The present subject matter relates to the characterization and measurement of jitter as related to various communications signals. More particularly, the present subject matter relates to methodologies for measuring periodic jitter using time interval analysis methodologies.
Jitter is defined as deviations of signal edges from their ideal positions in time. Jitter characterization is an integral part of performance qualification for a wide variety of application, such as wideband serial communication (SONET, SDH), high-speed serial input/output (IO) devices (HyperTransport, PCI-Express, Infiniband, RapidIO), and timing circuits including clock generators, and data recovery units. In serial communication applications, jitter affects the link bit-error-rate (BER), which is a key performance parameter.
To qualify this impact, it is necessary to decompose jitter to its various components, because each jitter type has a different effect on BER. Different types of jitter include, Random jitter (RJ), Data-dependent jitter (DDJ), Duty-cycle distortion (DCD), Periodic jitter (PJ), and Bounded uncorrelated jitter (BUJ)
While various methods have been used for measuring jitter components including the use of spectrum analyzers, oscilloscopes (both real-time and undersampling), bit-error rate analyzers, and time interval analyzers (TIA), no design has emerged that generally encompasses all of the desired characteristics as hereafter presented in accordance with the subject technology.
In view of the recognized features encountered in the prior art and addressed by the present subject matter, an improved measurement methodology based on continuous time interval analyzers (CTIAs) has been provided. A continuous time interval analyzer (CTIA) is an attractive solution because it can provide high bandwidth, fast measurement, and excellent accuracy.
A continuous time interval analyzer (CTIA) is an instrument that can produce accurate timing information of events within a signal. In serial communications, events are defined as rising and/or falling edges. An ideal CTIA will be able to measure the occurrence time for all the edges in a specified segment of a signal. Real CTIAs, however, typically measure the occurrence time of one or several events and the time interval between them events once every Ts seconds. Ts is the time required by CTIA internal vernier and control circuitries to complete a time interval measurement and is often in the range of a few hundred nano-seconds. Since the bit-rate of many modern systems is more than 1 Gbps, such CTIAs will miss many events between two consecutive measurements, effectively undersampling the signal edge timing variations or jitter content.
CTIAs such as GuideTech's GT4000 generate the following information for each measurement:
An interval span is associated with each P, which represents the number of ideal data bits between the time interval start and stop events. The interval span is often expressed in terms of UI or bits, where UI is defined as the ideal bit period, and is estimated as average bit interval. The UI span, denoted by U, can generally be obtained from the E sequence and knowledge of the reference edge, but it may also be estimated from P if P deviates less than half UI from its ideal value).
An effective PJ measurement methodology is based on estimation of power spectral density (PSD). PSD is a powerful technique to detect periodic components in a signal that includes stochastic components. Different methods have been proposed for PSD estimation, including periodogram, autocorrelation (sometimes called smoothed periodogram, or Blackman-Tukey method), and parametric methods.
For estimating PSD with undersampled CTIA data, a modified version of smoothed periodogram method is selected. The approach reported here differs from previous approaches in two ways: First, a statistical measure of autocorrelation function (expected value) is obtained as opposed to a time domain measure, and second, interpolation is used to construct a uniformly sampled function from an otherwise non-uniformly sampled autocorrelation function. This is important for performing FFT operation to obtain PSD.
The above properties of the method result in a shaped and highly variable synthetic PSD noise floor (synthetic because noise floor has large components due statistical operation even in the absence of any random noise). Special sampling guidelines and PSD processing steps are introduced to resolve these issues.
The techniques herein presented are generalized for use with most continuous time interval analyzers (CTIAs), but certain assumptions used here are based on the capability of CTIA equipment developed by GuideTech.
Additional objects and advantages of the present subject matter are set forth in, or will be apparent to, those of ordinary skill in the art from the detailed description herein. Also, it should be further appreciated that modifications and variations to the specifically illustrated, referred and discussed features and elements hereof may be practiced in various embodiments and uses of the invention without departing from the spirit and scope of the subject matter. Variations may include, but are not limited to, substitution of equivalent means, features, or steps for those illustrated, referenced, or discussed, and the functional, operational, or positional reversal of various parts, features, steps, or the like.
