co-glycolide) (PLG) structures such as microparticles or films containing the active agent to be administered are commonly employed sustained delivery devices (for review, see M. Chasin, Biodegradable polymers for controlled drug delivery. In: J.O. Hollinger Editor, Biomedical Applications of Synthetic Biodegradable Polymers CRC, Boca Raton, Fla. (1995), pp. 1-15; T. Hayashi, Biodegradable polymers for biomedical uses. Prog. Polym. Sci. 19 4 (1994), pp. 663-700; and Harjit Tamber, Pal Johansen, Hans P. Merkle and Bruno Gander, Formulation aspects of biodegradable polymeric microspheres for antigen delivery Advanced Drug Delivery Reviews, Volume 57, Issue 3, 10 Jan. 2005, Pages 357-376). A relatively steady release of one or more active agents incorporated within such polymers is possible because of the degradation profile of these polymers in an aqueous environment. By encapsulating active agents in a polymer matrix in various forms such as microparticles and/or films the active agent is released at a relatively slow rate over a prolonged time. Achieving sustained drug release in such a manner may afford less frequent administration, thereby increasing patient compliance and reducing discomfort; protection of the therapeutic compound within the body; potentially optimized prophylactic or therapeutic responses and prolonged efficacy; and avoidance of peak-related side-effects by maintaining more-constant blood levels of the active agent. Furthermore, these compositions can oftentimes be administered by injection, allowing for localized delivery and high local concentrations of the active agents.


With regard to highly active biologies, such as growth factors, local in the form of a bolus injection results in rapid diffusion from the region of interest and can cause severe side effects and limit efficacy. The oldest way is to use biophysical retention by changing the biophysical properties in form of viscosity, porosity, hydrophobicity or charge of the material to attain a purposeful delivery. This strategy often substantially modifies the properties of the tissue and conditions for cells, requiring more appropriate, biocompatible release mechanisms.


Methods of Treatment

Treatment methods of the invention comprise the step of administering to a subject a therapeutically effective amount of at least one peptide hormone according to the invention or a pharmaceutical composition/formulation of the invention. The administration may be effected by any route, e.g., dermally, parenterally, topically, etc.


As indicated previously “therapeutically effective amount” of a at least one peptide hormone according to the invention preferably refers to the amount necessary to achieve the therapeutic outcome.


The choice of the optimal dosage regime and duration of medication, particularly the optimal dose and manner of administration of the active compounds necessary in each case can be determined by a person skilled in the art on the basis of his/her expert knowledge.


Subject matter of the present invention is also any of the above the above at least one peptide hormone in method of manufacturing a medicament for the treatment of an appropriate condition or diseases.


EXAMPLES
Example 1
Development of a Sensitive O-Glycoproteomics Work Flow Enriching for Peptide Hormones

The present inventors originally developed the so-called SimpleCell O-glycoproteomics strategy18,71, and provided a vast expansion of the knowledge of the human O-glycoproteome. While more than 3,000 O-glycosites were identified in almost 1,000 human proteins28,71. In order to specifically explore potential O-glycans on peptide hormones the present inventors developed a novel proteomics based strategy selective for smaller peptides. The overall strategy for exploring O-glycosylation of peptide hormones is presented in FIG. 2A. The present inventors chose to use the strategy on cells and organs known to produce and secrete high levels of diverse peptide hormones. For tissues the present inventors selected the whole-brain and cerebellum from both rat and pig as neuronal sources, porcine pancreas, ileum and heart as endocrine sources. For human samples, prostate cancer was chosen as well as plasma since both endocrine and neuroendocrine tissues secrete peptide hormones into the blood stream. For cell lines, the present inventors chose the mouse neuroblastoma cell line N2A and the mouse enteroendocrine STC1 cell line that is a natural source of gut hormones.


Peptide hormones are typically short peptides of 30-50 amino acids, and to achieve optimal peptide hormone coverage in the mass spectrometry analysis, the present inventors used different pre-extraction methods for the tissue- and plasma samples (precipitation with organic solvents or acidic water extraction) to ensure enrichment of shorter peptides. For the cell lines, the present inventors furthermore used different proteolytic enzymes (trypsin, Glu-C and/or chymotrypsin) for protein digestion to facilitate better coverage of proteins in the LWAC-LC/MS workflow (FIG. 1N).


When studying protein O-glycosylation in complex mixtures enrichment of glycopeptides is essential for glycan detection due to suppression of glycopeptide ionization by the presence of large amounts of unglycosylated peptides72. In the case of N2A cells expressing truncated O-glycans due to a spontaneous mutation in the COSMC gene73, the Tn (GalNAc) binding VVA (vicia villosa lectin) was used as previously described. Normal cells generally produce elongated O-glycans of core 1 or in some cases cores 2-4 structures with capping sialic acids (FIG. 1), and the majority of O-glycoproteins found in plasma carry the sialylated Core 1 structures (Core 1)12,74. The present inventors therefore hypothesized that secreted and circulating peptide hormones would carry similar O-glycan structures if they were O-glycosylated, and based on this the present inventors designed an enrichment strategy that depended on initial neuraminidase treatment of plasma, tissue extracts and cell pellets to remove capping sialic acids followed by protease digestion and LWAC enrichment using the lectins PNA (peanut agglutinin) and/or Jacalin that recognize and bind Core 1 O-glycans as previously described11,12. Following lectin enrichment, glycopeptides were fragmented and sequenced using HCD and ETD LC-MS/MS (FIG. 2A).


Example 2
Identification of O-Glycans on Peptide Hormones

In total the present inventors identified 2,327 O-glycoproteins (199 from human, 898 from pig, 509 from rat and 721 from mouse) with approximately 5,000 unambiguously assigned sites and another approximately 8,000 ambiguously assigned modification specific O-glycopeptides where site information was not obtained due to poor quality spectra or lack of ETD data from 10 different tissues and multiple species (FIG. 2A).


In order to extract information on glycosylated peptide hormones across several species (see FIG. 2A right panel for schematic summary), the sequenced glycopeptide fragments were aligned to the 104 human proproteins annotated in the most comprehensive available database of both neuropeptides and peptide hormones (NeuroPeP)75. This analysis resulted in 6347 glycopeptide fragments from 135 orthologous proproteins.


To further explore the total number of O-glycosylated peptide hormones across the mammalian species analysed, the present inventors realigned the resulting peptide fragments to the corresponding human homolog resulting in 62 preproproteins (FIG. 2B). Subsequently, mapping the identified sites onto the mature peptide hormones demonstrated that 92 out of the 279 annotated mature human peptide hormones carried O-glycans at one of more sites (Table 6 and FIG. 2B). A minor fraction of these proteins and glycosites were reported previously, and the data thus confirmed the presence of known O-glycans on 17 preproproteins and 33 mature peptide hormones with the vast majority belonging to the well-described chromogranin and SAAS families9-14,54-56,76-79. The majority of the identified O-glycoproteins were novel and included 45 preproproteins and 59 mature peptide hormones (FIG. 2B). Among these were well-characterized peptide hormones including GLP-1, insulin, cholecystokinin, PYY, galanin and secretin, which unexpectedly were found to carry O-glycans.


On average, our strategy resulted in the identification of 10-20 glycosylated peptide hormones per analyzed sample, with the exception of the plasma and brain samples that resulted in identification of 5 and 39 glycosylated peptide hormones, respectively (FIG. 2D). FIG. 3 presents a summary of glycosylated peptide hormones in the respective peptide hormone families. Out of 46 peptide hormone families (279 members) the present inventors found O-glycans in 29 families (92 members).


Example 3
O-Glycans Identified in Conserved Receptor Binding Domains of Peptide Hormone Families

PTMs are known to change the biochemical properties and diversify protein function. In particular O-glycosylation in close proximity to limited proteolytic cleavage sites has been demonstrated to e.g. co-regulate limited proteolytic processing. Therefore, the present inventors first explored if the identified sites were in close proximity (+/−3 a.a.) to physiological relevant cleavage sites in peptide hormones. However, mapping the identified sites relative to peptide hormone length revealed that this was not the case.


The major characterized structural or functional features of peptide hormones, besides limited proteolytic processing, are their ability to be recognized by and bind highly selective receptors. The present inventors therefore explored the positions of glycosites relative to characterized structural and/or functional receptor binding regions, and surprisingly, in six different peptide hormone families the majority of identified or predicted sites were indeed located in known receptor binding regions (FIG. 4A-F). Furthermore, evolutionary analysis by alignment of individual peptide hormones for each family revealed that clear conservation of the O-glycosites, both between members within families as well as through evolution of the individual peptide hormones (FIG. 4A-F), strongly suggesting that these O-glycosites have functionally and/or structurally importance.


The following details findings in each of the hormone families. Glycosylated residues are numbered according to the length of the mature processed bioactive peptide hormones:


Example 4
O-Glycans Identified in Conserved Receptor Binding Domains of the Secretin/Glucagon Family

The members of the Secretin/Glucagon family function in water homeostasis and regulation of feeding behavior and have remarkable sequence homology. Here the present inventors identified O-glycans on Secretin, Vasoactive Intestinal Peptide (VIP), Peptide Histidine Methionine/valine (PHM-27/PHV-42), Glucagon and Glucagon-like peptide 1(GLP-1), positioned in the N-terminal part of the peptide hormones, which has been shown to be important for receptor binding and activation80 (FIG. 4A). While the present inventors did not identify glycans in all members of this family, the identified O-glycosite is fully conserved in Glucagon-like peptide 2 (GLP-2), Pituitary Adenylate Cyclase-activating Peptide (PACAP) and Somatoliberin, as well as partially in Gastric inhibitory peptide (GIP), where the predicted site is shifted 1 amino acid in the C-terminal direction. Furthermore, aligning all the members of the Secretin/Glucagon family demonstrated a highly conserved sequence motif Phe-Thr-Ser/Asp as a common denominator for glycosylation where both Thr and Ser are possible acceptor sites for glycosylation (FIG. 4A).


Example 5
O-Glycans Identified in Conserved Receptor Binding Domains of the Calcitonin Family

Members of the Calcitonin control a number of processes, including calcium/phosphate balance (Calcitonin), insulin dependent glucose metabolism (Amylin/IAPP) and vasodilation (Adrenomedullin and Intermedin)81. The present inventors identified O-glycans on all members of the Calcitonin family with the exception of Intermedin (FIG. 4B). Similar to the Secretin/Glucagon family, the present inventors identified a possible common sequence motif in the small conserved disulfide loop C(x)xxxTC for glycosylation of members of the Calcitonin family, where two cysteines are spaced by 4-5 amino acids including the Thr acceptor. This conserved Thr residue (Thr5 in Calcitonin) the present inventors found glycosylated in Amylin located in the disulfide ring structure, which is essential for receptor binding82. Moreover, in a study with artificial O-glycans it was shown that O-glycans may alter the alpha-helical structure of the Calcitonin peptide83.


Example 6
O-Glycans Identified in Conserved Receptor Binding Domains of the Insulin-Like Growth Factor Family

In the IGF/Insulin subfamily of the Insulin gene superfamily, the present inventors identified an O-glycan on Insulin in the B-chain at Thr27 in a semi-conserved residue found as a serine in Insulin Growth Factor II (IGFII) and a threonine shifted a few positions C-terminally in Insulin Growth Factor I (IGFI) (FIG. 4C). This is surprising as Insulin is one of the most well-studied polypeptides, and the glycan identified in the sequence 47GFFYTPKA54 (HexHexNAc) was consistently found in 2 different species tested.


Example 7
O-Glycans Identified in Conserved Receptor Binding Domains of the Galanin Family

Galanin and Galanin-like peptide have multiple functions stimulating smooth muscle cell contraction and growth hormone and insulin release. On Galanin itself the present inventors identified an O-glycan on Thr3, which is an essential residue for receptor activation84 and conserved in both members. In addition to this the present inventors found an O-glycan on Ser11, which is only present in Galanin and not the other family member Galanin-like peptide (FIG. 4D).


Example 8
O-Glycans Identified in Conserved Receptor Binding Domains of the Neuropeptide Y Family

The Neuropeptide Y family members, Neuropeptide Y (NPY), Peptide YY (PYY) and Pancreatic Polypeptide (PPY) share structural features and they all adopt a specific three-dimensional structure called the PP-fold. The peptides are involved in appetite regulation and anxious behavior, and the present inventors found all three members to carry O-glycans at the same conserved C-terminal Thr32 residue (FIG. 4E). The present inventors identified an additional N-terminal glycosylation site on NPY (Ser3) that was not conserved in the other members of the family. The C-terminal region of the NPY family members is essential for receptor binding, receptor selectivity and activation but also the mid-region and N-terminal has been shown to be important for receptor interaction85.


Example 9
O-Glycans Identified in Conserved Receptor Binding Domains of the Natriuretic Peptides Family

The present inventors identified O-glycans on all three precursors (pro Atrial Natriuretic peptide (ANP), pro B-type Natriuretic Peptide (BNP), pro C-type Natriuretic Peptide (CNP)) as previously described for proBNP79. However, the present inventors also identified O-glycans at Ser19 and Ser25 in the C-terminal cyclic receptor-binding region of mature ANP where Ser19 is highly conserved in all three members (FIG. 4F).


O-glycans on peptide hormones modulate receptor activation.


Considering the high degree of conservation and structural position of the identified O-glycans the present inventors next decided to explore the potential functional impact of site-specific O-glycosylation on mature peptide hormones. The present inventors selected Glucagon, GLP-1, Secretin, VIP, ANP, NPY, PYY and PPY as examples of peptide hormones where the present inventors identified O-glycosylation sites in known receptor activating regions for analysis in in vitro receptor binding assays. First, the present inventors used recombinant GalNAc-transferases for chemoenzymatic synthesis or chemically synthesized (SynPeptides, China) glycopeptide variants with Tn (GalNAcα1-O-Ser/Thr), elongated to T (Galβ1-3GalNAcα1-O-Ser/Thr) and sialylated ST (NeuAcα2-3Galβ1-3GalNAcα1-O-Ser/Thr) structures using recombinant purified glycosyl transferases. Secretin, Glucagon. GLP-1 and VIP were enzymatically GalNAc-glycosylated by GalNAc-T1 corresponding to position Thr7 (MS validated) in the mature peptide sequences and peptides from the NPY family were chemically synthesized with GalNAc at position Thr32. ANP was chemically synthesized with an O-glycan at position 19 and/or 25. Next HEK293 or COS-7 cells transiently expressing selected relevant cognate receptors were incubated with increasing concentrations of peptide or glycopeptide. Ligand/agonist efficacy and potency was measured by receptor activation as an increase in secondary messenger cAMP.


Cell Culture and Transfection: HEK293 and COS7-cells were cultured in DMEM containing 10% FBS in a humidified atmosphere at 37° C. with 5% C02 (Sigma-Aldritch, Germany). For experiments, cells were seeded onto 6- or 10-cm plates and cultured for 1-3 days to 60-80% confluency. Cells were transfected with 1-2.5 pg of receptor constructs for 24-48 h using Lipofectamine 2000 (Thermo Fisher Scientific) according to the manufacturer's instructions, or alternatively, using linear 25-kDa polyethyleneimine (Polysciences). Both reagents were used at 1:3 DNA to reagent ratio.


cAMP and cGMP Accumulation Measured by HTRF®: Intracellular cAMP/cGMP levels were measured using a homogeneous time-resolved fluorescence (HTRF®) cAMP/cGMP Gs dynamic assay kit (CisBio Bioassays). Forty-eight hours post-transfection cells were detached and seeded into white 384-well microplates with 1,000 cells/well in 5 μl of stimulation buffer (DMEM, 1 mM 3-isobutyl-1-methylxanthine (IBMX), 0.2% BSA). For their stimulation, μl/well of the stimulation buffer containing appropriate doses of either naked peptide hormone or glycosylated variants were added. Then, cells were incubated for 30 min at 37° C. followed by lysis by addition of 5 μl/well of each of the supplied conjugate-lysis buffer containing d2-labeled cAMP/cGMP and Europium cryptate-labeled anti-cAMP/cGMP antibody, both reconstituted according to the manufacturer's instructions. Plates were incubated for 1 h in the dark at room temperature and time-resolved fluorescence signals were excited at 340 nm and measured at 620 and 665 nm, respectively using the EnSpire Multilabel Reader (PerkinElmer Life and Analytical Sciences). The cAMP/cGMP generated was interpolated from a cAMP standard curve generated in parallel for each experiment.


IP-1 Accumulation Measured by HTRF®: Intracellular IP-1 levels were measured, similarly to cAMP, using a homogeneous time-resolved fluorescence (HTRF®) IP-1 Gq assay kit (CisBio Bioassays). This assay is dependent on co-transfection of the receptor with a chimeric G-protein to obtain sufficient signal of the Gq pathway. In this assay NPY2R was used together with Gqo5. Forty-eight hours post-transfection cells were detached and seeded into white 384-well microplates with 10,000 cells/well in 7 μl of supplied stimulation buffer supplemented with 0.1% BSA. For stimulation, 7 μl/well of the supplemented stimulation buffer containing appropriate doses of either naked peptide hormone or glycosylated variants were added. Then, cells were incubated for 2 h at 37° C. followed by lysis by addition of 3 μl/well of each of the supplied conjugate-lysis buffer containing d2-labeled IP-1 and Europium cryptate-labeled anti-IP-1 antibody, both reconstituted according to the manufacturer's instructions. Plates were incubated for 1 h in the dark at room temperature and time-resolved fluorescence signals were excited at 340 nm and measured at 620 and 665 nm, respectively using the EnSpire Multilabel Reader (PerkinElmer Life and Analytical Sciences). The IP-1 generated was interpolated from a IP-1 standard curve generated in parallel for each experiment.


Example 10
O-Glycans on VIP Modulate Receptor Activation.

The two VIP/PACAP receptors (VPAC1 and VPAC2) show comparable affinities for VIP52,86, thus the present inventors selected VPAC1 for analysis of VIP binding and activation. In this assay VIP exhibited a potency of 0.2 nM and 0.4 for VPAC1 & 2 respectively, which is in good agreement with previous studies. VIP with one O-glycan (GalNAc/Tn) at residue 7 (VIP-Thr7/Tn) showed a 581-fold decrease in potency to 102 nM for VPAC1 (FIG. 5A) and a 681-fold decrease to 242 nM for VPAC2 (FIG. 5B). Elongation of the O-glycan on VIP to T and ST structures changed the potency to 44 nM and 74 nM, respectively for VPAC1 and 130 and 244 nM respectively for VPAC2 (FIG. 8).


Example 11
O-Glycans on Secretin Modulate Receptor Activation.

Secretin binds and signals exclusively through the secretin receptor (SCTR), and in our assay secretin had a potency of 0.1 nM for SCTR, comparable to values found in previous studies, whereas secretin with a single O-glycan (GalNAc/Tn) at residue 7 (Secretin-Thr7-Tn) decreased the potency 2200-fold to 205 nM. Elongation of the glycan on secretin to T and ST structures further reduced potency 1-7 fold for each elongation step to 292 nM and 1932 nM, respectively (FIG. 5C).


Example 12
O-Glycans on GLP-1 Modulates Receptor Activation.

GLP-1 binds and signals exclusively through the GLP-1 receptor (GLP-1R), and in our assay GLP-1 showed a potency of 0.04 nM for GLP-1R, comparable to values found in previous studies. Elongation of the glycan at position 7 on GLP-1 to T, ST and diST (GLP1-Thr7/Tn/T/diST) further reduced potency approximately 20-40 fold fold for each elongation step to 253 nM, 266 nM, and 461 nM, respectively (FIG. 5D and FIG. 8).


Example 13
O-Glycans on Glucagon Modulates Receptor Activation.

As with GLP-1 and the GLP-1R, Glucagon binds and signals exclusively through the glucagon receptor (GCGR). The non-glycosylated glucagon showed a potency of 1.29 nM in line with previous literature. Upon introducing a Tn-glycoform at Thr7 (Glucagon-Thr7/Tn), the potency is decreased almost a 100-fold to 126 nM. This potency is reduced 5 times further when elongating to T (667.9 nM). However, the introduction of sialic acid (ST) did not significantly influence the potency further compared to the non-sialylated T-structure (615.7 nM). Importantly, removal of the glycan from the T-glycosylated glucagon restored the potency to the non-glycosylated levels eliciting an EC50 of 1,235 nM (FIG. 5E and FIG. 8).


Example 14
O-Glycans on NPY, PYY and PPY Modulate Receptor Activation.

The NPY family peptide hormones activate members of the NPY receptor family (Y1, Y2, Y4, and Y5), where mature NPY (1-36) and PYY (1-36) preferentially binds Y1, Y2 and Y5, and PPY preferentially binds Y4. The Y1 receptor seem to have strict requirements for the N-terminal part of the peptides as N-terminal truncation gradually decreases affinity for NPY. In contrast the Y2 receptor is more sensitive to alterations in the C-terminus of NPY and PYY and single amino acid substitutions in the C-terminus can lower affinity for the Y2 receptor87.


The present inventors developed a receptor assay for the binding study of the NPY family to the four known receptors. As expected according to reference values in the literature PYY, NPY, had respective potencies (EC50-values) of 0.47 nM and 2.16 nM at NPY1R, 0.34 nM and 4.11 nM at receptor NPY2R, 11.35 nM and 199.9 nM at receptor NPY4R, and 12.04 and 15.03 nM at receptor NPY5R (FIGS. 5F-M and FIG. 8). Introduction of a Tn-glycan on position Thr32 in NPY (NPY-Thr32/Tn) inferred a 118-fold and 37-fold decrease in potency at receptor NPY2R and NPY5R, respectively (FIGS. 5H&J) whereas receptor potencies at NPY4R and NPY5R was decreased to a level beyond the assayed range. Even though the receptor activation at these receptors did not did not reach Emax within the assayed range, activity was still observable which indicates potencies in terms of EC50-values that are above 1 pM. NPY-Thr32/T and NPY-Thr32-ST exhibited minimal activation and did not reach Emax within the assayed range at all receptors, thus indicating potencies in terms of EC50-values above 1 pM (FIGS. 5 F & H & J & L). As with NPY, Introduction of a Tn-glycan on position Thr32 in PYY inferred a 61-fold (249.2 nM) and 37-fold (556.7 nM) decrease in potency at receptors NPY2R and NPY5R, respectively (FIGS. 5I & K) whereas receptor activation at NPY4R and NPY5R was only retained to a minimal degree indicating potencies at levels above 1 μM. PYY-Thr32/T and PYY-Thr32/ST exhibited minimal activation and did not reach Emax in the assayed range at all receptors, thus indicating potencies in terms of EC50-values above 1 pM (FIGS. 5 G & I & K & M). Data is summarized in FIG. 8. A receptor preference shift was thus observed for both PYY and NPY when incorporating Tn at position 32, where the glycosylated peptide hormones activates the receptor in the following order NPY2R>NPY5R>>NPY1R>NPY4R upon increasing levels of agonist, whereas their non-glycosylated counterparts activates the receptors in a different order, namely: NPY2R>NPY1R>NPY5R>NPY4R for NPY and NPY1R>NPY2R>NPY5R>NPY4R for PYY.


Example 15
O-Glycans on ANP Modulate Receptor Activation.

ANP exerts its physiological effects mainly via the NPR-A receptor but binds also to NPR-C. NPR-C, however, is mainly regarded a clearance receptor thus the present inventors selected NPR-A for ANP binding and activation.


In this assay ANP exhibited a potency of 0.9 nM for NPR-A, which is in good agreement with previous studies88. ANP with one O-glycan (GalNAc/Tn) at residue 19 or 25 showed a 63- and 139-fold decrease in potency to 57 and 125 nM, respectively, whereas simultaneous O-glycans at residue 19 and 25 completely dismiss receptor activation. Elongation of the O-glycan on ANP residue 19 to T, ST and diST further reduced the potency 3- to 50-fold to 160 nM and 296 nM and 2699 nM, respectively. Elongation of the O-glycan on ANP residue 25 to T, ST and diST further reduced the potency 2- to 3-fold to 265 nM and 717 nM and 460 nM respectively (FIGS. 5N and 5O). O-glycans on ANP residue 19 resulted in approximately 20% reduction in efficacy and O-glycans on ANP residue 25 resulted in approximately 20% increase in efficacy.


In summary, all peptide hormones with O-glycans attached at one or more specific sites elicited a right-shifted full, partial agonist or superagonist response positively correlated to glycan size.


Example 16
O-Glycans Modulate Peptide Hormone Stability In Vitro

Many peptide hormones are destined for endocrine circulation where they are rapidly degraded with half-lives reaching only a few minutes6-8. The present inventors have previously demonstrated that O-glycans in close proximity to proteolytic processing sites can modulate the rate of processing33. To study if O-glycosylation of peptide hormones altered the inherent proteolytic instability of this class of biomolecules, the present inventors subjected selected glycopeptide hormones to ex vivo degradation assays using human plasma and in vitro degradation using neprilysin (NEP), insulin degrading enzyme (IDE) and dipeptidyl peptidase IV (DPP-IV) enzymes known to degrade peptide hormones and other bioactive peptides in vivo including ANP, GLP-1, PYY, VIP, Secretin and Galanin89,90 (FIGS. 6 and 7). The degradation pattern was monitored by MALDI-TOF analysis in a time-course assay with timepoints from 15 minutes to up to 24 hrs.


Degradation Assay:


For enzymatic degradation assays using either NEP or DPP-IV (R&D systems, UK), an enzyme titration was carried out to ensure full degradation within one hour of reaction time. 15 pM of non-glycosylated peptide substrate and either 50 mM Tris, pH 9, 0.05% Brij for NEP or 50 mM Tris, pH 8 for DPP-IV was treated with varying enzyme amounts in a total volume of 10 μL incubated at 37° C. The degradation assay of the three glycoforms (Tn, T and ST) was performed under same reaction-parameters along with the non-glycosylated peptide (four separate reactions). The following amounts of enzyme were used for NEP reactions: 150 pg/pL enzyme for VIP, Galanin, secretin and their glycoforms, 20 ng/pL for PYY and its glycoforms. 4 and 10 ng/pL DPIV was used for the degradation of VIP+glycoforms and PYY+glycoforms respectively. For ex vivo plasma degradation assays, plasma was diluted to a final concentration of 20% plasma, 50 mM Tris (pH 7.7) and degradation of 15 pM (glyco-) peptide substrate was investigated. Degradation was carried out at 37° C. and several aliquots were taken between 0 minutes and 24 hours and degradation was monitored by MALDI-TOF-MS.


MALDI-TOF-MS was performed on a Bruker Autoflex instrument (Bruker Daltonik GmbH, Bremen, Germany) by mixing the quenched aliquots with a saturated solution of α-Cyano-4-hydroxycinnamic acid in ACN/H2O/TFA (70:30:0.1) at a ratio 1:1 on a target steel plate and mass-spectra were acquired in linear mode.


Example 17
O-Glycans on ANP Modulate Stability In Vitro

For the degradation assays with (glyco-)ANP, the amount of recombinant enzyme used was optimized to fully digest the naked peptide of interest within one hour of incubation at 37° C. In vitro cleavage activity was assayed by adding 2.5 ng Neprilysin (R&D Systems) or 125 ng Insulin-degrading enzyme (IDE, R&D Systems) to 813 pmol peptide or glycopeptide substrate in a total volume of 25 μL. Reactions were performed in 50 mM Tris, 0.05% Brij-35, pH 9 (Neprilysin), or 50 mM Tris, 20 mM NaCl, pH 7.5 (IDE) and incubated at 37° C. Product development was evaluated after 15 min, 30 min, 60 min, and 24 hours by MALDI-TOF and reverse-phase HPLC (C18). Neprilysin degraded ANP completely within 15 min, whereas and ANP-S25/Tn were degraded slower with residual full length ANP-S19/Tn detectable even after 60 min and residual ANP-S25/Tn detectable after 15 min. Residual ANP-S19/Tn, -S25/Tn was detectable after 30 min. After 1 hour, non-modified ANP was completely degraded whereas major degradation products of ANP-S19/Tn and ANP-S19/Tn, -S25/Tn remained detectable even after 24 hours incubation (FIG. 6A). In a similar time-course with insulin-degrading enzyme, ANP was completely degraded within 15 min, whereas ANP-S19/Tn and ANP-S25/Tn remained partly as full length glycopeptides after 30-60 minutes. Interestingly, ANP-S19/Tn, -S25/Tn was degraded within 15 minutes (FIG. 6B).


Example 18
O-Glycans on Secretin Modulate Stability In Vitro

In a similar manner, NEP completely degraded Secretin 1-27 to 1-22 within 60 minutes. Also here, glycosylation had a protective effect such that Thr34-Tn remained intact after 60 min and Thr34-T after 120 minutes. Again, sialylated Secretin Thr34-ST appeared resistant to NEP degradation even after 24 hrs (FIGS. 7A and 7C).


Example 19
O-Glycans on Galanin Modulate Stability In Vitro

Nonglycosylated Galanin 1-27 was degraded by NEP within 60 minutes whereas the Ser23-Tn and -T extended glycoforms were degraded after 120 min. The sialylated Galanin-Ser55/ST variant remained intact even after 24 hrs in solution suggesting that sialylation of Galanin is necessary for complete protection from NEP degradation, at least in vitro (FIGS. 7B and 7C).


Example 20
O-Glycans on VIP Increase Stability In Vitro

NEP cleaves VIP sequentially at Asp3/Ala4 then Phe6/Thr7, Lys21/Tyr22 and ultimately at Ala18/Val19 in vitro (FIG. 7 for a summary). Non-glycosylated VIP peptide was completely degraded after 15 minutes with NEP treatment whereas Thr7-Tn glycosylated VIP remained partially intact after 15 minutes, Thr7-T glycosylated VIP remained partially intact after 30 minutes and VIP-Thr7/ST remained completely intact after 60 minutes (FIGS. 7B and 7C).


Example 21
O-Glycans on VIP Increase Stability In Vitro

DPP-IV also degrades VIP both in vivo and in vitro initially cleaving off two N-terminal amino acids Ser2/Asp3, then cleaves at Ala4/Val5 and lastly C-terminally at Tyr22/Leu23. Where the non-glycosylated VIP, Thr7-Tn and Thr7-T glycosylated VIP were degraded equally fast within 60 minutes, the sialylated VIP-Thr7/ST remained fully intact after 30 minutes and partially intact after 60 minutes (FIGS. 7B and 7C).


Example 22
O-Glycans on PYY Increase Stability In Vitro

NEP cleaves PYY at 4 positions at Tyr20/Tyr21, Ser23/Leu24, His26/Tyr27 and Leu30/Val31 in a sequence the present inventors were not able to decide. However whereas non-glycosylated PYY was degraded after 15 minutes all three PYY-Thr32/Tn/T/ST glycosylated peptides remained intact up to 120 minutes (FIGS. 7B and 7C).


Example 23
O-Glycans on PYY Increase Stability In Vitro

DPP-IV cleaves PYY both in vivo and in vitro N-terminally at Pro2/Ile3. Subjecting the non-glycosylated and Thr32 glycopeptide variants to in vitro DPPIV degradation revealed that where Tn- and T-glycosylation had no effect on DPP-IV activity Thr32/ST weakly protected the peptide from N-terminal degradation (FIGS. 7B and 7C).


Example 24
O-Glycans on PYY Increase Stability Ex Vivo

PYY is quickly removed from circulation due to the action of a number of proteases. To approximate in vivo conditions the present inventors chose to analyse PYY degradation using human plasma ex vivo. In plasma PYY is degraded both N-terminally at Pro2/Ile3 and Pro5/Glu6 and C-terminally at Gln34/Arg35 and where O-glycans at residue Thr32 (Thr32/Tn/T/ST) had no effect on the N-terminal degradation, as seen for the in vitro DPP-IV degradation, the present inventors observed full protection from the C-terminal degradation up to 24 hours of the PYY-Thr32/Tn/T/ST glycosylated PYY peptides whereas the non-glycosylated peptide was C-terminally degraded only after 1 hour (FIGS. 7B and 7C).


Example 25
O-Glycans on GLP-17-36 Increase Stability In Vitro and Predicts Increased Stability in Vivo

DPP-IV is one of the primary enzymes degrading GLP-17-36 (from hereon GLP-1) in the circulation in vivo91. DPP-IV removes the two N-terminal amino acids by cleaving between Ala2/Ser3 both in vitro and in vivo thus inactivating GLP-1, and mutating this DPP-IV cleavage site greatly enhances GLP-1 half-life in vivo92. Due to this link, DPP-IV inhibitors have successfully been used therapeutically to enhance the effects of endogenous GLP-191. To test the effect of glycosylation in close proximity to the DPP-IV cleavage site we incubated GLP-1 with and without glycans with DPP-IV in vitro. Where the non-glycosylated GLP-1 was fully degraded after 30 minutes incubation with equimolar amounts of monoglycosylated GLP-1-Thr5/Tn and GLP-1-Thr7/Tn and equimolar amounts of GLP-1-Thr5/T or GLP-1-Thr7/T were protected against degradation until 120 minutes incubation. Equimolar amounts of the sialylated monoglycosylated GLP-1-Thr5/ST or GLP-1-Thr7/ST remained fully intact until the 120 minute-timepoint and small amounts of intact silaylated GLP-1 was detectable even after 24 h of incubation. The large body of literature on DPP-IV resistant GLP-1 analogs91-93 taken together with the presented data on Tn, T or ST glycosylated GLP-1, predict that the GLP-1 decorated with either GalNAc (Tn), Gal-GalNAc (T) or Sialyl-GalGalNAc on positions Thr5 or Thr7 has an extended half-life in vivo. Results are summarized in FIG. 7C.


NEP also play a role in the degradation of GLP-1 in the circulation, and it has been suggested that NEP is responsible for up to 50% of the degradation of GLP-193. In our in vitro assay, NEP cleaves GLP-1 initially at Trp25/Leu26 followed by a second cleavage at Glu21/Phe22 consistent with NEP cleavage sites on GLP-1 reported earlier94 (FIG. 7C for a summary). Non-glycosylated GLP-1 peptide was completely degraded after 60-minutes whereas a equimolar amounts monoglycosylated GLP-1-Thr5/Tn and GLP-1-Thr7/Tn remained partially intact after 60 minutes when treated with same amount of NEP. When elongating the glycan structure, equimolar amounts of GLP-1-Thr5/T or GLP-1-Thr7/T remained partially intact after 60 minutes. Equimolar amounts of GLP-1-Thr5/ST or GLP1-Thr7/ST remained completely intact after 60 minutes incubation indicating that either glycosite provide protection of the peptide hormone from NEP-mediated degradation. Small amounts of sialylated GLP-1 was still detectable after 20 h of incubation. Results are summarized in FIG. 7C.


Example 26
O-Glycans on PYY and VIP are Present in Low Stoichiometry in Porcine Intestinal Extracts

Where the shotgun glycoproteomics strategy is designed to sequence and identify individual O-glycosylation sites it does not allow us to determine site occupancy in a given protein, i.e what is the proportion of glycosylated protein in the total pool of that protein in a given system (e.g. blood, lymph fluid, cell lysate, tissue etc.). To answer this question the present inventors developed a technique to quantify endogenous glycopeptides using either sensitive LC-MS or radioimmunaassay (RIA). Using extracted proteins from pig ileum the present inventors separated proteins from glycoproteins using Jacalin-LWAC and quantified non-glycosylated and glycosylated PYY using either a sensistive PYY-RIA95 or in the case of VIP, sensitive LC-MS by comparing to isotope labelled standards in the form of in vitro synthesized (glyco-)VIP. In order to prepare the extract for mass spectrometry, the extracted proteins as well as the standards were digested with trypsin prior to Jacalin-LWAC in the case of LC-MS analysis of site occupancy on VIP.


The present inventors identified approximately 1% glycosylated PYY-Thr32/T and VIP-Thr7-T in porcine ileum tissue ethanol extracts confirming that (sialylated)-T-PYY and -VIP exist in the porcine intestine presumably at a concentration approximately two orders of magnitude below the non-glycosylated.


Example 27
O-Glycans on ANP Confer Retained and Prolonged Differential Agonist Effect In Vivo

To evaluate the function of O-glycans on ANP in vivo we investigated the cGMP generating, renal and blood pressure actions of equimolar dose (600 pmol/kg/min) ANP-Ser19/ST or ANP-Ser25/ST [n=4/group] in male Sprague Dawley rats (250-350 grams; Charles River Laboratories, Wilmington, Mass.). The protocol is outlined in FIG. 9A.


Anesthesia in rats was induced with 133 mg/kg i.p. inactin (Sigma, St Louis, Mo.) and rats were maintained on a heating pad for 1 hour until completely anesthetized. Rats were then subjected to vessel and bladder cannulation for peptide infusion, BP measurement, blood sampling and urine collection. A polyethylene (PE)-5G tube catheter was placed into the jugular vein for inulin, peptide intravenous infusion. The carotid artery was cannulated with a PE-50 tube catheter for BP measurement (Sonometrics, London, Ontario, Canada) and blood sampling. The bladder was accessed and cannulated with a PE-50 tube catheter for passive urine collection. After completion of the above procedural set up, a 45 min equilibration period was performed that included continuous IV inulin and saline infusion. After the 45 min equilibration period, baseline (Time==Q min) parameters were recorded and one blood sampling (0.7 ml) was performed. The inulin and saline infusion was replaced by a continuous intravenously (i.v.) infusion of equimolar ANP-Ser19/ST or ANP-Ser25/ST for 60 min. The infusion rate was weight adjusted and equals weight*0.7/6000 ml/min. After 60 min infusion (Time=60 min), another blood sampling (0.7 ml) was conducted. A post-infusion clearance (Time=90 min) was performed for 30 min. At the end of the study, blood was collected to determine plasma ANP and cGMP levels and to calculate glomerular filtration rate (GFR). Urine was collected at the end of the infusion (Time=60 min) and the study (Time=90 min). Urinary sodium was measured with pHOx Ultra (Nova Biomedical, Waltham, Mass.). Urine flow (UV) and urinary sodium excretion (UNaV) were calculated as urine volume or sodium clearance per min, Inulin concentrations were measured with enthrone method and inulin clearance was used for GFR quantification. Urinary cGMP and ANP excretion rate was calculated based on raw values obtained in the urine and UV.


In Vivo Cardiovascular and Renal Actions

Infusion with ANP, ANP-Ser19/ST and ANP-Ser25/ST resulted in decrease in mean arterial pressure (MAP) and increase in plasma cGMP over the 60 minutes infusion period (FIG. 9B). In the following 30 minutes clearance period, in rats infused with ANP, the MAP rebounded whereas the glycosylated ANP (ANP-Ser19/ST or ANP-Ser25/ST) variants produced a sustained or further reduced in MAP.


Infusion with ANP resulted in an 4-5 fold increase in urine volume (UV) measured after 60 minutes (FIG. 9C) and a 5-10 fold increase in urinary sodium excretion (UNaV) (FIG. 9D) after 90 minutes. After a clearance period of 30 minutes the UV was normalized. In striking contrast infusion with ANP-Ser19/ST and ANP-Ser25/ST did not result in increased diuresis nor natriuresis and remained constant at 11-18 uL/min. (FIG. 9D).


Example 28
O-Glycans on ANP Increase Stability In Vivo

The sustained cardiovascular effect seen with ANP-Ser19/ST and ANP-Ser25/ST suggested that the glycosylated peptides circulate longer compared to the non-glycosylated ANP. Measuring plasma ANP after 90 minutes demonstrated that the non-glycosylated ANP circulated at low concentrations (mean, 148 ng/mL) whereas ANP-Ser19/ST and ANP-Ser25/ST was still present at 17-33 fold higher concentrations (FIG. 9E). Further supporting an increased stability the present inventors could measure both ANP-Ser19/ST and ANP-Ser25/ST at concentrations 41-74 fold higher than ANP in the urine after 90 minutes (FIG. 9F).


Comparison of Identified Glycosylated Peptide Hormones to Published Glycosylated Peptide Hormones

A number of pro-peptide hormones have been reported to be O-glycosylated on the pro-part (non-matured) (pro-brain natriuretic peptide (proBNP), POMC, proglucagon and kininogen). Very recently, two reports describing mature insulin, somatostatin and amylin as well as calcitonin O-glycosylation were released13,83. Apart from these, only adiponectin has been described as being O-glycosylated before in mammalian studies.


Definition of Peptide Hormones/Neuropeptides/Regulatory Peptides

Peptide hormones, regulatory peptides or neuropeptides are bioactive peptides that are approximately 3-100 amino acids long. They are involved in cell-cell signaling where they can bind and activate highly specific peptide hormone receptors upon binding.









