The invention relates to a superstructure for a railway.
The superstructure of conventional railways comprises components such as rails, sleepers, fixing components, resilient layers, inserts, a ballast bed, one or more layers of a fixed carriageway, a bonded or non-bonded support layer, a reinforcement or a bias reinforcement. As rail vehicles are set to have a long service life of the order of plural decades, in the case of any damage that may arise it is frequently difficult to identify the corresponding component and to obtain information relating to the component. Only a few components of the superstructure are normally provided with data at all, e.g. on concrete sleepers usually there is a manufacturer's mark, a model reference and the year of manufacture. As these data are present in the form of alphanumeric marks applied to the surface, their acquisition is complex. On other components of the superstructure, on the other hand, no characterising data are given at all, so that no component-specific data can be obtained at all subsequently.
The object of the invention is therefore to indicate a superstructure for a railway in which the reading of data is simplified.
To achieve this, in a superstructure of the type mentioned in the introduction it is provided that at least one component of the superstructure has a data carrier readable by a reading device for digitally stored data.
The invention is based on the knowledge that the superstructure or one of its components can be provided with a data carrier, in which component-specific data are stored. By the digital storage, data can be stored in a practical manner in any quantity and permanently in the data carrier.
The superstructure according to the invention may comprise one or more components from the following group: rail, sleeper, fixing component, resilient layer, insert, ballast bed, fixed carriageway, layer of the fixed carriageway, bonded or non-bonded support layer, reinforcement and/or a bias reinforcement. Thus a whole range of options are available for mounting the data carrier.
The data carrier may be mounted on various points on the component of the superstructure according to the invention. According to a first embodiment, the data carrier can be mounted on the surface of the component of the superstructure. This has the advantage of good accessibility and minimising interference in the reading of the data carrier. In addition, data carriers can also be mounted retrospectively on the surface of the component of the superstructure.
Alternatively, the data carrier can be incorporated at least in part in the component of the superstructure according to the invention. In this type of mounting, the data carrier is well-protected from mechanical influences. As a further alternative, it is possible to mount the data carrier in a cavity in the component, so that the data carrier is protected both from mechanical influences and from weathering.
According to an extension of the invention, it can be provided that the data carrier may be read without its own power supply. This has the advantage that the service life of the data carrier is not dependent on the service life of a power supply. Alternatively, it is possible that the data carrier has its own power supply, which for example comprises a battery or rechargeable battery. In this embodiment, the distance between the reading device and the data carrier may be greater.
In an advantageous embodiment of the invention, the data carrier of the superstructure according to the invention may have a writable or rewritable storage device. This makes it possible subsequently to store data which are not yet known at the point of manufacture. In this manner, certain data can be gathered and read over a relatively long period.
Advantageously, the superstructure according to the invention may comprise a data carrier which is disposed approximately in the middle of the sleeper. The data carrier may also be located at a point on the sleeper with a reduced thickness of concrete, as then there is no risk of interference during reading.
In order to detect data regarding one or more components of the superstructure, it may be provided that the data carrier has at least one measuring device for detecting measured values. Preferably, measured values detected by means of the measuring device may be stored in the storage device of the data carrier. This makes it possible for the data to be not only available at the time of the reading by the reading device but permanently. It may be provided that the measuring device is formed to measure a force or a pressure. This makes it possible to detect the stress of the component when a rail vehicle passes over. Likewise, the force or pressure curve during such passage can be detected in order by means of this data to monitor the state of the component of the superstructure and to recognise changes or damage.
Alternatively or in addition, the measuring device can also be formed to measure a temperature. As a further alternative, the measuring device can be formed to measure expansion of a component of the superstructure in order by means of these measured values to obtain data regarding deformation, signs of fatigue or damage.
It is also conceivable that the measuring device is formed to detect the geographical position of the component of the superstructure, in particular by means of a GPS receiver.
According to an extension of the invention, the data carrier can be formed to transmit data to another data carrier. This not only permits automatic reading of the data but also automatic forwarding of data by the data carrier to other data carriers until the data reaches a receiver. In this connection, the data carrier of the superstructure according to the invention can be so formed that it transmits data upon the occurrence of an event. An example of the occurrence of an event is the exceeding or falling short of a threshold value by one of the values detected by the measuring device. This permits for example the automatic transmission of the measured values and the data derived therefrom concerning the damage or deterioration of a component of the superstructure, without the need to carry out a reading operation externally.
Advantageously, the data carrier can be formed to transmit the data at one of the following frequencies: 125 kHz, 13.56 MHz, 433 MHz, 866 MHz, 915 MHz, and 950 MHz. However, frequencies of 2.45 GHz or 5.8 GHz are also conceivable.
In addition, the invention relates to a device for reading data carriers. The device has a mobile carriage movable on a superstructure of the type described.
Further advantages and details of the invention are described below with reference to the figures, which are schematic representations and show:
On the left-hand rail 6 in
Number | Date | Country | Kind |
---|---|---|---|
10 2007 054 221.8 | Nov 2007 | DE | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/DE2008/001795 | 11/4/2008 | WO | 00 | 5/11/2010 |