Still further, it is to be understood that different embodiments, as well as different presently preferred embodiments, of the present subject matter may include various combinations or configurations of presently disclosed features, steps, or elements, or their equivalents (including combinations of features, parts, or steps or configurations thereof not expressly shown in the figures or stated in the detailed description of such figures). Additional embodiments of the present subject matter, not necessarily expressed in the summarized section, may include and incorporate various combinations of aspects of features, components, or steps referenced in the summarized objects above, and/or other features, components, or steps as otherwise discussed in this application. Those of ordinary skill in the art will better appreciate the features and aspects of such embodiments, and others, upon review of the remainder of the specification.
A full and enabling disclosure of the present invention, including the best mode thereof, directed to one of ordinary skill in the art, is set forth in the specification, which makes reference to the appended figures, in which:
a and 1b illustrate the autocorrelation function obtained from the direct and N-variance methods;
a-2c show how differing levels of interpolation affect the noise floor in PSD for a 2 Gbps signal and arbitrary pattern selection to adjust the number of interpolated point;
a and 3b illustrate the PSD for a 2 Gbps signal with differing signal patterns;
a and 4b show the effects of windowing and zero-padding;
a-5c illustrate the effect of PSD averaging using sequence partitioning;
a-6c show that SWSQ filtering attenuates the noise floor and amplifies the peaks;
Repeat use of reference characters throughout the present specification and appended drawings is intended to represent same or analogous features or elements of the invention.
As discussed in the Summary of the Invention section, the present subject matter is particularly concerned with methodologies involving the use of a continuous time interval analyzer (CTIA) to provide effective periodic jitter (PJ) measurement.
Selected combinations of aspects of the disclosed technology correspond to a plurality of different embodiments of the present invention. It should be noted that each of the exemplary embodiments presented and discussed herein should not insinuate limitations of the present subject matter. Features or steps illustrated or described as part of one embodiment may be used in combination with aspects of another embodiment to yield yet further embodiments. Additionally, certain features may be interchanged with similar devices or features not expressly mentioned which perform the same or similar function.
Assume v(n) denotes a finite length (Q) record of the uniformly sampled jitter signal τJ(n), which may contains random and deterministic components:
An estimate of the aperiodic autocorrelation of this record is given as below:
An unbiased estimate of τJ(n) autocorrelation sequence, {circumflex over (ψ)}ττ, is given by:
This estimate is unbiased for a stationary and ergodic random process because it represents the expected value of autocorrelation sequence:
ψττ(m)=E[τJ(n)τJ(n+m)] Eqn. 4
where m is the lag index. From Eqn. 2 and Eqn. 3, it can be shown that applying triangular (Bartlett) windowing to the ψττ, and performing FFT on the result provides an estimate of v(n) periodogram, which may be used as a biased estimate of PSD. On the other hand, performing FFT operation on ψττ provides an unbiased estimate of τJ(n) PSD. To obtain a smooth PSD and reduce sidelobe peaks due to finite length of data record ψττ is multiplied by an appropriate windowing sequence and then zero-padded. Therefore, the PSD estimate Ψττ(ω) is obtained as below:
Ψττ(ω)=FFT((ψττ(m)·w(m)),L) Eqn. 5
where, w(m) is the windowing function and L=2t (t is an integer) is FFT length after the sequence ψττ(m)·w(m) is zero-padded.
From above discussion, to detect periodic components in a signal, it is sufficient to compute an estimate of ψττ, and analyze it in frequency domain using FFT. Two methods can be used to obtain ψττ using CTIAs: direct autocorrelation and N-variance methods. These methods are described later herein. Both methods provide statistical estimate of ψττ, which result in a fairly significant and sharply varying Ψττ(ω) noise floor. The method of smoothing Ψττ(ω), which is a necessary step for identifying significant PJ peaks is described later herein.
Let us assume that the CTIA generates three numbers for a time interval measurement sample: an absolute value of the time interval start time, t, the event count of the time interval start edge, E, and the time interval, P (the time between the start and stop edges of the time interval). Assume N time interval samples are taken randomly (randomness applies to the start time), i.e., no correlation of the start times with known deterministic sources such as the pattern, or periodic components. Random sampling is a preferred part of statistical autocorrelation computation; otherwise spurious components will appear in the PSD.