TABLE 4







(Human peptide hormones the SEQ ID Nos. of which are disclosed in Tables 6A to 6E infra)











ID
Sequence
Length
Family
Name














NP00002
SVPHFSDEDKDPE
13
7B2
C-terminal peptide (By






similarity)





NP00012
YSPRTPDRVSEADIQRLLHGVMEQLGIARPRVEYPAHQAMNLVGPQSIEGGAHEGL
186
7B2
Neuroendocrine protein 7B2



QHLGPFGNIPNIVAELTGDNIPKDFSEDQGYPDPPNPCPVGKTADDGCLENTPDTAE






FSREFQLHQHLFDPEHDYPGLGKWNKKLLYEKMKGGERRKRRSVNPYLQGQRLD






NVVAKKSVPHFSDEDKDPE








NP00013
YSPRTPDRVSEADIQRLLHGVMEQLGIARPRVEYPAHQAMNLVGPQSIEGGAHEGL
150
7B2
N-terminal peptide (By



QHLGPFGNIPNIVAELTGDNIPKDFSEDQGYPDPPNPCPVGKTADDGCLENTPDTAE


similarity)



FSREFQLHQHLFDPEHDYPGLGKWNKKLLYEKMKGGE








NP00026
MALQADFDRAAEDVRKLKARPDDGELKELYGLYKQAIVGDINIACPGMLDLKGK
88
ACBP
Acyl-CoA-binding domain-



AKWEAWNLKKGLSTEDATSAYISKAKELIEKYGI


containing protein 7





NP00034
SQAEFEKAAEEVRHLKTKPSDEEMLFIYGHYKQATVGDINTERPGMLDFTGKAKW
86
ACBP
Acyl-CoA-binding protein



DAWNELKGTSKEDAMKAYINKVEELKKKYGI








NP00042
TQAQLLRVGCVLGTCQVQNLSHRLWQLMGPAGRQDSAPVDPSSPHSY
47
Adrenomedullin
Adrenomedullin-2 (By






similarity)





NP00043
VGCVLGTCQVQNLSHRLWQLMGPAGRQDSAPVDPSSPHSY
40
Adrenomedullin
Intermedin-short (Potential)





NP00044
YRQSMNNFQGLRSFGCRFGTCTVQKLAHQIYQFTDKDKDNVAPRSKISPQGY
52
Adrenomedullin
Adrenomedullin





NP00045
ARLDVASEFRKKWNKWALSR
20
Adrenomedullin
Proadrenomedullin N-20






terminal peptide





NP00601
QRPRLSHKGPMPF
13
Apelin
Apelin-13 (By similarity)





NP00602
NGPGPWQGGRRKFRRQRPRLSHKGPMPF
28
Apelin
Apelin-28 (By similarity)





NP00603
GSRNGPGPWQGGRRKFRRQRPRLSHKGPMPF
31
Apelin
Apelin-31 (By similarity)





NP00604
LVQPRGSRNGPGPWQGGRRKFRRQRPRLSHKGPMPF
36
Apelin
Apelin-36 (By similarity)





NP00790
VPLPAGGGTVLTKMYPRGNHWAVGHLM
27
Bombesin/neuromedin-
Gastrin-releasing peptide





B/ranatensin






NP00791
GNHWAVGHLM
10
Bombesin/neuromedin-
Neuromedin-C





B/ranatensin






NP00792
GNLWATGHFM
10
Bombesin/neuromedin-
Neuromedin-B





B/ranatensin






NP00793
APLSWDLPEPRSRASKIRVHSRGNLWATGHFM
32
Bombesin/neuromedin-
Neuromedin-B-32





B/ranatensin






NP00811
RPPGFSPFR
9
Bradykinin
Bradykinin





NP00812
KRPPGFSPFR
10
Bradykinin
Lysyl-bradykinin





NP00813
ISLMKRPPGFSPFR
14
Bradykinin
T-kinin





NP00846
CGNLSTCMLGTYTQDFNKFHTFPQTAIGVGAP
32
Calcitonin
Calcitonin





NP00847
DMSSDLERDHRPHVSMPQNAN
21
Calcitonin
Katacalcin





NP00848
ACDTATCVTHRLAGLLSRSGGVVKNNFVPTNVGSKAF
37
Calcitonin
Calcitonin gene-related






peptide 1





NP00849
ACNTATCVTHRLAGLLSRSGGMVKSNFVPTNVGSKAF
37
Calcitonin
Calcitonin gene-related






peptide 2





NP00850
KCNTATCATQRLANFLVHSSNNFGAILSSTNVGSNTY
37
Calcitonin
Islet amyloid polypeptide





NP00869
QEDAELQPRALDIYSAVDDASHEKELIEALQEVLKKLKS
39
CART
CART(1-39)





NP00870
VPIYEKKYGQVPMCDAGEQCAVRKGARIGKLCDCPRGTSCNSFLLKCL
48
CART
CART(42-89)





NP00881
QEDAELQPRALDIYSAVDDASHEKELIEALQEVLKKLKSKRVPIYEKKYGQVPMCD
89
CART
Cocaine- and amphetamine-



AGEQCAVRKGARIGKLCDCPRGTSCNSFLLKCL


regulated





NP00904
QNDTEPIVLEGKCLVVCDSNPATDSKGSSSSPLGISVRAANSKVAFSAVRSTNHEPS
174
Cerebellins
Cerebellin-4



EMSNKTRIIYFDQILVNVGNFFTLESVFVAPRKGIYSFSFHVIKVYQSQTIQVNLMLN






GKPVISAFAGDKDVTREAATNGVLLYLDKEDKVYLKLEKGNLVGGWQYSTFSGFL






VFPL








NP00909
GSAKVAFSAIRSTNH
15
Cerebellins
[des-Ser1]-cerebellin





NP00910
SGSAKVAFSAIRSTNH
16
Cerebellins
Cerebellin





NP00911
QNETEPIVLEGKCLVVCDSNPTSDPTGTALGISVRSGSAKVAFSAIRSTNHEPSEMSN
172
Cerebellins
Cerebellin-1



RTMIIYFDQVLVNIGNNFDSERSTFIAPRKGIYSFNFHVVKVYNRQTIQVSLMLNGW






PVISAFAGDQDVTREAASNGVLIQMEKGDRAYLKLERGNLMGGWKYSTFSGFLVF






PL








NP00912
QNDTEPIVLEGKCLVVCDSSPSADGAVTSSLGISVRSGSAKVAFSATRSTNHEPSEM
173
Cerebellins
Cerebellin-2



SNRTMTIYFDQVLVNIGNHFDLASSIFVAPRKGIYSFSFHVVKVYNRQTIQVSLMQN






GYPVISAFAGDQDVTREAASNGVLLLMEREDKVHLKLERGNLMGGWKYSTFSGF






LVFPL








NP00913
QEGSEPVLLEGECLVVCEPGRAAAGGPGGAALGEAPPGRVAFAAVRSHHHEPAGE
173
Cerebellins
Cerebellin-3



TGNGTSGAIYFDQVLVNEGGGFDRASGSFVAPVRGVYSFRFHVVKVYNRQTVQVS






LMLNTWPVISAFANDPDVTREAATSSVLLPLDPGDRVSLRLRRGNLLGGWKYSSFS






GFLIFPL








NP00983
AYGFRGPGPQL
11
Chromogranin/
AL-11





secretogranin






NP00984
LPVNSPMNKGDTEVMKCIVEVISDTLSKPSPMPVSQECFETLRGDERILSILRHQNLL
439
Chromogranin/
Chromogranin-A



KELQDLALQGAKERAHQQKKHSGFEDELSEVLENQSSQAELKEAVEEPSSKDVME

secretogranin




KREDSKEAEKSGEATDGARPQALPEPMQESKAEGNNQAPGEEEEEEEEATNTHPPA






SLPSQKYPGPQAEGDSEGLSQGLVDREKGLSAEPGWQAKREEEEEEEEEAEAGEEA






VPEEEGPTVVLNPHPSLGYKEIRKGESRSEALAVDGAGKPGAEEAQDPEGKGEQEH






SQQKEEEEEMAVVPQGLFRGGKSGELEQEEERLSKEWEDSKRWSKMDQLAKELT






AEKRLEGQEEEEDNRDSSMKLSFRARAYGFRGPGPQLRRGWRPSSREDSLEAGLPL






QVRGYPEEKKEEEGSANRRPEDQELESLSAIEAELEKVAHQLQALRRG








NP00985
EDSKEAEKSGEATDGARPQALPEPMQESKAEGNNQAPGEEEEEEEEATNTHPPASL
92
Chromogranin/
EA-92



PSQKYPGPQAEGDSEGLSQGLVDREKGLSAEPGWQA

secretogranin






NP00986
EEEGSANRRPEDQELESLSAIEAELEKVAHQLQALRR
37
Chromogranin/
ER-37





secretogranin






NP00987
EEEEEEEEEAEAGEEAVPEEEGPTVVLNPHPSL
33
Chromogranin/
ES-43





secretogranin






NP00988
GYPEEKKEEEGSANRRPEDQELESLSAIEAELEKVAHQLQALRR
44
Chromogranin/
GR-44





secretogranin






NP00989
GWRPSSREDSLEAGLPLQV
19
Chromogranin/
GV-19





secretogranin






NP00990
LEGQEEEEDNRDSSMKLSF
19
Chromogranin/
LF-19





secretogranin






NP00991
SEALAVDGAGKPGAEEAQDPEGKGEQEHSQQKEEEEEMAVVPQGLFRG
48
Chromogranin/
Pancreastatin





secretogranin






NP00992
SGELEQEEERLSKEWEDS
18
Chromogranin/
SS-18





secretogranin






NP00993
LPVNSPMNKGDTEVMKCIVEVISDTLSKPSPMPVSQECFETLRGDERILSILRHQNLL
76
Chromogranin/
Vasostatin-1



KELQDLALQGAKERAHQQ

secretogranin






NP00994
LPVNSPMNKGDTEVMKCIVEVISDTLSKPSPMPVSQECFETLRGDERILSILRHQNLL
113
Chromogranin/
Vasostatin-2



KELQDLALQGAKERAHQQKKHSGFEDELSEVLENQSSQAELKEAVEEPSSKDVME

secretogranin






NP00995
WSKMDQLA
8
Chromogranin/
WA-8





secretogranin






NP00996
WSKMDQLAKELTAE
14
Chromogranin/
WE-14





secretogranin






NP00997
SAEFPDFYDSEEPVSTHQEAENEKDRADQTVLTEDEKKELENLAAMDLELQKIAEK
57
Chromogranin/
CCB peptide



F

secretogranin






NP00998
FLGEGHHRVQENQMDKARRHPQGAWKELDRNYLNYGEEGAPGKWQQQGDLQD
74
Chromogranin/
GAWK peptide



TKENREEARFQDKQYSSHHTAE

secretogranin






NP00999
MPVDNRNHNEGMVTRCIIEVLSNALSKSSAPPITPECRQVLKTSRKDVKDKETTEN
657
Chromogranin/
Secretogranin-1



ENTKFEVRLLRDPADASEAHESSSRGEAGAPGEEDIQGPTKADTEKWAEGGGHSRE

secretogranin




RADEPQWSLYPSDSQVSEEVKTRHSEKSQREDEEEEEGENYQKGERGEDSSEEKHL






EEPGETQNAFLNERKQASAIKKEELVARSETHAAGHSQEKTHSREKSSQESGEETG






SQENHPQESKGQPRSQEESEEGEEDATSEVDKRRTRPRHHHGRSRPDRSSQGGSLPS






EEKGHPQEESEESNVSMASLGEKRDHHSTHYRASEEEPEYGEEIKGYPGVQAPEDL






EWERYRGRGSEEYRAPRPQSEESWDEEDKRNYPSLELDKMAHGYGEESEEERGLE






PGKGRHHRGRGGEPRAYFMSDTREEKRFLGEGHHRVQENQMDKARRHPQGAWK






ELDRNYLNYGEEGAPGKWQQQGDLQDTKENREEARFQDKQYSSHHTAEKRKRLG






ELFNPYYDPLQWKSSHFERRDNMNDNFLEGEEENELTLNEKNFFPEYNYDWWEK






KPFSEDVNWGYEKRNLARVPKLDLKRQYDRVAQLDQLLHYRKKSAEFPDFYDSE






EPVSTHQEAENEKDRADQTVLTEDEKKELENLAAMDLELQKIAEKFSQRG








NP01000
QRNQLLQKEPDLRLENVQKFPSPEMIRALEYIENLRQQAHKEESSPDYNPYQGVSV
587
Chromogranin/
Secretogranin-2



PLQQKENGDESHLPERDSLSEEDWMRIILEALRQAENEPQSAPKENKPYALNSEKN

secretogranin




FPMDMSDDYETQQWPERKLKHMQFPPMYEENSRDNPFKRTNEIVEEQYTPQSLAT






LESVFQELGKLTGPNNQKRERMDEEQKLYTDDEDDIYKANNIAYEDVVGGEDWN






PVEEKIESQTQEEVRDSKENIEKNEQINDEMKRSGQLGIQEEDLRKESKDQLSDDVS






KVIAYLKRLVNAAGSGRLQNGQNGERATRLFEKPLDSQSIYQLIEISRNLQIPPEDLI






EMLKTGEKPNGSVEPERELDLPVDLDDISEADLDHPDLFQNRMLSKSGYPKTPGRA






GTEALPDGLSVEDILNLLGMESAANQKTSYFPNPYNQEKVLPRLPYGAGRSRSNQL






PKAAWIPHVENRQMAYENLNDKDQELGEYLARMLVKYPEIINSNQVKRVPGQGSS






EDDLQEEEQIEQAIKEHLNQGSSQETDKLAPVSKRFPVGPPKNDDTPNRQYWDEDL






LMKVLEYLNQEKAEKGREHIAKRAMENM








NP01001
TNEIVEEQYTPQSLATLESVFQELGKLTGPNNQ
33
Chromogranin/
Secretoneurin





secretogranin






NP01002
FPKPGGSQDKSLHNRELSAERPLNEQIAEAEEDKIKKTYPPENKPGQSNYSFVDNLN
449
Chromogranin/
Secretogranin-3



LLKAITEKEKIEKERQSIRSSPLDNKLNVEDVDSTKNRKLIDDYDSTKSGLDHKFQD

secretogranin




DPDGLHQLDGTPLTAEDIVHKIAARIYEENDRAVFDKIVSKLLNLGLITESQAHTLE






DEVAEVLQKLISKEANNYEEDPNKPTSWTENQAGKIPEKVTPMAAIQDGLAKGEN






DETVSNTLTLTNGLERRTKTYSEDNFEELQYFPNFYALLKSIDSEKEAKEKETLITIM






KTLIDFVKMMVKYGTISPEEGVSYLENLDEMIALQTKNKLEKNATDNISKLFPAPSE






KSHEETDSTKEEAAKMEKEYGSLKDSTKDDNSNPGGKTDEPKGKTEAYLEAIRKNI






EWLKKHDKKGNKEDYDLSKMRDFINKQADAYVEKGILDKEEAEAIKRIYSSL








NP01097
QESQSEEIDCNDKDLFKAVDAALKKYNSQNQSNNQFVLYRITEATKTVGSDTFYSF
626
Cystatin
Kininogen-1



KYEIKEGDCPVQSGKTWQDCEYKDAAKAATGECTATVGKRSSTKFSVATQTCQIT






PAEGPVVTAQYDCLGCVHPISTQSPDLEPILRHGIQYFNNNTQHSSLFMLNEVKRAQ






RQVVAGLNFRITYSIVQTNCSKENFLFLTPDCKSLWNGDTGECTDNAYIDIQLRIAS






FSQNCDIYPGKDFVQPPTKICVGCPRDIPTNSPELEETLTHTITKLNAENNATFYFKID






NVKKARVQVVAGKKYFIDFVARETTCSKESNEELTESCETKKLGQSLDCNAEVYV






VPWEKKIYPTVNCQPLGMISLMKRPPGFSPFRSSRIGEIKEETTVSPPHTSMAPAQDE






ERDSGKEQGHTRRHDWGHEKQRKHNLGHGHKHERDQGHGHQRGHGLGHGHEQ






QHGLGHGHKFKLDDDLEHQGGHVLDHGHKHKHGHGHGKHKNKGKKNGKHNG






WKTEHLASSSEDSTTPSAQTQEKTEGPTPIPSLAKPGVTVTFSDFQDSDLIATMMPPI






SPAPIQSDDDWIPDIQIDPNGLSFNPISDFPDTTSPKCPGRPWKSVSEINPTTQMKESY






YFDLTDGLS








NP01098
QESQSEEIDCNDKDLFKAVDAALKKYNSQNQSNNQFVLYRITEATKTVGSDTFYSF
362
Cystatin
Kininogen-1 heavy chain



KYEIKEGDCPVQSGKTWQDCEYKDAAKAATGECTATVGKRSSTKFSVATQTCQIT






PAEGPVVTAQYDCLGCVHPISTQSPDLEPILRHGIQYFNNNTQHSSLFMLNEVKRAQ






RQVVAGLNFRITYSIVQTNCSKENFLFLTPDCKSLWNGDTGECTDNAYIDIQLRIAS






FSQNCDIYPGKDFVQPPTKICVGCPRDIPTNSPELEETLTHTITKLNAENNATFYFKID






NVKKARVQVVAGKKYFIDFVARETTCSKESNEELTESCETKKLGQSLDCNAEVYV






VPWEKKIYPTVNCQPLGMISLMK








NP01099
SSRIGEIKEETTVSPPHTSMAPAQDEERDSGKEQGHTRRHDWGHEKQRKHNLGHG
255
Cystatin
Kininogen-1 light chain



HKHERDQGHGHQRGHGLGHGHEQQHGLGHGHKFKLDDDLEHQGGHVLDHGHK






HKHGHGHGKHKNKGKKNGKHNGWKTEHLASSSEDSTTPSAQTQEKTEGPTPIPSL






AKPGVTVTFSDFQDSDLIATMMPPISPAPIQSDDDWIPDIQIDPNGLSFNPISDFPDTT






SPKCPGRPWKSVSEINPTTQMKESYYFDLTDGLS








NP01100
WGHE
4
Cystatin
Low molecular weight






growth-promoting factor





NP01125
CSCSSLMDKECVYFCHLDIIWVNTPEHVVPYGLGSPRS
38
Endothelin/sarafotoxin
Big endothelin-1





NP01126
CSCSSLMDKECVYFCHLDIIW
21
Endothelin/sarafotoxin
Endothelin-1





NP01127
CSCSSWLDKECVYFCHLDIIW
21
Endothelin/sarafotoxin
Endothelin-2





NP01128
CTCFTYKDKECVYYCHLDIIW
21
Endothelin/sarafotoxin
Endothelin-3





NP01760
AGEGLNSQFWSLAAPQRF
18
FMRFamide related
Neuropeptide AF





peptide






NP01761
FLFQPQRF
8
FMRFamide related
Neuropeptide FF





peptide






NP01762
SQAFLFQPQRF
11
FMRFamide related
Neuropeptide SF





peptide






NP01763
SLNFEELKDWGPKNVIKMSTPAVNKMPHSFANLPLRF
37
FMRFamide related
Neuropeptide NPSF





peptide
(Potential)





NP01764
VPNLPQRF
8
FMRFamide related
Neuropeptide NPVF





peptide






NP01765
MPHSFANLPLRF
12
FMRFamide related
Neuropeptide RFRP-1





peptide






NP01766
SAGATANLPLRS
12
FMRFamide related
Neuropeptide RFRP-2





peptide
(Potential)





NP02007
TPDINPAWYASRGIRPVGRF
20
FMRFamide related
Prolactin-releasing peptide





peptide
PrRP20





NP02008
SRTHRHSMEIRTPDINPAWYASRGIRPVGRF
31
FMRFamide related
Prolactin-releasing peptide





peptide
PrRP31





NP02025
GWTLNSAGYLLGPHAVGNHRSFSDKNGLTS
30
Galanin
Galanin





NP02026
ELRPEDDMKPGSFDRSIPENNIMRTIIEFLSFLHLKEAGALDRLLDLPAAASSEDIERS
59
Galanin
Galanin message-associated





peptide






NP02040
APAHRGRGGWTLNSAGYLLGPVLHLPQMGDQDGKRETALEILDLWKAIDGLPYS
60
Galanin
Galanin-like peptide



HPPQPS








NP02242
QPVPPADPAGSGLQRAEEAPRRQLRVSQRTDGESRAHLGALLARYIQQARKAPSGR
95
Gastrin/cholecystokinin
Cholecystokinin



MSIVKNLQNLDPSHRISDRDYMGWMDFGRRSAEEYEYPS








NP02243
ISDRDYMGWMDF
12
Gastrin/cholecystokinin
Cholecystokinin-12





NP02244
LDPSHRISDRDYMGWMDF
18
Gastrin/cholecystokinin
Cholecystokinin-18 (By






similarity)





NP02245
IVKNLQNLDPSHRISDRDYMGWMDF
25
Gastrin/cholecystokinin
Cholecystokinin-25 (By






similarity)





NP02246
KAPSGRMSIVKNLQNLDPSHRISDRDYMGWMDF
33
Gastrin/cholecystokinin
Cholecystokinin-33





NP02247
YIQQARKAPSGRMSIVKNLQNLDPSHRISDRDYMGWMDF
39
Gastrin/cholecystokinin
Cholecystokinin-39





NP02248
GWMDF
5
Gastrin/cholecystokinin
Cholecystokinin-5 (By






similarity)





NP02249
VSQRTDGESRAHLGALLARYIQQARKAPSGRMSIVKNLQNLDPSHRISDRDYMGW
58
Gastrin/cholecystokinin
Cholecystokinin-58



MDF








NP02250
VSQRTDGESRAHLGALLARYIQQARKAPSGRMSIVKNLQNLDPSHRISD
49
Gastrin/cholecystokinin
Cholecystokinin-58






desnonopeptide (By






similarity)





NP02251
YMGWMDF
7
Gastrin/cholecystokinin
Cholecystokinin-7 (By






similarity)





NP02252
DYMGWMDF
8
Gastrin/cholecystokinin
Cholecystokinin-8





NP02253
QLGPQGPPHLVADPSKKQGPWLEEEEEAYGWMDF
34
Gastrin/cholecystokinin
Big gastrin





NP02254
QGPWLEEEEEAYGWMDF
17
Gastrin/cholecystokinin
Gastrin





NP02255
WLEEEEEAYGWMDF
14
Gastrin/cholecystokinin
Gastrin-14





NP02256
DLELPWLEQQGPASHHRRQLGPQGPPHLVADPSKKQGPWLEEEEEAYGWMDF
52
Gastrin/cholecystokinin
Gastrin-52





NP02257
YGWMDF
6
Gastrin/cholecystokinin
Gastrin-6





NP02258
SWKPRSQQPDAPLGTGANRDLELPWLEQQGPASHHRRQLGPQGPPHLVADPSKKQ
71
Gastrin/cholecystokinin
Gastrin-71



GPWLEEEEEAYGWMDF








NP02464
YAEGTFISDYSIAMDKIHQQDFVNWLLAQKGKKNDWKHNITQ
42
Glucagon
Gastric inhibitory polypeptide





NP02465
RSLQDTEEKSRSFSASQADPLSDPDQMNEDKRHSQGTFTSDYSKYLDSRRAQDFVQ
69
Glucagon
Glicentin (By similarity)



WLMNTKRNRNNIA








NP02466
RSLQDTEEKSRSFSASQADPLSDPDQMNED
30
Glucagon
Glicentin-related polypeptide






(By similarity)





NP02467
HSQGTFTSDYSKYLDSRRAQDFVQWLMNT
29
Glucagon
Glucagon





NP02468
HDEFERHAEGTFTSDVSSYLEGQAAKEFIAWLVKGRG
37
Glucagon
Glucagon-like peptide 1





NP02469
HAEGTFTSDVSSYLEGQAAKEFIAWLVKGR
30
Glucagon
Glucagon-like peptide 1(7-36)





NP02470
HAEGTFTSDVSSYLEGQAAKEFIAWLVKGRG
31
Glucagon
Glucagon-like peptide 1(7-37)





NP02471
HADGSFSDEMNTILDNLAARDFINWLIQTKITD
33
Glucagon
Glucagon-like peptide 2 (By






similarity)





NP02472
HSQGTFTSDYSKYLDSRRAQDFVQWLMNTKRNRNNIA
37
Glucagon
Oxyntomodulin (By






similarity)





NP02473
DVAHGILNEAYRKVLDQLSAGKHLQSLVARGVGGSLGGGAGDDAEPLS
48
Glucagon
PACAP-related peptide





NP02474
HSDGIFTDSYSRYRKQMAVKKYLAAVL
27
Glucagon
Pituitary adenylate cyclase-






activating polypeptide 27





NP02475
HSDGIFTDSYSRYRKQMAVKKYLAAVLGKRYKQRVKNK
38
Glucagon
Pituitary adenylate cyclase-






activating polypeptide 38





NP02476
HSDGTFTSELSRLREGARLQRLLQGLV
27
Glucagon
Secretin





NP02477
YADAIFTNSYRKVLGQLSARKLLQDIMSRQQGESNQERGARARL
44
Glucagon
Somatoliberin





NP02478
HADGVFTSDFSKLLGQLSAKKYLESLM
27
Glucagon
Intestinal peptide PHM-27





NP02479
HADGVFTSDFSKLLGQLSAKKYLESLMGKRVSSNISEDPVPV
42
Glucagon
Intestinal peptide PHV-42





NP02480
HSDAVFTDNYTRLRKQMAVKKYLNSILN
28
Glucagon
Vasoactive intestinal peptide





NP02572
DAENLIDSFQEIVKEVGQLAETQRFECTTHQPRSPLRDLKGALESLIEEETGQKKI
56
GnRH
GnRH-associated peptide 1





NP02573
QHWSYGLRPG
10
GnRH
Gonadoliberin-1





NP02574
QHWSYGLRPGGKRDAENLIDSFQEIVKEVGQLAETQRFECTTHQPRSPLRDLKGAL
69
GnRH
Progonadoliberin-1



ESLIEEETGQKKI








NP02575
ALSSAQDPQNALRPPGRALDTAAGSPVQTAHGLPSDALAPLDDSMPWEGRTTAQ
84
GnRH
GnRH-associated peptide 2



WSLHRKRHLARTLLTAAREPRPAPPSSNKV








NP02576
QHWSHGWYPG
10
GnRH
Gonadoliberin-2





NP02577
QHWSHGWYPGGKRALSSAQDPQNALRPPGRALDTAAGSPVQTAHGLPSDALAPL
97
GnRH
Progonadoliberin-2



DDSMPWEGRTTAQWSLHRKRHLARTLLTAAREPRPAPPSSNKV








NP02765
GPETLCGAELVDALQFVCGDRGFYFNKPTGYGSSSRRAPQTGIVDECCFRSCDLRR
70
Insulin
Insulin-like growth factor I



LEMYCAPLKPAKSA








NP02766
AYRPSETLCGGELVDTLQFVCGDRGFYFSRPASRVSRRSRGIVEECCFRSCDLALLE
67
Insulin
Insulin-like growth factor II



TYCATPAKSE








NP02767
YRPSETLCGGELVDTLQFVCGDRGFYFSRPASRVSRRSRGIVEECCFRSCDLALLET
66
Insulin
Insulin-like growth factor II



YCATPAKSE


Ala-25 Del





NP02768
DVSTPPTVLPDNFPRYPVGKFFQYDTWKQSTQRL
34
Insulin
Preptin





NP02769
GIVEQCCTSICSLYQLENYCN
21
Insulin
Insulin A chain





NP02770
FVNQHLCGSHLVEALYLVCGERGFFYTPKT
30
Insulin
Insulin B chain





NP02771
PYVALFEKCCLIGCTKRSLAKYC
23
Insulin
Relaxin A chain (By






similarity)





NP02772
VAAKWKDDVIKLCGRELVRAQIAICGMSTWS
31
Insulin
Relaxin B chain (By






similarity)





NP02773
QLYSALANKCCHVGCTKRSLARFC
24
Insulin
Relaxin A chain





NP02774
DSWMEEVIKLCGRELVRAQIAICGMSTWS
29
Insulin
Relaxin B chain





NP02775
DVLAGLSSSCCKWGCSKSEISSLC
24
Insulin
Relaxin-3 A chain (By






similarity)





NP02776
RAAPYGVRLCGREFIRAVIFTCGGSRW
27
Insulin
Relaxin-3 B chain (By






similarity)





NP02840
YNWNSFGLRF
10
KISS1
Kisspeptin-10





NP02841
LPNYNWNSFGLRF
13
KISS1
Kisspeptin-13





NP02842
DLPNYNWNSFGLRF
14
KISS1
Kisspeptin-14





NP02843
EPLEKVASVGNSRPTGQQLESLGLLAPGEQSLPCTERKPAATARLSRRGTSLSPPPES
119
KISS1
Metastasis-suppressor KiSS-1



SGSPQQPGLSAPHSRQIPAPQGAVLVQREKDLPNYNWNSFGLRFGKREAAPGNHG






RSAGRG








NP02844
GTSLSPPPESSGSPQQPGLSAPHSRQIPAPQGAVLVQREKDLPNYNWNSFGLRF
54
KISS1
Metastin





NP02870
VPIQKVQDDTKTLIKTIVTRINDISHTQSVSSKQKVTGLDFIPGLHPILTLSKMDQTL
146
Leptin
Leptin



AVYQQILTSMPSRNVIQISNDLENLRDLLHVLAFSKSCHLPWASGLETLDSLGGVLE






ASGYSTEVVALSRLQGSLQDMLWQLDLSPGC








NP02908
DFDMLRCMLGRVYRPCWQV
19
Melanin-concentrating
Melanin-concentrating





hormone
hormone





NP02909
EIGDEENSAKFPI
13
Melanin-concentrating
Neuropeptide-glutamic acid-





hormone
isoleucine





NP02910
GSVAFPAENGVQNTESTQE
19
Melanin-concentrating
Neuropeptide-glycine-





hormone
glutamic acid(Potential)





NP02937
ILLSASKSIRNLDDDMVFNTFRLGKGFQKEDTAEKSVIAPSLEQYKNDESSFMNEEE
144
Melanin-concentrating
Pro-MCH



NKVSKNTGSKHNFLNHGLPLNLAIKPYLALKGSVAFPAENGVQNTESTQEKREIGD

hormone




EENSAKFPIGRRDFDMLRCMLGRVYRPCWQV








NP03000
GSSFLSPEHQRVQQRKESKKPPAKLQP
27
Motilin
Ghrelins-27





NP03001
GSSFLSPEHQRVQQRKESKKPPAKLQPR
28
Motilin
Ghrelins-28





NP03002
FNAPFDVGIKLSGVQYQQHSQAL
23
Motilin
Obestatin





NP03003
FVPIFTYGELQRMQEKERNKGQ
22
Motilin
Motilin





NP03004
SLSVWQRSGEEGPVDPAEPIREEENEMIKLTAPLEIGMRMNSRQLEKYPATLEGLLS
66
Motilin
Motilin-associated peptide



EMLPQHAAK








NP03027
FVPIFTYGELQRMQEKERNKGQKKSLSVWQRSGEEGPVDPAEPIREEENEMIKLTA
90
Motilin
Promotilin



PLEIGMRMNSRQLEKYPATLEGLLSEMLPQHAAK








NP03617
ETTTQGPGVLLPLPKGACTGWMAGIPGHPGHNGAPGRDGRDGTPGEKGEKGDPGL
226
NA
Adiponectin



IGPKGDIGETGVPGAEGPRGFPGIQGRKGEPGEGAYVYRSAFSVGLETYVTIPNMPI






RFTKIFYNQQNHYDGSTGKFHCNIPGLYYFAYHITVYMKDVKVSLFKKDKAMLFT






YDQYQENNVDQASGSVLLHLEVGDQVWLQVYGEGERNGLYADNDNDSTFTGFLL






YHDTN








NP03618
MIEVVCNDRLGKKVRVKCNTDDTIGDLKKLIAAQTGTRWNKIVLKKWYTIFKDHV
73
NA
Ubiquitin-like protein 5



SLGDYEIHDGMNLELYYQ








NP03619
AQMGLAPMEGIRRPDQALLPELPGLGLRAPLKKTTAEQAEEDLLQEAQALAEVLD
112
NA
Agouti-related protein



LQDREPRSSRRCVRLHESCLGQQVPCCDPCATCYCRFFNAFCYCRKLGTAMNPCSR






T








NP03624
MNPAAEAEFNILLATDSYKVTHYKQYPPNTSKVYSYFECREKKTENSKLRKVKYE
491
NAPRTase
Nicotinamide



ETVFYGLQYILNKYLKGKVVTKEKIQEAKDVYKEHFQDDVFNEKGWNYILEKYD


phosphoribosyltransferase



GHLPIEIKAVPEGFVIPRGNVLFTVENTDPECYWLTNWIETILVQSWYPITVATNSRE






QKKILAKYLLETSGNLDGLEYKLHDFGYRGVSSQETAGIGASAHLVNFKGTDTVA






GLALIKKYYGTKDPVPGYSVPAAEHSTITAWGKDHEKDAFEHIVTQFSSVPVSVVS






DSYDIYNACEKIWGEDLRHLIVSRSTQAPLIIRPDSGNPLDTVLKVLEILGKKFPVTE






NSKGYKLLPPYLRVIQGDGVDINTLQEIVEGMKQKMWSIENIAFGSGGGLLQKLTR






DLLNCSFKCSYVVTNGLGINVFKDPVADPNKRSKKGRLSLHRTPAGNFVTLEEGKG






DLEEYGQDLLHTVFKNGKVTKSYSFDEIRKNAQLNIELEAAHH








NP03673
SLRRSSCFGGRMDRIGAQSGLGCNSFRY
28
Natriuretic peptide
Atrial natriuretic factor





NP03674
NPMYNAVSNADLMDFKNLLDHLEEKMPLED
30
Natriuretic peptide
Cardiodilatin-related peptide





NP03675
SPKMVQGSGCFGRKMDRISSSSGLGCKV
28
Natriuretic peptide
BNP(1-28)





NP03676
SPKMVQGSGCFGRKMDRISSSSGLGCKVL
29
Natriuretic peptide
BNP(1-29)





NP03677
SPKMVQGSGCFGRKMDRISSSSGLGCKVLR
30
Natriuretic peptide
BNP(1-30)





NP03678
PKMVQGSGCFGRKMDRISSSSGLGCKVLRR
30
Natriuretic peptide
BNP(2-31)





NP03679
KMVQGSGCFGRKMDRISSSSGLGCKVL
27
Natriuretic peptide
BNP(3-29)





NP03680
KMVQGSGCFGRKMDRISSSSGLGCKVLR
28
Natriuretic peptide
BNP(3-30)





NP03681
KMVQGSGCFGRKMDRISSSSGLGCKVLRRH
30
Natriuretic peptide
BNP(3-32)





NP03682
MVQGSGCFGRKMDRISSSSGLGCK
24
Natriuretic peptide
BNP(4-27)





NP03683
MVQGSGCFGRKMDRISSSSGLGCKVL
26
Natriuretic peptide
BNP(4-29)





NP03684
MVQGSGCFGRKMDRISSSSGLGCKVLR
27
Natriuretic peptide
BNP(4-30)





NP03685
MVQGSGCFGRKMDRISSSSGLGCKVLRR
28
Natriuretic peptide
BNP(4-31)





NP03686
MVQGSGCFGRKMDRISSSSGLGCKVLRRH
29
Natriuretic peptide
BNP(4-32)





NP03687
VQGSGCFGRKMDRISSSSGLGCKVL
25
Natriuretic peptide
BNP(5-29)





NP03688
VQGSGCFGRKMDRISSSSGLGCKVLRR
27
Natriuretic peptide
BNP(5-31)





NP03689
VQGSGCFGRKMDRISSSSGLGCKVLRRH
28
Natriuretic peptide
BNP(5-32)





NP03690
SPKMVQGSGCFGRKMDRISSSSGLGCKVLRRH
32
Natriuretic peptide
Brain natriuretic peptide 32





NP03691
HPLGSPGSASDLETSGLQEQRNHLQGKLSELQVEQTSLEPLQESPRPTGVWKSREV
108
Natriuretic peptide
Natriuretic peptides B



ATEGIRGHRKMVLYTLRAPRSPKMVQGSGCFGRKMDRISSSSGLGCKVLRRH








NP03692
GLSKGCFGLKLDRIGSMSGLGC
22
Natriuretic peptide
CNP-22





NP03693
YKGANKKGLSKGCFGLKLDRIGSMSGLGC
29
Natriuretic peptide
CNP-29





NP03694
DLRVDTKSRAAWARLLQEHPNARKYKGANKKGLSKGCFGLKLDRIGSMSGLGC
53
Natriuretic peptide
CNP-53





NP03714
ANLTNGGKSELLKSGSSKSTLKHIWTESSKDLSISRLLSQTFRGKENDTDLDLRYDT
250
Neurexophilin
Neurexophilin-1



PEPYSEQDLWDWLRNSTDLQEPRPRAKRRPIVKTGKFKKMFGWGDFHSNIKTVKL






NLLITGKIVDHGNGTFSVYFRHNSTGQGNVSVSLVPPTKIVEFDLAQQTVIDAKDSK






SFNCRIEYEKVDKATKNTLCNYDPSKTCYQEQTQSHVSWLCSKPFKVICIYISFYST






DYKLVQKVCPDYNYHSDTPYFPSG








NP03715
KEVVHATEGLDWEDKDAPGTLVGNVVHSRIISPLRLFVKQSPVPKPGPMAYADSM
242
Neurexophilin
Neurexophilin-2



ENFWDWLANITEIQEPLARTKRRPIVKTGKFKKMFGWGDFHSNIKTVKLNLLITGKI






VDHGNGTFSVYFRHNSTGLGNVSVSLVPPSKVVEFEVSPQSTLETKESKSFNCRIEY






EKTDRAKKTALCNFDPSKICYQEQTQSHVSWLCSKPFKVICIYIAFYSVDYKLVQK






VCPDYNYHSETPYLSSG








NP03716
QDDGPPGSEDPERDDHEGQPRPRVPRKRGHISPKSRPMANSTLLGLLAPPGEAWGI
230
Neurexophilin
Neurexophilin-3



LGQPPNRPNHSPPPSAKVKKIFGWGDFYSNIKTVALNLLVTGKIVDHGNGTFSVHF






QHNATGQGNISISLVPPSKAVEFHQEQQIFIEAKASKIFNCRMEWEKVERGRRTSLC






THDPAKICSRDHAQSSATWSCSQPFKVVCVYIAFYSTDYRLVQKVCPDYNYHSDTP






YYPSG








NP03717
QIPESGRPQYLGLRPAAAGAGAPGQQLPEPRSSDGLGVGRAWSWAWPTNHTGAL
285
Neurexophilin
Neurexophilin-4



ARAGAAGALPAQRTKRKPSIKAARAKKIFGWGDFYFRVHTLKFSLLVTGKIVDHV






NGTFSVYFRHNSSSLGNLSVSIVPPSKRVEFGGVWLPGPVPHPLQSTLALEGVLPGL






GPPLGMAAAAAGPGLGGSLGGALAGPLGGALGVPGAKESRAFNCHVEYEKTNRA






RKHRPCLYDPSQVCFTEHTQSQAAWLCAKPFKVICIFVSFLSFDYKLVQKVCPDYN






FQSEHPYFG








NP03732
ILQRGSGTAAVDFTKKDHTATWGRPFFLFRPRN
33
Neuromedins
Neuromedin-S





NP03733
FRVDEEFQSPFASQSRGYFLFRPRN
25
Neuromedins
Neuromedin-U-25





NP03744
WYKPAAGHSSYSVGRAAGLLSGLR
24
Neuropeptide B/W
Neuropeptide B-23





NP03745
WYKPAAGHSSYSVGRAAGLLSGLRRSPYA
29
Neuropeptide B/W
Neuropeptide B-29





NP03746
WYKHVASPRYHTVGRAAGLLMGL
23
Neuropeptide B/W
Neuropeptide W-23





NP03747
WYKHVASPRYHTVGRAAGLLMGLRRSPYLW
30
Neuropeptide B/W
Neuropeptide W-30





NP03755
SFRNGVGTGMKKTSFQRAKS
20
Neuropeptide S
Neuropeptide S





NP03782
SDSEEEMKALEADFLTNMHTSKISKAHVPSWKMTLLNVCSLVNNLNSPAEETGEV
125
Neurotensin
Large neuromedin N



HEEELVARRKLPTALDGFSLEAMLTIYQLHKICHSRAFQHWELIQEDILDTGNDKN






GKEEVIKRKIPYIL








NP03783
IPYIL
5
Neurotensin
Neuromedin N





NP03784
QLYENKPRRPYIL
13
Neurotensin
Neurotensin





NP03785
DSYYY
5
Neurotensin
Tail peptide (Potential)





NP03886
SSPETLISDLLMRESTENVPRTRLEDPAMW
30
NPY
C-flanking peptide of NPY





NP03887
YPSKPDNPGEDAPAEDMARYYSALRHYINLITRQRY
36
NPY
Neuropeptide Y





NP03957
APLEPVYPGDNATPEQMAQYAADLRRYINMLTRPRY
36
NPY
Pancreatic hormone





NP03958
HKEDTLAFSEWGSPHAAVPR
20
NPY
Pancreatic icosapeptide





NP03959
YPIKPEAPREDASPEELNRYYASLRHYLNLVTRQRY
36
NPY
Peptide YY





NP03960
IKPEAPREDASPEELNRYYASLRHYLNLVTRQRY
34
NPY
Peptide YY(3-36)





NP04021
VPLERGAPNKEETPATESPDTGLYYHRYLQEVIDVLETDGHFREKLQAANAEDIKS
435
Nucleobindin
Nucleobindin-1



GKLSRELDFVSHHVRTKLDELKRQEVSRLRMLLKAKMDAEQDPNVQVDHLNLLK






QFEHLDPQNQHTFEARDLELLIQTATRDLAQYDAAHHEEFKRYEMLKEHERRRYL






ESLGEEQRKEAERKLEEQQRRHREHPKVNVPGSQAQLKEVWEELDGLDPNRFNPK






TFFILHDINSDGVLDEQELEALFTKELEKVYDPKNEEDDMREMEEERLRMREHVM






KNVDTNQDRLVTLEEFLASTQRKEFGDTGEGWETVEMHPAYTEEELRRFEEELAA






REAELNAKAQRLSQETEALGRSQGRLEAQKRELQQAVLHMEQRKQQQQQQQGH






KAPAAHPEGQLKFHPDTDDVPVPAPAGDQKEVDTSEKKLLERLPEVEVPQHL








NP04025
VPIDIDKTKVQNIHPVESAKIEPPDTGLYYDEYLKQVIDVLETDKHFREKLQKADIE
82
Nucleobindin
Nesfatin-1



