Perpendicular magnetic recording head with radial magnetic field generator which reduces noise from soft magnetic underlayer of recording disk

Information

  • Patent Grant
  • 6574072
  • Patent Number
    6,574,072
  • Date Filed
    Friday, January 12, 2001
    23 years ago
  • Date Issued
    Tuesday, June 3, 2003
    21 years ago
Abstract
The present invention provides a modified perpendicular magnetic recording head which generates a relatively small magnetic field in a radial direction through the soft underlayer of a magnetic recording disk in order to reduce unwanted noise from the underlayer. The radial magnetic field is sufficiently strong to effectively drive the magnetic domains out of the soft underlayer underneath the head.
Description




FIELD OF THE INVENTION




The present invention relates to perpendicular magnetic recording heads, and more particularly relates to a recording head including a radial magnetic field generator which reduces unwanted noise from the soft magnetic underlayer of the recording disk.




BACKGROUND INFORMATION




Perpendicular magnetic recording systems have been developed for use in computer hard disk drives. A preferred approach to perpendicular magnetic recording requires the use of a magnetically soft underlayer media which provides a flux path from the trailing pole to the leading pole of the writer. The soft underlayer helps with sharp field gradients and also provides strong fields which enable writing on high coercivity media. The soft underlayer is also required during the read operation. During the read back process, the soft underlayer produces the image of magnetic charge, effectively increasing the magnetic flux coming from the media. This provides a higher signal-to-noise ratio. The magnetic anisotropy (H


k


) of the soft underlayer can be tailored, typically around 50-100 Oe. This means that a field of approximately 50-100 Oe needs to be applied for the soft underlayer to saturate in the circumferential direction along the length of the recording track. The H


k


of the hard magnetic recording layer is typically about 5,000-20,000 Oe.




One of the challenges of implementing perpendicular recording is to resolve the problem of soft underlayer noise. The noise is caused by domain wall motion or fringing fields generated by magnetic domains in the soft underlayer that can be sensed by the reader. For the write process to be efficient, high moment materials, e.g., B


s


>20 kG, may be used for the soft underlayer. If the domain distribution of such materials is not carefully controlled, very large fringing fields can introduce substantial amounts of noise in the read element. Not only can the reader sense the steady-state distribution of magnetization in the soft underlayer, but it can also affect the distribution of magnetization in the soft underlayer, thus generating time-dependent noise. Both types of noise should be minimized.




The present invention has been developed in view of the foregoing.




SUMMARY OF THE INVENTION




The present invention provides a modified perpendicular magnetic recording head which generates a relatively small magnetic field in a radial direction through the soft underlayer of a magnetic recording disk. The radial magnetic field is typically on the order of from about 5 to about 30 Oe, enough to effectively drive the magnetic domains out of the soft underlayer underneath the head. The radial magnetic field is preferably generated in the soft underlayer of the media during the read operation, and may also be generated during the write operation.




An aspect of the present invention is to provide a perpendicular magnetic recording head including at least one magnetic recording element, and means for generating a magnetic field which reduces soft magnetic underlayer noise during operation of the magnetic recording element.




Another aspect of the present invention is to provide a perpendicular magnetic recording head including at least one magnetic recording element, and a radial magnetic field generator having arms extending along opposing sides of the recording head and spaced apart from the at least one magnetic recording element.




A further aspect of the present invention is to provide a perpendicular magnetic recording system comprising a perpendicular magnetic recording disk and a perpendicular magnetic recording head. The disk includes a hard magnetic recording layer and a soft magnetic underlayer, while the perpendicular magnetic recording head includes at least one magnetic recording element and a radial magnetic field generator.




These and other aspects of the present invention will be more apparent from the following description.











BRIEF DESCRIPTION OF THE DRAWINGS





FIG. 1

is a partially schematic side view of a perpendicular magnetic recording head and recording disk illustrating the magnetic flux path through the soft underlayer of the disk during the recording operation.





FIG. 2

is a partially schematic bottom view showing the air bearing surface of a perpendicular magnetic recording head which includes both writing and reading elements.





FIG. 3

is a partially schematic bottom view showing the air bearing surface of a perpendicular magnetic recording head including a radial magnetic field generator in accordance with an embodiment of the present invention.





FIG. 4

is a partially schematic cross-sectional end view taken through section


4





4


of

FIG. 3

, illustrating the recording disk and perpendicular magnetic recording head including a radial magnetic field generator in accordance with an embodiment of the present invention.





