Percutaneous magnetic gastrostomy

Abstract
A system and method places a percutaneous gastrostomy device into a body cavity of a patient using a magnetic gastrostomy tube and a medical detection sensing device. The magnetic gastrostomy tube has a ferromagnetic element attached to its distal end. Various embodiments allow a needle to be passed from the magnetic detection sensing device outside the patient toward a magnetic gastrostomy tube inside the patient or, alternatively, from the magnetic gastrostomy tube inside the patient toward the magnetic detection sensing device outside the patient. After a needle makes a hole between the outside of the patient and the body cavity, a medical wire may be passed through the hole, and the medical wire can then be used to place the percutaneous gastrostomy device.
Description
TECHNICAL FIELD

The present disclosure generally relates to the medical field and more particularly but not exclusively relates to the placement of feeding tubes or catheters into the body of a patient.


BACKGROUND INFORMATION

In many medical situations, it is necessary to penetrate the solid or semi-solid biological matter of the human body at substantially precise locations. For example, one common medical practice is placement of a percutaneous endoscopic gastrostomy (PEG) tube.


PEG is a procedure used to put a tube into the stomach of a patient who cannot swallow liquids and solids. FIG. 1A illustrates a PEG tube 112 in place in a human body. In some instances, the tube is instead placed into the small bowel via a gastrostomy. PEG is used in a wide variety of circumstances and generally is effective for helping patients. Traditionally, a PEG tube is placed using endoscopic guidance or x-ray guidance. This step is shown in FIG. 1B. For example, in a traditional PEG procedure to place a PEG tube into a patient's stomach 100, an endoscope is used to observe that the patient's esophagus is without obstruction or diverticulae or for other medical reasons, such as to avoid interference with the pylorus 102. An endoscope is also used to inspect the stomach and inflate the stomach to see that the area selected for the gastrostomy can be distended. In this manner, a medical practitioner (who may be an endoscopist) uses an endoscope to select an area of the lower body of the stomach or antrum (the gastric wall) that is particularly suitable for the PEG tube placement. This step is shown in FIG. 1C.


In another step of the traditional placement of a PEG tube procedure, the endoscopist shines the endoscopic light out from the gastric lumen in a darkened room so that a second medical practitioner (who may be any person trained in such medical procedures) can see the light and identify that it is in a reasonable location of the patient's body, e.g., not above the ribs. FIG. 2 shows how an endoscopic light may be seen to varying degree through the skin of a patient.



FIG. 3 shows another step in the traditional placement of a PEG tube in which the endoscopist will watch the second medical practitioner push a finger into the stomach wall and hopefully see the indentation 104 in the area selected by the endoscopist for the PEG tube placement.



FIG. 4A shows another step in the procedure of placing a PEG tube. If the location of the indentation is suitable, and especially if the indentation is clear, this spot is selected. The assistant then makes a small incision in the skin and inserts a needle 106 into the patient in the area in which the endoscope's light was seen.



FIG. 4B shows another step in the traditional placement of a PEG tube in which the endoscopist will watch a needle 106 as it is pushed through the patient's skin and then through the abdominal wall, and the endoscopist will watch the needle tip enter the stomach in the selected area.



FIG. 5 shows another step in the traditional placement of a PEG tube in which the endoscopist will see a wire 108 pass through the needle 106 into the gastric lumen.



FIG. 6 shows another step in the traditional placement of a PEG tube in which the endoscopist will use an endoscopic snare 110 to grasp the wire 108 firmly. The endoscopist uses the snare 110, passed through the biopsy channel of the endoscope, to firmly grab the wire 108. The endoscope and snare 110 are then withdrawn via the patient's mouth, thereby pulling the wire 108 with it. The part of the wire 108 that extends out from the patient's mouth is subsequently attached to a PEG tube.



FIG. 7 shows another step in the traditional placement of a PEG tube in which the endoscopist has withdrawn the entire endoscope, including the snare 110 holding the wire 108 that was passed through the needle 106, and the wire that passes through the needle extends out of the patient's mouth.


Once the wire 108 is successfully passed through the patient, a PEG tube 112 is secured to the end of the wire extending from the patient's mouth. The PEG tube 112 is guided into the patient's mouth and pulled into the patient's stomach 100 as the wire 108 is pulled from the end that passed through the needle 106. Once the PEG tube 112 is in the stomach, it is pulled partially through the gastric and abdominal walls until the bumper of the PEG tube is snug against the gastric mucosa.



FIG. 8A shows another step in the traditional placement of a PEG tube 112 in which an endoscope is again passed into a patient and subsequently used to visually observe that the bumper of the PEG tube 112 is snug against the gastric mucosa.


In other traditional PEG tube placement procedures, endoscopy is not used at all. Instead, x-ray is used to help select a particularly suitable location in the patient's body (e.g., the stomach) for the introduction of the PEG tube. X-ray is used for guiding the PEG tube placement and for inspecting the PEG tube's final position.


BRIEF SUMMARY

The present embodiments address several problems of traditional PEG placement by using new procedures and devices for placement of medical equipment.


One aspect provides an apparatus that includes a flexible piece of medical tubing having a proximal end and a distal end, an element affixed to the distal end, the element having ferromagnetic properties, and a first lumen extending lengthwise through the flexible tube, the lumen configured to pass matter into the patient.


Another aspect provides a system for placing a medical device through a patient having medical tube means for passing matter into the patient, ferromagnetic means affixed to a distal end of the medical tube means for identifying a substantially precise location of the distal end, detection means for locating the distal end of the medical tube means, means for passing a medical wire between a first location occupied by the detection means and a second location occupied by the ferromagnetic means, and means for attaching the medical device to the medical wire.


Another aspect provides an endoscopic-like controllable guide tube apparatus having a flexible tube free of optics, suction, irrigation, and light sources, a channel configured to pass a magnetic tipped medical device, and a control operative to orient a distal end of the flexible tube.


Another aspect provides a magnetic nasogastric tube apparatus having a flexible tube having a proximal end and a distal end, wherein the flexible tube is torsionally rigid, an element affixed to the distal end, the element having ferromagnetic properties, and at least one indicator located near the proximal end operative to communicate the orientation of the distal end relative to the indicator.


Another aspect provides a magnetic gastrostomy placement tube apparatus having a torsionally rigid flexible tube having a proximal end and a distal end, an element affixed to the distal end, the element having ferromagnetic properties, at least one indicator located near the proximal end of the torsionally rigid flexible tube, the indicator operative to communicate an orientation of the distal end relative to the indicator, a channel formed lengthwise along the torsionally rigid flexible tube, the channel operative to pass a guide wire, and an outer surface of the magnetic gastrostomy placement tube configured to be sterilizable.


Another aspect provides a method for placing a magnetic nasogastric tube into a patient having the steps of verifying that the patient's esophagus is unobstructed, placing a distal end of the magnetic nasogastric tube into the patient's mouth, advancing the magnetic nasogastric tube down the patient's throat, advancing the magnetic nasogastric tube through the patient's esophagus; and advancing the magnetic nasogastric tube into the patient's stomach.


Another aspect provides a method of selecting a location on a patient's body for placing a percutaneous gastrostomy tube having the steps of advancing a magnetic nasogastric tube into a patient, locating a distal end of the magnetic nasogastric tube with a magnetic detection sensor device, and positioning the distal end of the magnetic nasogastric tube into a desirable area by manipulating a proximal end of the magnetic nasogastric tube.


Another aspect provides a method of placing a medical device into a patient's body having the steps of advancing a magnetic nasogastric tube into a patient's stomach, locating a distal end of the magnetic nasogastric tube with a magnetic detection sensor device, positioning the distal end of the magnetic nasogastric tube into a desirable area by manipulating a proximal end of the magnetic nasogastric tube, distending the patient's stomach by passing a gas through the magnetic nasogastric tube, passing a needle through the patient's abdominal wall at about the desirable area, passing a medical wire through the patient's abdominal wall, and using the medical wire to position the medical device into the patient's body.


Another aspect provides a method for using an endoscopic-like controllable guide tube having the steps of passing a flexible tube configured on the endoscopic-like controllable guide tube through the mouth of a patient and into the patient's stomach and passing a magnetic nasogastrostomy tube down a channel in the endoscopic-like controllable guide tube.


Another aspect provides a method for installing a percutaneous gastrostomy tube having the steps of passing a magnetic nasogastrostomy tube into the stomach of a patient, verifying that the gastric cavity allows a distal end of the magnetic nasogastrostomy tube to move freely, pressing the distal end of the magnetic nasogastrostomy tube against the patient's gastric wall, placing a magnetic detection sensor device against the patient's abdominal skin, detecting the distal end of the magnetic nasogastrostomy tube with the magnetic detection sensor device, and placing the percutaneous gastrostomy tube through the patient's abdominal wall toward the distal end of the magnetic nasogastrostomy tube.





BRIEF DESCRIPTION OF THE SEVERAL VIEWS OF THE DRAWINGS

Non-limiting and non-exhaustive embodiments are described with reference to the following drawings, wherein like labels refer to like parts throughout the various views unless otherwise specified. The sizes and relative positions of elements in the drawings are not necessarily drawn to scale. For example, the shapes of various elements and angles are not drawn to scale, and some of these elements are arbitrarily enlarged and positioned to improve drawing legibility. Further, the particular shapes of the elements as drawn, are not intended to convey any information regarding the actual shape of the particular elements, and have been solely selected for ease of recognition in the drawings. One or more embodiments are described hereinafter with reference to the accompanying drawings in which:



FIG. 1A illustrates a PEG tube in place in a human body.



FIG. 1B shows an endoscope is used to inflate the stomach and select an area for the PEG tube according to the prior art;



FIG. 1C shows, the view an endoscopist sees when looking at the stomach wall;



FIG. 2 shows the light of the endoscope is seen to varying degree on the skin of the patient according to the prior art;



FIG. 3 shows the indentation of the second operator's finger as seen by an endoscopist according to the prior art;



FIG. 4A shows a needle inserted into the patient via a small incision in the area in which the light of the endoscope was seen;



FIG. 4B shows the tip of a needle entering the stomach as seen by an endoscopist according to the prior art;



FIG. 5 shows a medical wire entering the stomach through a needle as seen by an endoscopist according to the prior art;



FIG. 6 shows a snare, passed via the endoscope, grasping the medical wire according to the prior art;



FIG. 7 shows the snare holding the medical wire is pulled out of the patient according to the prior art;



FIG. 8A shows the bumper of a PEG tube against the gastric wall as seen by an endoscopist according to the prior art;



FIG. 8B shows a circumstance where the light from an endoscope shining on the abdominal wall is vaguely seen;



FIG. 8C shows the view an endoscopist sees if the indentation is broad and not clear when seen from the gastric side;



FIG. 8D shows a needle that has missed the stomach, gone deep into the patient, and put the patient in danger of an injured adjacent organ;



FIG. 9 shows a nasogastric (NG) tube with a magnet is passed into the stomach according to an embodiment;



FIG. 10A shows a magnetic detection sensor device “seeing” the magnet in the stomach and assuring that the tip of the tube is actually below the ribs and most likely in the stomach according to an embodiment;



FIG. 10B shows a sensing device covered with a sheath in accordance with one embodiment;



FIG. 11A shows a magnetic detection sensor device locating the magnet and giving a substantially precise distance according to an embodiment;



FIG. 11B shows an image on a magnet sensing device, where X and Y are noted as well as Z, depth, along with the direction of a magnet in accordance with one embodiment;



FIG. 11C shows a target guide on a sensing device's screen along with the depth to the magnet in accordance with one embodiment;



FIG. 12 shows a balloon inflating around or behind the magnet on the magnetic nasogastric tube according to an embodiment;



FIG. 13 shows the operator “seeing” the magnet regardless of whether or not the magnet is inside a balloon, and if the magnet is inside the balloon, the operator knows and can compensate appropriately for distances according to an embodiment;



FIG. 14A shows the needle guide directing the needle to the magnet on the magnetic nasogastric tube with substantial precision according to an embodiment;



FIG. 14B shows a ring of lights of appropriate frequency and sufficient intensity to penetrate the skin and abdomen and to be readily seen on the inside of the patient by the endoscopist, on the bottom of a sensing device along with a guide channel through the ring used to guide the needle insertion in accordance with one embodiment;



FIG. 14C shows a situation where the endoscopist clearly sees the light from the ring of lights on the bottom of a sensing device in the area targeted for needle placement in accordance with one embodiment;



FIG. 14D shows a screen on a sensing device indicating position and depth of a magnet, and the sensing device has a target guide for the guide path of the needle to inform the operator that if the needle is placed into the guide channel and advanced via the guide channel, the needle tip will approach the magnet in accordance with one embodiment;



FIG. 15 shows the needle inserted to the measured distance as determined by the magnetic detector according to an embodiment;



FIG. 16 shows a medical wire with a magnet on the tip is inserted through the needle close to the magnet on the magnetic nasogastric tube according to an embodiment;



FIG. 17 shows the two magnets sticking together according to an embodiment;



FIG. 18 shows an electric current facilitating a determination that the two magnets are touching according to an embodiment;



FIG. 19 shows a magnet-to-magnet junction being removed from the patient through the nasogastric tube or with the magnetic nasogastric tube according to an embodiment;



FIG. 20A shows that correct force is being used to pull the PEG tube up against the gastric mucosa, and the PEG tube is being secured in place according to an embodiment;



FIG. 20B shows that the bumper looks snug endoscopically, but the gastric mucosa is not up against the abdominal wall according to an embodiment;



FIG. 21 shows the magnetic nasogastric tube placed into the stomach, inflating the stomach with a balloon on the tip, and the magnet is pushed against the gastric wall according to an embodiment;



FIG. 22 shows the magnetic detection sensor device determining the distance and location of the magnet on the tip of the magnetic nasogastric tube according to an embodiment;



FIG. 23 shows a needle being passed towards the magnet on the magnetic nasogastric tube by using information presented on the magnetic sensor device according to one or more embodiments; in one embodiment a bomb sight is used to direct the tip; in another embodiment, a needle guide is used to assure the path of the needle to the magnet; in each embodiment, the direction and the distance is known from the magnetic sensor device;



FIG. 24 shows an introducer being passed over the needle or over a wire passed via the needle according to an embodiment;



FIG. 25 shows the gastrostomy tube being passed over the introducer according to an embodiment;



FIG. 26 shows the wire or needle and the introducer being backed out, and the gastrostomy tube left in place after a strain gauge was used to measure pull back force to assure that the bumper was snug according to an embodiment;



FIG. 27 shows the bumper being compressed and stretched as it is introduced, and once in the gastric lumen, it is released and reassumes its shape as a bumper according to an embodiment;



FIG. 28 shows the gastrostomy tube with the stretched bumper being passed down the lumen of the introducer; and after advancing into the stomach, the “stretch” is relaxed, and the bumper forms its shape and can be pulled upon to snugly come up against the gastric mucosa according to an embodiment;



FIG. 29 shows a magnetic nasogastric (MNG) tube is being passed into the stomach according to an embodiment;



FIG. 30 shows the magnetic detector being placed over the left upper quadrant (LUQ) in a spot suitable for a gastrostomy to exit the skin of the abdominal wall according to an embodiment;



FIG. 31 shows the stomach being inflated via a channel of the magnetic nasogastric tube according to an embodiment;



FIG. 32 shows the magnetic detector locating the magnet and determining its orientation and distance to the skin according to an embodiment;



FIG. 33 shows the magnetic nasogastric tube having a balloon, which can be inflated to determine that the area of the magnet is distensible freely; low pressure inflation is used to prevent injury and to be sure that inflation is easy at low pressure according to an embodiment;



FIG. 34 shows a plunger being used to advance the needle towards the magnetic detection sensor device according to an embodiment;



FIG. 35 shows the magnet on the tip of the needle being watched as it moves towards the magnetic sensor according to an embodiment;



FIG. 36 shows the sharp tip of the needle is covered, and the needle being pulled away from the skin pulling more of the medical wire behind the needle with it according to an embodiment;



FIG. 37 shows the plunger and covering tube of the magnetic nasogastric tube (with the deflated balloon if the catheter has a balloon) being removed leaving the wire that was used to push the needle according to an embodiment;



FIG. 38 shows the wire attached to the tapered tip of the gastrostomy tube according to an embodiment;



FIG. 39 shows the tapered end of the gastrostomy tube being passed into the stomach over the wire and allowing the wire to act like a guide wire when the gastrostomy tube is pushed using a pusher tube according to an embodiment;



FIG. 40 shows the gastrostomy tube being pulled into position and a strain gauge used to measure a suitable amount of pulling force on the gastrostomy tube to assure a snug fit according to an embodiment;



FIG. 41 shows the pusher tube being removed with the guide wire when the gastrostomy is in place according to an embodiment;



FIG. 42 shows a balloon orienting the tip of the magnetic nasogastric tube according to an embodiment;



FIG. 43 shows a tripod opening to orient the tip of the magnetic nasogastric catheter according to an embodiment;



FIG. 44 shows controllable guide wires bending the tip of a magnetic nasogastric tube in the desired direction; torque stability allows the orientation of the tip of the magnetic nasogastric tube to be controlled by rotating the tube at the patient's mouth according to an embodiment;



FIG. 45 shows the magnetic nasogastric tube is not “floppy” but can be sufficiently stiff to allow passage of the needle and wire according to an embodiment;



FIG. 46 shows an endoscope directing the tip of the needle in the desired direction and providing the stiffness needed to advance the needle; the endoscope can select the site on the mucosa of the stomach (guided by the magnetic sensor on the outside; and the endoscope can also be pushed against the mucosa to facilitate passage of the needle according to an embodiment;



FIG. 47 shows an embodiment of a guide tube;



FIG. 48 shows a large balloon stabilizing the tube tip by filling up the stomach transiently until a needle is passed according to an embodiment;



FIG. 49 shows a balloon with an internal structure to assure uniform inflation according to an embodiment;



FIG. 50 shows that the guide tube is flexible, but when in position, wires are pulled and the guide tube guiding the magnetic nasogastric tube, magnet, and needle for insertion becomes stiff to facilitate keeping the magnetic nasogastric tube in position, which helps passage of the needle according to an embodiment;



FIG. 51 shows a soft introducer tip for a controllable magnetic nasogastric tube having a groove for a guide wire and a magnetic nasogastric tube having a channel for a guide wire according to an embodiment;



FIG. 52 shows bending the tip of the controllable magnetic nasogastric tube with a control handle; one direction may be all that is used as the torque stability makes the tip bending go in any direction according to an embodiment;



FIG. 53 shows a slide plunger attached to the guide wire for advancing a needle and the plunger can then be released according to an embodiment;



FIG. 54 shows an air port and an insufflation system according to an embodiment wherein a pump, syringe, or bag can be used to inflate the stomach, and a valve for preventing over distension may also be used;



FIG. 55 shows a magnetic nasogastric tube with a soft tip for ease of introduction wherein the tip is softer and more flexible than is the shaft of the magnetic nasogastric tube according to an embodiment; and



FIG. 56 shows a magnetic element in the tip of the magnetic nasogastric tube or in the tip of the soft flexible introducer according to an embodiment;



FIG. 57 shows an area of the gastric mucosa suited for PEG placement is identified and a catheter placed onto the area in accordance with one embodiment;



FIG. 58 shows a detector used to locate the position of a magnet on the tip of an endoscopic catheter in accordance with one embodiment;



FIG. 59 shows palpation used to show that the location of an external site is close to the intraluminal site in accordance with one embodiment;



FIG. 60 shows a needle pushed through the gastric mucosa by advancing a catheter in an endoscope channel; this may be with the endoscope right against the gastric mucosa or with the endoscope back a distance from the mucosa in accordance with one embodiment;



FIG. 61 shows that a needle may rotate to facilitate cutting as it exits the gastric lumen in accordance with one embodiment;



FIG. 62 shows a needle is enclosed inside the tip of a catheter until it is time to deploy; where the tip of the catheter is then pulled back (shortened) thereby stabilizing the catheter tip and widening the tip then allowing the tip of the needle catheter inside to exit in accordance with one embodiment;



FIG. 63 shows a needle is inside an endoscopic catheter and exits when pushed at the proximal (outside) end of the catheter in accordance with one embodiment;



FIG. 64 shows how a magnet on the tip of a needle is seen in three-dimensional space by a detector enabling an examiner to see where the needle is moving as it is advanced from the gastric lumen to the outside in accordance with one embodiment;



FIG. 65 shows a wire removed from an endoscope channel and attached to the tip of a PEG tube in accordance with one embodiment;



FIG. 66 shows a wire out of a patient's mouth attached to a PEG tube and pulled via the mouth into position on the skin of the anterior abdominal wall in accordance with one embodiment;



FIG. 67 shows a colonoscope placing a magnet, which is used to place a tube through the skin into the colon where desired in accordance with one embodiment;



FIG. 68 shows a cystosomy tube placement into the bladder in accordance with one embodiment;



FIG. 69 shows a magnet directed laparoscopically to select a spot for a second penetration, and the area is detected from the outside using the sensing device in accordance with one embodiment;



FIG. 70 shows a magnet passed intravascularly into an area using x-ray guidance, the magnet is located using a sensing device, and a diagnostic or therapeutic catheter is guided to the magnet placed at a target (e.g., tumor, etc.) in accordance with one embodiment;



FIG. 71 shows a screen on a sensing device giving the substantially precise location of a magnet on a catheter, the depth, the direction and a guide path for a device when inserted into the guide channel of the sensing device in accordance with one embodiment;



FIG. 72 shows a catheter placed under guidance (e.g., x-ray, CT, MRI or ultrasound) into a target tumor, and the detector detects a magnet and directs therapy to the target with a guide path, including depth in accordance with one embodiment; and



FIG. 73 shows a sensing device with a mechanism to release the needle or wire from the guide channel.





DETAILED DESCRIPTION

Traditional PEG placement procedures are imperfect, costly, and have many problems. For example, in some situations the endoscope's light is not clear on the abdominal wall. This is especially a problem if the patient is obese with a thick abdominal wall or if organs are between the stomach wall and the anterior abdominal wall (e.g., liver, colon, etc.). Using the endoscopic light to locate a suitable area of the gastric wall is very difficult in some patients, which is a problem not easily solved with current procedures or equipment.


Another example where problems occur with current procedures and equipment is if the patient is obese or if the location is not ideal. In this situation, the indentation made by the medical practitioner pressing against the abdomen from the outside is not clear to the endoscopist. Instead, a vague area moves in response to the outside practitioner's finger. A thick wall, intervening organs, or poor positioning may cause the vague indentation or motion. The indentation may be hard to see endoscopically and in some cases, is a problematic way to determine where the needle will enter the stomach.