EIKSGRLSKELDLVSHHVRTKLDEL








NP04026
VPIDIDKTKVQNIHPVESAKIEPPDTGLYYDEYLKQVIDVLETDKHFREKLQKADIE
396
Nucleobindin
Nucleobindin-2



EIKSGRLSKELDLVSHHVRTKLDELKRQEVGRLRMLIKAKLDSLQDIGMDHQALLK






QFDHLNHLNPDKFESTDLDMLIKAATSDLEHYDKTRHEEFKKYEMMKEHERREYL






KTLNEEKRKEEESKFEEMKKKHENHPKVNHPGSKDQLKEVWEETDGLDPNDFDP






KTFFKLHDVNSDGFLDEQELEALFTKELEKVYDPKNEEDDMVEMEEERLRMREHV






MSEVDTNKDRLVTLEEFLKATEKKEFLEPDSWETLDQQQFFTEEELKEYENIIALQE






NELKKKADELQKQKEELQRQHDQLEAQKLEYHQVIQQMEQKKLQQGIPPSGPAGE






LKFEPHI








NP04038
YAFDVVG
7
Opioid
Deltorphin I





NP04039
ELTGQRLRQGDGPNAGADDGPGAQADLEHSLLVAAEKKD
57
Opioid
Gamma-Lipotropin



EGPYRMEHFRWGSPPKD








NP04040
YVMGHFRWDRFG
12
Opioid
□pmelanocyte-stimulating






hormone





NP04123
YGGFLRKYPK
10
Opioid
Alpha-neoendorphin





NP04124
YGGFLRKYP
9
Opioid
Beta-neoendorphin





NP04125
YGGFLRRIRPKLKWDNQKRYGGFLRRQFKVVT
32
Opioid
Big dynorphin





NP04126
YGGFLRRIRPKLK
13
Opioid
Dynorphin A(1-13) (By






similarity)





NP04127
YGGFLRRIRPKLKWDNQ
17
Opioid
Dynorphin A(1-17)





NP04128
YGGFLRRI
8
Opioid
Dynorphin A(1-8) (By






similarity)





NP04129
YGGFL
5
Opioid
Leu-enkephalin





NP04130
YGGFLRRQFKVVTRSQEDPNAYSGELFDA
29
Opioid
Leumorphin





NP04131
YGGFLRRQFKVVT
13
Opioid
Rimorphin





NP04132
YGGFM
5
Opioid
Met-enkephalin





NP04133
YGGFMRGL
8
Opioid
Met-enkephalin-Arg-Gly-Leu





NP04134
YGGFMRF
7
Opioid
Met-enkephalin-Arg-Phe





NP04135
MDELYPMEPEEEANGSEILA
20
Opioid
PENK(114-133) (By






similarity)





NP04136
DAEEDDSLANSSDLLKELLETGDNRERSHHQDGSDNEEEVS
41
Opioid
PENK(143-183) (By






similarity)





NP04137
FAEALPSDEEGESYSKEVPEME
22
Opioid
PENK(237-258) (By






similarity)





NP04138
ECSQDCATCSYRLVRPADINFLACVMECEGKLPSLKIWETCKELLQLSKPELPQDG
73
Opioid
Synenkephalin



TSTLRENSKPEESHLLA








NP04139
MPRVRSLFQEQEEPEPGMEEAGEMEQKQLQ
30
Opioid
Neuropeptide 1 (Probable)





NP04140
FSEFMRQYLVLSMQSSQ
17
Opioid
Neuropeptide 2 (Probable)





NP04141
FGGFTGARKSARKLANQ
17
Opioid
Nociceptin





NP04400
QPLPDCCRQKTCSCRLYELLHGAGNHAAGILTL
33
Orexin
Orexin-A





NP04401
RSGPPGLQGRLQRLLQASGNHAAGILTM
28
Orexin
Orexin-B





NP04409
SLALADDAAFRERARLLAALERRHWLNSYMHKLLVLDAP
39
Parathyroid hormone
Tuberoinfundibular peptide of






39residues





NP04423
TRSAWLDSGVTGSGLEGDHLSDTSTTSLELDSR
33
Parathyroid hormone
Osteostatin





NP04424
AVSEHQLLHDKGKSIQDLRRRFFLHHLIAEIHTAEIRATSEVSPNSKPSPNTKNHPVR
141
Parathyroid hormone
Parathyroid hormone-related



FGSDDEGRYLTQETNKVETYKEQPLKTPGKKKKGKPGKRKEQEKKKRRTRSAWL


protein



DSGVTGSGLEGDHLSDTSTTSLELDSRRH








NP04425
AVSEHQLLHDKGKSIQDLRRRFFLHHLIAEIHTAEI
36
Parathyroid hormone
PTHrP[1-36]





NP04426
ATSEVSPNSKPSPNTKNHPVRFGSDDEGRYLTQETNKVETYKEQPLKTPGKKKKGK
57
Parathyroid hormone
PTHrP[38-94]



P








NP04892
YGGFMTSEKSQTPLVTLFKNAIIKNAYKKGE
31
POMC
Beta-endorphin





NP04893
SYSMEHFRWGKPVGKKRRPVKVYPNGAEDESAEAFPLEF
39
POMC
Corticotropin





NP04894
PVKVYPNGAEDESAEAFPLEF
21
POMC
Corticotropin-like






intermediary peptide





NP04895
ELTGQRLREGDGPDGPADDGAGAQADLEHSLLVAAEKKDEGPYRMEHFRWGSPP
89
POMC
Lipotropin beta



KDKRYGGFMTSEKSQTPLVTLFKNAIIKNAYKKGE








NP04896
ELTGQRLREGDGPDGPADDGAGAQADLEHSLLVAAEKKDEGPYRMEHFRWGSPP
56
POMC
Lipotropin gamma



KD








NP04897
SYSMEHFRWGKPV
13
POMC
Melanotropin alpha





NP04898
DEGPYRMEHFRWGSPPKD
18
POMC
Melanotropin beta





NP04899
YVMGHFRWDRF
11
POMC
Melanotropin gamma





NP04900
WCLESSQCQDLTTESNLLECIRACKPDLSAETPMFPGNGDEQPLTENPRKYVMGHF
76
POMC
NPP



RWDRFGRRNSSSSGSSGAGQ








NP04901
EDVSAGEDCGPLPEGGPEPRSDGAKPGPRE
30
POMC
Potential peptide





NP04921
ARPVKEPRGLSAASPPLAETGAPRRFRRSVPRGEAAGAVQELARALAHLLEAERQE
227
ProSAAS
ProSAAS



RARAEAQEAEDQQARVLAQLLRVWGAPRNSDPALGLDDDPDAPAAQLARALLRA






RLDPAALAAQLVPAPVPAAALRPRPPVYDDGPAGPDAEEAGDETPDVDPELLRYL






LGRILAGSADSEGVAAPRRLRRAADHDVGSELPPEGVLGALLRVKRLETPAPQVPA






RRLLPP








NP04922
LETPAPQVPARRLLPP
16
ProSAAS
Big LEN (By similarity)





NP04923
AADHDVGSELPPEGVLGALLRVKRLETPAPQVPARRLLPP
40
ProSAAS
Big PEN-LEN (By similarity)





NP04924
ARPVKEPRGLSAASPPLAETGAPRRF
26
ProSAAS
Big SAAS (By similarity)





NP04925
ARPVKEP
7
ProSAAS
KEP (By similarity)





NP04926
LETPAPQVPA
10
ProSAAS
Little LEN (By similarity)





NP04927
GLSAASPPLAETGAPRRF
18
ProSAAS
Little SAAS (By similarity)





NP04928
AADHDVGSELPPEGVLGALLRV
22
ProSAAS
PEN (By similarity)





NP05218
KTLCSMEEAINERIQEVAGSLIFRAISSIGLECQSVTSRGDLATCPRGFAVTGCTCGS
90
Resistin/FIZZ
Resistin



ACGSWDVRAETTCHCQCAGMDWTGARCCRVQP








NP05219
QCSLDSVMDKKIKDVLNSLEYSPSPISKKLSCASVKSQGRPSSCPAGMAVTGCACG
88
Resistin/FIZZ
Resistin-like beta



YGCGSWDVQLETTCHCQCSVVDWTTARCCHLT








NP05222
QDEGSEATGFLPAAGEKTSGPLGNLAEELNGYSRKKGGFSFRF
43
RFamide neuropeptide
QRF-amide





NP05241
SEEPPISLDLTFHLLREVLEMARAEQLAQQAHSNRKLMEII
41
Sauvagine/corticotropin-
Corticoliberin





releasing






factor/urotensin I






NP05242
DNPSLSIDLTFHLLRTLLELARTQSQRERAEQNRIIFDSV
40
Sauvagine/corticotropin-
Urocortin





releasing






factor/urotensin I






NP05243
IVLSLDVPIGLLQILLEQARARAAREQATTNARILARVGHC
41
Sauvagine/corticotropin-
Urocortin-2





releasing






factor/urotensin I






NP05244
FTLSLDVPTNIMNLLFNIAKAKNLRAQAAANAHLMAQI
38
Sauvagine/corticotropin-
Urocortin-3





releasing






factor/urotensin I






NP05299
MDPNAAYVNMSNHHRGLASANVDFAFSLYKHLVALSPKKNIFISPVSISMALAMLS
383
Serpin
Corticosteroid-binding



LGTCGHTRAQLLQGLGFNLTERSETEIHQGFQHLHQLFAKSDTSLEMTMGNALFLD


globulin



GSLELLESFSADIKHYYESEVLAMNFQDWATASRQINSYVKNKTQGKIVDLFSGLD






SPAILVLVNYIFFKGTWTQPFDLASTREENFYVDETTVVKVPMMLQSSTISYLHDSE






LPCQLVQMNYVGNGTVFFILPDKGKMNTVIAALSRDTINRWSAGLTSSQVDLYIPK






VTISGVYDLGDVLEEMGIADLFTNQANFSRITQDAQLKSSKVVHKAVLQLNEEGV






DTAGSTGVTLNLTSKPIILRFNQPFIIMIFDHFTWSSLFLARVMNPV








NP05300
QPLLAHGDKSLQGPQPPRHQLSEPAPAYHRITPTITNFALRLYKELAADAPGNIFFSP
403
Serpin
Serpin A11



VSISTTLALLSLGAQANTSALILEGLGFNLTETPEADIHQGFRSLLHTLALPSPKLELK






VGNSLFLDKRLKPRQHYLDSIKELYGAFAFSANFTDSVTTGRQINDYLRRQTYGQV






VDCLPEFSQDTFMVLANYIFFKAKWKHPFSRYQTQKQESFFVDERTSLQVPMMHQ






KEMHRFLYDQDLACTVLQIEYRGNALALLVLPDPGKMKQVEAALQPQTLRKWGQ






LLLPSLLDLHLPRFSISGTYNLEDILPQIGLTNILNLEADFSGVTGQLNKTISKVSHKA






MVDMSEKGTEAGAASGLLSQPPSLNTMSDPHAHFNRPFLLLLWEVTTQSLLFLGK






VVNPVAG








NP05301
LKPSFSPRNYKALSEVQGWKQRMAAKELARQNMDLGFKLLKKLAFYNPGRNIFLS
394
Serpin
Serpin A12



PLSISTAFSMLCLGAQDSTLDEIKQGFNFRKMPEKDLHEGFHYIIHELTQKTQDLKL






SIGNTLFIDQRLQPQRKFLEDAKNFYSAETILTNFQNLEMAQKQINDFISQKTHGKIN






NLIENIDPGTVMLLANYIFFRARWKHEFDPNVTKEEDFFLEKNSSVKVPMMFRSGI






YQVGYDDKLSCTILEIPYQKNITAIFILPDEGKLKHLEKGLQVDTFSRWKTLLSRRV






VDVSVPRLHMTGTFDLKKTLSYIGVSKIFEEHGDLTKIAPHRSLKVGEAVHKAELK






MDERGTEGAAGTGAQTLPMETPLVVKIDKPYLLLIYSEKIPSVLFLGKIVNPIGK








NP05302
SRCSAQKNTEFAVDLYQEVSLSHKDNIIFSPLGITLVLEMVQLGAKGKAQQQIRQTL
387
Serpin
Serpin I2



KQQETSAGEEFFVLKSFFSAISEKKQEFTFNLANALYLQEGFTVKEQYLHGNKEFFQ






SAIKLVDFQDAKACAEMISTWVERKTDGKIKDMFSGEEFGPLTRLVLVNAIYFKGD






WKQKFRKEDTQLINFTKKNGSTVKIPMMKALLRTKYGYFSESSLNYQVLELSYKG






DEFSLIIILPAEGMDIEEVEKLITAQQILKWLSEMQEEEVEISLPRFKVEQKVDFKDV






LYSLNITEIFSGGCDLSGITDSSEVYVSQVTQKVFFEINEDGSEAATSTGIHIPVIMSL






AQSQFIANHPFLFIMKHNPTESILFMGRVTNPDTQEIKGRDLDSL








NP05326
DRVY
4
Serpin
Angiotensin 1-4





NP05327
DRVYI
5
Serpin
Angiotensin 1-5





NP05328
DRVYIHP
7
Serpin
Angiotensin 1-7





NP05329
DRVYIHPFH
9
Serpin
Angiotensin 1-9





NP05330
DRVYIHPFHL
10
Serpin
Angiotensin-1





NP05331
DRVYIHPF
8
Serpin
Angiotensin-2





NP05332
RVYIHPF
7
Serpin
Angiotensin-3





NP05333
VYIHPF
6
Serpin
Angiotensin-4





NP05334
DRVYIHPFHLVIHNESTCEQLAKANAGKPKDPTFIPAPIQAKTSPVDEKALQDQLVL
452
Serpin
Angiotensinogen



VAAKLDTEDKLRAAMVGMLANFLGFRIYGMHSELWGVVHGATVLSPTAVFGTLA






SLYLGALDHTADRLQAILGVPWKDKNCTSRLDAHKVLSALQAVQGLLVAQGRAD






SQAQLLLSTVVGVFTAPGLHLKQPFVQGLALYTPVVLPRSLDFTELDVAAEKIDRF






MQAVTGWKTGCSLMGASVDSTLAFNTYVHFQGKMKGFSLLAEPQEFWVDNSTSV






SVPMLSGMGTFQHWSDIQDNFSVTQVPFTESACLLLIQPHYASDLDKVEGLTFQQN






SLNWMKKLSPRTIHLTMPQLVLQGSYDLQDLLAQAELPAILHTELNLQKLSNDRIR






VGEVLNSIFFELEADEREPTESTQQLNKPEVLEVTLNRPFLFAVYDQSATALHFLGR






VANPLSTA








NP05404
DRMPCRNFFWKTFSSCK
17
Somastostatin
Cortistatin-17





NP05405
QEGAPPQQSARRDRMPCRNFFWKTFSSCK
29
Somastostatin
Cortistatin-29 (Potential)





NP05406
AGCKNFFWKTFTSC
14
Somastostatin
Somatostatin-14





NP05407
SANSNPAMAPRERKAGCKNFFWKTFTSC
28
Somastostatin
Somatostatin-28





NP05514
LPICPGGAARCQVTLRDLFDRAVVLSHYIHNLSSEMFSEFDKRYTHGRGFITKAINS
199
Somatotropin/prolactin
Prolactin



CHTSSLATPEDKEQAQQMNQKDFLSLIVSILRSWNEPLYHLVTEVRGMQEAPEAIL






SKAVEIEEQTKRLLEGMELIVSQVHPETKENEIYPVWSGLPSLQMADEESRLSAYY






NLLHCLRRDSHKIDNYLKLLKCRIIHNNNC








NP05529
RPKPQFFGLM
10
Tachykinin
Substance P





NP05682
ALNSVAYERSAMQNYE
16
Tachykinin
C-terminal-flanking peptide





NP05683
HKTDSFVGLM
10
Tachykinin
Neurokinin A





NP05684
DADSSIEKQVALLKALYGHGQISHKRHKTDSFVGLM
36
Tachykinin
Neuropeptide K





NP05685
RPKPQQFFGLM
11
Tachykinin
Substance P





NP05686
DMHDFFVGLM
10
Tachykinin
Neurokinin-B





NP05799
QPEAAQQEAVTAAEHPGLDDFLRQVERLLFLRENIQRLQGDQGEHSASQIFQSDWL
218
TRH
Pro-thyrotropin-releasing



SKRQHPGKREEEEEEGVEEEEEEEGGAVGPHKRQHPGRREDEASWSVDVTQHKRQ


hormone



HPGRRSPWLAYAVPKRQHPGRRLADPKAQRSWEEEEEEEEREEDLMPEKRQHPGK






RALGGPCGPQGAYGQAGLLLGLLDDLSRSQGAEEKRQHPGRRAAWVREPLEE








NP05800
QHP
3
TRH
Thyrotropin-releasing






hormone





NP05810
ETPDCFWKYCV
11
Urotensin-2
Urotensin-2





NP05811
ACFWKYCV
8
Urotensin-2
Urotensin-2B





NP05890
AAPDLDVRKCLPCGPGGKGRCFGPNICCAEELGCFVGTAEALRCQEENYLPSPCQS
94
Vasopressin/oxytocin
Neurophysin 1



GQKACGSGGRCAVLGLCCSPDGCHADPACDAEATFSQR








NP05891
CYIQNCPLG
9
Vasopressin/oxytocin
Oxytocin





NP05892
CYFQNCPRG
9
Vasopressin/oxytocin
Arg-vasopressin





NP05893
ASDRSNATQLDGPAGALLLRLVQLAGAPEPFEPAQPDAY
39
Vasopressin/oxytocin
Copeptin





NP05894
AMSDLELRQCLPCGPGGKGRCFGPSICCADELGCFVGTAEALRCQEENYLPSPCQS
93
Vasopressin/oxytocin
Neurophysin 2



GQKACGSGGRCAAFGVCCNDESCVTEPECREGFHRRA








NP05912
TLQPPSALRRRHYHHALPPSRHYP
24
VGF
Antimicrobial peptide






VGF[554-577]





NP05913
RPESALLGGSEAGERLLQQGLAQVEA
26
VGF
Neuroendocrine regulatory





peptide-1






NP05914
QAEATRQAAAQEERLADLASDLLLQYLLQGGARQRGLG
38
VGF
Neuroendocrine regulatory





peptide-2






NP05915
APPGRPEAQPPPLSSEHKEPVAGDAVPGPKDGSAPEVRGARNSEPQDEGELFQGVD
593
VGF
Neurosecretory protein VGF



PRALAAVLLQALDRPASPPAPSGSQQGPEEEAAEALLTETVRSQTHSLPAPESPEPA






APPRPQTPENGPEASDPSEELEALASLLQELRDFSPSSAKRQQETAAAETETRTHTLT






RVNLESPGPERVWRASWGEFQARVPERAPLPPPAPSQFQARMPDSGPLPETHKFGE






GVSSPKTHLGEALAPLSKAYQGVAAPFPKARRPESALLGGSEAGERLLQQGLAQVE






AGRRQAEATRQAAAQEERLADLASDLLLQYLLQGGARQRGLGGRGLQEAAEERE






SAREEEEAEQERRGGEERVGEEDEEAAEAEAEAEEAERARQNALLFAEEEDGEAG






AEDKRSQEETPGHRRKEAEGTEEGGEEEDDEEMDPQTIDSLIELSTKLHLPADDVVS






IIEEVEEKRKRKKNAPPEPVPPPRAAPAPTHVRSPQPPPPAPAPARDELPDWNEVLPP






WDREEDEVYPPGPYHPFPNYIRPRTLQPPSALRRRHYHHALPPSRHYPGREAQARR






AQEEAEAEERRLQEQEELENYIEHVLLRRP




















TABLE 5






Peptide


Analogue suquence (potential glycan highlighted


Peptide hormone name
analogue name
Trade name
Producer
in bold/underscore) (SEQ ID NO)







Amylin
NN9838/AM833
NA
Novo Nordisk
?





Amylin
Pramlintide
Symlin
Bristol-Myers
KCNTATCATQRLANFLVHSSNNFGPILPPTNVGSNTY-





Squibb
NH2 (SEQ ID NO: 280)





ANP 32
Urodilatin
Ularitide
?
TAPRSLRRSSCFGGRMDRIGAQSGLGCNSFRY (SEQ ID






NO: 281)





ANP 28
Carperitide
HANP
Daiichi Sankyo
SLRRSSCFGGRMDRIGAQSGLGCNSFRY (SEQ ID NO:






282)





ANP 40
mutant ANP
?
?
SLRRSSCFGGRMDRIGAQSGLGCNSFRYRITAREDKQ






GWA (SEQ ID NO: 283)





BNP 32
Nesiritide
Natrecor
Scios, Inc.
SPKMVQGSGCFGRKMDRISSSSGLGCKVLRRH (SEQ






ID NO: 284)





Bradykinin
Icatibant
Firazyr
Shire
RRPXGXSXXR (SEQ ID NO: 285)





Calcitonin
Salmon Calcitonin
Fortical/
Several
CSNLSTCVLGKLSQELHKLQTYPRTNTGSGTP (SEQ ID




Miacalcin...

NO: 286)





DNP/CNP
cdNP/cenderitide
?
?
GLSKGCFGLKLDRIGSMSGLGCPSLRDPRPNAPSTSA


(snake DNP CNP combination)



(SEQ ID NO: 287)





GIP/GLP-1
NN9277 GG dual
NA
Novo Nordisk
?



agonist








GIP/GLP-1/Glucagon
NN9423 Triagonist 
NA
Novo Nordisk
?



1706








GLP-1
Exenatide
BYETTA/
Bristol-Myers
HGEGTFTSDLSKQMEEEAVRLFIEWLKNGGPSSGAPPP




BYDUREON
Squibb
S (SEQ ID NO: 288)





GLP-1
Lixisenatide
Lyxumia/Adlyxin
Sanofi
HGEGTFTSDLSKQMEEEAVRLFIEWLKNGGPSSGAPPS






KKKKKK (SEQ ID NO: 289)





GLP-1 GLP-1(7-37) linked to Albumin)
Albiglutide
Tanzeum
GlaxoSmithKline
?





GLP-1 GLP-1(7-37) linked to an Fc
Dulaglutide
Trulicity
Eli Lilly
?


fragment of human IgG4









GLP-1
LIRAGLUTIDE
Victoza/Saxenda
Novo Nordisk
HAEGTFTSDVSSYLEGQAAK-E-EFIAWLVRGRG (SEQ






ID NO: 290)





GLP-1 (37 aa acylated peptide)
Semaglutide
NA
Novo Nordisk
HAEGTFTSDVSSYLEGQAAKEEFIIAWLVKGRG (SEQ






ID NO: 291)





GLP-2
Teduglutide
GATTEX
NPS
HGDGSFSDEMNTILDNLAARDFINWLIQTKITD (SEQ





Pharmaceuticals
ID NO: 292)





Glucagon
NN9030/G530S
NA
Novo Nordisk
?





Glucagon (produced in Saccharomyces)
Glucagon
GlucaGen
Novo Nordisk
HSQGTFTSDYSKYLDSRRAQDFVQWLMNT (SEQ ID






NO: 293)





Glucagon (produced in Escherichia coli)
Glucagon
Glucagon
Eli Lilly
HSQGTFTSDYSKYLDSRRAQDFVQWLMNT (SEQ ID






NO: 293; same as previous line)





PTHR
Abaloparatide/
Tymlos
Radiuspharm
AVSEHQLLHDKGKSIQDLRRRELLEKLLXKLHTA



BA058


(SEQ ID NO: 294)





PYY
NN9747/NN9748
NA
Novo Nordisk






Secretin
Secretin
Secremax/
Repligen Corp
HSDGTFTSELSRLRDSARLQRLLQGLV (SEQ ID NO:




Secreflow

295)





Somatoliberin
Sermorelin
Sermorelin 
Emd serono inc
YADAIFTNSYRKVLGQLSARKLLQDIMSRQ (SEQ ID




acetate

NO: 296)





Somatoliberin
Tesamorelin
Egrifta
Thera-
YADAIFTNSYRKVLGQLSARKLLQDIMSRQQGESNQE





technologies
RGARARL (SEQ ID NO: 297)
















TABLE 6







*(Bold; identified or conserved in human, Italic; identified in non-human and not conserved; the SEQ ID Nos. are found in the tables infra)




















*Site position









(Bold; identified









or conserved in









human, Italic;








Peptide
identified in non-
No.


Entry_
Peptide

Peptide
Peptide
Hormone
human and not
of


Human
Start
Peptide_Sequence
end
Name
Family
conserved)
sites

















P05408
200


S
VPHFSDEDKDPE

212
C-terminal
7B2
S200
1






peptide (By









similarity)








P05408
27
YSPRTPDRVSEADIQRLLHGVMEQLGIARPRVEYPAHQA
212
Neuroendocrine
7B2
S28, T31, S36,
4




MNLVGPQSIEGGAHEGLQHLGPFGNIPNIVAELTGDNIPK

protein 7B2

T134 S200





DFSEDQGYPDPPNPCPVGKTADDGCLENTPDTAEFSREFQ









LHQHLFDPEHDYPGLGKWNKKLLYEKMKGGERRKRRSV









NPYLQGQRLDNVVAKKSVPHFSDEDKDPE










P05408
27
YSPRTPDRVSEADIQRLLHGVMEQLGIARPRVEYPAHQA
176
N-terminal
7B2
S28, T31, S36,
3




MNLVGPQSIEGGAHEGLQHLGPFGNIPNIVAELTGDNIPK

peptide (By

T134





DFSEDQGYPDPPNPCPVGKTADDGCLENTPDTAEFSREFQ

similarity)







LHQHLFDPEHDYPGLGKWNKKLLYEKMKGGE










Q8N6N7
1
MALQADFDRAAEDVRKLKARPDDGELKELYGLYKQAIV
88
Acyl-CoA-
ACBP






GDINIACPGMLDLKGKAKWEAWNLKKGLSTEDATSAYIS

binding domain-







KAKELIEKYGI

containing









protein 7








P07108
2
SQAEFEKAAEEVRHLKTKPSDEEMLFIYGHYKQATVGDI
87
Acyl-CoA-
ACBP
T36 or T42
1




NTERPGMLDFTGKAKWDAWNELKGTSKEDAMKAYINK

binding protein

(ambiguous)





VEELKKKYGI










P35318
95
YRQSMNNFQGLRSEGCREGTCTVQKLAHQIYQFTDKDKD
146
Adrenomedullin
Adrenomedullin






NVAPRSKISPQGY










Q7Z4H4
101
TQAQLLRVGCVLGTCQVQNLSHRLWQLMGPAGRQDSAP
147
Adrenomedullin-
Adrenomedullin






VDPSSPHSY

2 (By similarity)








Q7Z4H4
108
VGCVLGTCQVQNLSHRLWQLMGPAGRQDSAPVDPSSPH
147
Intermedin-short
Adrenomedullin






SY

(Potential)








P35318
22
ARLDVASEFRKKWNKWALSR
41
Proadrenomedull
Adrenomedullin








in N-20 terminal









peptide








Q9ULZ1
65
QRPRLSHKGPMPF
77
Apelin-13 (By
Apelin








similarity)








Q9ULZ1
50
NGPGPWQGGRRKFRRQRPRLSHKGPMPF
77
Apelin-28 (By
Apelin








similarity)








Q9ULZ1
47
GSRNGPGPWQGGRRKFRRQRPRLSHKGPMPF
77
Apelin-31 (By
Apelin








similarity)








Q9ULZ1
42
LVQPRGSRNGPGPWQGGRRKFRRQRPRLSHKGPMPF
77
Apelin-36 (By
Apelin








similarity)








P07492
24
VPLPAGGGTVLTKMYPRGNHWAVGHLM
50
Gastrin-releasing
Bombesin/neurom
P27, T32
2






peptide
edin-B/ranatensin







P08949
47
GNLWATGHFM
56
Neuromedin-B
Bombesin/neurom
T52
0







edin-B/ranatensin







P08949
25
APLSWDLPEPRSRASKIRVHSRGNLWATGHFM
56
Neuromedin-B-
Bombesin/neurom
T52
0






32
edin-B/ranatensin







P07492
41
GNHWAVGHLM
50
Neuromedin-C
Bombesin/neurom









edin-B/ranatensin







P01042
381
RPPGFSPFR
389
Bradykinin
Bradykinin







P01042
380
KRPPGFSPFR
389
Lysyl-bradykinin
Bradykinin







P01042
376
ISLMKRPPGFSPFR
389
T-kinin
Bradykinin







P01258
85
CGNLSTCMLGTYTQDFNKFHTFPQTAIGVGAP
116
Calcitonin
Calcitonin







P06881
83
ACDTATCVTHRLAGLLSRSGGVVKNNFVPTNVGSKAF
119
Calcitonin gene-
Calcitonin
T91
1






related peptide 1








P10092
82
ACNTATCVTHRLAGLLSRSGGMVKSNFVPTNVGSKAF
118
Calcitonin gene-
Calcitonin
T90
1






related peptide 2








P10997
34
KCNTATCATQRLANFLVHSSNNFGAILSSTNVGSNTY
70
Islet amyloid
Calcitonin
T38, T42, T63
3






polypeptide








P01258
121
DMSSDLERDHRPHVSMPQNAN
141
Katacalcin
Calcitonin
S135
0





Q16568
28
QEDAELQPRALDIYSAVDDASHEKELIEALQEVLKKLKS
66
CART(1-39)
CART







Q16568
69
VPIYEKKYGQVPMCDAGEQCAVRKGARIGKLCDCPRGTS
116
CART(42-89)
CART






CNSFLLKCL










Q16568
28
QEDAELQPRALDIYSAVDDASHEKELIEALQEVLKKLKSK
116
Cocaine- and
CART






RVPIYEKKYGQVPMCDAGEQCAVRKGARIGKLCDCPRGT

amphetamine-







SCNSFLLKCL

regulated








P23435
58
GSAKVAFSAIRSTNH
72
[des-Ser1]
Cerebellins








cerebellin








P23435
57
SGSAKVAFSAIRSTNH
72
Cerebellin
Cerebellins







P23435
22
QNEIEPIVLEGKCLVVCDSNPTSDPTGTALGISVRSGSAKV
193
Cerebellin-1
Cerebellins






AFSAIRSTNHEPSEMSNRTMIIYEDQVLVNIGNNEDSERST









FIAPRKGIYSENFHVVKVYNRQTIQVSLMLNGWPVISAFA









GDQDVTREAASNGVLIQMEKGDRAYLKLERGNLMGGW









KYSTFSGFLVFPL










Q8IUK8
52
QNDIEPIVLEGKCLVVCDSSPSADGAVTSSLGISVRSGSAK
224
Cerebellin-2
Cerebellins






VAFSATRSTNHEPSEMSNRTMTIYEDQVLVNIGNHFDLAS









SIFVAPRKGIYSFSFHVVKVYNRQTIQVSLMQNGYPVISAF









AGDQDVTREAASNGVLLLMEREDKVHLKLERGNLMGG









WKYSTFSGFLVFPL










Q6UW01
33
QEGSEPVLLEGECLVVCEPGRAAAGGPGGAALGEAPPGR
205
Cerebellin-3
Cerebellins






VAFAAVRSHHHEPAGETGNGTSGAIYEDQVLVNEGGGED









RASGSFVAPVRGVYSFRFHVVKVYNRQTVQVSLMLNTW









PVISAFANDPDVTREAATSSVLLPLDPGDRVSLRLRRGNL









LGGWKYSSFSGFLIFPL










Q9NTU7
28
QNDIEPIVLEGKCLVVCDSNPATDSKGSSSSPLGISVRAAN
201
Cerebellin-4
Cerebellins






SKVAFSAVRSTNHEPSEMSNKTRIIYEDQILVNVGNEFTLE









SVEVAPRKGIYSFSFHVIKVYQSQTIQVNLMLNGKPVISAF









AGDKDVTREAATNGVLLYLDKEDKVYLKLEKGNLVGG









WQYSTFSGFLVFPL










P10645
380
AYGFRGPGPQL
390
AL-11
Chromogranin/









secretogranin







P05060
617
SAEFPDFYDSEEPSVTHQEAENEKDRADQTVLTEDEKKEL
673
CCB peptide
Chromogranin/
S631
1




ENLAAMDLELQKIAEKF


secretogranin







P10645
19
LPVNSPMNKGDIEVMKCIVEVISDTLSKPSPMPVSQECFE
457
Chromogranin-A
Chromogranin/
S45, S48, S54,
39




TLRGDERILSILRHQNLLKELQDLALQGAKERAHQQKKHS


secretogranin
S98, E122, S126,





GFEDELSEVLENQSSQAELKEAVEEPSSKDVMEKREDSKE



A145, T146,





AEKSGEATDGARPQALPEPMQESKAEGNNQAPGEEEEEEE



A153, L154,





EATNTHPPASLPSQKYPGPQAEGDSEGLSQGLVDREKGLS



S161, A169,





AEPGWQAKREEEEEEEEEAEAGEEAVPEEEGPTVVLNPHP



N182, T183,







S
LGYKEIRKGESRSEALAVDGAGKPGAEEAQDPEGKGEQ




P185, A187,





EHSQQKEEEEEMAVVPQGLFRGGKSGELEQEEERLSKEW



S188, S191,





EDSKRWSKMDQLAKELTAEKRLEGQEEEEDNRDSSMKL



E200, L206,





SFRARAYGFRGPGPQLRRGWRPSSREDSLEAGLPLQVRGY



S207, V211,





PEEKKEEEGSANRRPEDQELESLSAIEAELEKVAHQLQAL



S218, T251





RRG



L254, N255,









P256, S259,









Y262, P283,









E286, P291,









S300, M309,









V312, T353,









A378, S398,









G413






P10645
134
EDSKEAEKSGEATDGARPQALPEPMQESKAEGNNQAPGE
225
EA-92
Chromogranin/
A145, T146,
17




EEEEEEEATNTHPPASLPSQKYPGPQAEGDSEGLSQGLVD


secretogranin
A153, L154,





REKGLSAEPGWQA



S161, A169,









N182, T183,









P185, A187,









S188, S191,









E200, L206,









S207, V211,









S218






P10645
420
EEEGSANRRPEDQELESLSAIEAELEKVAHQLQALRR
456
ER-37
Chromogranin/
S436 or
1







secretogranin
S438(Ambiguous)






P10645
228
EEEEEEEEEAEAGEEAVPEEEGPTVVLNPHPSL
260
ES-43
Chromogranin/
T251, L254,
5







secretogranin
N255, P256,









S259






P05060
440
FLGEGHHRVQENQMDKARRHPQGAWKELDRNYLNYGE
513
GAWK peptide
Chromogranin/
H446, N451,
5




EGAPGKWQQQGDLQDTKENREEARFQDKQYSSHHTAE


secretogranin
Y474, T511,









A512






P10645
413


G
YPEEKKEEEGSANRRPEDQELESLSAIEAELEKVAHQLQ

456
GR-44
Chromogranin/
G413
1




ALRR


secretogranin







P10645
393
GWRPSSREDSLEAGLPLQV
411
GV-19
Chromogranin/
5398
1







secretogranin







P10645
358
LEGQEEEEDNRDSSMKLSF
376
LF-19
Chromogranin/









secretogranin







P10645
272
SEALAVDGAGKPGALEAQDPEGKGEQEHSQQKEEEEEM
319
Pancreastatin
Chromogranin/
P283, E286,
6




AVVPQGLFRG


secretogranin
P291, S300,









M309, V312






P05060
21
MPVDNRNHNEGMVTRCIIEVLSNALSKSSAPPITPECRQV
677
Secretogranin-1
Chromogranin/
T34, S46, S48,
40




LKTSRKDVKDKETFENENTKFEVRLLRDPADASEAHESSS


secretogranin
S49, P52, T79,





RGEAGAPGEEDIQGPTKADILKWAEGGGHSRERADEPQ



S93, A95, S100,





WSLYPSDSQVSEEVKTRHSEKSQREDEEEEEGENYQKGE



A104, E109,





RGEDSSEEKHLEEPGETQNAFLNERKQASAIKKEELVARS



T116, S140,





ETHAAGHSQEKTHSREKSSQESGEETGSQENHPQESKGQP



S144, S149,





RSQEESEEGEEDATSEVDKRRTRPRHHHGRSRPDRSSQGG



T194, N196
, 






S
LPSEEKGHPQEESEESNVSMASLGEKRDHHSTHYRASEE




S206, S293,





EPEYGEEIKGYPGVQAPEDLEWERYRGRGSEEYRAPRPQS



S294, S298,





EESWDEEDKRNYPSLELDKMAHGYGEESEEERGLEPGKG



P307, S317,





RHHRGRGGEPRAYFMSDTREEKRFLGEGHHRVQENQMD



M318, S320,





KARRHPQGAWKELDRNYLNYGEEGAPGKWQQQGDLQD



D326, T330,





TKENREEARFQDKQYSSHHTAEKRKRLGELFNPYYDPLQ



Y348, P349,





WKSSHFERRDNMNDNFLEGEEENELTLNEKNFFPEYNYD



G350, K396,





WVVEKKPFSEDVNWGYEKRNLARVPKLDLKRQYDRVAQ



M397, H446,





LDQLLHYRKKSAEFPDFYDSEEPVSTHQEAENEKDRADQ



Y474, T511,





TVLTEDEKKELENLAAMDLELQKIAEKFSQRG



A512, T556









S577, N588,









S631






P13521
31
QRNQLLQKEPDLRLENVQKFPSPEMIRALEYIENLRQQAH
617
Secretogranin-2
Chromogranin/
S52, S75, A136,
16




KEESSPDYNPYQGVSVPLQQKENGDESHLPERDSLSEED


secretogranin
Y190, T191,





WMRIILEALRQAENEPQSAPKENKPYALNSEKNFPMDMS



S194, T197,





DDYETQQWPERKLKHMQFPPMYEENSRDNPFKRTNEIVE



S259, T261,





EQYTPQSLATLESVFQELGKLTGPNNQKRERMDEEQKLY



S378, T450,





TDDEDDIYKANNIAYEDVVGGEDWNPVEEKIESQTQEEV



N489, G529,





RDSKENIEKNEQINDEMKRSGQLGIQEEDLRKESKDQLSD



S556, S566,





DVSKVIAYLKRLVNAAGSGRLQNGQNGERATRLFEKPLD



P573





SQSIYQLIEISRNLQIPPEDLIEMLKTGEKPNGSVEPERELD









LPVDLDDISEADLDHPDLFQNRMLSKSGYPKTPGRAGILA









LPDGLSVEDILNLLGMESAANQKTSYFPNPYNQEKVLPRL









PYGAGRSRSNQLPKAAWIPHVENRQMAYENLNDKDQEL









GEYLARMLVKYPEIINSNQVKRVPGQGSSEDDLQEEEQIE









QAIKEHLNQGSSQETDKLAPVSKRFPVGPPKNDDTPNRQ









YVVDEDLLMKVLEYLNQEKAEKGREHIAKRAMENM










Q8WXD2
20
FPKPGGSQDKSLHNRELSAERPLNEQIAEAEEDKIKKTYPP
468
Secretogranin-3
Chromogranin/
P60, T82, S122,
15




ENKPGQSNYSFVDNLNLLKAITEKEKIEKERQSIRSSPLDN


secretogranin
T123, T144,





KLNVEDVDSTKNRKLIDDYDSTKSGLDHKFQDDPDGLHQ



A157, D211,





LDGTPLTAEDIVHKIAARIYEENDRAVFDKIVSKLLNLGLI



P212, T216,





FESQAHTLEDEVAEVLQKLISKEANNYEEDPNKPTSWTE



S217, T219,





NQAGKIPEKVTPMAAIQDGLAKGENDETVSNTLTLTNGL



T231, I236,





ERRTKTYSEDNFLELQYFPNFYALLKSIDSEKEAKEKETLI



A241, S359





TIMKTLIDFVKMMVKYGTISPEEGVSYLENLDEMIALQTK









NKLEKNATDNISKLFPAPSEKSHEETDSTKEEAAKMEKEY









GSLKDSTKDDNSNPGGKTDEPKGKTEAYLEAIRKNIEWL









KKHDKKGNKEDYDLSKMRDFINKQADAYVEKGILDKEE









AEAIKRIYSSL










P13521
182
TNEIVEEQYTPQSLATLESVFQELGKLTGPNNQ
214
Secretoneurin
Chromogranin/
Y190, T191,
4







secretogranin
S194, T197






P10645
322
SGELEQEEERLSKEWEDS
339
SS-18
Chromogranin/









secretogranin







P10645
19
LPVNSPMNKGDIEVMKCIVEVISDTLSKPSPMPVSQECFE
94
Vasostatin-1
Chromogranin/
S45, S48, S54
3




TLRGDERILSILRHQNLLKELQDLALQGAKERAHQQ


secretogranin







P10645
19
LPVNSPMNKGDIEVMKCIVEVISDTLSKPSPMPVSQECFE
131
Vasostatin-2
Chromogranin/
S45, S48, S54,
6




TLRGDERILSILRHQNLLKELQDLALQGAKERAHQQKKHS


secretogranin
S98, E122, S126





GFEDELSEVLENQSSQAELKEAVEEPSSKDVME










P10645
342
WSKMDQLA
349
WA-8
Chromogranin/









secretogranin







P10645
342
WSKMDQLAKELTAE
355
WE-14
Chromogranin/
T353
1







secretogranin







P01042
19
QESQSEEIDCNDKDLFKAVDAALKKYNSQNQSNNQFVLY
644
Kininogen-1
Cystatin
T137, T151,
15




