1. Field of the Invention
The present invention relates to personalized sound systems, including an ear level device adapted to be worn on the ear and provide audio processing according to a hearing profile of the user and companion devices that act as sources of audio data.
2. Description of Related Art
Assessing an individual's hearing profile is important in a variety of contexts. For example, individuals with hearing profiles that are outside of a normal range must have their profile recorded for the purposes of prescribing hearing aids which fit the individual profile. U.S. Pat. No. 6,944,474 B2, by Rader et al., describes a mobile phone with audio processing functionality that can be adapted to the hearing profile of the user, addressing many of the problems of the use of mobile phones by hearing impaired persons. See also, International Publication No. WO 01/24576 A1, entitled PRODUCING AND STORING HEARING PROFILES AND CUSTOMIZED AUDIO DATA BASED (sic), by Pluvinage et al., which describes a variety of applications of hearing profile data.
With improved wireless technologies, such as Bluetooth technology, techniques have been developed to couple hearing aids using wireless networks to other devices, for the purpose of programming the hearing aid and for coupling the hearing aid with sources of sound other than the ambient environment. See, for example, International Publication No. WO 2004/110099 A2, entitled HEARING AID WIRELESS NETWORK, by Larsen et al.; International Publication No. WO 01/54458 A2, entitled HEARING AID SYSTEMS, by Eaton et al.; German Laid-open Specification DE 102 22 408 A 1, entitled INTEGRATION OF HEARING SYSTEMS INTO HOUSEHOLD TECHNOLOGY PLATFORMS by Dageforde. In Larsen et al. and Dageforde, for example, the idea is described of coupling a hearing aid by wireless network to a number of sources of sound, such as door bells, mobile phones, televisions, various other household appliances and audio broadcast systems.
One problem associated with these prior art ideas, which incorporate a variety of sound sources into a network with a hearing aid, arises because of the need for significant amounts of data processing resources at each audio source to support participation in the network. So there is a need for techniques to reduce the data processing requirements needed at a sound source for participation in the network. Another problem with prior art systems incorporating a variety of sound sources into a network with a hearing aid arises because the sampling rates, audio processing parameters and processing techniques needed for the various sources of sound are not the same. So simply providing a channel between the hearing aid and variant audio sources is not effective. Furthermore, for diverse personal sound systems, techniques for managing the process of switching from one source to another must be developed.
Thus, technologies for improving the compatibility of hearing aids with mobile phones and other audio sources are needed.
A personal sound system, and components of a personal sound system are described which address problems associated with providing a plurality of variant sources of sound to a single ear level module, or other single destination. The personal sound system addresses issues concerning the diversity of the audio sources, including diversity in sample rate, diversity in the processing resources at the source, diversity in audio processing techniques applicable to the sound source, and diversity in priority of the sound source for the user. The personal sound system also addresses issues concerning personalizing the ear level module for the user, accounting for a plurality of variant sound sources to be used with the ear module. Furthermore, the personal sound system addresses privacy of the communication links utilized.
A personal sound system is described that includes an ear-level module. The ear-level module includes a radio for transmitting and receiving communication signals encoding audio data, an audio transducer, one or more microphones, a user input and control circuitry. In embodiments of the technology, the ear-level module is configured with hearing aid functionality for processing audio received on one or more of the microphones according to a hearing profile of the user, and playing the processed sound back on the audio transducer. The control circuitry includes logic for communication using the radio with a plurality of sources of audio data in memory storing a set of variables for processing the audio data. Logic on the ear-level module is operable in a plurality of signal processing modes. In one embodiment, the plurality of signal processing modes include a first signal processing mode (e.g. a hearing aid mode) for processing sound picked up by one of the one or more microphones using a first subset of the set of variables and playing the processed sound on the audio transducer. A second signal processing mode (e.g. a companion microphone mode) is included for processing audio data from a corresponding audio source received using the radio according to a second subset of the set of variables, and playing the processed audio data on the audio transducer. A third signal processing mode (e.g. a phone mode) is included for processing audio data from another corresponding audio source, such as a telephone, and received using the radio. The audio data in the third signal processing mode is processed according to a third subset of the set of variables and played on the audio transducer. The ear level module includes logic that controls switching among the first, second and third signal processing modes according to predetermined priority, in response to user input, and in response to control signals from the plurality of sources. Other embodiments include fewer or more processing modes as suits the need of the particular implementation.
An embodiment of the ear-level module is adapted to store first and second link parameters in addition to the set of variables. Logic is provided for communication with a configuration host using the radio. Resources establish a configuration channel with the configuration host and use the channel for retrieving the second link parameter and storing a second link parameter in the memory. Logic on the device establishes a first audio channel using the first link parameter and a second audio channel using the second link parameter. The first link parameter is used for establishment of the configuration channel, for example, and channels with phones or other rich platform devices. The second audio channel established with the second link parameter is used for establishing private communication with thin platform devices such as a companion microphone. In embodiments of the technology, the second link parameter is a private shared secret unique to the pair of devices, and provides a privacy of the audio channel between the ear module and the companion microphone.
A companion module is also described that includes a radio which transmits and receives communication signals. The companion module is also adapted to store at least two link parameters, including the second link parameter mentioned above in connection with the ear-module. The companion module, in an embodiment described herein, comprises a lapel microphone and is adapted for transmitting sound picked up by the lapel microphone using the communication channel to the ear-level module. The companion module can be used for other types of thin platform audio sources as well.
In addition, the companion module and the ear-level module can be delivered as a kit having a second link parameter pre-stored on both devices. In addition, the kit may include a recharging cradle that is adapted to hold both devices.
An embodiment of the ear-level module is also adapted to handle audio data from a plurality of variant sources that have different sampling rates. Thus an embodiment of the invention upconverts audio data received using the radio to a higher sampling rate which matches the sampling rate of data retrieved from the microphone on the ear-level module. This common sampling rate is then utilized by the processing resources on the ear-level module.