Another example of a problem with current procedures and medical devices occurs because the medical practitioners have very little information about the target. The practitioner only knows to insert the needle where the endoscopic light was seen. The practitioner neither knows the direction to advance the needle nor the depth of the stomach wall. For this reason, the needle may be inserted and pushed a considerable depth into the patient before the endoscopist and/or assisting medical practitioner realize that the position is not ideal. The needle may cause injury to the patient when it is deeply advanced and/or advanced multiple times in the wrong direction to the wrong depth.



FIG. 8B, for example, shows a situation where the endoscope's light is not clear on the abdominal wall. This is especially a problem if the patient is obese with a thick abdominal wall or if organs are between the stomach wall and the anterior abdominal wall (e.g., liver or colon). Using this light to locate the selected area of gastric wall is very difficult in some patients, which is a problem that is difficult to solve with current procedures or equipment.



FIG. 8C, for example, shows another situation where problems occur with current procedures and equipment. If the patient is obese or if the location is not suitable, the indentation made by the assistant pressing against the abdomen with a finger 104 from the outside is not clear to the endoscopist. Instead, a vague area moves in response to the outside examiner's finger 104. A thick wall, intervening organs or poor positioning may cause the vague indentation or motion. The indentation may be hard to see and in some cases, is a problematic way to determine where the needle will enter the stomach.



FIG. 8D shows another example of the type of problem that may occur with current procedures and medical devices. The assistant has very little information about the target. The assistant only knows to insert the needle 106 where the endoscope light was seen. The assistant neither knows the direction to advance the needle 106 nor the depth of the stomach wall. For this reason, the needle 106 may be inserted and pushed a considerable depth into the patient before the endoscopist and/or medical assistant realize that the position is not suitable. The needle 106 may cause injury to structures or adjacent organs when it is deeply advanced and/or advanced multiple times in the wrong direction to the wrong depth. In fact, it is common to limit the number of passages of the needle 106 to four passes.


Another example of a problem with traditional PEG placement procedures is that the procedures are implemented with costly medical equipment that is also relatively large and immobile. Both endoscopes and x-ray machines typically require large power supply systems and their use is not readily compatible with harsh physical environments. The expense, size, fragility, power requirements, and other limitations means that in some clinical areas, such as in less developed areas, nursing homes, or chronic care facilities, or in emergency situations, or battlefield or military aid station, for example, neither endoscopy nor x-ray is available, and the result is that traditional PEG procedures cannot be performed.


The problems described herein, and many others, may result in the inability to perform a PEG procedure because traditional medical equipment is unavailable. Further, even when the equipment is available, current procedures may result in perforation or other injury of an adjacent organ (for example the colon or liver), or may require multiple insertions, causing pain and trauma to the patient. Another problem is that the procedure may fail to successfully place the PEG tube at all. The current PEG placement procedure and devices have low precision and offer only minimal guidance, especially when the patient is not thin. The minimal guidance is very crude and depends both on the patient's habitus (thin is better for localization) and the medical practitioner's experience and judgment.


According to principles of the present invention, new tools and techniques are provided for integration with a living body as will now be described. These new techniques provides a unique way to precisely determine the location, direction, and depth of the selected site on the gastric wall without the use of endoscopic or x-ray equipment. They allow practitioners to have a higher assurance of the location of the site of penetration into the stomach of the needle and subsequent wire for the PEG tube.


A new alternative to PEG tube placement is presented herein and which can be called Percutaneous Magnetic Gastrostomy (PMG). Percutaneous Magnetic Gastrostomy does not require endoscopy or x-ray and therefore can be less expensive and can be performed in clinical areas in which neither endoscopy nor x-ray is available.


In the new gastrostomy procedures described herein and shown in the associated figures, no x-ray is used, and no endoscopy is necessary. The procedures are fast and guided safely by the presence of the magnetic element on the tip of the device passed into the patient's body. The equipment and procedures may be used in hospitals and may also be used in alternative sites such as a nursing home or in places which do not have x-ray or endoscopy. The gastrostomy equipment and procedures may be used wherever there is an acute need to get fluid and electrolytes into a patient who cannot swallow. Some examples where this equipment and procedures may be used are after trauma, in a third world location or similar environment in which there is simply not enough IV fluid, or on a battlefield to support the intravascular volume of an injured person. Rather than relying on IVs, the equipment and procedures disclosed use the patient's GI tract to rapidly absorb fluid, electrolytes and nutrients.


For example, in some situations, the small bowel is functioning normally and can readily absorb water, electrolytes, and nutrients (e.g., protein, carbohydrates, lipids) plus medications especially if modified with molecular chaperones to move rapidly into the patient via the small bowel mucosa. It may be possible to support a person in this way using non sterile fluids, electrolytes, and nutrients just as in normal food. Passing the fluids and electrolytes directly into the stomach via the gastrostomy tube has several advantages. For example, the fluid and nutrients need not be sterile, but instead can be food and water that one would drink. Also, a large volume can be passed using the stomach as a reservoir, and the speed of absorption of a fluid and electrolyte mixture introduced into the stomach may exceed that of an IV. Further, use of easily absorbed molecules or molecular chaperones may allow medications such as antibiotics to be absorbed from the small bowel very rapidly. This may be essential in a place where the IV solution of the medications is not available. It may be less expensive, and it may allow use of intragastrically delivered (e.g., to the GI tract) medications and does not limit the patient to IV medications only.


On the other hand these fluids and nutrients would not be tolerated if the material was given IV. This could be very important in a poor country or in trauma, or in other situations where IV fluid with sterile components may not be available in a suitable quantity.


In the following description, numerous specific details are given to provide a thorough understanding of embodiments. The invention can be practiced without one or more of the specific details, or with other methods, components, materials, etc., that are equivalent. In some instances, well-known structures, materials, or operations are not shown or described in detail to avoid obscuring aspects of the invention.


Reference throughout this specification to “one embodiment” or “an embodiment” means that a particular feature, structure, or characteristic described in connection with the embodiment is included in at least one embodiment. Thus, the appearances of the phrases “in one embodiment” or “in an embodiment” in various places throughout this specification are not necessarily all referring to the same embodiment. Furthermore, the particular features, structures, or characteristics may be combined in any suitable manner in one or more embodiments.


The headings provided herein are for convenience only and do not interpret the scope or meaning of the embodiments.


In the embodiments and descriptions disclosed in the text and figures of the specification, several terms are used, including but not limited to, “magnet,” “magnetic element,” and elements or components having “magnetic properties.”


Those skilled in the art will recognize that the specific terms are non-limiting and include hard or permanent magnets, soft magnets, electromagnets, and other material compositions having ferromagnetic properties. For example, the description of an element as a “magnet” may indicate that the element has or is constructed from a permanent magnet, a ferrous metal, or any other material having ferromagnetic properties.


A. Using a Magnetic Nasogastric Tube to Place a PEG Tube

One or more embodiments of the new approach to percutaneous gastrostomy are illustrated in FIGS. 9-20A and described in detail by way of non-limiting and non-exhaustive examples. FIG. 9 shows elements of a first example. A new type of nasogastric (NG) tube, a magnetic nasogastric (MNG) tube/catheter 114, is placed into the patient's mouth and gently advanced down into the stomach. Additional embodiments of the new type of nasogastric tube will be described later in this section.


Prior to inserting a tube down a patient's throat, the medical practitioner must have a degree of confidence that the esophagus is open. In the new approach to tube placement described herein, the practitioner may note that frequently, a patient with an abnormal esophagus will have symptoms of dysphagia. Also many of these patients will have been endoscoped recently or had an upper GI x-ray for their medical problem. Either will determine if the esophagus is abnormal. If there are symptoms or evidence of an abnormal esophagus, an endoscopy or x-ray should precede the Percutaneous Magnetic Gastrostomy procedure or, alternatively, a traditional PEG procedure may be performed. Ease of passage of the magnetic nasogastric tube is further evidence of a patent esophagus.


In example embodiments, the magnetic nasogastric tube 114 has a magnet 116 on the tip. In some embodiments, the magnetic nasogastric tube 114 has a ferrous metal element or a mass of ferrous material secured at a known location The encapsulated magnet 116 may be a permanent magnet formed from any number of magnetic materials, including but not limited to AlNiCo, SmCo, and NdFeB types. The permanent magnet may be formed by a variety of process including but not limited to forming alloys, sintering of magnetic powders, and embedding magnetic powders within another binder material. The encapsulated magnet may also be an electromagnet, in which the magnetic field is generated by a steady or an alternating electric current passing through a wire coil of some size and shape, and in which the wire coil may surround a core of magnetically permeable material. The encapsulated magnet may also be a combination of a permanent magnet and electromagnet.


When the desired length is passed (for instance approximately 50 cm for a typical adult patient), FIG. 10A shows a magnetic detection sensor device 118 is placed onto the abdominal wall to look for the magnet. FIG. 10B shows an embodiment of a magnetic detection sensor device 118. The magnetic detection sensor device 118 may also be referred to as a “magnetic sensing device,” “sensing device,” “sensor device,” “detector,” or the like.


A disposable or reusable sterile sheath 120 covers the sensing device to prevent contamination with the placement of the needle 106 and wire 108. The sensing device 118 is placed on the patient's abdominal wall. The sensing device 118 can readily locate the magnet 116 on the tip of the magnetic nasogastric tube 114. In some embodiments, an audible indication informs the examiner of the position of the magnet 116. In other embodiments, a display is used in cooperation with an audible indicator or a display is used by itself. Additional examples of techniques that may be used by the magnetic detection sensor device to determine the location and orientation of magnets are disclosed in U.S. Pat. Nos. 5,879,297, 6,129,668, 6,216,028, and 6,263,230. The medical practitioners that are operating the magnetic nasogastric tube and the magnetic detection sensor device may choose an area that is particularly suitable for the Percutaneous Magnetic Gastrostomy tube by rotating the magnetic nasogastric tube and by moving the sensor device until the magnet is “seen” in the desired area. The magnetic detection sensor device, as shown in FIG. 11A, can then determine the distance from the skin to the magnet.


For example, FIG. 11B shows the X and Y position noted on a high-resolution or other suitable display screen 122 that may be integrated with the sensing device 118 or coupled to the sensing device 118.


An example layout of the display screen 122 can be in the form of target “crosshairs.” The distance from the sensing device on the patient's skin to the magnet (i.e., the depth, or Z position) is determined with substantial precision and also shown on the screen 122. In addition, the direction from the skin to the magnet 116 is known and can be displayed on the screen 122 as a target guide. For example, and as represented in FIG. 11C, the sensing device 118 can be repositioned along the outer surface of the stomach of the patient, until the target magnet 116 is centered in the crosshairs of the screen 122.


In some embodiments, once the position and depth of the desired location on the magnetic nasogastric tube 114 is determined, a balloon may be inflated in the stomach 100. FIG. 12 shows a balloon 124 inflating around or behind the magnet on the magnetic nasogastric tube 114 according to an embodiment. In other embodiments, the stomach is inflated without a balloon. The distensibility of the antrum is evaluated in embodiments of the percutaneous magnetic gastrostomy approach by knowing that the balloon or stomach cavity will inflate to an appropriate volume, e.g., approximately 300 cc for a typical adult patient. This may demonstrate that the magnetic nasogastric tube 114 is in the stomach as other areas (e.g., the small bowel) will not gently distend when the area is inflated. In some embodiments, a pressure valve prevents high pressure distension of the balloon 124.


In other embodiments, a combination is used where a balloon 124 is inflated to be sure that the area distends followed by distention of the stomach using a side port on the magnetic nasogastric tube 114. This will create space for a needle tip to enter the stomach away from the stomach's opposite wall and the needle tip may safely contact the magnetic element 116 on the tip of the magnetic nasogastric tube 114.


In some embodiments, the magnetic element is placed in the geometric center of the balloon 124. In some embodiments, the volume of the balloon is approximately 300 cc. In some embodiments, the balloon is filled with sterile water or other media, including air. In some embodiments, rather than placing the magnetic element in the center of the balloon, the balloon may be located behind the magnetic element. Embodiments where the tip of a magnetic nasogastric tube 114 is inside the balloon 124 and where the tip of the magnetic nasogastric tube 114 is outside the balloon 124 are shown in FIG. 12.


As shown in FIG. 13, the medical practitioner then watches as the magnet 116 moves away by the distance B from the outside of the balloon 124 to the magnet 116 in the center if the centering balloon is used. The inflated balloon 124 lets the operator know that the area being examined is distensible. In other embodiments, the balloon 124 may be inflated while the tip of the magnetic nasogastric tube 114 remains outside of the balloon 124 rather than the balloon 124 inflating around the magnet 116. This allows the medical practitioner to know that the area of the stomach is distensible but allows the magnet 116 to remain pressed against the gastric mucosa.


Accordingly, in embodiments where a balloon 124 is inflated, the area to be used for the PEG tube 112 placement is that where the magnet 116 is located initially and after the balloon 124 is inflated.



FIG. 14A shows a magnetic detection sensor device 118 with a guide path 126 for a needle 106 from the outside to be placed into the gastric lumen to touch the magnetic nasogastric tube magnet 116 regardless of whether the magnet 116 is against the mucosa or inside a balloon 124. The detector may provide a visual guide to the magnet 116 and also may provide a fixed needle guide 126 using a bomb sight-like mechanism 128. For example, as illustrated in FIGS. 13 and 14A, the detector identifies a distance A, 6 cm, from the sensor's needle guide to the tip of the magnet.


Regardless, of what type of indicator and guide the sensor has (e.g., a visual display, a bombsight, a needle guide, etc.), when the new percutaneous magnetic gastrostomy approach is used, an endoscopic light shined from the inside is not needed because the medical practitioner can “see” the magnet on the tip of the magnetic nasogastric catheter with the magnetic detection sensor device. Similarly, when the new percutaneous magnetic gastrostomy approach is used, the finger indentation of traditional PEG tube placement is not needed.


In one embodiment and as shown in FIG. 14B, the sensing device 118 can take the form of a housing that has a folding display screen 122 and a base 130 that carries the magnetic sensors 134 (4 sensors in the illustrated example, located at the corners of the base 130). Centrally located between the sensors 134 and passing linearly through the sensing device 118 is a vertically oriented guide channel 126, through which a needle 106 can be inserted into the patient. In an embodiment, the guide channel 126 corresponds to the center of the “crosshairs” 128 of the display screen 122, such that if the needle 106 is inserted in the guide channel 126, the needle 106 will penetrate substantially at the location indicated by the center of the crosshairs 128, which guides the needle 106 to the magnet 116 location inside the body


The sensing device 118 of one embodiment includes a light emitting element. For example, a plurality (such as a ring or circular pattern) of LED lights 136 or other light source on the underside of the housing, such as shown in FIG. 14C. If the location and depth is determined to be adequate, the ring of LED lights 136 is then activated on the bottom 130 of the magnetic sensing device 118 around the guide channel 126. As shown in the embodiment of FIG. 14C, the exit hole of the guide channel 126 is centrally located with respect to the ring of LED lights 136. The ring of lights 136 is of a frequency and/or intensity and/or color suited to penetrate the abdominal wall so that the endoscopist may see it. For example, continuously lit and/or flashing bright LED's may be used if they provide sufficient intensity.


As illustrated in FIG. 14C, the endoscopist may then see the ring of lights 136 (from the sensing device) clearly on the gastric wall and confirm that this is a suitable area for the PEG tube 112 to be inserted. The gastric wall lights up where the magnet is located. This is where the needle 106 will enter the stomach as it goes through the guide channel 126 of the sensor device 118.


An examiner may optionally also use a finger to palpate the abdomen to determine whether the endoscopist can see the indentation, as in the standard practice. If everything looks satisfactory, a small incision is made in the skin, and a needle 106 is inserted into the guide channel 126 in the sensing device 118 through the ring of lights 136. This channel 126 controls the direction of the needle 106 and assures that the direction is orthogonal to the bottom 130 of the sensing device 118 and the ring of lights 136.


As shown in FIG. 14D, a guide path on the high-resolution screen 122 informs the examiner that by directing the needle 106 along the needle guide channel 126 in the center of the ring of lights 136, and to the indicated depth, the needle 106 will enter the gastric lumen in the substantially precise location of the magnet 116.


In one embodiment, the needle 106 will enter the gastric lumen within several millimeters or even less distance from the magnet 116. When the needle 106 is advanced the desired distance, if an endoscopist is observing, the endoscopist will see the needle 106 enter the stomach via the wall substantially at the location selected.


The distance from the skin to the gastric wall, which is not known with traditional PEG techniques, is determined from the outside with substantial precision by “seeing” the magnetic element on the magnetic nasogastric tube initially and then after the balloon is inflated with the magnet in the center (in embodiments where a balloon is used). That is, the magnetic detection sensor device will provide a medically accurate distance measurement from the sensor to the magnetic element of the magnetic nasogastric tube and to the gastric mucosa.


Referring back to FIG. 13, if the distance is measured after the balloon 124 is inflated and if the magnet 116 is in the center of the balloon 124, the distance from the skin to the gastric mucosa is the distance to the magnet 116 minus the known distance B from the wall of the balloon 124 to the magnet 116. Alternatively the balloon 124 may not be around the magnet 116 but just behind the magnet 116 (towards the mouth) or no balloon may be used and the stomach simply inflated with air or fluid via the magnetic nasogastric tube 114.


Additional elements in the new approach to placing a magnetic nasogastric tube 114 are shown in FIGS. 15 and 16. In FIG. 15, the needle 106 is inserted in a direction and to a depth as indicated on the magnetic detection sensor device 118. Unlike traditional PEG tube placement, where an endoscopist watches the needle 106 enter the stomach 100, seeing the needle 106 enter the stomach 100 in one embodiment of the new percutaneous magnetic gastrostomy approach is not needed because the stomach 100 is inflated using the magnetic nasogastric tube balloon 124 (or inflated with a side port of the magnetic nasogastric tube not the balloon), and the magnetic detection sensor device 118 provides a sufficiently accurate location to which a needle 106 will travel.


In FIG. 16, a wire 108 with an element 116 having magnetic properties at its distal end is inserted into the needle 106 and placed very close to the magnetic element 116 on the magnetic nasogastric catheter 114. In some embodiments, the wire 108 has a strong magnet 116 secured to its distal end. Due to the precision of the magnetic sensor device 118, the wire 108 will be directed to the location of the magnetic element 116 on the magnetic nasogastric tube 114.


As shown in FIG. 17, when the magnetic elements 116 of the magnetic nasogastric tube 114 and the wire 108 are in proximity, the elements will mutually attract and be coupled together to form a permanent or impermanent junction. A snare to grasp the wire is not needed because the magnet-to-magnet attraction firmly holds the needle wire 108 against the magnetic nasogastric tube magnetic element 116. Similarly, the endoscope to pull out the snare holding onto the needle wire is not necessary because the magnet-to-magnet junction will pull out the needle wire 108 as either the magnetic nasogastric tube 114 is pulled out or the magnet-to-magnet junction is pulled out of a lumen of the magnetic nasogastric tube 114.


In some embodiments the magnetic nasogastric tube and needle wire may interlock together to assure that magnets stay coupled as the wire is withdrawn.


In some embodiments, the magnetic nasogastric tube 114 is formed such that the magnetic nasogastric tube 114 or one of its components will conduct a small electric current. As shown in FIG. 18, for example, a small electric current may be introduced onto the wire 108 or magnetic nasogastric tube 114. The small current is then detected by the medical practitioner on a current gauge to indicate that the wire 108 and the magnetic nasogastric tube 114 have made physical contact with each other. The small electrical current (having very low voltage for safety) is just enough to let the medical practitioner know that the two magnets have touched. In other embodiments, physical contact is indicated by expressly moving either the wire 108 or the magnetic nasogastric tube 114 and noticing a corresponding motion on the other component.


After the magnetic nasogastric tube 114 and the wire 108 have been joined, the wire 108 is advanced through the needle 106 or the hole made by the needle 106 until it passes out through the patient's mouth. As shown in FIG. 19, the magnetic nasogastric tube 114 may be removed from the patient thus pulling the magnet-to-magnet junction with it, or, in alternative embodiments, the magnet-to-magnet junction may also be pulled out via the lumen of the magnetic nasogastric tube 114.


Once the magnet-to-magnet junction is out of the patient's mouth, more wire 108 is pulled through the needle 106 or the hole made by the needle 106 if the needle has been backed out. This creates a situation where the wire 108 entering the hole made by the needle 106 or through the needle 106 is now firmly held outside the patient's mouth. If the magnetic nasogastric tube 114 was removed from the patient, then the magnetic nasogastric tube 114 is removed from the wire 108. If the wire 108 was passed via a lumen on the magnetic nasogastric tube 114, then alternate embodiments allow for the magnetic nasogastric tube 114 to either be removed from the patient or left in place. In some embodiments, the end of the wire 108 extending from the patient's mouth is then attached to the end of the PEG tube. In other embodiments, the PEG tube is placed over the wire 108.


As shown in FIG. 20A, the PEG tube is then pulled into the stomach and up against the gastric mucosa. Sufficient pulling force is used to assure that the bumper of the PEG tube is firmly against the mucosa. In some embodiments, a separate gauge or metering device 138 is used to determine that a suitable force is exerted on the wire to appropriately seat the PEG tube. Final inspection of the PEG bumper with an endoscope or x-ray is not needed because a pressure range is given and perhaps measured with a small force measuring device 138 to assure that the bumper is snug against the wall. This pressure measurement is likely a better way to know that the bumper is in the correct place and snug then is endoscopy. For example, as shown in FIG. 20B, if the bumper looks to be in the correct place by endoscopy, this means that even though the tube's bumper is on the mucosa, it is still possible that there is excessive tube between the skin and the outside of the stomach. By knowing the pressure pulling the bumper against the mucosa, a medical practitioner can be sufficiently confident that the bumper is snug and is up against the abdominal wall.


As described in the non-limiting embodiments herein, endoscopy is not necessary when the new approach to percutaneous magnetic gastrostomy placement is used. For many similar reasons, x-ray is also not necessary. For example, the location of the stomach is determined by passing the magnetic nasogastric tube into the stomach (for instance approximately 50 cm from the incisor teeth for a typical adult patient), seeing the magnet in the left upper quadrant (LUQ) of the abdomen, and determining the distance from the magnetic element on the magnetic nasogastric tube to the skin before and after the stomach is inflated, with or without a balloon.


In the embodiments described above, a PEG tube can be placed safely and quickly into the stomach without either an endoscope or x-ray. With the magnetic detection sensor device, distances are clearly known and the targeting of the needle to the tip of the magnetic nasogastric tube (with the magnetic element) is facilitated. The medical practitioner substantially knows the distance to the gastric mucosa, and the substantially precise X, Y, Z location of the tip of the magnetic nasogastric tube. Further, an embodiment of the magnetic detector has a needle guide and/or a bomb-site type visual guide to enable the medical practitioner who is inserting the needle to know where to insert the needle tip and the depth necessary to contact the magnet on the tip of the magnetic nasogastric tube. The magnet-to-magnet attachment removes the need for a snare and an electrical current detector may be used to assure that contact is made between the two magnetic elements.