RITEATKTVGSDTFYSFKYEIKEGDCPVQSGKTWQDCEYK



T261, T273,





DAAKAATGECTATVGKRSSTKFSVATQTCQITPAEGPVV



E399, T400,







T
AQYDCLGCVHPISTQSPDLEPILRHGIQYFNNNTQHSSLF




T401, S403,





MLNEVKRAQRQVVAGLNFRITYSIVQTNCSKENFLFLTPD



T407, S408,





CKSLWNGDTGECTDNAYIDIQLRIASFSQNCDIYPGKDEV



T546, S604,





QPPTKICVGCPRDIPTNSPELEETLTHTITKLNAENNATFYF



T610, S611,





KIDNVKKARVQVVAGKKYFIDFVARETTCSKESNEELTES



T628





CETKKLGQSLDCNAEVYVVPWEKKIYPTVNCQPLGMISL









MKRPPGESPERSSRIGEIKEETTVSPPHTSMAPAQDEERDS









GKEQGHTRRHDWGHEKQRKHNLGHGHKHERDQGHGHQ









RGHGLGHGHEQQHGLGHGHKFKLDDDLEHQGGHVLDH









GHKHKHGHGHGKHKNKGKKNGKHNGWKTEHLASSSED









STTPSAQTQEKTEGPTPIPSLAKPGVTVTFSDFQDSDLIAT









MMPPISPAPIQSDDDWIPDIQIDPNGLSFNPISDFPDTTSPK









CPGRPWKSVSEINPTTQMKESYYFDLTDGLS










P01042
19
QESQSEEIDCNDKDLFKAVDAALKKYNSQNQSNNQFVLY
380
Kininogen-1
Cystatin
T137,
4




RITEATKTVGSDTFYSFKYEIKEGDCPVQSGKTWQDCEYK

heavy chain

T151, T261,





DAAKAATGECTATVGKRSSTKFSVATQTCQITPAEGPVV



T273







T
AQYDCLGCVHPISTQSPDLEPILRHGIQYFNNNTQHSSLF










MLNEVKRAQRQVVAGLNFRITYSIVQTNCSKENFLFLTPD









CKSLWNGDTGECTDNAYIDIQLRIASFSQNCDIYPGKDEV









QPPTKICVGCPRDIPTNSPELEETLTHTITKLNAENNATFYF









KIDNVKKARVQVVAGKKYFIDFVARETTCSKESNEELTES









CETKKLGQSLDCNAEVYVVPWEKKIYPTVNCQPLGMISL









MK










P01042
390
SSRIGEIKEETTVSPPHTSMAPAQDEERDSGKEQGHTRRH
644
Kininogen-1
Cystatin
E399, T400,
11




DWGHEKQRKHNLGHGHKHERDQGHGHQRGHGLGHGHE

light chain

T401, S403,





QQHGLGHGHKFKLDDDLEHQGGHVLDHGHKHKHGHGH



T407, S408,





GKHKNKGKKNGKHNGWKTEHLASSSEDSTTPSAQTQEK



T546, S604,





FEGPTPIPSLAKPGVTVTFSDFQDSDLIATMMPPISPAPIQS



T610, S611,





DDDWIPDIQIDPNGLSFNPISDFPDTTSPKCPGRPWKSVSEI



T628





NPTTQMKESYYFDLTDGLS










P01042
431
WGHE
434
Low molecular
Cystatin








weight growth-









promoting factor








P05305
53
CSCSSLMDKECVYFCHLDIIWVNTPEHVVPYGLGSPRS
90
Big endothelin-1
Endothelin/









sarafotoxin







P05305
53
CSCSSLMDKECVYFCHLDIIW
73
Endothelin-1
Endothelin/









sarafotoxin







P20800
49
CSCSSWLDKECVYFCHLDIIW
69
Endothelin-2
Endothelin/









sarafotoxin







P14138
97
CTCFTYKDKECVYYCHLDIIW
117
Endothelin-3
Endothelin/









sarafotoxin







O15130
93
AGEGLNSQFWSLAAPQRF
110
Neuropeptide AF
FMRFamide









related peptide







O15130
69
FLFQPQRF
76
Neuropeptide FF
FMRFamide









related peptide







Q9HCQ7
56
SLNFEELKDWGPKNVIKMSTPAVNKMPHSFANLPLRF
92
Neuropeptide
FMRFamide








NPSF (Potential)
related peptide







Q9HCQ7
124
VPNLPQRF
131
Neuropeptide
FMRFamide








NPVF
related peptide







Q9HCQ7
81
MPHSFANLPLRF
92
Neuropeptide
FMRFamide








RFRP-1
related peptide







Q9HCQ7
101
SAGATANLPLRS
112
Neuropeptide
FMRFamide








RFRP-2
related peptide








(Potential)








O15130
66
SQAFLFQPQRF
76
Neuropeptide SF
FMRFamide








related peptide








P81277
34
TPDINPAWYASRGIRPVGRF
53
Prolactin-
FMRFamide








releasing peptide
related peptide








PrRP20








P81277
23
SRTHRHSMEIRTPDINPAWYASRGIRPVGRF
53
Prolactin-
FMRFamide








releasing peptide
related peptide








PrRP31








P22466
33
GWTLNSAGYLLGPHAVGNHRSFSDKNGLTS
62
Galanin
Galanin
S55
0





P22466
65
ELRPEDDMKPGSFDRSIPENNIMRTHEFLSELHLKEAGALD
123
Galanin
Galanin
A113
1




RLLDLPAAASSEDIERS

message-









associated









peptide








Q9UBC7
25
APAHRGRGGWTLNSAGYLLGPVLHLPQMGDQDGKRETA
84
Galanin-like
Galanin






LEILDLWKAIDGLPYSHPPQPS

peptide








P01350
59
QLGPQGPPHLVADPSKKQGPWLEEEEEAYGWMDF
92
Big gastrin
Gastrin/









cholecystokinin







P06307
21
QPVPPADPAGSGLQRAEEAPRRQLRVSQRTDGESRAHLG
115
Cholecystokinin
Gastrin/
A28, T50, N85
3




ALLARYIQQARKAPSGRMSIVKNLQNLDPSHRISDRDYM


cholecystokinin






GWMDFGRRSAEEYEYPS










P06307
92
ISDRDYMGWMDF
103
Cholecystokinin-
Gastrin/








12
cholecystokinin







P06307
86
LDPSHRISDRDYMGWMDF
103
Cholecystokinin-
Gastrin/








18 (By
cholecystokinin








similarity)








P06307
79
IVKNLQNLDPSHRISDRDYMGWMDF
103
Cholecystokinin-
Gastrin/
N85
1






25 (By
cholecystokinin








similarity)








P06307
71
KAPSGRMSIVKNLQNLDPSHRISDRDYMGWMDF
103
Cholecystokinin-
Gastrin/
N85
1






33
cholecystokinin







P06307
65
YIQQARKAPSGRMSIVKNLQNLDPSHRISDRDYMGWMDF
103
Cholecystokinin-
Gastrin/
N85
1






39
cholecystokinin







P06307
99
GWMDF
103
Cholecystokinin-
Gastrin/








5 (By similarity)
cholecystokinin







P06307
46
VSQRTDGESRAHLGALLARYIQQARKAPSGRMSIVKNLQ
103
Cholecystokinin-
Gastrin/
T50, N85
2





NLDPSHRISDRDYMGWMDF


58
cholecystokinin







P06307
46
VSQRTDGESRAHLGALLARYIQQARKAPSGRMSIVKNLQ
94
Cholecystokinin-
Gastrin/
T50, N85
2





NLDPSHRISD


58
cholecystokinin








desnonopeptide









(By similarity)








P06307
97
YMGWMDF
103
Cholecystokinin-
Gastrin/








7 (By similarity)
cholecystokinin







P06307
96
DYMGWMDF
103
Cholecystokinin-
Gastrin/








8
cholecystokinin







P01350
76
QGPWLEEEEEAYGWMDF
92
Gastrin
Gastrin/









cholecystokinin







P01350
79
WLEEEEEAYGWMDF
92
Gastrin-14
Gastrin/









cholecystokinin







P01350
41
DLELPWLEQQGPASHHRRQLGPQGPPHLVADPSKKQGPW
92
Gastrin-52
Gastrin/






LEEEEEAYGWMDF


cholecystokinin







P01350
87
YGWMDF
92
Gastrin-6
Gastrin/









cholecystokinin







P01350
22
SWKPRSQQPDAPLGTGANRDLELPWLEQQGPASHHRRQL
92
Gastrin-71
Gastrin/
L33 or G34
1




GPQGPPHLVADPSKKQGPWLEEEEEAYGWMDF


cholecystokinin
(Ambiguous)






P09681
52
YAEGTFISDYSIAMDKIHQQDFVNWLLAQKGKKNDWKH
93
Gastric inhibitory
Glucagon






NITQ

polypeptide








P01275
21
RSLQDTEEKSRSFSASQADPLSDPDQMNEDKRHSQGTFTS
89
Glicentin (By
Glucagon
S32, T59
2




DYSKYLDSRRAQDFVQWLMNTKRNRNNIA

similarity)








P01275
21
RSLQDTEEKSRSFSASQADPLSDPDQMNED
50
Glicentin-related
Glucagon
S32
1






polypeptide (By









similarity)








P01275
53
HSQGTFTSDYSKYLDSRRAQDFVQWLMNT
81
Glucagon
Glucagon
T59
1





P01275
92
HDEFERHAEGTFTSDVSSYLEGQAAKEFIAWLVKGRG
128
Glucagon-like
Glucagon
T102 or T104 or
1






peptide 1

S105









(Ambiguous)






P01275
98
HAEGTFTSDVSSYLEGQAAKEFIAWLVKGR
128
Glucagon-like
Glucagon
T102 or T104 or
1






peptide 1(7-36)

S105









(Ambiguous)






P01275
98
HAEGTFTSDVSSYLEGQAAKEFIAWLVKGRG
127
Glucagon-like
Glucagon
T102 or T104 or
1






peptide 1(7-37)

S105









(Ambiguous)






P01275
146
HADGSFSDEMNTILDNLAARDFINVVLIQTKITD
178
Glucagon-like
Glucagon








peptide 2 (By









similarity)








P01282
81
HADGVFTSDFSKLLGQLSAKKYLESLM
107
Intestinal peptide
Glucagon
T87, S88
2






PHM-27








P01282
81
HADGVFTSDFSKLLGQLSAKKYLESLMGKRVSSNISEDPV
122
Intestinal peptide
Glucagon
T87, S88
2




PV

PHV-42








P01275
53
HSQGTFTSDYSKYLDSRRAQDFVQWLMNTKRNRNNIA
89
Oxyntomodulin
Glucagon
T59
1






(By similarity)








P18509
82
DVAHGILNEAYRKVLDQLSAGKHLQSLVARGVGGSLGG
129
PACAP-related
Glucagon






GAGDDAEPLS

peptide








P18509
132
HSDGIFTDSYSRYRKQMAVKKYLAAVL
158
Pituitary
Glucagon








adenylate









cyclase-









activating









polypeptide 27








P18509
132
HSDGIFTDSYSRYRKQMAVKKYLAAVLGKRYKQRVKNK
169
Pituitary
Glucagon








adenylate









cyclase-









activating









polypeptide 38








P09683
28
HSDGTFTSELSRLREGARLQRLLQGLV
54
Secretin
Glucagon
T34, S35, S38
3





P01286
32
YADAIFTNSYRKVLGQLSARKLLQDIMSRQQGESNQERG
75
Somatoliberin
Glucagon






ARARL










P01282
125
HSDAVFTDNYTRLRKQMAVKKYLNSILN
152
Vasoactive
Glucagon
T131
1






intestinal peptide








P01148
37
DAENLIDSFQEIVKEVGQLAETQRFECTTHQPRSPLRDLK
92
GnRH-associated
GnRH
T64
1




GALESLIEEETGQKKI

peptide 1








O43555
37
ALS SAQDPQNALRPPGRALDTAAGSPVQTAHGLPSDALA
120
GnRH-associated
GnRH






PLDDSMPWEGRTTAQWSLHRKRHLARTLLTAAREPRPAP

peptide 2







PSSNKV










P01148
24
QHWSYGLRPG
33
Gonadoliberin-1
GnRH







O43555
24
QHWSHGWYPG
33
Gonadoliberin-2
GnRH







P01148
24
QHWSYGLRPGGKRDAENLIDSFQEIVKEVGQLAETQRFE
92
Progonadoliberin-
GnRH
T64
1




CTTHQPRSPLRDLKGALESLIEEETGQKKI

1








O43555
24
QHWSHGWYPGGKRALSSAQDPQNALRPPGRALDTAAGS
120
Progonadoliberin-
GnRH






PVQTAHGLPSDALAPLDDSMPWEGRTTAQWSLHRKRHL

2







ARTLLTAAREPRPAPPSSNKV










P01308
90
GIVEQCCTSICSLYQLENYCN
110
Insulin A chain
Insulin







P01308
25
FVNQHLCGSHLVEALYLVCGERGFFYTPKT
54
Insulin B chain
Insulin
T51
1








(Ambiguous)






P05019
49
GPETLCGAELVDALQFVCGDRGFYFNKPTGYGSSSRRAP
118
Insulin-like
Insulin






QTGIVDECCFRSCDLRRLEMYCAPLKPAKSA

growth factor I








P01344
25
AYRPSETLCGGELVDTLQFVCGDRGFYFSRPASRVSRRSR
91
Insulin-like
Insulin
S74, T86
0




GIVEECCFRSCDLALLETYCATPAKSE

growth factor II








P01344
26
YRPSETLCGGELVDTLQFVCGDRGFYFSRPASRVSRRSRG
91
Insulin-like
Insulin
S74, T86
0




IVEECCFRSCDLALLETYCATPAKSE

growth factor II









Ala-25 Del








P01344
93
DVSTPPTVLPDNFPRYPVGKFFQYDTVVKQSTQRL
126
Preptin
Insulin
S95, T96, T99
3





P04090
162
QLYSALANKCCHVGCTKRSLARFC
185
Relaxin A chain
Insulin







P04808
163
PYVALFEKCCLIGCTKRSLAKYC
185
Relaxin A chain
Insulin








(By similarity)








P04090
25
DSWMEEVIKLCGRELVRAQIAICGMSTWS
53
Relaxin B chain
Insulin







P04808
23
VAAKWKDDVIKLCGRELVRAQIAICGMSTWS
53
Relaxin B chain
Insulin








(By similarity)








Q8WXF3
119
DVLAGLSSSCCKWGCSKSEISSLC
142
Relaxin-3 A
Insulin








chain (By









similarity)








Q8WXF3
26
RAAPYGVRLCGREFIRAVIFTCGGSRW
52
Relaxin-3 B
Insulin








chain (By









similarity)








Q15726
112
YNWNSFGLRF
121
Kisspeptin-10
KISS1







Q15726
109
LPNYNVVNSFGLRF
121
Kisspeptin-13
KISS1







Q15726
108
DLPNYNWNSFGLRF
121
Kisspeptin-14
KISS1







Q15726
20
EPLEKVASVGNSRPTGQQLESLGLLAPGEQSLPCTERKPA
138
Metastasis-
KISS1
A88
1




ATARLSRRGTSLSPPPESSGSPQQPGLSAPHSRQIPAPQGA

suppressor KiSS-







VLVQREKDLPNYNWNSFGLRFGKREAAPGNHGRSAGRG

1








Q15726
68
GTSLSPPPESSGSPQQPGLSAPHSRQIPAPQGAVLVQREKD
121
Metastin
KISS1
A88
1




LPNYNVVNSFGLRF










P41159
22
VPIQKVQDDTKTLIKTIVTRINDISHTQSVSSKQKVTGLDFI
167
Leptin
Leptin






PGLHPILTLSKMDQTLAVYQQILTSMPSRNVIQISNDLENL









RDLLHVLAFSKSCHLPWASGLETLDSLGGVLEASGYSFEV









VALSRLQGSLQDMLWQLDLSPGC










P20382
147
DFDMLRCMLGRVYRPCWQV
165
Melanin-
Melanin-








concentrating
concentrating








hormone
hormone







P20382
131
EIGDEENSAKFPI
143
Neuropeptide-
Melanin-








glutamic acid-
concentrating








isoleucine
hormone







P20382
110
GSVAFPAENGVQNTESTQE
128
Neuropeptide-
Melanin-
T123, T125,
3






glycine-glutamic
concentrating
T126







acid(Potential)
hormone







P20382
22
ILLSASKSIRNLDDDMVFNTFRLGKGFQKEDTAEKSVIAPS
165
Pro-MCH
Melanin-
S57, S62, N93,
6




LEQYKNDESSFMNEEENKVSKNTGSKHNFLNHGLPLNLAI


concentrating
T123, T125





KPYLALKGSVAFPAENGVQNTESTQEKREIGDEENSAKFP


hormone
T126





IGRRDFDMLRCMLGRVYRPCWQV










Q9UBU3
24
GSSFLSPEHQRVQQRKESKKPPAKLQP
50
Ghrelins-27
Motilin







Q9UBU3
24
GSSFLSPEHQRVQQRKESKKPPAKLQPR
51
Ghrelins-28
Motilin







P12872
26
FVPIFTYGELQRMQEKERNKGQ
47
Motilin
Motilin







P12872
50
SLSVWQRSGEEGPVDPAEPIREEENEMIKLTAPLEIGMRM
115
Motilin-
Motilin






NSRQLEKYPATLEGLLSEMLPQHAAK

associated









peptide








Q9UBU3
76
FNAPFDVGIKLSGVQYQQHSQAL
98
Obestatin
Motilin







P12872
26
FVPIFTYGELQRMQEKERNKGQKKSLSVWQRSGEEGPVD
115
Promotilin
Motilin






PAEPIREEENEMIKLTAPLEIGMRMNSRQLEKYPATLEGLL









SEMLPQHAAK










Q15848
19
ETTTQGPGVLLPLPKGACTGWMAGIPGHPGHNGAPGRDG
244
Adiponectin
NA
T22
1




RDGTPGEKGEKGDPGLIGPKGDIGETGVPGAEGPRGFPGI









QGRKGEPGEGAYVYRSAFSVGLETYVTIPNMPIRFTKIFY









NQQNHYDGSTGKFHCNIPGLYYFAYHITVYMKDVKVSLF









KKDKAMLFTYDQYQENNVDQASGSVLLHLEVGDQVWL









QVYGEGERNGLYADNDNDSTFTGFLLYHDTN










O00253
21
AQMGLAPMEGIRRPDQALLPELPGLGLRAPLKKTTAEQA
131
Agouti-related
NA
T55
1




EEDLLQEAQALAEVLDLQDREPRSSRRCVRLHESCLGQQ

protein







VPCCDPCATCYCRFFNAFCYCRKLGTAMNPCSRT










Q9BZL1
1
MIEVVCNDRLGKKVRVKCNTDDTIGDLKKLIAAQTGTRW
73
Ubiquitin-like
NA






NKIVLKKWYTIFKDHVSLGDYEIHDGMNLELYYQ

protein 5








P43490
1
MNPAAEAEFNILLATDSYKVTHYKQYPPNTSKVYSYFEC
491
Nicotinamide
NAPRTase






REKKFENSKLRKVKYEETVEYGLQVILNKYLKGKVVTKE

phosphoribosyltr







KIQEAKDVYKEHFQDDVFNEKGWNYILEKYDGHLPIEIK

ansferase







AVPEGFVIPRGNVLFTVENTDPECYWLTNVVIETILVQSWY









PITVATNSREQKKILAKYLLETSGNLDGLEYKLHDFGYRG









VSSQETAGIGASAHLVNFKGTDTVAGLALIKKYYGTKDP









VPGYSVPAAEHSTITAWGKDHEKDAFEHIVTQFSSVPVSV









VSDSYDIYNACEKIWGEDLRHLIVSRSTQAPLIIRPDSGNP









LDTVLKVLEILGKKFPVTENSKGYKLLPPYLRVIQGDGVD









INTLQEIVEGMKQKMVVSIENIAFGSGGGLLQKLTRDLLNC









SFKCSYVVTNGLGINVFKDPVADPNKRSKKGRLSLHRTPA









GNFVTLEEGKGDLEEYGQDLLHTVFKNGKVTKSYSFDEI









RKNAQLNIELEAAHH










P01160
124
SLRRSSCFGGRMDRIGAQSGLGCNSFRY
151
Atrial natriuretic
Natriuretic peptide
S142, S148
2






factor








P16860
103
SPKMVQGSGCFGRKMDRISSSSGLGCKV
130
BNP(1-28)
Natriuretic peptide







P16860
103
SPKMVQGSGCFGRKMDRISSSSGLGCKVL
131
BNP(1-29)
Natriuretic peptide







P16860
103
SPKMVQGSGCFGRKMDRISSSSGLGCKVLR
132
BNP(1-30)
Natriuretic peptide







P16860
104
PKMVQGSGCFGRKMDRISSSSGLGCKVLRR
133
BNP(2-31)
Natriuretic peptide







P16860
105
KMVQGSGCFGRKMDRISSSSGLGCKVL
131
BNP(3-29)
Natriuretic peptide







P16860
105
KMVQGSGCFGRKMDRISSSSGLGCKVLR
132
BNP(3-30)
Natriuretic peptide







P16860
105
KMVQGSGCFGRKMDRISSSSGLGCKVLRRH
134
BNP(3-32)
Natriuretic peptide







P16860
106
MVQGSGCFGRKMDRISSSSGLGCK
129
BNP(4-27)
Natriuretic peptide







P16860
106
MVQGSGCFGRKMDRISSSSGLGCKVL
131
BNP(4-29)
Natriuretic peptide







P16860
106
MVQGSGCFGRKMDRISSSSGLGCKVLR
132
BNP(4-30)
Natriuretic peptide







P16860
106
MVQGSGCFGRKMDRISSSSGLGCKVLRR
133
BNP(4-31)
Natriuretic peptide







P16860
106
MVQGSGCFGRKMDRISSSSGLGCKVLRRH
134
BNP(4-32)
Natriuretic peptide







P16860
107
VQGSGCFGRKMDRISSSSGLGCKVL
131
BNP(5-29)
Natriuretic peptide







P16860
107
VQGSGCFGRKMDRISSSSGLGCKVLRR
133
BNP(5-31)
Natriuretic peptide







P16860
107
VQGSGCFGRKMDRISSSSGLGCKVLRRH
134
BNP(5-32)
Natriuretic peptide







P16860
103
SPKMVQGSGCFGRKMDRISSSSGLGCKVLRRH
134
Brain natriuretic
Natriuretic peptide








peptide 32








P01160
26
NPMYNAVSNADLMDFKNLLDHLEEKMPLED
55
Cardiodilatin-
Natriuretic peptide
Y29, A31, S33
1






related peptide

(Ambiguous)






P23582
105
GLSKGCFGLKLDRIGSMSGLGC
126
CNP-22
Natriuretic peptide







P23582
98
YKGANKKGLSKGCFGLKLDRIGSMSGLGC
126
CNP-29
Natriuretic peptide







P23582
74
DLRVDTKSRAAWARLLQEHPNARKYKGANKKGLSKGCF
126
CNP-53
Natriuretic peptide






GLKLDRIGSMSGLGC










P16860
27
HPLGSPGSASDLETSGLQEQRNHLQGKLSELQVEQTSLEP
134
Natriuretic
Natriuretic peptide
T74, E85
2




LQESPRPTGVWKSREVATEGIRGHRKMVLYTLRAPRSPK

peptides B







MVQGSGCFGRKMDRISSSSGLGCKVLRRH










P58417
22
ANLTNGGKSELLKSGSSKSTLKHIW1ESSKDLSISRLLSQT
271
Neurexophilin-1
Neurexophilin






FRGKENDTDLDLRYDTPEPYSEQDLWDWLRNSTDLQEPR









PRAKRRPIVKTGKFKKMFGWGDFHSNIKTVKLNLLITGKI









VDHGNGTFSVYFRHNSTGQGNVSVSLVPPTKIVEFDLAQ









QTVIDAKDSKSFNCRIEYEKVDKATKNTLCNYDPSKTCY









QEQTQSHVSWLCSKPFKVICIYISFYSTDYKLVQKVCPDY









NYHSDTPYFPSG










O95156
23
KEVVHATEGLDWEDKDAPGTLVGNVVHSRIISPLRLFVK
264
Neurexophilin-2
Neurexophilin
T29
1




QSPVPKPGPMAYADSMENFWDWLANIFEIQEPLARTKRR









PIVKTGKFKKMFGWGDFHSNIKTVKLNLLITGKIVDHGNG









TFSVYFRHNSTGLGNVSVSLVPPSKVVEFEVSPQSTLETKE









SKSFNCRIEYEKTDRAKKTALCNFDPSKICYQEQTQSHVS









WLCSKPFKVICIYIAFYSVDYKLVQKVCPDYNYHSETPYL









SSG










O95157
23
QDDGPPGSEDPERDDHEGQPRPRVPRKRGHISPKSRPMAN
252
Neurexophilin-3
Neurexophilin






STLLGLLAPPGEAWGILGQPPNRPNHSPPPSAKVKKIFGW









GDFYSNIKTVALNLLVTGKIVDHGNGTFSVHFQHNATGQ









GNISISLVPPSKAVEFHQEQQIFIEAKASKIFNCRMEWEKV









ERGRRTSLCTHDPAKICSRDHAQSSATVVSCSQPFKVVCVY









IAFYSTDYRLVQKVCPDYNYHSDTPYYPSG










O95158
24
QIPESGRPQYLGLRPAAAGAGAPGQQLPEPRSSDGLGVGR
308
Neurexophilin-4
Neurexophilin






AWSWAWPTNHTGALARAGAAGALPAQRTKRKPSIKAAR









AKKIFGWGDFYFRVHTLKFSLLVTGKIVDHVNGTFSVYFR









HNSSSLGNLSVSIVPPSKRVEFGGVWLPGPVPHPLQSTLAL









EGVLPGLGPPLGMAAAAAGPGLGGSLGGALAGPLGGAL









GVPGAKESRAFNCHVEYEKTNRARKHRPCLYDPSQVCFT









EHTQSQAAWLCAKPFKVICIFVSFLSFDYKLVQKVCPDYN









FQSEHPYFG










Q5H8A3
109
ILQRGSGTAAVDFTKKDHTATWGRPFFLFRPRN
141
Neuromedin-S
Neuromedins







P48645
142
FRVDEEFQSPFASQSRGYFLFRPRN
166
Neuromedin-U-
Neuromedins








25








Q8NG41
25
WYKPAAGHSSYSVGRAAGLLSGLR
48
Neuropeptide B-
Neuromedins








23








Q8NG41
25
WYKPAAGHSSYSVGRAAGLLSGLRRSPYA
53
Neuropeptide B-
Neuromedins








29








P0C0P6
70
SFRNGVGTGMKKTSFQRAKS
89
Neuropeptide S
Neuromedins







Q8N729
33
WYKHVASPRYHTVGRAAGLLMGL
55
Neuropeptide W-
Neuromedins








23








Q8N729
33
WYKHVASPRYHTVGRAAGLLMGLRRSPYLW
62
Neuropeptide W-
Neuromedins








30








P30990
24
SDSEEEMKALEADFLTNMHTSKISKAHVPSWKMTLLNVC
148
Large
Neurotensin






SLVNNLNSPAEETGEVHEEELVARRKLPTALDGFSLEAML

neuromedin N







TIYQLHKICHSRAFQHWELIQEDILDTGNDKNGKEEVIKR









KIPYIL










P30990
144
IPYIL
148
Neuromedin N
Neurotensin







P30990
151
QLYENKPRRPYIL
163
Neurotensin
Neurotensin







P30990
166
DSYYY
170
Tail peptide
Neurotensin








(Potential)








P01303
68


SS
PETLISDLLMRESTENVPRTRLEDPAMW

97
C-flanking
NPY
S68, S69, T83
3






peptide of NPY

T88, A95






P01303
29
YPSKPDNPGEDAPAEDMARYYSALRHYINLITRQRY
64
Neuropeptide Y
NPY
S31,
2








(Ambiguous









Y55 or T60






P01298
30
APLEPVYPGDNATPEQMAQYAADLRRYINMLTRPRY
65
Pancreatic
NPY
T61
1






hormone








P01298
69
HKEDTLAFSEWGSPHAAVPR
88
Pancreatic
NPY








icosapeptide








P10082
29
YPIKPEAPREDASPEELNRYYASLRHYLNLVTRQRY
64
Peptide YY
NPY
T60
1





P10082
31
IKPEAPREDASPEELNRYYASLRHYLNLVTRQRY
64
Peptide YY(3-
NPY
T60
1






36)








P80303
25
VPIDIDKTKVQNIHPVESAKIEPPDTGLYYDEYLKQVIDVL
106
Nesfatin-1
Nucleobindin
T32, I37, S42,
8




ETDKHFREKLQKADIEEIKSGRLSKELDLVSHHVRTKLDE



T50, Y53, Y54,





L



T67, S96






Q02818
27
VPLERGAPNKEETPATESPDTGLYYHRYLQEVIDVLETDG
461
Nucleobindin-1
Nucleobindin
P34, T39, T42,
22




HFREKLQAANAEDIKSGKLSRELDFVSHHVRTKLDELKR



S44, T47, Y50,





QEVSRLRMLLKAKMDAEQDPNVQVDHLNLLKQFEHLDP



S93, T148,





QNQHTFEARDLELLIQTATRDLAQYDAAHHEEFKRYEML



T162, S224,





KEHERRRYLESLGEEQRKEAERKLEEQQRRHREHPKVNV



S320, S321,





PGSQAQLKEVWEELDGLDPNRFNPKTFFILHDINSDGVLD



T335, H339,





EQELEALFTKELEKVYDPKNEEDDMREMEEERLRMREHV



S369, T372,





MKNVDTNQDRLVTLEEFLASTQRKEFGDTGEGWETVEM



S378, Q407,







H
PAYFEEELRRFEEELAAREAELNAKAQRLSQETEALGRS




A414, T426,





QGRLEAQKRELQQAVLHMEQRKQQQQQQQGHKAPAAH



L452





PEGQLKFHPDTDDVPVPAPAGDQKEVDTSEKKLLERLPE



x459(deleterious





VEVPQHL



mutation)






P80303
25
VPIDIDKTKVQNIHPVESAKIEPPDTGLYYDEYLKQVIDVL
420
Nucleobindin-2
Nucleobindin
T32,
16




ETDKHFREKLQKADIEEIKSGRLSKELDLVSHHVRTKLDE



I37,





LKRQEVGRLRMLIKAKLDSLQDIGMDHQALLKQFDHLNH



S42, T50, Y53,





LNPDKFESTDLDMLIKAATSDLEHYDKTRHEEFKKYEMM



Y54, T67, S96,





KEHERREYLKTLNEEKRKEEESKFEEMKKKHENHPKVNH



S152, T163,





PGSKDQLKEVWEETDGLDPNDFDPKTFFKLHDVNSDGFL



T172, A355,





DEQELEALFTKELEKVYDPKNEEDDMVEMEEERLRMRE



Y389, P406,





HVMSEVDTNKDRLVTLEEFLKATEKKEFLEPDSWETLDQ



S408, L414





QQFFTEEELKEYENIIALQENELKKKADELQKQKEELQRQ









HDQLEAQKLEYHQVIQQMEQKKLQQGIPPSGPAGELKFE









PHI










P01213
175
YGGFLRKYPK
184
Alpha-
Opioid








neoendorphin








P01213
175
YGGFLRKYP
183
Beta-
Opioid








neoendorphin








P01213
207
YGGFLRRIRPKLKWDNQKRYGGFLRRQFKVVT
238
Big dynorphin
Opioid







P01213
207
YGGFLRRIRPKLK
219
Dynorphin A(1-
Opioid








13) (By









similarity)








P01213
207
YGGFLRRIRPKLKWDNQ
223
Dynorphin A(1-
Opioid








17)








P01213
207
YGGFLRRI
214
Dynorphin A(1-
Opioid








8) (By similarity)








P01213
175
YGGFL
179
Leu-enkephalin
Opioid







P01213
226
YGGFLRRQFKVVTRSQEDPNAYSGELFDA
254
Leumorphin
Opioid







P01210
100
YGGFM
104
Met-enkephalin
Opioid







P01210
186
YGGFMRGL
193
Met-enkephalin-
Opioid








Arg-Gly-Leu








P01210
261
YGGFMRF
267
Met-enkephalin-
Opioid








Arg-Phe








Q13519
98
MPRVRSLFQEQEEPEPGMEEAGEMEQKQLQ
127
Neuropeptide 1
Opioid
P111
1






(Probable)








Q13519
149
FSEFMRQYLVLSMQSSQ
165
Neuropeptide 2
Opioid








(Probable)








Q13519
130
FGGFTGARKSARKLANQ
146
Nociceptin
Opioid







P01210
143
DAEEDDSLANSSDLLKELLETGDNRERSHHQDGSDNEEE
183
PENK(143-183)
Opioid






VS

(By similarity)








P01210
237
FAEALPSDEEGESYSKEVPEME
258
PENK(237-258)
Opioid








(By similarity)








P01213
226
YGGFLRRQFKVVT
238
Rimorphin
Opioid







P01210
114
MDELYPMEPEEEANGSEILA
133
rimorphin
Opioid







P01210
25
ECSQDCATCSYRLVRPADINFLACVMECEGKLPSLKIWET
97
Synenkephalin
Opioid






CKELLQLSKPELPQDGTSTLRENSKPEESHLLA










O43612
34
QPLPDCCRQKTCSCRLYELLHGAGNHAAGILTL
66
Orexin-A
Orexin







O43612
70
RSGPPGLQGRLQRLLQASGNHAAGILTM
97
Orexin-B
Orexin







P12272
143
TRSAWLDSGVTGSGLEGDHLSDTSTTSLELDSR
175
Osteostatin
Parathyroid









hormone







P12272
37
AVSEHQLLHDKGKSIQDLRRREFLHHLIAEIHTAEIRATSE
177
Parathyroid
Parathyroid
T75
1




VSPNSKPSPNTKNHPVRFGSDDEGRYLTQETNKVETYKE

hormone-related
hormone






QPLKTPGKKKKGKPGKRKEQEKKKRRTRSAWLDSGVTG

protein







SGLEGDHLSDTSTTSLELDSRRH










P12272
37
AVSEHQLLHDKGKSIQDLRRREFLHHLIAEIHTAEI
72
PTHrP[1-36]
Parathyroid









hormone







P12272
74
ATSEVSPNSKPSPNTKNHPVRFGSDDEGRYLTQETNKVET
130
PTHrP[38-94[
Parathyroid
T75
1




YKEQPLKTPGKKKKGKP


hormone







Q96A98
62
SLALADDAAFRERARLLAALERRHWLNSYMHKLLVLDA
100
Tuberoinfundibular
Parathyroid






P

peptide of
hormone








39residues








P01189
237
YGGFMTSEKSQTPLVTLEKNAIIKNAYKKGE
267
Beta-endorphin
POMC
S246, T248,
3








T252






P01189
138
SYSMEHFRWGKPVGKKRRPVKVYPNGAEDESAEAFPLEF
176
Corticotropin
POMC







P01189
156
PVKVYPNGAEDESAEAFPLEF
176
Corticotropin-
POMC








like intermediary









peptide








P01189
179
ELTGQRLREGDGPDGPADDGAGAQADLEHSLLVAAEKK
267
Lipotropin beta
POMC
S246, T248,
3




DEGPYRMEHFRWGSPPKDKRYGGFMTSEKSQTPLVTLFK



T252





NAIIKNAYKKGE










P01189
179
ELTGQRLREGDGPDGPADDGAGAQADLEHSLLVAAEKK
234
Lipotropin
POMC






DEGPYRMEHFRWGSPPKD

gamma








P01189
138
SYSMEHFRWGKPV
150
Melanotropin
POMC








alpha








P01189
217
DEGPYRMEHFRWGSPPKD
234
Melanotropin
POMC








beta








P01189
77
YVMGHFRWDRF
87
Melanotropin
POMC








gamma








P01189
27
WCLESSQCQDLTTESNLLECIRACKPDLSAETPMFPGNGD
102
NPP
POMC
T71
1




EQPLTENPRKYVMGHFRWDRFGRRNSSSSGSSGAGQ










P01189
105
EDVSAGEDCGPLPEGGPEPRSDGAKPGPRE
134
Potential peptide
POMC







Q9UHG2
245
LETPAPQVPARRLLPP
260
Big LEN (By
ProSAAS
T247, P248,
2






similarity)

A249






Q9UHG2
221
AADHDVGSELPPEGVLGALLRVKRLETPAPQVPARRLLPP
260
Big PEN-LEN
ProSAAS
T247, P248,
2






(By similarity)

A249






Q9UHG2
34
ARPVKEPRGLSAASPPLAETGAPRRF
59
Big SAAS (By
ProSAAS
G42, S47, T53,
5






similarity)

G54, A55






Q9UHG2
34
ARPVKEP
40
KEP (By
ProSAAS








similarity)








Q9UHG2
245
LETPAPQVPA
254
Little LEN (By
ProSAAS
T247, P248,
2






similarity)

A249






Q9UHG2
42


G
LSAASPPLAETGAPRRF

59
Little SAAS (By
ProSAAS
G42, S47, T53,
5






similarity)

G54, A55






Q9UHG2
221
AADHDVGSELPPEGVLGALLRV
242
PEN (By
ProSAAS








similarity)








Q9UHG2
34
ARPVKEPRGLSAASPPLAETGAPRRFRRSVPRGEAAGAVQ
260
ProSAAS
ProSAAS
G42, S47, T53,
13




ELARALAHLLEAERQERARAEAQEAEDQQARVLAQLLR



G54, A55, A115,





VWGAPRNSDPALGLDDDPDAPAAQLARALLRARLDPAAL



N118, S119,





AAQLVPAPVPAAALRPRPPVYDDGPAGPDAEEAGDETPD



A176, S206,





VDPELLRYLLGRILAGSADSEGVAAPRRLRRAADHDVGSE



A207, T247,





LPPEGVLGALLRVKRLETPAPQVPARRLLPP



P248, A249






Q9HD89
19
KTLCSMEEAINERIQEVAGSLIFRAISSIGLECQSVTSRGDL
108
Resistin
Resistin/FIZZ






ATCPRGFAVTGCTCGSACGSWDVRAETTCHCQCAGMDW









TGARCCRVQP










Q9BQ08
24
QCSLDSVMDKKIKDVLNSLEYSPSPISKKLSCASVKSQGR
111
Resistin-like beta
Resistin/FIZZ






PSSCPAGMAVTGCACGYGCGSWDVQLETTCHCQCSVVD









WTTARCCHLT










P83859
91
QDEGSEATGFLPAAGEKTSGPLGNLAEELNGYSRKKGGF
133
QRF-amide
RFamide






SFRF


neuropeptide







P06850
154
SEEPPISLDLTFHLLREVLEMARAEQLAQQAHSNRKLMEII
194
Corticoliberin
Sauvagine/









corticotropin-









releasing









factor/urotensin I







P55089
83
DNPSLSIDLTFHLLRTLLELARTQSQRERAEQNRIIFDSV
122
Urocortin
Sauvagine/









corticotropin-









releasing









factor/urotensin I







Q96RP3
72
IVLSLDVPIGLLQILLEQARARAAREQATTNARILARVGHC
112
Urocortin-2
Sauvagine/









corticotropin-








releasing










factor/urotensin I







Q969E3
120
FTLSLDVPTNIMNLLFNIAKAKNLRAQAAANAHLMAQI
157
Urocortin-3
Sauvagine/









corticotropin-









releasing









factor/urotensin I







P01019
34
DRVY
37
Angiotensin 1-4
Serpin







P01019
34
DRVYI
38
Angiotensin 1-5
Serpin







P01019
34
DRVYIHP
40
Angiotensin 1-7
Serpin







P01019
34
DRVYIHPFH
42
Angiotensin 1-9
Serpin







P01019
34
DRVYIHPFHL
43
Angiotensin-1
Serpin







P01019
34
DRVYIHPF
41
Angiotensin-2
Serpin







P01019
35
RVYIHPF
41
Angiotensin-3
Serpin







P01019
36
VYIHPF
41
Angiotensin-4
Serpin







P01019
34
DRVYIHPFHLVIHNESTCEQLAKANAGKPKDPTFIPAPIQA
485
Angiotensinogen
Serpin
T440 or S442 or
1




KTSPVDEKALQDQLVLVAAKLDFEDKLRAAMVGMLANF



T443 or T455





LGFRIYGMHSELWGVVHGATVLSPTAVFGTLASLYLGAL



(Ambiguous)