A method for configuring the personal sound system is also described. According to the method, a configuration host computer is used to establish a link parameter for connecting the ear-level module with the companion module in the field. The configuration host establishes a radio communication link with the ear-level module, using the public first link parameter, and delivers the second link parameter, along with other necessary network parameters, using a radio communication link to the ear-level module, which then stores the second link parameter in nonvolatile memory. The configuration host also establishes a radio communication link with the companion module using the public link parameter associated with the companion module. Using the radio communication link to the companion module, the configuration host delivers the private second link parameter, along with other necessary network parameters, to the companion module, which then stores it in nonvolatile memory for use in linking with the ear-level module.
An ear module is described herein including an interior lobe housing a speaker and adapted to fit within the cavum conchae of the outer ear, an exterior lobe housing data processing resources, and a compressive member coupled to the interior lobe and providing a holding force between the anti-helix and the forward wall of the ear canal near the tragus. An extension of the interior lobe is adapted to extend into the exterior opening of the ear canal, and includes a forward surface adapted to fit against the forward wall of the ear canal, and a rear surface facing the anti-helix. The width of the extension (in a dimension orthogonal to the forward surface of the extension) between the forward surface and the rear surface from at least the opening of the ear canal to the tip of the extension is substantially less than the width of the ear canal, leaving an open ear passage. The extension fits within the cavum conchae and beneath the tragus, without filling the cavum conchae and leaving a region within the cavum conchae that is in air flow communication with the open ear air passage in the ear canal. The compressive member tends to force the forward surface of the extension against the forward wall of the ear canal, securing the ear module in the ear comfortably and easily.
Other aspects and advantages of the present invention can be seen on review of the drawings, the detailed description and the claims, which follow.
A detailed description of embodiments of the present invention is provided with reference to the
Companion modules, such as the companion microphone 12 consist of small components, such as a battery operated module designed to be worn on a lapel, that house “thin” data processing platforms, and therefore do not have the rich user interface needed to support configuration of private network communications to pair with the ear module. For example, thin platforms in this context do not include a keyboard or touch pad practically suitable for the entry of personal identification numbers or other authentication factors, network addresses, and so on. Thus, to establish a private connection pairing with the ear module, the radio is utilized in place of the user interface.
In embodiments of the network described herein, the linked companion microphone 12 and other companion devices may be “permanently” paired with the ear module 10 using the configuration host 13, by storing a shared secret on the ear module and on the companion module that is unique to the pair of modules, and requiring use of the shared secret for establishing a communication link using the radio between them. The configuration host 13 is also utilized for setting variables utilized by the ear module 10 for processing audio data from the various sources. Thus in embodiments described herein, each of the audio sources in communication with the ear module 10 may operate with a different subset of the set of variables stored on the ear module for audio processing, where each different subset is optimized for the particular audio source, and for the hearing profile of the user. The set of variables on the ear module 10 is stored in non-volatile memory on the ear module, and includes for example, indicators for selecting data processing algorithms to be applied and parameters used by data processing algorithms.
In embodiments of the ear module described herein, the interior lobe is more narrow (in a dimension parallel to the forward surface of the extension) than the cavum conchae at the opening of the ear canal, and extends outwardly to support the exterior lobe of the ear module in a position spaced away from the anti-helix and tragus, so that an opening from outside the ear through the cavum conchae into the open air passage in the ear canal is provided around the exterior and the interior lobes of the ear module, even in embodiments in which the exterior lobe is larger than the opening of the cavum conchae. Embodiments of the compressive member include an opening exposing the region within the cavum conchae that is in air flow communication with the open air passage in the ear canal to outside the ear. The opening in the compressive member, the region in the cavum conchae beneath the compressive member, and the open air passage in the ear canal provide an un-occluded air path from free air into the ear canal.
The radio module 51 is coupled to the digital signal processor 52 by a data/audio bus 70 and a control bus 71. The radio module 51 includes, in this example, a Bluetooth radio/baseband/control processor 72. The processor 72 is coupled to an antenna 74 and to nonvolatile memory 76. The nonvolatile memory 76 stores computer programs for operating a radio 72 and control parameters as known in the art. The processor module 51 also controls the man-machine interface 48 for the ear module 10, including accepting input data from the buttons and providing output data to the status light, according to well-known techniques.
The nonvolatile memory 76 is adapted to store at least first and second link parameters for establishing radio communication links with companion devices, in respective data structure referred to as “pre-pairing slots” in non-volatile memory. In the illustrated embodiment the first and second link parameters comprise authentication factors, such as Bluetooth PIN codes, needed for pairing with companion devices. The first link parameter is preferably stored on the device as manufactured, and known to the user. Thus, it can be used for establishing radio communication with phones and the configuration host or other platforms that provide user input resources to input the PIN code. The second link parameter also comprises an authentication factor, such as a Bluetooth PIN code, and is not pre-stored in embodiment described herein. Rather the second link parameter is computed by the configuration host in the field, for private pairing of a companion module with the ear module. In one preferred embodiment, the second link parameter is unique to the pairing, and not known to the user. In this way, the ear module is able to recognize authenticated companion modules within a network which attempt communication with the ear module, without requiring the user to enter the known first link parameter at the companion module. Embodiments of the technology support a plurality of unique pairing link parameters in addition to the second link parameter, for connection to a plurality of variant sources of audio data using the radio.
In addition, the processing resources in the ear module include resources for establishing a configuration channel with a configuration host for retrieving the second link parameter, for establishing a first audio channel with the first link parameter, and for establishing a second audio channel with the second link parameter, in order to support a variety of audio sources.
Also, the configuration channel and audio channels comprise a plurality of connection protocols in the embodiment described herein. The channels include a control channel protocol, such as a modified SPP as mentioned above, and an audio streaming channel protocol, such as an SCO compliant channel. The data processing resources support role switching on the configuration and audio channels between the control and audio streaming protocols.
In an embodiment of the ear module, the data processing resources include logic supporting an extended API for the Bluetooth SPP profile used as the control channel protocol for the configuration host and for the companion modules, including the following commands:
In addition, certain SPP profile commands are processed in a unique manner by logic in the ear module. For example, an SPP connect command from a pre-paired companion module is interpreted by logic in the ear module as a request to change the mode of operation of the ear module to support audio streaming from the companion module. In this case, the ear module automatically establishes an SCO channel with the companion module, and switches to the companion module mode, if the companion module request is not pre-empted by a higher priority audio source.
