Peritoneal dialysis system having cassette-based-pressure-controlled pumping

Information

  • Patent Grant
  • 8172789
  • Patent Number
    8,172,789
  • Date Filed
    Wednesday, October 13, 2010
    13 years ago
  • Date Issued
    Tuesday, May 8, 2012
    12 years ago
Abstract
A peritoneal dialysis system includes a removable cassette defining a flexible pump chamber and a pressure sensing area that is fluidly connected to the pump chamber wherein, during operation of the peritoneal dialysis system, peritoneal dialysis fluid is contained in the pump chamber; and a peritoneal dialysis machine configured to secure the removable cassette, peritoneal dialysis machine including (i) a pressure sensor positioned to align with and to contact the pressure sensing area of the removable cassette when the removable cassette is secured to the peritoneal dialysis machine, and (ii) a controller connected to the pressure sensor and adapted to change the operation of the peritoneal dialysis machine in response to changes in pressure sensed by the pressure sensor, wherein the pressure sensor and the pressure sensing area are arranged so that the pressure sensor measures a pressure of fluid in a fluid passage between the pump chamber and a patient during operation of the peritoneal dialysis system.
Description
BACKGROUND

The present invention relates generally to the treatment of end stage renal disease. More specifically, the present invention relates to methods and apparatus for monitoring the performance of peritoneal dialysis.


Using dialysis to support a patient whose renal function has decreased to the point where the kidneys no longer sufficiently function is known. Two principal dialysis methods are utilized: hemodialysis; and peritoneal dialysis.


In hemodialysis, the patient's blood is passed through an artificial kidney dialysis machine. A membrane in the machine acts as an artificial kidney for cleansing the blood. Because it is an extracorporeal treatment that requires special machinery, certain inherent disadvantages exist with hemodialysis.


To overcome the disadvantages associated with hemodialysis; peritoneal dialysis was developed. Peritoneal dialysis utilizes the patient's own peritoneum as a semi-permeable membrane. The, peritoneum is a membranous lining of the abdominal body cavity. Due to good perfusion, the peritoneum is capable of acting as a natural semi-permeable membrane.


Peritoneal dialysis periodically infuses sterile aqueous solution into the peritoneal cavity. This solution is called peritoneal dialysis solution, or dialysate. Diffusion and osmosis exchanges take place between the solution and the blood stream across the natural body membranes. These exchanges remove the waste products that the kidneys normally excrete. The waste products typically consist of solutes like urea and creatinine. The kidneys also maintain the levels of other substances such as sodium and water which need to be regulated by dialysis. The diffusion of water and solutes across the peritoneal membrane during dialysis is called ultrafiltration.


In continuous ambulatory peritoneal dialysis, a dialysis solution is introduced into the peritoneal cavity utilizing a catheter. An exchange of solutes between the dialysate and the blood is achieved by diffusion. Further removal is achieved by providing a suitable osmotic gradient from the blood to the dialysate to permit water outflow from the blood. This allows a proper acid-base, electrolyte and fluid balance to be achieved in the body. The dialysis solution is simply drained from the body cavity through the catheter.


Peritoneal dialysis raises a number of concerns including: the danger of peritonitis; a lower efficiency and therefore increased duration of dialysis hours compared to hemodialysis; and costs incurred when automated equipment is utilized.


A number of variations on peritoneal dialysis have been explored. One such variation is automated peritoneal dialysis (“APD”). APD uses a machine, called a cycler, to automatically infuse, dwell, and drain peritoneal dialysis solution to and from the patient's peritoneal cavity. APD is particularly attractive to a peritoneal dialysis patient, because it can be performed at night while the patient is asleep. This frees the patient from the day-to-day demands of continuous ambulatory peritoneal dialysis during his/her waking and working hours.


The APD sequence typically lasts for several hours. It often begins with an initial drain cycle to empty the peritoneal cavity of spent dialysate. The APD sequence then proceeds through a succession of fill, dwell, and drain phases that follow one after the other. Each fill/dwell/drain sequence is called a cycle. APD can be and is practiced in a number of different ways.


Current APD systems do not monitor the patient intraperitoneal pressure during a therapy session. Current systems simply limit the external pressure (or suction) that a pump can apply to the line or lumen that is attached to the patient catheter. If the patient is located below the system, sometimes referred to as a cycler, a gravity head will add to the positive fill pressure that the cycler can apply to the patient catheter. Conversely, if the patient is located above the cycler, the gravity head will decrease from the positive fill pressure that the cycler can apply to the patient catheter.


The monitoring of intraperitoneal pressure would be useful because cyclers will sometimes not fully drain a patient between cycles. Specifically, currently-available cyclers are unable to determine whether a patient absorbed some fluid or whether some fluid is simply not able to be drained out because of the position of the patient or the catheter.


As a result, some currently-available systems utilize a minimum drain threshold to determine the amount of fluid that should be delivered to the patient during the next fill. For example, if 85% of the fill volume has been drained when the cycler determines that the patient is “empty”, the next fill volume will be 100%. If only 80% were drained, the next fill volume would be limited to 95%.


A negative ultrafiltrate (uF) alarm will sound when the patient has retained more than a predetermined percentage of the fill volume. The predetermined percentage can typically be either 50% or 100% of the fill volume. However, the patient can override this alarm if he/she does not feel overfull. The number of times the patients can override the uF alarm during a single therapy may be limited by the software of the cycler. However, the uF alarm typically does not consider the actual ultrafiltrate that may also accumulate in the peritoneal cavity along with the dialysate.