DHTADRLQAILGVPWKDKNCTSRLDAHKVLSALQAVQG









LLVAQGRADSQAQLLLSTVVGVFTAPGLHLKQPFVQGLA









LYTPVVLPRSLDFTELDVAAEKIDRFMQAVTGWKTGCSL









MGASVDSTLAFNTYVHFQGKMKGFSLLAEPQEFWVDNS









TSVSVPMLSGMGTFQHWSDIQDNFSVTQVPFTESACLLLI









QPHYASDLDKVEGLTFQQNSLNVVMKKLSPRTIHLTMPQL









VLQGSYDLQDLLAQAELPAILHFELNLQKLSNDRIRVGEV









LNSIFFELEADEREPTESTQQLNKPEVLEVTLNRPFLFAVY









DQSATALHFLGRVANPLSTA










P08185
23
MDPNAAYVNMSNHHRGLASANVDFAFSLYKHLVALSPK
405
Corticosteroid-
Serpin






KNIFISPVSISMALAMLSLGTCGHTRAQLLQGLGFNLTERS

binding globulin







ETEIHQGFQHLHQLFAKSDTSLEMTMGNALFLDGSLELLE









SFSADIKHYYESEVLAMNFQDWATASRQINSYVKNKTQG









KIVDLFSGLDSPAILVLVNYIFFKGTWTQPFDLASTREENF









YVDETTVVKVPMMLQSSTISYLHDSELPCQLVQMNYVGN









GTVFFILPDKGKMNTVIAALSRDTINRWSAGLTSSQVDLY









IPKVTISGVYDLGDVLEEMGIADLFTNQANFSRITQDAQL









KSSKVVHKAVLQLNEEGVDTAGSTGVTLNLTSKPIILRFN









QPFIIMIFDHFTWSSLFLARVMNPV










Q86U17
20
QPLLAHGDKSLQGPQPPRHQLSEPAPAYHRITPTITNFALR
422
Serpin A11
Serpin






LYKELAADAPGNIFFSPVSISTTLALLSLGAQANTSALILEG









LGFNLTETPEADIHQGFRSLLHTLALPSPKLELKVGNSLFL









DKRLKPRQHYLDSIKELYGAFAFSANFTDSVTTGRQINDY









LRRQTYGQVVDCLPEFSQDTFMVLANYIFFKAKWKHPFS









RYQTQKQESFFVDERTSLQVPMMHQKEMHRFLYDQDLA









CTVLQIEYRGNALALLVLPDPGKMKQVEAALQPQTLRK









WGQLLLPSLLDLHLPRFSISGTYNLEDILPQIGLTNILNLEA









DFSGVTGQLNKTISKVSHKAMVDMSEKGFLAGAASGLLS









QPPSLNTMSDPHAHFNRPFLLLLWEVTTQSLLFLGKVVNP









VAG










Q8IW75
21
LKPSFSPRNYKALSEVQGWKQRMAAKELARQNMDLGFK
414
Serpin A12
Serpin






LLKKLAFYNPGRNIFLSPLSISTAFSMLCLGAQDSTLDEIK









QGFNFRKMPEKDLHEGFHYIIHELTQKTQDLKLSIGNTLFI









DQRLQPQRKFLEDAKNFYSAETILTNFQNLEMAQKQINDF









ISQKTHGKINNLIENIDPGTVMLLANYIFFRARWKHEFDPN









VTKEEDFFLEKNSSVKVPMMFRSGIYQVGYDDKLSCTILE









IPYQKNITAIFILPDEGKLKHLEKGLQVDTFSRWKTLLSRR









VVDVSVPRLHMTGTFDLKKTLSYIGVSKIFLEHGDLTKIA









PHRSLKVGEAVHKAELKMDERGFEGAAGTGAQTLPMET









PLVVKIDKPYLLLIYSEKIPSVLFLGKIVNPIGK










O75830
19
SRCSAQKNTEFAVDLYQEVSLSHKDNIIFSPLGITLVLEMV
405
Serpin 12
Serpin






QLGAKGKAQQQIRQTLKQQETSAGEEFFVLKSFFSAISEK









KQEFTFNLANALYLQEGFTVKEQYLHGNKEFFQSAIKLV









DEQDAKACAEMISTWVERKTDGKIKDMFSGEEFGPLTRL









VLVNAIYFKGDWKQKFRKEDTQLINFTKKNGSTVKIPMM









KALLRTKYGYFSESSLNYQVLELSYKGDEFSLIIILPAEGM









DIEEVEKLITAQQILKWLSEMQEEEVEISLPREKVEQKVDF









KDVLYSLNITEIFSGGCDLSGITDSSEVYVSQVTQKVFFEIN









EDGSEAATSTGIHIPVIMSLAQSQFIANHPFLFIMKHNPTES









ILFMGRVTNPDTQEIKGRDLDSL










O00230
89
DRMPCRNFFVVICITSSCK
105
Cortistatin-17
Somastostatin







O00230
77
QEGAPPQQSARRDRMPCRNFFWKTFSSCK
105
Cortistatin-29
Somastostatin








(Potential)








P61278
103
AGCKNFFWKTFTSC
116
Somatostatin-14
Somastostatin







P61278
89


S
ANSNPAMAPRERKAGCKNFFWKTFTSC

116
Somatostatin-28
Somastostatin
S89 or S92
1








(Ambiguous)






P01236
29
LPICPGGAARCQVTLRDLFDRAVVLSHYIHNLSSEMFSEF
227
Prolactin
Somatotropin/






DKRYTHGRGFITKAINSCHTSSLATPEDKEQAQQMNQKD


prolactin






FLSLIVSILRSWNEPLYHLVTEVRGMQEAPEAILSKAVEIE









EQTKRLLEGMELIVSQVHPETKENEIYPVWSGLPSLQMAD









EESRLSAYYNLLHCLRRDSHKIDNYLKLLKCRIIHNNNC










P20366
111
ALNSVAYERSAMQNYE
125
C-terminal-
Tachykinin
A111, S114
2






flanking peptide








P20366
98
HKTDSFVGLM
107
Neurokinin A
Tachykinin







Q9UHF0
81
DMHDFFVGLM
90
Neurokinin-B
Tachykinin







P20366
72
DADSSIEKQVALLKALYGHGQISHKRHKTDSFVGLM
107
Neuropeptide K
Tachykinin







P20366
58
RPKPQQFFGLM
68
Substance P
Tachykinin







P20396
25
QPEAAQQEAVTAAEHPGLDDFLRQVERLLFLRENIQRLQ
242
Pro-thyrotropin-
TRH
174
1




GDQGEHSASQIFQSDWLSKRQHPGKREEEEEEGVEEEEEE

releasing







EGGAVGPHKRQHPGRREDEASWSVDVTQHKRQHPGRRS

hormone







PWLAYAVPKRQHPGRRLADPKAQRSWEEEEEEEEREEDL









MPEKRQHPGKRALGGPCGPQGAYGQAGLLLGLLDDLSRS









QGAEEKRQHPGRRAAWVREPLEE










P20396
84
QHP
86
Thyrotropin-
TRH








releasing









hormone








O95399
114
ETPDCFWKYCV
124
Urotensin-2
Urotensin-2







Q76510
112
ACFVVKYCV
119
Urotensin-2B
Urotensin-2







P01185
20
CYFQNCPRG
28
Arg-vasopressin
Vasopressin/









oxytocin







P01185
126
ASDRSNATQLDGPAGALLLRLVQLAGAPEPFEPAQPDAY
164
Copeptin
Vasopressin/
A152
1







oxytocin







P01178
32
AAPDLDVRKCLPCGPGGKGRCFGPNICCAEELGCFVGTA
125
Neurophysin 1
Vasopressin/






EALRCQEENYLPSPCQSGQKACGSGGRCAVLGLCCSPDG


oxytocin






CHADPACDAEATFSQR










P01185
32
AMSDLELRQCLPCGPGGKGRCFGPSICCADELGCFVGTAE
124
Neurophysin 2
Vasopressin/






ALRCQEENYLPSPCQSGQKACGSGGRCAAFGVCCNDESC


oxytocin






VTEPECREGFHRRA










P01178
20
CYIQNCPLG
28
Oxytocin
Vasopressin/









oxytocin







O15240
554
TLQPPSALRRRHYHHALPPSRHYP
577
Antimicrobial
VGF








peptide









VGF[554-577]








O15240
281
RPESALLGGSEAGERLLQQGLAQVEA
306
Neuroendocrine
VGF








regulatory









peptide-1








O15240
310
QAEATRQAAAQEERLADLASDLLLQYLLQGGARQRGLG
347
Neuroendocrine
VGF








regulatory









peptide-2








O15240
25
APPGRPEAQPPPLSSEHKEPVAGDAVPGPKDGSAPEVRGA
615
Neurosecretory
VGF
P25, S36, P226,
5




RNSEPQDEGELFQGVDPRALAAVLLQALDRPASPPAPSGS

protein VGF

S229, T501





QQGPEEEAAEALLTETVRSQTHSLPAPESPEPAAPPRPQTP









ENGPEASDPSEELEALASLLQELRDFSPSSAKRQQETAAA









ETETRTHTLTRVNLESPGPERVWRASWGEFQARVPERAP









LPPPAPSQFQARMPDSGPLPETHKFGEGVSSPKTHLGEAL









APLSKAYQGVAAPFPKARRPESALLGGSEAGERLLQQGL









AQVEAGRRQAEATRQAAAQEERLADLASDLLLQYLLQG









GARQRGLGGRGLQEAAEERESAREEEEAEQERRGGEERV









GEEDEEAAEAEAEAEEAERARQNALLFAEEEDGEAGAED









KRSQEETPGHRRKEAEGTEEGGEEEDDEEMDPQTIDSLIE









LSTKLHLPADDVVSIIEEVEEKRKRKKNAPPEPVPPPRAAP









APTHVRSPQPPPPAPAPARDELPDWNEVLPPWDREEDEV









YPPGPYHPFPNYIRPRTLQPPSALRRRHYHHALPPSRHYPG









REAQARRAQEEAEAEERRLQEQEELENYIEHVLLRRP










Specific embodiments of the invention are disclosed below with indication of the respective SEQ ID NO.

















TABLE 6A












*Site position (Bold; identified



SEQ





Peptide
or conserved in human, Italic:
No.


ID
Entry_
Peptide

Peptide
Peptide
Hormone
identified in non-human and not
of


NO
Human
Start
Peptide_Sequence
end
Name
Family
conserved
sites







147
P01160
1
SLRRSSCFGGRMDRIGAQSGLGCNSFRY
28
Atrial
Natriuretic 


S19N, S25


2







natriuretic
peptide









factor
























TABLE 6B












*Site position (Bold; identified



SEQ





Peptide
or conserved in human, Italic:
No.


ID
Entry_
Peptide

Peptide
Peptide
Hormone
identified in non-human and not
of


NO
Human
Start
Peptide_Sequence
end
Name
Family
conserved
sites







 72
P22466
1
GWTLNSAGYLLGPHAVGNHRSFSDKNGLTS
30
Galanin
Galanin


T3, S23


2





 95
P01275
1
HSQGTFTSDYSKYLDSRRAQDFVQWLMNT
29
Glucagon
Glucagon


T7


1





 97
P01275
1
HAEGTFTSDVSSYLEGQAAKEFIAWLVKGR
31
Glucago-like
Glucagon


T5 or T7 or S8 (Ambiguous)


1







peptide 1










(7-36)








106
P09683
1
HSDGTFTSELSRLREGARLQRLLQGLV
27
Secretin
Glucagon


T7, S8, S11


3





108
P01282
1
HSDAVFTDNYTRLRKQMAVKKYLNSILN
28
Vasoactive
Glucagon


T7


1







intestinal










peptide








147
P01160
1
SLRRSSCFGGRMDRIGAQSGLGCNSFRY
28
Atrial
Natriuretic


S19, S25


2







natriuretic
peptide









factor








185
P01303
1
YPSKPDNPGEDAPAEDMARYYSALRHYINLITRQRY
36
Neuropeptide Y
NPY


S3, T32


2





188
P10082
1
YPIKPAPREDASPEELNRYYASLRHYLNLVTRQRY
36
Peptide YY
NPY


T32


1
























TABLE 6C





SEQ





Peptide

No.


ID
Entry_
Peptide

Peptide
Peptide
Hormone
*Site position (identified
of


NO
Human
Start
Peptide_Sequence
end
Name
Family
or conserved in humans)
sites







 92
P09681
1
YAEGTFISDYSIAMDKIHQQDFVNWLLAQKGKKNDW
42
Gastric 
Glucagon
S8
1





KHNITQ

inhibitory 










polypeptide








 95
P01275
1
HSQGTFTSDYSKYLDSRRAQDFVQWLMNT
29
Glucagon
Glucagon
T7
1





 97
P01275
1
HAEGTFTSDVSSYLEGQAAKEFIAWLVKGR
31
Glucago-like
Glucagon
T5 or T7 or S8 (Ambiguous)
1







peptide 1










(7-36)








 99
P01275
1
HADGSFSDEMNTILDNLAARDFINWLIQTKITD
33
Glucagon-like
Glucagon
S7
1







peptide 2










(By similarity)








100
P01282
1
HADGVFTSDFSKLLGQLSAKKYLESLM
27
Intestinal
Glucagon
T7, S8
2







peptide










PHM-27








106
P09683
1
HSDGTFTSELSRLREGARLQRLLQGLV
27
Secretin
Glucagon
T7, S8, S11
3





107
P01286
1
YADAIFTNSYRKVLGQLSARKLLQDIMSRQQGESNQ
44
Somatoliberin
Blucagon
T7
1





ERGARARL










108
P01282
1
HSDAVFTDNYTRLRKQMAVKKYLNSILN
28
Vasoactive
Glucagon
T7
1







intestinal










peptide








 21
P01258
1
CGNLSTCMLGTYTQDFNKFHTFPQTAIGVGAP
32
Calcitonin
Calcitonin
T6, T11. T13, T21, T25
5





 22
P06881
1
ACDTATCVTHRLAGLLSRSGGVVKNNFVPTNVGSK
37
Calcitonin
Calcitonin
T9, S17
2





AF

gene-










related










peptide 1








 23
P10092
1
ACNTATCVTHRLAGLLSRSGGMVKSNFVPTNVGSK
37
Calcitonin
Calcitonin
T9, S17, S25, T30, S34
5





AG

gene-










related










peptide 2








 24
P10997
1
KCNTATCATQRLANFLVHSSNNFGAILSSTNVGSN
37
Islet amyloid
Calcitonin
T6, T9
3





TY

polypeptide








  6
P35318
1
YRQSMNNFQGLRSFGCRFGTCTVQKLAHQIYQFTD
52
Adrenomedullin
Adrenomedullin
T22, Y31, T34
3





KDKDNVAPRSKISPQGY










  7
Q7Z4H4
1
TQAQLLRVGCVLGTCQVQNLSHRLWQLMGPAGRQDS
47
Adrenomedullin-
Adrenomedullin
T14
1





APVDPSSPHSY

2 (By










similarity)








116
P01308
1
FVNQHLCGSHLVEALYLVCGERGFFYTPKT
30
Insulin B
Insulin
T27 (Ambiguous)
1







chain








117
P05019
1
GPETLCGAELVDALQFVCGDRGFYFNKPTGYGSSSS
70
Inslulin-like
Insulin
T29
1





RAPQTGIVDECCFRSCDLRRLEMYCAPLKPAKSA

growth factor I








118
P01344
1
AYRPSETLCGGELVDTLQFVCGDRGFYFSRPASRVS
67
Inslulin-like
Insulin
S29, S50, T62
2





RRSRGIVEECCFRSCDLALLETYCATPAKSE

growth factor










II








 72
P22466
1
GWTLNSAGYLLGPHAVGNHRSFSDKNGLTS
30
Galanin
Galanin
T3, S23
2





 74
Q9UBC7
1
APAHRGRGGWTLNSAGYLLGPVLHLPQMGDQDGKRE
60
Galanin-like
Galanin
T11
1





TALEILDLWKAIDGLPYSHPPQPS

peptide








185
P01303
1
YPSKPDNPGEDAPAEDMARYYSALRHYINLITRQRY
36
Neuropeptide Y
NPY
S3, T32
2





186
P01298
1
APLEPVYPGDNATPEQMAQYAADLRRYINMLTRPRY
36
Pancreatic
NPY
T32
1







hormone








188
P10082
1
YPIKPAPREDASPEELNRYYASLRHYLNLVTRQRY
36
Peptide YY
NPY
T32
1





147
P01160
1
SLRRSSCFGGRMDRIGAQSGLGCNSFRY
28
Atrial
Natriuretic
S19, S25
2







natriuretic
peptide









factor








163
P16860
1
SPKMVQGSGCFGRKMDRISSSSGLGCKVLRRH
32
Brain
Natriuretic
S22
1







natriuretic
peptide







167
P23582
1
DLRVDTKSRAAWARLLQEHPNARKYKGANKKGLSKG
53
CNP-53
Natriuretic
S47
1





CFGLKLDRIGSMSGLGC


peptide
























TABLE 6D












*Site position (Bold:










identified or conserved



SEQ

Pep-

Pep-

Peptide
in human, Italic;
No.


ID
Entry_
tide

tide
Peptide
Hormone
identified in non-human 
of


NO.
Human
Start
Peptide_Sequence
end
Name
Family
and not conserved)
sites























1
P05408
1


S
VPHFSDEDKDPE

 13
C-terminal
7B2
S1
1







peptide (By










similarity)








2
P05408
1
YSPRTPDRVSEADIQRLLHGVMEQLGIARPRVEYPAHQ
186
Neuroendocrine
7B2
S2, T5, S10, T108, S174
5





AMNLVGPQSIEGGAHEGLQHLGPFGNIPNIVAELTGDN

protein 7B2








IPKDFSEDQGYPDPPNPCPVGKTADDGCLENTPDTAEF










SREFQLHQHLFDPEHDYPGLGKWNKKLLYEKMKGGE










RRKRRSVNPYLQGQRLDNVVAKKSVPHFSDEDKDPE










3
P05408
1
YSPRTPDRVSEADIQRLLHGVMEQLGIARPRVEYPAHQ
150
N-terminal
7B2
S2, T5, S10, T108
4





AMNLVGPQSIEGGAHEGLQHLGPFGNIPNIVAELTGDN

peptide (By








IPKDFSEDQGYPDPPNPCPVGKTADDGCLENTPDTAEF

similarity)








SREFQLHQHLFDPEHDYPGLGKWNKKLLYEKMKGGE










5
P07108
1
SQAEFEKAAEEVRHLKTKPSDEEMLFIYGHYKQATVG
 86
Acyl-CoA-
ACBP
T35 or T41 (ambiguous)
1





DINTERPGMLDFTGKAKWDAWNELKGTSKEDAMKA

binding protein








YINKVEELKKKYGI










6
P35318
1
YRQSMNNFQGLRSFGCRFGTCTVQKLAHQIYQFTDKD
 52
Adrenomedullin
Adrenomedullin
T22, Y31, T34
3





KDNVAPRSKISPQGY










7
Q7Z4H4
1
TQAQLLRVGCVLGTCQVQNLSHRLWQLMGPAGRQDS
 47
Adrenomedullin-2
Adrenomedullin
T14
1





APVDPSSPHSY

(By similarity)








14
P07492
1
VPLPAGGGTVLTKMYPRGNHWAVGHLM
 27
Gastrin-releasing
Bombesin/neuromedin-
P4, T9
2







peptide
B/ranatensin







15
P08949
1
GNLWATGHFM
 10
Neuromedin-B
Bombesin/neuromedin-
T6
1








B/ranatensin







16
P08949
1
APLSWDLPEPRSRASKIRVHSRGNLWATGHFM
 32
Neuromedin-B-32
Bombesin/neuromedin-
T28
1








B/ranatensin







21
P01258
1
CGNLSTCMLGTYTQDFNKFHTFPQTAIGVGAP
 32
Calcitonin
Calcitonin
T6, T11, T13, T21, T25
5





22
P06881
1
ACDTATCVTHRLAGLLSRSGGVVKNNFVPTNVGSKAF
 37
Calcitonin gene-
Calcitonin
T9, S17
2







related peptide 1








23
P10092
1
ACNTATCVTHRLAGLLSRSGGMVKSNFVPTNVGSKAF
 37
Calcitonin gene-
Calcitonin
T9, S17, S25, T30, S34
5







related peptide 2








24
P10997
1
KCNTATCATQRLANFLVHSSNNFGAILSSTNVGSNTY
 37
Islet amyloid
Calcitonin
T5, T9, T30
3







polypeptide








25
P01258
1
DMSSDLERDHRPHVSMPQNAN
 21
Katacalcin
Calcitonin
S15
1





36
P05060
1
SAEFPDFYDSEEPVSTHQEAENEKDRADQTVLTEDEKK
 57
CCB peptide
Chromogranin/
S15
1





ELENLAAMDLELQKIAEKF


secretogranin







37
P10645
1
LPVNSPMNKGDTEVMKCIVEVISDTLSKPSPMPVSQEC
439
Chromogranin-A
Chromogranin/
S27, S30, S36, S80, E104, S108,
39





FETLRGDERILSILRHQNLLKELQDLALQGAKERAHQQ


secretogranin
A127, T128, A135, L136, S143






KKHSGFEDELSEVLENQSSQAELKEAVEEPSSKDVME



A151, N164, T165 P167, A169,






KREDSKEAEKSGEATDGARPQALPEPMQESKAEGNNQ



S170, S173, E182, L188 S189,








A
PGEEEEEEEEATNTHPPASLPSQKYPGPQAEGDSEGLS




V193, S200, T233, L236, N237,






QGLVDREKGLSAEPGWQAKREEEEEEEEEAEAGEEAV



P238, S241, Y244, P265, E268,






PEEEGPTVVLNPHPSLGYKEIRKGESRSEALAVDGAGK



P273, S282, M291, V294, T335,








P
GAEEAQDPEGKGEQEHSQQKEEEEEMAVVPQGLFRG




A360, S380, G395






GKSGELEQEEERLSKEWEDSKRWSKMDQLAKELTAE










KRLEGQEEEEDNRDSSMKLSFRARAYGFRGPGPQLRR










GWRPSSREDSLEAGLPLQVRGYPEEKKEEEGSANRRPE










DQELESLSAIEAELEKVAHQLQALRRG










38
P10645
1
EDSKEAEKSGEATDGARPQALPEPMQESKAEGNNQAP
 92
EA-92
Chromogranin/
A12, T13, A20, L21, S28, A36,
17





GEEEEEEEEATNTHPPASLPSQKYPGPQAEGDSEGLSQ


secretogranin
N49, T50, P52, A54, S55, S58,






GLVDREKGLSAEPGWQA



E67, L73, S74, V78, S85






39
P10645
1
EEEGSANRRPEDQELESLSAIEAELEKVAHQLQALRR
 37
ER-37
Chromogranin/
S17 or S19 (Ambiguous)
1








secretogranin







40
P10645
1
EEEEEEEEEAEAGEEAVPEEEGPTVVLNPHPSL
 33
ES-43
Chromogranin/
T24, L27, N28, P29, S32
5








secretogranin







41
P05060
1
FLGEGHHRVQENQMDKARRHPQGAWKELDRNYLNY
 74
GAWK peptide
Chromogranin/
H7, N12, Y35, T72, A73
5





GEEGAPGKWQQQGDLQDTKENREEARFQDKQYSSHH


secretogranin









T
A
E











42
P10645
1


G
YPEEKKEEEGSANRRPEDQELESLSAIEAELEKVAHQ

 44
GR-44
Chromogranin/
G1
1





LQALRR


secretogranin







43
P10645
1
GWRPSSREDSLEAGLPLQV
 19
GV-19
Chromogranin/
S6
1








secretogranin







45
P10645
1
SEALAVDGAGKPGAEEAQDPEGKGEQEHSQQKEEEEE
 48
Pancreastatin
Chromogranin/
P12, E15, P20, S29, M38, V41
6







M
AVVPQGLFRG



secretogranin







46
P05060
1
MPVDNRNHNEGMVTRCIIEVLSNALSKSSAPPITPECR
657
Secretogranin-1
Chromogranin/
T14, S26, S28, S29, P32, T59,
40





QVLKTSRKDVKDKETTENENTKFEVRLLRDPADASEA


secretogranin
S73, A75, S80, A84, E89, T96,






HESSSRGEAGAPGEEDIQGPTKADTEKWAEGGGHSRE



S120, S124, S129, T174, N176,






RADEPQWSLYPSDSQVSEEVKTRHSEKSQREDEEEEEG



S186, S273, S274, S278, P287,






ENYQKGERGEDSSEEKHLEEPGETQNAFLNERKQASAI



S22L, M298, S300, D306, T310,






KKEELVARSETHAAGHSQEKTHSREKSSQESGEETGSQ



Y328, P329, G330, K376, M377,






ENHPQESKGQPRSQEESEEGEEDATSEVDKRRTRPRHH



H426, Y454, T491, A492, T536,






HGRSRPDRSSQGGSLPSEEKGHPQEESEESNVSMASLG



S557, N568, S611






EKRDHHSTHYRASEEEPEYGEEIKGYPGVQAPEDLEW










ERYRGRGSEEYRAPRPQSEESWDEEDKRNYPSLELDK












M
AHGYGEESEEERGLEPGKGRHHRGRGGEPRAYFMS











DTREEKRFLGEGHHRVQENQMDKARRHPQGAWKELD










RNYLNYGEEGAPGKWQQQGDLQDTKENREEARFQDK










QYSSHHTAEKRKRLGELFNPYYDPLQWKSSHFERRDN










MNDNFLEGEEENELTLNEKNFFPEYNYDWWEKKPFSE










DVNWGYEKRNLARVPKLDLKRQYDRVAQLDQLLHY










RKKSAEFPDFYDSEEPVSTHQEAENEKDRADQTVLTE










DEKKELENLAAMDLELQKIAEKFSQRG










47
P13521
1
QRNQLLQKEPDLRLENVQKFPSPEMIRALEYIENLRQQ
587
Secretogranin-2
Chromogranin/
S22, S45, A106, Y160, T161,
16





AHKEESSPDYNPYQGVSVPLQQKENGDESHLPERDSLS


secretogranin
S164, T167, S229, T231, S348,






EEDWMRIILEALRQAENEPQSAPKENKPYALNSEKNFP



T420, N459, G499, S526, S536,






MDMSDDYETQQWPERKLKHMQFPPMYEENSRDNPFK



P543






RTNEIVEEQYTPQSLATLESVFQELGKLTGPNNQKRER










MDEEQKLYTDDEDDIYKANNIAYEDVVGGEDWNPVE










EKIESQTQEEVRDSKENIEKNEQINDEMKRSGQLGIQEE










DLRKESKDQLSDDVSKVIAYLKRLVNAAGSGRLQNGQ










NGERATRLFEKPLDSQSIYQLIEISRNLQIPPEDLIEMLK










TGEKPNGSVEPERELDLPVDLDDISEADLDHPDLFQNR










MLSKSGYPKTPGRAGTEALPDGLSVEDILNLLGMESA










ANQKTSYFPNPYNQEKVLPRLPYGAGRSRSNQLPKAA










WIPHVENRQMAYENLNDKDQELGEYLARMLVKYPEII










NSNQVKRVPGQGSSEDDLQEEEQIEQAIKEHLNQGSSQ










ETDKLAPVSKRFPVGPPKNDDTPNRQYWDEDLLMKV










LEYLNQEKAEKGREHIAKRAMENM










48
Q8WXD2
1
FPKPGGSQDKSLHNRELSAERPLNEQIAEAEEDKIKKT
449
Secretogranin-3
Chromogranin/
P41, T63, S103, T104, T125,
15





YPPENKPGQSNYSFVDNLNLLKAITEKEKIEKERQSIRS


secretogranin
A138, D192, P193, T197, S198,






SPLDNKLNVEDVDSTKNRKLIDDYDSTKSGLDHKFQD



T200, T212, I217, A222, S340






DPDGLHQLDGTPLTAEDIVHKIAARIYEENDRAVFDKI










VSKLLNLGLITESQAHTLEDEVAEVLQKLISKEANNYE










EDPNKPTSWTENQAGKIPEKVTPMAAIQDGLAKGEND










ETVSNTLTLTNGLERRTKTYSEDNFEELQYFPNFYALL










KSIDSEKEAKEKETLITIMKTLIDFVKMMVKYGTISPEE










GVSYLENLDEMIALQTKNKLEKNATDNISKLFPAPSEK










SHEETDSTKEEAAKMEKEYGSLKDSTKDDNSNPGGKT










DEPKGKTEAYLEAIRKNIEWLKKHDKKGNKEDYDLSK










MRDFINKQADAYVEKGILDKEEAEAIKRIYSSL










49
P13521
1
TNEIVEEQYTPQSLATLESVFQELGKLTGPNNQ
 33
Secretoneurin
Chromogranin/
Y9, T10, S13, T16,
4








secretogranin







51
P10645
1
LPVNSPMNKGDTEVMKCIVEVISDTLSKPSPMPVSQEC
 76
Vasostatin-1
Chromogranin/
S27, S30, S36
3





FETLRGDERILSILRHQNLLKELQDLALQGAKERAHQQ


secretogranin







52
P10645
1
LPVNSPMNKGDTEVMKCIVEVISDTLSKPSPMPVSQEC
113
Vasostatin-2
Chromogranin/
S27, S30, S36, S80, E104,
6





FETLRGDERILSILRHQNLLKELQDLALQGAKERAHQQ


secretogranin
S108






KKHSGFEDELSEVLENQSSQAELKEAVEEPSSKDVME










54
P10645
1
WSKMDQLAKELTAE
 14
WE-14
Chromogranin/
T12
1








secretogranin







55
P01042
1
QESQSEEIDCNDKDLFKAVDAALKKYNSQNQSNNQFV
626
Kininogen-1
Cystatin
T119, T133, T243, T255, E381,
15





LYRITEATKTVGSDTFYSFKYEIKEGDCPVQSGKTWQD



T382, T383, S385, T389, S390,






CEYKDAAKAATGECTATVGKRSSTKFSVATQTCQITP



T528, S586, T592, S593, T610






AEGPVVTAQYDCLGCVHPISTQSPDLEPILRHGIQYFN










NNTQHSSLFMLNEVKRAQRQVVAGLNFRITYSIVQTN










CSKENFLFLTPDCKSLWNGDTGECTDNAYIDIQLRIASF










SQNCDIYPGKDFVQPPTKICVGCPRDIPTNSPELEETLT










HTITKLNAENNATFYFKIDNVKKARVQVVAGKKYFID










FVARETTCSKESNEELTESCETKKLGQSLDCNAEVYVV










PWEKKIYPTVNCQPLGMISLMKRPPGFSPFRSSRIGEIK










EETTVSPPHTSMAPAQDEERDSGKEQGHTRRHDWGH










EKQRKHNLGHGHKHERDQGHGHQRGHGLGHGHEQQ










HGLGHGHKFKLDDDLEHQGGHVLDHGHKHKHGHGH










GKHKNKGKKNGKHNGWKTEHLASSSEDSTTPSAQTQ










EKTEGPTPIPSLAKPGVTVTFSDFQDSDLIATMMPPISP










APIQSDDDWIPDIQIDPNGLSFNPISDFPDTTSPKCPGRP










WKSVSEINPTTQMKESYYFDLTDGLS










56
P01042
1
QESQSEEIDCNDKDLFKAVDAALKKYNSQNQSNNQFV
362
Kininogen-1
Cystatin
T119, T133, T243, T255
4





LYRITEATKTVGSDTFYSFKYEIKEGDCPVQSGKTWQD

heavy chain








CEYKDAAKAATGECTATVGKRSSTKFSVATQTCQITP










AEGPVVTAQYDCLGCVHPISTQSPDLEPILRHGIQYFN










NNTQHSSLFMLNEVKRAQRQVVAGLNFRITYSIVQTN










CSKENFLFLTPDCKSLWNGDTGECTDNAYIDIQLRIASF










SQNCDIYPGKDFVQPPTKICVGCPRDIPTNSPELEETLT










HTITKLNAENNATFYFKIDNVKKARVQVVAGKKYFID










FVARETTCSKESNEELTESCETKKLGQSLDCNAEVYVV










PWEKKIYPTVNCQPLGMISLMK










57
P01042
1
SSRIGEIKEETTVSPPHTSMAPAQDEERDSGKEQGHTR
255
Kininogen-1 light
Cystatin
E10, T11, T12, S14, T18, S19,
11





RHDWGHEKQRKHNLGHGHKHERDQGHGHQRGHGLG

chain

T157, S215, T221, S222, T239






HGHEQQHGLGHGHKFKLDDDLEHQGGHVLDHGHKH










KHGHGHGKHKNKGKKNGKHNGWKTEHLASSSEDSTT










PSAQTQEKTEGPTPIPSLAKPGVTVTFSDFQDSDLIATM










MPPISPAPIQSDDDWIPDIQIDPNGLSFNPISDFPDTT












S
PKCPGRPWKSVSEINPTTQMKESYYFDLTDGLS











72
P22466
1
GWTLNSAGYLLGPHAVGNHRSFSDKNGLTS
 30
Galanin
Galanin
T3, S23
2





73
P22466
1
ELRPEDDMKPGSFDRSIPENNIMRTIIEFLSFLHLKEA
 59
Galanin message-
Galanin
A49
1





GALDRLLDLPAAASSEDIERS

associated peptide








74
Q9UBC7
1
APAHRGRGGWTLNSAGYLLGPVLHLPQMGDQDGKRE
 60
Galanin-like
Galanin
T11
1





TALEILDLWKAIDGLPYSHPPQPS

peptide








76
P06307
1
QPVPPADPAGSGLQRAEEAPRRQLRVSQRTDGESRAH
 95
Cholecystokinin
Gastrin/
A8, T30, N65
3





LGALLARYIQQARKAPSGRMSIVKNLQNLDPSHRISDR


cholecystokinin







DYMGWMDFGRRSAEEYEYPS










79
P06307
1
IVKNLQNLDPSHRISDRDYMGWMDF
 25
Cholecystokinin-
Gastrin/
N7
1







25 (By
cholecystokinin









similarity)








80
P06307
1
KAPSGRMSIVKNLQNLDPSHRISDRDYMGWMDF
 33
Cholecystokinin-
Gastrin/
N15
1







33
cholecystokinin







81
P06307
1
YIQQARKAPSGRMSIVKNLQNLDPSHRISDRDYMGWM
 39
Cholecystokinin-
Gastrin/
N21
1





DF

39
cholecystokinin







83
P06307
1
VSQRTDGESRAHLGALLARYIQQARKAPSGRMSIVKN
 58
Cholecystokinin-
Gastrin/
T5, N40
2





LQNLDPSHRISDRDYMGWMDF

58
cholecystokinin







84
P06307
1
VSQRTDGESRAHLGALLARYIQQARKAPSGRMSIVKN
 49
Cholecystokinin-
Gastrin/
T5, N40
2





LQNLDPSHRISD

58
cholecystokinin









desnonopeptide










(By similarity)








91
P01350
1
SWKPRSQQPDAPLGTGANRDLELPWLEQQGPASHHRR
 71
Gastrin-71
Gastrin/
L12 or G13 (Ambiguous)
1





QLGPQGPPHLVADPSKKQGPWLEEEEEAYGWMDF


cholecystokinin







92
P09681
1
YAEGTFISDYSIAMDKIHQQDFVNWLLAQKGKKNDW
 42
Gastric
Glucagon
S8
1





KHNITQ

inhibitory










polypeptide








93
P01275
1
RSLQDTEEKSRSFSASQADPLSDPDQMNEDKRHSQGTF
 69
Glicentin (By
Glucagon
S12, T39
2







T
SDYSKYLDSRRAQDFVQWLMNTKRNRNNIA


similarity)








94
P01275
1
RSLQDTEEKSRSFSASQADPLSDPDQMNED
 30
Glicentin-related
Glucagon
S12
1







polypeptide (By










similarity)








95
P01275
1
HSQGTFTSDYSKYLDSRRAQDFVQWLMNT
 29
Glucagon
Glucagon
T7
1





96
P01275
1
HDEFERHAEGTFTSDVSSYLEGQAAKEFIAWLVKGRG
 37
Glucagon-like
Glucagon
T11 or T13 or S14 (Ambiguous)
1







peptide 1








97
P01275
1
HAEGTFTSDVSSYLEGQAAKEFIAWLVKGR
 31
Glucagon-like
Glucagon
T5 or T7 or S8 (Ambiguous)
1







peptide 1(7-36)








98
P01275
1
HAEGTFTSDVSSYLEGQAAKEFIAWLVKGRG
 30
Glucagon-like
Glucagon
T5 or T7 or S8 (Ambiguous)
1







peptide 1(7-37)








99
P01275
1
HADGSFSDEMNTILDNLAARDFINWLIQTKITD
 33
Glucagon-like
Glucagon
S7
1







peptide 2 (By










similarity)








100
P01282
1
HADGVFTSDFSKLLGQLSAKKYLESLM
 27
Intestinal
Glucagon
T7, S8
2







peptide PHM-27








101
P01282
1
HADGVFTSDFSKLLGQLSAKKYLESLMGKRVSSNISED
 42
Intestinal
Glucagon
T7, S8
2





PVPV

peptide PHV-42








102
P01275
1
HSQGTFTSDYSKYLDSRRAQDFVQWLMNTKRNRNNI
3 7
Oxyntomodulin
Glucagon
T7
1





A

(By similarity)








106
P09683
1
HSDGTFTSELSRLREGARLQRLLQGLV
 27
Secretin
Glucagon
T7, S8, S11
3





107
P01286
1
YADAIFTNSYRKVLGQLSARKLLQDIMSRQQGESNQE
 44
Somatoliberin
Glucagon
T7
1





RGARARL










108
P01282
1
HSDAVFTDNYTRLRKQMAVKKYLNSILN
 28
Vasoactive
Glucagon
T7
1







intestinal peptide








109
P01148
1
DAENLIDSFQEIVKEVGQLAETQRFECTTHQPRSPLRDL
 56
GnRH-associated
GnRH
T28
1





KGALESLIEEETGQKKI

peptide 1








113
P01148
1
QHWSYGLRPGGKRDAENLIDSFQEIVKEVGQLAETQR
 69
Progonadoliberin-
GnRH
T41
1





FECTTHQPRSPLRDLKGALESLIEEETGQKKI

1








116
P01308
1
FVNQHLCGSHLVEALYLVCGERGFFYTPKT
 30
Insulin B chain
Insulin
T27 (Ambiguous)
1





117
P05019
1
GPETLCGAELVDALQFVCGDRGFYFNKPTGYGSSSRR
 70
Insulin-like
Insulin
T29
1





APQTGIVDECCFRSCDLRRLEMYCATPLKPAKSA

growth factor I








118
P01344
1
AYRPSETLCGGELVDTLQFVCGDRGFYFSRPASRVSRR
 67
Insulin-like
Insulin
S50, T62
2





SRGIVEECCFRSCDLALLETYCATPAKSE

growth factor II








119
P01344
1
YRPSETLCGGELVDTLQFVCGDRGFYFSRPASRVSRRS
 66
Insulin-like
Insulin
S49, T61
2





RGIVEECCFRSCDLALLETYCATPAKSE

growth factor II










Ala-25 Del








120
P01344
1
DVSTPPTVLPDNFPRYPVGKFFQYDTWKQSTQRL
 34
Preptin
Insulin
S3, T4, T7
3





130
Q15726
1
EPLEKVASVGNSRPTGQQLESLGLLAPGEQSLPCTERK
119
Metastasis-
KISS1
A69
1





PAATARLSRRGTSLSPPPESSGSPQQPGLSAPHSRQIPA

suppressor KiSS-1








PQGAVLVQREKDLPNYNWNSFGLRFGKREAAPGNHGR










SAGRG










131
Q15726
1
GTSLSPPPESSGSPQQPGLSAPHSRQIPAPQGAVLVQRE
 54
Metastin
KISS1
A21
1





KDLPNYNWNSFGLRF










135
P20382
1
GSVAFPAENGVQNTESTQE
 19
Neuropeptide-
Melanin-
T14, T16, T17
3







glycine-glutamic
concentrating









acid (Potential)
hormone







136
P20382
1
ILLSASKSIRNLDDDMVFNTFRLGKGFQKEDTAEKSVI
144
Pro-MCH
Melanin-
S36, S41, N72, T102, T104,
6





APSLEQYKNDESSFMNEEENKVSKNTGSKHNFLNHGL


concentrating
T105






PLNLAIKPYLALKGSVAFPAENGVQNTESTQEKREIGD


hormone







EENSAKFPIGRRDFDMLRCMLGRVYRPCWQV










143
Q15848
1
ETTTQGPGVLLPLPKGACTGWMAGIPGHPGHNGAPGR
226
Adiponectin
NA
T4
1





DGRDGTPGEKGEKGDPGLIGPKGDIGETGVPGAEGPR










GFPGIQGRKGEPGEGAYVYRSAFSVGLETYVTIPNMPI










RFTKIFYNQQNHYDGSTGKFHCNIPGLYYFAYHITVYM










KDVKVSLFKKDKAMLFTYDQYQENNVDQASGSVLLH










LEVGDQVWLQVYGEGERNGLYADNDNDSTFTGFLLY










HDTN










144
O00253
1
AQMGLAPMEGIRRPDQALLPELPGLGLRAPLKKTTAE
111
Agouti-related
NA
T35
1





QAEEDLLQEAQALAEVLDLQDREPRSSRRCVRLHESC

protein








LGQQVPCCDPCATCYCRFFNAFCYCRKLGTAMNPCSR










T










147
P01160
1
SLRRSSCFGGRMDRIGAQSGLGCNSFRY
 28
Atrial
Natriuretic peptide
S19, S25
2







natriuretic










factor








163
P16860
1
SPKMVQGSGCFGRKMDRISSSSGLGCKVLRRH
 32
Brain natriuretic
Natriuretic peptide
S22
1







peptide 32








164
P01160
1
NPMYNAVSNADLMDFKNLLDHLEEKMPLED
 30
Cardiodilatin-
Natriuretic peptide
Y4, A6, S8 (Ambiguous)
1







related peptide








167
P23582
1
DLRVDTKSRAAWARLLQEHPNARKYKGANKKGLSKG
 53
CNP-53
Natriuretic peptide
S47
1





CFGLKLDRIGSMSGLGC










168
P16860
1
HPLGSPGSASDLETSGLQEQRNHLQGKLSELQVEQTSL
108
Natriuretic
Natriuretic peptide
T48, E59
2





EPLQESPRPTGVWKSREVATEGIRGHRKMVLYTLRAP

peptides B








RSPKMVQGSGCFGRKMDRISSSSGLGCKVLRRH










170
O95156
1
KEVVHATEGLDWEDKDAPGTLVGNVVHSRIISPLRLF
242
Neurexophilin-2
Neurexophilin
T7
1





VKQSPVPKPGPMAYADSMENFWDWLANITEIQEPLAR










TKRRPIVKTGKFKKMFGWGDFHSNIKTVKLNLLITGKI










VDHGNGTFSVYFRHNSTGLGNVSVSLVPPSKVVEFEVS










PQSTLETKESKSFNCRIEYEKTDRAKKTALCNFDPSKIC










YQEQTQSHVSWLCSKPFKVICIYIAFYSVDYKLVQKVC










PDYNYHSETPYLSSG










184
P01303
1


SS
PETLISDLLMRESTENVPRTRLEDPAMW

 30
C-flanking
NPY
S1, S2, T16, T21, A28
3







peptide of NPY








185
P01303
1
YPSKPDNPGEDAPAEDMARYYSALRHYINLITRQRY
 36
Neuropeptide Y
NPY
S3, T32
2





186
P01298
1
APLEPVYPGDNATPEQMAQYAADLRRYINMLTRPRY
 36
Pancreatic
NPY
T32
1







hormone








188
P10082
1
YPIKPEAPREDASPEELNRYYASLRHYLNLVTRQRY
 36
Peptide YY
NPY
T32
1





189
P10082
1
IKPEAPREDASPEELNRYYASLRHYLNLVTRQRY
 34
Peptide YY(3-36)
NPY
T30
1





190
P80303
1
VPIDIDKTKVQNIHPVESAKIEPPDTGLYYDEYLKQVID
 82
Nesfatin-1
Nucleobindin
T8, I13, S18, T26, Y29, Y30,
8





VLETDKHFREKLQKADIEEIKSGRLSKELDLVSHHVRT



T43, S72






KLDEL










191
Q02818
1
VPLERGAPNKEETPATESPDTGLYYHRYLQEVIDVLET
435
Nucleobindin-1
Nucleobindin
P8, T13, T16, S18, T21, Y24,
22





DGHFREKLQAANAEDIKSGKLSRELDFVSHHVRTKLD



S67, T122, T136, S198, S294,






ELKRQEVSRLRMLLKAKMDAEQDPNVQVDHLNLLKQ



S295, T309, H313, S343, T346,






FEHLDPQNQHTFEARDLELLIQTATRDLAQYDAAHHE



S352, Q381, A388, T400, L1126,






EFKRYEMLKEHERRRYLESLGEEQRKEAERKLEEQQR



x433 (deleterious mutation)