B. Additional Methods for Using a Magnetic Nasogastric Tube

Additional non-limiting and non-exhaustive embodiments for the use of a magnetic nasogastric tube for single pass gastrostomy, from the outside to the inside, are now described with reference to FIGS. 21-28.


In some embodiments, a magnetic nasogastric tube 114 is passed into the stomach. The stomach is inflated, for example with about 300 cc of air and a balloon 124 inflated on the magnetic nasogastric tube 114. In some embodiments, it may not be necessary to use or inflate the gastric balloon 124. Generally, the purpose of the gastric balloon 124 is to provide some confidence that the tip of the magnetic nasogastric catheter 114 is freely mobile. The magnetic nasogastric tube 114 is then pushed against the gastric wall as shown in FIG. 21.


As shown in FIGS. 22 and 23, a magnetic detection sensor device 118 is then placed on the skin to determine the distance from the skin to the magnet 116 that is on the tip of the magnetic nasogastric tube 114. If this distance is considered suitable by the medical practitioner, for example, 3 cm, a needle 106 is inserted into the abdominal wall towards the magnet 116 on the tip of the magnetic nasogastric tube 114. The needle 106 may be guided by a bomb sight 128 on the magnetic detection sensor device 118 and/or a needle guide 126, which provides medical assurance that the needle 106 is directed to the zone identified by the bomb sight 128. In some embodiments, the needle 106 is formed as a trocar. In some embodiments, the needle or trocar is sharp; in some embodiments, the needle or trocar is dull.



FIG. 24 shows another step in the new procedure for single pass gastrostomy, from the outside to the inside. Once the needle 106 is in place, a catheter/introducer 140 is passed from the skin into the stomach. In some embodiments, a wire 108 is passed through the needle 106 and the wire 108 guides the introducer 140. In some embodiments, the needle 106 acts as the wire 108 and guides the introducer 140. The tip of this catheter/introducer 140 is tapered or sharp and is passed to the depth indicated by the magnetic detection sensor device 118.


Additional steps in the new procedure for single pass gastrostomy, from the outside to the inside, are shown in embodiments in FIGS. 25-27. A gastrostomy tube 112 with a rubber or silicon bumper is passed over the sharp introducer 140 until it enters the stomach. The bumper may be compressed as the gastrostomy tube 112 is pushed into position through the gastric wall and when the bumper is inside the stomach, the compressing force is released and the bumper re-assumes its shape as a bumper. When the bumper is in position, the sharp or dull trocar, needle, and/or wire placed via the needle are removed. The gastrostomy tube 112 may then be pulled back with a suitable pulling force. In some embodiments, a stress measuring gauge 138 is used to measure a suitable pressure on the bumper of the gastrostomy tube 112. The gastrostomy tube 112 is then secured in place.


In some embodiments, when the sharp introducer 140 is advanced to the depth indicated by the magnetic sensor device 18 plus, for example, an additional 1 cm, the sharp part is removed leaving a cylindrical introducer with a blunt end over which the gastrostomy catheter is placed. This would prevent injury from the sharp introducer 140 as the gastrostomy tube 112 is pushed into position. When the tip of the gastrostomy tube 112 and the bumper are in the gastric lumen the cylindrical introducer 140 can be removed. The gastrostomy tube 112 is then pulled back perhaps using a strain gauge 138 to get the bumper snugly against the gastric wall.


In some embodiments, for example as shown in FIG. 28, the gastrostomy tube 112 with the bumper is passed down the lumen of the introducer 140 with the sharp needle/trocar removed. The gastrostomy tube 112 is stretched so that the bumper closes like an umbrella. Once the gastrostomy tube 112 is in the stomach, the stretching force is relaxed, and the gastrostomy tube 112 will re-assume its shape with the bumper. The cylindrical introducer may then be removed and the gastrostomy tube attached as described herein.


C. A New Magnetic Naso-Gastric Tube

Additional non-limiting and non-exhaustive embodiments of the new type of nasogastric (NG) tube, the magnetic-nasogastric (MNG) tube 114, and procedures for using the magnetic nasogastric tube 114 are now described and shown in FIGS. 29-41. Each of the embodiments described or shown are put forth to present a clearer picture of the magnetic nasogastric tube 114 and procedures, but none of the embodiments alone or in any combination limit the magnetic nasogastric tube and procedures to only that which is shown or described. It is noted that particular features of the magnetic nasogastric tube 114 and procedures shown and described, along with particular structures, components, or methods, are merely provided to present the magnetic nasogastric tube 114 and procedure in a convenient and understandable manner.


Embodiments of a single pass tube are used and designed as follows. As shown in FIG. 29, the patient lies supine, and a magnetic nasogastric tube 114 is passed by a medical practitioner approximately 50 cm from the incisor teeth down the esophagus into the stomach. The distance is sufficient to place the distal end of the magnetic nasogastric tube 114 into the stomach of the particular patient. The magnetic nasogastric tube 114 has a magnet 115 at the tip. As shown in FIG. 30, a magnetic detection sensor device 118 is placed over the skin in the LUQ of the abdomen just below the ribs, in a spot suitable for the gastrostomy tube placement. As shown in FIG. 31, the stomach 100 is then inflated with air or another substance placed via an optional channel 142 in the magnetic nasogastric tube 114. In some embodiments, a total of about 300 cc is passed.


The magnetic nasogastric tube, which was advanced gently through the patient's mouth and into the stomach, has a magnet 116 on the tip. The magnetic detection sensor device 118 then is used to detect the presence of the tip of the magnetic nasogastric tube 114 by locating the tube's magnet 116.


As shown in FIG. 32, the magnetic detection sensor device 118 can also tell the current orientation of the tip of the magnetic nasogastric tube 114 to determine when the tip of the tube is pointed directionally at the magnetic detection sensor device 118. The magnetic nasogastric tube 114 is then gently manipulated and the magnetic detection sensor device 118 quantifies the distance from the magnetic detector 118 to the tip of the tube 114. At this stage of the procedure, the medical practitioner substantially knows the location of the tip of the magnetic nasogastric tube 114, the orientation of the magnetic nasogastric tube 114, and the distance from the skin to the tip of the tube 114.


Next, as shown in FIG. 33, a balloon 124, may be inflated. In some embodiments, the balloon is formed such that it is attached to the magnetic nasogastric tube 113 just above the magnet 116 and the air inflation port 142. This balloon 124 may have, for example, a volume of about 100 cc. If the balloon 124 inflates easily, the medical practitioner sufficiently knows that the tip of the magnetic nasogastric tube is in a free portion of the stomach.


The continued inflation of the stomach, to a volume of 300 cc for example, may also indicate that the stomach is the site of the distal end of the magnetic nasogastric tube 114. In some embodiments, it may not be necessary to use a balloon on the end of the magnetic nasogastric tube 114.


In some embodiments, the magnetic nasogastric tube 114 is formed such that a sharp needle 106 embedded in the tip of the magnetic nasogastric tube 114 may be advanced or retracted at a suitable time by the medical practitioner. For example, FIG. 34 shows that if the distance, orientation of the tip, and location on the abdominal wall is satisfactory (for example 3 cm, pointing towards the sensor, LUQ 4 cm below rib margin) and the magnetic nasogastric tube 114 is pushed gently against the gastric mucosa, then a special plunger 144 on the proximal end (i.e., the end still outside the patient) of the magnetic nasogastric tube 114 may be advanced and a sharp needle 106 advances out of the distal tip of the magnetic nasogastric catheter 114, moves through the gastric and abdominal walls, and exits the skin where the detector 118 noted the magnetic signal.


In some embodiments, as shown in FIG. 35, the magnet 116 may be placed on the tip of the needle 106 or the needle 106 may be formed from a material having magnetic properties so the examiner can watch the needle 106 as it exits the magnetic nasogastric tube 114 and moves towards the sensor 118 from the inside of the stomach. In some embodiments, the needle is a trocar.



FIG. 36 shows that the sharp tip may then be covered for safety and the needle pulled out of the skin. In some embodiments, when the needle 106 is pulled, it will thereby pull more of the wire 108 that was used as a plunger 144 to push the needle 106. In other embodiments, a separate wire 108 may be advanced down the magnetic nasogastric tube 114 and either exit the lumen of the needle 106 or be funneled through a lumen in the trocar.


Another step is shown in FIG. 37 where the plunger advancer 144 and the covering tube 146 part of the magnetic nasogastric tube 114 is removed from the patient leaving behind the wire 108 and the sharp needle/trocar 106. This leaves the wire from the skin of the abdomen to the mouth.



FIG. 38 shows a wire 108 attached to a tapered end of a gastrostomy tube 112. In some embodiments, the wire 108 is then manually attached to the sharp, tapered introducer tip of a gastrostomy tube 112; in other embodiments, the gastrostomy tube 112 is attached during manufacture. In still other embodiments, as shown in FIG. 39, the tapered introducer 140 of the gastrostomy tube 112 is placed over the wire 108 thereby using the wire 108 as a guide wire.


In some embodiments where the gastrostomy tube is attached to the wire, FIG. 40 shows that the PEG tube 112 is then pulled through the mouth, down the esophagus, into the stomach, and then through the gastric and abdominal walls into a suitable position where it is secured. In some embodiments, a strain gauge 138 determines the proper pulling force for the tube 112. In these embodiments, the wire is removed from the patient as the tube is pulled into the stomach and through the abdominal wall.


Another embodiment is shown in FIG. 41 in situations where the gastrostomy tube 112 is threaded on the wire 108. In these situations, a “pusher tube” 148 is also threaded on the wire and the gastrostomy tube is pushed down the mouth, esophagus, and stomach and out over the wire until it exits the abdominal wall and can then be pulled into position, quantified in terms of pull, and then secured. In this instance the pusher tube 148 is subsequently removed back over the guide wire 108. In some embodiments, the guide wire 108 can be removed with the pusher 148 or after the pusher 148 is removed. The guide wire 108 can be removed via the mouth or via the skin of the abdomen, by pulling it through the gastrostomy tube 112.


In some other gastrostomy tube placement procedures, the tube 112 is pressed from the outside of the abdomen, through a hole in the abdomen, and into the stomach. In some cases, the end of the gastrostomy tube 112 may problematically not be fully passed into the stomach. However, in the embodiments described herein, where the gastrostomy tube 112 is pulled or pushed via the mouth into the stomach, the medical practitioner can be medically confident that the bumper is in the stomach and not in the tissue between the stomach wall and the skin because the bumper is pulled into the stomach via the mouth instead of being pushed into the stomach from the outside of the abdominal wall.


D. Additional Embodiments of a Magnetic Nasogastric Tube

Additional non-limiting and non-exhaustive embodiments using the new equipment and new procedures are shown in FIGS. 42-50 and described below. In some embodiments, when a gastrostomy guide wire is to be passed from the inside of the stomach through the gastric and abdominal walls to the outside, some additional features of the equipment or procedure may be used.


For example, an embodiment is shown in FIG. 42 where a balloon 124 helps maintain the orientation of the tip of the magnetic nasogastric tube 114 so that the needle 106 will exit in the direction desired and selected from the outside.


In another embodiment, shown in FIG. 43, a tripod 150, which opens when extended from the catheter 114, may keep the tip of the magnetic nasogastric tube 114 orthogonal to the mucosa.


Another embodiment of a magnetic nasogastric tube 114 is shown in FIG. 44 where the end of the magnetic nasogastric tube 114 may be controllable with guide wires 152 to move the tip or with a small built in curvature and torque stability so that rotation of the tube 114 will move the tip in a different direction. In some embodiments, an indexing mark on the tube, visible at the patient's mouth, allows the orientation of the tube in the patient's stomach to be known.



FIG. 45 shows an embodiment where the magnetic nasogastric tube 114 will be somewhat stiff so it is controllable and so that it is not “floppy.”


This is important for orientation and so that the needle 106 can be extended from the tip of the tube 114 and through the wall of the stomach and abdomen.


It is shown in FIG. 46 that while unnecessary for the procedures described herein, an endoscope 154 may be used in some embodiments to facilitate placement of the gastrostomy tube 112. For example, an endoscope 154 can pick a spot on the wall and hold in the correct direction the end of the magnetic nasogastric tube 114, when the magnetic nasogastric tube 114 is passed via one of the endoscope channels. In this way the needle 106 may be substantially aimed at the site selected from the outside with the aid of a magnetic detection sensor device 118. The endoscope 154 can also be pressed against the mucosa and aimed in the desired direction.


A magnetic element 116 may be placed on the end of the needle 106 or on the end of the magnetic nasogastric catheter 114 used to pass the needle 106. This catheter 114 is thus also is useful to protect the patient from the needle's sharp end as the needle 106 is passed through the esophagus into the stomach or to protect the endoscope 154 as the needle 106 is passed via the biopsy channel of the endoscope 154.


An embodiment is shown in FIG. 47 where a controllable guide tube instrument 156 has some of the features of an endoscope 154, but which is not an endoscope 154. The controllable guide tube instrument 156 may be used to guide the magnetic nasogastric tube 114 having a magnetic element 116 and in some embodiments, a needle 106. This new instrument 156 can be similar to an endoscope 154 but without suction, without optics, without irrigation, and without light. It can be a somewhat stiff tube with armor; flexible, and with a channel 164 for the magnetic nasogastric tube 114.


This controllable guide tube 156 can have a sheath 162 and a removable channel 164 so that when the sheath 162 and the channel 164 are removed and replaced, the next patient has a sterile guide tube 156 free of contamination from the previous patient. In addition or in alternative to the features stated above, some embodiments of the controllable guide tube 156 may have an optional stabilizing balloon 124.


Embodiments of the controllable guide tube instrument 156 would be far less expensive than an endoscope 154, and in some embodiments this tube 156 might be reusable using a sheath 162. In some embodiments, the controllable guide tube instrument 156 might be disposable and made out of simple materials at low cost. In some embodiments, the guide tube 156 can also be made out of materials that can be cleaned and then sterilized with vapor, liquid, or steam sterilization.



FIGS. 48 and 49 show other embodiments of a magnetic nasogastric tube 114 that have a balloon 124 attached. In some situations, it may be useful to use a very large volume balloon 124 to stabilize the tip of the magnetic nasogastric tube 114 by filling up the volume of the stomach. This may help to provide stability as the needle 106 is passed through the gastric wall and abdominal wall to the outside of the skin. In other situations, the medical practitioner may have increased assurance that the area selected is expandable and free of other structures, by using a magnetic nasogastric tube 114 having a balloon 124 that includes an internal structure 166 formed so as to assure that the balloon 124 inflates uniformly in all directions and with part of the structure located in a known and suitable location relative to the balloon 124.


In some embodiments, as shown in FIG. 50 for example, if a magnetic nasogastric catheter 114 is used to pass a needle 106 from the inside of the stomach to the outside of the abdominal wall, it may be useful to use a catheter 114 which is flexible when passed into the patient's body, but when in position to pierce the gastric and abdominal walls, the catheter 114 can be made rigid. In some embodiments, the magnetic nasogastric catheter 114 is formed with the use of wires 168 embedded in the tube's walls. These wires 166 may further assist in keeping the orientation of the tip of the catheter 114 and facilitating passing the needle 106 through the gastric and abdominal walls to the outside of the skin.


E. Embodiments of a Controllable Magnetic Nasogastric Tube

Additional non-limiting and non-exhaustive embodiments of a new type of nasogastric (NG) tube, a controllable magnetic nasogastrostomy (MNG) tube, and procedures for using the controllable magnetic nasogastric tube 114 are now described and illustrated in FIGS. 51-56.


In some embodiments, as shown in FIG. 51, the controllable magnetic nasogastric tube 114 will have one or more of the features of a diameter about 8 mm or 24 French, a flexible but not floppy constitution, a formation which is stable with regards to torque such that the tube may be operatively turned from one end and maintain the same turning component throughout a suitable length of the tube, a channel or groove 170 for a guide wire embedded in the controllable magnetic nasogastric tube or formed on the side of the controllable magnetic nasogastric tube 114, a soft introducer tip 172, an exit for the channel at very tip of the controllable magnetic nasogastric tube, an exit for the channel that is parallel with the soft introducer tip, a biopsy channel to introduce a wire or gas, and a suction channel to remove gas.



FIG. 52 shows additional features of a controllable magnetic nasogastric tube 114, for example, a control 174 for bending the tip in 1 to 4 directions to 90 degrees or 180 degrees. The control handle is formed on the proximal end, which remains outside the patient. In some embodiments, the control handle at the proximal end of the controllable magnetic nasogastric tube 114, which is outside the patient and manipulable by a medical practitioner, may have a visual and/or tactile queue to indicate the direction of the bend.



FIG. 53 shows additional features of a controllable magnetic nasogastric tube 114, for example, a slide plunger 176 which may attach to a guide wire 108 and be used to advance a needle 106 formed or attached on the tip of the guide wire 108 through the gastric and abdominal walls. The plunger 176 can then be released from the guide wire 108 as the controllable magnetic nasogastric tube 114 is removed.


The controllable magnetic nasogastric tube 114 may be removed after the wire 108 is secured outside the skin of the patient's abdomen. The guide wire 108 may be released by backing the controllable magnetic nasogastric tube 114 over the guide wire and out of the patient or by releasing the guide wire 108 from the channel or groove in the side of the controllable magnetic nasogastric tube and then backing out the controllable magnetic nasogastric tube.


The controllable magnetic nasogastric tube 114 may be formed with one or more devices or mechanisms to pass air or another medium of inflation into the patient. Several embodiments are shown in FIG. 54. For example, some embodiments of the controllable magnetic nasogastric tube 114 may have an air insufflation port 170. Some embodiments may have a valve for putting in air, and in some embodiments, a valve to prevent too much air or other medium and/or too much pressure in the site where the controllable magnetic nasogastric tube is placed. Other embodiments may use a simple bag 180 or a syringe 178 instead of a pump 182. Some embodiments may have measuring devices for gauging volume and/or pressure of the medium passed into the body through the controllable magnetic nasogastric tube 114.



FIG. 55 shows an embodiment of a controllable magnetic nasogastric tube 114 having a smooth, gentle, soft tip 184 making this tube easy to introduce into a patient's body.



FIG. 56 shows a controllable magnetic nasogastric tube 114 having a magnetic element 116 on the tip; other embodiments may form a magnetic element in the tip of a soft rubber introducer, which may be passed via the magnetic nasogastric tube.


The multitude of features of the new controllable magnetic nasogastric tube described above provide many benefits that are not found in other devices or methods of performing percutaneous gastrostomy. For example, during a procedure, the controllable magnetic nasogastric tube has no need for light or vision in its distal end, and additionally, no need for a water source to wash the tip while the controllable magnetic nasogastric tube is inserted into a patient's body. Example embodiments of the new controllable magnetic nasogastric tube may be disposable or may be reusable. If the controllable magnetic nasogastric tube is reusable, it may be covered with a sheath that covers the channel into which the needle and guide wire are inserted. In these embodiments, the channel may be removed along with the sheath and both are replaced after each new procedure is performed on a patient so that each subsequent patient has a totally new or totally uncontaminated controllable magnetic nasogastric tube. In some embodiments, the sheath may be loose or tight, and if the sheath is tight, the technique for its use may involve a roll-up method of placement or an inflation method.


In some embodiments, a reusable controllable magnetic nasogastric tube may be formed from material that can be gas sterilized. Embodiments of the controllable magnetic nasogastric tube design are relatively simple compared to traditional endoscopic or similar devices and the new controllable magnetic nasogastric tube may be formed with few if any niches or inaccessible recesses. Accordingly, embodiments of the new controllable magnetic nasogastric tube are conducive to wash down and gas sterilization so that a sheath may not be necessary. In some embodiments, the design of the controllable magnetic nasogastric tube may permit the device to be sterilized in an autoclave, just like surgical instruments.


F. Additional Embodiments of Placing a PEG Tube

As described herein, embodiments having a magnet locator showing a substantially exact location of a magnet at a selected location on the stomach wall may now be used in medical practice. The distance from the skin to the magnet is determined with substantial precision. When used with endoscopic techniques, the placement of medical devices is improved. For example, if the distance from the skin to the magnet is excessive, an endoscopist may move the magnet onto another area of the gastric wall and use the external sensing device to find an area closer to the skin, which is better suited for placement of a PEG tube. Alternatively, the procedure may be considered too high risk because of excessive depth (e.g., possibly caused by adjacent liver or colon), and the procedure may be canceled because of the risk of hitting adjacent organs.


In another example, an indentation is no longer the only way that the endoscopist can determine whether a needle will enter the area selected. Instead, a ring of bright external lights on the sensing device may be seen inside the stomach via the endoscope. This will inform an endoscopist that if the guide channel is used, it will place the needle in the area selected.


In some embodiments, the lights on the sensing device outside the patient may be located on the tip of a cone or mound. In this way the cone is pressed against the abdomen very much like the standard method of using the finger of the person on the outside, then the lights are turned on and the substantially exact position of the planned insertion of the needle can be clearly seen from the inside by both the position of the indentation of the mound and the ring of lights. An examiner may still use the indentation but it is no longer the sole way to approximate where a needle will enter the gastric lumen.


In some medical procedures, a primary examiner and an assistant examiner work together to place a medical device in a living body. The use of the magnetic techniques described herein provide the assistant examiner with more knowledge about the desired location of the entrance to the gastric wall. The X and Y location of the magnet is clear (e.g., less than 1 mm precision), and the depth of the magnet is also clear, so the correct depth of needle is selected. This eliminates using more needle length than needed, especially if the target is missed. Accordingly, multiple excessively long insertions are no longer needed.


The magnet sensing system also has optional sensory aids (e.g., graphic indicators, sounds, etc), which inform the outside examiner that if a needle is inserted down the guide channel in the sensing device, it will go in the direction of the magnet. The sensory aids on the magnet sensing device may display the position and depth of the magnet, and may also provide a graphic guide path to inform the assistant examiner that if the needle is in the guide channel, the tip will go in the direction (in three dimensional space, using Cartesian coordinates X, Y and Z, for example) of the magnet. The length of needle needed is now known with substantial precision as well as the direction the needle should go to hit the magnet. The sensing device can be moved to place the guide path for the needle onto the magnet target.


The above embodiments relate to a new way to place a tube into the body, such as a PEG tube using magnetic and optical (light) guidance. A tube is placed inside the body with a magnet, localized where the tube and magnet are (e.g., with endoscopy, x-ray, ultrasound, etc.), then a magnet sensing device is used to locate the magnet inside the body and to advance a needle with a central wire, which supports placement of tubes for drainage, feeding, decompression, etc.


Additional embodiments are illustrated in FIGS. 57-66 and described in detail by way of the non-exhaustive and non-limiting examples herein. In particular, a method is shown for placing a tube from the inside by making the needle insertion from inside of the stomach. A PEG tube is used as an example, but small bowel tubes, colostomy tubes, etc., may also be possible with this method.