Currently-available cyclers fill the patient to a specific, preprogrammed volume during each cycle. The doctor prescribes this fill volume based upon the patient's size, weight and other factors. However, because currently-available cyclers cannot monitor intraperitoneal pressure, the doctor cannot take this factor into account when formulating the prescription. It is also known that intraperitoneal pressure (IPP) has an effect on ultrafiltration (UF).



FIGS. 1-3 provide schematic illustrations of current APD cyclers. None of them attempt to monitor intraperitoneal pressure.


Referring to FIG. 1, a cycler 10a is illustrated which includes a dialysate container 11, a patient 12 and a drain container 13 are illustrated schematically. The infusion of dialysate from the container 11 into the patient 12 is caused by the gravitational head indicated at 14 while the draining of used dialysate from the patient 12 to the drain container 13 is caused by the drain head indicated at 15. The cycler 10a includes no sensors for monitoring the pressure inside the peritoneum of the patient 12. A single lumen 16 connects both the dialysate container 11 and drain container 13 to the patient 12. Valves 17, 18 operated by the cycler 10a control the flow of either dialysate from the container 11 to the patient 12 or waste material from the patient 12 to the drain container 13.


Turning to FIG. 2, in the cycler 10b, the drain container 13 and dialysate container 11 are contained within a pressurized chamber 19. The chamber 19 can be pressurized or evacuated to either fill or drain the patient. Again, the selective operation of valves 17, 18 control whether dialysate is being transferred to or from the patient 12. Again, no sensors are provided for detecting or monitoring intraperitoneal pressure of the patient 12.


Turning to FIG. 3, in the system 10c, a dialysate container 11 is connected to a pump 21 which, in turn, connects the dialysate container 11 to a common lumen or catheter 16 which is connected to the patient. A fluid flow control valve is provided at 23 and is controlled by the cycler 106. The drain container 13 is also connected to a pump 24 which, in turn, connects the drain container 13 to the lumen 16. A control valve is again provided at 25.


The drain and fill rates of the cyclers 10a-10c illustrated in FIGS. 1-3 are determined by the gravitational head (see FIG. 1) or the suction or pressure (see FIGS. 2 and 3) applied to the patient line 16. Typically, the cyclers 10a-10c fail to optimize either the fill rate or the drain rate because the pressure is either fixed by the gravitational head or the pressure or suction applied by the chamber 10b of FIG. 2 which occurs at the opposing end of the patient line 16. Thus, without measuring the intraperitoneal pressure or having a way to estimate the same, it is difficult to optimize either the drain or fill rate. In the case of the cycler 10c in FIG. 3, optimizing the drain or fill rate is guesswork due to the lack of any pressure reading at all.


Accordingly, there is a need for an improved cycler that measures patient intraperitoneal pressure during a therapy session, including both during the drain and the fill as well as the dwell. Further, there is a need for an improved cycler that measures intraperitoneal pressure and which would use that data to more completely drain a patient between cycles. Further, there is a need for an improved cycler which would accurately measure intraperitoneal pressure to avoid overfilling a patient. Finally, there is a need for an improved cycler which would monitor intraperitoneal pressure during both the fill and drain cycles to optimize the speed at which the patient is filled and drained and to therefore increase the dwell portion of a therapy session.


SUMMARY

The present invention satisfies the aforenoted needs by providing a system for providing peritoneal dialysis to a patient which comprises a dialysate container connected to the patient with a first pressure sensor connected in-line therebetween, and a drain container connected to the patient with a second pressure sensor connected in-line therebetween.


In an embodiment, the system further comprises a first pump disposed in-line between the dialysate container and the first pressure sensor.


In an embodiment, the dialysate flows from the dialysate container into the patient under a hydrostatic head.


In an embodiment, a second pump is disposed in-line between the drain container and the second pressure sensor.


In an embodiment, the dialysate flows from the patient to the drain container under a hydrostatic head.


In an embodiment, the second pressure sensor measures an intraperitoneal pressure of the patient while dialysate flows from the dialysate container to the patient.


In an embodiment, the first pressure sensor measures an intraperitoneal pressure of the patient while dialysate flows from the patient to the drain container.


In an embodiment, the system further comprises a first lumen connecting the dialysate container to the first sensor and the first sensor to a catheter, and a second lumen connecting the drain container to the second sensor and the second sensor to the catheter, the catheter being connected to the patient, a flow of dialysate from the patient to the drain container evacuating dialysate from the first lumen and causing said dialysate from the first lumen to flow through the second lumen and to the drain container.


In an embodiment, the catheter is a dual lumen catheter.


In an embodiment, the first and second sensors are redundant in-line pressure/vacuum sensors.


In an embodiment, the present invention provides a method for dialyzing a patient comprising the steps of: placing a catheter in a peritoneum of the patient; providing at least one dialysate container; connecting the dialysate container to the catheter with a first lumen that includes a first pressure sensor disposed in-line and between the catheter and the dialysate container; providing at least one drain container; connecting the drain container to the catheter with a second lumen that includes a second pressure sensor disposed in-line and between the catheter and the drain container; transferring dialysate from the dialysate container to the peritoneum of the patient and monitoring an intraperitoneal pressure of the patient with the second pressure sensor; and transferring dialysate from the peritoneum of the patient to the drain container and monitoring the intraperitoneal pressure of the patient with the first pressure sensor.


In an embodiment, the step of transferring dialysate from the dialysate container to the peritoneum of the patient further comprises pumping dialysate from the dialysate container to the patient with a first pump disposed in-line between the dialysate container and the first pressure sensor.


In an embodiment, the step of transferring dialysate from the peritoneum of the patient to the drain container further comprises pumping dialysate from the peritoneum of the patient to the drain container with a second pump disposed in-line between the drain container and the second pressure sensor.