RHREHPKVNVPGSQAQLKEVWEELDGLDPNRFNPKTF










FILHDINSDGVLDEQELEALFTKELEKVYDPKNEEDDM










REMEEERLRMREHVMKNVDTNQDRLVTLEEFLASTQ










RKEFGDTGEGWETVEMHPAYTEEELRRFEEELAAREA










ELNAKAQRLSQETEALGRSQGRLEAQKRELQQAVLH










MEQRKQQQQQQQGHKAPAAHPEGQLKFHPDTDDVPV










PAPAGDQKEVDTSEKKLLERLPEVEVPQHL










192
P80303
1
VPIDIDKTKVQNIHPVESAKIEPPDTGLYYDEYLKQVID
396
Nucleobindin-2
Nucleobindin
T8, I13, S18, T26, Y29, Y30,
16





VLETDKHFREKLQKADIEEIKSGRLSKELDLVSHHVRT



T43, S72, S128, T139, T148,






KLDELKRQEVGRLRMLIKAKLDSLQDIGMDHQALLKQ



A331, Y365, P382, S384, L390






FDHLNHLNPDKFESTDLDMLIKAATSDLEHYDKTRHE










EFKKYEMMKEHERREYLKTLNEEKRKEEESKFEEMKK










KHENHPKVNHPGSKDQLKEVWEETDGLDPNDFDPKTF










FKLHDVNSDGFLDEQELEALFTKELEKVYDPKNEEDD










MVEMEEERLRMREHVMSEVDTNKDRLVTLEEFLKAT










EKKEFLEPDSWETLDQQQFFTEEELKEYENIIALQENEL










KKKADELQKQKEELQRQHDQLEAQKLEYHQVIQQME










QKKLQQGIPPSGPAGELKFEPHI










204
Q13519
1
MPRVRSLFQEQEEPEPGMEEAGEMEQKQLQ
 30
Neuropeptide 1
Opioid
P14
1







(Probable)








215
P12272
1
AVSEHQLLHDKGKSIQDLRRRFFLHHLIAEIHTAEIRAT
141
Parathyroid
Parathyroid hormone
T39
1





SEVSPNSKPSPNTKNHPVRFGSDDEGRYLTQETNKVET


hormone-related







YKEQPLKTPGKKKKGKPGKRKEQEKKKRRTRSAWLD


protein







SGVTGSGLEGDHLSDTSTTSLELDSRRH










217
P12272
1
ATSEVSPNSKPSPNTKNHPVRFGSDDEGRYLTQETNKV
 57
PTHrP[38-94]
Parathyroid hormone
T2
1





ETYKEQPLKTPGKKKKGKP










219
P01189
1
YGGFMTSEKSQTPLVTLFKNAIIKNAYKKGE
 31
Beta-endorphin
POMC
S10, T12, T16
3





222
P01189
1
ELTGQRLREGDGPDGPADDGAGAQADLEHSLLVAAE
 89
Lipotropin beta
POMC
S68, T70, T74
3





KKDEGPYRMEHFRWGSPPKDKRYGGFMTSEKSQTPL










VTLFKNAIIKNAYKKGE










227
P01189
1
WCLESSQCQDLTTESNLLECIRACKPDLSAETPMFPGN
 76
NPP
POMC
T45
1





GDEQPLTENPRKYVMGHFRWDRFGRRNSSSSGSSGAG










Q










229
Q9UHG2
1
LETPAPQVPARRLLPP
 16
Big LEN (By
ProSAAS
T3, P4, A5
2







similarity)








230
Q9UHG2
1
AADHDVGSELPPEGVLGALLRVKRLETPAPQVPARRL
 40
Big PEN-LEN
ProSAAS
T27, P28, A29
2





LPP

(By similarity)








231
Q9UHG2
1
ARPVKEPRGLSAASPPLAETGAPRRF
 26
Big SAAS (By
ProSAAS
G9, S14, T20, G21, A22
5







similarity)








233
Q9UHG2
1
LETPAPQVPA
 10
Little LEN (By
ProSAAS
T3, P4, A5
2







similarity)








234
Q9UHG2
1


G
LSAASPPLAETGAPRRF

 18
Little SAAS (By
ProSAAS
G1, S6, T12, G13, A14
5







similarity)








236
Q9UHG2
1
ARPVKEPRGLSAASPPLAETGAPRRFRRSVPRGEAAGA
227
ProSAAS
ProSAAS
13






VQELARALAHLLEAERQERARAEAQEAEDQQARVLA










QLLRVWGAPRNSDPALGLDDDPDAPAAQLARALLRAR



G9, S14, T20, G21, A22, A82,






LDPAALAAQLVPAPVPAAALRPRPPVYDDGPAGPDAE



N85, S86, A143, S173, A174,






EAGDETPDVDPELLRYLLGRILAGSADSEGVAAPRRLR



T214, P215, A216






RAADHDVGSELPPEGVLGALLRVKRLETPAPQVPARR










LLPP










252
P01019
1
DRVYIHPFHLVIHNESTCEQLAKANAGKPKDPTFIPAPI
452
Angiotensinogen
Serpin
T407 or S409 or T410 or T422
1





QAKTSPVDEKALQDQLVLVAAKLDTEDKLRAAMVG



(Ambiguous)






MLANFLGFRIYGMHSELWGVVHGATVLSPTAVFGTLA










SLYLGALDHTADRLQAILGVPWKDKNCTSRLDAHKVL










SALQAVQGLLVAQGRADSQAQLLLSTVVGVFTAPGLH










LKQPFVQGLALYTPVVLPRSLDFTELDVAAEKIDRFMQ










AVTGWKTGCSLMGASVDSTLAFNTYVHFQGKMKGFS










LLAEPQEFWVDNSTSVSVPMLSGMGTFQHWSDIQDNF










SVTQVPFTESACLLLIQPHYASDLDKVEGLTFQQNSLN










WMKKLSPRTIHLTMPQLVLQGSYDLQDLLAQAELPAI










LHTELNLQKLSNDRIRVGEVLNSIFFELEADEREPTEST










QQLNKPEVLEVTLNRPFLFAVYDQSATALHFLGRVAN










PLSTA










260
P61278
1


S
ANSNPAMAPRERKAGCKNFFWKTFTSC

 28
Somatostatin-28
Somastostatin
S1 or S4 (Ambiguous)
1





262
P20366
1


A
LNSVAYERSAMQNYE

 15
C-terminal-
Tachykinin
A1, S4
2







flanking peptide








267
P20396
1
QPEAAQQEAVTAAEHPGLDDFLRQVERLLFLRENIQRL
218
Pro-thyrotropin-
TRH
I50
1





QGDQGEHSASQIFQSDWLSKRQHPGKREEEEEEGVEE

releasing hormone








EEEEEGGAVGPHKRQHPGRREDEASWSVDVTQHKRQ










HPGRRSPWLAYAVPKRQHPGRRLADPKAQRSWEEEEE










EEEREEDLMPEKRQHPGKRALGGPCGPQGAYGQAGLL










LGLLDDLSRSQGAEEKRQHPGRRAAWVREPLEE










272
P01185
1
ASDRSNATQLDGPAGALLLRLVQLAGAPEPFEPAQPDA
 39
Copeptin
Vasopressin/oxytocin
A27
1





Y










279
O15240
1
APPGRPEAQPPPLSSEHKEPVAGDAVPGPKDGSAPEVR
591
Neurosecretory
VGF
P1, S12, P202, S205,
5





GARNSEPQDEGELFQGVDPRALAAVLLQALDRPASPP

protein VGF
T477







APSGSQQGPEEEAAEALLTETVRSQTHSLPAPESPEPAA










PPRPQTPENGPEASDPSEELEALASLLQELRDFSPSSAK










RQQETAAAETETRTHTLTRVNLESPGPERVWRASWGE










FQARVPERAPLPPPAPSQFQARMPDSGPLPETHKFGEG










VSSPKTHLGEALAPLSKAYQGVAAPFPKARRPESALLG










GSEAGERLLQQGLAQVEAGRRQAEATRQAAAQEERL










ADLASDLLLQYLLQGGARQRGLGGRGLQEAAEERESA










REEEEAEQERRGGEERVGEEDEEAAEAEAEAEEAERA










RQNALLFAEEEDGEAGAEDKRSQEETPGHRRKEAEGT










EEGGEEEDDEEMDPQTIDSLIELSTKLHLPADDVVSIIEE










VEEKRKRKKNAPPEPVPPPRAAPAPTHVRSPQPPPPAP










APARDELPDWNEVLPPWDREEDEVYPPGPYHPFPNYIR










PRTLQPPSALRRRHYHHALPPSRHYPGREAQARRAQEE










AEAEERRLQEQEELENYIEHVLLRRP
























TABLE 6E












*Site position (Bold:










identified or conserved



SEQ

Pep-

Pep-

Peptide
in human, Italic;
No.


ID
Entry_
tide

tide
Peptide
Hormone
identified in non-human 
of


NO:
Human
Start
Peptide_Sequence
end
Name
Family
and not conserved)
sites























1
P05408
1


S
VPHFSDEDKDPE

13
C-terminal
7B2
S1
1







peptide (By










similarity)








2
P05408
1
YSPRTPDRVSEADIQRLLHGVMEQLGIARPRVEYPA
186
Neuroendocrine
7B2
S2, T5, S10, T108, S174
5





HQAMNLVGPQSIEGGAHEGLQHLGPFGNIPNIVAEL

protein 7B2








TGDNIPKDFSEDQGYPDPPNPCPVGKTADDGCLENT










PDTAEFSREFQLHQHLFDPEHDYPGLGKWNKKLLY










EKMKGGERRKRRSVNPYLQGQRLDNVVAKKSVPH










FSDEDKDPE










3
P05408
1
YSPRTPDRVSEADIQRLLHGVMEQLGIARPRVEYPA
150
N-terminal
7B2
S2, T5, S10, T108
4





HQAMNLVGPQSIEGGAHEGLQHLGPFGNIPNIVAEL

peptide (By








TGDNIPKDFSEDQGYPDPPNPCPVGKTADDGCLENT

similarity)








PDTAEFSREFQLHQHLFDPEHDYPGLGKWNKKLLY










EKMKGGE










4
Q8N6N7
1
MALQADFDRAAEDVRKLKARPDDGELKELYGLYK
88
Acyl-CoA-
ACBP







QAIVGDINIACPGMLDLKGKAKWEAWNLKKGLSTE

binding domain-








DATSAYISKAKELIEKYGI

containing










protein 7








5
P07108
1
SQAEFEKAAEEVRHLKTKPSDEEMLFIYGHYKQAT
86
Acyl-CoA-
ACBP
T35 or T41 (ambiguous)
1





VGDINTERPGMLDFTGKAKWDAWNELKGTSKEDA

binding protein








MKAYINKVEELKKKYGI










6
P35318
1
YRQSMNNFQGLRSFGCRFGTCTVQKLAHQIYQFTD
52
Adrenomedullin
Adrenomedullin
T22, Y31, T34
3





KDKDNVAPRSKISPQGY










7
Q7Z4H4
1
TQAQLLRVGCVLGTCQVQNLSHRLWQLMGPAGRQ
47
Adrenomedullin-
Adrenomedullin







DSAPVDPSSPHSY

2 (By similarity)








8
Q7Z4H4
1
VGCVLGTCQVQNLSHRLWQLMGPAGRQDSAPVDP
40
Intermedin-short
Adrenomedullin







SSPHSY

(Potential)








9
P35318
1
ARLDVASEFRKKWNKWALSR
20
Proadreno-
Adrenomedullin









medullin N-20










terminal peptide








10
Q9ULZ1
1
QRPRLSHKGPMPF
13
Apelin-13 (By
Apelin









similarity)








11
Q9ULZ1
1
NGPGPWQGGRRKFRRQRPRLSHKGPMPF
28
Apelin-28 (By
Apelin









similarity)








12
Q9ULZ1
1
GSRNGPGPWQGGRRKFRRQRPRLSHKGPMPF
31
Apelin-31 (By
Apelin









similarity)








13
Q9ULZ1
1
LVQPRGSRNGPGPWQGGRRKFRRQRPRLSHKGPMP
36
Apelin-36 (By
Apelin







F

similarity)








14
P07492
1
VPLPAGGGTVLTKMYPRGNHWAVGHLM
27
Gastrin-releasing
Bombesin/
P4, T9
2







peptide
neuromedin-










B/ranatensin







15
P08949
1
GNLWATGHFM
10
Neuromedin-B
Bombesin/
T6
1








neuromedin-










B/ranatensin







16
P08949
1
APLSWDLPEPRSRASKIRVHSRGNLWATGHFM
32
Neuromedin-B-
Bombesin/
T28
1







32
neuromedin-










B/ranatensin







17
P07492
1
GNHWAVGHLM
10
Neuromedin-C
Bombesin/










neuromedin-










B/ranatensin







18
P01042
1
RPPGFSPFR
9
Bradykinin
Bradykinin







19
P01042
1
KRPPGFSPFR
10
Lysyl-bradykinin
Bradykinin







20
P01042
1
ISLMKRPPGFSPFR
14
T-kinin
Bradykinin







21
P01258
1
CGNLSTCMLGTYTQDFNKFHTFPQTAIGVGAP
32
Calcitonin
Calcitonin
T6, T11, T13, T21, T25
5





22
P06881
1
ACDTATCVTHRLAGLLSRSGGVVKNNFVPTNVGSK
37
Calcitonin gene-
Calcitonin
T9, S17
2





AF

related peptide 1








23
P10092
1
ACNTATCVTHRLAGLLSRSGGMVKSNFVPTNVGSK
37
Calcitonin gene-
Calcitonin
T9, S17, S25, T30, S34
5





AF

related peptide 2








24
P10997
1
KCNTATCATQRLANFLVHSSNNFGAILSSTNVGSNT
37
Islet amyloid
Calcitonin
T5, T9, T30
3





Y

polypeptide








25
P01258
1
DMSSDLERDHRPHVSMPQNAN
21
Katacalcin
Calcitonin
S15
1





26
Q16568
1
QEDAELQPRALDIYSAVDDASHEKELIEALQEVLKK
39
CART(1-39)
CART







LKS










27
Q16568
1
VPIYEKKYGQVPMCDAGEQCAVRKGARIGKLCDCP
48
CART(42-89)
CART







RGTSCNSFLLKCL










28
Q16568
1
QEDAELQPRALDIYSAVDDASHEKELIEALQEVLKK
89
Cocaine- and
CART







LKSKRVPIYEKKYGQVPMCDAGEQCAVRKGARIGK

amphetamine-








LCDCPRGTSCNSFLLKCL

regulated








29
P23435
1
GSAKVAFSAIRSTNH
15
[des-Ser1]-
Cerebellins









cerebellin








30
P23435
1
SGSAKVAFSAIRSTNH
16
Cerebellin
Cerebellins







31
P23435
1
QNETEPIVLEGKCLVVCDSNPTSDPTGTALGISVRSG
172
Cerebellin-1
Cerebellins







SAKVAFSAIRSTNHEPSEMSNRTMIIYFDQVLVNIGN










NFDSERSTFIAPRKGIYSFNFHVVKVYNRQTIQVSLM










LNGWPVISAFAGDQDVTREAASNGVLIQMEKGDRA










YLKLERGNLMGGWKYSTFSGFLVFPL










32
Q8IUK8
1
QNDTEPIVLEGKCLVVCDSSPSADGAVTSSLGISVRS
173
Cerebellin-2
Cerebellins







GSAKVAFSATRSTNHEPSEMSNRTMTIYFDQVLVNI










GNHFDLASSIFVAPRKGIYSFSFHVVKVYNRQTIQVS










LMQNGYPVISAFAGDQDVTREAASNGVLLLMERED










KVHLKLERGNLMGGWKYSTFSGFLVFPL










33
Q6UW01
1
QEGSEPVLLEGECLVVCEPGRAAAGGPGGAALGEA
173
Cerebellin-3
Cerebellins







PPGRVAFAAVRSHHHEPAGETGNGTSGAIYFDQVL










VNEGGGFDRASGSFVAPVRGVYSFRFHVVKVYNRQ










TVQVSLMLNTWPVISAFANDPDVTREAATSSVLLPL










DPGDRVSLRLRRGNLLGGWKYSSFSGFLIFPL










34
Q9NTU7
1
QNDTEPIVLEGKCLVVCDSNPATDSKGSSSSPLGISV
174
Cerebellin-4
Cerebellins







RAANSKVAFSAVRSTNHEPSEMSNKTRIIYFDQILVN










VGNFFTLESVFVAPRKGIYSFSFHVIKVYQSQTIQVN










LMLNGKPVISAFAGDKDVTREAATNGVLLYLDKED










KVYLKLEKGNLVGGWQYSTFSGFLVFPL










35
P10645
1
AYGFRGPGPQL
11
AL-11
Chromogranin/










secretogranin







36
P05060
1
SAEFPDFYDSEEPVSTHQEAENEKDRADQTVLTEDE
57
CCB peptide
Chromogranin/
S15
1





KKELENLAAMDLELQKIAEKF


secretogranin







37
P10645
1
LPVNSPMNKGDTEVMKCIVEVISDTLSKPSPMPVSQ
439
Chromogranin-A
Chromogranin/
S27, S30, S36, S80, E104,
39





ECFETLRGDERILSILRHQNLLKELQDLALQGAKER


secretogranin
S108, A127, T128, A135, L136,






AHQQKKHSGFEDELSEVLENQSSQAELKEAVEEPSS



S143, A151, N164, T165, P167,






KDVMEKREDSKEAEKSGEATDGARPQALPEPMQES



A169, S170, S173, E182, L188,






KAEGNNQAPGEEEEEEEEATNTHPPASLPSQKYPGP



S189, V193, S200, T233, L236,






QAEGDSEGLSQGLVDREKGLSAEPGWQAKREEEEE



N237, P238, S241, Y244, P265,






EEEEAEAGEEAVPEEEGPTVVLNPHPSLGYKEIRKG



E268, P273, S282, M291, V294,






ESRSEALAVDGAGKPGAEEAQDPEGKGEQEHSQQK



T335, A360, S380, G395






EEEEEMAVVPQGLFRGGKSGELEQEEERLSKEWEDS










KRWSKMDQLAKELTAEKRLEGQEEEEDNRDSSMK










LSFRARAYGFRGPGPQLRRGWRPSSREDSLEAGLPL










QVRGYPEEKKEEEGSANRRPEDQELESLSAIEAELE










KVAHQLQALRRG










38
P10645
1
EDSKEAEKSGEATDGARPQALPEPMQESKAEGNNQ
92
EA-92
Chromogranin/
A12, T13, A20, L21, S28, A36,
17







A
PGEEEEEEEEATNTHPPASLPSQKYPGPQAEGDSEG



secretogranin
N49, T50, P52, A54, S55, S58,








L
S
QGLVDREKGLSAEPGWQA




E67, L73, S74, V78, S85






39
P10645
1
EEEGSANRRPEDQELESLSAIEAELEKVAHQLQALR
37
ER-37
Chromogranin/
S17 or S19 (Ambiguous)
1





R


secretogranin







40
P10645
1
EEEEEEEEEAEAGEEAVPEEEGPTVVLNPHPSL
33
ES-43
Chromogranin/
T24, L27, N28, P29, S32
5








secretogranin







41
P05060
1
FLGEGHHRVQENQMDKARRHPQGAWKELDRNYLN
74
GAWK peptide
Chromogranin/
H7, N12, Y35, T72, A73
5







Y
GEEGAPGKWQQQGDLQDTKENREEARFQDKQYS



secretogranin







SHHTAE










42
P10645
1


G
YPEEKKEEEGSANRRPEDQELESLSAIEAELEKVA

44
GR-44
Chromogranin/
G1
1





HQLQALRR


secretogranin







43
P10645
1
GWRPSSREDSLEAGLPLQV
19
GV-19
Chromogranin/
S6
1








secretogranin







44
P10645
1
LEGQEEEEDNRDSSMKLSF
19
LF-19
Chromogranin/










secretogranin







45
P10645
1
SEALAVDGAGKPGAEEAQDPEGKGEQEHSQQKEEE
48
Pancreastatin
Chromogranin/
P12, E15, P20, S29, M38, V41
6





EEMAVVPQGLFRG


secretogranin







46
P05060
1
MPVDNRNHNEGMVTRCIIEVLSNALSKSSAPPITPEC
657
Secretogranin-1
Chromogranin/
T14, S26, S28, S29, P32, T59,
40





RQVLKTSRKDVKDKETFENENTKFEVRLLRDPADA


secretogranin
S73, A75, S80, A84, E89, T96,








S
EAHESSSRGEAGAPGEEDIQGPTKADTEKWAEGGG




S120, S124, S129, T174, N176,






HSRERADEPQWSLYPSDSQVSEEVKTRHSEKSQRED



S186, S273, S274, S278, P287,






EEEEEGENYQKGERGEDSSEEKHLEEPGETQNAFLN



S297, M298, S300, D306, T310,






ERKQASAIKKEELVARSETHAAGHSQEKTHSREKSS



Y328, P329, G330, K376,






QESGEETGSQENHPQESKGQPRSQEESEEGEEDATS



M377, H426, Y454, T491,






EVDKRRTRPRHHHGRSRPDRSSQGGSLPSEEKGHPQ



A492, T536, S557, N568, S611






EESEESNVSMASLGEKRDHHSTHYRASEEEPEYGEE










IKGYPGVQAPEDLEWERYRGRGSEEYRAPRPQSEES










WDEEDKRNYPSLELDKMAHGYGEESEEERGLEPGK










GRHHRGRGGEPRAYFMSDTREEKRFLGEGHHRVQE










NQMDKARRHPQGAWKELDRNYLNYGEEGAPGKW










QQQGDLQDTKENREEARFQDKQYSSHHTAEKRKRL










GELFNPYYDPLQWKSSHFERRDNMNDNFLEGEEEN










ELTLNEKNFFPEYNYDWWEKKPFSEDVNWGYEKR












N
LARVPKLDLKRQYDRVAQLDQLLHYRKKSAEFPD











FYDSEEPVSTHQEAENEKDRADQTVLTEDEKKELE










NLAAMDLELQKIAEKFSQRG










47
P13521
1
QRNQLLQKEPDLRLENVQKFPSPEMIRALEYIENLR
587
Secretogranin-2
Chromogranin/
S22, S45, A106, Y160, T161,
16





QQAHKEESSPDYNPYQGVSVPLQQKENGDESHLPE


secretogranin
S164, T167, S229, T231, S348,






RDSLSEEDWMRIILEALRQAENEPQSAPKENKPYAL



T420, N459, G499, S526, S536,






NSEKNFPMDMSDDYETQQWPERKLKHMQFPPMYE



P543






ENSRDNPFKRTNEIVEEQYTPQSLATLESVFQELGK










LTGPNNQKRERMDEEQKLYTDDEDDIYKANNIAYE










DVVGGEDWNPVEEKIESQTQEEVRDSKENIEKNEQI










NDEMKRSGQLGIQEEDLRKESKDQLSDDVSKVIAY










LKRLVNAAGSGRLQNGQNGERATRLFEKPLDSQSIY










QLIEISRNLQIPPEDLIEMLKTGEKPNGSVEPERELDL










PVDLDDISEADLDHPDLFQNRMLSKSGYPKTPGRAG










TEALPDGLSVEDILNLLGMESAANQKTSYFPNPYNQ










EKVLPRLPYGAGRSRSNQLPKAAWIPHVENRQMAY










ENLNDKDQELGEYLARMLVKYPEIINSNQVKRVPG










QGSSEDDLQEEEQIEQAIKEHLNQGSSQETDKLAPV












S
KRFPVGPPKNDDTPNRQYWDEDLLMKVLEYLNQ











EKAEKGREHIAKRAMENM










48
Q8WXD2
1
FPKPGGSQDKSLHNRELSAERPLNEQIAEAEEDKIKK
449
Secretogranin-3
Chromogranin/
P41, T63, S103, T104, T125,
15





TYPPENKPGQSNYSFVDNLNLLKAITEKEKIEKERQ


secretogranin
A138, D192, P193, T197, S198,






SIRSSPLDNKLNVEDVDSTKNRKLIDDYDSTKSGLD



T200, T212, T217, A222, S340






HKFQDDPDGLHQLDGTPLTAEDIVHKIAARIYEEND










RAVFDKIVSKLLNLGLITESQAHTLEDEVAEVLQKLI










SKEANNYEEDPNKPTSWTENQAGKIPEKVTPMAAI










QDGLAKGENDETVSNTLTLTNGLERRTKTYSEDNFE










ELQYFPNFYALLKSIDSEKEAKEKETLITIMKTLIDFV










KMMVKYGTISPEEGVSYLENLDEMIALQTKNKLEK










NATDNISKLFPAPSEKSHEETDSTKEEAAKMEKEYG










SLKDSTKDDNSNPGGKTDEPKGKTEAYLEAIRKNIE










WLKKHDKKGNKEDYDLSKMRDFINKQADAYVEK










GILDKEEAEAIKRIYSSL










49
P13521
1
TNEIVEEQYTPQSLATLESVFQELGKLTGPNNQ
33
Secretoneurin
Chromogranin/
Y9, T10, S13, T16,
4








secretogranin







50
P10645
1
SGELEQEEERLSKEWEDS
18
SS-18
Chromogranin/










secretogranin







51
P10645
1
LPVNSPMNKGDTEVMKCIVEVISDTLSKPSPMPVSQ
76
Vasostatin-1
Chromogranin/
S27, S30, S36
3





ECFETLRGDERILSILRHQNLLKELQDLALQGAKER


secretogranin







AHQQ










52
P10645
1
LPVNSPMNKGDTEVMKCIVEVISDTLSKPSPMPVSQ
113
Vasostatin-2
Chromogranin/
S27, S30, S36, S80, E104,
6





ECFETLRGDERILSILRHQNLLKELQDLALQGAKER


secretogranin
S108






AHQQKKHSGFEDELSEVLENQSSQAELKEAVEEPSS










KDVME










53
P10645
1
WSKMDQLA
8
WA-8
Chromogranin/










secretogranin







54
P10645
1
WSKMDQLAKELTAE
14
WE-14
Chromogranin/
T12
1








secretogranin







55
P01042
1
QESQSEEIDCNDKDLFKAVDAALKKYNSQNQSNNQ
626
Kininogen-1
Cystatin
T119, T133, T243, T255, E381,
15





FVLYRIFLATKTVGSDTFYSFKYEIKEGDCPVQSGKT



T382, T383, S385, T389, S390,






WQDCEYKDAAKAATGECTATVGKRSSTKFSVATQ



T528, S586, T592, S593, T610






TCQITPAEGPVVTAQYDCLGCVHPISTQSPDLEPILR










HGIQYENNNTQHSSLEMLNEVKRAQRQVVAGLNFR










ITYSIVQTNCSKENFLFLTPDCKSLWNGDTGECTDN










AYIDIQLRIASFSQNCDIYPGKDEVQPPTKICVGCPR










DIPTNSPELEETLTHTITKLNAENNATFYFKIDNVKK










ARVQVVAGKKYFIDFVARETTCSKESNEELTESCET










KKLGQSLDCNAEVYVVPWEKKIYPTVNCQPLGMIS










LMKRPPGESPERSSRIGEIKEETTVSPPHTSMAPAQD










EERDSGKEQGHTRRHDWGHEKQRKHNLGHGHKHE










RDQGHGHQRGHGLGHGHEQQHGLGHGHKFKLDD










DLEHQGGHVLDHGHKHKHGHGHGKHKNKGKKNG










KHNGWKFEHLASSSEDSTTPSAQTQEKFEGPTPIPSL










AKPGVTVTFSDFQDSDLIATMMPPISPAPIQSDDDWI










PDIQIDPNGLSENPISDEPDTTSPKCPGRPWKSVSEIN










PTTQMKESYYFDLTDGLS










56
P01042
1
QESQSEEIDCNDKDLFKAVDAALKKYNSQNQSNNQ
362
Kininogen-1
Cystatin
T119, T133, T243, T255
4





FVLYRIFLATKTVGSDTFYSFKYEIKEGDCPVQSGKT

heavy chain








WQDCEYKDAAKAATGECTATVGKRSSTKFSVATQ










TCQITPAEGPVVTAQYDCLGCVHPISTQSPDLEPILR










HGIQYENNNTQHSSLEMLNEVKRAQRQVVAGLNFR










ITYSIVQTNCSKENFLFLTPDCKSLWNGDTGECTDN










AYIDIQLRIASFSQNCDIYPGKDEVQPPTKICVGCPR










DIPTNSPELEETLTHTITKLNAENNATFYFKIDNVKK










ARVQVVAGKKYFIDFVARETTCSKESNEELTESCET










KKLGQSLDCNAEVYVVPWEKKIYPTVNCQPLGMIS










LMK










57
P01042
1
SSRIGEIKEETTVSPPHTSMAPAQDEERDSGKEQGH
255
Kininogen-1
Cystatin
E10, T11, T12, S14, T18, S19,
11





TRRHDWGHEKQRKHNLGHGHKHERDQGHGHQRG

light chain

T157, S215, T221, S222, T239






HGLGHGHEQQHGLGHGHKFKLDDDLEHQGGHVLD










HGHKHKHGHGHGKHKNKGKKNGKHNGWKFEHL










ASSSEDSTTPSAQTQEKFEGPTPIPSLAKPGVTVITS










DFQDSDLIATMMPPISPAPIQSDDDWIPDIQIDPNGLS










FNPISDEPDTTSPKCPGRPWKSVSEINPTTQMKESYY










FDLTDGLS










58
P01042
1
WGHE
4
Low molecular
Cystatin









weight growth-










promoting factor








59
P05305
1
CSCSSLMDKECVYFCHLDIIWVNTPEHVVPYGLGSP
38
Big endothelin-1
Endothelin/







RS


sarafotoxin







60
P05305
1
CSCSSLMDKECVYFCHLDIIW
21
Endothelin-1
Endothelin/










sarafotoxin







61
P20800
1
CSCSSWLDKECVYFCHLDIIVV
21
Endothelin-2
Endothelin/










sarafotoxin







62
P14138
1
CTCFTYKDKECVYYCHLDIIW
21
Endothelin-3
Endothelin/










sarafotoxin







63
O15130
1
AGEGLNSQFVVSLAAPQRF
18
Neuropeptide AF
FMRFamide related










peptide







64
O15130
1
FLFQPQRF
8
Neuropeptide FF
FMRFamide related










peptide







65
Q9HCQ7
1
SLNFEELKDWGPKNVIKMSTPAVNKMPHSFANLPL
37
Neuropeptide
FMRFamide related







RF

NPSF (Potential)
peptide







66
Q9HCQ7
1
VPNLPQRF
8
Neuropeptide
FMRFamide related









NPVF
peptide







67
Q9HCQ7
1
MPHSFANLPLRF
12
Neuropeptide
FMRFamide related









RFRP-1
peptide







68
Q9HCQ7
1
SAGATANLPLRS
12
Neuropeptide
FMRFamide related









RFRP-2
peptide









(Potential)








69
O15130
1
SQAFLFQPQRF
11
Neuropeptide SF
FMRFamide related










peptide







70
P81277
1
TPDINPAWYASRGIRPVGRF
20
Prolactin-
FMRFamide related









releasing peptide
peptide









PrRP20








71
P81277
1
SRTHRHSMEIRTPDINPAWYASRGIRPVGRF
31
Prolactin-
FMRFamide related









releasing peptide
peptide









PrRP31








72
P22466
1
GWTLNSAGYLLGPHAVGNHRSFSDKNGLTS
30
Galanin
Galanin
T3, S23
2





73
P22466
1
ELRPEDDMKPGSFDRSIPENNIMRTIIEFLSFLHLKEA
59
Galanin
Galanin
A49
1





GALDRLLDLPAAASSEDIERS

message-










associated










peptide








74
Q9UBC7
1
APAHRGRGGWTLNSAGYLLGPVLHLPQMGDQDGK
60
Galanin-like
Galanin







RETALEILDLWKAIDGLPYSHPPQPS

peptide








75
P01350
1
QLGPQGPPHLVADPSKKQGPWLEEEEEAYGWMDF
34
Big gastrin
Gastrin/










cholecystokinin







76
P06307
1
QPVPPADPAGSGLQRAEEAPRRQLRVSQRTDGESRA
95
Cholecystokinin
Gastrin/
A8, T30, N65
3





HLGALLARYIQQARKAPSGRMSIVKNLQNLDPSHRI


cholecystokinin







SDRDYMGWMDFGRRSAEEYEYPS










77
P06307
1
ISDRDYMGWMDF
12
Cholecystokinin-
Gastrin/









12
cholecystokinin







78
P06307
1
LDPSHRISDRDYMGWMDF
18
Cholecystokinin-
Gastrin/









18 (By
cholecystokinin









similarity)








79
P06307
1
IVKNLQNLDPSHRISDRDYMGWMDF
25
Cholecystokinin-
Gastrin/
N7
1







25 (By
cholecystokinin









similarity)








80
P06307
1
KAPSGRMSIVKNLQNLDPSHRISDRDYMGWMDF
33
Cholecystokinin-
Gastrin/
N15
1







33
cholecystokinin







81
P06307
1
YIQQARKAPSGRMSIVKNLQNLDPSHRISDRDYMG
39
Cholecystokinin-
Gastrin/
N21
1





WMDF

39
cholecystokinin







82
P06307
1
GWMDF
5
Cholecystokinin-
Gastrin/









5 (By similarity)
cholecystokinin







83
P06307
1
VSQRTDGESRAHLGALLARYIQQARKAPSGRMSIV
58
Cholecystokinin-
Gastrin/
T5, N40
2





KNLQNLDPSHRISDRDYMGWMDF

58
cholecystokinin







84
P06307
1
VSQRTDGESRAHLGALLARYIQQARKAPSGRMSIV
49
Cholecystokinin-
Gastrin/
T5, N40
2





KNLQNLDPSHRISD

58
cholecystokinin









desnonopeptide










(By similarity)








85
P06307
1
YMGWMDF
7
Cholecystokinin-
Gastrin/









7 (By similarity)
cholecystokinin







86
P06307
1
DYMGWMDF
8
Cholecystokinin-
Gastrin/









8
cholecystokinin







87
P01350
1
QGPWLEEEEEAYGWMDF
17
Gastrin
Gastrin/










cholecystokinin







88
P01350
1
WLEEEEEAYGWMDF
14
Gastrin-14
Gastrin/










cholecystokinin







89
P01350
1
DLELPWLEQQGPASHHRRQLGPQGPPHLVADPSKK
52
Gastrin-52
Gastrin/







QGPWLEEEEEAYGWMDF


cholecystokinin







90
P01350
1
YGWMDF
6
Gastrin-6
Gastrin/










cholecystokinin







91
P01350
1
SWKPRSQQPDAPLGTGANRDLELPWLEQQGPASHH
71
Gastrin-71
Gastrin/
L12 or G13 (Ambiguous)
1





RRQLGPQGPPHLVADPSKKQGPWLEEEEEAYGWM


cholecystokinin







DF










92
P09681
1
YAEGTFISDYSIAMDKIHQQDFVNWLLAQKGKKND
42
Gastric inhibitory
Glucagon







WKHNITQ

polypeptide








93
P01275
1
RSLQDTEEKSRSFSASQADPLSDPDQMNEDKRHSQG
69
Glicentin (By
Glucagon
S12, T39
2





TFTSDYSKYLDSRRAQDFVQWLMNTKRNRNNIA

similarity)








94
P01275
1
RSLQDTEEKSRSFSASQADPLSDPDQMNED
30
Glicentin-related
Glucagon
S12
1







polypeptide (By










similarity)








95
P01275
1
HSQGTFTSDYSKYLDSRRAQDFVQWLMNT
29
Glucagon
Glucagon
T7
1





96
P01275
1
HDEFERHAEGTFTSDVSSYLEGQAAKEFIAWLVKG
37
Glucagon-like
Glucagon
T11 or T13 or S14
1





RG

peptide 1

(Ambiguous)






97
P01275
1
HAEGTFTSDVSSYLEGQAAKEFIAWLVKGR
31
Glucagon-like
Glucagon
T5 or T7 or S8 (Ambiguous)
1







peptide 1(7-36)








98
P01275
1
HAEGTFTSDVSSYLEGQAAKEFIAWLVKGRG
30
Glucagon-like
Glucagon
T5 or T7 or S8 (Ambiguous)
1







peptide 1(7-37)








99
P01275
1
HADGSFSDEMNTILDNLAARDFINWLIQTKITD
33
Glucagon-like
Glucagon









peptide 2 (By










similarity)








100
P01282
1
HADGVFTSDFSKLLGQLSAKKYLESLM
27
Intestinal peptide
Glucagon
T7, S8
2







PHM-27








101
P01282
1
HADGVFTSDFSKLLGQLSAKKYLESLMGKRVSSNIS
42
Intestinal peptide
Glucagon
T7, S8
2





EDPVPV

PHV-42








102
P01275
1
HSQGTFTSDYSKYLDSRRAQDFVQWLMNTKRNRN
37
Oxyntomodulin
Glucagon
T7
1





NIA

(By similarity)








103
P18509
1
DVAHGILNEAYRKVLDQLSAGKHLQSLVARGVGGS
48
PACAP-related
Glucagon







LGGGAGDDAEPLS

peptide








104
P18509
1
HSDGIFTDSYSRYRKQMAVKKYLAAVL
27
Pituitary
Glucagon









adenylate










cyclase-










activating










polypeptide 27








105
P18509
1
HSDGIFTDSYSRYRKQMAVKKYLAAVLGKRYKQR
38
Pituitary
Glucagon







VKNK

adenylate










cyclase-










activating










polypeptide 38








106
P09683
1
HSDGTFTSELSRLREGARLQRLLQGLV
27
Secretin
Glucagon
T7, S8, S11
3





107
P01286
1
YADAIFTNSYRKVLGQLSARKLLQDIMSRQQGESN
44
Somatoliberin
Glucagon







QERGARARL










108
P01282
1
HSDAVFTDNYTRLRKQMAVKKYLNSILN
28
Vasoactive
Glucagon
T7
1







intestinal










peptide








109
P01148
1
DAENLIDSFQEIVKEVGQLAETQRFECTTHQPRSPLR
56
GnRH-associated
GnRH
T28
1





DLKGALESLIEEETGQKKI

peptide 1








110
O43555
1
ALSSAQDPQNALRPPGRALDTAAGSPVQTAHGLPS
84
GnRH-associated
GnRH







DALAPLDDSMPWEGRTTAQWSLHRKRHLARTLLT

peptide 2








AAREPRPAPPSSNKV










111
P01148
1
QHWSYGLRPG
10
Gonadoliberin-1
GnRH







112
O43555
1
QHWSHGWYPG
10
Gonadoliberin-2
GnRH







113
P01148
1
QHWSYGLRPGGKRDAENLIDSFQEIVKEVGQLAET
69
Progonadoliberin-
GnRH
T41
1





QRFECTTHQPRSPLRDLKGALESLIEEETGQKKI

1








114
O43555
1
QHWSHGWYPGGKRALSSAQDPQNALRPPGRALDT
97
Progonadoliberin-
GnRH







AAGSPVQTAHGLPSDALAPLDDSMPWEGRTTAQW

2








SLHRKRHLARTLLTAAREPRPAPPSSNKV










115
P01308
1
GIVEQCCTSICSLYQLENYCN
21
Insulin A chain
Insulin







116
P01308
1
FVNQHLCGSHLVEALYLVCGERGFFYTPKT
30
Insulin B chain
Insulin
T27 (Ambiguous)
1





117
P05019
1
GPETLCGAELVDALQFVCGDRGFYFNKPTGYGSSSR
70
Insulin-like
Insulin







RAPQTGIVDECCFRSCDLRRLEMYCAPLKPAKSA

growth factor I








118
P01344
1
AYRPSETLCGGELVDTLQFVCGDRGFYFSRPASRVS
67
Insulin-like
Insulin
S50, T62
2





RRSRGIVEECCFRSCDLALLETYCATPAKSE

growth factor II








119
P01344
1
YRPSETLCGGELVDTLQFVCGDRGFYFSRPASRVSR
66
Insulin-like
Insulin
S49, T61
2





RSRGIVEECCFRSCDLALLETYCATPAKSE

growth factor II










Ala-25 Del








120
P01344
1
DVSTPPTVLPDNFPRYPVGKFFQYDTWKQSTQRL
34
Preptin
Insulin
S3, T4, T7
3





121
P04090
1
QLYSALANKCCHVGCTKRSLARFC
24
Relaxin A chain
Insulin







122
P04808
1
PYVALFEKCCLIGCTKRSLAKYC
23
Relaxin A chain
Insulin









(By similarity)