In the illustrated embodiment, the data/audio bus 70 transfers pulse code modulated audio signals between the radio module 51 and the processor module 50. The control bus 71 in the illustrated embodiment comprises a serial bus for connecting universal asynchronous receive/transmit UART ports on the radio module 51 and on a processor module 50 for passing control signals.
A power control bus 75 couples the radio module 51 and the processor module 50 to power management circuitry 77. The power management circuitry 77 provides power to the microelectronic components on the ear module in both the processor module 50 and the radio module 51 using a rechargeable battery 78. A battery charger 79 is coupled to the battery 78 and the power management circuitry 77 for recharging the rechargeable battery 78.
The microelectronics and transducers shown in
The ear module operates in a plurality of modes, including in the illustrated example, a hearing aid mode for listening to conversation or ambient audio, a phone mode supporting a telephone call, and a companion microphone mode for playing audio picked up by the companion microphone which may be worn for example on the lapel of a friend. The signal flow in the device changes depending on which mode is currently in use. A hearing aid mode does not involve a wireless audio connection. The audio signals originate on the ear module itself. The phone mode and companion microphone mode involve audio data transfer using the radio. In the phone mode, audio data is both sent and received through a communication channel between the radio and the phone. In the companion microphone mode, the ear module receives a unidirectional audio data stream from the companion microphone. The control circuitry is adapted to change modes in response to commands exchanged by the radio, and in response to user input, according to priority logic. For example, the system can change from the hearing aid mode to the phone mode and back to the hearing aid mode, the system can change from the hearing aid mode to the companion microphone mode and back to the hearing aid mode. For example, if the system is operating in hearing aid mode, a command from the radio which initiates the companion microphone may be received by the system, signaling a change to the companion microphone mode. In this case, the system loads audio processing variables (including preset parameters and configuration indicators) that are associated with the companion microphone mode. Then, the pulse code modulated data from the radio is received in the processor and up sampled for use by the audio processing system and delivery of audio to the user. At this point, the system is operating in a companion microphone mode. To change out of the companion microphone mode, the system may receive a hearing aid mode command via the serial interface from the radio. In this case, the processor loads audio processing variables associated with the hearing aid mode. At this point, the system is again operating in the hearing aid mode.
If the system is operating in the hearing aid mode and receives a phone mode command from the control bus via the radio, it loads audio processing variables associated with the phone mode. Then, the processor starts processing the pulse code modulated data with an up sampling algorithm for delivery to the audio processing algorithms selected for the phone mode and providing audio to the microphone. The processor also starts processing microphone data with a down sampling algorithm for delivery to the radio and transmission to the phone. At this point, the system is operating in the phone mode. When the system receives a hearing aid mode command, it then loads the hearing aid audio processing variables and returns the hearing aid mode.
One way of dealing with this is to change the sampling rate of the processor device when switching modes. All signal processing would take place at the 12 KHz sampling rate in the hearing aid mode, for example, and at 8 KHz in the other Bluetooth audio modes. The sampling rates of the A/D and D/A would need to be changed along with any associated clock rates and filtering. Most signal processing algorithms would have to be adjusted to account for the new sampling rate. An FFT analysis, for example, would have a different frequency resolution when sampling rate changed.
A preferred alternative to the brute force approach of changing sampling rates with modes is to use a constant sampling rate on the processor and to resample the data sent to and received from the SCO channel. The hearing aid mode runs at a 20 KHz sampling rate for example or other rate suitable for clock and processing resources available. When switching to the phone mode, the microphone is still sampled at 20 KHz, then it is downsampled to 8 KHz and sent out the SCO channel. Similarly, the incoming 8 KHz SCO data is upsampled to 20 KHz and then processed using some of the same signal processing modules used by the hearing aid mode. Since both modes use 20 KHz in the processing phase, there's no need to retool basic algorithms like FFTs and filters for each mode. The companion mic mode uses a unidirectional audio stream coming from the companion mic at 8 KHz. This is upsampled to 20 KHz and processed in the device.
Since the ranges of conversion of sampling rates are related by a simple ratio, 5:2, a polyphase filter structure is used for the upsampling and downsampling. This efficient technique is a well known method for resampling digital signals. Any other resampling technique could be used with the same benefits as listed above.
In the hearing aid mode, the processor 50 receives input data on line 80 from one of the microphones 64, 66 selected by the audio processing variables associated with the hearing aid mode. This data is digitized at a sampling frequency fs, which is preferably higher than a sampling frequency fp used on the pulse code modulated bus for the data received by the radio. The digitized data from the microphone is personalized using selected audio processing algorithms 81 according to a selected set (referred to as a preset and stored in the nonvolatile memory 54) of audio processing variables including verbal and based on a user's personal hearing profile. The processed data is output via the digital to analog converter 56 to speaker 58.
When operating in the hearing aid mode, the processor module 50 may receive input audio data via the PCM interface 86. The data contained in audio signal generated by the Bluetooth module 51 such as an indicator beep to provide for example an audible indicator of user actions such as a volume max change, a change in the preset, an incoming phone call on the telephone, and so on. In this case, the audio data is up sampled using the up sampling algorithm 83 and applied to the selected audio processing algorithms 81 for delivery to the user.
As illustrated in
As mentioned above, the ear module applies selected audio processing algorithms and parameters to compensate for the hearing profile of the user differently, depending on the mode in which it is operating.
The selected audio processing algorithms are defined by subsets, referred to herein as presets, of the set of variables stored on the ear module. The presets include parameters for particular audio processing algorithms, as well as indicators selecting audio processing algorithms and other setup configurations, such as whether to use the directional microphone or the omnidirectional microphone in the hearing aid or phone modes. When the ear module is initially powered up, the DSP program and data are loaded from nonvolatile memory into working memory. The data in one embodiment includes up to four presets for each of three modes: Hearing Aid, Phone and Companion microphone. A test mode is also implemented in some embodiments. When a transition from one mode to another occurs, the DSP program in the processor module makes adjustments to use the preset corresponding to the new mode. The user is able to change the preset to be used for a given mode by pressing a button or button combination on the ear module.
In the example described herein, the core audio processing algorithm which is personalized according to a user's hearing profile and provides hearing aid functionality, is multiband Wide Dynamic Range Compression (WDRC) in a representative embodiment. This algorithm adjusts the gain applied to the signal with a set of frequency bands, according to the user's personal hearing profile and other factors such as environmental noise and user preference. The gain adjustment is a function of the power of the input signal.