In an embodiment, the dialysate container is disposed vertically above the peritoneum of the patient and the step of transferring dialysate from the dialysate container to the peritoneum of the patient further comprises flowing dialysate from the dialysate container to the patient under a hydrostatic head.


In an embodiment, the drain container is disposed vertically below the peritoneum of the patient and the step of transferring dialysate from the peritoneum of the patient to the drain container further comprises flowing dialysate from the peritoneum of the patient to the drain container under a hydrostatic head.


Additional features and advantages are described herein, and will be apparent from the following Detailed Description and the figures.





BRIEF DESCRIPTION OF THE FIGURES


FIG. 1 illustrates, schematically, a prior art automated peritoneal dialysis system;



FIG. 2 illustrates, schematically, a prior art automated peritoneal dialysis system;



FIG. 3 illustrates, schematically, a prior art automated peritoneal dialysis system;



FIG. 4 illustrates, schematically, an automated peritoneal dialysis system made in accordance with the present invention;



FIG. 5 illustrates, schematically, a second embodiment of an automated peritoneal dialysis system made in accordance with the present invention;



FIG. 6 illustrates, schematically, a third embodiment of an automated peritoneal dialysis system made in accordance with the present invention;



FIG. 7 illustrates, schematically, a fourth embodiment of an automated peritoneal dialysis system made in accordance with the present invention;



FIG. 8 illustrates a pressure sensor made in accordance with the present invention;



FIG. 9 illustrates a fifth embodiment incorporating dual pumping chambers and pressure sensors made in accordance with the present invention;



FIG. 10 illustrates, schematically, a dual lumen catheter that can be utilized with the present invention;



FIG. 11 is a sectional view taken substantially along line 11-11 of FIG. 10;



FIG. 12 illustrates, graphically, the urea concentration in blood and the urea concentration in a dialysate during a multiple dwell dialysis session;



FIG. 13 illustrates, graphically, the concentration of urea in a patient's bloodstream versus the concentration of urea in a dialysate solution for an automated peritoneal dialysis solution practiced in accordance with the prior art; and



FIG. 14 illustrates, graphically, the concentration of urea in a patient's bloodstream versus the concentration of urea in a dialysate for an automated peritoneal dialysis therapy session carried out in accordance with the present invention.





It should be understood that the drawings are not necessarily to scale and that the embodiments are sometimes illustrated by graphic symbols, phantom lines, diagrammatic representations and fragmentary views. In certain instances, details which are not necessary for an understanding of the present invention or which render other details difficult to perceive may have been omitted. It should be understood, of course, that the invention is not necessarily limited to the particular embodiments illustrated herein.


DETAILED DESCRIPTION

Turning to FIG. 4, a cycler 30 includes a dialysate container 11 connected to a pump 31. The pump 31 is connected to a pressure sensor 32. The pump 31 and pressure sensor 32 are disposed in-line in a lumen 33 that connects the dialysate container 11 to a catheter 34. Control valves are provided at 35, 199. A drain container 13 is also connected to a pump 36 which is connected to a sensor 37. The pump 36 and sensor 37 are also connected in-line to a lumen 38 which connects the drain container 13 to the catheter 34. Control valves are again provided at 41, 42. During the fill, the pump 31 pumps dialysate from the container 11 through the lumen 33 and catheter 34 into the peritoneum (not shown) of the patient 12. During this time, the sensor 37 monitors and measures the intraperitoneal pressure. A signal is sent to the controller of the cycler 30 shown schematically at 43. A control panel is indicated generally at 44.


During the drain, the sensor 32 can accurately monitor and measure the intraperitoneal pressure of the patient 12. In the embodiment illustrated in FIG. 4, no pumps or control valves are disposed between the sensor 32 and the patient 12.


Turning to FIG. 5, a cycler 50 is illustrated which includes reversible pumping chambers 51, 52 with sensors 53, 54 disposed between the reversible pumping chambers 51, 52 and the patient 12 respectively. Control valves 55 and 56 are disposed on another side of the reversible pumping chamber 51 and the sensor 53 and control valves 57, 58 are provided on either side of the reversible pumping chamber 52 and sensor 54. The sensors 53, 54 actually measure the pressure on the diaphragms of the reversible pumping chambers 51, 52.


Turning to FIG. 6, a cycler 60 is illustrated with a chamber 61 for accommodating the drain container 13 and a chamber 62 for accommodating the dialysate container 11. Each chamber 61, 62 is equipped with an integrated valve assembly and pressure sensor shown at 63, 64. In the embodiment 60 shown in FIG. 6, the chamber 61 must be capable of being evacuated. Dialysate may flow from the dialysate container 11 by way of gravity or pressure fill. Again, the sensors of the valve assembly/sensor combinations 63, 64 monitor the intraperitoneal pressure of the patient 12 as discussed above.


In the embodiment 70 illustrated in FIG. 7, the dialysate container 11 and drain container 13 are both connected to integrated control valves and pressure sensors 71, 72. Each of the integrated control valves and pressure sensors 71, 72 are connected to lumens 73, 74 respectively which are connected to the catheter 75a by way of a Y-connection. The details of all the Y-connections and clamps are not shown but are known to those skilled in the art. Flow from the dialysate container 11 to the patient is carried out under the gravitational head shown at 75 while flow from the patient to the drain container 13 is carried out under the gravitational head shown at 76.



FIG. 8 illustrates one in-line pressure sensor 80 that is suitable for use with the present invention. Redundant load cells 81, 82 are connected to the flexible pressure sensing membrane 83 by a vacuum connected by the line 84, 85. A lumen connecting the cycler to the patient is shown at 86.