123
P04090
1
DSWMEEVIKLCGRELVRAQIAICGMSTWS
29
Relaxin B chain
Insulin







124
P04808
1
VAAKWKDDVIKLCGRELVRAQIAICGMSTWS
31
Relaxin B chain
Insulin









(By similarity)








125
Q8WXF3
1
DVLAGLSSSCCKWGCSKSEISSLC
24
Relaxin-3 A
Insulin









chain (By










similarity)








126
Q8WXF3
1
RAAPYGVRLCGREFIRAVIFTCGGSRW
27
Relaxin-3 B
Insulin









chain (By










similarity)








127
Q15726
1
YNWNSFGLRF
10
Kisspeptin-10
KISS1







128
Q15726
1
LPNYNWNSFGLRF
13
Kisspeptin-13
KISS1







129
Q15726
1
DLPNYNWNSFGLRF
14
Kisspeptin-14
KISS1







130
Q15726
1
EPLEKVASVGNSRPTGQQLESLGLLAPGEQSLPCIL
119
Metastasis-
KISS1
A69
1





RKPAATARLSRRGTSLSPPPESSGSPQQPGLSAPHSR

suppressor KiSS-








QIPAPQGAVLVQREKDLPNYNVVNSFGLRFGKREAA

1








PGNHGRSAGRG










131
Q15726
1
GTSLSPPPESSGSPQQPGLSAPHSRQIPAPQGAVLVQ
54
Metastin
KISS1
A21
1





REKDLPNYNWNSFGLRF










132
P41159
1
VPIQKVQDDTKTLIKTIVTRINDISHTQSVSSKQKVT
146
Leptin
Leptin







GLDFIPGLHPILTLSKMDQTLAVYQQILTSMPSRNVI










QISNDLENLRDLLHVLAFSKSCHLPWASGLETLDSL










GGVLEASGYSTEVVALSRLQGSLQDMLWQLDLSPG










C










133
P20382
1
DFDMLRCMLGRVYRPCWQV
19
Melanin-
Melanin-









concentrating
concentrating









hormone
hormone







134
P20382
1
EIGDEENSAKFPI
13
Neuropeptide-
Melanin-









glutamic acid-
concentrating









isoleucine
hormone







135
P20382
1
GSVAFPAENGVQNTESTQE
19
Neuropeptide-
Melanin-
T14, T16, T17
3







glycine-glutamic
concentrating









acid (Potential)
hormone







136
P20382
1
ILLSASKSIRNLDDDMVFNTFRLGKGFQKEDTAEKS
144
Pro-MCH
Melanin-
S36, S41, N72, T102, T104,
6





VIAPSLEQYKNDESSFMNEEENKVSKNTGSKHNFLN


concentrating
T105






HGLPLNLAIKPYLALKGSVAFPAENGVQNTESTQEK


hormone







REIGDEENSAKFPIGRRDFDMLRCMLGRVYRPCWQ










V










137
Q9UBU3
1
GSSFLSPEHQRVQQRKESKKPPAKLQP
27
Ghrelins-27
Motilin







138
Q9UBU3
1
GSSFLSPEHQRVQQRKESKKPPAKLQPR
28
Ghrelins-28
Motilin







139
P12872
1
FVPIFTYGELQRMQEKERNKGQ
22
Motilin
Motilin







140
P12872
1
SLSVWQRSGEEGPVDPAEPIREEENEMIKLTAPLEIG
66
Motilin-
Motilin







MRMNSRQLEKYPATLEGLLSEMLPQHAAK

associated










peptide








141
Q9UBU3
1
FNAPFDVGIKLSGVQYQQHSQAL
23
Obestatin
Motilin







142
P12872
1
FVPIFTYGELQRMQEKERNKGQKKSLSVWQRSGEE
90
Promotilin
Motilin







GPVDPAEPIREEENEMIKLTAPLEIGMRMNSRQLEK










YPATLEGLLSEMLPQHAAK










143
Q15848
1
ETTTQGPGVLLPLPKGACTGWMAGIPGHPGHNGAP
226
Adiponectin
NA
T4
1





GRDGRDGTPGEKGEKGDPGLIGPKGDIGETGVPGAE










GPRGFPGIQGRKGEPGEGAYVYRSAFSVGLETYVTI










PNMPIRETKIFYNQQNHYDGSTGKEHCNIPGLYYFA










YHITVYMKDVKVSLFKKDKAMLFTYDQYQENNVD










QASGSVLLHLEVGDQVWLQVYGEGERNGLYADND










NDSTFTGFLLYHDTN










144
O00253
1
AQMGLAPMEGIRRPDQALLPELPGLGLRAPLKKTT
111
Agouti-related
NA
T35
1





AEQAEEDLLQEAQALAEVLDLQDREPRSSRRCVRL

protein








HESCLGQQVPCCDPCATCYCRFFNAFCYCRKLGTA










MNPCSRT










145
Q9BZL1
1
MIEVVCNDRLGKKVRVKCNTDDTIGDLKKLIAAQT
73
Ubiquitin-like
NA







GTRWNKIVLKKWYTIFKDHVSLGDYEIHDGMNLEL

protein 5








YYQ










146
P43490
1
MNPAAEAEFNILLATDSYKVTHYKQYPPNTSKVYS
491
Nicotinamide
NAPRTase







YFECREKKTENSKLRKVKYEETVEYGLQYILNKYL

phosphoribosyltr








KGKVVTKEKIQEAKDVYKEHFQDDVFNEKGWNYI

ansferase








LEKYDGHLPIEIKAVPEGFVIPRGNVLFTVENTDPEC










YWLTNWIETILVQSWYPITVATNSREQKKILAKYLL










ETSGNLDGLEYKLHDFGYRGVSSQETAGIGASAHL










VNFKGTDTVAGLALIKKYYGTKDPVPGYSVPAAEH










STITAWGKDHEKDAFEHIVTQFSSVPVSVVSDSYDI










YNACEKIWGEDLRHLIVSRSTQAPLIIRPDSGNPLDT










VLKVLEILGKKFPVTENSKGYKLLPPYLRVIQGDGV










DINTLQEIVEGMKQKMVVSIENIAFGSGGGLLQKLTR










DLLNCSEKCSYVVTNGLGINVEKDPVADPNKRSKK










GRLSLHRTPAGNFVTLEEGKGDLEEYGQDLLHTVF










KNGKVTKSYSFDEIRKNAQLNIELEAAHH










147
P01160
1
SLRRSSCFGGRMDRIGAQSGLGCNSFRY
28
Atrial natriuretic
Natriuretic peptide
S19, S25
2







factor








148
P16860
1
SPKMVQGSGCFGRKMDRISSSSGLGCKV
28
BNP(1-28)
Natriuretic peptide







149
P16860
1
SPKMVQGSGCFGRKMDRISSSSGLGCKVL
29
BNP(1-29)
Natriuretic peptide







150
P16860
1
SPKMVQGSGCFGRKMDRISSSSGLGCKVLR
30
BNP(1-30)
Natriuretic peptide







151
P16860
1
PKMVQGSGCFGRKMDRISSSSGLGCKVLRR
30
BNP(2-31)
Natriuretic peptide







152
P16860
1
KMVQGSGCFGRKMDRISSSSGLGCKVL
27
BNP(3-29)
Natriuretic peptide







153
P16860
1
KMVQGSGCFGRKMDRISSSSGLGCKVLR
28
BNP(3-30)
Natriuretic peptide







154
P16860
1
KMVQGSGCFGRKMDRISSSSGLGCKVLRRH
30
BNP(3-32)
Natriuretic peptide







155
P16860
1
MVQGSGCFGRKMDRISSSSGLGCK
24
BNP(4-27)
Natriuretic peptide







156
P16860
1
MVQGSGCFGRKMDRISSSSGLGCKVL
26
BNP(4-29)
Natriuretic peptide







157
P16860
1
MVQGSGCFGRKMDRISSSSGLGCKVLR
27
BNP(4-30)
Natriuretic peptide







158
P16860
1
MVQGSGCFGRKMDRISSSSGLGCKVLRR
28
BNP(4-31)
Natriuretic peptide







159
P16860
1
MVQGSGCFGRKMDRISSSSGLGCKVLRRH
29
BNP(4-32)
Natriuretic peptide







160
P16860
1
VQGSGCFGRKMDRISSSSGLGCKVL
25
BNP(5-29)
Natriuretic peptide







161
P16860
1
VQGSGCFGRKMDRISSSSGLGCKVLRR
27
BNP(5-31)
Natriuretic peptide







162
P16860
1
VQGSGCFGRKMDRISSSSGLGCKVLRRH
28
BNP(5-32)
Natriuretic peptide







163
P16860
1
SPKIVIVQGSGCFGRKMDRISSSSGLGCKVLRRH
32
Brain natriuretic
Natriuretic peptide









peptide 32








164
P01160
1
NPMYNAVSNADLMDFKNLLDHLEEKMPLED
30
Cardiodilatin-
Natriuretic peptide
Y4, A6, S8 (Ambiguous)
1







related peptide








165
P23582
1
GLSKGCFGLKLDRIGSMSGLGC
22
CNP-22
Natriuretic peptide







166
P23582
1
YKGANKKGLSKGCFGLKLDRIGSMSGLGC
29
CNP-29
Natriuretic peptide







167
P23582
1
DLRVDTKSRAAWARLLQEHPNARKYKGANKKGLS
53
CNP-53
Natriuretic peptide







KGCFGLKLDRIGSMSGLGC










168
P16860
1
HPLGSPGSASDLETSGLQEQRNHLQGKLSELQVEQT
108
Natriuretic
Natriuretic peptide
T48, E59
2





SLEPLQESPRPTGVWKSREVATEGIRGHRKMVLYTL

peptides B








RAPRSPKMVQGSGCFGRKMDRISSSSGLGCKVLRR










H










169
P58417
1
ANLTNGGKSELLKSGSSKSTLKHIWTESSKDLSISRL
250
Neurexophilin-1
Neurexophilin







LSQTFRGKENDTDLDLRYDTPEPYSEQDLWDWLRN










STDLQEPRPRAKRRPIVKTGKFKMFGWGDFHSNIK










TVKLNLLITGKIVDHGNGTFSVYFRHNSTGQGNVSV










SLVPPTKIVEFDLAQQTVIDAKDSKSFNCRIEYEKVD










KATKNTLCNYDPSKTCYQEQTQSHVSWLCSKPFKV










ICIYISFYSTDYKLVQKVCPDYNYHSDTPYFPSG










170
O95156
1
KEVVHATEGLDWEDKDAPGTLVGNVVHSRIISPLR
242
Neurexophilin-2
Neurexophilin
T7
1





LFVKQSPVPKPGPMAYADSMENFWDWLANITEIQE










PLARTKRRPIVKTGKFKKMFGWGDFHSNIKTVKLN










LLITGKIVDHGNGTFSVYFRHNSTGLGNVSVSLVPPS










KVVEFEVSPQSTLETKESKSFNCRIEYEKTDRAKKT










ALCNFDPSKICYQEQTQSHVSWLCSKPFKVICIYIAF










YSVDYKLVQKVCPDYNYHSETPYLSSG










171
O95157
1
QDDGPPGSEDPERDDHEGQPRPRVPRKRGHISPKSR
230
Neurexophilin-3
Neurexophilin







PMANSTLLGLLAPPGEAWGILGQPPNRPNHSPPPSA










KVKKIFGWGDFYSNIKTVALNLLVTGKIVDHGNGT










FSVHFQHNATGQGNISISLVPPSKAVEFHQEQQIFIEA










KASKIFNCRMEWEKVERGRRTSLCTHDPAKICSRDH










AQSSATWSCSQPFKVVCVYIAFYSTDYRLVQKVCP










DYNYHSDTPYYPSG










172
O95158
1
QIPESGRPQYLGLRPAAAGAGAPGQQLPEPRSSDGL
285
Neurexophilin-4
Neurexophilin







GVGRAWSWAWPTNHTGALARAGAAGALPAQRTK










RKPSIKAARAKKIFGWGDFYFRVHTLKFSLLVTGKI










VDHVNGTFSVYFRHNSSSLGNLSVSIVPPSKRVEFG










GVWLPGPVPHPLQSTLALEGVLPGLGPPLGMAAAA










AGPGLGGSLGGALAGPLGGALGVPGAKESRAFNCH










VEYEKTNRARKHRPCLYDPSQVCFTEHTQSQAAWL










CAKPFKVICIFVSFLSFDYKLVQKVCPDYNFQSEHPY










FG










173
Q5H8A3
1
ILQRGSGTAAVDFTKKDHTATWGRPFFLFRPRN
33
Neuromedin-S
Neuromedins







174
P48645
1
FRVDEEFQSPFASQSRGYFLFRPRN
25
Neuromedin-U-
Neuromedins









25








175
Q8NG41
1
WYKPAAGHSSYSVGRAAGLLSGLR
24
Neuropeptide B-
Neuromedins









23








176
Q8NG41
1
WYKPAAGHSSYSVGRAAGLLSGLRRSPYA
29
Neuropeptide B-
Neuromedins









29








177
POC0P6
1
SFRNGVGTGMKKTSFQRAKS
20
Neuropeptide S
Neuromedins







178
Q8N729
1
WYKHVASPRYHTVGRAAGLLMGL
23
Neuropeptide W-
Neuromedins









23








179
Q8N729
1
WYKHVASPRYHTVGRAAGLLMGLRRSPYLW
30
Neuropeptide W-
Neuromedins









30








180
P30990
1
SDSEEEMKALEADFLTNMHTSKISKAHVPSWKMTL
125
Large
Neurotensin







LNVCSLVNNLNSPAEETGEVHEEELVARRKLPTALD

neuromedin N








GFSLEAMLTIYQLHKICHSRAFQHWELIQEDILDTGN










DKNGKEEVIKRKIPYIL










181
P30990
1
IPYIL
5
Neuromedin N
Neurotensin







182
P30990
1
QLYENKPRRPYIL
13
Neurotensin
Neurotensin







183
P30990
1
DSYYY
5
Tail peptide
Neurotensin









(Potential)








184
P01303
1


SS
PETLISDLLMRESTENVPRTRLEDPAMW

30
C-flanking
NPY
S1, S2, T16, T21, A28
3







peptide of NPY








185
P01303
1
YPSKPDNPGEDAPAEDMARYYSALRHYINLITRQRY
36
Neuropeptide Y
NPY
S3, T32
2





186
P01298
1
APLEPVYPGDNATPEQMAQYAADLRRYINMLTRPR
36
Pancreatic
NPY
T32
1





Y

hormone








187
P01298
1
HKEDTLAFSEWGSPHAAVPR
20
Pancreatic
NPY









icosapeptide








188
P10082
1
YPIKPEAPREDASPEELNRYYASLRHYLNLVTRQRY
36
Peptide YY
NPY
T32
1





189
P10082
1
IKPEAPREDASPEELNRYYASLRHYLNLVTRQRY
34
Peptide YY (3-
NPY
T30
1







36)








190
P80303
1
VPIDIDKTKVQNIHPVESAKIEPPDTGLYYDEYLKQV
82
Nesfatin-1
Nucleobindin
T8, I13, S18, T26, Y29, Y30,
8





IDVLETDKHFREKLQKADIEEIKSGRLSKELDLVSHH



T43, S72






VRTKLDEL










191
Q02818
1
VPLERGAPNKEETPATESPDTGLYYHRYLQEVIDVL
435
Nucleobindin-1
Nucleobindin
P8, T13, T16, S18, T21, Y24,
22





ETDGHFREKLQAANAEDIKSGKLSRELDFVSHHVRT



S67, T122, T136, S198, S294,






KLDELKRQEVSRLRMLLKAKMDAEQDPNVQVDHL



S295, T309, H313, S343, T346,






NLLKQFEHLDPQNQHTFEARDLELLIQTATRDLAQY



S352, Q381, A388, T400, L426,






DAAHHEEFKRYEMLKEHERRRYLESLGEEQRKEAE



x433(deleterious mutation)






RKLEEQQRRHREHPKVNVPGSQAQLKEVWEELDGL










DPNRFNPKTFFILHDINSDGVLDEQELEALFTKELEK










VYDPKNEEDDMREMEEERLRMREHVMKNVDTNQ










DRLVTLEEFLASTQRKEFGDTGEGWETVEMHPAYT










EEELRRFEEELAAREAELNAKAQRLSQETEALGRSQ










GRLEAQKRELQQAVLHMEQRKQQQQQQQGHKAP










AAHPEGQLKFHPDTDDVPVPAPAGDQKEVDTSEKK










LLERLPEVEVPQHL










192
P80303
1
VPIDIDKTKVQNIHPVESAKIEPPDTGLYYDEYLKQV
396
Nucleobindin-2
Nucleobindin
T8, I13, S18, T26, Y29, Y30,
16





IDVLETDKHFREKLQKADIEEIKSGRLSKELDLVSHH



T43, S72, S128, T139, T148,






VRTKLDELKRQEVGRLRMLIKAKLDSLQDIGMDHQ



A331, Y365, P382, S384, L390






ALLKQFDHLNHLNPDKEESTDLDMLIKAATSDLEH










YDKTRHEEFKKYEMMKEHERREYLKTLNEEKRKE










EESKILEMKKKHENHPKVNHPGSKDQLKEVWEET










DGLDPNDFDPKTFFKLHDVNSDGFLDEQELEALFTK










ELEKVYDPKNEEDDMVEMEEERLRMREHVMSEVD










TNKDRLVTLEEFLKATEKKEFLEPDSWETLDQQQFF










TEEELKEYENHALQENELKKKADELQKQKEELQRQ










HDQLEAQKLEYHQVIQQMEQKKLQQGIPPSGPAGE












L
KFEPHI











193
P01213
1
YGGFLRKYPK
10
Alpha-
Opioid









neoendorphin








194
P01213
1
YGGFLRKYP
9
Beta-
Opioid









neoendorphin








195
P01213
1
YGGFLRRIRPKLKWDNQKRYGGFLRRQFKVVT
32
Big dynorphin
Opioid







196
P01213
1
YGGFLRRIRPKLK
13
Dynorphin A(1-
Opioid









13) (By










similarity)








197
P01213
1
YGGFLRRIRPKLKWDNQ
17
Dynorphin A(1-
Opioid









17)








198
P01213
1
YGGFLRRI
8
Dynorphin A(1-
Opioid









8) (By similarity)








199
P01213
1
YGGFL
5
Leu-enkephalin
Opioid







200
P01213
1
YGGFLRRQFKVVTRSQEDPNAYSGELFDA
29
Leumorphin
Opioid







201
P01210
1
YGGFM
5
Met-enkephalin
Opioid







202
P01210
1
YGGFMRGL
8
Met-enkephalin-
Opioid









Arg-Gly-Leu








203
P01210
1
YGGFMRF
7
Met-enkephalin-
Opioid









Arg-Phe








204
Q13519
1
MPRVRSLFQEQEEPEPGMEEAGEMEQKQLQ
30
Neuropeptide 1
Opioid
P14
1







(Probable)








205
Q13519
1
FSEFMRQYLVLSMQSSQ
17
Neuropeptide 2
Opioid









(Probable)








206
Q13519
1
FGGFTGARKSARKLANQ
17
Nociceptin
Opioid







207
P01210
1
DAEEDDSLANSSDLLKELLETGDNRERSHHQDGSD
41
PENK(143-183)
Opioid







NEEEVS

(By similarity)








208
P01210
1
FAEALPSDEEGESYSKEVPEME
22
PENK(237-258)
Opioid









(By similarity)








209
P01213
1
YGGFLRRQFKVVT
13
Rimorphin
Opioid







210
P01210
1
MDELYPMEPEEEANGSEILA
20
rimorphin
Opioid







211
P01210
1
ECSQDCATCSYRLVRPADINFLACVMECEGKLPSLK
73
Synenkephalin
Opioid







IWETCKELLQLSKPELPQDGTSTLRENSKPEESHLLA










212
O43612
1
QPLPDCCRQKTCSCRLYELLHGAGNHAAGILTL
33
Orexin-A
Orexin







213
O43612
1
RSGPPGLQGRLQRLLQASGNHAAGILTM
28
Orexin-B
Orexin







214
P12272
1
TRSAWLDSGVTGSGLEGDHLSDTSTTSLELDSR
33
Osteostatin
Parathyroid hormone







215
P12272
1
AVSEHQLLHDKGKSIQDLRRREFLHHLIAEIHTAEIR
141
Parathyroid
Parathyroid hormone
T39
1





ATSEVSPNSKPSPNTKNHPVREGSDDEGRYLTQETN

hormone-related








KVETYKEQPLKTPGKKKKGKPGKRKEQEKKKRRTR

protein








SAWLDSGVTGSGLEGDHLSDTSTTSLELDSRRH










216
P12272
1
AVSEHQLLHDKGKSIQDLRRREFLHHLIAEIHTAEI
36
PTHrP[1-36]
Parathyroid hormone







217
P12272
1
ATSEVSPNSKPSPNTKNHPVRFGSDDEGRYLTQETN
57
PTHrP[38-94]
Parathyroid hormone
T2
1





KVETYKEQPLKTPGKKKKGKP










218
Q96A98
1
SLALADDAAFRERARLLAALERRHWLNSYMHKLL
39
Tuberoinfundibular
Parathyroid hormone







VLDAP

peptide of










39residues








219
P01189
1
YGGFMTSEKSQTPLVTLEKNAIIKNAYKKGE
31
Beta-endorphin
POMC
S10, T12, T16
3





220
P01189
1
SYSMEHFRWGKPVGKKRRPVKVYPNGAEDESAEA
39
Corticotropin
POMC







FPLEF










221
P01189
1
PVKVYPNGAEDESAEAFPLEF
21
Corticotropin-
POMC









like intermediary










peptide








222
P01189
1
ELTGQRLREGDGPDGPADDGAGAQADLEHSLLVAA
89
Lipotropin beta
POMC
S68, T70, T74
3





EKKDEGPYRMEHFRWGSPPKDKRYGGFMTSEKSQ












T
PLVTLFKNAIIKNAYKKGE











223
P01189
1
ELTGQRLREGDGPDGPADDGAGAQADLEHSLLVAA
56
Lipotropin
POMC







EKKDEGPYRMEHFRWGSPPKD

gamma








224
P01189
1
SYSMEHFRWGKPV
13
Melanotropin
POMC









alpha








225
P01189
1
DEGPYRMEHFRWGSPPKD
18
Melanotropin
POMC









beta








226
P01189
1
YVMGHFRWDRF
11
Melanotropin
POMC









gamma








227
P01189
1
WCLESSQCQDLTTESNLLECIRACKPDLSAETPMFP
76
NPP
POMC
T45
1





GNGDEQPLTENPRKYVMGHFRWDRFGRRNSSSSGS










SGAGQ










228
P01189
1
EDVSAGEDCGPLPEGGPEPRSDGAKPGPRE
30
Potential peptide
POMC







229
Q9UHG2
1
LETPAPQVPARRLLPP
16
Big LEN (By
ProSAAS
T3, P4, A5
2







similarity)








230
Q9UHG2
1
AADHDVGSELPPEGVLGALLRVKRLETPAPQVPAR
40
Big PEN-LEN
ProSAAS
T27, P28, A29
2





RLLPP

(By similarity)








231
Q9UHG2
1
ARPVKEPRGLSAASPPLAETGAPRRF
26
Big SAAS (By
ProSAAS
G9, S14, T20, G21, A22
5







similarity)








232
Q9UHG2
1
ARPVKEP
7
KEP (By
ProSAAS









similarity)








233
Q9UHG2
1
LETPAPQVPA
10
Little LEN (By
ProSAAS
T3, P4, A5
2







similarity)








234
Q9UHG2
1


G
LSAASPPLAETGAPRRF

18
Little SAAS (By
ProSAAS
G1, S6, T12, G13, A14
5







similarity)








235
Q9UHG2
1
AADHDVGSELPPEGVLGALLRV
22
PEN (By
ProSAAS









similarity)








236
Q9UHG2
1
ARPVKEPRGLSAASPPLAETGAPRRFRRSVPRGEAA
227
ProSAAS
ProSAAS
G9, S14, T20, G21, A22, A82,
13





GAVQELARALAHLLEAERQERARAEAQEAEDQQA



N85, S86, A143, S173, A174,






RVLAQLLRVWGAPRNSDPALGLDDDPDAPAAQLAR



T214, P215, A216






ALLRARLDPAALAAQLVPAPVPAAALRPRPPVYDD










GPAGPDAEEAGDETPDVDPELLRYLLGRILAGSADS










EGVAAPRRLRRAADHDVGSELPPEGVLGALLRVKR










LETPAPQVPARRLLPP










237
Q9HD89
1
KTLCSMEEAINERIQEVAGSLIFRAISSIGLECQSVTS
90
Resistin
Resistin/FIZZ







RGDLATCPRGFAVTGCTCGSACGSWDVRAETTCHC










QCAGMDWTGARCCRVQP










238
Q9BQ08
1
QCSLDSVMDKKIKDVLNSLEYSPSPISKKLSCASVKS
88
Resistin-like beta
Resistin/FIZZ







QGRPSSCPAGMAVTGCACGYGCGSWDVQLETTCH










CQCSVVDWTTARCCHLT










239
P83859
1
QDEGSEATGFLPAAGEKTSGPLGNLAEELNGYSRK
43
QRF-amide
RFamide neuropeptide







KGGFSFRF










240
P06850
1
SEEPPISLDLTFHLLREVLEMARAEQLAQQAHSNRK
41
Corticoliberin
Sauvagine/







LMEII


corticotropin-










releasing










factor/urotensin I







241
P55089
1
DNPSLSIDLTFHLLRTLLELARTQSQRERAEQNRIIFD
40
Urocortin
Sauvagine/







SV


corticotropin-










releasing










factor/urotensin I







242
Q96RP3
1
IVLSLDVPIGLLQILLEQARARAAREQATTNARILAR
41
Urocortin-2
Sauvagine/







VGHC


corticotropin-










releasing










factor/urotensin I







243
Q969E3
1
FTLSLDVPTNIMNLLFNIAKAKNLRAQAAANAHLM
38
Urocortin-3
Sauvagine/







AQI


corticotropin-










releasing










factor/urotensin I







244
P01019
1
DRVY
4
Angiotensin 1-4
Serpin







245
P01019
1
DRVYI
5
Angiotensin 1-5
Serpin







246
P01019
1
DRVYIHP
7
Angiotensin 1-7
Serpin







247
P01019
1
DRVYIHPFH
9
Angiotensin 1-9
Serpin







248
P01019
1
DRVYIHPFHL
10
Angiotensin-1
Serpin







249
P01019
1
DRVYIHPF
8
Angiotensin-2
Serpin







250
P01019
1
RVYIHPF
7
Angiotensin-3
Serpin







251
P01019
1
VYIHPF
6
Angiotensin-4
Serpin







252
P01019
1
DRVYIHPFHLVIHNESTCEQLAKANAGKPKDPTFIPA
452
Angiotensinogen
Serpin
T407 or S409 or T410 or T422
1





PIQAKTSPVDEKALQDQLVLVAAKLDFEDKLRAAM



(Ambiguous)






VGMLANFLGFRIYGMHSELWGVVHGATVLSPTAVF










GTLASLYLGALDHTADRLQAILGVPWKDKNCTSRL










DAHKVLSALQAVQGLLVAQGRADSQAQLLLSTVV










GVFTAPGLHLKQPFVQGLALYTPVVLPRSLDFTELD










VAAEKIDRFMQAVTGWKTGCSLMGASVDSTLAFN










TYVHFQGKMKGFSLLAEPQEFWVDNSTSVSVPMLS










GMGTFQHWSDIQDNFSVTQVPFTESACLLLIQPHYA










SDLDKVEGLTFQQNSLNWMKKLSPRTIHLTMPQLV










LQGSYDLQDLLAQAELPAILHFELNLQKLSNDRIRV










GEVLNSIFFELEADEREPTESTQQLNKPEVLEVTLNR










PFLFAVYDQSATALHFLGRVANPLSTA










253
P08185
1
MDPNAAYVNMSNHHRGLASANVDFAFSLYKHLVA
383
Corticosteroid-
Serpin







LSPKKNIFISPVSISMALAMLSLGTCGHTRAQLLQGL

binding globulin








GFNLTERSETEIHQGFQHLHQLFAKSDTSLEMTMGN










ALFLDGSLELLESFSADIKHYYESEVLAMNFQDWAT










ASRQINSYVKNKTQGKIVDLFSGLDSPAILVLVNYIF










FKGTWTQPFDLASTREENFYVDETTVVKVPMMLQS










STISYLHDSELPCQLVQMNYVGNGTVFFILPDKGKM










NTVIAALSRDTINRWSAGLTSSQVDLYIPKVTISGVY










DLGDVLEEMGIADLFTNQANFSRITQDAQLKSSKVV










HKAVLQLNEEGVDTAGSTGVTLNLTSKPIILRFNQPF










IIMIFDHFTWSSLFLARVMNPV










254
Q86U17
1
QPLLAHGDKSLQGPQPPRHQLSEPAPAYHRITPTITN
403
Serpin A11
Serpin







FALRLYKELAADAPGNIFFSPVSISTTLALLSLGAQA










NTSALILEGLGFNLTETPEADIHQGFRSLLHTLALPSP










KLELKVGNSLFLDKRLKPRQHYLDSIKELYGAFAFS










ANFTDSVTTGRQINDYLRRQTYGQVVDCLPEFSQDT










FMVLANYIFFKAKWKHPFSRYQTQKQESFFVDERTS










LQVPMMHQKEMHRFLYDQDLACTVLQIEYRGNAL










ALLVLPDPGKMKQVEAALQPQTLRKWGQLLLPSLL










DLHLPRFSISGTYNLEDILPQIGLTNILNLEADFSGVT










GQLNKTISKVSHKAMVDMSEKGTEAGAASGLLSQP










PSLNTMSDPHAHFNRPFLLLLWEVTTQSLLFLGKVV










NPVAG










255
Q8IW75
1
LKPSFSPRNYKALSEVQGWKQRMAAKELARQNMD
394
Serpin A12
Serpin







LGFKLLKKLAFYNPGRNIFLSPLSISTAFSMLCLGAQ










DSTLDEIKQGFNFRKMPEKDLHEGFHYIIHELTQKT










QDLKLSIGNTLFIDQRLQPQRKFLEDAKNFYSAETIL










TNFQNLEMAQKQINDFISQKTHGKINNLIENIDPGTV










MLLANYIFFRARWKHEFDPNVTKEEDFFLEKNSSVK










VPMMFRSGIYQVGYDDKLSCTILEIPYQKNITAIFILP










DEGKLKHLEKGLQVDTFSRWKTLLSRRVVDVSVPR










LHMTGTFDLKKTLSYIGVSKIFEEHGDLTKIAPHRSL










KVGEAVHKAELKMDERGTEGAAGTGAQTLPMETP










LVVKIDKPYLLLIYSEKIPSVLFLGKIVNPIGK










256
O75830
1
SRCSAQKNTEFAVDLYQEVSLSHKDNIIFSPLGITLV
387
Serpin 12
Serpin







LEMVQLGAKGKAQQQIRQTLKQQETSAGEEFFVLK










SFFSAISEKKQEFTFNLANALYLQEGFTVKEQYLHG










NKEFFQSAIKLVDFQDAKACAEMISTWVERKTDGKI










KDMFSGEEFGPLTRLVLVNAIYFKGDWKQKFRKED










TQLINFTKKNGSTVKIPMMKALLRTKYGYFSESSLN










YQVLELSYKGDEFSLIIILPAEGMDIEEVEKLITAQQI










LKWLSEMQEEEVEISLPREKVEQKVDEKDVLYSLNI










TEIFSGGCDLSGITDSSEVYVSQVTQKVFFEINEDGS










EAATSTGIHIPVIMSLAQSQFIANHPFLFIMKHNPTES










ILFMGRVTNPDTQEIKGRDLDSL










257
O00230
1
DRMPCRNFFWKTFSSCK
17
Cortistatin-17
Somastostatin







258
O00230
1
QEGAPPQQSARRDRMPCRNFFWKITSSCK
29
Cortistatin-29
Somastostatin









(Potential)








259
P61278
1
AGCKNFFWKTFTSC
14
Somatostatin-14
Somastostatin







260
P61278
1


S
ANSNPAMAPRERKAGCKNFFWKTFTSC

28
Somatostatin-28
Somastostatin
S1 or S4 (Ambiguous)
1





261
P01236
1
LPICPGGAARCQVTLRDLFDRAVVLSHYIHNLSSEM
199
Prolactin
Somatotropin/







FSEFDKRYTHGRGFITKAINSCHTSSLATPEDKEQAQ


prolactin







QMNQKDFLSLIVSILRSWNEPLYHLVTEVRGMQEAP










EAILSKAVEIEEQTKRLLEGMELIVSQVHPETKENEI










YPVWSGLPSLQMADEESRLSAYYNLLHCLRRDSHK










IDNYLKLLKCRIIHNNNC










262
P20366
1


A
LNSVAYERSAMQNYE

15
C-terminal-
Tachykinin
A1, S4
2







flanking peptide








263
P20366
1
HKTDSFVGLM
10
Neurokinin A
Tachykinin







264
Q9UHF0
1
DMHDFFVGLM
10
Neurokinin-B
Tachykinin







265
P20366
1
DADSSIEKQVALLKALYGHGQISHKRHKTDSFVGL
36
Neuropeptide K
Tachykinin







M










266
P20366
1
RPKPQQFFGLM
11
Substance P
Tachykinin







267
P20396
1
QPEAAQQEAVTAAEHPGLDDFLRQVERLLFLRENIQ
218
Pro-thyrotropin-
TRH
I50
1





RLQGDQGEHSASQIFQSDWLSKRQHPGKREEEEEEG


releasing







VEEEEEEEGGAVGPHKRQHPGRREDEASWSVDVTQ


hormone







HKRQHPGRRSPWLAYAVPKRQHPGRRLADPKAQR










SWEEEEEEEEREEDLMPEKRQHPGKRALGGPCGPQ










GAYGQAGLLLGLLDDLSRSQGAEEKRQHPGRRAA










WVREPLEE










268
P20396
1
QHP
3
Thyrotropin-
TRH









releasing










hormone








269
O95399
1
ETPDCFWKYCV
11
Urotensin-2
Urotensin-2







270
Q76510
1
ACFWKYCV
8
Urotensin-2B
Urotensin-2







271
P01185
1
CYFQNCPRG
9
Arg-vasopressin
Vasopressin/oxytocin







272
P01185
1
ASDRSNATQLDGPAGALLLRLVQLAGAPEPFLPAQP
39
Copeptin
Vasopressin/oxytocin
A27
1





DAY










273
P01178
1
AAPDLDVRKCLPCGPGGKGRCFGPNICCAEELGCFV
94
Neurophysin 1
Vasopressin/oxytocin







GTAEALRCQEENYLPSPCQSGQKACGSGGRCAVLG










LCCSPDGCHADPACDAEATFSQR










274
P01185
1
AMSDLELRQCLPCGPGGKGRCFGPSICCADELGCFV
93
Neurophysin 2
Vasopressin/oxytocin







GTAEALRCQEENYLPSPCQSGQKACGSGGRCAAFG










VCCNDESCVTEPECREGFFIRRA










275
P01178
1
CYIQNCPLG
9
Oxytocin
Vasopressin/oxytocin







276
O15240
1
TLQPPSALRRRHYHHALPPSRHYP
24
Antimicrobial
VGF









peptide










VGF[554-577]








277
O15240
1
RPESALLGGSEAGERLLQQGLAQVEA
26
Neuroendocrine
VGF









regulatory










peptide-1








278
O15240
1
QAEATRQAAAQEERLADLASDLLLQYLLQGGARQR
38
Neuroendocrine
VGF







GLG

regulatory










peptide-2








279
O15240
1
APPGRPEAQPPPLSSEHKEPVAGDAVPGPKDGSAPE
591
Neurosecretory
VGF
P1, S12, P202, S205,
5





VRGARNSEPQDEGELFQGVDPRALAAVLLQALDRP

protein VGF

T477






ASPPAPSGSQQGPEEEAAEALLTETVRSQTHSLPAPE










SPEPAAPPRPQTPENGPEASDPSEELEALASLLQELR










DFSPSSAKRQQETAAAETETRTHTLTRVNLESPGPE










RVWRASWGEFQARVPERAPLPPPAPSQFQARMPDS










GPLPETHKFGEGVSSPKTHLGEALAPLSKAYQGVAA










PFPKARRPESALLGGSEAGERLLQQGLAQVEAGRR










QAEATRQAAAQEERLADLASDLLLQYLLQGGARQR










GLGGRGLQEAAEERESAREEEEAEQERRGGEERVG










EEDEEAAEAEAEAEEAERARQNALLFAEEEDGEAG










AEDKRSQEETPGHRRKEAEGTEEGGEEEDDEEMDP










QTIDSLIELSTKLHLPADDVVSIIEEVEEKRKRKKNA










PPEPVPPPRAAPAPTHVRSPQPPPPAPAPARDELPDW










NEVLPPWDREEDEVYPPGPYHPFPNYIRPRTLQPPSA










LRRRHYHHALPPSRHYPGREAQARRAQEEAEAEER










RLQEQEELENYIEHVLLRRP









EMBODIMENTS

1. An isolated peptide hormone, such as recombinant, such as a neuropeptide comprising one or more O-linked glycan at a predetermined specific site, such as in the receptor-binding region.


2. The peptide hormone according to embodiment 1, wherein the one or more O-glycan structures include a glycan structure selected from a core1, core2, core3, or core4 structure with sialic acid capping, such as a structure as illustrated in FIG. 1.


3. The peptide hormone according to embodiments 1 or 2, wherein the one or more O-glycan structures include a Tn (GalNAc) structure.


4. The peptide hormone according to any one of embodiments 1-3, wherein the one or more O-glycan structures include Tn (GalNAc) structure with one sialic acid capping (alpha2-6).


5. The peptide hormone according to any one of embodiments 1-4, wherein the one or more O-glycan structures include the core1 structures with one sialic acid capping (alpha2-6).


6. The peptide hormone according to any one of embodiments 1-5, wherein the one or more O-glycan structures include the core1 structures with one sialic acid capping (alpha 2-3)


7. The peptide hormone according to any one of embodiments 1-6, wherein the one or more O-glycan structures include the core1 structures with two sialic acids capping (alpha 2-3 and alpha 2-6).


8. The peptide hormone according to any one of embodiments 1-7, which peptide hormone has improved, such as increased stability and/or circulatory half-life and/or other pharmacokinetic properties, such as improved stability in in vitro assays, plasma and/or bodyfluids.


9. The peptide hormone according to any one of embodiments 1-8, which peptide hormone has lower bioactivity in receptor signalling, such as decreased receptor stimulation in in vitro cell assays and/or in man.


10. The peptide hormone according to any one of embodiments 1-9, which peptide hormone exhibits improved receptor stimulation in in vitro cell assays and/or in man.


11. The peptide hormone according to any one of embodiments 1-10, which peptide hormone exhibits altered blood-brain barrier uptake in animals or in man, such as increased blood-brain barrier uptake in animals or in man, or decreased blood-brain barrier uptake in animals or in human.


12. The peptide hormone according to any one of embodiments 1-11, which peptide hormone exhibits receptor sub-type selectivity switch.


13. The peptide hormone according to any one of embodiments 1-12, which peptide hormone is specific to one or more tissue in human, such as specific to tissue of the nervous system.


14. The peptide hormone according to any one of embodiments 1-13, which peptide hormone is selected from any one of tables 4, 5, or 6, such as selected from the list consisting of a peptide of the Neuropeptide Y family, such as NPY, PPY and PYY; a peptide of the Glucagon/Secretin family, such as GIP, Glucagon, GLP-1, GLP-2, PACAP, Secretin, PHM-27/PHV-42, Somatoliberin, and VIP; a peptide of the Natriuretic peptide family, such as ANP, BNP and CNP, a peptide of the calcitonin family, such as calcitonin, and amylin.