FIG. 57 shows an endoscope 154 placed into the stomach 100. An area is selected which the endoscopist believes would be suitable for the button seal on the PEG tube inside the stomach. A catheter 114 having a magnet 116 at its distal end is then advanced from the tip of the endoscope 154, under direct vision, to the area of the gastric mucosa selected for the PEG tube placement 186. In this embodiment, the endoscopist is careful to note the position of the pylorus 102 so as to avoid injury.



FIG. 58 shows how an external magnet sensing device 118 may be used to locate the position of the magnet 116 from the anterior abdominal wall side. The device 118 locates the magnet 116 in three-dimensional space and determines the distance from the magnet to the skin surface. In one embodiment, the sensing device 118 of FIG. 58 can use similar techniques and components as otherwise described herein for locating and displaying the position, orientation, depth, etc., of a magnet 116 being sensed.



FIG. 59 shows how an assistant may then use light or a digital palpation 104 to confirm that the spot where the magnet is seen on the detector is below the rib cage and in a good position on the anterior abdominal wall for the PEG tube to exit the patient. Light from the inside (endoscope or bright light catheter) or from the outside (bright light such as an LED on the detector or as a free standing light) can confirm the reasonable position inside and outside for the PEG location.



FIGS. 60-63 show that when the site has been selected from the inside and outside, a catheter 140 held by an endoscope 154 may be used to push a needle 106 from the gastric lumen to the skin. This can be a very thin, fine needle or a thicker needle.


The needle 106 of FIG. 60 may be still except for advancing, or the needle may rotate, such as shown in FIG. 61. The needle 106 may advance from the endoscope 154, from the catheter 140, or from its own carrying overtube 188, such as shown in FIGS. 60-62.


The overtube 188 may be quiet or may have a function in which the tip retracts thereby stabilizing the tip so that the direction of the needle 106 can be controlled. This arrangement also covers the tip of the sharp catheter 140, preventing injury to the gastric or esophageal wall prior to the time when the operator wants to advance the needle 106. It will also protect the inside of the catheter 140 used to guide the needle tip into the stomach, for example the biopsy channel of the endoscope 154.



FIG. 64 shows an embodiment wherein the tip of a cutting needle 106 (rotating or not) may be the magnet 116 itself. In this way the external magnet sensing device 118 may watch the path of the tip of the needle 106 as a three-dimensional projection on the screen 122.


In another embodiment, the magnet 116 may be located on a device/catheter separate from the needle. Thus, after a first magnetic nasogastric catheter 114 having the magnetic tip 116 is used to locate an insertion point in the gastric wall, the first catheter 114 is withdrawn and a second catheter 140 having the needle 106 at its tip is used to insert the needle 106 through the gastric wall. A double lumen catheter may allow for the magnet tip catheter to be inserted and, when position is selected, a needle tip catheter is extended out of the second channel.



FIG. 65 shows that when the needle 106 exits the skin, it is pulled out manually and additional cable 108 is advanced through the patient's mouth. The proximal end (towards the patient's mouth) is then attached to the loop on the end of a PEG tube 112.



FIG. 66 shows that the PEG tube 112 is then pulled through the skin site until the pointed end emerges, and the PEG 112 is then placed into position with mild pressure.


One advantage of the approach proposed in the embodiments of FIGS. 57-66 is that it may be faster because the endoscopist does not have to grab the wire coming out of the needle in the gastric lumen. Another advantage is that the endoscopist knows with substantial precision where the PEG tube will be in the stomach, and the assistant knows with substantial precision where the PEG tube will be located on the anterior gastric wall. Additional advantages are improved accuracy, knowledge of the distance from the gastric wall to the skin, an ability to watch the progress of the needle tip, and fewer potential complications from having to grasp and hold the wire in the gastric lumen. Accordingly, this new procedure may be easier, faster, and safer than other approaches.


It is also clear from the description herein of non-limiting and non-exhaustive embodiments that a far safer method is provided for selecting a spot for PEG tube placement and insertion of a needle to accomplish the safe insertion, which reduces several risks to the patient, including, for example, not knowing where the selected site on the gastric wall contacts the skin on the outside, not knowing where the needle placed through the skin will enter into the stomach, and not knowing the direction that the needle should be directed to hit the selected gastric wall location. Another example is not knowing the distance from skin to the gastric wall, and therefore not knowing the length of needle to be inserted into the patient. Using excessive length may cause injury to adjacent organs, which would not be touched if excessive length were not used.


In addition to solutions and advantages already described, the embodiments can be more accurate, faster, have a higher success rate, and have a lower complication rate than with previous PEG placement procedures. The examiners know substantially where the needle must go to hit the target on the gastric wall. Increased precision in guidance increases the examiner's confidence and speeds the minimally invasive procedure. Further, less procedure time means more safety for the patient and reduced cost.


G. Additional Embodiments of Placing a Medical Devices

In addition to the examples for placing a PEG tube in a stomach, other medical devices can be placed in other locations of a living body. The target organ or space may be fairly small and it may be very difficult or impossible to safely place a needle into it from the outside of a patient through the skin. However, with the magnet locating system described herein, an external needle can be accurately and safely guided to the magnet already placed into the organ, and a connection created between the outside of the patient and the internal magnetic device. If the tip of the device is already in the space and must exit, an examiner can be reasonably sure that the tract or device will connect from the skin to the target space or organ.


The following list is a non-exhaustive, non-limiting list of applications where embodiments of the present invention may be employed for many organs for drainage, feeding, antibiotic infusion, etc. For example: Place PEG tube into the stomach; Place Percutaneous Endoscopic Jejunostomy (PEJ) tube into small bowel; Place tube into the colon (cecum, hep flex, splenic flex); Place tube into sigmoid colon; Place tube into renal calyx; Place tube into bladder; Place tube into abnormal collection of pus, fluid, cyst, etc.; Place tube into chest wall with air or fluid or purulence; Place tube into artery; Place tube into vein; Place tube into heart (RA, RV, LA, LV), which may be way to rapidly place pacer or defibrillation wire into RV or LV as one can be reasonably sure where the inside tip of the needle or wire is located, and if the magnet is in the RV and is advanced through the muscle to the skin, one can be reasonably sure it is in contact with the RV; Place tube from one vessel into another, such as artery to vein, artery to artery, and vein to vein; Place arteriovenous shunts; Place portocaval shunt; and Use to place diagnostic or therapeutic devices at laparoscopy or thoracoscopy. It is thus shown that the various embodiments provide a new, minimally invasive system, device, and method to place a medical device into a small or difficult to access space.


In one application, the techniques and devices described herein are useful for placing a medical device into an intestine, e.g., a small intestine. The small intestine in a body is typically loosely packed such that when pressure is applied, the intestine moves. Accordingly, penetrating the small intestine with a needle, catheter, or other medical device can be an elusive task for a medical practitioner.


Among the techniques described herein, additional embodiments are also useful for placing a medical device in the intestine. For example, a magnetic tipped wire may first be inserted into the intestine. Next, a magnetic detection sensor device may be used to detect, with substantial precision, the three dimensional location of the magnet. In one embodiment, the magnetic tipped wire has a particularly shaped magnet. Thus, when a magnet-tipped needle or other medical device is inserted through the body, via a guide channel in the magnetic detection sensor device, the attraction between the device and the magnetic tipped wire causes penetration of the intestine, regardless of the intestine's mobility.


In another embodiment, the magnetic tipped wire has additional structural elements to clamp the intestine in place. For example, an expandable tripod or other shaped structure may be released to sufficiently immobilize the intestine for penetration by the needle.


In still another embodiment, after the magnetic tipped wire is located with the magnetic detection sensor device, a clamping device is inserted through the magnetic detection sensor device and firmly clamps the intestine from the outside. Subsequently, the now immobilized intestine can be pierced with the needle or other medical device.


The systems, devices, and methods described herein in non-limiting and non-exhaustive embodiments for PEG placement may also be used in other embodiments for other diagnostic and therapeutic interventions. In addition, in each of the embodiments described above and below, it is recognized that several non-limiting and non-exhaustive variations are possible


For example, one variation recognizes that some magnet sensing devices may not have lights. Other variations may have lights on a cone, small mound, hill, protrusion, or other suitably shaped device so pushes in can more readily be seen inside. In variations, the lights may be placed in a location or pattern suitable to a particular use. For example, the magnet sensing device may have lights in a ring so the endoscopist can see the light coming from the outside. In another example, the lights may be formed at the apex of a protrusion.


In another embodiment, the system may provide substantially precise localization of a desired target from the outside of the patient and then guide the diagnostic or therapeutic catheter to this location (e.g., using X, Y, Z Cartesian coordinates) with substantial precision. The system may also provide direction and a guide path displayed on the screen of the magnet sensing device.



FIG. 67 shows another embodiment using magnets and possibly lights, as in the PEG tube placement embodiment described above. In FIG. 66, a colostomy tube placement into the colon is shown. A colonoscope 190 is used to guide a device having a magnet 116 into the patient's colon 192. A magnetic sensing device 118 informs the practitioner of the location of the magnet from the outside.



FIG. 68 shows another embodiment where a cystoscope 194 places a magnet 116 on the bladder wall, and the system is used to pass a catheter 140 through the skin into the bladder. A light may be used to predict where the catheter 140 will enter the bladder, and the cystoscope 194 image determines whether this will be an acceptable spot for the catheter 140.



FIG. 69 shows another embodiment where a laparoscope 198 is used to guide substantially precise entrance of additional catheters 140 and needles 106. At laparoscopy under direct vision, a target is selected for an additional tube 140. This spot may be one free of blood vessels to avoid bleeding, or free of adhesions to avoid complications with adhesions. A magnet 116 in a catheter 140 marks this spot in the patient's abdominal cavity. The external magnetic sensing device 118 locates the magnet (at the target) and gives a guide path 126 (direction and depth) as to how to get to the magnetic marker through the skin to the target.



FIG. 70 shows another embodiment where a magnet can be placed using a catheter under x-ray guidance. The magnet 116 can then be located and the system used to guide a percutaneous (e.g., vascular) catheter 202 to the spot. In this embodiment, a catheter 202 with a magnet 116 may be passed into an artery or vein (e.g., under x-ray, CT, MRI or ultrasound guidance) into the target lesion or organ.



FIG. 71 shows another embodiment where the substantially precise location of a magnet 116 is determined with a magnet sensing device 118, which also gives a substantially precise guide path 126 to pass a needle 106 or other catheter to the location of the magnet 116.


For example if a tumor 204 in the liver is the problem, a magnetic tipped catheter can be inserted into a vein and then into the tumor 204 under x-ray guidance. The magnet sensing device 118 is then used to determine with substantial precision the location of the tumor 204 (with the magnetic tipped catheter in position). A magnet sensing device 118 and guide path 126 directs the examiner to the proper depth of the target and the X, Y, Z location, such as represented in FIG. 72.


A catheter may then be placed (e.g., through the skin or by endoscope or laparoscope) to get the catheter (or needle) to the magnet's location. Next, the magnet can be removed, and diagnosis is obtained via the catheter (e.g., aspiration, biopsy, brushing, etc.) or therapy is performed (e.g., heating, cooling, mechanical removal of tissue, RF ablation mono or bipolar, use of radiation catheter to perform RT, etc.). A catheter can also be placed and used for infusions of therapy such as cryotherapy, radiation therapy using a radiation emitting small catheter, infusion of chemotherapy, etc.


Accordingly, anywhere a catheter or needle can be placed; a magnet on a catheter can be inserted through a needle or catheter and then located to facilitate diagnosis and therapy. In a manner similar to that for placement of a PEG tube as described above, it may be possible to place a tube into a target using imaging guidance (x-ray, CT, MRI, ultrasound, PET, with or without contrast agents), with a magnet on the tip of the tube so its substantially precise location can be found from outside the body. Once the tube is placed, a second needle-tipped wire or catheter could be inserted through the first tube and advanced from the target to the outside of the patient or to an adjacent organ to facilitate positioning of a diagnostic or therapeutic device.



FIG. 73 shows another embodiment where a magnet sensing device 118 may be separated after a needle or wire is placed into the target. FIG. 73 shows one embodiment where a “release channel” 208 is used. The release channel 208 may be permanently open or may be temporarily closed during guidance and opened to release the magnet sensing device 118. For instance, a removable plug 206 may be provided to temporarily keep the release channel 208 closed during guidance, and then removed to release the magnet sensing device 118. In embodiments with a release mechanism, the reusable magnet sensing device 118 may still be covered by a sterile sheath 162.


From the foregoing it will be appreciated that, although specific embodiments have been described herein for purposes of illustration, various modifications may be made without deviating from the spirit and scope of the invention. Accordingly, the invention is not limited by this disclosure.


The various embodiments described above can be combined to provide further embodiments. All of the U.S. patents, U.S. patent application publications, U.S. patent applications, foreign patents, foreign patent applications and non-patent publications referred to in this specification and/or listed in the Application Data Sheet, are incorporated herein by reference, in their entirety. Aspects of the embodiments can be modified, if necessary to employ concepts of the various patents, applications and publications to provide yet further embodiments.


These and other changes can be made to the embodiments in light of the above-detailed description. In general, in the following claims, the terms used should not be construed to limit the claims to the specific embodiments disclosed in the specification and the claims, but should be construed to include all possible embodiments along with the full scope of equivalents to which such claims are entitled. Accordingly, the claims are not limited by the disclosure.

Claims
  • 1. A system for placing a medical device into the body of a patient, comprising: a magnet sensing device operable to localize a position of a magnet relative to the magnet sensing device and identify an anatomical location to pass a needle into the body, the magnet sensing device having a plurality of sensors to detect the magnetic field of the magnet, and the magnet sensing device further having an output to provide an indication of the magnet's position; anda light emitting element coupled to the magnet sensing device, the light emitting element configured to provide visible light to the body, and having sufficient brightness to penetrate tissue in the body such that when placed at the identified anatomical location, the light is visible from a location inside of the body.
  • 2. The system according to claim 1, further comprising a linear medical element having the magnet attached to its distal end.
  • 3. The system according to claim 2, wherein the linear medical element is one of a medical wire or a medical catheter.
  • 4. The system according to claim 1, wherein the magnet sensing device and the light emitting element are in physically separable housings.
  • 5. The system according to claim 1, wherein the magnet sensing device includes a guide channel adapted to accept a needle and to guide the needle toward the magnet if the needle is advanced through the guide channel.
  • 6. The system according to claim 1, in which the light emitting element is positioned on a face of the magnet sensing device, the light emitting element operable to confirm the magnet's position relative to the identified anatomical location.
  • 7. The system according to claim 6, wherein the magnet sensing device includes a guide channel adapted to accept a needle and to guide the needle toward the magnet if the needle is advanced through the guide channel and wherein the light emitting element is formed in a circular pattern arranged such that a center of the circular pattern corresponds to a center of the guide channel.
  • 8. The system according to claim 1, wherein the output of the magnet sensing device includes an audible indicator operable to provide a representation of the magnet's position relative to the magnet sensing device.
  • 9. The system according to claim 1, wherein the output of the magnet sensing device includes a display operable to provide a representation of the magnet's position relative to the magnet sensing device.
  • 10. The system according to claim 1, wherein the medical device is a percutaneous gastrostomy tube.
  • 11. A method for passing a medical device into a body of a patient, the method comprising: placing a medical endoscope into the body;passing a linear medical element via a channel on the endoscope, the linear medical element having a magnet attached to its distal end;operating a magnet sensing device, and a visible light emitting element coupled to the magnet sensing device, at an external anatomical location to determine a location of the magnet relative to the magnet sensing device; andpassing a needle into the body in a direction and to a depth indicated by the magnet sensing device corresponding to the determined location of the magnet.
  • 12. The method according to claim 11, wherein the linear medical element is a medical catheter.
  • 13. The method according to claim 11, further comprising: passing a wire through a channel in the needle;grasping the wire;pulling the wire in a first direction through the body;attaching a medical device to the wire; andpulling the wire in a second direction through the body to a position suitable for the medical device.
  • 14. The method according to claim 11, further comprising: operating the visible light emitting element attached to a face of the magnet sensing device; andvisually detecting, using a medical endoscope, emitted light from the light emitting element, the emitted light passed into the body.
  • 15. The method according to claim 13, wherein the medical device is a percutaneous gastrostomy tube.
  • 16. A method comprising: placing a medical scope into a body;passing a linear medical element via a channel on the medical scope, the linear medical element having a magnet attached to its distal end, and the linear medical element having a channel configured to pass a needle;positioning the magnet, via the linear medical element, at the first location inside the body;identifying the first location inside the body via a magnet sensing device outside the body, the magnet sensing device including a visible light emitting element shining light through tissue of the body;positioning the magnet, via the linear medical element, at the second location inside the body; andpassing the needle from the second location inside the body to a location outside the body.
  • 17. The method of claim 16, wherein passing the linear medical element includes advancing a medical wire.
  • 18. The method of claim 16, wherein passing the linear medical element includes advancing a catheter.
CROSS-REFERENCE TO RELATED APPLICATION

This application claims the benefit under 35 U.S.C. §119(e) of U.S. Provisional Patent Application No. 61/103,419 filed Oct. 7, 2008, where this provisional application is incorporated herein by reference in its entirety.