FIG. 9 illustrates a dual-pumping chamber cassette 87 which includes an output line 88 which connects the cassette 87 to the patient and an input line 89 connecting the patient to the cassette 87. The line 90 connects the cassette 87 to the dialysate container (not shown). Each pumping chamber 91, 92 are in communication with all three lines 88, 89 and 90. Thus, every line can be connected to either pumping chamber 91, 92. The pumping chambers 91, 92 are bound on one side by a common diaphragm shown at 93. Flow is controlled by the use of diaphragm valves shown at 94, 95, 96 and 97. Pressure sensors are shown at 120, 121, 122, 123, 124, 125. However, pressure sensors 123 and 120 are the sensors used to measure intraperitoneal-pressure in accordance with the present invention. The remaining sensors 121, 122, 124, 125 are used to monitor the operation of the pumps 126, 127.


When the left diaphragm pump 126 is pushing dialysate to the patient, the sensor 123 can measure the intraperitoneal pressure through the line 89. When the left diaphragm pump 126 is draining fluid from the patient through the line 89, the sensor 120 can measure intraperitoneal pressure through the line 88 and while the right pump 127 is pumping fluid to the drain container (not shown) through the drain line shown schematically at 128. When the right diaphragm pump 127 is being used to drain fluid from the patient, the sensor 120 can measure intraperitoneal pressure while the left diaphragm pump 126 is pumping fluid to the drain container (not shown) through the drain line shown schematically at 129.



FIGS. 10 and 11 illustrate a dual-lumen catheter 100 which includes separate passageways 101, 102. The employment of a dual lumen catheter 100 as compared to a dual lumen patient line can move the point at which the pressure is measured to within the peritoneum itself by way of communication through the separate flowpaths 101, 102. The dual lumen catheter 100 installs like a single lumen catheter, yet will function either as a flow through or a standard catheter. Both fluid pathways 101, 102 are used to withdraw and deliver fluid during the drain and fill. While one pathway delivers fluid, the other pathway drains. The end section, shown generally at 103, is perforated.


A comparison of an APD therapy for a prior art APD cyclers and one manufactured in accordance with the present invention are summarized as follows:


















Current APD
Cycler Using



Therapy Parameter
Cycler
Invention






















Total Therapy Volume
15
liters
15
liters



Fill Volume
2.2
liters
2.5
liters max












Fill Pressure Limit
not applicable
14
mm Hg max













Total Therapy Time
8
hours
8
hours



Last (Day) Fill Volume
1,500
ml
1,500
ml











Last Fill Dextrose
Same
Same













Initial Drain Alarm
1,200
ml
1,200
ml











Drain X of N Alarm
80%
80%

















TABLE 1







Comparison of Therapies for Current Cylcers versus Cycler using


Invention Method











Therapy Phase
Therapy Parameter
Prior Art Cycler 1
Prior Art Cycler 2
Invention Cycler 3





Initial Drain
Drain Volume
1,200 ml
1,200 ml
1,200 ml



Patient Volume
  300 ml
  300 ml
  300 ml


Fill 1 of 5
Fill Volume
2,200 ml
2,200 ml
2,500 ml



Patient Volume
2,500
2,500
2,800



Fill Pressure
not applicable
not applicable
  12 mm Hg


Drain 1 of 5
Drain Volume
1,800 ml
2,200 ml
2,200 ml



Patient Volume
  700 ml
  300 ml
  600 ml


Fill 2 of 5
Fill Volume
2,200 ml
2,200 ml
2,400 ml



Patient Volume
2,900 ml
2,500 ml
3,000 ml



Patient Pressure
not applicable
not applicable
  14 mm Hg


Drain 2 of 5
Drain Volume
1,800 ml
2,200 ml
2,200 ml



Patient Volume
1,100 ml
  300 ml
  800 ml


Fill 3 of 5
Fill Volume
2,200 ml
2,200 ml
2,200 ml



Patient Volume
3,300 ml
2,500 ml
3,000 ml



Patient Pressure
not applicable
not applicable
  14 mm Hg


Drain 3 of 5
Drain Volume
1,801 ml
2,200 ml
2,200 ml



Patient Volume
1,499 ml
  300 ml
  800 ml


Fill 4 of 5
Fill Volume
2,200 ml
2,200 ml
2,200 ml



Patient Volume
3,699 ml
2,500
3,000 ml



Patient Pressure
not applicable
not applicable
3,000 ml


Drain 4 of 5
Drain Volume
1,800 ml
2,200 ml
2,200 ml



Patient Volume
1,899 ml
  300 ml
  800 ml


Fill 5 of 5
Fill Volume
uF Alarm Bypass






2,200 ml
2,200 ml
2,200 ml



Patient Volume
4,099 ml
2,500 ml
3,000 ml



Patient Pressure
Patient Wakes
not applicable
  14 mm Hg




Overfull






Manually Drains






1,500 ml




Drain 5 of 5
Drain Volume
1,800 ml
2,200 ml
2,200 ml



Patient Volume
  799 ml
  300 ml
  800 ml


Final Fill
Fill Volume
1,500 ml
1,500 ml
1,500 ml









Inspection of Table 1 shows that cycler 1 woke the patient at around 4:30 in the morning with a negative uF alarm at the beginning of Fill 5. The patient bypassed the alarm because he did not feel overrun and immediately fell back asleep. He woke up about 15 minutes later when he had difficulty breathing and felt extremely overfull. He manually drained about 1500 ml but was unable to go back to sleep. He filed a formal product complaint with the manufacturer.


The data of Table 1 shows that cycler 2 ran a completely normal therapy but the total therapy clearance (calculated based upon the sum of the night patient volumes) was only 84.5% of that obtained by cycler 3, which was using the cycler that used the method of the current invention.