15. The peptide hormone according to any one of embodiments 1-14, which peptide hormone is not found in nature.


16. The peptide hormone according to any one of embodiments 1-15, which peptide hormone is a truncated version or a variant as compared to the corresponding wild-type peptide hormone found in nature.


17. The peptide hormone according to any one of embodiments 1-16, which peptide hormone is selected from any one of table 6 comprising one or more O-linked glycan at a site as indicated in table 6, such as at a bold underlined position and/or an italic underlined position.


18. The peptide hormone according to any one of embodiments 1-17, which peptide hormone is selected from any one of table 6 comprising at least, not more than, or the exact number of O-linked glycan sites as indicated in table 6.


19. The peptide hormone according to any one of embodiments 1-16, which peptide hormone is selected from any one of table 5.


20. A host cell comprising two or more glycosyltransferase genes that have been inactivated such that


(a) Homogenous Tn (GalNAc) glycosylation is obtained by inactivation and/or downregulation of one or more genes selected from COSMC and C1GALT1;


(b) Homogenous T (Gal/GalNAc) glycosylation is obtained by inactivation and/or downregulation of one or more genes selected from GCNT1, GCNT3, GCNT4, B3GNT6; and


(c) Homogenous ST or STn glycosylation is obtained by inactivation and/or downregulation of one or more genes selected from ST6GALNAC1-6, ST3GAL1, GCNT3, GCNT4, B3GNT6.


21. The host cell according to embodiment 20, further comprising a gene encoding an exogenous peptide hormone, such as a peptide hormone as defined in any one of embodiments 14-19.


22. A method for producing an isolated peptide hormone comprising one or more O-linked glycan at a predetermined specific site, such as in the receptor-binding region, the method comprising;

    • a) inactivation and/or downregulation of one or more glycosyltransferases, and/or knock in of one or more glycosyltransferases, or any combination hereof in a host cell, and
    • b) expression of said peptide hormone in said host cell.


23. The method according to embodiment 22, wherein one or more genes selected from COSMC, C1GALT1, GCNT1, GCNT3, GCNT4, B3GNT6, ST6GALNAC1-6, ST3GAL1 has been inactivated and/or downregulated.


24. The method according to embodiments 22 or 23, wherein said peptide hormone produced is as defined in any one of embodiments 1-19.


25. The method according to any one of embodiments 22-24, wherein said host cell is as defined in any of embodiments 20-21.


26. A method for the production of recombinant glycosylated peptide hormones that do not have specific types of glycosylation, the method comprising the step of inactivating two or more glycogenes to block and/or truncate one or more glycosylation pathways.


27. A method for the production of an isolated peptide hormone, such as a neuropeptide comprising one or more O-linked glycan at a predetermined specific site, such as in the receptor-binding region, said method comprising

    • a) providing a non-O-glycosylated peptide hormone; and
    • b) treating said non-O-glycosylated synthetic peptide hormone with one or more recombinant purified glycosyl transferase, such as a GalNAc-transferase, such as GalNAc-T1, T2, T3, T4, T5, T6, T7, T10, T11, T12, T13, T14, and/or T16, and/or a Galactosyl-transferases (C1GalT1) and/or a sialyl-transferases, such as ST6GalNAc1 and/or ST3Gall under conditions to add one or more specific O-linked glycan to said peptide hormone.


28. The method according to embodiment 27, wherein said non-O-glycosylated peptide hormone is provided as a chemically produced peptide hormone produced using solid phase peptide synthesis Fmoc SPPS.


29. The method according to embodiment 27, wherein said non-O-glycosylated peptide hormone is provided as a recombinantly produced peptide hormone, such as produced in a production cell line.


30. The method according to any one of embodiments 27-29, wherein said peptide hormone produced is as defined in any one of embodiments 1-19.


31. A method for the production of an isolated peptide hormone, such as a neuropeptide comprising one or more O-linked glycan at a predetermined specific site, such as in the receptor-binding region, said method comprising the building of said peptide hormone using solid phase peptide synthesis Fmoc SPPS including the use of glycosylated amino acids building blocks at said predetermined specific site(s).


32. The method according to embodiment 31, wherein the peptide hormone produced is as defined in any one of embodiments 1-19.


ADDITIONAL EMBODIMENTS

a. An isolated peptide hormone, such as recombinant, such as a neuropeptide comprising one or more O-linked glycan at a predetermined specific site, such as in the receptor-binding region.


b. The peptide hormone according to embodiment a), wherein the one or more O-glycan structures include a glycan structure selected from a core1, core2, core3, or core4 structure with sialic acid capping, such as a structure as illustrated in FIG. 1.


c. The peptide hormone according to embodiments a) or b), wherein the one or more O-glycan structures include a Tn (GalNAc) structure.


d. The peptide hormone according to any one of embodiments a) to c), wherein the one or more O-glycan structures include Tn (GalNAc) structure with one sialic acid capping (alpha2-6).


e. The peptide hormone according to any one of embodiments a)-d), wherein the one or more O-glycan structures include the core1 structures with one sialic acid capping (alpha2-6).


f. The peptide hormone according to any one of embodiments a)-e), wherein the one or more O-glycan structures include the core1 structures with one sialic acid capping (alpha 2-3)


g. The peptide hormone according to any one of embodiments a)-f), wherein the one or more O-glycan structures include the core1 structures with two sialic acids capping (alpha 2-3 and alpha 2-6).


h. The peptide hormone according to any one of embodiments a)-g), which peptide hormone has improved, such as increased stability and/or circulatory half-life and/or other pharmacokinetic properties, such as improved stability in in vitro assays, plasma and/or bodyfluids.


i. The peptide hormone according to any one of embodiments a)-h), which peptide hormone has lower bioactivity in receptor signalling, such as decreased receptor stimulation in in vitro cell assays and/or in man.


j. The peptide hormone according to any one of embodiments a)-i), which peptide hormone exhibits improved receptor stimulation in in vitro cell assays and/or in man.


k. The peptide hormone according to any one of embodiments a)-j), which peptide hormone exhibits altered blood-brain barrier uptake in animals or in man, such as increased blood-brain barrier uptake in animals or in man, or decreased blood-brain barrier uptake in animals or in human.


l. The peptide hormone according to any one of embodiments a)-k), which peptide hormone exhibits receptor sub-type selectivity switch.


m. The peptide hormone according to any one of embodiments a)-l), which peptide hormone is selected from any one of tables 4, 5, or 6, such as selected from the list consisting of a peptide of the Neuropeptide Y family, such as NPY, PPY and PYY; a peptide of the Glucagon/Secretin family, such as GIP, Glucagon, GLP-1, GLP-2, PACAP, Secretin, PHM-27/PHV-42, Somatoliberin, and VIP; a peptide of the Natriuretic peptide family, such as ANP, BNP and CNP, a peptide of the calcitonin family, such as calcitonin, and amylin.


n. The peptide hormone according to any one of embodiments a)-m), which peptide hormone is not found in nature, such as a truncated version or a variant as compared to the corresponding wild-type peptide hormone found in nature.


o. The peptide hormone according to any one of embodiments a)-n), which peptide hormone is selected from any one of table 6 comprising one or more O-linked glycan at a site as indicated in table 6, such as at a bold underlined position and/or an italic underlined position.


LIST OF REFERENCES



  • 1 Seidah, N. G. What lies ahead for the proprotein convertases? Ann N Y Acad Sci 1220, 149-161, doi: 10.1111/j. 1749-6632.2010.05883.x (2011).

  • 2 Milgram, S. L., Mains, R. E. & Eipper, B. A. COOH-terminal signals mediate the trafficking of a peptide processing enzyme in endocrine cells. J Cell Biol 121, 23-36 (1993).

  • 3 Bundgaard, J. R., Vuust, J. & Rehfeld, J. F. Tyrosine O-sulfation promotes proteolytic processing of progastrin. The EMBO journal 14, 3073-3079 (1995).

  • 4 Drazic, A., Myklebust, L. M., Ree, R. & Arnesen, T. The world of protein acetylation. Biochim Biophys Acta 1864, 1372-1401, doi:10.1016/j.bbapap.2016.06.007 (2016).

  • 5 Secher, A. et at. Analytic framework for peptidomics applied to large-scale neuropeptide identification. Nature communications 7, 11436, doi:10.1038/ncomms11436 (2016).

  • 6 Mentlein, R. Dipeptidyl-peptidase IV (CD26)—role in the inactivation of regulatory peptides. Regulatory peptides 85, 9-24 (1999).

  • 7 Potter, L. R. Natriuretic peptide metabolism, clearance and degradation. Febs J 278, 1808-1817, doi:10.1111/j.1742-4658.2011.08082.x (2011).

  • 8 Deacon, C. F., Nauck, M. A., Meier, J., Hucking, K. & Holst, J. J. Degradation of endogenous and exogenous gastric inhibitory polypeptide in healthy and in type 2 diabetic subjects as revealed using a new assay for the intact peptide. J Clin Endocrinol Metab 85, 3575-3581, doi: 10.1210/jcem.85.10.6855 (2000).

  • 9 Halim, A., Ruetschi, U., Larson, G. & Nilsson, J. LC-MS/MS characterization of O-glycosylation sites and glycan structures of human cerebrospinal fluid glycoproteins. Journal of proteome research 12, 573-584, doi:10.1021/pr300963 h (2013).

  • 10 Halim, A., Nilsson, J., Ruetschi, U., Hesse, C. & Larson, G. Human urinary glycoproteomics; attachment site specific analysis of N- and O-linked glycosylations by CID and ECD. Molecular & cellular proteomics: MCP 11, Mill 013649, doi: 10.1074/mcp.M 111.013649 (2012).

  • 11 Khetarpal, S. A. et at Loss of Function of GALNT2 Lowers High-Density Lipoproteins in Humans, Nonhuman Primates, and Rodents. Cell Metab 24, 234-245, doi: 10.1016/j.cmet.2016.07.012 (2016).

  • 12 King, S. L. et at Characterizing the O-glycosylation landscape of human plasma, platelets, and endothelial cells. Blood Advances 1, 429-442, doi: 10.1182/bloodadvances. 2016002121 (2017).

  • 13 Yu, Q. et at Targeted Mass Spectrometry Approach Enabled Discovery of O-Glycosylated Insulin and Related Signaling Peptides in Mouse and Human Pancreatic Islets. Anal Chem, doi:10.1021/acs.analchem.7b01926 (2017).

  • 14 Cao, F. et at Detection of Biosynthetic Precursors, Discovery of Glycosylated Forms, and Homeostasis of Calcitonin in Human Cancer Cells. Anal Chem 89, 6992-6999, doi: 10.1021/acs.analchem.7b00457 (2017).

  • 15 Bennett, E. P. et at Control of mucin-type O-glycosylation: A classification of the polypeptide GalNAc-transferase gene family. Glycobiology 22, 736-756, doi:Doi 10.1093/Glycob/Cwr182 (2012).

  • 16 Topaz, O. et at Mutations in GALNT3, encoding a protein involved in O-linked glycosylation, cause familial tumoral calcinosis. Nat Genet 36, 579-581, doi:10.1038/ng1358 (2004).

  • 17 Kato, K. et at Polypeptide GalNAc-transferase T3 and familial tumoral calcinosis. Secretion of fibroblast growth factor 23 requires O-glycosylation. J Biol Chem 281, 18370-18377, doi:M602469200 [pii]10.1074/jbe.M602469200 (2006).

  • 18 Schjoldager, K. T. et at Probing isoform-specific functions of polypeptide GalNAc-transferases using zinc finger nuclease glycoengineered SimpleCells. Proc Natl Acad Sci U SA 109, 9893-9898, doi: 10.1073/pnas. 1203563109 (2012).

  • 19 Chretien, M. & Mbikay, M. 60 YEARS OF POMC: From the prohormone theory to pro-opiomelanocortin and to proprotein convertases (PCSK1 to PCSK9). J Mol Endocrinol 56, T49-62, doi: 10.1530/JME-15-0261 (2016).

  • 20 Walsh, G. & Jefferis, R. Post-translational modifications in the context of therapeutic proteins. Nature biotechnology 24, 1241-1252, doi:10.1038/nbt1252 (2006).

  • 21 Tenno, M. et al. Initiation of protein O glycosylation by the polypeptide GalNAcT-1 in vascular biology and humoral immunity. Mol Cell Biol 27, 8783-8796, doi:10.1128/MCB.01204-07 (2007).

  • 22 Tian, E. & Ten Hagen, K. G. A UDP-GalNAc:polypeptide N-acetylgalactosaminyltransferase is required for epithelial tube formation. J Biol Chem 282, 606-614, doi: 10.1074/jbe.M606268200 (2007).

  • 23 Freire-de-Lima, L. et al. Involvement of O-glycosylation defining oncofetal fibronectin in epithelial-mesenchymal transition process. Proc Natl Acad Sci USA 108, 17690-17695, doi: 10.1073/pnas. 1115191108 (2011).

  • 24 Schjoldager, K. T. & Clausen, H. Site-specific protein O-glycosylation modulates proprotein processing—deciphering specific functions of the large polypeptide GalNAc-transferase gene family. Biochim Biophys Acta 1820, 2079-2094, doi:10.1016/j.bbagen.2012.09.014 (2012).

  • 25 Tagliabracci, V. S. et al. Dynamic regulation of FGF23 by Fam20C phosphorylation, GalNAc-T3 glycosylation, and furin proteolysis. Proc Natl Acad Sci USA 111, 5520-5525, doi: 10.1073/pnas. 1402218111 (2014).

  • 26 Goth, C. K. et at. A systematic study of modulation of ADAM-mediated ectodomain shedding by site-specific O-glycosylation. Proc Natl Acad Sci USA 112, 14623-14628, doi: 10.1073/pnas. 1511175112 (2015).

  • 27 Norden, R. et al. O-linked glycosylation of the mucin domain of the herpes simplex virus type 1-specific glycoprotein gC-1 is temporally regulated in a seed-and-spread manner. The Journal of biological chemistry 290, 5078-5091, doi:10.1074/jbc.M114.616409 (2015).

  • 28 Schjoldager, K. T. et al. Deconstruction of O-glycosylation—GalNAc-T isoforms direct distinct subsets of the O-glycoproteome. EMBO Rep 16, 1713-1722, doi: 10.15252/embr.201540796 (2015).

  • 29 Tian, E. et al. Galnt1 is required for normal heart valve development and cardiac function. PLoS One 10, e0115861, doi:10.1371/journal.pone.0115861 (2015).

  • 30 Akasaka-Manya, K. et al. Excess APP O-glycosylation by GalNAc-T6 decreases Abeta production. Journal of biochemistry 161, 99-111, doi: 10.1093/jb/mvw056 (2017).

  • 31 Lin, J. et al. GALNT6 Stabilizes GRP78 Protein by O-glycosylation and Enhances its Activity to Suppress Apoptosis Under Stress Condition. Neoplasia (New York, N.Y. 19, 43-53, doi: 10.1016/j.neo.2016.11.007 (2017).

  • 32 Goth, C. K. et al. Site-specific O-glycosylation by Polypeptide GalNAc-transferase T2 Co-regulates Beta1-adrenergic Receptor N-terminal Cleavage. J Biol Chem, doi: 10.1074/j be. Ml 16.730614 (2017).

  • 33 Schjoldager, K. T. B. G. et al. A Systematic Study of Site-specific GalNAc-type O-Glycosylation Modulating Proprotein Convertase Processing. Journal of Biological Chemistry 286, 40122-40132, doi:10.1074/jbc.M111.287912 (2011).

  • 34 Schjoldager, K. T. B. G. et al. O-Glycosylation Modulates Proprotein Convertase Activation of Angiopoietin-like Protein 3 POSSIBLE ROLE OF POLYPEPTIDE GalNAc-TRANSFERASE-2 IN REGULATION OF CONCENTRATIONS OF PLASMA LIPIDS. Journal of Biological Chemistry 285, 36293-36303, doi:10.1074/jbc.M110.156950 (2010).

  • 35 Pedersen, N. B. et al. Low density lipoprotein receptor class a repeats are o-glycosylated in linker regions. J Biol Chem 289, 17312-17324, doi:10.1074/jbc.M113.545053 (2014).

  • 36 Wang, S. et al. Site-specific O-glycosylation of members of the low-density lipoprotein receptor superfamily enhances ligand interactions. J Biol Chem, doi: 10.1074/j be. Ml 17.817981 (2018).

  • 37 Pedragosa-Badia, X., Stichel, J. & Beck-Sickinger, A. G. Neuropeptide Y receptors: how to get subtype selectivity. Front Endocrinol (Lausanne) 4, 5, doi: 10.3389/fendo.2013.00005 (2013).

  • 38 Tan, T. et al. The effect of a subcutaneous infusion of GLP-1, OXM and PYY on Energy intake and Expenditure in Obese volunteers. J Clin Endocrinol Metab, doi:10.1210/jc.2017-00469 (2017).

  • 39 van Deursen, V. M. et al. Nesiritide, renal function, and associated outcomes during hospitalization for acute decompensated heart failure: results from the Acute Study of Clinical Effectiveness of Nesiritide and Decompensated Heart Failure (ASCEND-HF). Circulation 130, 958-965, doi:10.1161/CIRCULATIONAHA.113.003046 (2014).

  • 40 Boerrigter, G. & Burnett, J. C., Jr. Natriuretic peptides renal protective after all? J Am Coll Cardiol 58, 904-906, doi:10.1016/j.jacc.2010.12.053 (2011).

  • 41 Hata, N. et al. Effects of carperitide on the long-term prognosis of patients with acute decompensated chronic heart failure: the PROTECT multicenter randomized controlled study. Circ J 72, 1787-1793 (2008).

  • 42 Fosgerau, K. & Hoffmann, T. Peptide therapeutics: current status and future directions. Drug Discov Today 20, 122-128, doi:10.1016/j.drudis.2014.10.003 (2015).

  • 43 Yi, J., Warunek, D. & Craft, D. Degradation and Stabilization of Peptide Hormones in Human Blood Specimens. PLoS One 10, e0134427, doi: 10.1371/journal.pone.0134427 (2015).

  • 44 Chapter, M. C. et at. Chemical modification of class II G protein-coupled receptor ligands: frontiers in the development of peptide analogs as neuroendocrine pharmacological therapies. Pharmacol Ther 125, 39-54, doi:10.1016/j.pharmthera.2009.07.006 (2010).

  • 45 DeFrees, S. et al. GlycoPEGylation of recombinant therapeutic proteins produced in Escherichia coli. Glycoblology 16, 833-843, doi:10.1093/glycob/cwl004 (2006).

  • 46 Meurer, J. A., Colca, J. R., Burton, P. S. & Elhammer, A. P. Properties of native and in vitro glycosylated forms of the glucagon-like peptide-1 receptor antagonist exendin(9-39). Metabolism: clinical and experimental 48, 716-724 (1999).

  • 47 Egleton, R. D. et al. Improved blood-brain barrier penetration and enhanced analgesia of an opioid peptide by glycosylation. J Pharmacol Exp Ther 299, 967-972 (2001).

  • 48 Kihlberg, J. et al. Glycosylated peptide hormones: pharmacological properties and conformational studies of analogues of [1-desamino,8-D-arginine]vasopressin. J Med Chem 38, 161-169 (1995).

  • 49 Ueda, T. et al. Chemoenzymatic synthesis of glycosylated glucagon-like peptide 1: effect of glycosylation on proteolytic resistance and in vivo blood glucose-lowering activity. Journal of the American Chemical Society 131, 6237-6245, doi:10.1021/ja900261 g (2009).

  • 50 Pedersen, S. L., Steentoft, C., Vrang, N. & Jensen, K. J. Glyco-scan: varying glycosylation in the sequence of the peptide hormone PYY3-36 and its effect on receptor selectivity. Chembiochem 11, 366-374, doi:10.1002/cbic.200900661 (2010).

  • 51 Sato, M. et al. Glycoinsulins: dendritic sialyloligosaccharide-displaying insulins showing a prolonged blood-sugar-lowering activity. Journal of the American Chemical Society 126, 14013-14022, doi: 10.1021/ja046426l (2004).

  • 52 Dangoor, D. et al. Novel glycosylated VIP analogs: synthesis, biological activity, and metabolic stability. J Pept Sci 14, 321-328, doi: 10.1002/psc.932 (2008).

  • 53 Semenov, A. G. et al. Processing of pro-brain natriuretic peptide is suppressed by O-glycosylation in the region close to the cleavage site. Clin Chem 55, 489-498, doi: 10.1373/clinchem.2008.113373 (2009).

  • 54 Duguay, S. J. et al. Post-translational processing of the insulin-like growth factor-2 precursor. Analysis of O-glycosylation and endoproteolysis. The Journal of biological chemistry 273, 18443-18451 (1998).

  • 55 Birch, N. P., Estivariz, F. E., Bennett, H. P. & Loh, Y. P. Differential glycosylation of N-POMC1-77 regulates the production of gamma 3-MSH by purified pro-opiomelanocortin converting enzyme. A possible mechanism for tissue-specific processing. FEBS Lett 290, 191-194 (1991).

  • 56 Patzelt, C. & Weber, B. Early O-glycosidic glycosylation of proglucagon in pancreatic islets: an unusual type of prohormonal modification. The EMBO journal 5, 2103-2108 (1986).

  • 57 Luckenbill, K. N. et al. Cross-reactivity of BNP, NT-proBNP, and proBNP in commercial BNP and NT-proBNP assays: preliminary observations from the IFCC Committee for Standardization of Markers of Cardiac Damage. Clin Chem 54, 619-621, doi: 10.1373/clinchem.2007.097998 (2008).

  • 58 Stovold, R. et al. Biomarkers for small cell lung cancer: neuroendocrine, epithelial and circulating tumour cells. Lung Cancer 76, 263-268, doi:10.1016/j.lungcan.2011.11.015 (2012).

  • 59 Wang, J. et al. Identification of kininogen-1 as a serum biomarker for the early detection of advanced colorectal adenoma and colorectal cancer. PLoS One 8, e70519, doi:10.1371/journal.pone.0070519 (2013).

  • 60 Goetze, J. P., Alehagen, U., Flyvbjerg, A. & Rehfeld, J. F. Chromogranin A as a biomarker in cardiovascular disease. Biomark Med 8, 133-140, doi:10.2217/bmm.13.102 (2014).

  • 61 Nielsen, S. J., Iversen, P., Rehfeld, J. F., Jensen, H. L. & Goetze, J. P. C-type natriuretic peptide in prostate cancer. APMIS 117, 60-67, doi: 10.1111/j. 1600-0463.2008.00016.x 60 (2009).

  • 62 Ju, T., Aryal, R. P., Stowell, C. J. & Cummings, R. D. Regulation of protein O-glycosylation by the endoplasmic reticulum-localized molecular chaperone Cosmc. J Cell Biol 182, 531-542, doi:10.1083/jcb.200711151 (2008).

  • 63 Steentoft, C. et al. Mining the O-glycoproteome using zinc-finger nuclease-glycoengineered SimpleCell lines. Nat Methods 8, 977-982, doi:10.1038/nmeth.1731 (2011).

  • 64 Steentoft, C. et al. Precision genome editing: A small revolution for glycobiology. Glycobiology 24, 663-680, doi: 10.1093/glycob/cwu046 (2014).

  • 65 Yamane-Ohnuki, N. et at Establishment of FUT8 knockout Chinese hamster ovary cells: an ideal host cell line for producing completely defucosylated antibodies with enhanced antibody-dependent cellular cytotoxicity. Biotechnol Bioeng 87, 614-622, doi: 10.1002/bit. 20151 (2004).

  • 66 Malphettes, L. et at Highly efficient deletion of FUT8 in CHO cell lines using zinc-finger nucleases yields cells that produce completely nonfucosylated antibodies. Biotechnol Bioeng 106, 774-783, doi: 10.1002/bit.22751 (2010).

  • 67 Ronda, C. et at Accelerating genome editing in CHO cells using CRISPR Cas9 and CRISPy, a web-based target finding tool. Biotechnol Bioeng 111, 1604-1616, doi: 10.1002/bit.25233 (2014).

  • 68 El Mai, N., Donadio-Andrei, S., Iss, C., Calabro, V. & Ronin, C. Engineering a human-like glycosylation to produce therapeutic glycoproteins based on 6-linked sialylation in CHO cells. Methods in molecular biology 988, 19-29, doi:10.1007/978-1-62703-327-5_2 (2013).

  • 69 Sewell, R. et at The ST6GalNAc-I sialyltransferase localizes throughout the Golgi and is responsible for the synthesis of the tumor-associated sialyl-Tn O-glycan in human breast cancer. The Journal of biological chemistry 281, 3586-3594, doi: 10.1074/jbc.M511826200 (2006).

  • 70 Torang, S. et at In vivo and in vitro degradation of peptide YY3-36 to inactive peptide YY3-34 in humans. Am J Physiol Regul Integr Comp Physiol 310, R866-874, doi: 10.1152/ajpregu.00394.2015 (2016).

  • 71 Steentoft, C. et at Precision mapping of the human O-GalNAc glycoproteome through SimpleCell technology. The EMBO journal 32, 1478-1488, doi:10.1038/emboj.2013.79 (2013).

  • 72 Levery, S. B. et at Advances in mass spectrometry driven O-glycoproteomics. Biochim Biophys Acta, doi:10.1016/j.bbagen.2014.09.026 (2014).

  • 73 Schietinger, A. et at A mutant chaperone converts a wild-type protein into a tumor-specific antigen. Science 314, 304-308, doi:10.1126/science.1129200 (2006).

  • 74 Yabu, M., Korekane, H. & Miyamoto, Y. Precise structural analysis of O-linked oligosaccharides in human serum. Glycobiology 24, 542-553, doi:10.1093/glycob/cwu022 (2014).

  • 75 Locke, A. E. et at Genetic studies of body mass index yield new insights for obesity biology. Nature 518, 197-206, doi:10.1038/nature14177 (2015).

  • 76 Zougman, A. et at Integrated analysis of the cerebrospinal fluid peptidome and proteome. Journal of proteome research 7, 386-399, doi:10.1021/pr070501k (2008).

  • 77 Lottspeich, F., Kellermann, J., Henschen, A., Foertsch, B. & Muller-Esterl, W. The amino acid sequence of the light chain of human high-molecular-mass kininogen. European journal of biochemistry/FEBS 152, 307-314 (1985).

  • 78 Makimattila, S., Fineman, M. S. & Yki-Jarvinen, H. Deficiency of total and nonglycosylated amylin in plasma characterizes subjects with impaired glucose tolerance and type 2 diabetes. J Clin Endocrinol Metab 85, 2822-2827, doi: 10.1210/jcem.85.8.6721 (2000).

  • 79 Schellenberger, U. et at The precursor to B-type natriuretic peptide is an O-linked glycoprotein. Arch Biochem Biophys 451, 160-166, doi:10.1016/j.abb.2006.03.028 (2006).

  • 80 Pal, K., Melcher, K. & Xu, H. E. Structure and mechanism for recognition of peptide hormones by Class B G-protein-coupled receptors. Acta Pharmacol Sin 33, 300-311, 55 doi:10.1038/aps.2011.170 (2012).

  • 81 Naot, D. & Cornish, J. The role of peptides and receptors of the calcitonin family in the regulation of bone metabolism. Bone 43, 813-818, doi: 10.1016/j.bone.2008.07.003 (2008).

  • 82 Muff, R., Born, W. & Fischer, J. A. Calcitonin, calcitonin gene-related peptide, adrenomedullin and amylin: homologous peptides, separate receptors and overlapping biological actions. European journal of endocrinology/European Federation of Endocrine Societies 133, 17-20 (1995).

  • 83 Tagashira, M., Iijima, H. & Toma, K. An NMR study of O-glycosylation induced structural changes in the alpha-helix of calcitonin. Glycoconj J 19, 43-52 (2002).

  • 84 Fisone, G. et al. N-terminal galanin-(1-16) fragment is an agonist at the hippocampal galanin receptor. Proc Natl Acad Sci USA 86, 9588-9591 (1989).

  • 85 Cabrele, C. & Beck-Sickinger, A. G. Molecular characterization of the ligand-receptor interaction of the neuropeptide Y family. J Pept Sci 6, 97-122, doi: 10.1002/(SICI)1099-1387(200003)6:3<97::AID-PSC236>3.0.CO;2-E (2000).

  • 86 Nicole, P. et al. Identification of key residues for interaction of vasoactive intestinal peptide with human VPAC1 and VPAC2 receptors and development of a highly selective VPAC1 receptor agonist. Alanine scanning and molecular modeling of the peptide. J Biol Chem 275, 24003-24012, doi: 10.1074/jbc.M002325200 (2000).

  • 87 Cerda-Reverter, J. M. & Larhammar, D. Neuropeptide Y family of peptides: structure, anatomical expression, function, and molecular evolution. Biochem Cell Biol 78, 371-392 (2000).

  • 88 Scarborough, R. M. et al. D-amino acid-substituted atrial natriuretic peptide analogs reveal novel receptor recognition requirements. J Biol Chem 263, 16818-16822 (1988).

  • 89 Campbell, D. J. Long-term neprilysin inhibition—implications for ARNIs. Nat Rev Cardiol 14, 171-186, doi:10.1038/nrcardio.2016.200 (2017).

  • 90 Lambeir, A. M., Durinx, C., Scharpe, S. & De Meester, I. Dipeptidyl-peptidase IV from bench to bedside: an update on structural properties, functions, and clinical aspects of the enzyme DPP IV. Crit Rev Clin Lab Sci 40, 209-294, doi:10.1080/713609354 (2003).

  • 91 Nauck, M. Incretin therapies: highlighting common features and differences in the modes of action of glucagon-like peptide-1 receptor agonists and dipeptidyl peptidase-4 inhibitors. Diabetes Obes Metab 18, 203-216, doi: 10.1111/dom. 12591 (2016).

  • 92 Deacon, C. F. et al. Dipeptidyl peptidase IV resistant analogues of glucagon-like peptide-1 which have extended metabolic stability and improved biological activity. Diabetologia 41, 271-278, doi: 10.1007/s001250050903 (1998).

  • 93 Plamboeck, A., Holst, J. J., Carr, R. D. & Deacon, C. F. Neutral endopeptidase 24.11 and dipeptidyl peptidase IV are both mediators of the degradation of glucagon-like peptide 1 in the anaesthetised pig. Diabetologia 48, 1882-1890, doi:10.1007/s00125-005-1847-7 (2005).

  • 94 Hupe-Sodmann, K. et al. Characterisation of the processing by human neutral endopeptidase 24.11 of GLP-1(7-36) amide and comparison of the substrate specificity of the enzyme for other glucagon-like peptides. Regulatory peptides 58, 149-156 (1995).

  • 95 Torang, S., Veedfald, S., Rosenkilde, M. M., Hartmann, B. & Holst, J. J. The anorexic hormone Peptide YY3-36 is rapidly metabolized to inactive Peptide YY3-34 in vivo. Physiol Rep 3, doi: 10.14814/phy2.12455 (2015).


Claims
  • 1. A formulation comprising at least one molecule of a peptide hormone species exhibiting a specific glycosylation pattern of one or more O-linked glycan(s) at a predetermined specific site of said peptide hormone species, wherein specific, defined glycosylation pattern means that the each molecule of said peptide hormone in said pharmaceutical formulation displays structural homogeneity with respect to the site of glycan attachment and/or with respect to the glycan attachment.
  • 2. A formulation comprising at least one molecule of a peptide hormone species according to claim 1, wherein said peptide hormone species is selected from the group of sequences comprising SEQ ID NOs: 1, 2, 3, 5, 6, 7, 14, 15, 16, 21, 22, 23, 24, 25, 36, 37, 38, 39, 40, 41, 42, 43, 45, 46, 47, 48, 49, 51, 52, 54, 55, 56, 57, 72, 73, 74, 76, 79, 8, 81, 83, 84, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 106, 107, 108, 109, 113, 116, 117, 118, 119, 120, 130, 131, 135, 136, 143, 144, 147, 163, 164, 167, 168, 170, 184, 185, 186, 188, 189, 190, 191, 192, 204, 215, 217, 219, 222, 227, 229, 230, 231, 233, 234, 236, 252, 260, 262, 267, 272, and/or 279.
  • 3. A formulation comprising at least one molecule of a peptide hormone species according to claim 1, wherein said peptide hormone species is selected from the group of sequences comprising SEQ ID NOs: 6, 7, 21, 22, 23, 24, 72, 74, 92, 95, 97, 99, 106, 107, 108, 116, 117, 118, 147, 163, 167, 185, 186, and/or 188.
  • 4. A formulation comprising at least one molecule of a peptide hormone species according to claim 1, wherein said peptide hormone species is selected from the group of sequences comprising SEQ ID NOs: 72, 95, 97, 106, 108, 147, 185, and/or 188.
  • 5. A formulation comprising at least one molecule of a peptide hormone species according to claim 1, wherein said peptide hormone species is SEQ ID NO: 147.
  • 6. A formulation comprising at least one molecule of a peptide hormone species according to claim 1, wherein said predetermined specific site of said peptide hormone is within the receptor-binding region.
  • 7. A formulation comprising at least one molecule of a peptide hormone species according to claim 1, wherein said peptide hormone exhibiting an specific glycosylation pattern of one or more O-linked glycan(s) at a predetermined specific site of said peptide hormone is obtainable by recombinant production using a host cell in which one or more glycosyltransferase gene(s) is/are inactivated or downregulated by inactivation and/or downregulation of one or more gene(s) selected from COSMC and C1GALT1; and/or by inactivation and/or downregulation of one or more gene(s) selected from GCNT3, GCNT4, B3GNT6, and/or by inactivation and/or downregulation and/or upregulation/activation of one or more gene(s) selected from ST6GALNAC1-6, ST3GAL1, GCNT3, GCNT4, and/or B3GNT6.
  • 8. A formulation comprising at least one molecule of a peptide hormone species according to claim 1, wherein said peptide hormone species exhibits a specific glycosylation pattern of one or more O-linked glycan(s) at a predetermined specific site of said peptide hormone and, wherein the one or more O-glycan structures include a glycan structure selected from a core1, core2, core3, or core4 structure with optional elongation and sialic acid capping, wherein optionally the first monosaccharide attached in the synthesis of O-linked glycans is N-acetyl-galactosamine and wherein a core1 structure may be obtained by the addition of galactose, and wherein a core2 structure may be obtained by the addition of N-acetyl-glucosamine to the N-acetyl-galactosamine of the core1 structure and wherein the core3 structures may be obtained by the addition of a single N-acetyl-glucosamine to the first monosaccharide N-acetyl-galactosamin and core4 structures may be obtained by the addition of a second N-acetyl-glucosamine to the core3 structure.
  • 9. A formulation comprising at least one molecule of a peptide hormone species according to claim 1, wherein the one or more O-glycan structures include a Tn (GalNAc) structure.
  • 10. A formulation comprising at least one molecule of a peptide hormone species according to claim 1, wherein the one or more O-glycan structures include Tn (GalNAc) structure with one sialic acid capping (alpha2-6).
  • 11. A formulation comprising at least one molecule of a peptide hormone species according to claim 1, wherein the one or more O-glycan structures include the core1 structures with one sialic acid capping (alpha2-6).
  • 12. A formulation comprising at least one molecule of a peptide hormone species according to claim 1, wherein the one or more O-glycan structures include the core1 structures with one sialic acid capping (alpha 2-3)
  • 13. A formulation comprising at least one molecule of a peptide hormone species according claim 1, wherein the one or more O-glycan structures include the core1 structures with two sialic acids capping (alpha 2-3 and alpha 2-6).
  • 14. A formulation according to claim 1, wherein said formulation is a pharmaceutical formulation.
  • 15. A formulation comprising at least one molecule of a peptide hormone species as defined in claim 1, wherein said peptide hormone species comprises one or more O-linked glycan at a site indicated in and one of Tables 6A to 6E, particularly, wherein the site is a site in a human peptide hormone, more particularly, wherein the site is a conserved site in a human peptide hormone.
  • 16. A formulation comprising at least one molecule of a peptide hormone species as defined in claim 15, wherein said peptide hormone species comprises one or more O-linked glycan at a site indicated in Table 6A, particularly, wherein the site is a site in a human peptide hormone, more particularly, wherein the site is a conserved site in a human peptide hormone.
  • 17. A formulation comprising at least one molecule of a peptide hormone species as defined in claim 15, wherein said peptide hormone species comprises one or more O-linked glycan at a site of a peptide hormone indicated in Table 6B, particularly, wherein the site is a site in a human peptide hormone, more particularly, wherein the site is a conserved site in a human peptide hormone.
  • 18. A formulation comprising at least one molecule of a peptide hormone species as defined in claim 15, wherein said peptide hormone species comprises one or more O-linked glycan at a site of a peptide hormone indicated in Table 6C, particularly, wherein the site is a site in a human peptide hormone, more particularly, wherein the site is a conserved site in a human peptide hormone.
  • 19. A formulation comprising at least one molecule of a peptide hormone species as defined in claim 15, wherein said peptide hormone species comprises one or more O-linked glycan at a site of a peptide hormone indicated in Table 6C, particularly, wherein the site is a site in a human peptide hormone, more particularly, wherein the site is a conserved site in a human peptide hormone.
  • 20. A formulation comprising at least one molecule of a peptide hormone species as defined in claim 15, wherein said peptide hormone species comprises one or more O-linked glycan at a site of a peptide hormone indicated in Table 6D, particularly, wherein the site is a site in a human peptide hormone, more particularly, wherein the site is a conserved site in a human peptide hormone.
  • 21. A modified peptide hormone comprising one or more O-linked glycan at a predetermined specific site selected from the group comprising the peptide hormones indicated in 6A, particularly, wherein the site is a site in a human peptide hormone, more particularly, wherein the site is a conserved site in a human peptide hormone, and wherein said peptide hormone is selected from the group comprising SEQ ID Nos: 1, 2, 3, 5, 6, 7, 14, 15, 16, 21, 22, 23, 24, 25, 36, 37, 38, 39, 40, 41, 42, 43, 45, 46, 47, 48, 49, 51, 52, 54, 55, 56, 57, 72, 73, 74, 76, 79, 8, 81, 83, 84, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 106, 107, 108, 109, 113, 116, 117, 118, 119, 120, 130, 131, 135, 136, 143, 144, 147, 163, 164, 167, 168, 170, 184, 185, 186, 188, 189, 190, 191, 192, 204, 215, 217, 219, 222, 227, 229, 230, 231, 233, 234, 236, 252, 260, 262, 267, 272, and/or 279.
  • 22. The modified peptide hormone comprising one or more O-linked glycan at a predetermined specific site selected from the group comprising the peptide hormones indicated in 6B, particularly, wherein the site is a site in a human peptide hormone, more particularly, wherein the site is a conserved site in a human peptide hormone, and wherein said peptide hormone is selected from the group comprising SEQ ID Nos: 6, 7, 21, 22, 23, 24, 72, 74, 92, 95, 97, 99, 106, 107, 108, 116, 117, 118, 147, 163, 167, 185, 186, and/or 188.
  • 23. The modified peptide hormone comprising one or more O-linked glycan at a predetermined specific site selected from the group comprising the peptide hormones indicated in 6C, particularly, wherein the site is a site in a human peptide hormone, more particularly, wherein the site is a conserved site in a human peptide hormone, and wherein said peptide hormone is selected from the group comprising SEQ ID Nos: 72, 95, 97, 106, 108, 147, 185, and/or 188.
  • 24. The modified peptide hormone comprising one or more O-linked glycan at a predetermined specific site selected from the group comprising the peptide hormones indicated in 6D, particularly, wherein the site is a site in a human peptide hormone, more particularly, wherein the site is a conserved site in a human peptide hormone, and wherein said peptide hormone is depicted in SEQ ID NO: 147.
  • 25. The modified peptide hormone according to claim 21, wherein the one or more O-glycan structures include a glycan structure selected from a core1, core2, core3, or core4 structure with sialic acid capping, wherein the one or more O-glycan structures include a glycan structure selected from a core1, core2, core3, or core4 structure with optional elongation and sialic acid capping, wherein optionally the first monosaccharide attached in the synthesis of O-linked glycans is N-acetyl-galactosamine and wherein a core1 structure may be obtained by the addition of galactose, and wherein a core2 structure may be obtained by the addition of N-acetyl-glucosamine to the N-acetyl-galactosamine of the core1 structure and wherein the core3 structures may be obtained by the addition of a single N-acetyl-glucosamine to the first monosaccharide N-acetyl-galactosamin and core4 structures may be obtained by the addition of a second N-acetyl-glucosamine to the core3 structure.
  • 26. The modified peptide hormone according to claim 21, wherein the one or more O-glycan structures include a Tn (GalNAc) structure.
  • 27. The modified peptide hormone according to claim 21, wherein the one or more O-glycan structures include Tn (GalNAc) structure with one sialic acid capping (alpha2-6).
  • 28. The modified peptide hormone according to claim 21, wherein the one or more O-glycan structures include the core1 structures with one sialic acid capping (alpha2-6).
  • 29. The modified peptide hormone according to claim 21, wherein the one or more O-glycan structures include the core1 structures with one sialic acid capping (alpha 2-3)
  • 30. The modified peptide hormone according to claim 21, wherein the one or more O-glycan structures include the core1 structures with two sialic acids capping (alpha 2-3 and alpha 2-6).
Priority Claims (1)
Number Date Country Kind
17204897.7 Dec 2017 EP regional
PCT Information
Filing Document Filing Date Country Kind
PCT/EP2018/083235 11/30/2018 WO 00