The P values have to be selected to cover a·UI to b·UI span. Next step is to form time interval error (TIE) estimate for the start and stop edges of each sample:
τST(i)=t(i)−tideal(i)
τSP(i)=t(i)+P(i)−(tideal(i)+Pideal(i))
i=1, . . . , N Eqn. 6
where, τST(i) and τSP(i) represent the TIE sequences associated with start and stop edges, respectively, and tideal and Pideal are the ideal values of the start time and the time interval from a single value estimate of average bit rate for the i-th sample measurement. τST(i) is a sample of the jitter signal, and τSP(i) is another sample with a time delay of Pideal(i) relative to τST(i), i.e.:
τST(i)=τJ(ni)
τSP(i)=τJ(ni+m) Eqn. 7
where, ni is the estimate of sampling time in UI for the i-th sample,
m=Pideal(ni)/UI is the lag time in UI, and τJ(ni) are samples of the jitter signal. Therefore, time interval measurements with different values of Pideal(n) provide an estimate of jitter signal and its delayed version for different lag values. The sampling should be repeated such that Mm samples are taken for each lag m. This forms the basis for estimating the autocorrelation function ψττ based on Eqn. 3, as follows:
The Pideal/UI span corresponds to the time lag m in Eqn. 3. For a stationary jitter signal τJ, the ψττ(m) values are independent of ni. For an ergodic signal, the values of ni do not have to be known, however, is such cases it is preferred to select ni randomly to ensure the averaging operation in Eqn. 8 is valid.
Direct autocorrelation estimation method requires knowledge of t(i), the start of the time interval sample, and also tideal(i). For some CTIAs, t(i) measurements may not be available or obtaining tideal(i) may be difficult. In such cases, N-variance method may be used to estimate autocorrelation function because it does not require the knowledge of t(i) or tideal(i). N-variance sequence is formed as follows:
where Pm(i)=P(i)|P
Eqn. 10 can be simplified to:
where σJ2 is the TIE sequence variance, C=2σJ2, and {circumflex over (τ)}=t−
σN(m)=C−2ψττ→ψττ=(C−σN(m))/2 Eqn. 12
In practice, C varies statistically, which raises the ψττ noise floor. Also,
Computation of Eqn. 12 requires that the ideal UI span of all P(ni)'s to be known to obtain mi=Pideal(ni)/UI. This, in general, requires pattern matching or synchronization. To simplify the measurement process by avoiding the need for pattern matching, an estimate of mi=Rnd[P(ni)/UI] (Rnd[x] rounds x towards the nearest integer) may be used. This is accurate if total jitter over large values of mi does not exceed half of one UI, otherwise, some samples will be assigned to adjacent lag values erroneously. Such error effectively introduces non-linearity in N-variance sequence estimation, which may result in generation of additional periodic jitter harmonics.
a and 1b illustrates the autocorrelation function obtained from the direct and N-variance methods. The plots are obtained for a simulated 1 GHz clock signal with 50 ps PJ at 1 MHz. The
Autocorrelation function is an even function; i.e.:
ψττ(−m)=ψττ(m) for m=0, . . . , N Eqn. 13
Therefore, the sequence ψττ computed previously can be augmented with mirror elements as in Eqn. 13 to form a longer even autocorrelation function. Mirroring provides larger sample size, which increases frequency resolution. In some cases, however, because of sampling restrictions, the values of ψττ(m) are not known for m=0, . . . , a, where a>5. The unknown samples are usually interpolated, however, interpolation of points when there is no close samples will have significant error, which may result in artificial signal components. Therefore, it is recommended to avoid augmenting ψττ(m) with its mirror if more than first five samples of ψττ(m) are missing.
For clock signals, it is fairly straightforward to ensure all UI spans from a·UI to b·UI are covered (typically a=1 and b=N) by the time interval samples. But, for data streams, there might not be any sample for some UI spans in the specified range. In such cases, interpolation may be used to estimate the autocorrelation value for missing lag values. Cubic-spline interpolation produces good results because it is suitable when less than five consecutive are missing. It is also well suited for interpolation of signal with strong periodic components.