The data of Table 1 shows that cycler 3 ran a completely normal therapy and that the fill volume was limited on one occasion by the maximum fill volume but on four occasions by the patient's intraperitoneal pressure. This patient never felt any discomfort and had no alarms during the night. The limit on the IPP prevented him from being overfilled even though he had successive drains that were not complete. The volume of fluid in his peritoneum never exceeded 3 liters.


The patient on cycler 1 had an intraperitoneal pressure in excess of 14 mm Hg during dwells 3 and 4. His breathing may have been impaired and his heart may have had to work harder but the discomfort was not enough to wake him up from a sound sleep until it peaked at 4,099 ml during dwell 5.


In conclusion, the method of the present invention provides for optimum fills and therefore more clearance while preventing overfills that bring discomfort and inhibit the function of vital body organs. A negative uF alarm would seldom occur because overfills of the required magnitude would be prevented by the IPP sensors.


Calculation of Intraperitoneal Pressure (IPP)

In order to calculate the IPP, one may first calculate the patient head height correction using conservation of energy:

Δ(½pV2+P−ρagh)+Frictional Losses=0


The velocity V of fluid through the patient line is the same at both ends of the line as is the fluid density, so this equation can be written as

(P2−P1)−ρag(h2−h1)+Frictional Losses=0


which can be rearranged as







Δ





h

=



(


P
1

-

P
2


)

-

Frictional





Losses



ρ






a
g







Example 1

P1=1.25 psig=85060 (gram/cm)/(cm2-sec2)


P2=0.9 psig=61240 (gram/cm)/(cm2-sec2)


Frictional Losses=39130 (gram/cm)/(cm2-sec2) with flow of 197 cmn/min in a 4 mm ID line at a velocity of approximately 172 cm/sec, wherein







a
g


981





cm


/



sec
2







ρ
=

1





gram


/



cm
3









Δ





h

=



(


(

85060
-
61240

)

-
39130





)







(

gram


/


cm

)



/



(


cm
2

-

sec
2


)



1





gram


/



cm
3

*
981





cm


/



sec
2










Δ





h

=


-
15.6






cm






(

The





patient





is





15.6





cm





below





the





membrane

)






Example 2

P1=1.25 psig=85060 (gram/cm)/(cm2-sec2)


P2=0.45 psig=30620 (gram/cm)/(cm2-sec2)


Frictional Losses=39130 (gram/cm)/(cm2-sec2) with flow of 197 cmn/min in a 4 mm ID line at a velocity of approximately 172 cm/sec, wherein







a
g


981





cm


/



sec
2







ρ
=

1





gram


/



cm
3









Δ





h

=



(


(

85060
-
30620

)

-
39130





)







(

gram


/


cm

)



/



(


cm
2

-

sec
2


)



1





gram


/



cm
3

*
981





cm


/



sec
2










Δ





h

=


+
15.6






cm






(

The





patient





is





15.6





cm





above





the





membrane

)






The patient head height can be established at the beginning of each fill. Any changes in the head height that occur during the fill can be attributed to an increase in intraperitoneal pressure (IPP) since the patient is asleep.


Turning to FIG. 12, the concentration gradient between the urea concentration 110 in the patient's blood and the urea concentration 111 in the dialysate for typical APD cyclers is illustrated graphically. Comparing the results illustrated in FIGS. 13 and 14, it is evident that APD cyclers equipped with the sensors of the present invention provide superior results. Specifically, the data illustrated graphically in FIG. 13 was obtained using a prior art APD cycler. The data obtained in FIG. 14 was obtained using an APD cycler utilizing two sensors for monitoring intraperitoneal pressure. Note that the urea concentration 110 in the bloodstream is lower in FIG. 14 than in FIG. 13. Further note, the dialysate volume or fill volume is lower for the therapy illustrated in FIG. 14 than the therapy illustrated in FIG. 13. Thus, the present invention provides improved urea clearance with lower fill volumes.


It should be understood that various changes and modifications to the presently preferred embodiments described herein will be apparent to those skilled in the art. Such changes and modifications can be made without departing from the spirit and scope of the present subject matter and without diminishing its intended advantages. It is therefore intended that such changes and modifications be covered by the appended claims.