US Referenced Citations (1091)
Number Name Date Kind
3133244 Wojtulewicz May 1964 A
3297020 Mathiesen Jan 1967 A
3625200 Muller Dec 1971 A
3674014 Tillander et al. Jul 1972 A
3817241 Grausz Jun 1974 A
3847157 Caillouette et al. Nov 1974 A
3868565 Kuipers Feb 1975 A
3902501 Citron et al. Sep 1975 A
3995623 Blake et al. Dec 1976 A
4003369 Heilman et al. Jan 1977 A
4063561 McKenna Dec 1977 A
4072146 Howes Feb 1978 A
4114601 Abels Sep 1978 A
4149535 Volder et al. Apr 1979 A
4173228 Steenwyk et al. Nov 1979 A
4175566 Millar Nov 1979 A
4181120 Kunii et al. Jan 1980 A
4224949 Scott et al. Sep 1980 A
4244362 Anderson Jan 1981 A
4289139 Enjoji et al. Sep 1981 A
4317078 Weed et al. Feb 1982 A
4327722 Groshong et al. May 1982 A
4362166 Furler et al. Dec 1982 A
4365639 Goldreyer Dec 1982 A
4380237 Newbower Apr 1983 A
4407294 Vilkomerson Oct 1983 A
4429693 Blake et al. Feb 1984 A
4431005 McCormick Feb 1984 A
4431214 Buffington Feb 1984 A
4445501 Bresler May 1984 A
4459854 Richardson et al. Jul 1984 A
4469106 Harui Sep 1984 A
4483343 Beyer et al. Nov 1984 A
4491137 Jingu Jan 1985 A
4565201 Lass Jan 1986 A
4572198 Codrington Feb 1986 A
4577634 Gessman Mar 1986 A
4582067 Silverstein et al. Apr 1986 A
4588394 Schulte et al. May 1986 A
4593687 Gray Jun 1986 A
4595012 Webler et al. Jun 1986 A
4601706 Aillon Jul 1986 A
4608989 Drue Sep 1986 A
4608992 Hakim et al. Sep 1986 A
4619247 Inoue et al. Oct 1986 A
4622644 Hansen Nov 1986 A
4644960 Johans Feb 1987 A
4652820 Maresca Mar 1987 A
4665925 Millar May 1987 A
4667230 Arakawa et al. May 1987 A
4674518 Salo Jun 1987 A
4676249 Arenas et al. Jun 1987 A
4681106 Kensey et al. Jul 1987 A
4681117 Brodman et al. Jul 1987 A
4692148 Kantrowitz et al. Sep 1987 A
4697595 Breyer et al. Oct 1987 A
4700997 Strand Oct 1987 A
4706681 Breyer et al. Nov 1987 A
4710708 Rorden et al. Dec 1987 A
4733669 Segal Mar 1988 A
4737794 Jones Apr 1988 A
4741356 Letzo et al. May 1988 A
4742356 Kuipers May 1988 A
4753247 Kirsner et al. Jun 1988 A
4770185 Silverstein et al. Sep 1988 A
4771788 Millar Sep 1988 A
4781685 Lehmann et al. Nov 1988 A
4784646 Feingold Nov 1988 A
4787070 Suzuki et al. Nov 1988 A
4787396 Pidorenko Nov 1988 A
4793361 DuFault Dec 1988 A
4794930 Machida et al. Jan 1989 A
4796632 Boyd et al. Jan 1989 A
4798588 Aillon Jan 1989 A
4798598 Bonello et al. Jan 1989 A
4809681 Kantrowitz et al. Mar 1989 A
4809713 Grayzel Mar 1989 A
4813729 Speckhart Mar 1989 A
4821731 Martinelli et al. Apr 1989 A
4836214 Sramek Jun 1989 A
4840622 Hardy Jun 1989 A
4849692 Blood Jul 1989 A
4850358 Millar Jul 1989 A
4852580 Wood Aug 1989 A
4856317 Pidorenko et al. Aug 1989 A
4856529 Segal Aug 1989 A
4860757 Lynch et al. Aug 1989 A
4867169 Machida et al. Sep 1989 A
4869263 Segal et al. Sep 1989 A
4869718 Brader Sep 1989 A
4887606 Yock et al. Dec 1989 A
4887615 Taylor Dec 1989 A
4889128 Millar Dec 1989 A
4899756 Sonek Feb 1990 A
4901725 Nappholz et al. Feb 1990 A
4905698 Strohl, Jr. et al. Mar 1990 A
4911173 Terwilliger Mar 1990 A
4911174 Pederson et al. Mar 1990 A
4924870 Wlodarczyk et al. May 1990 A
4943770 Ashley-Rollman et al. Jul 1990 A
4945305 Blood Jul 1990 A
4947852 Nassi et al. Aug 1990 A
4957111 Millar Sep 1990 A
4961433 Christian Oct 1990 A
4966148 Millar Oct 1990 A
4967753 Haase et al. Nov 1990 A
4977886 Takehana et al. Dec 1990 A
4989608 Ratner Feb 1991 A
4995396 Inaba et al. Feb 1991 A
4998916 Hammerslag et al. Mar 1991 A
5005592 Cartmell Apr 1991 A
5016173 Kenet et al. May 1991 A
5025799 Wilson Jun 1991 A
5029585 Lieber et al. Jul 1991 A
5040548 Yock Aug 1991 A
5042486 Pfeiler et al. Aug 1991 A
5045071 McCormick et al. Sep 1991 A
5046497 Millar Sep 1991 A
5050607 Bradley et al. Sep 1991 A
5057095 Fabian Oct 1991 A
5058595 Kern Oct 1991 A
5067489 Lind Nov 1991 A
5076278 Vilkomerson et al. Dec 1991 A
5078140 Kwoh Jan 1992 A
5078148 Nassi et al. Jan 1992 A
5078149 Katsumata et al. Jan 1992 A
5078678 Katims Jan 1992 A
5078714 Katims Jan 1992 A
5084022 Claude Jan 1992 A
5092341 Kelen Mar 1992 A
5099845 Besz et al. Mar 1992 A
5099850 Matsui et al. Mar 1992 A
5100387 Ng Mar 1992 A
5105829 Fabian et al. Apr 1992 A
5109862 Kelen et al. May 1992 A
5114401 Stuart et al. May 1992 A
5121750 Katims Jun 1992 A
5134370 Jefferts et al. Jul 1992 A
5144955 O'Hara Sep 1992 A
5158086 Brown et al. Oct 1992 A
5160342 Reger et al. Nov 1992 A
5161536 Vilkomerson et al. Nov 1992 A
5174295 Christian et al. Dec 1992 A
5184601 Putman Feb 1993 A
5190045 Frazin Mar 1993 A
5202985 Goyal Apr 1993 A
5211165 Dumoulin et al. May 1993 A
5211636 Mische May 1993 A
5214615 Bauer et al. May 1993 A
5217026 Stoy et al. Jun 1993 A
5220924 Frazin Jun 1993 A
5235987 Wolfe Aug 1993 A
5239464 Blair et al. Aug 1993 A
5240004 Walinsky et al. Aug 1993 A
5243995 Maier Sep 1993 A
5246007 Frisbie et al. Sep 1993 A
5247171 Wlodarczyk et al. Sep 1993 A
5251635 Dumoulin et al. Oct 1993 A
5255680 Darrow et al. Oct 1993 A
5257636 White Nov 1993 A
5257979 Jagpal Nov 1993 A
5261409 Dardel Nov 1993 A
5265610 Darrow et al. Nov 1993 A
5265614 Hayakawa et al. Nov 1993 A
5267569 Lienhard Dec 1993 A
5270810 Nishimura Dec 1993 A
5271404 Corl et al. Dec 1993 A
5273025 Sakiyama et al. Dec 1993 A
5273042 Lynch et al. Dec 1993 A
5274551 Corby, Jr. Dec 1993 A
5275053 Wlodarczyk et al. Jan 1994 A
5279129 Ito Jan 1994 A
5279607 Schentag et al. Jan 1994 A
5280786 Wlodarczyk et al. Jan 1994 A
5287331 Schindel et al. Feb 1994 A
5289373 Zarge et al. Feb 1994 A
5292342 Nelson et al. Mar 1994 A
5307072 Jones, Jr. Apr 1994 A
5311871 Yock May 1994 A
5313949 Yock May 1994 A
5318025 Dumoulin et al. Jun 1994 A
5325860 Seward et al. Jul 1994 A
5325873 Hirschi et al. Jul 1994 A
5330496 Alferness Jul 1994 A
5331966 Bennett et al. Jul 1994 A
5333614 Feiring Aug 1994 A
5337678 Grout et al. Aug 1994 A
5341807 Nardella Aug 1994 A
5343865 Gardineer et al. Sep 1994 A
5345940 Seward et al. Sep 1994 A
5348020 Hutson Sep 1994 A
5350352 Buchholtz et al. Sep 1994 A
5357961 Fields et al. Oct 1994 A
5375596 Twiss et al. Dec 1994 A
5376083 Mische Dec 1994 A
5377678 Dumoulin et al. Jan 1995 A
5385053 Wlodarczyk et al. Jan 1995 A
5391199 Ben-Haim Feb 1995 A
5394876 Ma Mar 1995 A
5394877 Orr et al. Mar 1995 A
5395366 D'Andrea et al. Mar 1995 A
5398683 Edwards et al. Mar 1995 A
5398691 Martin et al. Mar 1995 A
5411485 Tennican et al. May 1995 A
5413107 Oakley et al. May 1995 A
5422478 Wlodarczyk et al. Jun 1995 A
5425367 Shapiro et al. Jun 1995 A
5425370 Vilkomerson Jun 1995 A
5425382 Golden et al. Jun 1995 A
5427114 Colliver et al. Jun 1995 A
5429132 Guy et al. Jul 1995 A
5429617 Hammersmark et al. Jul 1995 A
5433729 Adams et al. Jul 1995 A
5437276 Takada et al. Aug 1995 A
5437277 Dumoulin et al. Aug 1995 A
5438873 Wlodarczyk et al. Aug 1995 A
5443066 Dumoulin et al. Aug 1995 A
5443489 Ben-Haim Aug 1995 A
5445150 Dumoulin et al. Aug 1995 A
5450846 Goldreyer Sep 1995 A
5453575 O'Donnell et al. Sep 1995 A
5456256 Schneider Oct 1995 A
5456718 Szymaitis Oct 1995 A
5464016 Nicholas et al. Nov 1995 A
5474065 Meathrel et al. Dec 1995 A
5476090 Kishi Dec 1995 A
5480422 Ben-Haim Jan 1996 A
5487729 Avellanet et al. Jan 1996 A
5490522 Dardel Feb 1996 A
5492538 Johlin, Jr. Feb 1996 A
5494038 Wang et al. Feb 1996 A
5500012 Brucker et al. Mar 1996 A
5505205 Solomon et al. Apr 1996 A
5509822 Negus et al. Apr 1996 A
5513637 Twiss et al. May 1996 A
5515853 Smith et al. May 1996 A
5522878 Montecalvo et al. Jun 1996 A
5526812 Dumoulin et al. Jun 1996 A
5531664 Adachi et al. Jul 1996 A
5540230 Vilkomerson Jul 1996 A
5540681 Strul et al. Jul 1996 A
5542938 Avellanet et al. Aug 1996 A
5546949 Frazin et al. Aug 1996 A
5546951 Ben-Haim Aug 1996 A
5558091 Acker et al. Sep 1996 A
5568809 Ben-haim Oct 1996 A
5570671 Hickey Nov 1996 A
5575291 Hayakawa et al. Nov 1996 A
5588442 Scovil et al. Dec 1996 A
5592939 Martinelli Jan 1997 A
5598846 Peszynski Feb 1997 A
5599299 Weaver et al. Feb 1997 A
5600330 Blood Feb 1997 A
5610967 Moorman et al. Mar 1997 A
5617866 Marian, Jr. Apr 1997 A
5622169 Golden et al. Apr 1997 A
5622170 Schulz Apr 1997 A
5623931 Wung et al. Apr 1997 A
5624430 Eton et al. Apr 1997 A
5626554 Ryaby et al. May 1997 A
5626870 Monshipouri et al. May 1997 A
5644612 Moorman et al. Jul 1997 A
5645065 Shapiro et al. Jul 1997 A
5651047 Moorman et al. Jul 1997 A
5654864 Ritter et al. Aug 1997 A
5662115 Torp et al. Sep 1997 A
5665477 Meathrel et al. Sep 1997 A
5666473 Wallace Sep 1997 A
5666958 Rothenberg et al. Sep 1997 A
5669383 Johnson Sep 1997 A
5669388 Vilkomerson Sep 1997 A
5676159 Navis Oct 1997 A
5676673 Ferre et al. Oct 1997 A
5691898 Rosenberg et al. Nov 1997 A
5694945 Ben-Haim Dec 1997 A
5695479 Jagpal Dec 1997 A
5697377 Wittkampf Dec 1997 A
5699801 Atalar et al. Dec 1997 A
5700889 Blair Dec 1997 A
5713362 Vilkomerson Feb 1998 A
5713363 Seward et al. Feb 1998 A
5713946 Ben-Haim Feb 1998 A
5715817 Stevens-Wright et al. Feb 1998 A
5716389 Walinsky et al. Feb 1998 A
5718241 Ben-Haim et al. Feb 1998 A
5722412 Pflugrath et al. Mar 1998 A
5727550 Montecalvo Mar 1998 A
5727552 Ryan Mar 1998 A
5727553 Saad Mar 1998 A
5729055 Manning Mar 1998 A
5729129 Acker Mar 1998 A
5729584 Moorman et al. Mar 1998 A
5730129 Darrow et al. Mar 1998 A
5731996 Gilbert Mar 1998 A
5733323 Buck et al. Mar 1998 A
5738096 Ben-Haim Apr 1998 A
5740808 Panescu et al. Apr 1998 A
5742394 Hansen Apr 1998 A
5744953 Hansen Apr 1998 A
5748767 Raab May 1998 A
5749835 Glantz May 1998 A
5749938 Coombs May 1998 A
5751785 Moorman et al. May 1998 A
5752513 Acker et al. May 1998 A
5758650 Miller et al. Jun 1998 A
5762064 Polvani Jun 1998 A
5767669 Hansen et al. Jun 1998 A
5767960 Orman et al. Jun 1998 A
5769786 Wiegel Jun 1998 A
5769843 Abela et al. Jun 1998 A
5769881 Schroeppel et al. Jun 1998 A
5771896 Sliwa, Jr. et al. Jun 1998 A
5775322 Silverstein et al. Jul 1998 A
5775332 Goldman Jul 1998 A
5779638 Vesely et al. Jul 1998 A
5782767 Pretlow, III Jul 1998 A
5785657 Breyer et al. Jul 1998 A
5792055 McKinnon et al. Aug 1998 A
5795297 Daigle Aug 1998 A
5795298 Vesely et al. Aug 1998 A
5795632 Buchalter Aug 1998 A
5797849 Vesely et al. Aug 1998 A
5800352 Ferre et al. Sep 1998 A
5800410 Gawreluk Sep 1998 A
5800497 Bakels et al. Sep 1998 A
5803089 Ferre et al. Sep 1998 A
5810733 Van Creveld et al. Sep 1998 A
5817022 Vesely Oct 1998 A
5817024 Ogle et al. Oct 1998 A
5820549 Marian, Jr. Oct 1998 A
5824031 Cookston et al. Oct 1998 A
5829444 Ferre et al. Nov 1998 A
5830145 Tenhoff Nov 1998 A
5831260 Hansen Nov 1998 A
5833608 Acker Nov 1998 A
5833622 Meathrel et al. Nov 1998 A
5835561 Moorman et al. Nov 1998 A
5836882 Frazin Nov 1998 A
5836990 Li Nov 1998 A
5840024 Taniguchi et al. Nov 1998 A
5840025 Ben-Haim Nov 1998 A
5840030 Ferek-Petric et al. Nov 1998 A
5840031 Crowley Nov 1998 A
5842986 Avrin et al. Dec 1998 A
5843076 Webster, Jr. et al. Dec 1998 A
5843153 Johnston et al. Dec 1998 A
5844140 Seale Dec 1998 A
5846198 Killmann Dec 1998 A
5855553 Tajima et al. Jan 1999 A
5859893 Moorman et al. Jan 1999 A
5865748 Co et al. Feb 1999 A
5868673 Vesely Feb 1999 A
5873822 Ferre et al. Feb 1999 A
5879297 Haynor et al. Mar 1999 A
5893363 Little et al. Apr 1999 A
5897495 Aida et al. Apr 1999 A
5899860 Pfeiffer et al. May 1999 A
5902238 Golden et al. May 1999 A
5907487 Rosenberg et al. May 1999 A
5908385 Chechelski et al. Jun 1999 A
5910113 Pruter Jun 1999 A
5910120 Kim et al. Jun 1999 A
5913820 Bladen et al. Jun 1999 A
5913830 Miles Jun 1999 A
5919141 Money et al. Jul 1999 A
5919170 Woessner Jul 1999 A
5928145 Ocali et al. Jul 1999 A
5929607 Rosenberg et al. Jul 1999 A
5931788 Keen et al. Aug 1999 A
5931818 Werp et al. Aug 1999 A
5941858 Johnson Aug 1999 A
5941889 Cermak Aug 1999 A
5941904 Johnston et al. Aug 1999 A
5944022 Nardella et al. Aug 1999 A
5944023 Johnson et al. Aug 1999 A
5953683 Hansen et al. Sep 1999 A
5957857 Hartley Sep 1999 A
5961923 Nova et al. Oct 1999 A
5967978 Littmann et al. Oct 1999 A
5967980 Ferre et al. Oct 1999 A
5967991 Gardineer et al. Oct 1999 A
5969722 Palm Oct 1999 A
5978705 KenKnight et al. Nov 1999 A
5983126 Wittkampf Nov 1999 A
5984908 Davis et al. Nov 1999 A
5991693 Zalewski Nov 1999 A
5997473 Taniguchi et al. Dec 1999 A
5997481 Adams et al. Dec 1999 A
6006123 Nguyen et al. Dec 1999 A
6011988 Lynch et al. Jan 2000 A
6014473 Hossack et al. Jan 2000 A
6014580 Blume et al. Jan 2000 A
6015414 Werp et al. Jan 2000 A
6017496 Nova et al. Jan 2000 A
6019724 Gronningsaeter et al. Feb 2000 A
6019725 Vesely et al. Feb 2000 A
6023638 Swanson Feb 2000 A
6026312 Shemwell et al. Feb 2000 A
6031765 Lee et al. Feb 2000 A
6032070 Flock et al. Feb 2000 A
6039694 Larson et al. Mar 2000 A
6050718 Schena et al. Apr 2000 A
6052610 Koch Apr 2000 A
6052618 Dahlke et al. Apr 2000 A
D424693 Pruter May 2000 S
6059718 Taniguchi et al. May 2000 A
6064905 Webster, Jr. et al. May 2000 A
6066094 Ben-Haim May 2000 A
6068599 Saito et al. May 2000 A
6073043 Schneider Jun 2000 A
6074367 Hubbell Jun 2000 A
6075442 Welch Jun 2000 A
6076007 England et al. Jun 2000 A
6082366 Andra et al. Jul 2000 A
6083170 Ben-Haim Jul 2000 A
6099524 Lipson et al. Aug 2000 A
6100026 Nova et al. Aug 2000 A
6102044 Naidyhorski Aug 2000 A
6107699 Swanson Aug 2000 A
6112111 Glantz Aug 2000 A
6113504 Kuesters Sep 2000 A
6115624 Lewis et al. Sep 2000 A
6120445 Grunwald Sep 2000 A
6128174 Ritter et al. Oct 2000 A
6129668 Haynor et al. Oct 2000 A
6132378 Marino Oct 2000 A
6132379 Patacsil et al. Oct 2000 A
6135961 Pflugrath et al. Oct 2000 A
6136274 Nova et al. Oct 2000 A
6138681 Chen et al. Oct 2000 A
6139496 Chen et al. Oct 2000 A
6139502 Fredriksen Oct 2000 A
6144300 Dames et al. Nov 2000 A
6148823 Hastings Nov 2000 A
6152933 Werp et al. Nov 2000 A
6157853 Blume et al. Dec 2000 A
6165144 Talish et al. Dec 2000 A
6166496 Lys et al. Dec 2000 A
6166806 Tjin Dec 2000 A
6167765 Weitzel Jan 2001 B1
6172499 Ashe Jan 2001 B1
6173199 Gabriel Jan 2001 B1
6173715 Sinanan et al. Jan 2001 B1
6175756 Ferre et al. Jan 2001 B1
6176829 Vilkomerson Jan 2001 B1
6193743 Brayton et al. Feb 2001 B1
6200305 Berthiaume et al. Mar 2001 B1
6203499 Imling et al. Mar 2001 B1
6208884 Kumar et al. Mar 2001 B1
6211626 Lys et al. Apr 2001 B1
6211666 Acker Apr 2001 B1
6212426 Swanson Apr 2001 B1
6216027 Willis et al. Apr 2001 B1
6216028 Haynor et al. Apr 2001 B1
6216029 Paltieli Apr 2001 B1
6223087 Williams Apr 2001 B1
6226547 Lockhart et al. May 2001 B1
6230046 Crane et al. May 2001 B1
6233476 Strommer et al. May 2001 B1
6238344 Gamelsky et al. May 2001 B1
6241673 Williams Jun 2001 B1
6246231 Ashe Jun 2001 B1
6246898 Vesely et al. Jun 2001 B1
6248072 Murkin Jun 2001 B1
6248074 Ohno et al. Jun 2001 B1
6248075 McGee et al. Jun 2001 B1
6253770 Acker et al. Jul 2001 B1
6259941 Chia et al. Jul 2001 B1
6261231 Damphousse et al. Jul 2001 B1
6263230 Haynor et al. Jul 2001 B1
6266550 Selmon et al. Jul 2001 B1
6266551 Osadchy et al. Jul 2001 B1
6266552 Slettenmark Jul 2001 B1
6266563 KenKnight et al. Jul 2001 B1
6271833 Rosenberg et al. Aug 2001 B1
6272371 Shlomo Aug 2001 B1
6272374 Flock et al. Aug 2001 B1
6275258 Chim Aug 2001 B1
6275724 Dickinson et al. Aug 2001 B1
6277077 Brisken et al. Aug 2001 B1
6284459 Nova et al. Sep 2001 B1
6285898 Ben-Haim Sep 2001 B1
6288704 Flack et al. Sep 2001 B1
6292678 Hall et al. Sep 2001 B1
6292680 Somogyi et al. Sep 2001 B1
6292901 Lys et al. Sep 2001 B1
6293955 Houser et al. Sep 2001 B1
6296604 Garibaldi et al. Oct 2001 B1
6298261 Rex Oct 2001 B1
6304768 Blume et al. Oct 2001 B1
6306097 Park et al. Oct 2001 B1
6311082 Creighton, IV et al. Oct 2001 B1
6315709 Garibaldi et al. Nov 2001 B1
6315727 Coleman et al. Nov 2001 B1
6319668 Nova et al. Nov 2001 B1
6323769 Dames et al. Nov 2001 B1
6323770 Dames et al. Nov 2001 B1
6324416 Seibert Nov 2001 B1
6325540 Lounsberry et al. Dec 2001 B1
6325762 Tjin Dec 2001 B1
6329139 Nova et al. Dec 2001 B1
6329916 Dames Dec 2001 B1
6330467 Creighton, IV et al. Dec 2001 B1
6332089 Acker et al. Dec 2001 B1
6332874 Eliasen et al. Dec 2001 B1
6340588 Nova et al. Jan 2002 B1
6340868 Lys et al. Jan 2002 B1
6341231 Ferre et al. Jan 2002 B1
6346081 Vilkomerson Feb 2002 B1
6348911 Rosenberg et al. Feb 2002 B1
6350160 Feuersanger et al. Feb 2002 B1
6352363 Munger et al. Mar 2002 B1
6355026 Mick Mar 2002 B1
6361499 Bates et al. Mar 2002 B1
6364823 Garibaldi et al. Apr 2002 B1
6364839 Little et al. Apr 2002 B1
6366804 Mejia Apr 2002 B1
6368285 Osadchy et al. Apr 2002 B1
6370411 Osadchy et al. Apr 2002 B1
6373240 Govari Apr 2002 B1
6373388 Dames et al. Apr 2002 B1
6374134 Bladen et al. Apr 2002 B1
6374670 Spelman et al. Apr 2002 B1
6375606 Garibaldi et al. Apr 2002 B1
6375639 Duplessie et al. Apr 2002 B1
6377857 Brayton et al. Apr 2002 B1
6379302 Kessman et al. Apr 2002 B1
6379303 Seitz et al. Apr 2002 B1
6379307 Filly et al. Apr 2002 B1
6381485 Hunter et al. Apr 2002 B1
6385472 Hall et al. May 2002 B1
6385476 Osadchy et al. May 2002 B1
6398736 Seward Jun 2002 B1
6401723 Garibaldi et al. Jun 2002 B1
6406442 McFann et al. Jun 2002 B1
6412978 Watanabe et al. Jul 2002 B1
6412980 Lounsberry et al. Jul 2002 B1
6417839 Odell Jul 2002 B1
6418332 Mastrototaro et al. Jul 2002 B1
6418335 Avrin et al. Jul 2002 B2
6423002 Hossack Jul 2002 B1
6423050 Twardowski Jul 2002 B1
6427079 Schneider et al. Jul 2002 B1
6428551 Hall et al. Aug 2002 B1
6430315 Makram-Ebeid Aug 2002 B1
6432069 Godo et al. Aug 2002 B1
6438411 Guttman et al. Aug 2002 B1
6442416 Schultz Aug 2002 B1
6445943 Ferre et al. Sep 2002 B1
6459919 Lys et al. Oct 2002 B1
6463121 Milnes Oct 2002 B1
6473167 Odell Oct 2002 B1
6474341 Hunter et al. Nov 2002 B1
6475152 Kelly, Jr. et al. Nov 2002 B1
6475223 Werp et al. Nov 2002 B1
6477402 Lynch et al. Nov 2002 B1
6484118 Govari et al. Nov 2002 B1
6487916 Gomm et al. Dec 2002 B1
6491671 Larson, III et al. Dec 2002 B1
6493573 Martinelli et al. Dec 2002 B1
6496715 Lee et al. Dec 2002 B1
6498944 Ben-Haim et al. Dec 2002 B1
6500141 Irion et al. Dec 2002 B1
6505062 Ritter et al. Jan 2003 B1
6507751 Blume et al. Jan 2003 B2
6508802 Rosengart et al. Jan 2003 B1
6512958 Swoyer et al. Jan 2003 B1
6514249 Maguire et al. Feb 2003 B1
6515657 Zanelli Feb 2003 B1