As seen in
The incoming signal is analyzed using a bank of non-uniform filters and the compression gain is applied to each band individually. A representative embodiment of the ear module uses six bands to analyze the incoming signal and apply gain. The individual bands are combined after the gain adjustments, resulting in a single output.
Another audio processing algorithm utilized in embodiments of the ear module is a form of noise reduction known as Squelch. This algorithm is commonly used in conjunction with dynamic range compression as applied to hearing aids to reduce the gain for very low level inputs. Although it is desirable to apply gain to low level speech inputs, there are also low level signals, such as microphone noise or telephone line noise, that should not be amplified at all. The gain characteristic for Squelch is shown in
In a representative example, the presets for the signal processing algorithms in each mode are stored in the ear module memory 54 in identical data structures. Each data structure contains appropriate variables for the particular mode with which it is associated. There are six entries for the compression parameters because the algorithm operates on the signal in six separate frequency bands. A basic data structure for one preset associated with a mode of operations is as follows:
Program 0 Slope:
Slope—1
Slope—2
Slope—3
Slope—4
Slope—5
Slope—6
Program 0 Gain:
Gain—1
Gain—2
Gain—3
Gain—4
Gain—5
Gain—6
Program 0 Kneepoint:
Knee—1
Knee—2
Knee—3
Knee—4
Knee—5
Knee—6
Program 0 Release Time:
Release—1
Release—2
Release—3
Release—4
Release—5
Release—6
Program 0 Attack Time:
Attack—1
Attack—2
Attack—3
Attack—4
Attack—5
Attack—6
Program 0 Limit Threshold:
Limit—1
Limit—2
Limit—3
Limit—4
Limit—5
Limit—6
Configuration Registers:
Config—1
Config—2
Program 0 Squelch Parameters:
Squelch_Attack—1
Squelch_Release—1
Squelch_Attack
Squelch_Release
Squelch_Kneepoint
Squelch_Slope
Squelch_Minimum_Gain
Multiple presets are stored on the ear module, including at least one set for each mode of operation. A variety of data structures may be used for storing presets on the ear module in addition to, or instead of, that just described.
One of the variables listed above is referred to as the Configuration Register. The values of indicators in the configuration register indicate which combination of algorithms will be used in the corresponding mode and which microphone signal is selected. Each bit in the register signifies an ON/OFF state for the corresponding feature. Every mode has a unique value for its Configuration
Register.
In a representative embodiment, the Compressor and Squelch algorithms are used in all three modes of the system, but parameter values are changed depending on the mode to optimize performance. The main reason for this is that the source of the input signal changes with each mode. Algorithms that are mainly a function of the input signal power (Compression and Squelch) are sensitive to a change in the nature of the input signal. Hearing Aid mode uses a microphone to pick up sound in the immediate environment. Lapel mode also uses a microphone, but the input signal is sent to the ear module using radio, which can significantly modify the signal characteristics. The input signal in Phone mode originates in a phone on the far end of the call before passing through the cell phone network and the radio transmission channel. The Squelch Kneepoint is set differently in Hearing Aid mode than Phone mode, for example, because the low level noise in Hearing Aid mode produces a lower input signal power than the line noise in Phone mode. The kneepoint is set higher in Phone mode so that the gain is reduced for the line noise.
Also, the modes use different combinations of signal processing algorithms. Some algorithms are not designed for certain modes. The feedback cancellation algorithm is used exclusively in Hearing Aid mode, for example. The algorithm is designed to reduce the feedback from the speaker output to the microphone input on the device. This feedback does not exist in either of the other modes because the signal path is different in both cases. The noise reduction algorithm is optimized for the hearing aid mode in noisy situations, and used in a “noise” preset in hearing aid mode, in which the directional microphone is used as well. The phone mode alone uses the Automatic Noise Compensation (ANC) algorithm. The ANC algorithm samples the environmental noise in the user's immediate surroundings using the omnidirectional microphone and then conditions the incoming phone signal appropriately to enhance speech intelligibility in noisy conditions.
The software in the device reads the Configuration Register value for the current mode to determine which algorithms should be selected. According to an embodiment of the ear module, the presets are stored in a parameter table in the non-volatile memory 54 using the radio in a control channel mode.
The configuration host 13 (
The pairing and connecting screen 100 shown in
To facilitate fine tuning the presets of the ear module in the various modes of operation, the fine tuning screen 101 shown in
The top curve on graph 102 shows the gain applied to a 50-dB input signal, and the lower curve shows the gain applied to an 80-dB input signal. The person running the test program can choose between simulated insertion gain and 2-CC coupler gain by making a selection in a pulldown menu. The displayed gains are valid when the ear module volume control is at a predetermined position, such as the middle, within its range. If the ear module volume is adjusted, the gain values on the fine tuning screen are not adjusted in one embodiment. In other embodiments, feedback concerning actual volume setting of ear module can be utilized. In one embodiment, after the ear module and configuration computer are paired, the volume setting on the ear module is automatically set at the predetermined position to facilitate the fine tuning process.
The user interface 101 includes fine tuning buttons 103 for raising and lowering the gain at particular frequency bands for the two gain plots illustrated. These buttons permit fine tuning of the response of the ear module by hand. The gain for each of the bands within each plot can be raised or lowered in predetermined steps, such as 1-dB steps, by clicking the up or down arrows associated with each band. Each band is controlled independently by separate sets of arrow buttons. In addition, large up and down arrow buttons are provided to the left of the individual band arrows, to allow raising and lowering again of all bands simultaneously. An undo button (curved counterclockwise arrow) at the far left reverses the last adjustment made. Pressing the undo button repeatedly reverses the corresponding layers of previous changes.
The changes made using the fine tuning screen 101 are applied immediately via the wireless configuration link to the ear module, and can be heard by the person wearing the ear module. However, these changes are made only in volatile memory of the device and will be lost if the ear module is turned off, unless they are made permanent by issuing a program command to the device by clicking the “Program PSS” button on the screen. The program command causes the parameters to be stored in the appropriate preset in the parameter tables of the nonvolatile memory.