Claims
  • 1. A peritoneal dialysis system comprising: a removable cassette defining first and second flexible pump chambers and first and second pressure sensing areas that are fluidly connected to the first and second pump chambers, respectively; anda peritoneal dialysis machine configured to secure the removable cassette, the peritoneal dialysis machine including (i) first and second pumps configured to be moved relative to the removable cassette to force peritoneal dialysis fluid out of the first removable pump chamber into a peritoneal cavity of a patient, and draw peritoneal dialysis fluid into the second removable pump chamber during operation of the peritoneal dialysis system,(ii) first and second pressure sensors positioned to align with and to contact the first and second pressure sensing areas, respectively, of the removable cassette when the removable cassette is secured within the peritoneal dialysis machine, and(iii) a controller connected to the first and second pressure sensors and adapted to change the operation of the peritoneal dialysis machine in response to changes in pressure sensed by the pressure sensors, wherein the first and second pressure sensors and the first and second pressure sensing areas are arranged so that the first pressure sensor measures a pressure of fluid in a first fluid passage between the first pump chamber and the patient during operation of the peritoneal dialysis system, and the second pressure sensor measures a pressure of fluid in a fluid passage between the second pump chamber and the patient during operation of the peritoneal dialysis system.
  • 2. The peritoneal dialysis system of claim 1, wherein at least one of the pressure sensing areas of the removable cassette is sucked to at least one of the first and second pressure sensors during operation of the peritoneal dialysis system.
  • 3. The peritoneal dialysis system of claim 1, wherein at least one of the pressure sensing areas of the removable cassette is directly contacted by at least one of the first and second the pressure sensors during operation of the peritoneal dialysis system.
  • 4. The peritoneal dialysis system of claim 1, wherein the controller is adapted to determine a patient pressure based on a pressure measured by at least one of the first and second pressure sensors.
  • 5. A peritoneal dialysis system comprising: a removable cassette defining a flexible pump chamber and a pressure sensing area that is fluidly connected to the pump chamber wherein, during operation of the peritoneal dialysis system, peritoneal dialysis fluid is contained in the pump chamber for delivering the dialysis fluid to a peritoneal cavity of a patient; anda peritoneal dialysis machine configured to secure the removable cassette, peritoneal dialysis machine including (i) a pressure sensor positioned to align with and to contact the pressure sensing area of the removable cassette when the removable cassette is secured to the peritoneal dialysis machine, and(ii) a controller connected to the pressure sensor and adapted to change the operation of the peritoneal dialysis machine in response to changes in pressure sensed by the pressure sensor, wherein the pressure sensor and the pressure sensing area are arranged so that the pressure sensor measures a pressure of fluid in a fluid passage between the pump chamber and the patient during operation of the peritoneal dialysis system.
  • 6. The peritoneal dialysis system of claim 5, wherein the pressure sensing area of the removable cassette is fluidly connected to the pump chamber via a channel formed in the removable cassette.
  • 7. The peritoneal dialysis system of claim 6, wherein the channel that fluidly connects the pressure sensing area to the pump chamber is narrower than the pressure sensing area and the pump chamber.
  • 8. The peritoneal dialysis system of claim 5, wherein the removable cassette has a second pump chamber and a second pressure sensing area in fluid communication with the second pump chamber, and wherein the peritoneal dialysis machine includes a second pressure sensor positioned to align with and to contact the second pressure sensing area of the removable cassette when the cassette is secured to the peritoneal dialysis machine, and wherein the second pressure sensor and the second pressure sensing area are arranged so that the second pressure sensor measures a pressure of fluid in a fluid passage between the second pump chamber and the patient during operation of the peritoneal dialysis system, and wherein the controller is connected to the second pressure sensor and adapted to change the operation of the peritoneal dialysis machine in response to changes in pressure sensed by the second pressure sensor.
  • 9. The peritoneal dialysis system of claim 5, wherein the removable cassette further includes a plurality of fluid channels and a plurality of valves each associated with a corresponding one of the fluid channels, wherein the valves are each operable to inhibit fluid flow through a corresponding one of the fluid channels.
  • 10. The peritoneal dialysis system of claim 5, wherein the controller is adapted to determine a patient pressure based on a pressure measured by the pressure sensor.
  • 11. The peritoneal dialysis system of claim 5, wherein the pressure sensing area of the removable cassette is sucked to the pressure sensor during operation of the peritoneal dialysis system.
  • 12. The peritoneal dialysis system of claim 5, wherein the pressure sensor includes a pair of load cells.
  • 13. The peritoneal dialysis system of claim 5, wherein the pressure sensing area of the removable cassette is directly contacted by the pressure sensor during operation of the peritoneal dialysis system.
  • 14. A peritoneal dialysis system comprising: a peritoneal dialysis machine including a pressure sensor; anda peritoneal dialysis cassette operable with the peritoneal dialysis machine, the peritoneal dialysis cassette including a flexible pump chamber adapted to contain a fluid;ingress and egress passageways fluidly connected to the pump chamber to conduct fluid into and out of the pump chamber to and from a peritoneal cavity of a patient; anda pressure sensing area fluidly connected to the pump chamber, wherein an outer surface of the pressure sensing area of the cassette is positioned to align with and to contact the pressure sensor of the peritoneal dialysis machine when the cassette is positioned within the peritoneal dialysis machine so as to enable the pressure sensor to measure the pressure of fluid in one of the ingress and egress passageways between the pump chamber and the patient during peritoneal dialysis,wherein operation of the peritoneal dialysis machine is adapted to change in response to changes in pressure sensed by the pressure sensor.
  • 15. The peritoneal dialysis system of claim 14, wherein the peritoneal dialysis cassette further includes a second flexible pump chamber adapted to contain fluid, second ingress and egress passageways fluidly connected to the second pump chamber to conduct fluid into and out of the second pump chamber to and from the patient, and a second pressure sensing area in fluid communication with the second pump chamber, wherein an outer surface of the second pressure sensing area of the cassette is positioned to align with and to contact a second pressure sensor of the peritoneal dialysis machine when the cassette is positioned within the peritoneal dialysis machine so as to enable the second pressure sensor to measure the pressure of fluid in one of the second ingress and egress passageways between the second pump chamber and the patient during peritoneal dialysis.
  • 16. The peritoneal system of claim 14, wherein the surface of the pressure sensing area is enlarged.
  • 17. The peritoneal system of claim 14, wherein the peritoneal dialysis cassette further includes a plurality of valves each associated with a corresponding one of the ingress and egress passageways, wherein the valves are each operable to inhibit fluid flow through a corresponding one of the ingress and egress passageways.
  • 18. The peritoneal system of claim 14, wherein the pressure sensing area of the cassette is located along one of the ingress and egress passageways of the disposable cassette.
  • 19. The peritoneal dialysis system of claim 14, wherein the pressure sensing area of the cassette is fluidly connected to the pump chamber.
  • 20. The peritoneal dialysis system of claim 14, wherein the pressure sensing area of the cassette is sucked to the pressure sensor to measure the pressure of fluid in one of the ingress and egress passageways between the pump chamber and the patient during peritoneal dialysis.
PRIORITY CLAIM

This application claims priority to and the benefit as a continuation of U.S. patent application Ser. No. 12/408,432, filed Mar. 20, 2009, which is a continuation of U.S. patent application Ser. No. 10/446,068, filed May 27, 2003, which is a divisional application of U.S. patent application Ser. No. 10/078,568, filed Feb. 14, 2002, issued as U.S. Pat. No. 6,592,542, which is a continuation of U.S. patent application Ser. No. 09/501,778, filed Feb. 10, 2000, issued as U.S. Pat. No. 6,497,676, the entire contents of each of which are incorporated herein by reference and relied upon.