6516212 Bladen et al. Feb 2003 B1
6516231 Flammang Feb 2003 B1
6516807 Panescu et al. Feb 2003 B1
6517520 Chang et al. Feb 2003 B2
6522906 Salisbury, Jr. et al. Feb 2003 B1
6522907 Bladen et al. Feb 2003 B1
6522909 Garibaldi et al. Feb 2003 B1
6524303 Garibaldi Feb 2003 B1
6528954 Lys et al. Mar 2003 B1
6528991 Ashe Mar 2003 B2
6529761 Creighton, IV et al. Mar 2003 B2
6534982 Jakab Mar 2003 B1
6535625 Chang et al. Mar 2003 B1
6537192 Elliott et al. Mar 2003 B1
6537196 Creighton, IV et al. Mar 2003 B1
6538634 Chui et al. Mar 2003 B1
6540699 Smith et al. Apr 2003 B1
6542766 Hall et al. Apr 2003 B2
6544251 Crawford Apr 2003 B1
6546270 Goldin et al. Apr 2003 B1
6546279 Bova et al. Apr 2003 B1
6546787 Schiller et al. Apr 2003 B1
6552841 Lasser et al. Apr 2003 B1
6556858 Zeman Apr 2003 B1
6562019 Sell May 2003 B1
6564087 Pitris et al. May 2003 B1
6569101 Quistgaard et al. May 2003 B2
6571004 Florent et al. May 2003 B1
6574518 Lounsberry et al. Jun 2003 B1
6575908 Barnes et al. Jun 2003 B2
6577080 Lys et al. Jun 2003 B2
6577896 Werner et al. Jun 2003 B2
6584343 Ransbury et al. Jun 2003 B1
6593754 Steber et al. Jul 2003 B1
6593884 Gilboa et al. Jul 2003 B1
6597943 Taha et al. Jul 2003 B2
6599249 Nordgren et al. Jul 2003 B1
6607488 Jackson et al. Aug 2003 B1
6610058 Flores Aug 2003 B2
6611141 Schulz et al. Aug 2003 B1
6615071 Casscells, III et al. Sep 2003 B1
6615155 Gilboa Sep 2003 B2
6618612 Acker et al. Sep 2003 B1
6626832 Paltieli et al. Sep 2003 B1
6626834 Dunne et al. Sep 2003 B2
6626902 Kucharczyk et al. Sep 2003 B1
6630879 Creighton, IV et al. Oct 2003 B1
6635027 Cragg et al. Oct 2003 B1
6645148 Nguyen-Dinh et al. Nov 2003 B2
6648875 Simpson et al. Nov 2003 B2
6649914 Moorman et al. Nov 2003 B1
6652506 Bowe et al. Nov 2003 B2
6662034 Segner et al. Dec 2003 B2
6672308 Gaspari Jan 2004 B1
6677752 Creighton, IV et al. Jan 2004 B1
6679857 Bastia et al. Jan 2004 B1
6684176 Willins et al. Jan 2004 B2
6685644 Seo Feb 2004 B2
6687531 Ferre et al. Feb 2004 B1
6689119 Di Caprio et al. Feb 2004 B1
6690963 Ben-Haim et al. Feb 2004 B2
6690964 Bieger et al. Feb 2004 B2
6690968 Mejia Feb 2004 B2
6694167 Ferre et al. Feb 2004 B1
6695786 Wang et al. Feb 2004 B2
6701179 Martinelli et al. Mar 2004 B1
6701918 Fariss et al. Mar 2004 B2
6702804 Ritter et al. Mar 2004 B1
6704590 Haldeman Mar 2004 B2
6709390 Marie Pop Mar 2004 B1
6711429 Gilboa et al. Mar 2004 B1
6711431 Sarin et al. Mar 2004 B2
6719699 Smith Apr 2004 B2
6719724 Walker et al. Apr 2004 B1
6719756 Muntermann Apr 2004 B1
6720745 Lys et al. Apr 2004 B2
6733511 Hall et al. May 2004 B2
6736782 Pfeiffer et al. May 2004 B2
6738656 Ferre et al. May 2004 B1
6740103 Hall et al. May 2004 B2
6743177 Ito et al. Jun 2004 B2
6754596 Ashe Jun 2004 B2
6755789 Stringer et al. Jun 2004 B2
6755816 Ritter et al. Jun 2004 B2
6757557 Bladen et al. Jun 2004 B1
6763261 Casscells, III et al. Jul 2004 B2
6764449 Lee et al. Jul 2004 B2
6768496 Bieger et al. Jul 2004 B2
6772001 Maschke et al. Aug 2004 B2
6774624 Anderson et al. Aug 2004 B2
6783536 Vilsmeier et al. Aug 2004 B2
6784660 Ashe Aug 2004 B2
6785571 Glossop et al. Aug 2004 B2
6786219 Garibaldi et al. Sep 2004 B2
6788967 Ben-Haim et al. Sep 2004 B2
6794667 Noshi Sep 2004 B2
6799066 Steines et al. Sep 2004 B2
6815651 Odell Nov 2004 B2
6816266 Varshneya et al. Nov 2004 B2
6817364 Garibaldi Nov 2004 B2
6834201 Gillies et al. Dec 2004 B2
6844713 Steber et al. Jan 2005 B2
6845142 Ohishi Jan 2005 B2
6856823 Ashe Feb 2005 B2
6860422 Hull et al. Mar 2005 B2
6862467 Moore et al. Mar 2005 B2
6869390 Elliott et al. Mar 2005 B2
6875179 Ferguson et al. Apr 2005 B2
6879160 Jakab Apr 2005 B2
6889091 Hine et al. May 2005 B2
6895268 Rahn et al. May 2005 B1
6902528 Garibaldi et al. Jun 2005 B1
6908433 Pruter Jun 2005 B1
6911026 Hall et al. Jun 2005 B1
6923782 O'Mahony et al. Aug 2005 B2
6926673 Roberts et al. Aug 2005 B2
6934575 Ferre et al. Aug 2005 B2
6936010 Fang et al. Aug 2005 B2
6940379 Creighton Sep 2005 B2
6941166 MacAdam et al. Sep 2005 B2
6947788 Gilboa et al. Sep 2005 B2
6950689 Willis et al. Sep 2005 B1
6953754 Machida et al. Oct 2005 B2
6958677 Carter Oct 2005 B1
6959214 Pape et al. Oct 2005 B2
6962566 Quistgaard et al. Nov 2005 B2
6968846 Viswanathan Nov 2005 B2
6975197 Creighton, IV Dec 2005 B2
6976962 Bullis Dec 2005 B2
6976987 Flores Dec 2005 B2
6980843 Eng et al. Dec 2005 B2
6980852 Jersey-Willuhn et al. Dec 2005 B2
6980921 Anderson et al. Dec 2005 B2
6986739 Warren et al. Jan 2006 B2
6999821 Jenney et al. Feb 2006 B2
7001355 Nunomura et al. Feb 2006 B2
7008418 Hall et al. Mar 2006 B2
7010338 Ritter et al. Mar 2006 B2
7015393 Weiner et al. Mar 2006 B2
7017584 Garibaldi et al. Mar 2006 B2
7019610 Creighton, IV et al. Mar 2006 B2
7020512 Ritter et al. Mar 2006 B2
7022075 Grunwald et al. Apr 2006 B2
7022082 Sonek Apr 2006 B2
7026927 Wright et al. Apr 2006 B2
7027634 Odell Apr 2006 B2
7028387 Huynh et al. Apr 2006 B1
7029446 Wendelken et al. Apr 2006 B2
7033603 Nelson et al. Apr 2006 B2
7038398 Lys et al. May 2006 B1
7038657 Rosenberg et al. May 2006 B2
7043293 Baura May 2006 B1
7054228 Hickling May 2006 B1
7066914 Andersen Jun 2006 B2
7066924 Garibaldi et al. Jun 2006 B1
7070565 Vaezy et al. Jul 2006 B2
7072704 Bucholz Jul 2006 B2
7082325 Hashimshony et al. Jul 2006 B2
7090639 Govari Aug 2006 B2
7096148 Anderson et al. Aug 2006 B2
7096870 Lamprich et al. Aug 2006 B2
7098907 Houston et al. Aug 2006 B2
7103205 Wang et al. Sep 2006 B2
7104980 Laherty et al. Sep 2006 B1
7106043 Da Silva et al. Sep 2006 B1
7106431 Odell Sep 2006 B2
7106479 Roy et al. Sep 2006 B2
7107105 Bjorklund et al. Sep 2006 B2
7132804 Lys et al. Nov 2006 B2
7137976 Ritter et al. Nov 2006 B2
7141812 Appleby et al. Nov 2006 B2
7142905 Slayton et al. Nov 2006 B2
7148970 de Boer Dec 2006 B2
7153291 Bierman Dec 2006 B2
7161453 Creighton, IV Jan 2007 B2
7162291 Nachaliel Jan 2007 B1
7167738 Schweikard et al. Jan 2007 B2
7169107 Jersey-Willuhn et al. Jan 2007 B2
7174201 Govari et al. Feb 2007 B2
7175646 Brenneman et al. Feb 2007 B2
7180252 Lys et al. Feb 2007 B2
7184820 Jersey-Willuhn et al. Feb 2007 B2
7189198 Harburn et al. Mar 2007 B2
7190819 Viswanathan Mar 2007 B2
7194295 Vilsmeier Mar 2007 B2
7204798 Zdeblick et al. Apr 2007 B2
7206064 Rogers et al. Apr 2007 B2
7207941 Sharf Apr 2007 B2
7211082 Hall et al. May 2007 B2
7214191 Stringer et al. May 2007 B2
7215326 Rosenberg May 2007 B2
7221104 Lys et al. May 2007 B2
7223256 Bierman May 2007 B2
7229400 Elliott et al. Jun 2007 B2
7231243 Tearney et al. Jun 2007 B2
7236157 Schena et al. Jun 2007 B2
7236816 Kumar et al. Jun 2007 B2
7237313 Skujins et al. Jul 2007 B2
7241267 Furia Jul 2007 B2
7244234 Ridley et al. Jul 2007 B2
7248032 Hular et al. Jul 2007 B1
7248914 Hastings et al. Jul 2007 B2
7264584 Ritter et al. Sep 2007 B2
7270662 Visram et al. Sep 2007 B2
7276044 Ferry et al. Oct 2007 B2
7286034 Creighton Oct 2007 B2
7291146 Steinke et al. Nov 2007 B2
7297140 Orlu et al. Nov 2007 B2
7308296 Lys et al. Dec 2007 B2
7310150 Guillermo et al. Dec 2007 B2
7321228 Govari Jan 2008 B2
7342058 Peppmoller et al. Mar 2008 B2
7355716 de Boer et al. Apr 2008 B2
7360427 Drinkwater et al. Apr 2008 B2
7366376 Shishkov et al. Apr 2008 B2
7366562 Dukesherer et al. Apr 2008 B2
7366563 Kleen et al. Apr 2008 B2
7373271 Schneider May 2008 B1
7382949 Bouma et al. Jun 2008 B2
7418169 Tearney et al. Aug 2008 B2
7447408 Bouma et al. Nov 2008 B2
7452358 Stern et al. Nov 2008 B2
7479141 Kleen et al. Jan 2009 B2
7534223 Boutilette et al. May 2009 B2
7538859 Tearney et al. May 2009 B2
7547282 Lo et al. Jun 2009 B2
7551293 Yelin et al. Jun 2009 B2
7599730 Hunter et al. Oct 2009 B2
7635336 Pruter Dec 2009 B1
7637163 Fetzer et al. Dec 2009 B2
7640053 Verin Dec 2009 B2
7651469 Osborne et al. Jan 2010 B2
7652080 Peppmoller et al. Jan 2010 B2
7665893 Buchalter Feb 2010 B2
7668583 Fegert et al. Feb 2010 B2
7699782 Angelsen et al. Apr 2010 B2
7727192 Tokumoto et al. Jun 2010 B2
7751865 Jascob et al. Jul 2010 B2
7766839 Rogers et al. Aug 2010 B2
7774051 Voth Aug 2010 B2
7794407 Rothenberg Sep 2010 B2
7798970 Lo et al. Sep 2010 B2
7819810 Stringer et al. Oct 2010 B2
7850613 Stribling Dec 2010 B2
7909815 Whitmore, III et al. Mar 2011 B2
7931596 Rachlin et al. Apr 2011 B2
7976469 Bonde et al. Jul 2011 B2
8118743 Park et al. Feb 2012 B2
20020019447 Renn et al. Feb 2002 A1
20020022777 Crieghton et al. Feb 2002 A1
20020032391 McFann et al. Mar 2002 A1
20020055680 Miele et al. May 2002 A1
20020082559 Chang et al. Jun 2002 A1
20020113555 Lys et al. Aug 2002 A1
20020123679 Dominguez Sep 2002 A1
20020128554 Seward Sep 2002 A1
20020133079 Sandhu Sep 2002 A1
20020156363 Hunter et al. Oct 2002 A1
20020156376 Wang et al. Oct 2002 A1
20020165448 Ben-Haim et al. Nov 2002 A1
20020165534 Hayzelden et al. Nov 2002 A1
20020198568 Hafer et al. Dec 2002 A1
20030009132 Schwartz et al. Jan 2003 A1
20030011359 Ashe Jan 2003 A1
20030013966 Barnes et al. Jan 2003 A1
20030036696 Willis et al. Feb 2003 A1
20030040671 Somogyi et al. Feb 2003 A1
20030072805 Miyazawa et al. Apr 2003 A1
20030076281 Morgan et al. Apr 2003 A1
20030083698 Whitehurst et al. May 2003 A1
20030088195 Vardi et al. May 2003 A1
20030100849 Jang May 2003 A1
20030114742 Lewkowicz et al. Jun 2003 A1
20030114777 Griffin et al. Jun 2003 A1
20030120150 Govari Jun 2003 A1
20030120154 Sauer et al. Jun 2003 A1
20030139661 Kimchy et al. Jul 2003 A1
20030149328 Elliott et al. Aug 2003 A1
20030152290 Odell Aug 2003 A1
20030160721 Gilboa et al. Aug 2003 A1
20030163037 Bladen et al. Aug 2003 A1
20030171691 Casscells et al. Sep 2003 A1
20030173953 Ashe Sep 2003 A1
20030184544 Prudent Oct 2003 A1
20030191392 Haldeman Oct 2003 A1
20030191460 Hobbs et al. Oct 2003 A1
20030195420 Mendlein et al. Oct 2003 A1
20030199746 Fuimaono et al. Oct 2003 A1
20030208142 Boudewijn et al. Nov 2003 A1
20030216639 Gilboa et al. Nov 2003 A1
20030220557 Cleary et al. Nov 2003 A1
20030220578 Ho et al. Nov 2003 A1
20030229298 Iwami et al. Dec 2003 A1
20030233042 Ashe Dec 2003 A1
20040015070 Liang et al. Jan 2004 A1
20040024301 Hockett et al. Feb 2004 A1
20040030319 Korkor et al. Feb 2004 A1
20040054278 Kimchy et al. Mar 2004 A1
20040082916 Jenkins Apr 2004 A1
20040087877 Besz et al. May 2004 A1
20040088136 Ashe May 2004 A1
20040097803 Panescu May 2004 A1
20040097804 Sobe May 2004 A1
20040097805 Verard et al. May 2004 A1
20040097806 Hunter et al. May 2004 A1
20040116809 Chow et al. Jun 2004 A1
20040127805 MacAdam et al. Jul 2004 A1
20040131998 Marom et al. Jul 2004 A1
20040133111 Szczech et al. Jul 2004 A1
20040133130 Ferry et al. Jul 2004 A1
20040135069 Odell Jul 2004 A1
20040138564 Hwang et al. Jul 2004 A1
20040138570 Nita et al. Jul 2004 A1
20040147837 Macaulay et al. Jul 2004 A1
20040150963 Holmberg et al. Aug 2004 A1
20040152972 Hunter Aug 2004 A1
20040155609 Lys et al. Aug 2004 A1
20040158140 Fuimaono et al. Aug 2004 A1
20040171924 Mire et al. Sep 2004 A1
20040176688 Haldeman Sep 2004 A1
20040186461 DiMatteo Sep 2004 A1
20040199069 Connelly et al. Oct 2004 A1
20040210289 Wang et al. Oct 2004 A1
20040230271 Wang et al. Nov 2004 A1
20040234453 Smith Nov 2004 A1
20040253365 Warren et al. Dec 2004 A1
20040254470 Drinkwater et al. Dec 2004 A1
20040260174 Keene Dec 2004 A1
20040267086 Anstadt et al. Dec 2004 A1
20050004450 Ben-Haim et al. Jan 2005 A1
20050021019 Hashimshony et al. Jan 2005 A1
20050033150 Takahashi et al. Feb 2005 A1
20050038355 Gellman et al. Feb 2005 A1
20050049486 Urquhart et al. Mar 2005 A1
20050049510 Haldeman et al. Mar 2005 A1
20050063194 Lys et al. Mar 2005 A1
20050070788 Wilson et al. Mar 2005 A1
20050075561 Golden Apr 2005 A1
20050085716 Hamm et al. Apr 2005 A1
20050085718 Shahidi Apr 2005 A1
20050085720 Jascob et al. Apr 2005 A1
20050101868 Ridley et al. May 2005 A1
20050101869 Burba et al. May 2005 A1
20050105081 Odell May 2005 A1
20050105101 Duling et al. May 2005 A1
20050112135 Cormier et al. May 2005 A1
20050113669 Helfer et al. May 2005 A1
20050113676 Weiner et al. May 2005 A1
20050113700 Yanagihara et al. May 2005 A1
20050113873 Weiner et al. May 2005 A1
20050113874 Connelly et al. May 2005 A1
20050113876 Weiner et al. May 2005 A1
20050149002 Wang et al. Jul 2005 A1
20050151489 Lys et al. Jul 2005 A1
20050154308 Quistgaard et al. Jul 2005 A1
20050159644 Takano Jul 2005 A1
20050159790 Shalev Jul 2005 A1
20050165301 Smith et al. Jul 2005 A1
20050165313 Byron et al. Jul 2005 A1
20050175665 Hunter et al. Aug 2005 A1
20050175703 Hunter et al. Aug 2005 A1
20050178395 Hunter et al. Aug 2005 A1
20050178396 Hunter et al. Aug 2005 A1
20050182295 Soper et al. Aug 2005 A1
20050203368 Verin Sep 2005 A1
20050203396 Angelsen et al. Sep 2005 A1
20050205081 Barker et al. Sep 2005 A1
20050215901 Anderson et al. Sep 2005 A1
20050215945 Harris et al. Sep 2005 A1
20050222532 Bertolero et al. Oct 2005 A1
20050240102 Rachlin et al. Oct 2005 A1
20050256398 Hastings et al. Nov 2005 A1
20050256541 Stypulkowski Nov 2005 A1
20060015003 Moaddes et al. Jan 2006 A1
20060025677 Verard et al. Feb 2006 A1
20060058633 Hoshino et al. Mar 2006 A1
20060068074 Stefandl Mar 2006 A1
20060084867 Tremblay et al. Apr 2006 A1
20060116571 Maschke et al. Jun 2006 A1
20060116578 Grunwald et al. Jun 2006 A1
20060149134 Soper et al. Jul 2006 A1
20060173329 Irioka et al. Aug 2006 A1
20060173407 Shaughnessy et al. Aug 2006 A1
20060176242 Jaramaz et al. Aug 2006 A1
20060184074 Vaezy et al. Aug 2006 A1
20060206037 Braxton Sep 2006 A1
20060211944 Mauge et al. Sep 2006 A1
20060224188 Libbus et al. Oct 2006 A1
20060247746 Danek et al. Nov 2006 A1
20060276867 Viswanathan Dec 2006 A1
20070010753 MacAdam Jan 2007 A1
20070016007 Govari et al. Jan 2007 A1
20070016013 Camus Jan 2007 A1
20070016068 Grunwald et al. Jan 2007 A1
20070016069 Grunwald et al. Jan 2007 A1
20070016070 Grunwald et al. Jan 2007 A1
20070016072 Grunwald et al. Jan 2007 A1
20070049822 Bunce et al. Mar 2007 A1
20070049846 Bown et al. Mar 2007 A1
20070055141 Kruger et al. Mar 2007 A1
20070055142 Webler Mar 2007 A1
20070060992 Pappone Mar 2007 A1
20070062544 Rauk Bergstrom et al. Mar 2007 A1
20070073155 Park et al. Mar 2007 A1
20070087038 Richardson et al. Apr 2007 A1
20070093710 Maschke Apr 2007 A1
20070100285 Griffin et al. May 2007 A1
20070112282 Skujins et al. May 2007 A1
20070123805 Shireman et al. May 2007 A1
20070129770 Younis Jun 2007 A1
20070135803 Belson Jun 2007 A1
20070135886 Maschke Jun 2007 A1
20070156205 Larson et al. Jul 2007 A1
20070167738 Timinger et al. Jul 2007 A1
20070167801 Webler et al. Jul 2007 A1
20070167997 Forsberg et al. Jul 2007 A1
20070197905 Timinger et al. Aug 2007 A1
20070208255 Ridley et al. Sep 2007 A1
20070225589 Viswanathan Sep 2007 A1
20070225610 Mickley et al. Sep 2007 A1
20070232882 Glossop et al. Oct 2007 A1
20070238984 Maschke et al. Oct 2007 A1
20070239018 Fetzer et al. Oct 2007 A1
20070244413 Biggins Oct 2007 A1
20070247454 Rahn et al. Oct 2007 A1
20070249911 Simon Oct 2007 A1
20070265526 Govari et al. Nov 2007 A1
20070280974 Son et al. Dec 2007 A1
20070282196 Birk et al. Dec 2007 A1
20070282197 Bill et al. Dec 2007 A1
20070299352 Harlev et al. Dec 2007 A1
20080008745 Stinchcomb et al. Jan 2008 A1
20080009720 Schefelker et al. Jan 2008 A1
20080015442 Watson et al. Jan 2008 A1
20080027320 Bolorforosh et al. Jan 2008 A1
20080045908 Gould et al. Feb 2008 A1
20080051626 Sato et al. Feb 2008 A1
20080081958 Denison et al. Apr 2008 A1
20080082136 Gaudiani Apr 2008 A1
20080097232 Rothenberg Apr 2008 A1
20080108949 Beasley et al. May 2008 A1
20080114095 Peppmoller et al. May 2008 A1
20080125772 Stone et al. May 2008 A1
20080139944 Weymer et al. Jun 2008 A1
20080146939 McMorrow et al. Jun 2008 A1
20080146940 Jenkins et al. Jun 2008 A1
20080154100 Thalmeier et al. Jun 2008 A1
20080166453 Steele et al. Jul 2008 A1
20080171934 Greenan et al. Jul 2008 A1
20080183075 Govari et al. Jul 2008 A1
20080200754 Buchalter Aug 2008 A1
20080228082 Scheirer et al. Sep 2008 A1
20080255404 Nogawa et al. Oct 2008 A1
20080255475 Kondrosky et al. Oct 2008 A1
20080275765 Kuchar Nov 2008 A1
20090005675 Grunwald et al. Jan 2009 A1
20090018497 Birchard et al. Jan 2009 A1
20090024018 Boyden et al. Jan 2009 A1
20090043205 Pelissier et al. Feb 2009 A1
20090082661 Saladin et al. Mar 2009 A1
20090084382 Jalde et al. Apr 2009 A1
20090101577 Fulkerson et al. Apr 2009 A1
20090118612 Grunwald et al. May 2009 A1
20090118706 Schweikert et al. May 2009 A1
20090143736 Mittermeyer et al. Jun 2009 A1
20090156926 Messerly et al. Jun 2009 A1
20090163810 Kanade et al. Jun 2009 A1
20090171217 Kim et al. Jul 2009 A1
20090177083 Matsumura Jul 2009 A1
20090177090 Grunwald et al. Jul 2009 A1
20090203989 Burnside et al. Aug 2009 A1
20090204113 MacAdam et al. Aug 2009 A1
20090209950 Starksen Aug 2009 A1
20090227952 Blakstvedt et al. Sep 2009 A1
20090234328 Cox et al. Sep 2009 A1
20090258171 Uang Oct 2009 A1
20090259124 Rothenberg Oct 2009 A1
20090262982 Markowitz et al. Oct 2009 A1
20090275828 Shachar et al. Nov 2009 A1
20090297441 Canham et al. Dec 2009 A1
20100004543 Ahlund et al. Jan 2010 A1
20100004547 Scholz et al. Jan 2010 A1
20100016726 Meier Jan 2010 A1
20100036227 Cox et al. Feb 2010 A1
20100049062 Ziv Feb 2010 A1
20100055153 Majmudar Mar 2010 A1
20100055184 Zeitels et al. Mar 2010 A1
20100057157 Govari et al. Mar 2010 A1
20100060472 Kimura et al. Mar 2010 A1
20100083719 Peppmoller et al. Apr 2010 A1
20100094116 Silverstein Apr 2010 A1
20100106011 Byrd et al. Apr 2010 A1
20100114573 Huang et al. May 2010 A1
20100143119 Kooijman et al. Jun 2010 A1
20100185097 Hall Jul 2010 A1
20100198048 Togawa Aug 2010 A1
20100204569 Burnside et al. Aug 2010 A1
20100217116 Eck et al. Aug 2010 A1
20100222664 Lemon et al. Sep 2010 A1
20100234733 Wahlheim Sep 2010 A1
20100249598 Smith et al. Sep 2010 A1
20100258033 Yang et al. Oct 2010 A1
20100273895 Stinchcomb et al. Oct 2010 A1
20100298702 Rogers et al. Nov 2010 A1
20100317981 Grunwald Dec 2010 A1
20100318026 Grunwald Dec 2010 A1
20100331712 Rothenberg Dec 2010 A1
20110015527 Heasty et al. Jan 2011 A1
20110015533 Cox et al. Jan 2011 A1