User interface also includes a measurement mode check box 106. This check box when selected enables use of the configuration host 13 for measuring performance of the ear module with pure tone or noise signals such as in standard ANSI measurements. In this test mode, feedback cancellation, squelch and noise suppression algorithms are turned off, and the ear module's omnidirectional microphone is enabled.
User interface 101 also includes a “problem solver” window 104. Problem solver window 104 is a tool to address potential client complaints. Typical client complaints are organized in the upper portion of the tool. Selections can be expanded to provide additional information. Each complaint has associated with it one or more remedies listed in the lower window 105 of the tool. Clicking on the “Apply” button in the lower window 105 automatically effects a correction in the gain response to the preset within the software, determined to be an appropriate adjustment for that complaint. Remedies can be applied repeatedly to a larger effect. Not all remedies involve gain changes, but rather provide suggestions concerning what counsel to give a client concerning that complaint. Changes made with the problem solver to the hearing aid mode are reflected in a graph. Changes made to the companion microphone mode or phone mode have no visual expression in one embodiment. They are applied even if the ear module is not currently connected to the companion microphone or to a phone.
In the illustrated embodiment, changes to the companion microphone mode and phone mode presets are made using the “problem solver” interface, using adjustments that remedy complaints about performance of mode that are predetermined. Other embodiments may implement fine tuning buttons for each of the modes.
The purpose of the monitor section 111 is to monitor a client's successive manipulation of the controls on the ear module when the device is in the user's ear. For example, when the client presses the upper volume button (36 on
The practice section 112 is used to enable resources in the configuration program for playing target and background sounds through the computer speakers. The target and background sounds can be played either in isolation or in concert. The sound labels on the user interface show their A-weighted levels. Different signal to noise ratios can be realized by selecting appropriate combinations of background sounds and target sounds. The absolute level can be calibrated by selecting a calibrated sound field from a pulldown menu (not shown) on the interface. Selecting the play button in the practice window 112 generates a ⅓ octave band centered at 1 kHz at the configuration host's audio card output. The signal is passed from an amplifier to a loudspeaker. The sound level is adjusted on the computer sound card interface, or otherwise, so that it reads 80 dB SPL (linear) on a sound meter. The configuration software can be utilized to fine tune the volume settings and other parameters in the preset using these practice tools.
User interface also includes a “Finish” key 113. The configuration software is closed by clicking on the finish key 113.
Transitions out of the hearing aid mode 203 include transition 203-1 in response to a user input on a volume down button for a long interval (used to initiate a phone call in this example) on the ear module indicating a desire to connect to the phone. In this case, the signals used to establish the telephone connection are prepared as the ear module remains in hearing aid mode. Then, transition 203-2 to the phone mode 214 occurs after connection of the SCO with the phone, and during which the processor on ear module is set up for the phone mode 214. Transition 203-3 occurs upon a control signal received via the control channel (e.g. modified SPP Bluetooth channel) causing the ear module to transition to the companion microphone mode 212. The SCO channel with the companion microphone is connected and the processor on the ear piece is set up for the companion microphone mode, and the system enters the companion microphone mode 212. Transition 203-4 occurs in a Bluetooth phone in response to a RING indication indicating a call is arriving on the telephone. In this case, the processor is set up for the internal ring mode, a timer is started and the system enters the hearing aid internal ring mode 211. Transition 203-5 occurs when the user presses a volume down button repeatedly until the lowest setting is reached. In response to this transition, the processing resources on the ear module are turned off, and the ear module enters the hearing aid mute mode 210.
Transitions out of the hearing aid internal ring mode 211 include transition 211-1 which occurs when the user presses the main button to accept the call. In this case, signals are generated for call acceptance, and transition 211-2 occurs, connecting a Bluetooth SCO channel with the phone, and transitioning to the phone mode 214. Transition 211-3 occurs in response to the RING signal. In response to this transition, the ring timer is reset and the tone of the ring is generated for playing to the person wearing the ear module. Transition 211-4 and transition 211-5 occur out of hearing aid internal ring mode 211 after a time interval without the user answering, or if the phone connection is lost. In this case, the system determines whether the companion microphone is connected at block 221. If the companion microphone is connected, then a companion microphone Bluetooth SCO channel is connected and the processor is set up for the companion microphone mode. Then the system enters the companion microphone mode 212. If at block 221 the companion microphone was not connected, then the system determines whether a hearing aid mute mode 210 originated the RING signal. If it was originated at the hearing aid mute mode 210, then the processing resource is turned off, and the hearing aid mute mode 210 is entered. If at block 220 a hearing aid mute state was not the originator of the RING, then the processing resources are set up for the hearing aid mode 203, and the system enters the hearing aid mode 203.
Transitions out of the hearing aid mute mode 210 include transition 210-1 which occurs upon connection of the Bluetooth SCO channel with the telephone. In this case, the system transitions to the phone mode 214 after turning on and setting up the processor on the ear module. Transition 210-2 occurs out of the hearing aid mute mode 210 in response to a volume up input signal. In this case, the system transitions to the hearing aid mode 203. Transition 210-3 occurs in response to a RING signal according to the Bluetooth specification. In this case, the processing resources on the ear module are turned on and set up for the internal ring mode, and tone generation and a timer are started. Transition 210-4 occurs if the user presses the volume down button for a long interval. In response, the telephone connect signals are generated and sent to the linked phone.
Transitions out of the companion microphone mode 212 include transition 212-1 which occurs upon connection of the Bluetooth SCO channel to the phone. In this transition, the companion microphone Bluetooth SCO channel is disconnected, and the processor is set up for the phone mode 214. Transition 212-2 occurs when the user pushes the volume down button for a long interval indicating a desire to establish a call. The signals establishing a call are generated, and then the transition 212-1 occurs. Transition 212-3 occurs in response to the RING signal according to the Bluetooth specification. This causes setup of the processor for the internal ring mode, starting tone generation and a timer.
In companion microphone internal ring mode 213, transition 213-1 occurs upon time out, causing set up of the processor for the companion microphone mode 212. Transition 213-2 occurs when the user presses the main button on the companion microphone indicating a desire to connect a call. The call connection parameters are generated, and transition 213-3 occurs to the phone mode 214, during which the Bluetooth SCO connection is established for the phone, the Bluetooth SCO connection for the companion microphone is disconnected, and the processing resources are set up for the phone mode. Also, transition 213-4 occurs in response to the RING signal, in which case the timer is reset and tone generation is reinitiated.