US Referenced Citations (206)
Number Name Date Kind
2286613 Fuller Jan 1942 A
3327115 Barlett Jan 1967 A
3485245 Lahr et al. Dec 1969 A
3620215 Tysk et al. Nov 1971 A
3626670 Pecker Dec 1971 A
3656873 Schiff Apr 1972 A
3689204 Prisk Sep 1972 A
3703959 Raymond Nov 1972 A
3707967 Kitrilakis et al. Jan 1973 A
3709222 DeVries Jan 1973 A
3792643 Scheafer Feb 1974 A
3902490 Jacobsen Sep 1975 A
3955901 Hamilton May 1976 A
3976574 White Aug 1976 A
3979284 Granger Sep 1976 A
4086653 Gernes Apr 1978 A
4126132 Portner et al. Nov 1978 A
4140118 Jassawalla Feb 1979 A
4142524 Jassawalla et al. Mar 1979 A
4158530 Bernstein Jun 1979 A
4181245 Garrett et al. Jan 1980 A
4187057 Xanthopoulos Feb 1980 A
4199307 Jassawalla Apr 1980 A
4235231 Schindler et al. Nov 1980 A
4236880 Archibald Dec 1980 A
4252651 Soderstrom Feb 1981 A
4265601 Mandoian May 1981 A
4273121 Jassawalla Jun 1981 A
4277226 Archibald Jul 1981 A
4303376 Siekmann Dec 1981 A
4310141 Tamura Jan 1982 A
4316466 Babb Feb 1982 A
4375346 Kraus et al. Mar 1983 A
4381003 Buoncristiani Apr 1983 A
4381005 Bujan Apr 1983 A
4382753 Archibald May 1983 A
4391600 Archibald Jul 1983 A
4410322 Archibald Oct 1983 A
4430048 Fritsch Feb 1984 A
4456218 Kawabata et al. Jun 1984 A
4468222 Lundquist Aug 1984 A
4479760 Bilstad et al. Oct 1984 A
4479761 Bilstad et al. Oct 1984 A
4479762 Bilstad et al. Oct 1984 A
4504038 King Mar 1985 A
4530759 Schal Jul 1985 A
4552552 Polaschegg et al. Nov 1985 A
4559036 Wunsch Dec 1985 A
4559044 Robinson et al. Dec 1985 A
4560472 Granzow et al. Dec 1985 A
4585436 Davis et al. Apr 1986 A
4613327 Tegrarian et al. Sep 1986 A
4618343 Polaschegg Oct 1986 A
RE32303 Lasker et al. Dec 1986 E
4634430 Polaschegg Jan 1987 A
4639245 Pastrone et al. Jan 1987 A
4642098 Lundquist Feb 1987 A
4648810 Schippers et al. Mar 1987 A
4648872 Kamen Mar 1987 A
4657490 Abbott Apr 1987 A
4694848 Jorgensen et al. Sep 1987 A
4703773 Hansen et al. Nov 1987 A
4717117 Cook Jan 1988 A
4718890 Peabody Jan 1988 A
4747822 Peabody May 1988 A
4769134 Allan et al. Sep 1988 A
4778356 Hicks Oct 1988 A
4778451 Kamen Oct 1988 A
4784576 Bloom et al. Nov 1988 A
4808161 Kamen Feb 1989 A
4816019 Kamen Mar 1989 A
4818186 Pastrone et al. Apr 1989 A
4818190 Pelmulder et al. Apr 1989 A
4823552 Ezell et al. Apr 1989 A
4826482 Kamen May 1989 A
4828545 Epstein et al. May 1989 A
4830586 Herter et al. May 1989 A
4842582 Mahurkar Jun 1989 A
4842584 Pastrone Jun 1989 A
4848722 Webster Jul 1989 A
4850805 Madsen et al. Jul 1989 A
4852851 Webster Aug 1989 A
4855356 Holub et al. Aug 1989 A
4859319 Borsari Aug 1989 A
4865584 Epstein et al. Sep 1989 A
4872813 Gorton et al. Oct 1989 A
4886432 Kimberlin Dec 1989 A
4927411 Pastrone et al. May 1990 A
4942735 Mushika et al. Jul 1990 A
5002471 Perlov Mar 1991 A
5006050 Cooke et al. Apr 1991 A
5062774 Kramer et al. Nov 1991 A
5088515 Kamen Feb 1992 A
5094820 Maxwell et al. Mar 1992 A
5098262 Wrecker et al. Mar 1992 A
5108844 Blumberg et al. Apr 1992 A
5125891 Hossain et al. Jun 1992 A
5141493 Jacobsen et al. Aug 1992 A
5163900 Wortrich Nov 1992 A
5176956 Jevne et al. Jan 1993 A
5178182 Kamen Jan 1993 A
5185084 Lapidus et al. Feb 1993 A
5195960 Hossain et al. Mar 1993 A
5207642 Orkin et al. May 1993 A
5241985 Faust et al. Sep 1993 A
5245693 Ford et al. Sep 1993 A
5247434 Peterson et al. Sep 1993 A
5252044 Raines et al. Oct 1993 A
5292306 Wynkoop et al. Mar 1994 A
5302093 Owens et al. Apr 1994 A
5316452 Bogen et al. May 1994 A
5332372 Reynolds Jul 1994 A
5344292 Rabenau et al. Sep 1994 A
5350357 Kamen et al. Sep 1994 A
5378126 Abrahamson et al. Jan 1995 A
5389243 Kaplan Feb 1995 A