20110040212 Dietz et al. Feb 2011 A1
20110052694 Stinchcomb et al. Mar 2011 A1
20110087107 Lindekugel et al. Apr 2011 A1
20110196248 Grunwald Aug 2011 A1
20110282188 Burnside et al. Nov 2011 A1
20110295108 Cox et al. Dec 2011 A1
20110313293 Lindekugel et al. Dec 2011 A1
20120046562 Powers et al. Feb 2012 A1
20120059270 Grunwald Mar 2012 A1
20120095319 Kondrosky et al. Apr 2012 A1
20120108950 He et al. May 2012 A1
20120143029 Silverstein et al. Jun 2012 A1
20120220854 Messerly et al. Aug 2012 A1
Foreign Referenced Citations (117)
Number Date Country
642647 Nov 1990 AU
1860597 Jun 1999 AU
20009592 Sep 2000 AU
20015250 Jun 2001 AU
768362 Dec 2003 AU
2001229024 Sep 2005 AU
2001283703 May 2006 AU
2006202149 Jun 2006 AU
2006904933 Sep 2006 AU
2006283022 Feb 2012 AU
2420676 Feb 2002 CA
102209490 Oct 2011 CN
4319033 Jun 1994 DE
0359697 Mar 1990 EP
0362821 Apr 1990 EP
0399536 Nov 1990 EP
0823261 Feb 1998 EP
0928976 Jul 1999 EP
1311226 May 2003 EP
1504713 Feb 2005 EP
2313143 Apr 2011 EP
2440122 Apr 2012 EP
2464407 Jun 2012 EP
2482719 Aug 2012 EP
2545349 Nov 1984 FR
01097440 Apr 1989 JP
03173542 Jul 1991 JP
4090741 Aug 1992 JP
09-094298 Apr 1997 JP
10043310 Feb 1998 JP
10290839 Nov 1998 JP
11128237 May 1999 JP
2001161683 Jun 2001 JP
2001340334 Dec 2001 JP
2003501127 Jan 2003 JP
2003061752 Mar 2003 JP
2003299654 Oct 2003 JP
2003334191 Nov 2003 JP
2002520893 Feb 2004 JP
2004505748 Feb 2004 JP
2004515298 May 2004 JP
2006508744 Mar 2006 JP
5010604 Jun 2012 JP
9112836 Sep 1991 WO
9203090 Mar 1992 WO
9403159 Feb 1994 WO
9404938 Mar 1994 WO
9605768 Feb 1996 WO
9607352 Mar 1996 WO
9641119 Dec 1996 WO
9729683 Aug 1997 WO
9743989 Nov 1997 WO
9916495 Apr 1999 WO
9949407 Sep 1999 WO
0019906 Apr 2000 WO
0040155 Jul 2000 WO
0074775 Dec 2000 WO
0176479 Oct 2001 WO
0215973 Feb 2002 WO
0225277 Mar 2002 WO
03061752 Jul 2003 WO
03077759 Sep 2003 WO
2004049970 Jun 2004 WO
2005033524 Apr 2005 WO
2005033574 Apr 2005 WO
2005117690 Dec 2005 WO
2006074509 Jul 2006 WO
2006074510 Jul 2006 WO
2006078677 Jul 2006 WO
2006103661 Oct 2006 WO
2007002541 Jan 2007 WO
2007005976 Jan 2007 WO
2007014447 Feb 2007 WO
2007034196 Mar 2007 WO
2007067324 Jun 2007 WO
2007069168 Jun 2007 WO
2007109123 Sep 2007 WO
2007144894 Dec 2007 WO
2008005480 Jan 2008 WO
2008024596 Feb 2008 WO
2008028253 Mar 2008 WO
2008083111 Jul 2008 WO
2008126074 Oct 2008 WO
2008131017 Oct 2008 WO
2008136008 Nov 2008 WO
2009002514 Dec 2008 WO
2009009064 Jan 2009 WO
2009057774 May 2009 WO
2009070616 Jun 2009 WO
2009100158 Aug 2009 WO
2009123819 Oct 2009 WO
2009126340 Oct 2009 WO
2009129475 Oct 2009 WO
2009129477 Oct 2009 WO
2009134605 Nov 2009 WO
2009137262 Nov 2009 WO
2010002313 Jan 2010 WO
2010018500 Feb 2010 WO
2010022370 Feb 2010 WO
2010027349 Mar 2010 WO
2010027471 Mar 2010 WO
2010030820 Mar 2010 WO
2010132857 Nov 2010 WO
2010143196 Dec 2010 WO
2010144922 Dec 2010 WO
2011019760 Feb 2011 WO
2011041450 Apr 2011 WO
2011044421 Apr 2011 WO
2011064209 Jun 2011 WO
2011084593 Jul 2011 WO
2011097312 Aug 2011 WO
2011128052 Oct 2011 WO
2012021542 Feb 2012 WO
2012024577 Feb 2012 WO
2012058461 May 2012 WO
2012083245 Jun 2012 WO
2012088535 Jun 2012 WO
Non-Patent Literature Citations (239)
Entry
MedGraphics, CardioPerfect® Resting/Stress ECG System, 3 pages, 2001.
Michenfelder, John et al, Air Embolism During Neurosurgery—An Evaluation of Right-Atrial Catheters for Diagnosis and Treatment, JAMA, pp. 1353-1358, vol. 208, No. 8, May 26, 1969.
Michenfelder, John et al, Air Embolism During Neurosurgery. A New Method of Treatment, Anesthesia and Analgesia. Current Researches, pp. 390-395, vol. 45, No. 4, Jul.-Aug. 1966.
Microbird™ Miniaturized DC Magnetic Sensors for Intra-body Navigation and Localization, Specifications, 2005.
Micronix CathRite™ Cardiac Access Device Brochure. Jun. 2004.
Micronix Pty Ltd “CathRite” Guiding Styled Core Manufacturing, Jun. 15, 2006.
Murthy, Vrudhula et al, Analysis of Power Spectral Densities of Electrocardiograms, Mathematical Biosciences, pp. 41-51, vol. 12 No. 1-2, Oct. 1971.
Nadroo, AM et al, Changes in Upper Extremity Position Cause Migration of Peripherally Inserted Central Catheters in Neonates, Pediatrics, pp. 131-136, vol. 110, Jul. 2002.
Nakatani, K et al, Accurate Placement of Central Venous Catheters—ECG-guided method vs Patient Height Method, Masui, pp. 34-38, vol. 51 No. 1, Jan. 2002.
Nazarian, GK et al, Changes in Tunneled Catheter Tip Position when a patient is Upright, J Vasc Interv Radiol, pp. 437-441, vol. 8 No. 3, May-Jun. 1997.
Neurometer® CPT, Clinical Applications. Neurotron , Inc. website: www.neurotron.com/CLINAPS.html, last accessed Oct. 23, 2006.
Neurometer® CPT, Frequently Asked Questions. Neurotron , Inc. website: www.neurotron.com/CPTFAQ/html, last accessed Oct. 23, 2006.
Neurometer® CPT, Products Page. Neurotron , Inc. website: www.neurotron.com/products.html, last accessed Oct. 23, 2006.
Neurometer® Electrodiagnostic Neuroselective Sensory Nerve Evaluation: Charts, Tables, Documents & Downloads. Neurotron , Inc. website: www.neurotron.com/downloads.html, last accessed Oct. 23, 2006.
Odd, De et al, Does Radio-opaque Contrast Improve Radiographic localisation of Percutaneous Central Venous Lines?, Arch Dis Child Fetal Neonatal Ed, pp. 41-43, vol. 89 No. 1, Jan. 2004.
Palesty, JA et al, Routine Chest Radiographs Following Central Venous Recatherization over a Wire are not Justified, Am J Surg, pp. 618-621, vol. 176 No. 6, Dec. 1998.
Paliotti, Roberta P. et al, Intravascular Doppler Technique for Monitoring Renal Venous Blood Flow in Man, J Nephrol, pp. 57-62, 2003.
Parker, K.H. et al, Cardiovascular Fluid Dynamics, Department of Bioengineering, National Heart and Lung Institute, Imperial College of Science, Technology and Medicine, Cardiovascular Haemodynamics, pp. 1-28, Sep. 26, 2005.
Pawlik, et al., “Central Venous Catheter Placement: Comparison of the Intravascular Guidewire and the Fluid Column Electrocardiograms.” European Journal of Anaesthesiology, vol. 41, pp. 594-599, 2004.
PCT/US2006/033079 filed Aug. 24, 2006 International Preliminary Report on Patentability dated Feb. 26, 2008.
PCT/US2006/033079 filed Aug. 24, 2006 Search Report dated Dec. 19, 2006.
PCT/US2006/033079 filed Aug. 24, 2006 Written Opinion dated Dec. 19, 2006.
PCT/US2008/060502 filed Apr. 16, 2008 International Search Report and Written Opinion dated Oct. 16, 2008.
PCT/US2008/084751 filed Nov. 25, 2008 International Preliminary Report on Patentability dated Jun. 1, 2010.
PCT/US2008/084751 filed Nov. 25, 2008 Search Report dated May 20, 2009.
PCT/US2008/084751 filed Nov. 25, 2008 Written Opinion dated May 20, 2009.
PCT/US2009/033116 filed Feb. 4, 2009 International Preliminary Report on Patentability dated Aug. 10, 2010.
PCT/US2009/033116 filed Feb. 4, 2009 Search Report dated Mar. 13, 2009.
PCT/US2009/033116 filed Feb. 4, 2009 Written Opinion dated Mar. 13, 2009.
PCT/US2009/041051 filed Apr. 17, 2009 Search Report dated Jul. 28, 2009.
PCT/US2009/041051 filed Apr. 17, 2009 Written Opinion dated Jul. 28, 2009.
PCT/US2009/054687 filed Aug. 21, 2009 International Preliminary Report on Patentability dated Feb. 22, 2011.
PCT/US2009/054687 filed Aug. 21, 2009 Search Report dated Oct. 6, 2009.
PCT/US2009/054687 filed Aug. 21, 2009 Written Opinion dated Oct. 6, 2009.
PCT/US2009/056567 filed Sep. 10, 2009 International Preliminary Report on Patentability dated Mar. 15, 2011.
PCT/US2009/056567 filed Sep. 10, 2009 Search Report dated Nov. 6, 2009.
PCT/US2009/056567 filed Sep. 10, 2009 Written Opinion dated Nov. 6, 2009.
PCT/US2010/038555 filed Jun. 14, 2010 Search Report dated Oct. 5, 2010.
PCT/US2010/038555 filed Jun. 14, 2010 Written Opinion dated Oct. 5, 2010.
PCT/US2010/045084 filed Aug. 10, 2010 International Preliminary Report on Patentability dated Feb. 23, 2012.
PCT/US2010/045084 filed Aug. 10, 2010 Search Report dated Apr. 14, 2011.
PCT/US2010/045084 filed Aug. 10, 2010 Written Opinion dated Apr. 14, 2011.
PCT/US2010/050773 filed Sep. 29, 2010 Search Report dated Jan. 24, 2011.
PCT/US2010/050773 filed Sep. 29, 2010 Written Opinion dated Jan. 24, 2011.
PCT/US2010/051917 filed Oct. 8, 2010 Search Report dated Nov. 29, 2010.
PCT/US2010/051917 filed Oct. 8, 2010 Written Opinion dated Nov. 29, 2010.
PCT/US2011/023497 filed Feb. 2, 2011 Search Report dated Jun. 6, 2011.
PCT/US2011/023497 filed Feb. 2, 2011 Written Opinion dated Jun. 6, 2011.
PCT/US2011/038415 filed May 27, 2011 International Search Report dated Sep. 28, 2011.
PCT/US2011/038415 filed May 27, 2011 Written Opinion dated Sep. 28, 2011.
U.S. Appl. No. 11/466,602, filed Aug. 23, 2006 Notice of Allowance dated Dec. 3, 2012.
U.S. Appl. No. 11/552,094, filed Oct. 23, 2006 Notice of Allowability dated Apr. 2, 2010.
U.S. Appl. No. 11/552,094, filed Oct. 23, 2006 Non-Final Office Action dated Apr. 27, 2009.
U.S. Appl. No. 11/552,094, filed Oct. 23, 2006 Notice of Allowance dated May 20, 2010.
U.S. Appl. No. 12/104,253, filed Apr. 16, 2008 Final Office Action dated Jul. 27, 2011.
U.S. Appl. No. 12/104,253, filed Apr. 16, 2008 Non-Final Office Action dated Nov. 29, 2010.
U.S. Appl. No. 12/323,273, filed Nov. 25, 2008 Non-Final Office Action dated Jun. 8, 2012.
U.S. Appl. No. 12/369,625, filed Feb. 11, 2009 Final Office Action dated Feb. 23, 2012.
U.S. Appl. No. 12/369,625, filed Feb. 11, 2009 Notice of Allowance dated Oct. 5, 2012.
U.S. Appl. No. 12/369,625, filed Feb. 11, 2009 Notice of Panel Decision dated Aug. 1, 2012.
U.S. Appl. No. 12/369,625, filed Feb. 11, 2009 Non-Final Office Action dated Jul. 20, 2011.
U.S. Appl. No. 12/426,175, filed Apr. 17, 2009 Non-Final Office Action dated Dec. 3, 2012.
U.S. Appl. No. 12/427,244, filed Apr. 21, 2009 Non-Final Office Action dated Jan. 19, 2012.
U.S. Appl. No. 12/545,762, filed Aug. 21, 2009 Non-Final Office Action dated Aug. 1, 2012.
U.S. Appl. No. 12/557,401, filed Sep. 10, 2009 Non-Final Office Action dated Apr. 24, 2012.
U.S. Appl. No. 12/715,556, filed Mar. 2, 2010 Non-Final Office Action dated Sep. 13, 2012.
U.S. Appl. No. 12/878,915, filed Sep. 9, 2010 Final Office Action dated Sep. 26, 2012.
U.S. Appl. No. 12/878,915, filed Sep. 9, 2010 Non-Final Office Action dated Mar. 15, 2012.
U.S. Appl. No. 13/118,138, filed May 27, 2011 Non-Final Office Action dated Oct. 3, 2012.
U.S. Appl. No. 13/213,622, filed Aug. 19, 2011 Non-Final Office Action dated Jul. 31, 2012.
U.S. Appl. No. 13/336,919, filed Dec. 23, 2011 Non-Final Office Action dated Oct. 16, 2012.
Valdivieso, J.R. Perez, et al., Evaluation of a formula for optimal positioning of a central venous catheter inserted through the right internal jugular vein, Rev. Esp. Anestesiol. Reanim. 2003; 50: 77-79.
VasoNova Inc, Vascular navigation system for accurate placement of PICCs, Start-Up Emerging Medical Ventures, pp. 44-45, vol. 14 No. 7, Jul.-Aug. 2009.
Vesely, Thomas M. et al., Central Venous Catheter Tip Position: A Continuing Controversy, J Vasc Intery Radiol 2003; 14:527-534.
VIASYS Health Care Inc. Cortrak © Fact Sheet, 2005.
VIASYS Healthcare MedSystems, Navigator® Benefits, 2008.
VIASYS Healthcare MedSystems, Navigator® Research in Cost Justification, 2008.
VIASYS MedSystems, Cortrak™ Systems Brochure, 2005.
Volcano ComboMap Features and Benefits/Technical Specifications, 2 pages, 2011.
Watters, et al. “Use of Electrocardiogram to Position Right Atrial Catheters During Surgery.” Annals of Surgery, vol. 225, No. 2, pp. 165-171, 1997.
Welch Allyn Cardioperfect® PC-Based Resting ECG, 2003.
Wilson, R. G. et al, Right Atrial Electrocardiography in Placement of Central Venous Catheters, The Lancet, pp. 462-463, Feb. 27, 1988.
Wong, Jeffrey J. et al., Azygos Tip Placement for Hemodialysis Catheters in Patients with Superior Vena Cava Occlusion, Cardiovasc Intervent Radiol (2006) 29:143-146.
Worley, Seth J. “Use of a Real-Time Three-Dimensional Magenetic Navigation System for Radiofrequency Ablation of Accessory Pathways.” PACE, vol. 21 pp. 1636-1643, Aug. 1998.
Yilmazlar A et al, Complications of 1303 Central Venous Cannulations, J R Soc Med, pp. 319-321, vol. 90 No. 6, Jun. 1997 (Abstract only).
Yoon, SZ et al, Usefulness of the Carina as a Radiographic Landmark for Central Venous Catheter Placement in Paediatric Patients, Br J Anaesth, Jul. 2005.
Yoshida, Teruhisa et al, Detection of Concealed Left Sided Accessory Atrioventricular Pathway by P Wave Signal Averaged Electrocardiogram, J Am Coll Cardiol, pp. 55-62, 1999.
Zaaroor, et al. “Novel Magnetic Technology for Intraoperative Intracranial Frameless Navigation: In Vivo and in Vitro Results.” Neurosurgery, vol. 48, No. 5. pp. 1100-1107, May 2001.
Zachariou, Zacharias et al., Intra-atrial ECG recording: a new and safe method for implantation of Broviac catheters in children, Pediatr Surg Int (1994) 9: 457-458.
“Ascension to Launch New 3D Guidance™ Tracker at TCT 2006.” Press Releases from Ascension website: www.ascension-tech.com/news/press—101106.php, last accessed Dec. 1, 2006.
Acuson—The Value of Vision, AcuNav Diagnostic Ultrasound Catheter, 2000.
Advertising flyer for GAVECELT—The Italian Group for Long Term Venous Access Devices, for program on International Meeting on PICC's, Midline Catheters and Long Term Venous Access Devices in Catholic University, Rome, Italy on Dec. 3, 4, 5, 2008.
Alexander, GD et al, The Role of Nitrous Oxide in Postoperative Nausea and Vomiting, Collection of Abstracts Presented at the International Anesthesia Research Society by various speakers, 58th Congress, Mar. 12-14, 1984, Anesthesia and Analgesia, pp. 175-284, vol. 63, 1984.
Allan, P.L. et al, Role of Ultrsound in the Assessment of Chronic Venous Insufficiency, Ultrasound Quarterly, vol. 17, No. 1, pp. 3-10, 2001.
Andropoulos, et al. “A Controlled Study of the Transesophageal Echocardiography to Guide Central Venous Catheter Placement in Congetital Heart Surgery Patients.” The International Anesthesia Research Society, vol. 89, pp. 65-70, 1999.
Anonymous author, Correct Catheter Placement with a low-impact, reliable and economical method, <http://www.cvc-partner.com/index.cfm?103A955CC6844BF58ACFE3C9C1471959>, last accessed Dec. 22, 2011.
Arai, J et al, Detection of Peripherally Inserted Central Catheter Occlusion by in-line Pressure Monitoring, Paediatr Anaesth, pp. 621-624, vol. 12 No. 7, Sep. 2002.
Arrow International, Inc., The Arrow-Johans RAECG Adapter-Making Proper Central Venous Catheter Placement More Reliable (Modle No. EG-04900), Technical Report 1987, USA.
Aslamy, et al. “MRI of Central Venous Anatomy: Implications for Central Venous Catheter Insertion.” American College of Chest Physicians, Jun. 8, 2009.
AU 2006283022 filed Aug. 24, 2006 Office Action dated Dec. 22, 2010.
Aurora® System Technical Specifications, Oct. 2003.
B. Braun Website, “The Optimal Position of the Central Venous Catheter.” http://www.cvcpartner.com/index.cfm18F1BDEA1310466194960A39F4E90968 (2009).
B. Braun, Certofix Central Venous Catheter for Placement Using the Seldinger Technique with Simultaneous ECG Lead Option, Feb. 2010.
Bailey, SH et al, Is Immediate Chest Radiograph Necessary after Central Venous Catheter Placement in a Surgical Intensive Care Unit?, Am J Surg, pp. 517-522, vol. 180 No. 6, Dec. 2000.
Bankier, Alexander A., Azygos Arch Cannulation by Central Venous Catheters: Radiographic Detection of Malposition and Subsequent Complications, Journal of Thoracic Imaging 12:64-69 (1997).
Barber, JM et al, A Nurse led Peripherally Inserted Central Catheter Line Insertion Service is Effective with Radiological Support, Clin Radiol, pp. 352-354, vol. 57 No. 5, May 2002.
Bard Access Systems, Sherlock Tip Location System, 5 pages, 2006.
Bard Access Systems, Site Rite Vascular Acess Ultrasound System, 4 pages, 2005.
Benchimol, Alberto at al, Right Atrium and Superior Vena Cava Flow Velocity in Man Measured with the Doppler-Catheter Flowmeter-Telemetry System, The Amer Journal of Medicine, pp. 303-309, vol. 48, Mar. 1970.
BioAdvance Lumen Vu, Greenhouse Fund Feb. 2004 Recipient, www.bioadvance.com <http://www.bioadvance.com>, 2005.
Borgobello, Bridget, App allows users to view electrocardiograms on smartphones dated Oct. 15, 2010; printed from http://www.gizmag.com/app-to-view-electrocardiograms-on-smartphones/16664/ on Feb. 4, 2011.
Buehrle, Douglas, PICC Placement in Humans using Electromagnetic Detection, <http://www.corpakmedsystems.com/supplement—material/supplementpages/navigator/navarticle.html>, 2008.
C.R. Bard, CathTrack™ Catheter Location System at www.bardaccess.com <http://www.bardaccess.com>, last accessed Apr. 28, 2011.
C.R. Bard, Inc., Bard Electrophysiology Product Catalogue, Bard Catheters, pp. 74-75 (2002), USA.
CA 2,619,909 filed Aug. 24, 2006 Examiner's Report dated Oct. 26, 2012.
Cadman, A et al, To Clot or Not to Clot? That is the question in Central Venous Catheters, Clinical Radiology, pp. 349-355, vol. 59 No. 4, Apr. 2004.
Calvert, N. et al, The Effectiveness and Cost-effectiveness of Ultrasound Locating Devices for Central Venous Access: A Systematic Review and Economic Evaluation, Health Technology Assessment, vol. 7, No. 12, 2003.
Cardella, John F. et al., Interventinal Radiologic Placement of Peripherally Inserted Central Catheters, Journal of Vascular and Interventional Radiology 1993; 4:653-660.
Carlon, R et al, Secondary Migration of a Central Venous Catheter—A Case Report, Minerva Anestesiol, pp. 927-931, vol. 69 No. 12, Dec. 2003.
Caruso, LJ et al, A Better Landmark for Positioning a Central Venous Catheter, J Clinical Monitoring and Computing, pp. 331-334, vol. 17 No. 6, Aug. 2002.
Cavatorta, et al., “Central Venous Catheter Placement in Hemodialysis: Evaluation of Electrocardiography Using a Guidewire.” The Journal of Vascular Access, vol. 2, pp. 45-50, 2001.
Chalkiadis, GA et al, Depth of Central Venous Catheter Insertion in Adults: An Audit and Assessment of a Technique to Improve Tip Position, Anaesth Intensive Care, pp. 61-66, vol. 26 No. 1, Feb. 1998.