FIG. 5

is a top view of a magnetic recording disk, schematically illustrating the direction of the magnetic field generated in the soft magnetic underlayer of the disk along the direction of a recording track during the writing operation, and a radial magnetic field generated in the soft underlayer which reduces noise in accordance with an embodiment of the present invention.











DETAILED DESCRIPTION





FIG. 1

is a partially schematic side view of a perpendicular magnetic recording head


10


. The recording head


10


includes a trailing main write pole


12


and a return pole


14


. A magnetizing coil


15


surrounds a yoke


17


which connects the write pole


12


and return pole


14


. A perpendicular magnetic recording medium


16


such as a disk is positioned under the recording head


10


. The recording medium


16


travels in the direction of the arrow shown in

FIG. 1

during recording. The recording medium


16


includes a substrate


18


, which may be made of any suitable material such as ceramic glass, amorphous glass or NiP plated AlMg. A magnetically soft underlayer


20


is deposited on the substrate


18


. Suitable soft magnetic materials for the underlayer


20


include CoFe and alloys thereof, Fe and alloys thereof, FeAlN, NiFe, CoZrNb and FeTaN, with CoFe and FeAlN being preferred soft materials. A thin exchange decouple layer


21


made of a non-magnetic material such as CoCr, Cr or an oxide is deposited on the soft underlayer


20


. A magnetically hard perpendicular recording layer


22


is deposited on the exchange decouple layer


21


. Suitable hard magnetic materials for the recording layer


22


include multi-layers of Co/Pd or Co/Pt, L


10


phases of CoPt, FePt, CoPd and FePd and hcp Co alloys, with such multi layers and L


10


phases being preferred hard materials. A protective overcoat


24


such as diamond-like carbon may be applied over the recording layer


22


. As shown in

FIG. 1

, during writing operations, magnetic flux is directed along a path M from the main pole


12


perpendicularly through the recording layer


22


, then in the plane of the soft underlayer


20


back to the return pole


14


.





FIG. 2

is a partially schematic bottom view of a read/write perpendicular recording head


28


which may be modified in accordance with the present invention. The perpendicular read/write head


28


includes an air bearing surface (ABS)


30


which may be flush with the ends of the main write pole


12


and return pole


14


. In addition to the write poles


12


and


14


, the perpendicular recording head


28


shown in

FIG. 2

includes a reader section comprising a read element


32


positioned between shields


34


and


36


. Alternatively, the pole


14


may be combined with the shield


36


. The read element


32


may be a conventional GMR reader or the like. As shown in

FIG. 2

, during the writing operation, the magnetic flux path M travels from the main pole


12


to the return pole


14


.





FIG. 3

is a partially schematic bottom view of a perpendicular magnetic recording head


40


in accordance with an embodiment of the present invention. The recording head


40


includes perpendicular read/write elements adjacent an air bearing surface


30


, similar to the conventional design shown in FIG.


2


. In addition, the recording head


40


of the present invention includes a transverse or radial magnetic field generator


42


comprising arms


44


and


46


which extend along the sides of the recording head


40


substantially flush with the air bearing surface


30


. A coil


48


is wound around a narrowed portion of the base of the radial magnetic field generator


42


. The arms


44


and


46


of the magnetic field generator


42


may be made of any suitable magnetically permeable material such as NiFe, NiFeCo, FeCoB, FeAlN or the like. The coil


48


may be made of any suitable electrically conductive material such as Cu, CrCu, Au or the like.




The coil


48


may have any suitable number of turns, e.g., one, two, three or more. For many designs, one or two coil turns are sufficient when currents on the order of 5 to 10 mA are applied to the coil


48


. As shown in

FIG. 3

, when the coil


48


is activated, a transverse or radial flux pattern R is generated between the arms


44


and


46


. The radial magnetic flux pattern R is substantially perpendicular to the magnetic flux path M between the write poles


12


and


14


.





FIG. 4

is a partially schematic cross-sectional end view of the perpendicular magnetic recording head


40


taken through section


4





4


of FIG.


3


. For purposes of clarity, only the main pole


12


and the radial flux generator


42


,


44


and


46


are shown in FIG.


4


. The perpendicular recording medium


16


is positioned under the recording head


40


and travels in a direction perpendicular to the plane of FIG.