In phone mode 214, transition 214-1 occurs when user presses the main button on the ear module, causing signals for disconnection to be generated. Then, a Bluetooth SCO connection is disconnected and transition 214-2 occurs. During transition 214-2 the system determines at block 223 whether the companion microphone was connected. If it was connected, then the companion microphone Bluetooth SCO channel is reconnected, and the processing resources are set up for the companion microphone mode 212. If at block 223 the companion microphone was not connected, then at block 224 the system determines whether the phone originated in the hearing aid mute mode 210. If the system was in the hearing aid mute mode, then the processing resources are turned off, and the hearing aid mute mode 210 is entered. If the system was not in the hearing aid mute mode 210 during a call, then the system is set up for the hearing aid mode 203, and transitions to the hearing aid mode 203.
The state machines of
Transitions out of the boot mode 301 include transition 301-1 where the user has pressed the main button on the companion microphone between three and six seconds without a paired or pre-paired ear module. In this case, the companion microphone enters the power down mode 302. Transition 301-2 occurs when the user has pressed the main button on the companion microphone for less than three seconds whether or not there is a paired or a pre-paired ear module. Again, in this case the system enters the power down mode 302. Transition 301-3 occurs from the boot mode 301 to the idle mode 305 if the ear module is not pre-paired with the companion microphone. This occurs when the user presses the main button between three and six seconds. The companion microphone becomes connectable to the ear module after the pre-pairing operation is completed.
Transitions out of the pairing mode 303 include transition 303-1 which occurs when a pairing operation is complete. In this case, the ear module control channel connected command is issued and the system is connectable. In this case, the system enters the connecting mode 304A. Transition 303-2 occurs out of the pairing mode 303 in response to an authenticate signal during a pairing operation with the configuration host in a companion module that is not pre-paired. In this case, the system becomes connectable to the configuration host and enters the idle mode 305.
A transition 305-1 out of the idle mode 305 occurs in response to a pre-pair operation, which provides the pre-pairing slot, the Bluetooth device address (BD_ADDR) and PIN number to pre-pair the companion microphone with a specific ear module. Once the pre-pairing parameters are provided, the control channel can be connected with the ear module, and the process enters the connecting mode 304A.
In the connecting mode 304A, transition 304-1 occurs upon a time out in an attempt to connect with the ear module. In this case, after the time out a new control channel connect command is issued. Transition 304-2 occurs after a successful connection of the control channel to the ear module. Upon successful connection, the ear module enters a connected mode 304B. Transition 304-3 from the connected mode 304B occurs upon a disconnect of the control channel connection, such as may occur if the ear module is moved out of range. In this case, a retry timer is started and the process transitions to the connecting mode 304A. Transition 304-4 from the connected mode 304B occurs if the user presses the main button for more than four seconds during the connected mode 304B. In this case, the earpiece control channel is disconnected, and the system enters the disconnecting mode 306. From the disconnecting mode 306, a transition 306-1 occurs after successful disconnection of the control channel and the power down occurs.
A dynamic model for dynamic pairing of the ear module with a phone and with a configuration host is shown in
The process for pairing with the configuration processor starts with the user holding down the main button for more than six seconds (511). The status lights are enabled flashing red and green (512). After dynamic pairing of an SCO channel between the ear module and the configuration processor, similar to that described for the phone, dynamic pairing parameters for the ear module and the phone are saved in a temporary slot, and replaced by the dynamic pairing parameters for the ear module with the configuration processor. The ear module sets the processing resources to the hearing aid settings. Later the configuration host can access the ear piece using a control channel (513). The earpiece forces an authentication (514), and receives a link key for the configuration processor. After the authentication, the status lights are turned off (515). The dynamic pairing parameters for the phone are restored (516, 517), and the earpiece stores the configuration host pairing information for the control channel connection (518).
Once a configuration host is connected to the ear module, a variety of commands may be issued to read state information in parameters. The configuration host also issues commands to configure preset settings for the various modes according to the needs of the user. As part of this process, the configuration host may set up an SCO channel. In this case, the ear module drops existing SCO channels. The configuration host may then use the SCO channel to play audio samples to the user during the fine tuning process as described above.
Similar monitoring and control functions are implemented between the configuration host and the companion microphone, and therefore need not be described again.
In embodiments of the invention sold as a kit, the companion microphone 802 and the ear module 801 are pre-paired prior to delivery to the customer. The pre-pairing includes storing in nonvolatile memory on the ear module a first link parameter used for establishing the communication links with phones or other rich platform devices capable of providing input of authentication parameters such as a configuration host, and a second link parameter, and other necessary network parameters such as device addresses and the like, used for communication links with the companion microphone 802. The pre-pairing also includes storing in nonvolatile memory on the companion microphone the second link parameter, and other necessary network parameters such as device addresses and the like, used for communication links with the ear module 801, and a third link parameter used for communication with rich platform devices capable of input of authentication parameters such as a configuration host. In this manner, a kit is provided in which the ear module 801 and a companion microphone 802 are able to communicate on a private audio channel without requiring configuration by a configuration host in the field before such communications.
A personal communication device is described in which a module including a radio includes a transmitter and a receiver which transmits and receives communication signals encoding audio signals, an audio transducer; a user input and control circuitry; and wherein the control circuitry includes logic for communication using the radio with a plurality of sources of audio data, memory storing a set of variables for processing audio data; logic operable in a plurality of signal processing modes, including a first signal processing mode for processing audio data from a corresponding audio source received using the radio using a first subset of said set of variables, and playing the processed audio data on the audio transducer, a second signal processing mode for processing audio data from another corresponding audio source received using the radio using a second subset of said set of variables, and playing the processed audio data on the audio transducer; and logic to control switching among the first and second signal processing modes according to predetermined priority in response to the user input and in response to signals from the plurality of sources of audio data.
A personal communication device is described such as that in paragraph [0144], wherein said logic to control switching causes the control circuitry to operate in the first signal processing mode by default, and causes switching to the second signal processing mode from the first signal processing mode in response to a request from the corresponding audio source.