Chamsi-Pasha, Hassan et al, Cardiac Complications of Total Parenteral Nutrition: The Role of Two-Dimensional Echocardiography in Diagnosis, Annals of the Royal College of Surgeons of England, pp. 120-123, vol. 71, 1989.
Chang, Thomas C. et al., Are Routine Ch Ladiographs Necessary After Image-Guided Placement of Internal Jugular Central Venous Access Devices?, AJR Feb. 1998;170:335-337.
Chaturvedi et al., “Catheter Malplacement During Central Venous Cannulation Through Arm Veins in Pediatric Patients.” Journal of Neurosurgical Anesthesiology, vol. 15, No. 3 pp. 170-175, Jan. 2003.
Chen, Zhongping et al, Optical Doppler Tomography: Imaging in vivo Blood Flow Dynamics Following Pharmacological Intervention and Photodynamic Therapy, 7 pages, vol. 67, Photochemistry and Photobiology, 1998.
Cheng, KI et al, A Novel Approach of Intravenous Electrocardiograph Technique in Correct Position the Long-Term Central Venous Catheter, Kaohsiung J Med Sci, pp. 241-247, vol. 16 No. 5, May 2000 (Abstract only).
Cheung, P., et al., The Effect of a Disposable Probe Cover on Pulse Oximetry, Anaesth Intensive Care 2002; 30: 211-214.
Chu, et al., “Accurate Central Venous Port-A Catheter Placement: Intravenous Electrocardiography and Surface Landmark Techniques Compared by Using Transesophageal Echocardiography.” The International Anesthesia Research Society, vol. 98, pp. 910-914, 2004.
Claasz, Antonia et al, A Study of the Relationship of the Superior Vena Cava to the Bony Landmarks of the Sternum in the Supine Adult: Implications for Magnetic Guidance Systems, Journal, vol. 12 No. 3, JAVA, Jul. 24, 2007.
Clifford, et al. “Assessment of Hepatic Motion Secondary to Respiration for Computer Assisted Interventions.” Computer Aided Surgery, vol. 7, pp. 291-299, 2002.
CN 200880012117.4 filed Apr. 16, 2008 First Office Action dated Dec. 23, 2011.
CN 200880012117.4 filed Apr. 16, 2008 Second Office Action dated Oct. 8, 2012.
CN 200880125528.4 filed Nov. 25, 2008 First Office Action dated Jun. 5, 2012.
Colley, Peter S et al, ECG-Guided Placement of Sorenson CVP Catheters via Arm Veins, Anesthesia and Analgesia, pp. 953-956, vol. 63, 1984.
Collier, PE et al, Cardiac Tamponade from Central Venous Catheters, Am J Surg, pp. 212-214, vol. 176 No. 2, Aug. 1998.
ComboWire® Pressure/Flow Guide Wire Ref 9500 Series, Instructions for Use, Apr. 2011.
Corsten, et al., “Central Placement Catheter Placement Using the ECG-Guided Cavafix-Certodyn SD Catheter.” Journal of Clinical Anesthesiology, vol. 6, Nov./Dec. 1994.
Cucchiara, Roy et al, Time Required and Success Rate of Percantaneous Right Atrial Catherization: Description of a Technique, Canad. Anaesth. Soc. J., pp. 572-573, vol. 27, No. 6, Nov. 1980.
PCT/US2011/047127 filed Aug. 9, 2011 International Search Report dated Feb. 29, 2012.
PCT/US2011/047127 filed Aug. 9, 2011 Written Opinion dated Feb. 29, 2012.
PCT/US2011/048403 filed Aug. 19, 2011 International Search Report dated Dec. 15, 2011.
PCT/US2011/048403 filed Aug. 19, 2011 Written Opinion dated Dec. 15, 2011.
PCT/US2011/052793 filed Sep. 22, 2011 International Search Report dated Jan. 6, 2012.
PCT/US2011/052793 filed Sep. 22, 2011 Written Opinion dated Jan. 6, 2012.
PCT/US2011/058138 filed Oct. 27, 2011 International Search Report dated Feb. 7, 2012.
PCT/US2011/058138 filed Oct. 27, 2011 Written Opinion dated Feb. 7, 2012.
PCT/US2011/067268 filed Dec. 23, 2011 International Search Report and Written Opinion dated Apr. 27, 2012.
PCT/US2012/045814 filed Jul. 6, 2012 International Search Report and Written Opinion dated Oct. 1, 2012.
Pennington, C.R., Right Atrial Thrombus: a Complication of Total Parenteral Nutrition, British Medical Journal, pp. 446-447, vol. 295, Aug. 15, 1987.
Petersen, J et al, Silicone Venous Access Devices Positioned with their Tip High in the Superior Vena Cava are More Likely to Malfunction, Am J Surg, pp. 38-41, vol. 178 No. 1, Jul. 1999.
Pittiruti, et al, Intracavitary EKG Monitoring: A reliable method for controlling tip position during and after PICC Insertion presentation in Catholic University, Rome, Italy in 2008.
Pittiruti, et al. “The EKG Method for Positioning the Tip of PICCs: Results from Two Preliminary Studies.” JAVA, vol. 13, No. 4, pp. 179-185, 2008.
Polos, PG et al, Tips for Monitoring the Position of a Central Venous Catheter—How Placement can go awry—even when the anatomy is normal, J Crit Illn, pp. 660-674, vol. 8 No. 6, Jun. 1993 (Abstract only).
Pop, Gheorghe A. et al., Catheter-based impedance measurements in the right atrium for continuously monitoring hematocrit and estimating blood viscosity changes; an in vivo feasibility study in swine, Biosensors and Bioelectronics 19 (2004) 1685-1693.
Popp, M. B. et al., Accuracy of implanted port placement with the use of the electromagnetic CathTrack® catheter locator system, The Journal of Vascular Access 2005; 6: 9-12.
Randolph AG et al, Ultrasound guidance for placement of central venous catheters: a meta-analysis of the literature, Critcal Care Medicine, pp. 2053-2058, vol. 24, Dec. 1996.
Reece, A et al, Posititioning Long Lines: Contrast Versus Plain Radiography, Arch Dis Child Fetal Neonatal Ed, pp. 129-130, vol. 84 No. 2, Mar. 2001.
Reynolds, N. et al, Assessment of Distal Tip Position of Long Term Central Venous Feeding Catheters using Transesophageal Echocardiology, JPEN J Parenter Enteral Nutr, pp. 39-41, vol. 25 No. 1, Jan.-Feb. 2001.
Ruschulte, Heiner et al, Prevention of Central Venous Catheter related infections with chlorhex idine gluconate impregnated wound dressings: A randomized controlled trial, presented as an abstract at the Annual meeting of the European Society of Anaesthesiologists (ESA) in Madrid, Spain in Jun. 2006, 12 pages, Annals of Hematology, Jul. 14, 2008.
Rutherford, J. S. et al., Depth of Central Venous Catheterization: An Audit of Practice in a Cardiac Surgical Unit, Anaesth Intens Care 1994; 22: 267-271.
Sacolick, et al. “Electromagnetically Tracked Placement of a Peripherally Inserted Central Catheter.” SPIE Medical Imaging, 2004 Proceedings.
Salem, et al. “A New Peripherally Implanted Subcutaneous Permanent Central Venous Access Device for Patients Requiring Chemotherapy.” Journal of Clinical Oncology, vol. 11, No. 11, pp. 2181-2185, Nov. 1993.
Savary, D et al, Intra-atrial Monitoring to Add Insertion of a Central Venous Line in Pre-Hospital Emergency Care Journal Europeen des Urgences, pp. 75-78, vol. 17 No. 2, 2004.
Schafer et al. “Incorrect placement of a vena cava catheter and its prevention by intra-atrial ECG.” Anaesthesist. Jan. 1988;37(1):49-51.
Schummer, et al. “Central Venous Catheters—The inability of ‘intra-atrial ECG’ to prove adequate positioning.” British Journal of Anaesthesia, vol. 93, No. 2, pp. 193-198, 2004.
Schummer, W et al, ECG-guided Central Venous Catheter Positioning: Does it detect the Pericardial Reflection rather than the Right Atrium?, Eur J Anaesthesiol, pp. 600-605, vol. 21 No. 8, Aug. 2004 (Abstract only).
Schummer, W et al, Intra-Atrial ECG is not a Reliable Method for Positioning Left Internal Jugular Vein Catheters, Br J Anaesth, pp. 481-486, vol. 91 No. 4, Oct. 2003.
Schummer, W, Central Venous Catheter—the Inability of “Intra-Atrial ECG” to prove Adequate Positioning, Br J Anaesth, pp. 193-198, vol. 93 No. 2, Aug. 2004.
Schuster, M. et al., The carina as a landmark in central venous catheter placement, British Journal of Anaesthesia 85 (2): 192-4 (2000).
Siela, Debra, Using Chest Radiography in the Intensive Care Unit, Crit Care Nurse Aug. 1, 2002 vol. 22 No. 4, pp. 18-27.
Simon, et al., “Central Venous Catheter Placement in Children: Evaluation of Electrocardiography Using J-Wire.” Paediatric Anaesthesia vol. 9, pp. 501-504, 1999.
Smith, Brigham, et al., Intravenous electrocardiographic guidance for placement of peripherally inserted central catheters, Journal of Electrocardiology 43 (2010) 274-278.
Stark, DD et al, Radiographic Assessment of Venous Catheter Position in Children: Value of the Lateral View, Pediatric Radiology, pp. 76-80, vol. 14 No. 2, 1984.
Starkhammar et al. “Cath-Finder Catheter Tracking System: A New Device for Positioning of Central Venous Catheters. Early Experience from Implantation of Brachial portal Systems.” Acta Anaesthesiol Scandinavia, vol. 34, No. 4 pp. 296-300, May 1990.
Starkhammer, H et al, Central Venous Catheter Placement using Electromagnetic Position Sensing: A Clinical Evaluation, Biomed. Instrum Technol, vol. 30 No. 2, pp. 164-170; Mar.-Apr. 1996.
Starr, David S et al, EKG Guided Placement of Subclavian CVP Catheters Using J-Wire, pp. 673-676, Ann. Surg, Dec. 1986.
Stas, M et al, Peroperative Intravasal Electrographic Control of Catheter Tip Position in Access Ports Placed by Venous Cut-Down Technique, EJSO, pp. 316-320, vol. 27, 2001.
Stereotaxis Magetic Navigation System with Navigant# User Interface, 2005 Brochure.
Stereotaxis, Expanding the Possibilites of Interventional Medicine: Remote Navigation and Automation, pp. 1-8, Apr. 2011.
Tepa® Health Innovation PC based ECG System Introduction and Technical Specifications, EKG Master USB, 2 pages, Nov. 2003.
The FloWire Doppler Guide Wire located <http://www.volcanocorp.com/products/flowire-doppler-guide-wire.php>, 2011.
Traxal Technologies, Tracking Technology website overview: www.traxal.com/rd/rd—classroom—trackingtechnology.htm, last accessed Dec. 1, 2006.
UAB Health Systems, Arrhythmias, retrieved from http://www.health,uab.edu/14564/ on Nov. 15, 2007, 12 pages.
U.S. Appl. No. 11/466,602, filed Aug. 23, 2006 Advisory Action dated Jun. 22, 2009.
U.S. Appl. No. 11/466,602, filed Aug. 23, 2006 Appeal Board Decision dated Sep. 17, 2012.
U.S. Appl. No. 11/466,602, filed Aug. 23, 2006 Final Office Action dated Apr. 8, 2010.
U.S. Appl. No. 11/466,602, filed Aug. 23, 2006 Final Office Action dated Jan. 30, 2009.
U.S. Appl. No. 11/466,602, filed Aug. 23, 2006 Non-Final Office Action dated Sep. 25, 2009.
Cullinane, DC et al, The Futility of Chest Roentgenograms Following Routine Central Venous Line Changes, Am J Surg, pp. 283-285, vol. 176 No. 3, Sep. 1998.
Curet, Myriam J. et al., University and Practice-based Physicians' Input on the Content of a Surgical Curriculum, The American Journal of Surgery® vol. 178 Jul. 1999, 78-84.
David, et al., “Is ECG-Guidance a Helpful Method to Correctly Position a Central Venous Catheter During Prehospital Emergency Care?” ACTA Anaesthesiologica Scandinavica, vol. 49, pp. 1010-1014, 2005.
DELTEC Cath-Finder® Tracking System Operation Manual, 1994.
Egelhof, Petra, Effects of Somatostatin on Portal Blood Flow and Portal Vein Pressure in Patients with Portal Hypertension due to Liver Cirrhosis Invasive Monitoring during TIPSS Procedures, Dissertation submitted to: Technical University of Munich, Faculty of Medicine, May 13, 2002; Date of examination: Feb. 26, 2003.
Engelhardt, W et al, ECG-Controlled Placement of Central Venous Catheters in Patients with Atrial Fibrallation, Anaesthesist, pp. 476-479, vol. 38 No. 9, Sep. 1989 (Abstract only).
EP 08855396.1 filed Jun. 15, 2010 European Search Report dated Jul. 31, 2012.
EP 09808901.4 filed Aug. 21, 2009 European Search Report dated May 23, 2012.
EP 09813632.8 filed Apr. 5, 2011 European Search Report dated Jul. 4, 2012.
Fearon, William F et al, Evaluating Intermediate Coronary Lesions in the Cardiac Catheterization Laboratory, vol. 4, No. 1, 7 pages, Reviews in Cardiovascular Medicine, 2003.
Felleiter P et al, Use of Electrocardiographic Placement Control of Central Venous Catheters in Austria, Acta Med Austriaca, pp. 109-113, vol. 26 No. 3, 1999 (Abstract only).
Forauer, AR et al, Change in Peripherally Inserted Central Catheter Tip Location with Abduction and Adduction of the Upper Extremity, J Vasc Interv Radiol, pp. 1315-1318, vol. 11 No. 10, Nov.-Dec. 2000.
Frassinelli, P et al, Utility of Chest Radiographs after Guidewire Exchanges of Central Venous Catheters, Crit Care Med, pp. 611-615, vol. 26 No. 3, Mar. 1998.
Frazin L et al, A Doppler Guided Retrograde Catheterization System, Cathet. Cardiovasc Diagn, pp. 41-50, May 1992.
French, PJ et al, Sensors for Catheter Applications, Sensors Update, vol. 13 Issue 1 pp. 107-153, Dec. 2003.
GB Application 0800474.9 filed Aug. 24, 2006 Office Action dated Aug. 9, 2010.
GB Application 0800474.9 filed Aug. 24, 2006 Office Action dated Mar. 17, 2010.
Gebauer, B et al, Ultrasound and Fluoroscopy-guided Implantation of Peripherally Inserted Central Venous Catheters (PICCs), ROFO, pp. 386-391, vol. 176 No. 3, Mar. 2004 (Abstract only).
Gebhard, et al., “The accuracy of Electrocardiogram-Controlled Central Line Placement.” The International Anesthesia Research Society, vol. 104, No. 1 Jan. 2007.
Gjendemsjo, Anders, et al., Energy and Power, The Connexions Project, Version 1.2, Feb. 20, 2004.
Gladwin, MT et al, Cannulation of the Internal Jugular Vein: is postpocedural chest radiography always necessary?, Crit Care Med, 33 pages, Oct. 2000.
Gonzales, et al. “Peripherally Inserted Central Catheter Placement in Swine Using Magnet Detection.” Journal of Intravenous Nursing, vol. 22, No. 3, May/Jun. 1999.
Greenall, M.J. et al, Cardiac Tamponade and Central Venous Catheters, British Medical Journal, pp. 595-597, Jun. 14, 1975.
Guillory, “Basic Principles of Technologies for Catheter Localization.” C.R. Bard internal paper, Oct. 20, 2004.
Guth, AA, Routine Chest X-rays after Insertion of Implantable Long-Term Venous Catheters: Necessary or Not?, Am Surg, pp. 26-29, vol. 67 No. 1, Jan. 2001 (Abstract only).
Hill, Bradley et al, Abstract of article discussing VasaNova VPS as guide for placement of PICCs. 2009.
Hill, Bradley, Identifying the Caval-Atrial Junction Using Smart-Catheter Technology presentation, 22nd Annual Scientific Meeting of the AVA in Savannah, Georgia, Sep. 13, 2008.
Hoffman, Thomas et al, Simultaneous Measurement of Pulmonary Venous Flow by Intravascular Catheter Doppler Velocimetry and Transesophageal Doppler Echocardiography: Relation to Left Atrial Pressure and Left Atrial and Left Ventricular Function, pp. 239-249, J Am Coll Cardiol, Jul. 1995.
Hoffmann, et al. “New Procedure in Transesophageal Echocardiography: Multiplane Transesophageal Echocardiography and Transesophageal Stress Echocardiography.” Herz, vol. 18, No. 5, pp. 269-277, Oct. 1993.
Iacopino, Domenico Gerardo et al, Intraoperative Microvascular Doppler Monitoring of Blood Flow within a Spinal Dural Arteriovenous Fistula: A Precious Surgical Tool, vol. 10, 5 pages, Neurosurg. Focus, Feb. 2001.
Joosting, Jean-Pierre, “Dual-interface RFID-compatible EEPROM enables remote access to electronic device parameters,” EE Times, Mar. 8, 2010.
JP 2008-528151 filed Aug 24, 2006 Notice of Grant dated May 6, 2012.
JP 2010-504220 filed Sep. 3, 2009 Office Action dated May 21, 2012.
Kim, Ko et al, Positioning Internal Jugular Venous Catheters using the Right Third Intercostal Space in Children, Acta Anaesthesiol Scand, pp. 1284-1286, vol. 47 No. 10, Nov. 2003.
Kjelstrup T et al, Positioning of Central Venous Catheters using ECG, Tidssk Nor Laegeforen, pp. 599-601, vol. 111 No. 5, Feb. 1999 (Abstract only).
Kofler, Julia, et al., Epinephrine application via an endotracheal airway and via the Combitube in esophageal position, Critical Care Medicine: May 2000, vol. 28: Issue 5, pp. 1445-1449.
Konings, MK, et al., Development of an intravascular impedance catheter for detection of fatty lesions in arteries, IEEE Trans Med Imaging Aug. 1997; 16(4):439-46.
Kowalski, CM et al, Migration of Central Venous Catheters: Implications for Initial Catheter Tip Positioning, J Vasc Interv Radiol, pp. 443-447, vol. 8 No. 3, May-Jun. 1997.
Leowenthal, MR et al, The Peripherally Inserted Central Catheter (PICC): A Prospective Study of its Natural History after Fossa Insertion, Anaesth Intensive Care, pp. 21-24; vol. 30 No. 1, Feb. 2002.
Lepage Ronan et al. ECG Segmentation and P-wave Feature Extraction: Application to Patients Prone to Atrial Fibrillation, IEEE/EMBS Proceedings, 23rd Annual Conference, Istanbul, Turkey, Oct. 25-28, 2001.
Liu , Ji-Bin et al, Catheter-Based Intralumincal Sonography, J Ultrasound Med, pp. 145-160, vol. 23, 2004.
Lucey, B et al, Routine Chest Radiographs after Central Line Insertion: Mandatory Postprocedural Evaluation or Unnecessary Waste of Resources?, Cardiovasc Intervent Radiol, pp. 381-384, vol. 22 No. 5, Sep.-Oct. 1999.
Lum, Phillip, A New Formula-Based Measurement Guide for Optimal Positioning of Central Venous Catheters, JAVA, vol. 9, No. 2, pp. 80-85, 2004.
Lynch, RE et al, A Procedure for Placing Pediatric Femoral Venous Catheter Tips near the Right Atrium, Pediatr Emerg Care, pp. 130-132, vol. 18 No. 2, Apr. 2002.
Madan, et al. “Right Atrial Electrocardiography: A Technique for the Placement of Central Venous Catheters for Chemotherapy or Intravenous Nutrition.” British Journal of Surgery, vol. B1, pp. 1604-1605, 1994.
Madias, John E, Intracardiac (Superior Vena Cava/Right Atrial) ECGs using Saline Solution as the Conductive Medium for the Proper Positioning of the Shiley Hemodialysis Catheter: Is it Not Time to Forego the Postinsertion Chest Radiograph?, pp. 2363-2367, Chest, 2003.
Markovich, Mary B., Central Venous Catheter Tip Placement: Determination of Posterior Malposition—A Case Study, JAVA, vol. 11, No. 2, pp. 85-89, 2006.
Martin, Roy W, An Ultrasoundic Catheter for Intravascular Measurement of Blood Flow: Technical Details, IEEE Transactions on Sonics and Ultrasonics, Vol SU-27, No. 6, pp. 277-286, Nov. 1980.
McDonnall, “Intra-Atrial Electrocardiography (ECG) for Catheter Placement.” Literature review prepared for Bard Access Systems, Oct. 2007.
McGee et al., “Accurate Placement of Central Venous Catheters: A Prospective, Randomize, Multicenter Trail.” Critical Care Medicine, vol. 21 No. 8, Aug. 1993.
Related Publications (1)
Number Date Country
20100094116 A1 Apr 2010 US
Provisional Applications (1)
Number Date Country
61103419 Oct 2008 US