Many interpolation methods, including cubic-spline, estimate the value of a missing point of a sequence by using the existing neighbouring samples. Therefore, interpolation may cause significant correlation of adjacent samples in interpolated sequence. This results in reduced variations within adjacent samples, which in turn reduces the high-frequency noise floor power and increases the power at lower frequencies. This phenomenon is apparent in the PSD obtained from interpolated autocorrelation sequences as a shaped noise floor, where noise floor is larger in lower frequencies than higher ones. Because of the raised noise floor at lower frequencies, the estimation accuracy of PJ components at lower frequencies may be degraded.
a-2c shows how interpolation affects the noise floor in PSD for a 2 Gbps signal and arbitrary pattern selection to adjust the number of interpolated point.
a and 3b illustrate the PSD for 2 Gbps signal with patterns of K28.5 and PRBS7 and 50 ps PJ at 5 MHz. The noise floor for K28.5 pattern is more condensed towards lower frequencies than that of PRBS7, which suggests that there are more ψττ(m) missing points for K28.5 pattern than PRBS. This is consistent with the fact that PRBS7 is a longer and more randomized pattern. In
Computing tideal and Pideal in Eqn. 6 requires the knowledge of pattern and also the specific pattern edge at one or more time interval sample starts. This is referred to as pattern matching or pattern synchronization. Pattern synchronization may be achieved using the following methods: a trigger signal, a post-measurement synchronization, and a pre-measurement synchronization.
The use of a trigger signal method is possible if the CTIA has the capability of synchronizing the start of time interval measurement to an external signal. In this case, the start of sampling run is a known edge within the pattern. Since pattern is deterministic, the rest of the edges can be tracked based on their event count number (E) relative to the start of sampling.
Post-measurement software pattern synchronization (PostMatch) for most patterns it is possible to collect a number of time interval samples with a pre-programmed sequence of event counts. The event count sequence may be correlated to the pattern, or be random. For most patterns, the event counts and time interval spans are uniquely related, which make it possible to match the sequence with pattern.
The post-measurement software synchronization is a software post-processing activity. However, it limits the ability to take specific time interval samples relative to pattern edges. This may be a limiting factor in increasing the measurement time or accuracy. A remedy is to measure a number of samples and use algorithm of PostMatch continuously to look for the pattern match without stopping the sampling process. As soon as pattern match is found, the software can adjust the even count number dynamically to select specific edges of pattern for subsequent samples.
The PostMatch method suits the hardware architecture of GuideTech CTIA equipment. A PostMatch algorithm for specific sampling process, which can be extended to random sampling as well is presented herein after.
PSD can be computed from autocorrelation function ψττ(m). To compute smoothed PSD, ψττ(m) has to pass through windowing, zero-padding, FFT operation, and smoothing algorithm. Performing FFT on a finite sequence is equivalent to applying a rectangular window to an infinite length sequence. Windowing in time domain is equivalent to convolution in frequency domain. Therefore, a rectangular window results in introduction of significant sidelobes in FFT sequence. To reduce the sidelobes, other windowing sequences are applied to the time domain sequence w(m).
Windowing causes loss of signal energy. Therefore, the total energy of windowed sequence and also the frequency peaks do not match that of non-windowed sequence. Therefore, it is necessary to compensate the windowing loss by using a scaling factor k2. Because windowing is equivalent to convolution in frequency domain, a scaling factor that normalizes the maximum of |W(ω)|=|FFT[w(m)] to one will maintain the true value of maximum peaks in frequency domain:
Also, any DC component of ψττ(m) will produce a FFT peak at zero frequency, which can lead to distortion at frequencies close to zero and cause loss of accuracy in estimating low frequency PJ. To avoid this problem, the DC component k1 is subtracted from ψττ(m), where k1 is computed from below:
Applying k1 and k2, results in the following widowed autocorrelation:
ψw(m)=k2·(ψττ(m)−k1)·w(m) Eqn. 16
A divide by two will also be necessary if N-variance sequence is used instead of ψw(m).
The windowed autocorrelation sequence, ψw(m) should be zero-padded before applying FFT for two reasons:
The zero-padded sequence is denoted by ψw0(m):
where t is an integer, such that 2.5NA<2t (or NA<2t if NA is already too large).
Efficient algorithms exist to compute FFT of a sequence, including the ones that suit memory-limited systems. Many DSP libraries include FFT functions as standard feature.
Applying FFT operation to the windowed and zero-padded sequence, ψw0(m), yield the PSD sequence, Ψw0(ω):
where NA is the length of ψw(m) sequence (autocorrelation before zero-padding).
ψττ(m) is a statistical estimate due to the random selection of ni in Eqn. 8 or Eqn. 11. This results in generation of some random components due to the random sampling of periodic or deterministic jitter components. Such random components contribute to a significant noise floor. To demonstrate how this noise floor is generated, assume the jitter signal only includes a periodic components, i.e., τJ(n)=A sin(ω1·n·UI). From Eqn. 8,
where
The term E[ψττ(m)] is the expected autocorrelation sequence. E[ψττ(m)] is periodic term with frequency of ω1, which will manifest itself as a peak in PSD.