A personal communication device is described such as that in paragraph [0144] in which said logic to control switching causes the control circuitry to operate in the first signal processing mode by default, and causes switching to the second signal processing mode from the first signal processing mode in response to a request from the corresponding audio source combined with an input signal from the user input.
A personal communication device is described such as that in paragraph [0144] which includes audio data in the memory, and logic to deliver audio data for an indicator sound from the memory to the audio transducer in response to a request received on the radio from one of the plurality of audio sources, and wherein said logic to control switching causes the control circuitry to operate in the first signal processing mode by default, and in response to a request from the corresponding audio source causes the indicator sound to be played on the audio transducer, and waits for an input signal from the user input, and in response to the input signal causes switching to the second signal processing mode from the first signal processing mode.
A method for configuring a personal sound system is described which includes a first module including a radio including a transmitter and a receiver adapted transmit and receive communication signals which encode audio signals, an audio transducer, and control circuitry for establishing a communication link using the radio based on a link parameter, and a companion module including a radio including a transmitter and a receiver adapted transmit communication signals encoding audio signals, a microphone and control circuitry for establishing a communication link using the radio based on the link parameter. The method includes using the configuration host computer to establish the link parameter for connecting the first module with the companion module; establishing a first radio communication link between the first module and the configuration host computer, and delivering the link parameter to the first module using the first radio communication link; and establishing a second radio communication link between the companion module and the configuration host computer, and delivering the link parameter to the companion module using the second radio communication link.
A method for configuring a personal sound system is described such as that in paragraph [0148] wherein said link parameter comprises an authentication parameter.
A method for configuring a personal sound system is described such as that in paragraph [0148], wherein said link parameter comprises a shared secret code used for an authentication protocol between the ear-level module and the companion module.
A method for configuring a personal sound system is described such as that in paragraph [0148], wherein said link parameter comprises an authentication parameter, the method further including using said first and second radio communication links for delivering a network address for the first module to the companion module, and delivering a network address for the companion module to the first module.
A method for configuring a personal sound system is described such as that in paragraph [0148], in which said first module includes logic for processing sound using a set of variables and playing the processed sound on the audio transducer; and includes using said first radio communication link, or another radio communication link, between the first module and the configuration host to deliver at least a subset of said set of variables to the first module.
A method for configuring a personal sound system is described such as that in paragraph [0148], in which said first module is adapted to be worn at ear-level, and includes logic for processing sound using a set of variables and playing the processed sound on the audio transducer; and includes determining at least a subset of said set of variables based on a hearing profile for a user; and using said first radio communication link, or another radio communication link, between the first module and the configuration host to deliver said subset of said set of variables to the first module.
A method for configuring a personal sound system is described such as that in paragraph [0148] in which said first module includes logic for processing sound using a set of variables and playing the processed sound on the audio transducer; and includes using an interactive program on the configuration host to determine modifications for said set of variables based on user feedback; and using said first radio communication link, or another radio communication link, between the first module and the configuration host to deliver said modifications of said set of variables to the first module.
A method for configuring a personal sound system is described such as that in paragraph [0154] in which said first module includes logic for plurality of signal processing modes, including a first signal processing mode for processing sound picked up by one of the one or more microphones using a first subset of said set of variables and playing the processed sound on the audio transducer, a second signal processing mode for processing audio data from the companion module received using the radio using a second subset of said set of variables, and playing the processed audio data on the audio transducer, a third signal processing mode for processing audio data from another audio source received using the radio using a third subset of said set of variables, and playing the processed audio data on the audio transducer; and wherein said interactive program determines modifications for at least two of the first, second and third subsets of said set of variables.
A method for configuring a personal sound system is described such as that in paragraph [0154] in which the first module includes a microphone, and said third signal processing mode processes audio data from a telephone, and includes processing sound picked up by the microphone to produce audio data from the one or more microphones, and transmitting audio data from the microphone to the telephone using the radio.
A personal communication device is described which comprises an ear-level module including a radio including a transmitter and a receiver which transmits and receives communication signals encoding audio signals, an audio transducer; one or more microphones, and control circuitry; wherein the control circuitry includes memory adapted to store first and second link parameters, and a set of variables; logic for communication with a configuration host using the radio, including resources for establishing a configuration channel with the configuration host and for retrieving said second link parameter from said configuration host and storing said second link parameter in said memory; logic for communication with a plurality of sources of audio data using the radio, including resources for establishing a first audio channel with the first link parameter, and a second audio channel with the second link parameter; logic operable in a plurality of signal processing modes, including a first signal processing mode for processing sound picked up by one of the one or more microphones using a first subset of said set of variables and playing the processed sound on the audio transducer, a second signal processing mode for processing audio data received using the first audio channel using a second subset of said set of variables, and playing the processed audio data on the audio transducer, a third signal processing mode for processing audio data received using the second audio channel using a third subset of said set of variables, and playing the processed audio data on the audio transducer; and logic to control switching among the first, second and third signal processing modes according to priority and in response to signals received on the first and second audio channels.
A personal communication device such as that described in paragraph [0157] which includes logic using the configuration channel to retrieve a network address for the companion module.
A personal communication device such as that described in paragraph [0157] which includes logic using the configuration channel to retrieve at least a subset of said set of variables.
A personal communication device such as that described in paragraph [0157] in which said third signal processing mode processes audio data from a telephone, and includes processing sound picked up by the one or more microphones to produce audio data from the one or more microphones, and transmitting audio data from the one or more microphones to the telephone using the radio.
A personal communication device such as that described in paragraph [0157] in which said logic for processing audio data includes resources for executing a plurality of variant signal processing algorithms, and said first subset of variables includes indicators to enable a first subset of said plurality of variant signal processing algorithms and said second subset of variables includes indicators to enable a second subset of said plurality of variant signal processing algorithms.
A personal communication device such as that described in paragraph [0157] in which said logic for processing audio data includes resources for executing a particular processing algorithm which is responsive to user specified parameters, and said first subset of variables includes a first user specified parameter for the particular processing algorithm and said second subset of variables includes a second user specified parameter for the particular processing algorithm, and wherein the first and second user specified parameters are different.
A personal communication device such as that described in paragraph [0157] in which said one or more microphones includes an omni-directional microphone.