5397222 Moss et al. Mar 1995 A
5409355 Brooke Apr 1995 A
5415528 Ogden et al. May 1995 A
5421208 Packard et al. Jun 1995 A
5421823 Kamen et al. Jun 1995 A
5429485 Dodge Jul 1995 A
5431626 Bryant et al. Jul 1995 A
5458468 Ye et al. Oct 1995 A
5474683 Bryant et al. Dec 1995 A
5476368 Rabenau et al. Dec 1995 A
5482440 Dennehey et al. Jan 1996 A
5487649 Dorsey, III et al. Jan 1996 A
5522769 DeGuiseppi Jun 1996 A
5526844 Kamen Jun 1996 A
5533389 Kamen et al. Jul 1996 A
5536412 Ash Jul 1996 A
5542919 Simon et al. Aug 1996 A
5554013 Owens et al. Sep 1996 A
5556263 Jacobsen et al. Sep 1996 A
5570716 Kamen et al. Nov 1996 A
5575310 Kamen et al. Nov 1996 A
5578012 Kamen et al. Nov 1996 A
5580460 Polaschegg Dec 1996 A
5586868 Lawless et al. Dec 1996 A
5588816 Abbott et al. Dec 1996 A
5591344 Kenley et al. Jan 1997 A
5603354 Jacobsen et al. Feb 1997 A
5609572 Lang Mar 1997 A
5620312 Hyman et al. Apr 1997 A
5628908 Kamen et al. May 1997 A
5630935 Treu May 1997 A
5632606 Jacobsen et al. May 1997 A
5634896 Bryant et al. Jun 1997 A
5645734 Kenley et al. Jul 1997 A
5669764 Behringer et al. Sep 1997 A
5718692 Schon et al. Feb 1998 A
5722947 Jeppsson et al. Mar 1998 A
5758563 Robinson Jun 1998 A
5788671 Johnson Aug 1998 A
5790752 Anglin et al. Aug 1998 A
5807075 Jacobsen et al. Sep 1998 A
5814004 Tamari Sep 1998 A
5816779 Lawless et al. Oct 1998 A
5836908 Beden et al. Nov 1998 A
5871566 Rutz Feb 1999 A
5919369 Ash Jul 1999 A
5921951 Morris Jul 1999 A
5924975 Goldowsky Jul 1999 A
5931647 Jacobsen et al. Aug 1999 A
5938634 Packard Aug 1999 A
5944495 Jacobsen et al. Aug 1999 A
5944684 Roberts et al. Aug 1999 A
5965433 Gardetto et al. Oct 1999 A
5989423 Kamen et al. Nov 1999 A
6007310 Jacobsen et al. Dec 1999 A
6017194 North, Jr. Jan 2000 A
6030359 Nowosielski Feb 2000 A
6036668 Mathis Mar 2000 A
6041801 Gray et al. Mar 2000 A
6065941 Gray et al. May 2000 A
6126403 Yamada Oct 2000 A
6129699 Haight et al. Oct 2000 A
6165154 Gray et al. Dec 2000 A
6208107 Maske et al. Mar 2001 B1
6210361 Kamen et al. Apr 2001 B1
6223130 Gray et al. Apr 2001 B1
6228047 Dadson May 2001 B1
6231320 Lawless et al. May 2001 B1
6234991 Gorsuch May 2001 B1
6234997 Kamen et al. May 2001 B1
6245039 Brugger et al. Jun 2001 B1
6248093 Moberg Jun 2001 B1
6254567 Treu et al. Jul 2001 B1
6270673 Belt et al. Aug 2001 B1
6280408 Sipin Aug 2001 B1
6302653 Bryant et al. Oct 2001 B1
6343614 Gray et al. Feb 2002 B1
6364857 Gray et al. Apr 2002 B1
6382923 Gray May 2002 B1
6416293 Bouchard et al. Jul 2002 B1
6491656 Morris Dec 2002 B1
6491658 Miura et al. Dec 2002 B1
6497676 Childers et al. Dec 2002 B1
6595948 Suzuki et al. Jul 2003 B2
6743201 Dönig et al. Jun 2004 B1
6814547 Childers et al. Nov 2004 B2
6949079 Westberg et al. Sep 2005 B1
7004924 Brugger et al. Feb 2006 B1
20010018937 Nemoto Sep 2001 A1
20020045851 Suzuki et al. Apr 2002 A1
Foreign Referenced Citations (17)
Number Date Country
0 028 371 May 1981 EP
0 033 096 Aug 1981 EP
0 052 004 May 1982 EP
0 097 432 Jan 1984 EP
0 157 024 Oct 1985 EP
0 206 195 Dec 1986 EP
0 319 272 Jun 1989 EP
0 402 505 Dec 1990 EP
0 660 725 Jul 1995 EP
1 326 236 Aug 1973 GB
8504813 Nov 1985 WO
8601115 Feb 1986 WO
8705223 Sep 1987 WO
8901795 Mar 1989 WO
9013795 Nov 1990 WO
9420158 Sep 1994 WO
03099355 Dec 2003 WO
Related Publications (1)
Number Date Country
20110028892 A1 Feb 2011 US
Divisions (1)
Number Date Country
Parent 10078568 Feb 2002 US
Child 10446068 US
Continuations (3)
Number Date Country
Parent 12408432 Mar 2009 US
Child 12903820 US
Parent 10446068 May 2003 US
Child 12408432 US
Parent 09501778 Feb 2000 US
Child 10078568 US