The term ψsn(m) in Eqn. 21 will tend to zero if ni's are selected randomly (no correlation between ω1 and ni sequence). However, due to limited number of sample, this term will have variations, which will show up as increased noise floor in PSD. This synthetics noise floor is proportional to the amplitude of the deterministic jitter (A).
Random noises due to statistical operation can result in sharp variation in PSD, which at times can result in detection of false periodic jitter peaks. To avoid detection of noise floor peaks as PJ, further smoothing of PSD is needed. There are two ways to do so:
For random ni, the first method reduces the noise floor power by √{square root over (α)} when NA is increased by a factor of α. The second method only smoothes the noise floor to avoid detection of locally generated peaks. In cases that it is not possible to ensure total randomness of ni sequence due to specific pattern selection, partitioning data to a number of overlapped sections may result in better smoothing of noise floor because it avoids taking samples of the same UI spans in each of the K PSD estimates.
PSD illustrates jitter frequency components within a finite frequency range and with a limited frequency resolution. Frequency resolution is a function of autocorrelation sequence length and windowing function. The maximum frequency is set by the separation between adjacent autocorrelation points, while minimum is set by frequency resolution. In other words:
where, fr is the frequency resolution, fmin and fmax are the minimum and maximum points of PSD frequency range, ND is the length of smoothed PSD, and Ju·UI is the distance between two adjacent points of interpolated autocorrelation function ψττ(m). αw is the windowing related frequency resolution reduction factor, which can be defined as 6 db bandwidth of the windowing sequence FFT. For example, αw=1.9 for a Kaiser window with parameter β=5.6.
The PSD computed previously is symmetric around its middle point. Therefore, we only use the first half of FFT record, because it contains all information required to estimate PJ. Once PSD is estimated, the significant peaks have to be isolated and estimated to obtain an estimate of PJ. The principle of peak detection is to identify frequency components whose magnitude is significantly larger than their surrounding noise floor. However, the performance of such filters depends on the filter parameters in relation to PSD composition. A robust and flexible estimation method is to use sliding window square root correlator (SWSQ).
A sliding window square root correlator (SWSQ) filter computes RMS magnitude of the PSD under a narrow PJ window relative to the average value of PSD magnitude within a larger local noise floor (LNF) window surrounding the narrow window. This filter essentially attenuates the areas of low variations while amplifying the PJ peaks that are distinctly above its surrounding noise floor. This method is described in more details in “Peak detection algorithm” section.
a-6c show that SWSQ filtering attenuates the noise floor and amplifies the peaks, which are lager than their surrounding noise floor.
The detected PSD peaks (ipk(l), Ψ(ipk(l))) may include the following components: periodic jitter including asynchronous components and harmonically-related components, Data-dependent jitter (DDJ).
DDJ source is primarily inter-symbol interference (ISI) and is totally correlated with the bit pattern in the data stream. In many test condition, a finite length pattern is repeated within the data stream to exercise the performance of device under test (DUT). Due to the periodic repetition of the bit pattern, DDJ manifests itself as periodic jitter. The sampling methodology described in Section 1 does not cancel DDJ before estimation of autocorrelation sequence, which leads to DDJ-related PJ components. Therefore, DDJ must be eliminated from the list of detected peaks.
If the periodic pattern length is relatively short (<200), DDJ will appear as spectral lines at frequencies that are harmonics of pattern rate, fpat (the rate of pattern repetition), which is computed as below:
where, fd is the data rate, and patLen is the pattern length in UI. For example, if the pattern is K28.5 with patLen=20, and the data rate is 2 Gbps, the pattern rate is 100 MHz. Therefore, any PJ component at k·fpat, k=1, . . . , patLen, will have to be deleted from the list of the peaks. Exception to the rule is when a valid PJ component occurs at one of the DDJ harmonics. In such case, PJ will not be detectable if it is small relative to other DDJ spectral lines (or DDJ estimated from time domain method). If PJ is much larger that the estimated DDJ, it can be consider PJ and accept some estimation error due to interference of the DDJ harmonic.