4


. The radial magnetic field R travels through the soft underlayer


20


between the arms


44


and


46


of the magnetic field generator


42


. The distance between the arms


44


and


46


may be from about 2 to about 100 microns, for example, from 5 to about 20 microns. The cross-sectional area of each arm may be from about 2 to about 50 square microns, for example, from about 5 to about 20 square microns. As shown in

FIG. 4

, the arms


44


and


46


may relatively tall and thin. For example, the widths of the arms


44


and


46


may be about 1 micron, while their heights may be from about 5 to 10 micron.




In accordance with the present invention, the distance between each of the arms


44


,


46


and the read/write components


12


,


14


,


34


and


36


is relatively large in comparison with the distance between each of the arms


44


,


46


and the soft underlayer


20


of the disk


16


. This ensures that the radial magnetic field R will follow the path of smallest reluctance through the soft underlayer


20


. For example, the distance D shown in

FIG. 3

between the arm


44


and the main pole


12


is much larger than the distance H shown in

FIG. 4

between the arm


44


and the soft underlayer


20


. The ratio of D:H may be from about 5:1 to about 50:1. As a particular example, the distance D may be from about 400 to about 500 nm, while the distance H may be from about 40 to about 50 nm. However, the specific distances may vary depending upon the design of the particular recording head.





FIG. 5

is a top view illustrating the soft underlayer


20


of the magnetic recording disk


16


. The magnetic field M generated by the perpendicular recording head travels through the soft magnetic underlayer


20


along the direction of the recording tracks of the disk


16


during writing operations. The radial magnetic field R generated in the soft underlayer in accordance with the present invention may be substantially perpendicular to the magnetic field M. The strength of the radial magnetic field R in the soft underlayer


20


is substantially less than the strength of the recording magnetic field M. For example, the radial magnetic field R may be at least 100 times smaller than the recording field M, or at least 1,000 times smaller. For example, the radial magnetic field R may range from about 5 to about 20 or 30 Oe, while the recording magnetic field M may range from about 5,000 to about 20,000 Oe. The radial field R may be smaller than the H


k


of the soft underlayer, which typically has a magnetic anisotropy of 50 to 100 Oe.




The head structure of the present invention may be built using conventional read and write head fabrication processes, with the additional formation of a shielded structure to provide the radial magnetic field R. To accomplish this, a conventional head structure may be encapsulated with an insulating material such as Al


2


O


3


after the read/write elements have been deposited, e.g., after the main pole


12


of the writer is deposited. The radial magnetic field generator


42


,


44


and


46


may then be deposited over the insulating material by techniques such as electroplating or sputtering. Alternatively, the radial magnetic field generator


42


,


44


and


46


may be built up section-by-section at the same time as the individual read/write layers are deposited by conventional masking techniques. For example, in

FIG. 3

, the reader shield


34


may initially be deposited on a substrate (not shown) and portions of the arms


44


and


46


may be deposited on the substrate up to the level of the shield


34


. Then the reader


32


may be deposited, followed by deposition of additional layers of the arms


44


and


46


up to the level of the reader


32


. The other layers of the head


40


are subsequently deposited in a similar manner, thereby building up the arms


44


,


46


and the base of the radial magnetic field generator


42


layer by layer. The coil


48


can be formed as either a standard solenoidal or pancake coil around the base


42


.




Whereas particular embodiments of this invention have been described above for purposes of illustration, it will be evident to those skilled in the art that numerous variations of the details of the present invention may be made without departing from the invention as defined in the appended claims.