A personal communication device such as that described in paragraph [0157] in which said one or more microphones includes an omni-directional microphone, and a directional microphone, adapted to pick up speech by a person wearing the ear-level module.
A personal communication device such as that described in paragraph [0157] in which said logic for communication using the radio includes a protocol driver for a wireless network.
A personal communication device such as that described in paragraph [0165] in which said wireless network is compatible with a standard Bluetooth network.
A personal communication device such as that described in paragraph [0157] which includes a user input device on the ear-level module adapted to provide control signals to the control circuitry.
A personal communication device such as that described in paragraph [0157] in which said set of variables includes at least one variable based on a hearing profile of a user.
A personal communication device such as that described in paragraph [0157] in which said set of variables includes at least one variable based on user preference related to hearing.
A device for delivering audio data is described, comprising a module including a radio including a transmitter and a receiver which transmits and receives communication signals, a microphone, and control circuitry; wherein the control circuitry includes memory adapted to store first and second link parameters; logic for communication with a configuration host using the radio, including resources for establishing a configuration channel using the first link parameter with the configuration host and for retrieving said second link parameter from said configuration host using the configuration channel; logic for communication with a destination for audio data using the radio, including resources for establishing an audio channel using the second link parameter; and logic transmitting audio data from the microphone using the audio channel to the destination.
A device for delivering audio data is described such as that in paragraph [0170] in which the first link parameter comprises an authentication code and the second link parameter comprises an authentication code.
A device for delivering audio data is described such as that in paragraph [0170] which includes logic using the configuration channel to retrieve a network address for the destination.
A personal communication system is described, comprising an ear-level module and a companion module; the ear level module including a radio, including a transmitter and a receiver, which transmits and receives communication signals encoding audio signals, an audio transducer, and control circuitry; wherein the control circuitry includes memory storing first and second link parameters; logic for communication with sources of data using the radio, including resources for participating in a first channel with the first link parameter, and for participating in a second channel with the second link parameter; and the companion module including a radio including a transmitter and a receiver which transmits and receives communication signals encoding audio signals, and control circuitry; wherein the control circuitry includes memory storing the second link parameter and a third link parameter; logic for communication with the ear-level module using the radio, including resources for participating in the second channel using the second link parameter; and logic for communication with another destination device using the radio, including resources for participating in a third channel using the third link parameter.
A system is described, such as that described in paragraph [0173], in which the ear level module and the companion module include rechargeable batteries, and include a recharging cradle adapted to hold both the ear level module and the companion module.
A personal communication device is described in which an ear-level module including a radio, including a transmitter and receiver, which transmits and receives communication signals encoding audio signals, an audio transducer; a microphone, an analog-to-digital converter providing samples of the sound picked up by the microphone at a first sample rate, a user input and control circuitry; wherein the control circuitry includes logic for participating in a communication channel using the radio with a source of audio data, wherein the communication channel encodes audio data having a second sample rate; and also includes signal processing logic operable in a first signal processing mode for processing sound picked up by one of the microphone and playing the processed sound on the audio transducer, and operable in a second signal processing mode for processing audio data from the source of audio data received using the radio, and playing the processed audio data on the audio transducer; and also includes logic to convert the audio data received using the radio having the second sample rate to the first sample rate for processing by said signal processing logic.
A device is described such as that in paragraph [0175] in which the signal processing logic in the second mode picks up sound from the microphone having the first sample rate, and the conversion logic converts the sound from the microphone to the second sample rate, and transmits the converted audio data on the communication channel using the radio.
While the present invention is disclosed by reference to the preferred embodiments and examples detailed above, it is to be understood that these examples are intended in an illustrative rather than in a limiting sense. It is contemplated that modifications and combinations will readily occur to those skilled in the art, which modifications and combinations will be within the spirit of the invention and the scope of the following claims.
This application is a filing under 35 USC 371 of PCT/US2006/011309 filed 28 Mar. 2006, now pending, which claims the benefit of U.S. 60/666,018 filed 28 Mar. 2005, now expired.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/US2006/011309 | 3/28/2006 | WO | 00 | 11/21/2006 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2006/105105 | 10/5/2006 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
5721783 | Anderson | Feb 1998 | A |
6122500 | Dent | Sep 2000 | A |
6230029 | Hahn | May 2001 | B1 |
6560468 | Boesen | May 2003 | B1 |
6684063 | Berger | Jan 2004 | B2 |
6694143 | Beamish | Feb 2004 | B1 |
6944474 | Rader | Sep 2005 | B2 |
20020071581 | Leysieffer | Jun 2002 | A1 |
20020197961 | Warren | Dec 2002 | A1 |
20030045283 | Hagedoorn | Mar 2003 | A1 |
20040136555 | Enzmann | Jul 2004 | A1 |
20040157649 | Jannard et al. | Aug 2004 | A1 |
20040192349 | Reilly | Sep 2004 | A1 |
20050064915 | Lair | Mar 2005 | A1 |
20050069161 | Kaltenbach | Mar 2005 | A1 |
20050078844 | Von Ilberg | Apr 2005 | A1 |
20050090295 | Ali et al. | Apr 2005 | A1 |
20050096096 | Birli | May 2005 | A1 |
20050100185 | Connors | May 2005 | A1 |
20050124391 | Lee | Jun 2005 | A1 |
20050202857 | Seshadri et al. | Sep 2005 | A1 |
20050255843 | Hilpisch | Nov 2005 | A1 |
20050288057 | Lai | Dec 2005 | A1 |
20060025074 | Liang | Feb 2006 | A1 |
Number | Date | Country |
---|---|---|
102 00 796 | Jul 2003 | DE |
102 22 408 | Nov 2003 | DE |
10222408 | Nov 2003 | DE |
0124576 | Apr 2001 | WO |
0154458 | Jul 2001 | WO |
WO-0217836 | Mar 2002 | WO |
WO-03026349 | Mar 2003 | WO |
2004012477 | Feb 2004 | WO |
2004110099 | Dec 2004 | WO |
WO-2005036922 | Apr 2005 | WO |
2005062766 | Jul 2005 | WO |
Number | Date | Country | |
---|---|---|---|
20070255435 A1 | Nov 2007 | US |
Number | Date | Country | |
---|---|---|---|
60666018 | Mar 2005 | US |