In many applications, the importance of PJ components varies depending on their frequencies. For example, SONET standards specify masks for intrinsic jitter and jitter transfer. Serial IO standards, e.g., FiberChannel, often specify a filter mask that should be applied to the PJ components before computing total peak-to-peak jitter. This mask attenuates the contribution of low frequency jitter because the PLL in the receiver clock recovery circuit compensates for them; hence, they do not affect BER significantly. For serial IO standards, this filter, sometimes referred to as Golden PLL characteristic, is a high-pass filter with a single pole at frequency of bit-rate divided by 1667.
After elimination of DDJ-related components, the remaining components are considered valid PJ peaks, which contribute to peak-to-peak PJ. From Eqn. 21, the Ψ(ipk) and the PJ amplitude at ipk(l), A(l), are related as below:
Ψ(ipk(l))=A(l)2/4A(l)=2√{square root over (Ψ(ipk(l)))} Eqn. 24
When the frequencies of the peaks are not harmonically related, the total peak-to-peak PJ is computed by adding the peak-to-peak value of all the PJ components:
If some of the peak frequencies are harmonically related, simply adding the peak-to-peak value of all PJ components is not accurate anymore. Assume the jitter signal includes two PJ components, such that one is the n-th harmonic of the other one. For such cases, the peak-to-peak value depends not only on the amplitudes of the harmonics, but also on their relative phases.
A solution is to use the worst-case peak-to-peak estimate by sweeping the harmonics relative phase for the estimated amplitudes and n from PSD. This will yield a pessimistic PJ estimate, which will minimize test escape (bad device that pass the test) in production test applications, at the expense of reduced test yield (percentage of all good devices that pass the test). Once the peak-to-peak amplitudes are computed for harmonically related components, the result can be added to the peak-to-peak of other asynchronous components.
The following indicates the performance of the PJ detection algorithm for a variety of simulated data streams with different jitter profile.
Table 1 shows the PJ measurement results using N-variance method. Time interval spans from 2 to 7200 UI are measured, and 128 samples in average are measured for each span value (Mm=128). The reported results show that the N-variance method provides accurate results, except in cases that PJ too small to be distinguishable from noise floor. Such cases specially occur when DDJ is large relative to PJ, because DDJ appears as periodic components that produce synthetic noise floor.
Simulations also show that with Mm=60 accurate results can still be obtained.
Post-Measurement Pattern Matching Algorithm
In many serial IO test schemes, a pattern is repeated to test different specifications of the IO. In such cases, pattern synchronization often is required to match the edges in a data stream to specific edges in the data pattern. Pattern synchronization provides sufficient information to compute the bit interval difference between data stream edges from the event (rising and/or falling edges) count numbers relative to a reference edge in the data stream.
One method of pattern matching is to minimize the RMS difference between the measured time interval and expected time ones with different starting edge assumptions. The description of general algorithm follows.
Assume that the i-th edge in the pattern is the sampling start edge of the data stream. Using this start edge, form a sequence of expected time intervals, Pxi, from the rising edge count number relative to the start edge, and the time interval UI span. For each value of i from 0 to the maximum number of rising edges in the pattern, pat_rise, create the associated Pxi. Compute the RMS difference between measured Pi sequence and expected ones:
Z=[
where P is the measured time interval sequence. Find i that minimizes the cost function Z. In general, Pxi (i=0, . . . , pat_rise) may be very long sequence, and also pat_rise may be a large number for long patterns, which result in significant amount of computation required for obtaining the synchronization. An alternative is to form only partial PXi sequences, for example first 100 elements. This will reduce the computational load significantly. More implementation details are given in the “Pattern Synchronization” section below.
Estimating Peak-to-Peak High Frequency Periodic Jitter
The following describes how to estimate peak-to-peak high frequency periodic jitter (PJ). The algorithm computes statistical autocorrelation function from the time interval error (TIE) estimates, and uses Fast Fourier Transform (FFT) to isolate high-frequency PJ peaks. This method enables elimination of DDJ from the TIE, which eliminates many spurious peaks in frequency domain enabling detection of PJ components with better accuracy and reliability.
It is assumed that data is available in the following format:
where [EBi,tBi, pBi] represents the i-th block of data whose p(i,1), . . . p(i,L) element spans 1 to L pulses, L is the number of samples in a block, and M is the number of blocks. Selection of L depends on the desired PJ frequency range, the pattern, and FFT processing parameters.
Direct Autocorrelation (AC) PJ Estimation Method
For this algorithm, notations and assumption listed above apply. Signal under test can be data stream or clock.