Claims
  • 1. A perpendicular magnetic recording head comprising:at least one magnetic recording element; and means for generating a magnetic field which reduces noise from a soft magnetic underlayer of a recording disk during operation of the magnetic recording element.
  • 2. The perpendicular magnetic recording head of claim 1, wherein the means for generating a magnetic field comprises arms extending along opposing sides of the recording head and spaced apart from the at least one magnetic recording element, and a magnetizing coil structured and arranged to induce magnetic flux through the arms.
  • 3. The perpendicular magnetic recording head of claim 2, wherein the means for generating a magnetic field further comprises a base connecting the arms.
  • 4. The perpendicular magnetic recording head of claim 3, wherein the magnetizing coil at least partially surrounds the base.
  • 5. A perpendicular magnetic recording head comprising:at least one magnetic recording element; and a radial magnetic field generator including arms extending along opposing sides of the recording head and spaced apart from the at least one magnetic recording element, and a magnetizing coil structured and arranged to induce magnetic flux through the arms.
  • 6. The perpendicular magnetic recording head of claim 5, wherein the arms have lower surfaces which are substantially flush with an air bearing surface of the recording head.
  • 7. The perpendicular magnetic recording head of claim 5, wherein the at least one recording element is a reader.
  • 8. The perpendicular magnetic recording head of claim 7, wherein the reader is located between the arms.
  • 9. The perpendicular magnetic recording head of claim 5, wherein the radial magnetic field generator comprises a base connecting the arms.
  • 10. The perpendicular magnetic recording head of claim 9, wherein the base and arms are generally U-shaped.
  • 11. The perpendicular magnetic recording head of claim 9, wherein the base extends in a direction substantially perpendicular to the arms.
  • 12. The perpendicular magnetic recording head of claim 9, wherein the magnetizing coil at least partially surrounds the base.
  • 13. The perpendicular magnetic recording head of claim 5, wherein the arms comprise at least one magnetically permeable material selected from NiFe, NiFeCo, FeCoB and FeAlN.
  • 14. A perpendicular magnetic recording system comprising:a perpendicular magnetic recording disk including a hard magnetic recording layer and a soft magnetic underlayer; and a perpendicular magnetic recording head including at least one magnetic recording element and a radial magnetic field generator, wherein the magnetic field generator comprises arms extending along opposing sides of the recording head and spaced apart from the at least one magnetic recording element, and a magnetizing coil structured and arranged to induce magnetic flux through the arms.
  • 15. The perpendicular magnetic recording system of claim 14, wherein the arms have lower surfaces which are substantially flush with an air bearing surface of the recording head.
  • 16. The perpendicular magnetic recording system of claim 14, wherein the at least one recording element is a reader.
  • 17. The perpendicular magnetic recording system of claim 14, wherein the reader is located between the arms.
  • 18. The perpendicular magnetic recording system of claim 14, wherein the radial magnetic field generator comprises a base connecting the arms.
  • 19. The perpendicular magnetic recording system of claim 18, wherein the magnetizing coil at least partially surrounds the base.
  • 20. The perpendicular magnetic recording system of claim 14, wherein the arms are spaced apart a distance D, the arms are located a distance H above the soft magnetic underlayer, and D is greater than H.
  • 21. The perpendicular magnetic recording system of claim 20, wherein the ratio of D:H is at least about 5:1.
  • 22. The perpendicular magnetic recording system of claim 14, wherein the magnetic field generated in the soft underlayer is substantially perpendicular to a direction of recording tracks in the disk.
  • 23. The perpendicular magnetic recording system of claim 14, wherein the magnetic field generated in the soft underlayer is from about 5 to about 30 Oe.
CROSS REFERENCE TO RELATED APPLICATION

This application claims the benefit of U.S. Provisional Patent Application Serial No. 60/175,859 filed Jan. 12, 2000.

US Referenced Citations (33)
Number Name Date Kind
4138702 Magnenet Feb 1979 A
4410603 Yamamori et al. Oct 1983 A
4438471 Oshiki et al. Mar 1984 A
4541026 Bonin et al. Sep 1985 A
4546398 Toda et al. Oct 1985 A
4575777 Hosokawa Mar 1986 A
4613918 Kanai et al. Sep 1986 A
4629660 Sagoi et al. Dec 1986 A
4649449 Sawada et al. Mar 1987 A
4652956 Schewe Mar 1987 A
4731157 Lazzari Mar 1988 A
4742413 Schewe May 1988 A
4751598 Hamilton Jun 1988 A
4771350 Deserre Sep 1988 A
4897749 Perlov et al. Jan 1990 A
4943882 Wada et al. Jul 1990 A
4974110 Kanamine et al. Nov 1990 A
5003423 Imamura et al. Mar 1991 A
5057957 Ito et al. Oct 1991 A
5073836 Gill et al. Dec 1991 A
RE33949 Mallary et al. Jun 1992 E
5195005 Mallary et al. Mar 1993 A
5196976 Lazzari Mar 1993 A
5225953 Wada et al. Jul 1993 A
5311386 Mallary May 1994 A
5333086 Frey et al. Jul 1994 A
5396391 Tanaka et al. Mar 1995 A
5436779 Valstyn Jul 1995 A
5738927 Nakamura et al. Apr 1998 A
5815909 Gray Oct 1998 A
5942342 Hikosaka et al. Aug 1999 A
6008969 Imai et al. Dec 1999 A
6118625 Heinz et al. Sep 2000 A
Non-Patent Literature Citations (1)
Entry
U.S. patent application Ser. No. 09/757,432, filed Jan. 10, 2001, Khizroev et al.
Provisional Applications (1)
Number Date Country
60/175859 Jan 2000 US