For detecting PJ from direct AC function, it is preferred to randomize the start sampling time of different time intervals relative to each other. Lack of sufficient randomization may leads to erroneous PJ components. The following describes a time interval sampling method that can be implemented in GuideTech GT4000 CTIA with pseudo-random arming feature, which is implemented as linear feedback shift register (LFSR).
The samples are taken in M blocks. Each block contains L time interval samples. Within each block, the LFSR arming mode must be used. This mode ensures that the event difference from the start of one time interval sample to the next follows a pseudo-random pattern.
The pseudo-random arming results in a sequence of event increment within one block, Epr(i), i=1, . . . , L, are defined as below:
Epr(i,j)=E(i+1,j)−E(i,j)=EC+LFSRm(i)
i=1, . . . , L and j=1, . . . , M Eqn. 27
where, EC is the constant offset and LFSRm(i) is the pseudo-random sequence.
User Defined Parameters
A number of features are necessary to facilitate the complete test and fine-tune of algorithms without much interference with core software. These features should be implemented in the software. They are listed below:
User Defined (Preferable Accessible through GT Driver for GPIB Access):
This estimate does not suffer from residual error that can manifest as long term drift in TIE sequence in the presence of low frequency jitter. A subset of samples between i=1, . . . , L will also provide accurate results. It is recommended to select only 40 samples as below:
i=1,[L/40],[L/40]+1, . . . , L Eqn. 34
The peak estimation algorithm is based on a relative RMS criteria. In this approach, any area under a sliding widow whose RMS value under the PSD is larger than a percentage of total RMS value under the curve is declared as a significant periodic jitter peak. Periodic jitter components include data-dependent ones for repetitive pattern data streams, and PJ harmonics.
The following describes how to detect significant periodic jitter peaks and separate valid PJs from them.
Peak Detection Algorithm
The peak detector algorithm is based on the calculation of the relative spectrum RMS power under a sliding rectangular window. The width of the window (cwidth) is a function of Kaiser window parameter β and Zero-padded N-variance function length NA0. Following steps describe how to detect peaks in Ψ array (assume Nc0=NA0):
The GuideTech continuous time interval analyzer (CTIA), is able to control the number of events that lapses between two edges whose timing are measured relative to a unique reference. Every measurement includes two time tags, each corresponding to time interval between a START event and an associated STOP event. The difference between START and STOP events can be set in two ways:
CTIA, however, does not use a pattern trigger signal in general, which results in a random selection of pattern edge at the beginning of a measurement block. For some measurements, the knowledge of the pattern edge at the beginning of a measurement block can significantly enhance the speed and/or accuracy of measurement, also enabling extraction of more jitter/timing analysis data.
Since CTIA tracks the timing and event numbers of all the sampled edges, it is possible to extract the pattern edge at the beginning of the block. The following describes two algorithms to do so in general for a given sequence of START and STOP events and pattern.
The best synchronization approach is to use both algorithms 1 and 2 and select the one that provide unambiguous results.
Definitions and Pattern/Data Pre-Processing
Assume a pattern is defined with the array pat as a sequence of 0 and 1 bits. For example, for K28.5 pat={01100000101001111101}. The pattern has Ne rising or falling edges, therefore, the total number of pattern transition edges is 2Ne. Denote the pattern length with patLen. For K28.5, Ne=5, and patLen=20. For a given pat definition, a sequence of edge locations in bits or UI, denoted by edges_ref can be defined relative the first edge, e.g., edgeLoc={0, 2, 7, 8, 9, 10, 12, 17, 18, 19} for the K28.5 pattern defined previously. A measurement block can start with any of the Ne pattern rising edges. The objective of pattern synchronization is to find pr, the pattern edge that the measurement block starts with.
Note: pr and all other edge locations are defined relative to the first edge of the pattern as defined in pat. Assume L samples are taken for each block.
Both pattern synchronization algorithms require computing the expected bit location of each edge of the pattern relative to the pattern beginning assuming that the sampled block starts with the p-th pattern edge. This information is extracted as below:
The following algorithm computes the pattern interval error (PIE) for each edge of the pattern, and averages the PIE for the edges that are repetitions of the same pattern edge. The averaging operation reduces the impact of RJ and PJ on synchronization performance. Subsequently, the averaged pattern PIE sequence is correlated with expected PIE for different block start edge assumptions. The start edge assumption that maximizes these correlations is declared as the valid start edge of the block. The following step describes the algorithm in more detail.
While the present subject matter has been described in detail with respect to specific embodiments thereof, it will be appreciated that those skilled in the art, upon attaining an understanding of the foregoing may readily produce alterations to, variations of, and equivalents to such embodiments. Accordingly, the scope of the present disclosure is by way of example rather than by way of limitation, and the subject disclosure does not preclude inclusion of such modifications, variations and/or additions to the present subject matter as would be readily apparent to one of ordinary skill in the art.
This application claims priority under 35 U.S.C. §119(e) of Provisional U.S. Patent Application Ser. No. 60/634,205 filed Dec. 8, 2004, entitled “PERIODIC JITTER (PJ) MEASUREMENT METHODOLOGY,” which is hereby incorporated by reference in its entirety for all purposes. This application also claims priority under 35 U.S.C. §120 as a divisional application of U.S. patent application Ser. No. 11/301,275 filed Dec. 8, 2005, entitled “PERIODIC JITTER (PJ) MEASUREMENT METHODOLOGY,” which is hereby incorporated by reference in its entirety for all purposes.
Number | Name | Date | Kind |
---|---|---|---|
4757452 | Scott et al. | Jul 1988 | A |
4908784 | Box et al. | Mar 1990 | A |
4982350 | Perna et al. | Jan 1991 | A |
6091671 | Kattan | Jul 2000 | A |
6181649 | Kattan | Jan 2001 | B1 |
6185509 | Wilstrup et al. | Feb 2001 | B1 |
6194925 | Kimsal et al. | Feb 2001 | B1 |
6226231 | Kattan | May 2001 | B1 |
6246737 | Kuglin | Jun 2001 | B1 |
6298315 | Li et al. | Oct 2001 | B1 |
6356850 | Wilstrup et al. | Mar 2002 | B1 |
6456959 | Kattan | Sep 2002 | B1 |
6621767 | Kattan | Sep 2003 | B1 |
6665808 | Schinzel | Dec 2003 | B1 |
6701269 | Jungerman et al. | Mar 2004 | B1 |
6701280 | Horne et al. | Mar 2004 | B2 |
6822485 | Kattan | Nov 2004 | B2 |
6832172 | Ward et al. | Dec 2004 | B2 |
6876938 | Kattan | Apr 2005 | B2 |
6898535 | Draving | May 2005 | B2 |
6931335 | Mueller | Aug 2005 | B2 |
6931338 | Kattan | Aug 2005 | B2 |
6999382 | Horne | Feb 2006 | B2 |
7003180 | Richardson et al. | Feb 2006 | B2 |
7076385 | Horne et al. | Jul 2006 | B2 |
7164999 | Tabatabaei et al. | Jan 2007 | B2 |
7203610 | Tabatabaei et al. | Apr 2007 | B2 |
7239969 | Tabatabaei et al. | Jul 2007 | B2 |
7292947 | Tabatabaei | Nov 2007 | B1 |
7400988 | Tabatabaei | Jul 2008 | B2 |
7512196 | Tabatabaei | Mar 2009 | B2 |
20020084972 | Kim | Jul 2002 | A1 |
20020174159 | Laquai | Nov 2002 | A1 |
20030041294 | Moll et al. | Feb 2003 | A1 |
20030125888 | Yamaguchi et al. | Jul 2003 | A1 |
20030223376 | Elliot et al. | Dec 2003 | A1 |
20040136450 | Guenther | Jul 2004 | A1 |
20040143406 | Nishikobara et al. | Jul 2004 | A1 |
20040158462 | Rutledge et al. | Aug 2004 | A1 |
20040208129 | Old et al. | Oct 2004 | A1 |
20050044463 | Frisch | Feb 2005 | A1 |
20050075810 | Laquai | Apr 2005 | A1 |
20050097420 | Frisch et al. | May 2005 | A1 |
20050152488 | Buckwalter et al. | Jul 2005 | A1 |
20050177758 | Stickle | Aug 2005 | A1 |
20050243960 | Jungerman | Nov 2005 | A1 |
20050286670 | Jungerman | Dec 2005 | A1 |
20060045175 | Draving et al. | Mar 2006 | A1 |
20070110146 | Tabatabaei | May 2007 | A1 |
Number | Date | Country | |
---|---|---|---|
20080319691 A1 | Dec 2008 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11301275 | Dec 2005 | US |
Child | 12172845 | US |